
Università degli Studi di Padova

Dipartimento di Ingegneria Industriale DII
Corso di Laurea Magistrale in Ingegneria Aerospaziale

I N V E S T I G AT I O N O F WA K E L O S S
G E N E R AT I O N I N T H E WA K E O F A L I N E A R

L OW - P R E S S U R E T U R B I N E C A S C A D E U S I N G
R A N S A N D L E S M E T H O D S

Relatore: Prof. Federico Dalla Barba

Laureando: pietro ardenti

Matricola: 2056129

Anno Accademico 2023/2024





“Considerate la vostra semenza:

fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza.”

— Dante Alighieri, Inferno XXVI





Abstract

Motivated by ambitious efficiency and emissions targets, the future of aircraft design neces-
sitates significant changes. These changes will impact the role and design of aero-engines,
demanding higher fidelity and coupled modeling approaches. Scale-resolving simulations
(SRS) are gaining traction in turbomachinery design, but their computational cost remains
a major hurdle. Therefore, Reynolds-averaged Navier-Stokes (RANS) simulations remain
the industry standard for performance evaluation in components like low-pressure turbines.
This research investigates the limitations of RANS models in predicting loss generation
compared to Large Eddy Simulations (LES). Within this study, multiple simulations were
conducted using the DLR’s TRACE flow solver for two distinct setups and operating
points, (Re = 90 000 and Re = 200 000). RANS closure models (SST k-ω and SSG/LRR-ω)
representing Linear Eddy-Viscosity Models (LEVMs) and Reynolds Stress Models (RSMs)
were employed. Results were compared to pre-existing LES simulations and experimental
data. The validation process confirmed the shortcomings of RANS simulations in capturing
the fluid dynamics within the separation zone and wake for both operating points. A
comprehensive analysis of entropy loss generation was conducted to assess system efficiency.
This involved decomposing the total loss into individual terms associated with different loss
mechanisms, allowing for understanding their contributions and spatial distribution. Both
RANS turbulence models exhibited limitations compared to Large Eddy Simulations (LES)
in accurately predicting losses when applied to flows involving separation and transition.
While using LES data for inlet boundary conditions demonstrably improved simulation
accuracy, it also highlighted the limitations of RANS methods in capturing Reynolds
stresses and other turbulence quantities.
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Sommario

Nel contesto di ambiziosi obiettivi di efficientamento e riduzione delle emissioni, il panorama
della progettazione aeronautica si avvia verso un futuro di sostanziali cambiamenti. Tali
innovazioni influenzeranno il ruolo e la progettazione dei motori aeronautici, richiedendo
l’implementazione di approcci di modellazione di elevata accuratezza. Le simulazioni con
risoluzione di scala (SRS) stanno acquisendo sempre maggiore rilevanza nel campo della
progettazione di turbomacchine, sebbene il loro costo computazionale rappresenti ancora
un ostacolo significativo. Pertanto, le simulazioni basate sulle equazioni di Navier-Stokes
mediate alla Reynolds (RANS) rimangono lo standard industriale per la valutazione delle
prestazioni in componenti quali le turbine a bassa pressione. Il presente studio si propone
di investigare i limiti intrinseci dei modelli RANS nella predizione della generazione di
perdite rispetto alle simulazioni Large Eddy Simulations (LES). A tal fine, sono state
condotte molteplici simulazioni avvalendosi del risolutore di flusso TRACE del DLR per
due distinte configurazioni e altrettanti punti operativi (Re = 90 000 e Re = 200 000).
L’analisi ha coinvolto l’utilizzo di due modelli di chiusura RANS, vale a dire SST k-ω
e SSG/LRR-ω, rappresentanti rispettivamente Linear Eddy-Viscosity Models (LEVMs)
e Reynolds Stress Models (RSMs). I risultati ottenuti sono stati quindi confrontati con
simulazioni LES preesistenti e dati sperimentali. Il processo di convalida ha confermato
le carenze delle simulazioni RANS nel catturare correttamente la dinamica del fluido
all’interno della zona di separazione e della scia per entrambi i regimi di funzionamento
considerati. Successivamente, è stata condotta un’analisi approfondita della generazione di
perdite di entropia al fine di valutare l’efficienza del sistema. Tale analisi ha comportato la
scomposizione della perdita totale in termini di contributi individuali associati ai diversi
meccanismi di perdita, consentendo di comprenderne l’entità e la distribuzione spaziale.
Entrambi i modelli di turbolenza RANS hanno evidenziato delle limitazioni rispetto
alle simulazioni LES nel prevedere con accuratezza le perdite in presenza di flussi che
coinvolgono fenomeni di separazione e transizione. L’utilizzo di dati LES per le condizioni
al contorno in ingresso ha indubbiamente migliorato la precisione della simulazione, pur
evidenziando ulteriormente le limitazioni dei metodi RANS nel catturare gli sforzi di
Reynolds e altre grandezze di turbolenza.
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1. Introduction

Within this chapter, the initial section introduces the motivation behind the undertaking
of the current work. Following this, an overview of the objectives and the structure of the
thesis is presented.

1.1. Motivation

The relentless push towards sustainable air travel hinges on advancements in key areas:
efficiency, noise reduction, and overall environmental impact. While progress has been
made, further breakthroughs are key to achieve ambitious environmental goals. In this
context, the crucial low-pressure turbine (LPT) holds immense potential for driving the
future of aeronautics. Modern LPTs are responsible for up to 30 % of the engine weight
and supplies power to the fan section, generating as much as 80 % of the engine thrust
[17]. A recent innovation in fuel efficiency is the geared turbofan (GTF) engine. This
technology incorporates a planetary reduction gearbox positioned between the fan and
the low-pressure (LP) shaft. By decoupling their rotational speeds, GTF engines allow
the LP shaft to operate at a higher speed, enabling a reduction in the number of stages
required in both the LP compressor and turbine. This configuration translates to increased
efficiency and weight reduction. Furthermore, GTF engines facilitate the implementation
of lower fan speeds and higher bypass ratios, which directly contribute to diminished fuel
consumption and significantly decreased noise emissions. Another LPT design strategy is
to reduce the engine’s weight by reducing the number of blades and increasing the blade
loading thereby. In doing this, the flow is forced to turn more aggressively around the
blade, resulting in thicker boundary layers and increased frictional losses. Moreover, due to
strong adverse pressure gradients, the pressure on the suction side of the blade decreases
and can lead to flow separation, where the flow detaches from the blade surface and
creates turbulence. Separation significantly reduces lift generation and further increases
losses. This problem is exacerbated by the Reynolds number range for various operating
conditions. The Reynolds numbers of LPT blades varies from about 0.5 × 105 in the final
stage at high altitude to about 5 × 105 at sea level takeoff in the first stage of the largest
turbofans. Between takeoff and cruise altitude, the Reynolds number might fall by a factor
of between 3 and 4. For these low values of Reynolds number (<1 × 105), LPT blades
exhibit large separation bubbles on their suction sides. This can lead to an increase in
profile losses up to 300 % compared to their design point [23]. In order to maximize the
blade loading and to avoid a non-reattachment of the separation bubble, it is crucial that
numerical design tools are sufficiently accurate to predict the correct reattachment.

Investigating LPTs behaviour and predicting the development of losses is responsibility
of Computational Fluid Dynamics (CFD). In the field of science, more and more re-
searchers are striving for three-dimensional scale-resolving simulations, such as Large-Eddy
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1. Introduction

Simulation (LES), and Direct Numerical Simulation (DNS). These methods offer the
temporal and spatial prediction of turbulent scales, up to primary instability mechanisms
in boundary layers, but are much more resource intensive. Only in the recent years,
with increasing availability of computational resources and advancement in high-order
discretization, these techniques are getting used more widely. For this reason, even today
the most utilized tool are Reynolds-averaged Navier-Stokes (RANS) methods, which are
still the only cost-efficient simulations. Compared to the aforementioned methods, RANS
offer a significant advantage in computational cost. This renders them particularly suit-
able for preliminary design stages and optimization studies, where numerous simulations
are necessary to explore the design space effectively. They can still provide reasonably
accurate predictions for average flow quantities like pressure, temperature, and velocity
in LPTs. This information is often sufficient for initial design stages when the focus is
on overall performance trends and gross design features. Furthermore, over the years,
a well-established workflow and extensive toolset have been developed around RANS
methods for LPT simulations. This means engineers have extensive experience using these
tools and can interpret the results with a good level of understanding. However, being
based on temporal averaging and modeling of transition and turbulence, they still lack
prediction accuracy, especially the closer the test case is to the physical limitations in
terms of weak transitional boundary layers, the decay of turbulence, complex turbulent
structures, or intensive flow separation [8].

As highlighted earlier, the flow conditions within low-pressure turbines frequently exhibit
these phenomena, making accurate prediction of the separation bubble on the suction
side crucial for downstream wake characterization. This region holds significant interest
as it contributes substantially to overall losses. Previous studies have documented the
limitations of Reynolds-averaged Navier-Stokes (RANS) simulations in accurately capturing
Reynolds stresses, leading to underestimation of wake thickness and overestimation of
peak losses. Denton [7] provided a comprehensive overview of loss origins and effects
in turbomachines. Recent years have witnessed increased research efforts focused on
assessing and quantifying these losses through various methods. Bear et al. [1] employed
stereoscopic particle image velocimetry (PIV) data and total pressure loss data to explore
the mechanisms of loss production within an LPT cascade, focusing on the description of
the secondary flow field. Lengani et al. [22] utilized PIV measurements in conjunction with
proper orthogonal decomposition (POD) to identify and assess the sources of turbulence
kinetic energy (TKE) production within LPT cascades. Wheeler et al. [44] investigated the
influence of turbulence on both surface flow physics and heat transfer within LPT vanes.
Their work also included an analysis of loss development through the vane passage. Among
various quantities employed to quantify the efficiency of components in turbomachines,
entropy has gained widespread acceptance, as evidenced by Bejan [2]. For the scope of
this research, a similar approach to the one employed by Zhao and Sandberg [46] will be
followed; after deriving the entropy transport equations based on averaged flow quantities,
the entropy generation process is fully decomposed into individual terms representing
distinct physical mechanisms. These terms will then be employed to quantify the RANS
modeling error associated with turbulence closure models and to locate the major error
source within the vane, subsequently enabling a comparison with the results obtained from
LES simulations of the same geometry.
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1.2. Objectives and Outline of the Present Work

While scale-resolving simulations are increasingly employed in the design process of
turbomachines, their significant computational costs continue to present a challenge.
Consequently, RANS simulations remain the industry standard for performance evaluations
in components like low-pressure turbines. This research aims to identify the limitations of
RANS models in predicting loss generation compared to LES, providing valuable insights
for refining RANS approaches and improving their accuracy in the context of industrial
applications.

The thesis is structured as follows. Chapter 2 introduces the theoretical background of
CFD simulations, including the governing equations. It then discusses RANS and LES
computational methods, focusing on the two turbulence models used for RANS simulations.
Additionally, the chapter provides a brief overview of the characteristics of wake flows and
presents the theory behind entropy loss generation mechanisms. Chapter 3 introduces the
main features of the investigated geometry, the MTU-T161 low-pressure turbine (LPT).
It then details the different simulation setups used and summarizes the software utilized
throughout the research. Chapter 4, presents the validation process using experimental
data and analyzes the results using the entropy generation approach. It compares results
obtained from RANS and LES simulations for the first operating point, analyzing various
setups. Additionally, the chapter compares RANS data for the two investigated operating
points. Finally, Chapter 5 draws conclusions based on the research findings and provides a
perspective on future research directions. Further, the grid independence study is described
in Appendix A.
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2. Fundamentals of Compressible Fluids

In this chapter, an overview on computational methods is provided, starting with the
flow governing equations and continuing with the analysis of the closure problem and
turbulence modeling. In the end a brief summary on wake flows and entropy generation
losses is given.

2.1. Fluid Governing Equations

2.1.1. Navier-Stokes Equations

The Navier-Stokes equations are a set of partial differential equations which describes the
motion of viscous fluids, named after french engineer and physicist Claude-Louis Navier
and Anglo-Irish physicist and mathematician George Gabriel Stokes. The Navier-Stokes
equations mathematically express the conservation of momentum and the conservation of
mass for Newtonian fluids. For a compressible fluid, the Navier-Stokes equations (mass and
momentum conservation) can be expressed together with the equation for the conservation
of energy in the so-called conservation form as:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂(ρu)

∂t
+ ∇ · (ρu ¹ u) = −∇ · (pI) + ∇ · τ + ρfe, (2.2)

∂(ρE)

∂t
+ ∇ · (ρuH) = ∇ · (τ · u) + ∇ · (kt∇T ) + Wf + Q, (2.3)

where ρ is the density, u = (u,v,w) the velocity, p the pressure, I the unit tensor, T the
temperature, kt the thermal conductivity coefficient, fe external volume forces per unit
mass and Q is the rate per unit volume of internal heat production. The variable E is the
specific total energy and is given by the sum of the specific kinetic energy and specific
internal energy, respectively:

E =
1

2
u · u + e. (2.4)

The quantity Wf is the work of the external volume forces and is defined as:

Wf = ρfe · u. (2.5)
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2. Fundamentals of Compressible Fluids

It is also useful to define the enthalpy of the fluid as h = e + p/ρ from which we can derive
the stagnation or total enthalpy H:

H = e +
p

ρ
+

1

2
u · u = h +

1

2
u · u = E + p/ρ. (2.6)

The tensor τ is the viscous shear stress tensor that can be expressed in indexing notation
as:

τij =

[
µ

(
∂uj

∂xi

+
∂ui

∂xj

)
+ λ

(
∂uk

∂xk

)
δij

]
, (2.7)

where µ is the dynamic viscosity, λ the volumetric viscosity and δij the Kronecker delta.
It is possible to define a kinematic viscosity in the following form:

ν =
µ

ρ
. (2.8)

Using the Stokes assumption the volumetric viscosity can be expressed as:

λ = −2

3
µ, (2.9)

so the viscous shear stress tensor can be recast as:

τij = µ

[(
∂uj

∂xi

+
∂ui

∂xj

)
− 2

3

(
∂uk

∂xk

)
δij

]
. (2.10)

These equations are valid for Newtonian fluids, which are fluids that exhibit a linear
relationship between shear stress and shear rate. In other words, the viscosity of the fluid
remains constant under varying shear conditions.

As of now, the Navier-Stokes system of equations contains 5 equations and 7 unknowns, u,
v, w, p, T , ρ and e. The closure of the systems is possible by employing state equations
for pressure, temperature, density and internal energy. For an ideal gas we have:

p = ρRT,

e = cvT,
(2.11)

with R = 287.06 J
kg K

the specific gas constant and cv the isochoric specific heat capacity.
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2.1. Fluid Governing Equations

It is even possible to define the dynamic viscosity as for the Sutherland’s law:

µ = µ0
T0 + S0

T + S0

(
T

T0

) 3
2

, (2.12)

considering the reference viscosity µ0 = 1.7198 × 10−5 kg
m s

at the reference temperature
T0 = 273 K and the Sutherland constant S0 = 110 K.

For this research, air is used as working fluid, assumed as an ideal gas, with a constant
ratio of specific heats γ = cp/cv = 1.4 and Prandtl number Pr = 0.72.

Another relevant number for the matter of this study is the Reynolds number, a dimen-
sionless quantity representing the ratio of inertial forces to viscous forces within a fluid
that is subjected to relative internal movement due to different fluid velocities:

Re =
uL

ν
=

ρuL

µ
, (2.13)

where all quantities are the same already mentioned except for L which is the characteristic
length, i.e. a dimension that defines the scale of the physical system. From the value of
the Reynolds number it is possible to distinguish between laminar (low Re) and turbulent
flow (high Re), with the former where viscous forces are dominant, and is characterized by
smooth, constant fluid motion while the latter is dominated by inertial forces, which tend
to produce chaotic eddies, vortices and other flow instabilities.

2.1.2. RANS: Reynolds (Favre)-Averaged Navier-Stokes Equations

Due to their nature of non-linear partial differential equations, it is impossible to solve
analytically the Navier-Stokes equations as they are. Even for simple problems, assumptions
and approximations are necessary to simplify the equations in order to derive an analytical
solution. Thus, especially when analyzing complex, turbulent systems, a different way
from analytical solution is needed and in the past, scientists have come up with a solution
in the form of averaging the equations.

The Reynolds-averaged Navier-Stokes equations are derived by averaging the viscous
conservation laws over a time interval T , that must be large compared to the typical time
scale of the fluctuations; if T is large enough, A does not depend on the time at which the
averaging is started. For any flow variable A it is possible to define a turbulent fluctuating
part A′ so that:

A = Ā + A′, (2.14)
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2. Fundamentals of Compressible Fluids

where

Ā(x, t) =
1

T

∫ T/2

−T/2
A(x, t + τ)dτ, (2.15)

is the time-averaged turbulent quantity.

For compressible flows, the averaging process leads to products of fluctuations between
density and other variables such as velocity or internal energy. In order to avoid their
explicit occurrence, a density-weighted average, also known as Favre-averaging can be
introduced:

Ã =
ρA

ρ̄
, (2.16)

with

A = Ã + A′′, (2.17)

and

ρA′′ = 0. (2.18)

This way of defining mean turbulent variables will remove all extra products of density
fluctuations with other fluctuating quantities. The averaged continuity equation becomes:

∂

∂t
ρ̄ + ∇ · (ρ̄ũ) = 0. (2.19)

As for the averaged momentum equations we get:

∂ρ̄ũ

∂t
+ ∇ · (ρ̄ũ ¹ ũ) = −∇ · p̄I − ∇ · (τ̃ v − τ R) + ρfe, (2.20)

where the Reynolds stresses τ R defined by

τ R = −ρu′′ ¹ u′′, (2.21)

are added to the averaged viscous shear stresses τ̃ v. In Cartesian coordinates we have:
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2.1. Fluid Governing Equations

τ R
ij = −ρu′′

i u′′

j . (2.22)

It is to be observed that all the effects of the turbulence on the averaged momentum
conservation are contained in the Reynolds stress term.

The derivation of the turbulent-averaged energy conservation equation is more complex,
since a distinction has to be made between the averaged total energy Ẽ and the total
energy of the averaged flow Ê. These two quantities differ by the kinetic energy of the
turbulent fluctuations. If we define the mean turbulent total energy by the straightforward
relation, the over-bar indicating the time average:

ρ̄Ẽ = ρE = ρ(e +
u

2
), (2.23)

we obtain:

Ẽ = ẽ + k̃ + k ≡ Ê + k, (2.24)

where k̃ is the kinetic energy of the mean flow per unit mass,

ρ̄k̃ = ρ̄
ũ2

2
, (2.25)

and k is the turbulent kinetic energy; thus:

ρ̄k = ρ
u′2

2
≡ ρk′′, (2.26)

is defined as the average of the kinetic energy k′′ of the turbulent fluctuations. Similarly
the averaged total enthalpy is defined by:

H̃ = Ẽ +
p̄

ρ̄
= h̃ + k̃ + k ≡ Ĥ + k, (2.27)

where Ĥ is the stagnation enthalpy of the averaged flow.

The fluctuating components are given by:

H ′′ = h′′ + u′′ · ũ + k′′ − k (2.28)
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2. Fundamentals of Compressible Fluids

E ′′ = e′′ + u′′ · ũ + k′′ − k. (2.29)

A conservative form of the turbulent energy equation is obtained by averaging the energy
conservation equation, in the absence of external sources, leading to:

∂

∂t
(ρ̄Ê) + ∇ · (ρ̄Ĥu) = ∇ · (−FD + u · τ T − ρh′′u′′), (2.30)

where the heat diffusive flux is FD = −(µcp/Pr)∇T . The influence of the turbulent
fluctuations on the energy balance of the time-averaged flow is expressed by a turbulent
heat flux vector, equal to (−ρH ′′u′′). In the above equation the total shear stress tensor
τ T is defined by

τ T = τ v + τ R, (2.31)

as the sum of the averaged viscous stresses τ v and the Reynolds stresses τ R.

Similarly we can define a total turbulent heat flux term as:

F T
D = −µcp

Pr
∇T + ρh′′u′′. (2.32)

2.2. Turbulence Models

Unfortunately the equations averaging procedure has generated both the Reynolds stresses
and the turbulent heat flux terms, which now pose a new problems as there are more
unknowns than equations. This is called the closure problem and the only way to solve it
is through developing turbulence models that are needed, in fact, to model these unknown
quantities. There are various closure models developed to approximate the Reynolds
stresses and their choice can significantly impact the accuracy of RANS predictions for
turbulent flows. There are three major classes into which the models can be divided:

• Linear Eddy Viscosity Models (LEVM): the Reynolds stresses are modelled by a
linear constitutive relationship with the mean flow straining field;

• Nonlinear Eddy Viscosity Models (NLEVM): an eddy viscosity coefficient is used to
relate the mean turbulence field to the mean velocity field, however in a nonlinear
relationship;

• Reynolds Stress Models (RSM): unlike eddy viscosity models, RSMs directly solve
transport equations for individual Reynolds stresses, providing a more detailed
representation of turbulence. However, RSMs are computationally more expensive.
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2.2. Turbulence Models

In this section we are going to analyze only the models which are relevant for our research,
in particular the Menter SST model which is part of the LEVMs and the SSG/LRR-ω
model which is included into RSMs.

2.2.1. LEVMs and Menter SST k-ω Model

One of the most significant contributions to turbulence modelling was presented in 1877
by Boussinesq [4]. His idea is based on the observation that the momentum transfer in
a turbulent flow is dominated by the mixing caused by large energetic turbulent eddies.
The Boussinesq hypothesis assumes that the turbulent shear stress depends linearly on
the mean rate of strain, as in a laminar flow. The proportionality factor is the turbulence
eddy viscosity νT > 0. For computational simplicity, the eddy viscosity, is often computed
in terms of a mixing length, that is analogous to the mean free path in a gas. In contrast
to the molecular viscosity, which is an intrinsic property of the fluid, the eddy viscosity
(and hence the mixing length) depends upon the flow. Because of this, the eddy viscosity
and mixing length must be specified in advance, most simply, by an algebraic relation
between eddy viscosity and length scales of the mean flow. This way we can write the
Reynolds stresses as:

−ρu′

iu
′

j = νT (
∂ūi

∂xj

+
∂ūj

∂xi

) − 2

3
ρδijk, (2.33)

with k, the turbulent kinetic energy, equal to:

k =
1

2
u′

iu
′

i. (2.34)

Although the eddy-viscosity hypothesis is not correct in detail, it is easy to implement
and, with careful application, can provide reasonably good results for many flows. In
the simplest description, turbulence can be characterized by two parameters: its kinetic
energy, k, or a velocity, q =

√
2k, and a length scale, L, as for the mixing length model

[35]. Dimensional analysis shows that:

νT = CµρqL, (2.35)

where Cµ is a dimensionless constant. In the simplest practical models, k is determined
from the mean velocity field using the approximation q = L∂u/∂y and L is a prescribed
function of the coordinates, easy to specify for simple flows but not for separated or highly
three-dimensional flows. Mixing-length models can therefore be applied only to relatively
simple flows; they are also known as zero equation models. Because a minimum description
of turbulence requires at least a velocity scale and a length scale, a model which derives the
needed quantities from two such equations is a logical choice. In almost all such models,
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2. Fundamentals of Compressible Fluids

an equation for the turbulent kinetic energy, k, determines the velocity scale. The exact
equation for this quantity is not difficult to derive:

∂(ρk)

∂t
+

∂ (ρūjk)

∂xj

=
∂

∂xj

(
µ

∂k

∂xj

)
− ∂

∂xj

(
ρ

2
u′

ju
′

iu
′

i + p′u′

j

)
−

ρu′

iu
′

j

∂ūi

∂xj

− µ
∂u′

i

∂xk

∂u′

i

∂xk

(2.36)

For details of the derivation of this equation see [34] or [45]. The terms on the left-hand
side of this equation and the first term on the right-hand side need no modeling. The
last term represents the product of the density ρ and the dissipation, ε, the rate at which
turbulence energy is irreversibly converted into internal energy. The second term on the
right-hand side represents turbulent diffusion of kinetic energy (which is actually transport
of velocity fluctuations by the fluctuations themselves); it is almost always modeled by
use of a gradient-diffusion assumption:

−
(

ρ

2
u′

ju
′

iu
′

i + p′u′

j

)
≈ νT

σk

∂k

∂xj

, (2.37)

where σk is a turbulent Prandtl number whose value is approximately unity. The third
term of the right-hand side represents the rate of production of turbulent kinetic energy
by the mean flow, a transfer of kinetic energy from the mean flow to the turbulence. If we
use the eddy-viscosity hypothesis, to estimate the Reynolds stress, it can be written:

Pk = −ρu′

iu
′

j

∂ūi

∂xj

≈ νT

(
∂ūi

∂xj

+
∂ūj

∂xi

)
∂ūi

∂xj

, (2.38)

and, as the right hand-hand side of this equation can be calculated from quantities that
will be computed, the development of the turbulent kinetic energy equation is complete.
As mentioned above, another equation is required to determine the length scale of the
turbulence. The choice is not obvious and a number of equations have been used for this
purpose. The most popular one is based on the observations that the dissipation is needed
in the energy equation and, in so-called equilibrium turbulent flows, i.e., ones in which the
rates of production and destruction of turbulence are in near-balance, the dissipation ε,
and k and L are related by:

ε ≈ k3/2

L
. (2.39)

This idea is based on the fact, that at high Reynolds numbers, there is a cascade of energy
from the largest scales to the smallest ones and that the energy transferred to the small
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2.2. Turbulence Models

Figure 2.1.: Schematic illustration of production, energy cascade and dissipation in the
energy spectrum of turbulence (picture taken from [18])

scales is dissipated, as shown in Fig. 2.1. It is also useful to introduce as a variable the
specific rate of dissipation ω.

The SST k-ω turbulence model [26] is a two-equation eddy viscosity model which has
become very popular. The shear stress transport (SST) formulation combines the best of
two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes
the model directly usable all the way down to the wall through the viscous sub-layer, hence
the SST k-ω model can be used as a low-Re turbulence model without any extra damping
functions. The SST formulation also switches to a k-ε behaviour in the free-stream and
thereby avoids the common k-ω problem that the model is too sensitive to the inlet
free-stream turbulence properties. For my study I will refer to the 2003 version of the
model [25], the one implemented in the flow solver. The two equation model is given by
the following:

D(ρ̄k)

Dt
= ρ̄Pk − β∗ρ̄ωk +

∂

∂xi

[
(µ + σkνT )

∂k

∂xi

]

D(ρ̄ω)

Dt
= γ

ρ̄2

νT

Pk − βρ̄ω2 +
∂

∂xi

[
(µ + σωνT )

∂ω

∂xi

]
+ 2 (1 − F1)

σω2ρ̄

ω

∂k

∂xi

∂ω

∂xi

(2.40)

and the turbulent production ρ̄Pk = 1/2ρ̄Pii is obtained by substituting the Boussinesq
assumption into the production term of Reynolds stresses and taking the trace. It is limited
to values smaller than 10 times the destruction of turbulent kinetic energy. Menter’s
rationale was to produce an ω-equation, which he called BSL-ω , that behaves like an
ω-equation close to solid walls and like an ε-equation in free shear flows. For this reason,
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Table 2.1.: SST k-ω model equations coefficients

Constant β σk σω γ

Inner layer (1) 0.075 0.85 0.5 0.556
Outer layer (2) 0.0828 1.0 0.856 0.44

all constants φ in the equations are blended by his F1 function via:

φ = F1φ1 + (1 − F1) φ2. (2.41)

All the constants are given in Tab. 2.1, distinguishing values according to the region they
refer to:

The remaining coefficient is β∗ = 0.09. The turbulent eddy viscosity is computed from:

νT =
ρa1k

max (a1ω, SF2)
(2.42)

with a1 = 0.31 and the strain norm S =
√

SijSij, that is the reason behind the model being

addressed as shear stress transport (SST). It is based on the Bradshaw assumption that
the shear stress is proportional to the turbulent kinetic energy in equilibrium boundary
layers [5].

The blending functions F1 and F2 are rather complex functions of turbulence quantities,
viscosity and distance to the wall. They are given by:

F1 = tanh
(
arg4

1

)

arg1 = min

[
max

( √
k

β∗ωd
,
500µ

ρ̄d2ω

)
,

4ρ̄σω2k

CDkωd2

]

CDkω = max

(
2ρ̄σω2

ω

∂k

∂xi

∂ω

∂xi

, 10−10

)
(2.43)

and:

F2 = tanh
(
arg2

2

)

arg2 = max

(
2
√

k

β∗ωd
,
500µ

ρ̄d2ω

) (2.44)
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The flow solver allows the user to adopt a wide range of modifications to the model, which
for time and space reasons are not going to be discussed here, but if interested in the
matter, it is possible to find additional information in the flow solver user guide [36].

2.2.2. RSMs and SSG/LRR-ω Model

Eddy-viscosity based models like the k-ε and the k-ω models have significant shortcomings
in complex, real-life turbulent flows. For instance, in flows with streamline curvature, flow
separation, flows with zones of re-circulating flow or flows influenced by mean rotational
effects, the performance of these models is unsatisfactory. Such one- and two-equation
based closures cannot account for the return to isotropy of turbulence, observed in decaying
turbulent flows. Eddy-viscosity based models cannot replicate the behaviour of turbulent
flows in the Rapid Distortion limit, where the turbulent flow essentially behaves as an
elastic medium (instead of viscous).

The most complete classical turbulence models nowadays are Reynolds stress equation
model (RSM), also referred to as second moment closures. In these models, the eddy-
viscosity hypothesis is avoided and the individual components of the Reynolds stress
tensor are directly computed. These models use the exact Reynolds stress transport
equation for their formulation. They account for the directional effects of the Reynolds
stresses and the complex interactions in turbulent flows. Reynolds stress models offer
significantly better accuracy than eddy-viscosity based turbulence models, while still
remaining computationally cheaper than DNS and LES. The Reynolds stress model
involves calculation of the individual Reynolds stresses, ρu′

iu
′

j, using differential transport
equations. The individual Reynolds stresses are then used to obtain closure of the Reynolds-
averaged momentum equation. The exact transport equations for the transport of the
Reynolds stresses can be written as follows:

∂

∂t

(
ρu′

iu
′

j

)
+ Cij = DT,ij + DL,ij + Pij + φij − εij + Fij, (2.45)

where Cij is the convection term, DT,ij equals the turbulent diffusion, DL,ij stands for the
molecular diffusion, Pij is the term for stress production, φij is for the pressure strain, εij

stands for the dissipation and Fij is the production by system rotation. Between these
terms Cij, DL,ij, Pij, and Fij do not require modelling. However, DT,ij, φij, and εij have to
be modelled for closing the equations. The fidelity of the Reynolds stress model depends
on the accuracy of the models for the turbulent transport, the pressure-strain correlation
and the dissipation terms. Additional information on the above-mentioned terms can be
found in [41] and [9].

Now, strictly regarding the SSG/LRR-ω a slightly different formulation of the Reynolds
stress transport equation is going to be used:
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∂
(
ρ̄R̃ij

)

∂t
+

∂

∂xi

(
ρ̄R̃ijũi

)
= ρ̄Pij + ρ̄Πij − ρ̄εij + ρ̄Dij, (2.46)

where ρ̄R̃ij are the Cartesian components of the Reynolds stress tensor. The Cartesian
components of the production term are given by:

ρ̄Pij = −ρ̄R̃ik
∂ũj

∂xk

− ρ̄R̃jk
∂ũi

∂xk

, (2.47)

and, as said before they, they do not need modeling since all quantities are provided by
the system of equations to be solved. The Cartesian components of the pressure-strain
correlation are formally modeled according to Speziale, Sarkar and Gatski (SSG) [15] as:

ρ̄Πij = −
(

C1ρ̄ε +
1

2
C∗

1 ρ̄Pii

)
b̃ij + C2ρ̄ε

(
b̃ikb̃kj − 1

3
b̃klb̃klδij

)
+
(

C3 − C∗

3

√
b̃klb̃kl

)
ρ̄k̃S̃∗

ij

+ C4ρ̄k̃
(

b̃ikS̃jk + b̃jkS̃ik − 2

3
b̃klS̃klδij

)
+ C5ρ̄k̃

(
b̃ikΩ̃jk + b̃jkΩ̃ik

)
,

(2.48)

where k̃ = R̃ii/2 is the specific kinetic turbulence energy and

b̃ij =
R̃ij

2k̃
− 1

3
δij, (2.49)

represents the Cartesian components of the anisotropy tensor. Furthermore there are:

S̃ij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
,

S̃∗

ij = S̃ij − 1

3
S̃iiδij,

Ω̃ij =
1

2

(
∂ũi

∂xj

− ∂ũj

∂xi

)
,

(2.50)

denoting the Cartesian components of the simple strain rate tensor, the traceless strain
rate tensor and the rotation tensor, respectively. The Ci and C∗

i are model dependent
coefficients. Dissipation is modeled as an isotropic tensor with Cartesian components:

ρ̄εij =
2

3
ρ̄ε, (2.51)
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where the isotropic dissipation rate ε is provided indirectly by a transport equation for
the specific dissipation rate ω given further below. Two different models are available
representing non-convective fluxes, simple gradient diffusion:

ρ̄Dij =
∂

∂xi

[(
µ̄ +

D(SD)

Cµ

ρ̄k̃2

ε

)
∂R̃ij

∂xi

]
, (2.52)

or generalized gradient diffusion:

ρ̄Dij =
∂

∂xi

[(
µ̄δij + D(GD) ρ̄k̃R̃kl

ε

)
∂R̃ij

∂xi

]
, (2.53)

where µ̄ is the mean dynamic fluid viscosity and D(SD) and D(GD) represent respective
model coefficients. Finally, Menter’s baseline equation, in a slightly different formulation
from the one previously given:

∂(ρ̄ω)

∂t
+

∂

∂xi

(
ρ̄ωŨk

)
= γ

ω

k̃

ρ̄Pkk

2
−βρ̄ω2+

∂

∂xi

[(
µ̄ + σω

ρ̄k̃

ω

)
∂ω

∂xi

]
+σk

ρ̄

ω
max

(
∂k̃

∂xi

∂ω

∂xi

, 0

)
,

(2.54)

is employed for providing the isotropic dissipation rate ε = Cµk̃ω where Cµ = 0.09. As
with the SST model, the coefficients φ = γ, β, σω, σk are blended according to:

φ = F1φ1 + (1 − F1) φ2, (2.55)

between the bounding values associated with the ω-equation by Wilcox near walls (F1 = 1)
and the standard ε-equation at the boundary layer edge (F1 = 0), where the blending
function is given by:

F1 = tanh
(
ζ4
)

, (2.56)

with the argument:

ζ = min


max




√
k̃

Cµωd
,
500µ̄

ρ̄ωd2


 ,

4σω2ρ̄k̃

σk2
ρ̄
ω

max
(

∂k̃
∂xi

∂ω
∂xi

, 0
)

d2


 , (2.57)

based on the wall-distance d. The corresponding values of the coefficients are given in Tab.
2.2.
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Table 2.2.: Menter’s BSL equation coefficients for SSG/LRR-ω

β σk σω γ

Inner layer (1) 0.075 0 0.5 0.556
Outer layer (2) 0.0828 1.712 0.856 0.44

The fundamental idea of the SSG/LRR-ω model is to combine the ε-based SSG model
for the pressure strain correlation with the simpler model by Launder, Reece and Rodi
(LRR) near walls in the ω-based formulation of Wilcox (see [20]). Since the LRR-model
can be written as a subset of the above SSG-model, the same blending of the Reynolds
stress model coefficients Ci, C∗

i , D(SD) and D(GD) can be applied as to the coefficients of
the ω-equation. Thus, all coefficients change consistently from LRR + ω near walls to
SSG + ε at the boundary layer edge. The corresponding bounding values are given in
Tab. 2.3. Note that the value of the coefficient c

(LRR)
2 as well as the generalized diffusion

coefficient D(GD) have been re-calibrated for better agreement with the log-law velocity
profile in a zero pressure gradient boundary layer.

Table 2.3.: Bounding values of the SSG/LRR-ω model term coefficients
(
c

(LRR)
2 = 0.52

)

C1 C∗

1 C2 C3 C∗

3 C4 C5 D(SD) D(GD)

SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4 2
3
0.22 0.22

LRR 3.6 0 0 0.8 0
18c

(LRR)
2 +12

11

−14c
(LRR)
2 +20

11
0.5Cµ 0.75Cµ

In the end for a wide range of separated flows the SSG/LRR-ω model yields similar results
as the Spalart-Allmaras or the SST models. Advantages have been observed with respect
to the prediction of the shock position and the length of separation bubbles. However, the
reverse flow speed inside the bubble seems to be generally underestimated. Furthermore,
effects of streamline curvature and secondary flow are predicted reasonably well by the
SSG/LRR-ω model. Capturing these effects requires curvature corrections or nonlinear
extensions in standard eddy-viscosity models. Thus, the SSG/LRR-ω model appears to
have a wider range of applicability than eddy-viscosity models without special modifications
[10].

2.3. Overview of Large-Eddy Simulation

Turbulent flows contain a wide range of length and time scales; the range of eddy sizes
that might be found in a flow is shown schematically on the left-hand side of Fig. 2.2.
The right-hand side of this figure shows the time history of a typical velocity component
at a point in the flow; the range of scales on which fluctuations occur is obvious. The
large scale motions are generally much more energetic than the small scale ones and are
directly affected by the boundary conditions; their size and strength make them by far the
most effective transporters of the conserved properties and so they are usually computed.
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Figure 2.2.: Schematic representation of turbulent motion (left) and the time-dependence
of a velocity component at a point (right) (picture taken from [13])

The small scales are usually much weaker and provide little transport of these properties.
Also, they are roughly isotropic and have nearly universal characteristics; it is thus more
amenable to modeling. Thus, a method which resolves the large energy containing motions
and models the small ones, may make sense.

Large-eddy simulation (LES) is just such an approach, as they are a method in which the
large eddies are computed and the smallest, subgrid-scale (SGS), eddies are modeled. It is
essential to define the quantities to be computed precisely. Field variables that contains
only the large scale components of the total field are needed. This is best produced by
filtering the various quantities; in this approach, the large or resolved scale field, the one
to be simulated, is essentially a local average of the complete field. Any filtered variable
can be defined by:

Ā(x,t) =
∫

R3
G∆(r)A(x − r,t)dr3, (2.58)

where G∆(r), the filter kernel, is a localized function and satisfies the following property:

∫

R3
G∆(r)dr3 = 1 (2.59)

Filter kernels which have been applied in LES include a Gaussian, a box filter (a simple
local average) and a cutoff (a filter which eliminates all Fourier coefficients belonging
to wavenumbers above a cutoff). Every filter has a length scale associated with it, ∆.
Roughly, eddies larger than ∆ are are resolved while structures smaller than ∆ need to be
modeled. Any flow variable can be decomposed into a filtered (large-scale, resolved) part
Ā and into a sub-filter (unresolved) part A′ as:

A = Ā + A′. (2.60)

As done for RANS, the spatial filtering has to be applied to the Navier-Stokes equations
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in order to remove the small turbulent scales. The filter width ∆, as well as the filter
function are considered as free parameters. In fact, the governing equations are usually
not explicitly filtered. Instead, the grid as well as the discretization errors are assumed to
define the filter G. For compressible flows the spatial filtering has to be applied together
with the Favre averaging, otherwise the filtered Navier-Stokes equations would contain
products between density and other variables like velocity or temperature. Thus, velocity
components, energy and temperature are decomposed as:

A = Ã + A′′. (2.61)

It is important to notice that unlike for RANS:

˜̃
A ̸= Ã (2.62)

Applying the filtering operations on the dimensionless conservation laws, (for further
details see [16]) the filtered Navier-Stokes equations can be obtained:

∂ρ̄

∂t
= − ∂

∂xj

(ρ̄ũj) , (2.63)

∂ρ̄ũi

∂t
= − ∂

∂xj

(ρ̄ũiũj) − ∂

∂xi

p̄ +

[
∂

∂xj

τ̂ij − ∂

∂xj

ρ̄aij

]
+

[
∂

∂xj

(τ̃ij − τ̂ij)

]
, (2.64)

where τ̂ij is the stress tensor based on T̃ and ũ and the quantity aij is here used to define
the Reynolds stress tensor:

aij = ũiuj − ũiũj. (2.65)

In the filtered energy equation a modified total energy ê is introduced, which is the total
energy based on the filtered variables:

ê =
p̄

γ − 1
+

1

2
ρ̄ũiũi = ē +

1

2
ρ̄aii. (2.66)

The ê-equation is obtained when the bar-filter is applied to the energy equation and the
transport equation for the turbulent kinetic energy (ρ̄akk/2) is subtracted. After a lengthy
calculation one obtains:
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∂ê

∂t
= −

(
∂ ((ê + p̄)ũj)

∂xj

)

+

[
∂ (τ̂ijũi)

∂xj

− ∂q̂j

∂xj

− 1

γ − 1

∂ (puj − p̄ũj)

∂xj

−
(

p
∂uk

∂xk

− p̄
∂ũk

∂xk

)
− ∂ (ρ̄akjũk)

∂xj

]

+

[
ρ̄akj

∂ũk

∂xj

+ τkj
∂uk

∂xj

− τ̄kj
∂ũk

∂xj

+
∂ (τ̄ijũi − τ̂ijũi)

∂xj

− ∂ (q̄j − q̂j)

∂xj

]
(2.67)

in which even the heat flux q̂ is based on the variable T̃ . The derived system of equations
contains terms which can directly be identified with the unfiltered Navier-Stokes equations
but also several additional nonlinear contributions (subgrid-terms) appear as well which
cannot be directly related to the filtered flow quantities. If these equations are used as
the basis for LES, usually only the quantities aij and ∂ (puj − p̄ũj) /∂xj are replaced by a
model representation whereas the other nonlinear subgrid terms are simply disregarded.

The modeling of the subgrid scale tensor τ̄ij = ūiūj − uiuj is usually based on an eddy-
viscosity assumption as:

τ̄ij − 1

3
τ̄kkδij = 2νT S̄ij, (2.68)

where:

S̄ij =
1

2

(
∂ūi

∂xj

+
∂ūj

∂xi

)
, (2.69)

is the deformation tensor of the resolved field. Different models for the subgrid stresses
are available. Due to the spatial filtering, the models below all use the cell size ∆ = V

1
3

where V is the cell volume.
One of the earliest formulated model is the Smagorinsky one [40], in which the eddy-
viscosity is assumed to be proportional to the subgrid length scale ∆ and to the norm of
the strain tensor via:

νT = ρ̄ (Cs∆)2
√

2S̄ijS̄ij, (2.70)

with the constant CS = 0.17.

The model adopted in the current study is the wall adaptive local eddy viscosity or WALE
model, implemented according to [31]. Like the Smagorinsky model it determines an
eddy viscosity locally from resolved quantities. It is now useful to define the following
quantities:
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Ω̄ij =
1

2

(
∂ūi

∂xj

− ∂ūj

∂xi

)
, (2.71)

and:

Sd
ij = S̄ikS̄kj + Ω̄ikΩ̄kj − 1

3
δij

[
S̄mnS̄mn − Ω̄mnΩ̄mn

]
. (2.72)

This way we can obtain the eddy-viscosity formulation according to the WALE model,
which is:

νT = (Cw∆)2

(
fd

ijf
d
ij

)3/2

(
S̄ijS̄ij

)5/2
+
(
Sd

ijS
d
ij

)5/4
, (2.73)

where the constant Cw = 0.5587 is computed from the relation:

C2
w = αC2

s , (2.74)

and Cs has the same value as for Smagorinsky model while the factor α is found through
averaging several values related to different turbulent fields (see [31]). The resulting
formulation ensures some advantages compared to the classical Smagorinsky formulation,
for example, all the turbulence structures relevant for the kinetic energy dissipation are
detected. Moreover, the eddy-viscosity tends to go naturally to zero in the vicinity of a
wall, removing the need for any dynamic constant adjustment or damping functions in the
computation of wall-bounded flows. As the model produces zero eddy viscosity in case of
a pure shear, it is able to reproduce the laminar to turbulent transition process through
the growth of linear unstable modes. Finally, the model is invariant to any coordinate
translation or rotation, meaning that it can be used for complex geometries.
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2.4. Turbulent Wake Flows

In these paragraph, the formation and description of turbulent wake flows is going to be
discussed. The wake is the region of disturbed flow, downstream of a body caused by
the flowing of a fluid around it. This phenomenon is originated when the development
of the boundary layer over the surface of a body leads, under certain conditions, to its
separation.

Figure 2.3.: Boundary layer development for a flow over a flat plate (picture taken from
[32])

To better understand this mechanism, the simplest case of a boundary layer formation on
a flat plate is going to be initially examined. Consider a uniform-velocity, non-turbulent
stream flow over a smooth, semi-infinite, flat plate (i.e the wall) laying on the x − z plane;
the mean flow is predominantly in the x direction and the free-stream velocity (outside
the boundary layer) can be denoted by u∞(x). Statistics vary primarily in the y direction,
that is the distance from the wall, and are independent of z but as the boundary layer
continually develops, they depend both upon x and upon y. The velocity components are
u, v, and w. The free-stream pressure p∞(x) is linked to the velocity u∞(x) by Bernoulli’s
equation −p∞(x) + 1

2
ρu2

∞
(x) = constant, so that the pressure gradient is:

−dp∞

dx
= ρu∞

du∞

dx
. (2.75)

Accelerating flows are defined according to:

du∞

dx
> 0, (2.76)

and corresponds to a negative (favorable) pressure gradient. Conversely, decelerating flows
yields a positive (adverse) pressure gradient, so called because it can lead to separation of
the boundary layer from the surface and they are, conversely, determined by:
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du∞

dx
< 0. (2.77)

It is useful to specify another variable, namely the local Reynolds number, which is strictly
related to the state regime of the flow over the plate:

Rex ≡ u∞x

ν
. (2.78)

In a zero-pressure-gradient boundary layer, there is laminar flow from the leading edge
(x = 0) until the location at which Rex reaches a critical value Recrit ≈ 106 marking the
start of transition. The value of Recrit varies considerably, depending on the nature and
level of the disturbances in the free stream, see, e.g., [38]. Transition occurs over some
distance, after which the boundary layer is fully turbulent as shown in Fig. 2.3. The
boundary layer thickness, δ, can be defined as the height above the surface where the
flow velocity on the boundary layer approaches the external flow velocity u∞(x); δ grows
progressively and asymptotically, meaning that its growth rate is initially significant, and
then the growth rate slows down as the boundary layer develops further downstream.

Figure 2.4.: Boundary layer separation over the suction surface of an airfoil (picture taken
from [3])

In the previous part the considered body was an ideal plate but for the purpose of the
research a LPT blade was studied, so a body which in addition to the plate characteristics
possess a curvature, along the dominant flow direction. On the upper (suction) surface
of an airfoil the curvature is convex; whereas there is concave curvature over part of the
lower (pressure) surface of a cambered airfoil. In the flow over airfoils, the boundary
layer is simultaneously subjected to the effects of curvature and a mean pressure gradient.
Focusing on the suction side, as the velocity decreases, the adverse pressure gradient over
the back half slows down the boundary layer flow, especially near the surface, and causes
it to separate. This happens at a position where the boundary layer profile develops a
point of inflection, so the corresponding wall shear stress becomes:
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τw = µ

(
du

dy

)

wall

= 0. (2.79)

The flow reverses, a region of recirculating flow develops and the thickness of the boundary
layer abruptly increases and the layer is forced off the surface, see Fig. 2.4. This, in the
end, causes the formation of a turbulent wake with the presence of vortical structures that
finally leads to aerodynamics problems and energy losses.

2.5. Entropy Loss Generation for RANS and LES

The purpose of this section is to give an outline on the main method that is used in the
analysis of loss generation for the studied case. An efficient use of energy is one of the
most important goals in modern turbomachinery design. Based on the second law of
thermodynamics, entropy generation is being widely used to represent loss of efficiency.
Generally, viscous effects and irreversible heat flux are taken as major sources for entropy
generation in turbomachinery, and various empirical relations have been derived to estimate
the entropy generated from different origins such as the viscous effects in the boundary
layer, viscous effects in wake mixing, and heat transfer across temperature differences.
In the past years, several studies have been carried out to quantify entropy generation
through CFD calculations, as for example the one by Moore and Moore [27] or more
recently the paper from Lengani et al.[21]. For our case study we will focus on the paper
by Zhao et al. [46] as the performed procedure is based on the same approach.

From the second law of thermodynamics, the total entropy S follows:

Ṡ + IS =
∫

V
GsdV g 0, (2.80)

with Ṡ the time rate of change of the system entropy, IS is the entropy current with
external environment, and the right-hand side term represents the entropy generation rate
Gs integrated over the volume V . For most thermodynamic processes the generation of
total entropy is greater than zero, while the equivalent holds only when the process is
reversible. For single phase fluid flows, it can be written:

∂(ρs)

∂t
+

∂Fi

∂xi

≡ Gs g 0, (2.81)

where s is the specific entropy and Fi is the entropy flux caused by mass flux and heat
transfer.

Starting from RANS equations, after some calculations it is possible to derive the entropy
balance equation for the mean flow:

25



2. Fundamentals of Compressible Fluids

∂ (ρ̄ũis̃)

∂xi

+
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+
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∂xi

, (2.82)

where the turbulent heat flux is here defined as:

qR
j = ρ̄cp

(
T̃ uj − T̃ ũj

)
. (2.83)

The left hand side of entropy balance equation represents entropy variations caused by
mass and heat fluxes with external environments. On the right-hand side, the entropy
generation mechanisms for RANS flow fields can be written as:

G̃RANS
s =

1

T̃
τij(ũ)

∂ũj

∂xi︸ ︷︷ ︸
VM

+
cpµ

Pr

1

T̃ 2

(
∂T̃
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︸ ︷︷ ︸
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∂xi︸ ︷︷ ︸
PR

− 1
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∂
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(
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i

)
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HR

− 1

T̃

∂ (ρ̄ũik)

∂xi︸ ︷︷ ︸
Ak

,

(2.84)

which include entropy generation caused by the mean viscous dissipation VM , mean flow
irreversible heat flux HM , the turbulence production related to the Reynolds stress PR,
turbulent heat flux HR, and advection of turbulent kinetic energy (TKE) Ak. We remark
that the terms PR, HR, and Ak stand for the contribution of turbulence fluctuations to
the irreversible process of entropy generation.

In a similar way the same procedure can be applied to LES equations obtaining a comparable
equation for the entropy generation with the only difference being in two additional SGS
terms:

G̃LES
s =

1

T̃
τij(ũ)

∂ũj

∂xi︸ ︷︷ ︸
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+
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T̃
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(2.85)
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where VS and HS represent the entropy generation related to the viscous dissipation caused
by SGS stress and the SGS heat flux. These two last mentioned variables are defined as:

τSGS
ij = −ρ̄ (uiuj − ūiūj)

qSGS
j = ρ̄cp

(
Tuj − T̄ ūj

)
.

(2.86)
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Simulations Setup

In this chapter, an overview of the MTU-T161 LPT cascade characteristics is given.
Afterwards, the numerical setup of the simulation is described for both RANS and LES
simulations. For the former, the description is split between the full blade setup and the
wake setup, while for the latter only the entire setup is considered. Moreover, for the
RANS wake setup simulations, the procedure to extract suitable boundary conditions
is reported. Finally, in the last part of the chapter, the softwares used throughout the
research are briefly discussed.

3.1. MTU-T161 LPT Cascade

The subject of all the researches and simulations carried out in the context of this work
is the MTU-T161 test case; the three-dimensional turbine passage is illustrated in Fig.
3.1.

The salient characteristic of the MTU-T161 is the presence of diverging conical end-walls,
designed to promote three-dimensionality in the flow and induce realistic conditions,
relevant to rotating machines. The case also features a revised high-lift profile with
improved blade-loading representative of modern turbine designs. The flow around a linear
turbine cascade with sidewalls needs to be simulated. The corresponding experimental
setup consist of a cascade with seven linear blades. The numerical simulation is concerned
with describing the flow around the mid turbine blade. Hence, it is sufficient to setup
the simulation as a one blade setup and apply periodic boundary conditions in the pitch
wise direction to mimic the interaction of the flow with the neighboring blades. For what
concerns the spanwise direction, to account for the diverging sidewalls of the cascade,
even the computational domain possesses inclined external walls with respect to the
flow direction. At Re=90 000 both LES and experimental data are available, while at
Re=200 000 only experimental data are taken into account, since LES does not match
them. For the higher Reynolds number case, only the RANS simulations of the full blade
setup are performed.
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Figure 3.1.: Illustration of the MTU-T161 geometry (picture taken from [37])

Figure 3.2.: Illustration of the utilized MTU-T161 computational domain
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3.2. RANS Simulations Setup

3.2.1. Full Blade Setup Re = 90 000

Here, the entire blade setup for the first operating point is considered. In Tab. 3.1 the
boundary conditions values used to setup the case for the current operating point are listed.
The grid used for the comparison between the closure models is made up of 27.7 × 106

cells divided in 7 blocks, 2 for the regions respectively upstream and downstream of the
blade and 5 for the domain region around the blade. The selection of this grid was based
on a comparative analysis with metrics derived from simulations conducted on various
meshes. Further details on the grid study procedure can be found in Appendix A. The
computational domain is shown in Fig. 3.3.

Figure 3.3.: Computational domain for the RANS full blade setup simulations

Table 3.1.: Boundary conditions for the RANS Full blade setup simulations at Re=90 000

Variable Value

Reynolds Number 90 000
Mach Number 0.6

Turbulence Intensity at L.E. 3.97 %

As said before, in the pitch wise direction periodic boundary conditions are applied; for
the various panel groups, the respective boundary conditions are reported in Tab. 3.2.
The panels constituting the external parts of the domain have been defined as inviscid
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walls, while the blade panel is set as a viscous wall. In Tab. 3.3 the settings used by the
flow solver to perform the RANS simulations for the Re = 90 000 operating point are
summarized. Further information regarding the the 2009 version of γ − Reθ transition
model, used for the Menter SST 2003 k-ω turbulence model can be found in [36] and
[19]. For what concerns the parameters that describe the gas model, assumed to be ideal
in throughout the entire work, they are reported in the section 2.1.1 of the previous
chapter.

Table 3.2.: Panels boundary conditions and settings for RANS full blade setup simulations

Panel Type Boundary Condition Wall Treatment Heat Transfer

External Walls Inviscid Wall - Adiabatic
Blade Viscous Wall Low Reynolds Adiabatic

Panel Type Boundary Condition Method Steady Average Type

Inlet Inlet Steady 2D Flux Average
Outlet Outlet Steady 2D Flux Average

Table 3.3.: Global settings for the RANS full blade setup simulations

Setting Menter 2003 SST k-ω SSG/LRR-ω

Turbulence Treatment (U)RANS (U)RANS
Solution Method ILU ILU

Stagnation Point Anomally Fix Kato-Launder -
Rotational Effects Off -
Transition Model γ − Reθ γ − Reθ

Transition Model Version Menter 2009 Menter 2009

Heat Flux Model Constant Prandtl Constant Prandtl
Turbulent Prandtl Number 0.9 0.9

Every ran simulation for this setup has converged after around 15 000 iterations, with
residuals final values below 1 × 10−8.
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3.2.2. Wake Setup Re = 90 000

In this part, the wake setup with its features is analyzed. As suggested by the name, only
the region downstream of the blade is considered and so, the computational domain consists
of a single block in the shape of a parallelepiped, with slightly diverging sidewalls as shown
in Fig. 3.4; this block, on which the simulations were performed is composed of roughly
52.5 × 106 cells. Even for this configuration, the appropriate grid size was determined
through a grid independence study, the details of which are provided in Appendix A.
Unlike the previously analyzed case, here there are only three different types of boundary
conditions, due to the fact that the blade is missing; the boundary conditions are reported
in Tab. 3.4.

Figure 3.4.: Computational domain for the RANS wake setup simulations

Table 3.4.: Panels boundary conditions and settings for RANS wake setup simulations

Panel Type Boundary Condition Wall Treatment Heat Transfer

External Walls Inviscid Wall - Adiabatic

Panel Type Boundary Condition Method Steady Average Type

Inlet Inlet Riemann Flux Average
Outlet Outlet Steady 2D Flux Average

In addition to the different subdivision into panels groups, there are some significant
variations in the boundary conditions regarding the inlet. For this case, in fact, there are
no global data (i.e. static pressure) to enter, instead, the whole boundary condition is
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specified through an input file which contains all the necessary information. This input
file contains the variables required in order to correctly setup the simulations and this is
done specifying the different quantities needed by each of the two turbulence models at
the inlet plane of the box.
The input file must include the following information:

• Specification of inlet coordinates, which can be made for example through a 2D
distribution;

• Specification of inlet flow state, which gives information about the stagnation pressure
and temperature of the incoming flow at the inlet. Usually also a value of the static
pressure is prescribed for 2D boundary conditions as a fallback for backflow;

• Specification of inlet flow direction;

• Specification of inlet turbulent state, consisting either of turbulence intensity and
turbulent length scale or turbulent kinetic energy and dissipation rate for eddy
viscosity models. Whereas for Reynolds stress models, there is the additional
option to prescribe anisotropic inlet boundary conditions by setting the Reynolds
stress tensor or by adding five components of the anisotropy tensor to the isotropic
turbulence setup (turbulence intensity and turbulent length scale or turbulent kinetic
energy and dissipation rate)

For both models the inlet coordinates are specified using a 2D distribution, with the
proper coordinates in the x-, y- and z-direction. The inlet flow state and direction are also
specified using the same quantities, i.e the absolute stagnation pressure and temperature
and the static pressure (respectively with [Pa] and [K] as measurement unit) for the former
and the angles between y- and x-components and z- and x-components of velocity vector
for the latter. The only major difference lies in the choice of the variables combination
needed to define the inlet turbulence state; in particular for the Menter SST k-ω model,
being an eddy viscosity model, the used combination consists of the specific turbulent
kinetic energy (in [m2/s2]) and the specific turbulent dissipation rate (in [1/s]). However,
for the SSG/LRR-ω method, since it is part of Reynolds stress models, the used variables
are the six components of the Reynolds stress tensor τ R (only six because the tensor
is symmetric) together with the specific turbulent dissipation rate. Regarding this last
mentioned quantity, it should be noted that for RANS simulations it is only used to
reproduce the TKE field and has no physical meaning by itself while for LES simulation it
has a different meaning. To compute these crucial variables, as they can not be directly
taken from the LES simulation, the so called "Frozen Approach" method [33] was used.
The idea behind this method is to use the complete time averaged LES flow field and only
solve the transport equation for the turbulent dissipation rate. This is done thanks to a
"frozen simulation", in which proper values of turbulent length scale and turbulent intensity,
derived from the LES simulation using a linearized k-ω model, have been prescribed.
Finally, performing a cut on the full blade setup frozen simulation (the exact position is
located at 6 % of the axial chord length after the T.E. edge of the blade), the boundary
conditions for the wake setup can be obtained.
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With respect to the settings for the simulation run, a really similar setup to the one for
the full blade domain simulations was used.

Every ran simulation for this setup has converged in around 20 000 iterations, with residuals
final values below 1 × 10−6.

3.2.3. Full Blade Setup Re = 200 000

For the simulation of the complete blade configuration at Re=200 000, the utilization of
the same grid employed for the lower Reynolds number operating point was validated.
This decision was affirmed through a comparison of results with an additional simulation
conducted on a more refined mesh. To ensure that the boundary layer was adequately
resolved the wall distance was adjusted accordingly. The same settings were applied also
for what concerns methods and numerical setup, for both RANS methods; the options
used are therefore displayed in Tab. 3.2 and Tab. 3.3. Boundary conditions used for this
simulation case are reported in Tab. 3.5.

Table 3.5.: Boundary conditions for the RANS full blade setup simulations at Re=200 000

Variable Value

Reynolds Number 200 000
Mach Number 0.6

Turbulence Intensity at L.E. 4.09 %

Every ran simulation for this setup has converged in around 15 000 iterations, with final
residuals values below 1 × 10−7.

3.3. LES Simulations Setup

The importance of LES simulations in this research cannot be overstated; as seen before
they are used to derive suitable boundary conditions for the wake setup and in addition to
that, they can provide a valuable benchmark for evaluating RANS simulations results.

Regarding the utilized LES simulations, they were carried out for both operating points,
with the assistance of TRACE software, at IST, in the context of a previous research project
[12]. With respect to the numerical setup, to model the subgrid-stresses, the subgrid
turbulent eddy viscosity, νT , is computed according to the WALE model, which has been
already described in section 2.3. Moreover, to introduce artificial turbulence into the flow
field, use has been made of synthetic turbulence generator or STG; these tools are extremely
valuable as they can create artificial turbulent fluctuations that mimic the behavior of
real turbulence, which in the end helps to improve the accuracy of the simulation. For
this study, STG were implemented according to Shur et al. [39] by Morsbach and Franke
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[29] and finally tested by Matha et al. [24]. For additional information on how the STG
method is implemented in the flow solver, refer to the user manual [36].

3.4. Methods

In this section, the softwares used for performing the simulations and the meshing process
are introduced.

3.4.1. Flow Solver: TRACE

This section briefly describes the most important aspects of TRACE, the program used
to perform the above discussed simulations. The CFD code TRACE (Turbomachinery
Research Aerodynamic Computational Environment) has been developed at DLR’s Institute
of Propulsion Technology since the early 1990s, in order to study complex flows in
turbomachinery. Within DLR, TRACE is the standard method for the simulation of
internal flows. Outside DLR, universities and other research institutes use TRACE
for the scientific analysis of turbomachinery flows. In addition, also companies as the
cooperating partner for this research, MTU Aero Engines, employ TRACE in industrial
design environments for the design and optimization of turbomachinery components.

TRACE is a density based solver for the Navier-Stokes equations (see section 2.1.1) designed
specifically for application on turbomachinery. It works best for Mach numbers between 0.1
and 2.5. For the discretization of the above mentioned equations, the finite volume method
is used; for RANS spatial and temporal discretizations, second order Fromm [14] and
Predictor-Corrector schemes, are respectively employed. To solve the oscillations problem
Van Albada Sqr limiter [42] is applied to the spatial discretization scheme. Regarding
LES, to solve the filtered compressible Navier-Stokes equations, a second-order accurate,
density-based finite volume scheme was used, applying MUSCL reconstruction (Monotonic
Upstream Scheme for Conservation Laws) [43]; the time integration was performed using
a third-order accurate explicit Runge-Kutta method. Again, as previously reported, the
WALE method was employed to compute subgrid stresses.

3.4.2. Mesh Generators: AutoGrid5™ and PyMesh

For the task of generating grids for the studied geometries, two different softwares were
used, depending on the kind of setup of which the mesh was required.

Starting from the full blade setup, the used program was AutoGrid5™, part of Numeca
meshing solutions; it allows to create multi-block structured meshes for any kind of
turbomachinery, from centrifugal compressors over pumps to wind turbines. To obtain
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fully automatic or semi-automatic grids with an optimal quality control, AutoGrid5™

takes advantage of the characteristics of turbomachinery configurations by creating blade
to blade grids onto surfaces of revolution. The generation follows four main steps:

1. Definition of the geometry, with blade surface description, definition of hub and
shroud surfaces of revolution through curves and specification of additional data
needed to handle special features such as splitters, meridional or 3D technological
effects.

2. Generation of meridional flow paths. These flow paths define the meridional trace of
the surfaces of revolution on which the 3D mesh will be built.

3. Generation and control of 2D meshes on spanwise surfaces. This 2D generation
enables the user to control the mesh topology, the grid clustering and the mesh
orthogonality along the solid walls.

4. Generation of the final 3D mesh. This generation combines the meridional flow paths
and the 2D blade to blade meshes to create the mesh on surfaces of revolution. The
use of the conformal mapping between the 3D Cartesian space and the 2D blade to
blade space ensures conservation of quality in terms of orthogonality and clustering
for each axisymmetric surface mesh.

Finally a check on the parameters of the generated mesh is accomplished, to ensure that
the grid meets the requirements.

For the other kind of setup, the wake one, a different software named PyMesh was used to
generate the grid. As AutoGrid5™, even this second grid generator creates structured
multi-block grids for CFD applications, especially in the context of turbomachinery
evaluation and optimization. For the current case study, the instructions to create a
proper box grid were provided through a Python script and included parameters such as
spacing and information related to the cut plane position and geometry from which to
start the creation of the grid. The script was then executed by PyMesh to finally obtain
the required grids.

Additional information regarding the meshing and the grid independence study process
can be found in Appendix A.
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4. Analysis of Results

In the following pages, final results of the simulations and their analysis are reported and
discussed. The main goal of this chapter and of the entire research is the comparison
between RANS and LES simulations of the various cases and this is primarily done through
the evaluation of the entropy generation quantities derived in section 2.5. However, prior
to engaging in the analysis, it is imperative to conduct an additional study to validate
the obtained results; in the next sections, two metrics are used for this purpose, namely,
the isentropic Mach number distribution across the blade (Mais, computed with TRACE
POST) and the total pressure loss distribution (ω, determined according to equation A.2)
measured at a certain position in the wake of the blade. This assessment facilitates the
determination of the reliability of the obtained results and enables preliminary reflections
on the comparison between RANS and LES. The study will be conducted by comparing
RANS, LES, and experimental results for the first operating point at Re=90 000. For the
higher Reynolds number case, Re=200 000, the comparison will involve only RANS and
experimental data. LES simulations were performed as part of another research on the
same cascade ([12]). Experimental data used throughout this chapter have been provided
from another scientific report ([11]).

4.1. First Operating point: Re = 90 000

In this section, the analysis is focused on the results achieved for the lower Reynolds
number operating point; for this case, data from both LES simulations and experimental
tests are utilized for the validation process. For what concern the comparison of data
obtained between the two different kind of simulation, both the full setup and wake setup
are investigated in terms of entropy loss generation.

4.1.1. Validation of Results

In this first part of the section, computational results are compared with experimental
data from [12] in terms of blade loading and wake losses. Fig. 4.1a shows the isentropic
Mach number (Mais) normalized distribution at mid-span of the blade, determined by
the static pressure around the blade. Focusing first on the leading edge, the simulations
results match the experimental one quite well, both on the pressure and suction side. As
expected, LES are more precise with respect to RANS results, but the latter are still
providing sufficiently accurate data. This trend is generally followed throughout the entire
length of the pressure side, with very little difference between the various results. A
small separation zone is detected at around x/cax = 0.1 until after x/cax = 0.4; the LES
simulation demonstrates a minor tendency to over-predict flow deceleration compared to
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4. Analysis of Results

experimental data, whereas the two curves representing RANS simulations closely align
across the majority of the profile.

(a) Normalized isentropic Mach number distri-
bution at 50 % of the blade span (full setup)

(b) Normalized wake loss profiles evaluated at
140 % of the axial chord length downstream
of T.E. (full setup)

(c) Normalized wake loss profiles evaluated at
140 % of the axial chord length downstream
of T.E. (wake setup)

Figure 4.1.: Comparison of averaged quantities for RANS (LEVM and RSM) and LES
simulations and experimental data

On the suction side, however, a distinct behavior is observed; while LES simulation can
be acknowledged for faithfully replicating experimental tests, the same cannot be asserted
for the two RANS simulations. Starting shortly after x/cax = 0.3, the Mais distributions
for both SST k-ω and SSG/LRR-ω models start to divert from the experimental results
curve and the gap increases with the Mach number. This results in a different prediction
of the Mais peak value and its position, with LES estimating it at x/cax = 0.62, in
good agreement with experiment, while both RANS overestimate the maximum and they
place it further downstream, at almost x/cax = 0.7. This leads to an incorrect estimate
of the separation, with both SST k-ω and SSG/LRR-ω models failing to replicate the
characteristic pressure plateau adequately; in fact, in addition to the initial position also

40



4.1. First Operating Point: Re = 90 000

the final one is incorrectly evaluated, resulting in a shorter separation zone, with the
reattachment point located upstream of the actual position. For what concern the LES
simulation, the Mais curve is much more in agreement with the experimental results,
especially in the separation zone, with both values and positions estimated fairly correctly.
It is interesting to note that, despite SSG/LRR-ω having a separate modelling of stresses,
it tends to deliver results comparable to the one obtained with the less complex SST
k-ω.

In Fig. 4.1b the normalized wake total pressure loss coefficient ω is shown, computed for
the full setup according to equation A.2 at a plane located x/cax = 1.4 downstream of the
T.E.. The prediction of the separation bubble highly affects the prediction of the wake
and it can be easily noticed how both RANS simulations fail to estimate the wake profile
correctly, both in terms of peak value and especially with respect to its shape; even the
pitch position at which the coefficient reaches its maximum is not properly estimated,
with both models predicting an offset for the turning angle with respect to experimental
data. More specifically, the SSG/LRR-ω model manages to deliver slightly better results
concerning both maximum value and width compared to SST k-ω, but still, the computed
wake is substantially thinner than the measured one. This result is in agreement with other
studies previously performed under similar conditions [30] where it was correlated to an
overestimate of shear stresses and an underestimate of TKE, especially in laminar boundary
layers, due to the transition model preventing it upstream of the bubble. Considering
instead the LES, it can be seen that there are some differences even here, not regarding
the width of the wake which is generally in agreement with the experimental one, but
with respect to its position; in fact, starting from pitch = 0.4 the curve has an offset in
the pitch direction in comparison with the experimental one.

In Fig. 4.1c, the wake loss profile is once again presented, specifically for the wake
setup; although the two RANS simulations exhibit higher peak values compared to the
previously analyzed configuration, it is readily apparent that the overall shape of both
curves closely resembles the behavior observed in the experimental data. There is also a
slight improvement in estimating the maximum position of the curve. The attainment of
this outcome is attributed to the utilization of boundary conditions derived from temporally
mediated LES data, allowing the simulations to specifically focuses on reproducing the
mixing process within the wake.

Hence, it can be asserted that both RANS simulations encounter challenges in accurately
reproducing the fluid behaviour within both the separation zone and the wake; this is
most likely due to inadequate resolution of turbulent structures. Similar conclusion were
also gained by other studies as for example [10] and [28]. In this last paper the authors
also test a possible solution to obtain better results for SST k-ω model, in the form of
reducing the inflow turbulent length scale but while this seems to improve the prediction of
blade loading at first sight, it is source of other problems in predicting the flow behaviour
close to T.E. where pressure is not recovered, incorrectly indicating an open separation
bubble. On the other hand, when considering the wake setup, RANS simulations exhibit
significantly improved performance when it comes to predict wake loss profile.
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4. Analysis of Results

4.1.2. Full Blade Setup RANS-LES Comparison

In the subsequent segment of this section, the analysis is focused in comparing the entropy
generation quantities derived from both RANS and LES simulations. Following the
approach described by [46], the loss increase caused by various terms in Eq. 2.84 and 2.85
is quantified performing volume integrals of the mentioned quantities, along the whole
domain. The terms under consideration can be categorized into three distinct groups.
The first group comprises VM and AM , representing the influence of mean flow effects.
The second group, encompassing PR, Ak, and HR, characterizes the entropy generation
resulting from turbulence fluctuations. Lastly, the third group involves the SGS stress
term VS and the SGS heat flux term HS, computed exclusively for LES data. For this
study, given also the results obtained from Zhao and Sandberg [46], the terms HR and HS

were not considered, due to their negligible values when compared to other terms and the
total entropy loss. Furthermore, in the case of LES outcomes, the SGS stress term VS was
directly incorporated into the broader term VM .

In Tab. 4.1 and Tab. 4.2, the total entropy generation by different terms and their
percentage compared to overall loss is respectively listed for the examined setup. Regarding
the overall loss generation, the RSM predicts a value nearly identical to the one estimated
by LES, while LEVM only accounts for around half of it when compared with the previously
mentioned methods. It is possible to notice, as the most important role for all the different
simulations is played by the the turbulence production term PR; this represents the energy
transfer from the mean flow to the turbulent fluctuations. Although it holds the highest
percentage contribution, the absolute value of its influence varies significantly across
different simulations. In fact, while the SSG/LRR-ω obtained value is in good agreement
with the LES one, it is not possible to say the same about the SST k-ω which predicts a
much lower value.

Table 4.1.: Values of entropy generation loss terms for RANS and LES simulations of full
setup at Re=90 000

Terms [JK−1s−1] SST k-ω SSG/LRR-ω LES

VM 0.032987 0.034443 0.031248
HM 0.000001 0.000001 0.000001
PR 0.370961 0.900880 0.894431
Ak −0.001733 0.001325 −0.000764

GT OT
s 0.405682 0.933999 0.926444

The behaviour of this term will be further discussed later on. Regarding the mean viscous
dissipation term VM , a similar contribution to the total loss is achieved for all the performed
simulations, with its percentage for the SST k-ω being higher due to the lower value of
the overall loss generation. It can be seen that the contribution to the overall entropy
generation of the two remaining terms, namely mean heat flux HM and TKE advection Ak,
is much less significant; for the former it can be concluded that it is essentially negligible,
while the latter still maintains a not trivial value, even if it is small.
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4.1. First Operating Point: Re = 90 000

Table 4.2.: Percentage values of entropy generation terms with respect to the total loss for
RANS and LES simulations of full setup at Re=90 000

Terms [JK−1s−1] SST k-ω SSG/LRR-ω LES

VM/GT OT
s 8.13 % 3.69 % 3.37 %

HM/GT OT
s 0 % 0 % 0 %

PR/GT OT
s 91.44 % 96.45 % 96.55 %

−Ak/GT OT
s 0.43 % −0.14 % 0.08 %

To better understand the spatial distribution of entropy generation mechanisms, its
evolution for the various terms is reported in Fig. 4.2 by integrating over the volume
between the inlet and the outlet plane. Focusing first on terms representing mean flow
effects, VM and HM , it becomes evident that the overall trends of the RANS simulations
align well with those observed in the LES curve. The increase of both quantities is
distributed across the entire blade surface, and can be attributed to the fact that the
generation of mean flow entropy takes place predominantly within the blade boundary
layer. This behavior is corroborated by the spatial distribution of turbulence production
computed on a plane at the blade mid-span (see Fig. 4.3). Regarding VM , there is a rapid
increase nearby the L.E., which can be explained by high values of the viscous stress tensor
components and therefore, by strong velocity gradients in the region. Ultimately, both
variables exhibit a nearly constant behavior beyond the trailing edge. Taking a closer look
to the chart for PR, it is possible to better understand the numerical values seen previously.
While the SST k-ω and LES simulations curves feature a steady but modest increase
across the blade, the SSG/LRR-ω one is characterised by a steep rise from close to the
L.E. to the T.E.. This behavior can be attributed to the model’s tendency to overestimate
Reynolds stresses, especially in the proximity of the stagnation point and within the blade
passage. In Fig. 4.4 the contour plot of the turbulence production term (with increasing
order of magnitude, from purple to yellow) is reported for the three different simulations,
showing a significant difference in intensity for the Reynolds Stress Model. It is also
noteworthy to observe that, up to the aft region of blade the suction side where separation
occurs, the LEVM exhibits favorable agreement with the LES. However, beyond this point,
notably astride the trailing edge, the disparity between the curves widens, with the SST
k-ω model ultimately leading to a significantly lower terminal value. This behaviour is
evident in the larger area affected by turbulent production in Fig. 4.4c. Ultimately, the
fact that the SSG/LRR-ω predicts a final PR value close to the LES estimated value is
due to a lucky cancellation of errors. For what concern TKE advection, it is observed that
the LES curve exhibits a sudden negative jump precisely at the inlet: this phenomenon
is most likely attributed to losses introduced by synthetic turbulence generator (STG)
within boundary conditions. Consequently, this discrepancy results in a vertical offset
between this and the RANS related curves. The variable trend is then generally the same
for all simulations until the L.E., at which the LEVM starts to deviates from the other
simulations, not able to detect the Ak rise, which only begins around the position where
separation occurs. While it may seem that the RSM accurately captures the evolution
of Ak, a closer examination reveals that again, the anomaly occurring at the blade L.E.
significantly influences and contributes to the increase in the variable value. This is caused
by the production term in Eq. 2.47 and the presence of strong velocity gradients due to
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(a) Mean viscous dissipation VM (b) Mean viscous heat flux HM

(c) Turbulence production PR (d) Turbulent kinetic energy advection Ak

Figure 4.2.: Comparison of entropy generation term integrals, derived from RANS and
LES simulations, for the full blade setup at Re=90 000

the fluid stagnation. For all simulations, an increase is witnessed in the aft part of the
blade reaching the peak slightly after the T.E., even if there is a significant gap between
RANS and LES. Further downstream Ak decreases, reaching a negative final value for SST
k-ω and LES and slightly positive one for the SSG/LRR-ω.
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(a) SST k-ω

(b) SSG/LRR-ω

(c) LES

Figure 4.3.: Mean viscous dissipation term (VM) contour plot for each simulation
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(a) SST k-ω

(b) SSG/LRR-ω

(c) LES

Figure 4.4.: Turbulence production term (PR) contour plot for each simulation
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4.1.3. Wake Setup RANS-LES Comparison

In this section, the entropy generation analysis is conducted concerning the wake setup,
utilizing the same terms as discussed previously. As described in section 3.2.2, the wake
setup inlet is located at 106 % of the axial chord and so the simulations only perform
the wake mixing in the computational domain. For RANS, the flow state at the inlet
is described based on quantities derived from time-averaged LES data. It will become
evident later on, that this approach significantly impacts the ultimate results.

Tables 4.3 and 4.4 present the overall entropy variation, categorized based on the several
contributing mechanisms. Once again, it is evident that the most influential term is
PR, registering values of approximately 90 % across all three simulations. However, it is
important to highlight a substantial disparity in its absolute value when comparing the
three employed methods. Specifically, SSG/LRR-ω predicts a final value closer to that of
LES, in contrast to SST k-ω, which is presumably attributed to the superior modeling
of Reynolds stresses, facilitated by the availability of a transport equation for estimating
these quantities in the former method. The second most conspicuous contribution arises
from the TKE advection term, exhibiting a negative final value in both RANS simulations,
in agreement with the behaviour predicted by LES. Both estimates provided by RANS
methods more closely align with the LES results, compared to the turbulence production
term, thanks to a well predicted TKE distribution in the wake region. The two parameters
representing mean flow effects, VM and HM , experience a significant decrease in both
absolute and percentage values. However, this outcome is not surprising, considering that
these terms primarily contribute to entropy generation in the blade boundary layer, which
is outside the scope of the investigated domain.

Table 4.3.: Values of entropy generation loss terms for RANS and LES simulations of wake
setup at Re=90 000

Terms [JK−1s−1] SST k-ω SSG/LRR-ω LES

VM 0.000370 0.000278 0.000163
HM 0.000000 0.000000 0.000000
PR 0.311652 0.243536 0.202803
Ak −0.022634 −0.022096 −0.019651

GT OT
s 0.334656 0.265910 0.222618

Table 4.4.: Percentage values of entropy generation terms with respect to the total loss for
RANS and LES simulations of wake setup at Re=90 000

Terms [JK−1s−1] SST k-ω SSG/LRR-ω LES

VM/GT OT
s 0.11 % 0.10 % 0.07 %

HM/GT OT
s 0 % 0 % 0 %

PR/GT OT
s 93.13 % 91.59 % 91.10 %

−Ak/GT OT
s 6.76 % 8.31 % 8.83 %
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(a) Mean viscous dissipation VM (b) Mean viscous heat flux HM

(c) Turbulence production PR (d) Turbulent kinetic energy advection Ak

Figure 4.5.: Comparison of entropy generation term integrals, derived from RANS and
LES simulations, for the wake setup at Re=90 000

Fig. 4.5 illustrates the evolution of the different loss terms for the specified configuration.
It is evident that RANS generally aligns with LES for each quantity, demonstrating a good
agreement in terms of the overall trend. Regarding the accuracy of RANS simulations,
it is observed that the SSG/LRR-ω model globally provides better estimations of the
various quantities compared to SST k-ω model. However, the difference between the two
is not substantial. In conclusion, it can be asserted that the simulation of the region
downstream of the profile significantly benefits from the implementation of boundary
conditions derived from Large Eddy Simulation. This is evident in the better level of
accuracy that they can achieve when estimating both the values and the evolution of all
entropy generation loss terms, compared to results obtained for the entire setup. This
behavior can be attributed to the relative ease of predicting the mixing of the wake, despite
being a complex mechanism, compared to the challenging prediction of fluid separation
occurring in the final region of the blade suction surface.
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4.2. Second Operating Point: Re = 200 000

The scope of this section is the analysis of the results achieved for the higher Reynolds
number operating point; for this case, data from LES simulations are not available as they
were not in good agreement with experimental one and so, only the latter are utilized for
the validation process. For the comparison of data acquired through the entropy generation
analysis, the full setup is investigated and compared with the results previously obtained
for the first operating point.

4.2.1. Validation of Results

In this first part of the section, simulation results derived with the two RANS models are
compared to experimental data. The isentropic Mach number distribution, normalized for
the peak value of the experimental test is shown in Fig. 4.6a; as for the lower Reynolds
number operating point, the simulations match the experiment reasonably well on the
pressure side, while again there is a deviation for both models with respect to measurements,
on the suction side. In the first part the isentropic Mach is just slightly underestimated by
the two simulations until around x/cax = 0.3. Regarding the final portion of the blade,
in this case, the region interested by the gap between the curves is smaller with respect
to the the previously analyzed point, with the discrepancy starting to be noticeable and
increasing after x/cax = 0.5, but not as rapidly as observed before. This pattern persists
in yielding an overestimation in both the maximum value and its location. However, it
is noteworthy that the calculated values do not exhibit significant deviations from those
obtained through experimental means. An area where notable challenges persist, is in
identifying the separation bubble formed near the T.E.. As for the other operating point,
both turbulence models exhibit a complete inability to capture the plateau, signifying a
failure to accurately represent the occurrence of flow separation. In addition to that, it can
be noticed that there is also a discrepancy when predicting a correct pressure recovery at
T.E., with simulations predicting an higher value for Mais. Even the normalized wake loss
distributions reported in Fig. 4.6b show a similar behaviour to the one already seen for
the previous case; in particular, both turbulence models widely overestimate the maximum
value of the coefficient and possess a slight offset when predicting the turning angle . Once
more, the shape of the experimental curve is not faithfully reproduced, as the simulations
yield curves of a slenderer nature. Nonetheless, the discrepancy between simulations
and experimental results is smaller when compared with what was shown for the lower
Reynolds number operating point. In general, the SSG/LRR-ω model appears to yield
superior outcomes, projecting a reduced peak and notably offering a slightly broader loss
profile at the curve’s base when compared to SST k-ω. This model more closely mirrors
the characteristics observed in the experimental outline.
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(a) Normalized isentropic Mach number distri-
bution at 50 % of the blade span

(b) Normalized wake loss profiles evaluated at
140 % of the axial chord length downstream
of T.E.

Figure 4.6.: Comparison of averaged quantities for RANS (LEVM and RSM) simulations
and experimental data

4.2.2. Full Blade Setup: Comparison Between the Two Operating

Points

In the followings, the entropy generation loss terms for the higher Reynolds number
operating point are examined in terms of absolute values and spatial distribution. Subse-
quently, these results are compared to the outcomes obtained for the same setup under
different conditions. Tables 4.5 and 4.6 present the final values of the variables along with
their respective percentages computed as opposed to the total loss generation. Similar
to the previous case, turbulence production, PR, remains the most influential loss term,
constituting the majority of losses. Nonetheless, examining both percentage and absolute
values, a significant decrease is observed compared to the Re=90 000 case. In fact, focusing
on its distribution along the domain, it is seen that the region interested by turbulence
production is substantially smaller compared to the previous operating point. In contrast,
the opposite trend is evident when comparing the values of VM , which undergoes a con-
siderable increase. This phenomenon can be attributed to the fact that the mechanism
involves the surface of the profile for nearly its entire length.

Table 4.5.: Values of entropy generation loss terms for RANS simulations of entire setup
at Re=200 000

Terms [JK−1s−1] SST k-ω SSG/LRR-ω

VM 0.048835 0.053462
HM 0.000002 0.000002
PR 0.263205 0.305032
Ak −0.005784 0.001287

GT OT
s 0.317827 0.357209
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Table 4.6.: Percentage values of entropy generation terms with respect to the total loss for
RANS simulations of entire setup at Re=200 000

Terms [JK−1s−1] SST k-ω SSG/LRR-ω

VM/GT OT
s 15.37 % 14.97 %

HM/GT OT
s 0 % 0 %

PR/GT OT
s 82.81 % 85.39 %

−Ak/GT OT
s 1.82 % −0.36 %

For what concern the remaining two quantities, no significant differences are observed.

Finally, Figure 4.7 displays the graphs depicting the evolution of the various loss terms for
the two utilized RANS turbulence models at both operating points. The most visually
striking difference is observed in the PR chart (Fig. 4.7c), where it is clear that the
SSG/LRR-ω curve for the second operating point, more closely aligns with the SST k-ω
curve when compared to those obtained for the lower Reynolds number simulations. Across
the blade surface the rise is less abrupt, due to the anomaly discussed in section 4.1.2
being less intense and so causing a less pronounced discrepancy on the results. This
explains the notable gap between the final values of the turbulence production term
for the two simulations. Examining the evolution of viscous dissipation, as depicted in
Figure 4.7a, both models predict a more pronounced increase across the blade surface,
ultimately resulting in a higher final value. A similar trend is observed for HM even though
its contribution remains negligible. For what concern TKE advection, the behaviour is
consistent between the two simulations until the L.E.. However, beyond that position,
similar to what was observed for the previous operating point, the RSM predicts a steep
rise across the blade, while the LEVM shows an increase only starting from the separation
region. Additionally, the overall loss estimate differs, with SSG/LRR-ω predicting a value
very close to the one computed for the other operating point, while SST k-ω delivers a
significantly lower value.
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(a) Mean viscous dissipation VM (b) Mean viscous heat flux HM

(c) Turbulence production PR (d) Turbulent kinetic energy advection Ak

Figure 4.7.: Comparison of entropy generation term integrals, derived from RANS simula-
tions, for the two distinct operating points
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The present study is centered on assessing the performance of Reynolds-Averaged Navier-
Stokes (RANS) methods in contrast to Large Eddy Simulation (LES) when simulating the
flow around a low-pressure turbine cascade and its mixing in the wake region.

For RANS simulations, two turbulence models with different characteristics were used,
namely SST k-ω, belonging to the Linear Eddy-Viscosity Models, and SSG/LRR-ω, part
of Reynolds Stress Models family. In order to investigate modeling disparities, multiple
simulations were conducted using the TRACE flow solver for two different operating
points, each characterized by specific Reynolds numbers, i.e. Re=90 000 and Re=200 000.
At the first operating point, two setups were compared: a full blade setup and a wake
setup encompassing only the downstream domain. The latter utilized LES-derived inlet
boundary conditions. While both setups were analyzed for the initial operating point,
the simulations for the higher Reynolds number point were conducted only with the full
blade setup. A grid independence study was carried out to determine an appropriate
grid resolution that could provide a proper balance between accuracy and simulation
stability.

Prior to analyzing the results, a validation procedure was performed for each simulation
comparing computed and experimental data for isentropic Mach number distribution
over the blade surface and total pressure loss distribution in the wake region. In line
with previous research, RANS simulations of the entire setup encountered difficulties in
accurately capturing the fluid dynamics within the separation and wake zones at the
first operating point. In particular, they were unable to reproduce the characteristic
pressure plateau associated with separation and predicted a wake structure thinner than
that observed in experiments. Regarding simulations of the wake setup, improved results
were obtained with RANS models. While these models tended to overpredict the loss
peak value, they accurately reproduced the wake shape observed in experimental studies.
These limitations are likely attributed to the inherent inability of RANS models to predict
adequately the separation bubble at this specific flow condition. In contrast, LES reached
an almost perfect agreement for the isentropic Mach number distribution and exhibited
only a slight pitchwise offset in the wake loss profiles. Similar issues were observed at the
higher Reynolds number operating point, although the discrepancy between experimental
data and RANS simulations was marginally reduced. A comprehensive analysis of entropy
loss generation was conducted to evaluate system efficiency. This analysis involved
decomposing the overall loss into individual terms associated with various loss mechanisms.
For this research the following were considered: mean viscous dissipation, mean heat
flux, turbulence production and turbulent kinetic energy advection. Integrating these
parameters over the computational domain provided a comprehensive understanding of
their individual contribution and spatial distribution to the overall entropy loss generation.
While most simulation methods exhibited reasonable accuracy in capturing the overall
trends of the various entropy loss terms, the SSG/LRR-ω method exhibited a critical
limitation in estimating turbulence production for the entire setup simulation at Re =
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90,000. This discrepancy was attributed to an overestimation of Reynolds stresses in the
vicinity of the stagnation point and within the blade passage. Conversely, predictions for
the wake setup using the SSG/LRR-ω method demonstrated significantly better agreement
with LES results both in terms of spatial distribution and overall losses. Across the
investigated cases, turbulence production emerged as the most significant contributor to
overall entropy generation. This phenomenon primarily occurred in the aft portion of the
blade and within the wake region. Conversely, turbulent advection, although similarly
distributed throughout the domain, played a considerably less influential role. Regarding
the remaining two terms related to mean flow effects, their contributions are observed to
be relatively evenly distributed across the entire blade surface due to their confinement
within the boundary layer. However, these terms, particularly the mean heat flux, exhibit
a comparatively insignificant role in overall entropy generation, with the latter being
virtually negligible. As anticipated, the predicted overall losses were marginally lower
for the Re = 200 000 case compared to the Re = 90 000 case. This observation aligns
with expected trends. Notably, turbulence production exhibited a significant decrease,
while mean viscous dissipation experienced a moderate increase with increasing Reynolds
number. These findings can likely be attributed to the predicted separation region being
slightly smaller at the higher Reynolds number.

In conclusion, RANS simulations continue to face significant challenges when applied
to flows involving separation and transition. While providing inlet boundary conditions
based on LES data demonstrably improved simulation accuracy, this also highlighted
the limitations of RANS methods in accurately capturing Reynolds stresses and other
turbulent quantities. The SSG/LRR-ω method, except for the already mentioned anomaly,
exhibited marginally better performance compared to the SST k-ω, but the complexity of
implementation is not necessarily justified by the minimal improvement observed in this
specific application.

This study demonstrates that applying the entropy loss generation approach to low-pressure
turbines (LPTs) and, by extension, other turbomachines, holds significant potential to
yield valuable results and insights on their efficiency. However, both the Linear Eddy
Viscosity Model (LEVM) and Reynolds Stress Model (RSM) employed in this investigation
exhibited limitations compared to Large Eddy Simulations (LES) in accurately predicting
losses. This stems from their inherent inability to capture complex flow phenomena,
such as boundary layer transition and separation, with the same level of detail. In this
context, potential solutions include refined calibration of existing turbulence models or the
development of novel models capable of more accurate predictions of turbulent quantities,
such as Reynolds stresses. In recent years, there has been a surge of interest in utilizing
machine learning techniques to enhance the predictive capabilities of RANS turbulent
models predictions. Finally, as this study focuses on the midspan section, it does not
provide insights for RANS model improvement in the critical endwall regions. Therefore,
simulations specifically targeting endwall flows would represent a desirable next step to
expand the current knowledge and enhance the predictive capabilities of RANS models for
LPTs.
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A. Grid Independence Study

The purpose of this appendix is to provide the reader with an insight into the grid
refinement process carried out as part of this research. To predict the actual phenomena
using CFD, a grid design that divides the target space into a finite number of grids is
needed first. Given that CFD obtains the approximate solution of the Navier–Stokes
equation based on the divided grids, the accuracy of the approximate solution depends
on the grid quality. Furthermore, this also has a prominent effect on the accuracy of the
entire simulation results because it is affected by the approximate solution of each grid.
Therefore, the optimal grid design is indispensable in the improvement of the accuracy
of the CFD analysis. Optimal grid designing requires the consideration of the shape
type, quality, and number of grids. In particular, the number of grids is a factor that
influences the total computational cost and accuracy of simulation analysis results. Coarse
grids create a significant spatial discretization error, thereby reducing the accuracy of
analysis results. In contrast, too much fine grids may sharply increase the round-off error
beyond the truncation error, thereby reducing the accuracy of analysis results. The grid
independence test is a process used to find the optimal grid condition that has the smallest
number of grids without generating a difference in the numerical results based on the
evaluation of various grid conditions. The mesh sensitivity study done for this research
follows the guidelines given by this ASME paper [6] and was conducted for both setups
considering the Re=90 000 operating point. As described in the paper, first of all it is
necessary to define a representative mesh size, h, that for three-dimensional calculations is
given by:

h =

[

1

N

N
∑

i=1

(∆Vi)

]1/3

, (A.1)

in which ∆Vi is the volume of the ith cell and N is the total number of cells used for the
computations. Then at least three significantly different sets of grids must be selected to
run the simulations and determine the values of a key objective of the simulation study.
It is desirable to obtain a grid refinement factor r = hcoarse/hfine greater than 1.3, value
based on experience. Next steps are aimed at calculating, the apparent order p of the
method, the extrapolated values of the chosen variable φ21

ext, the approximate relative
error e21

a , the extrapolated relative error e21
ext and in the end the grid convergence index

GCI21
grid−size. For the purpose of this study, the convergence is evaluated in terms of kinetic

energy loss, quantified thanks to the related coefficient which has been defined as:

ω = 1 − 1 − (p2/pt)
γ−1/γ

1 − (p2/pt,1)
γ−1/γ

(A.2)

where p2 is the outlet static pressure, pt,1 is the inlet total pressure and pt is the total
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A. Grid Independence Study

pressure at the considered location. The total pressure loss coefficient is then evaluated at
two different positions of the cut plane, in the wake of the blade, respectively at 140 %
and 180 % of the axial chord length.

In the two following sections, data and charts regarding the grid independence study for
the two setup at Re = 90 000 are reported.

A.1. Full Blade Setup Grid Study

In Fig. [A.1], the peak values of total pressure loss are reported for the various used grids.
It can be seen that the grid are converging with a little difference between the last three
grid sizes.

(a) Cut at 140 % of axial chord length. (b) Cut at 180 % of axial chord length.

Figure A.1.: Full blade setup: normalized peak value of total pressure loss in the wake
evaluated at the two cut positions.

This trend is confirmed also by Fig. [A.2] and Fig. [A.3] where the total pressure loss
coefficient is plotted for every grid over the whole pitch length. It is easy to notice that as
the number of grid elements increases, the curves move upwards and tend to get closer and
closer until they almost overlap for the last cases. This behavior finally led to choosing
"Grid 5" as a reference grid on which to perform the analysis; the use of a mesh with such
many elements as the following one is not justified because its increase in accuracy is not
significant. If you concentrate on the coarser grids, you will notice an intriguing detail.
The line that represents them is not entirely continuous, but there are some minor jumps
visible, especially in Fig. [A.2]. The discontinuities are caused by the reduced number of
elements that make up the grids in question. As resolution increases, these discontinuities
will gradually diminish until they disappear.
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A.1. Full Blade Setup Grid Study

Figure A.2.: Full blade setup: normalized total pressure loss in the wake evaluated at
140 % of axial chord length.

Figure A.3.: Full blade setup: normalized total pressure loss in the wake evaluated at
180 % of axial chord length.
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A. Grid Independence Study

A.2. Wake Setup Grid Study

For the wake setup, the iterative process did not converge due to a problem encountered in
calculating the order of the method; basically, one of the refinement factor values was too
large with respect to the other corresponding one for the use in the q formula (necessary
value to compute r) and this resulted in the procedure not converging for the set related
to these two values.

(a) Cut at 140 % of axial chord length. (b) Cut at 180 % of axial chord length.

Figure A.4.: Wake setup: normalized peak value of total pressure loss in the wake evaluated
at the two cut positions.

Except from this initial problem, it can be seen that even for this setup the study converged,
with the last two meshes almost reaching the same peak value of the total pressure loss
(Fig. [A.4]). This trend is further confirmed by Fig. [A.5] and Fig. [A.6], where you can
see that the two finest grid are practically overlapping. For this reason, as in the previous
case, "Grid 5" was chosen for the simulations and analysis of results.
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A.2. Wake Setup Grid Study

Figure A.5.: Wake setup: normalized total pressure loss in the wake evaluated at 140 % of
axial chord length.

Figure A.6.: Wake setup: normalized total pressure loss in the wake evaluated at 180 % of
axial chord length.
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