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INTRODUCTION

Bankruptcy prediction studies, aimed at identifying and analysing common patterns of
corporate default, have regained popularity among academics during the aftermath of the 2008
great financial crisis. This is mainly due to the objectives that the bankruptcy prediction
research field has promised since its inception: lower operational risk borne by lending
institutions, wiser investing decision for practitioners, faster reaction to distress conditions,
more stable financial system and in general a more efficient and, possibly, effective allocation
of resources. In practice, predictions are carried out on the basis of companies’ financial indices

retrieved from their public statements.

This thesis project finds its primary concern in the development and application of statistical
and machine learning based bankruptcy prediction models on firms headquartered in Veneto,
region located in the north east of Italy. To pursue it a sample composed of financial statements
from 424 firms defaulted between 2013 and 2019 and 29711 sound entities have been employed
to train and test six prediction models, namely: Logistic regression, Support Vector Machines,
K — Nearest Neighbour, Adaptive Boosting, Decision Tree and Extreme Gradient Boosting.
Four relevant conclusions have been reached. First, results indicate that Extreme Gradient
Boosting stands as the best performing model with a peaking accuracy of 93%. Further, models
show almost no sensitivity to the level of correlation allowed among the applied financial ratios,
where the correlation range tested comprises values from 0,3 to 0,9. In addition, Net Income to
Total Assets has been identified as the best individual predictor among the 54 financial ratios
considered. Finally, the reliability in predictions drop substantially moving from one to two

years prediction time while it remains stable between two and three years forecasting period.

The document is structured as follows: chapter 1 reviews the relevant literature developed from
the ‘30s to the present; chapter 2 then analyses firms financial statements, describes the
propensity score matching procedure followed to match sound firms with failing ones, describe
the composition of all 54 financial ratios employed assessing their individual performance,
compute the average correlation among indices and presents the logic and application of
prediction models; chapter 3 moreover, presents results elicited from the applications of models
on both an internal test set, composed only by Veneto based companies, and an external test
set, grouping firms from the whole Italy; finally, chapter 4 hand conclusions out, lists possible

future paths of research and close the document with the author comment.



1. REVIEW OF THE RELEVANT LITERATURE

Historically, bankruptcy prediction — the exploration of parameters and associated patterns
useful for forecasting the probability of corporate failure — is a topic that had concerned
investors, lenders and practitioners alike. Indeed, the ability to distinguish companies with solid
future perspectives from those most likely to default, is critical to set expectations on returns
and thus develop sound strategies. The literature on bankruptcy prediction has started
developing at the turn of the 20" century when academics introduced studies regarding ratio
analysis (Beaver, 1966). Ratio analysis aims at answering to the need for bankruptcy prediction
models primarily looking at accounting and financial ratios. These have, among others, the
advantage of being comparable amid companies with divergent absolute parameters (e.g.

different revenues, sizes, assets, etc.) and operating in unrelated industry sectors.

In broad terms, the research on bankruptcy prediction based on ratio analysis can be divided in
two macro periods. Up to the mid-1960s academics focused on univariate (single factor) studies
(Bellovary et al. 2007). The most notable article of this first period is written by Beaver (1966)
who is primarily concerned with a formal empirical verification of accounting ratios usefulness
for prediction purposes. Thereafter, the attention shifted towards a multivariate approach
looking to consider factors, ratios, in their interdependence. Pioneering in this second period is
Altman’s (1968) paper, still the most popular research among academics, with the first

implementation of a multivariate analysis.

Deepening, the second period can be further split into two, mainly overlapping, phases: while
the first decades are especially characterised by the implementation of more traditional
statistical techniques (e.g. Altman (1968) adopts an MDA, Ohlson (1980) exploit a Logit
regression), from the ‘90s more and more researches begin applying modern machine learning

algorithms hoping to overcome previous limitations (Liang et al. 2016).

The next paragraphs are organised as follow: first, a review of the most relevant univariate
phase researches is presented; further, the multivariate phase is elaborated splitting between
authors applying traditional statistical techniques and those introducing more advanced
frameworks; third, the crucial argument of how to define bankruptcy is treated; finally, three
minor streams linked with the bankruptcy prediction literature but with different approaches
from most academic articles are touched (the use of corporate governance indicators, Black-

Scholes-Merton model and macroeconomic variables).



1.1 LITERATURE UP TO 1966 - THE UNIVARIATE PHASE

A first noticeable work in the bankruptcy prediction field belongs to the Bureau of Business
Research (BBR) which in 1930 published a study analysing 24 ratios from 29 industrial firms.
The ratios were compared with their overall average to look for specific trends affecting failing
firms. The study highlighted eight ratios as good indicators of firm weaknesses. Moreover, it
reports that, among others, working capital to total assets seems to perform particularly well as

predictor of failure.

Two years later, FitzPatrick (1932) paper compares 13 ratios of 19 pairs of failed and non-failed
firms. He concludes that net worth to debt and net profits to net worth are two crucial ratios to
take into account while looking for defaulting patterns. He considers mainly manufacturing
sector firms including phonographs and records manufacturers, food production and packaging
companies, cotton and woollen factories, steel products manufacturers and adds to that the

wholesale merchandise business.

Forward, Smith and Winakor (1935) studied ratios of 183 defaulted firms belonging to various
industries in a follow-up analysis to the BBR’s publication. They confirmed the importance of

the working capital to total assets ratio as clear parameter to determine risk of financial distress.

In 1942, Merwin published a study regarding small manufacturers. He reports that failing firms
display signs of weakness starting as early as four or five years before failure, on average. He
moreover suggests net working capital to total assets, current ratio (i.e. current assets to current

liabilities) and net worth to total debt as most relevant factors in bankruptcy predictions.

Further, Chudson (1945) looks for patterns of companies’ financial structure in order to unveil
if any factor follows ‘normal’, repetitive, sequences. The analysis is firstly focused both on the
interrelationship of working capital items among each other and the actual role of the current
ratio, which was widely considered, at the time, the most powerful accounting figure for
prediction purposes. The author concludes that there is no ‘normal’ pattern on a general level.
However, he also acknowledges that there are indications of clustering of ratios within specific
set of industry, size and profitability. The study is not directly related to the bankruptcy
prediction topic but rather to the interrelation of accounting quantities across firms belonging
to different sectors: Manufacturing, Mining, Trade, and Construction. Nonetheless, it provides
a relevant contribution to the field. Indeed, the clustering argument indicates that prediction
models need to take into consideration the diverging features connoting different economic

sectors.



Furthermore, Jakendoftf (1962) compared ratios of profitable and unprofitable firms. He reports
that current ratio and net working capital to total assets are higher for sound firms compared to

weaker companies. Also, debt to worth ratio display lower values in profitable firms.

Finally, to conclude the first period relevant authors, Beaver (1966) compared the mean values
of ratios from 79 pairs composed by failed and a non-failed firm belonging to 38 industries.
Firms data are retrieved from the Moody's Industrial Manual and pertain to the 1954 to 1964
period. He considers 30 ratios from six broad categories: cash flow, net income, debt to total
assets, liquid assets to total assets, liquid assets to current debt and turnover ratios. The study is
based on a comparison of means, a dichotomous classification test and an analysis of likelihood
ratios. Beaver finds that ratio analysis can be useful in the prediction of failure for at least five
years before failure. Specifically, he reports that net income to total debt had the highest
predictive ability in the first year prior to failure, 92% accuracy, followed by net income to sales
(91%), net income to net worth, cash flow to total debt and cash flow to total assets (90%

accuracy).

Interestingly, in his conclusions the author reports that there may have been many details
preventing a measurement of the “true” predictive ability of ratios and that “There exists a
countless number of arguments regarding the possible biases in the data” (Beaver (1966), p.
101), an issue that affects almost all the literature. He particularly refers to a selection bias:
given that ratios are adopted to detect the financial “illness” of a firm, there may be companies
whose “illnesses” were detected and cured just before default. Sample including such firms as
non-defaulted are biased for any investigation of the usefulness of ratios in detecting bankruptcy
early signs. Indeed, a crucial information is missing from the sample related to the actual
number of firms that were able to “heal” using ratio analysis and that are thus considered as
non-failed firms. This fact may understate the real ability of accounting ratios in forecasting

failure.

Beaver also made an important contribution opening the path to the multivariate approach
which will then be adopted by academics. In fact, in his “Suggestions for future research” he
points out that “it is possible that a multiratio analysis, using several different ratios and/or rates
of change in ratios over time, would predict even better than the single ratios” (Beaver (1966),

p. 100).

Before passing on to discuss the relevant multivariate based works thereafter, it is worth
asserting that since Beaver (1966) there have been other researches based on the univariate

approach. Relevant papers include Pinches et al. (1975) and Chen and Shimerda (1981).



Pinches et al. (1975) examined 48 ratios from 221 firms with data coming from the
COMPUSTAT! data tapes over the 1966-1969 timeframe. They looked for designing a
grouping setting for the 48 ratios based on empirical evidences of correlation and
informativeness; determining the hierarchical relationship among these empirically based
financial ratio groups; and proposing accounting ratios with highest predictive ability. Authors
reported that 92% of the common variation among the 48 figures was accounted for in the
following 7 groups: return on investment, capital turnover, inventory turnover, financial
leverage, receivable turnover, short-term liquidity and cash position ratios. Further, they
identified return on investment as the group including the overall most significant predictors,

followed by capital turnover, inventory turnover and financial leverage.

Similarly, Chen and Shimerda (1981) had a primary question related to which financial ratios,
among the hundreds that can be computed easily from the available financial data, should be
analysed to obtain the information for predictive purposes. They looked for rigorous analysis
aimed at indicating sound methodologies to select the best ratios avoiding collinearity/high
correlation issues. They conducted a principal component analysis of 39 ratios for a total of
1,053 firms with complete data for both total assets and net sales in 1977 included in the
COMPUSTAT tape. Authors show that high correlation levels between ratios cause results on
predictive abilities to be sample-sensitive and possibly misleading. Moreover, they report a list
of highly correlated ratios specifying that the actual selection of the preferable ratio has to be

made on an ad hoc basis.

1.2 FROM 1966 TO THE 1990S - THE MULTIVARIATE STATISTICAL PHASE

The first and most famous multivariate study was published by Altman in 1968. He examines
pairs composed of 66 corporations and 33 manufacturing firms that filed a bankruptcy petition
under Chapter X of the US National Bankruptcy Act and an equal number of non-bankrupt
companies. Data refer to the 1946-1965 period. Contrary to previous univariate research
methodologies, Altman (1968) adopts the Multiple Discriminant Analysis (MDA): “a statistical

technique used to classify an observation into one of several a priori groupings dependent upon

! Compustat is a database of financial, statistical and market information on active and inactive global
companies throughout the world founded in 1962. Product of S&P Global Market Intelligence, which is a
division of S&P Global

2 their final objective was to propose a grouping framework to prevent future analysis to be based upon
correlating and thus non-optimal set of accounting ratios.
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the observation’s individual characteristics” (Altman (1968), p. 590). MDA attempts to derive
a linear combination of the characteristics (independent variables) which can best discriminate
between the bankrupt, non-bankrupt groups of companies. It does so by computing a
discriminant coefficient for each independent variable and subsequently combining them,
coefficient and independent variable, into a specific score. All specific scores, attaining to all
characteristics, are finally summed up to obtain what Altman (1968) calls “Z-score”. A z-score
optimum cut-off threshold is then computed to discriminate between bankrupt and non-

bankrupt companies.
Z = viX1 + UyXy + U3x3 + o+ vpXx,,
where vy, v,,v3, v, = Discriminant coefficients and x, x5, X3, X, = Independent variables

The author selects five accounting ratios as independent variables: working capital to total
assets, retained earnings to total assets, earnings before interests and taxes to total assets, market

value of equity to book value of total debt and sales to total assets.

He concludes that its bankruptcy prediction model is an accurate forecaster of failure up to two
years prior to bankruptcy and that the accuracy diminishes substantially as the lead time
increases. His methodology resulted in a 95% predictive accuracy for the initial sample one
year prior to failure, in a substantially lower 72% accuracy for two years lead time and in only

48% accuracy for three years prior to failure (almost comparable to a random guess).

Since Altman’s research, the contribution to the literature has increase dramatically both in
terms of number of publications and complexity of approaches applied. Bellovary et al. 2007

count 28 relevant studies in the ‘70s, 53 during the ‘80s and more than 70 in the ‘90s.

Moreover, it is worth mentioning that while during the ‘70s and ‘80s papers were concerned
with looking for the best ‘traditional’ statistical approach, starting from the ‘90s academics
began introducing computationally intensive advance statistical methodologies like neural
network and machine learning. From that point onwards research focused more and more on
the new capabilities brought by these tools and on the comparison between traditional and

advanced approaches.

The intention hereafter does not concern with reporting all material publications on bankruptcy
prediction but rather to pinpoint and examine those either more influential or pioneering in the

introduction of a novel approach or group of companies analysed.

Meyer and Pifer (1970) selected 30 pairs of failed and non-failed banks as original sample and

9 pairs for the hold-out sample for the accuracy testing. They considered only banks closed
11



(bankrupted) between 1948 and 1965 with at least six years of accounting data available.
Authors run a multiple linear regression, with a dummy variable to discriminate between viable
and less viable banks, based on 28 operating ratios and 4 balance sheet groupings. Similarly to
Altman 1968, they find a sharp decrease in their model predictive ability with three or more
years of lead time. They achieved between 67% to 100% accuracy in the holdout sample for
failed banks and between 55% to 89% accuracy for non-failed banks. In other terms they were
able to achieve low type II error rate, misclassifying failing firms as non-failing, keeping type
I error rate, misclassifying non-defaulting for defaulting companies, significantly higher. It is
worth adding that type I error is widely considered more dangerous for lenders (Du Jardin

(2016)).

Wilcox (1973) based his models on the consideration that a firm financial level (e.g. net worth)
is regarded as existing in one (N) of a positive, infinite set of states at any given time t. Further,
at the immediate successive time period (t+1), the firm financial level can either decrease to N-
1 or increase to N+1. From it, the author develops a binomial model applied to 52 pairs of
bankrupted and non-bankrupted industrial firms selected from the Moody’s Industrial Manual
with at least six years of available accounting data from 1949 to 1971. To compute the year
level for N, he collects accounting data about Net Income (including special or extraordinary),
cash-only Dividends, Stock issued, Cash (including marketable securities), Current assets,
Total assets and Total liabilities. The model accuracy resulted in 94% overall accuracy (true
bankrupt and true non-bankrupt) for one year before failure prediction and 90%, 88%, 90% and
76% for 2, 3, 4 and 5 lead years to failure respectively.

Bilderbeek (1977) applied a step wise discriminant framework to classify 58 Dutch companies
with available data for the 1950 — 1974 period. Similarly to Altman 1968, he computed the Z
score for each firm and looked for the most efficient cut-off point to predict whether the firm
considered was headed towards failure or not. The author analysed 20 ratios and ended up
selecting five of them all: retained earnings to total assets, added value to total assets, accounts
payable to sales, sales to total assets and net profit to equity. Bilderbeek (1977) achieved
accuracies ranging from 70% to 80% over the five years lead time taken into account (Altman
(1984)). Nonetheless, his step wise discriminant model is one of the first to be adopted in

practice by Netherland institutions.

Martin (1977) selects the logit model to conduct a research on early signs of banks failure
commissioned by the Federal Reserve of New York. In general terms, the logit model can be
thought of as Pr(Y; = 1) = F (x;1, Xi2, -, Xip» b1, by, ...) , the probability that the final

outcome (bank belonging to either the defaulting group or non-defaulting one) Y for firmiis 1
12



(defaulting group) is a function of x;;, the value of the j-th variable (accounting ratio) for the i-
th observation and of all coefficients b; related to the M explanatory variables. The assumed

functional form F is defined, inside the logit model, by the logistic function:

1
1+e~Wi?

Pr(y; =1) =

the independent variables and a set of coefficients B = by, b4, ..., by, which are to be estimated.

i=1,...,N,where W = by + 29”:1 bjx;; is a linear combination of

The coefficient vector B of this linear combination is not known a priori but must be inferred
from the known values of the x;;'s and Y; 's. The estimation of coefficients in W can be applied
through to the probit analysis provided that W is normally distributed due to the Central Limit
Theorem. The author not only applied logit model but also compared its performances with

those deriving from a linear discriminant analysis (LDA) and a quadratic discriminant analysis

(QDA) (both run similarly to Altman (1968) MDA in their basic principles).

Martin identified 58 banks as failed at some point in time between 1970 and 1976 from the FED
databases (comprising approximately 5,700 Federal Reserve member banks). He moreover
exploited 25 accounting ratios that can be divided in 4 classes: asset risk (e.g. loans to total
assets), liquidity, capital adequacy and earnings. The author reported that logit models perform
significantly better than linear discriminant analysis in various combinations of year data, lead
years to failure and ratios (80% to 90% accuracy achieved by the logit implementation against
60% to 80% for LDA). However, no significant improvement was elicited when comparing
logit and MDA results. Martin 1977 also asserts that greater sample need to be considered in
subsequent studies to both validate results more precisely and verify normality assumptions on

data.

Weinrich (1978), attempted to analyse risk classes, based on six risk-related accounting ratios,
in order to predict insolvency. His sample of failed firms comprised of 44 German small and
medium size companies, with an average sale of DM 4 million (less than $ 2 million), over the
1969-1975 period (Altman, 1984). Weinrich considers 3 consecutive annual financial
statements, from the second to the fourth lead year before failure, without considering the last
operating year, closest to the default event. Not including accounting data from the last year of
operations preceding bankruptcy represents a marked difference from most of the previous
articles and will be deepened later on looking at the work by Ohlson (1980). The author opted
for a non-parametric linear discriminant analysis abandoning parametric classification
techniques due to the lack of basic assumption (normality, variance- homogeneity of groups,
and high correlation amongst the variables). His study achieves 89% accuracy for two years

before failure and 84% and 78% for three and four years respectively.

13



Second only to Altman (1968), the bankruptcy literature has identified Ohlson (1980) as one of
the most influential research. In his introduction, Ohlson stresses three critical concepts that set
apart his analysis from foregoing works. First, he highlights the uniqueness of the time period
taken into consideration when comparing research results: academics should not assess the
precision of their models against others when data refers to different historical periods. In other
terms, given that the models are generally not robust to macroeconomic and time dependent
conditions, Ohlson underlines the necessity of only comparing models with data belonging to
the same time period. Indeed, models trained with different historical periods data may, ceteris
paribus, display dissimilarities due to, precisely, the historical background. Secondly, in
contrast with most of the previous relevant papers, the author avoids collecting accounting
figures from the Moody’s Manual but rather obtains them from 10-K financial statements as
reported at the time. The reason being the advantage of knowing at what point in time the
statements were released to the public. Indeed, as mentioned with Weinrich (1978) just above,
there might be a timing issue related with the first lead year to bankruptcy: if default occurs in
essence before the release moment, then there is a chance that the statement already
incorporates information about the default. When this is the case and said statement is included
in the model formulation, the final prediction accuracy is seriously biased because of the timing
issue. To account for this, Weinrich (1978) avoid the first lead year data, assuming the risk of
losing valuable knowledge. Ohlson (1980), on the other hand, filters accounting statements to
overcome the timing issue without ‘sacrificing’ precious information. The third introductory
concept has to do with the definition of failure and the parameters that need to be satisfied to
allow describing a company as bankrupt. Indeed, there might be critical differences in the
definition of default adopted among researches that make essentially useless any comparison
between models. For his framework, he proposes a purely legalistic definition based on whether
the firm has filed for Chapter X or XI or some other legal notifications indicating bankruptcy
proceedings. Such a matter will be further examined in broader terms later in the dedicated

section.

Ohlson (1980), in contrast to the majority of previous studies, avoids the use of MDA as
proposed by Altman (1968) for three considerations. First, MDA requires specific statistical
properties to the predictor’s distribution (such as normality and equal variance-covariance
matrix for both failed and non-failed) that cannot be given for granted. Secondly, the output of
the application of an MDA model is a score with little intuitive interpretation in light of the
need to discriminate failing from non-filing firms. Further, if a Bayesian revision process is

introduced, starting with the specification of prior probabilities, it will be invalid unless the
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same assumptions of the pervious point hold (normality, etc.). Thirdly, the matching procedure
applied by previous papers, carried out by considering for instance asset size and industry,
seems to be arbitrary and of questionable usefulness. In this regard, Ohlson wonder if a better

model might be achieved by directly including the matching variables into the set of predictors.

To overcome the three issues, the author opts for the use of conditional logit analysis. His data
sample considers only industrial firms from the 1970-1976 period, with equity traded in either
stock exchanges or Over-the-counter markets. The final sample comprises of 105 failed
companies and 2058 non-failed entities. Nine ratios are included as predictors: size, log(total
assets/GNP price levels index); total liabilities to total assets; working capital to total assets;
current liabilities to current assets; first dummy variable, 1 if total liabilities exceeds total assets,

0 otherwise; net income to total assets; funds provided by operations to total liabilities; second

NI;=Nl;—q
INIg|+[NIe_1]

dummy variable, 1 if net income was negative for the last two years, 0 otherwise;
where NI, represent net income for the most recent period t, a measure taken from McKibben
(1972). In this setting, Ohlson model reaches 96.12% accuracy for the first lead year, 95.55%
for the second and 92.84% for the third. Ohlson notices that great relevance was to be attributed
at the size parameter whose value greatly affects the final predictive outcome. Logically, an
immediate explanation for this relates with the fact that greater sized companies have more to
deplete before actually filing for bankruptcy. However, the emphasis on the size variable given
by the model could also be due to a third, not better known, element linked to size. In principle,
as the author points out reporting results, said element may be connected to the belonging to

stock exchanges or OTC markets. He thus suggests as further research to include variable like

equity prices and their trends.

Before continuing with the next relevant historical research, it is now compelling to look at a
1997 paper by Begley, Ming and Watts aimed at investigating the field performances that
Altman (1968) and Ohlson (1980) models are actually able to reach. This is of particular interest
because many among academics and practitioners frequently adopt such models for
determining real world companies’ financial distress and, as benchmarks, assessing other

frameworks predictive power.

The starting concept of their analysis explains that the original models are typically applied to
current data without considering the measurement error that they might introduce due to time
discrepancies and the consequent risk of biased results. To give a precise meaning to these
discrepancies, authors discuss two main arguments: first, leverage levels play an important role

in both Altman (1968) and Ohlson (1980) and this may have an unwanted effect on subsequent
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data since starting from the ‘80s a relatively high corporate debt level began being legally
accepted; second, changes of bankruptcy laws in the late ‘70s allowed for greater strategic use
of the default event®. For both reasons, results may be deviated by changes not incorporated in
the original models and, as a consequence, less accountable in predicting failure. To examine
it, they apply both original models and a re-calibrated version* of them on data from 165
bankrupt and 3300 non-bankrupt firms belonging to the 1980-1992 period. Begley et al. (1996)
report that for what concerns the original models blindly applied to more recent data, they
produce higher combined error rates. Interestingly though, Ohlson original model produce a
slightly lower (12.4% against 10.8%) type I error on the new data with respect to Ohlson (1980)
data. Type II error however increases substantially (17.4% against 26.6%) making the plain
original approach unsuitable. Moreover, the re-estimated models show no meaningful
improvements compared to original models. Thus, concluding, they underpin the adoption of

Ohlson 1980 original model for analysis on more recent data.

One of the possible drawbacks of the Begley et al. (1996) has to do with the fact that Ohlson
original paper might already incorporate, at least partially, “knowledge” of the economic
conditions at work during the ‘80s and ‘90s. In other terms, Ohlson (1980), for its time
proximity with the more recent period considered in the study, might be better performing when
compared with a much older framework like Altman (1968). If this is true then, authors
conclusions should be updated after considering the predictive power of Ohlson (1980) on more
recent data (to match the time span intervened between Altman (1968) and the ‘80s, time to
which data belongs). This consideration is left open for further proves. The main point of the
research i1s nonetheless very relevant: historical dynamics may play a significant part in the

development of models and thus they cannot be ignored for newer data.

Getting back to the pivotal researches on failure prediction, a peculiar study was carried out by
Zimmer (1980). Following Libby (1975), he looked at prediction accuracies achieved by loan
officers in executing the task of making annual predictions of corporate failure based on a time
series of ratios. Specifically, 30 subjects were selected among loan officers from two Australian
major banks. The selection did not follow random patterns, nonetheless the author achieved
great variety in subjects characteristics (age, experience, etc.). Each subject was individually
provided with 42 real but disguised industrial companies listed on the Sydney Stock Exchange
between 1961 and 1977, half of which filed for bankruptcy. Moreover, five accounting ratios

3 New bankruptcy acts made failure less costly for corporations which began to strategically exploit default in
their interests.
4The models are run on more recent data to look for re-estimated coefficients and cut-off values.
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were identified to be suitable for the analysis: quick assets ratio (in general, cash and cash
equivalents to current liabilities); earnings before interest and taxes to total assets; ordinary
dividends to ordinary earnings; total debt to gross cash flow; and long term debt to equity. The
task was carried out individually and independently with the notion that roughly half of the
financial profiles to be examined belonged to defaulted companies. Zimmer (1980) remarks
that at a 95% confidence level, loan officers would have needed to correctly indicate at least 27
out 42 predictions for his conclusion to be significantly different from the prediction made by
a random guess. He found that the overall accuracy is significantly higher than randomness
would imply, with a peak of almost 90% accuracy for predicting failing firms when the loan
officer declared to be “very confident” and a trough of 58% accuracy for non-failing firm and
“not-very-confident” self-assessment. Though it is clear that the conclusions reported have
powerful implications regarding valuable synergies between empirical models and
professional’s judgment, the author himself calls for further research to verify results in a more
realistic setting (e.g. avoiding setting prior probabilities by revealing that half of financial
profiles belong to failing firms). Casey (1980), in a fairly similar study, concludes that in such
more realistic scenario loan officer predictions are not significantly better than random

selection.

Frydman, Altman and Kao (1985) were among the firsts to apply the Recursive Partitioning
Algorithm (RPA) and to compare it to an MDA. RPA is a computerized, nonparametric
classification technique based on pattern recognition. The model resulting from RPA is in the
form of a binary classification tree which assigns objects into selected a priori groups and whose
final nodes represents the final classification (Breiman et al. (1984)). Authors compared 200
total firms, 58 bankrupt industrial companies failed during the 1971-1981 period and 142
randomly selected manufacturing and retailing enterprises from the COMPUSTAT database.
Further, the analysis relates on 20 accounting ratios deemed valuable by looking at previous
researches results. To thoroughly examine the behaviour of the model, authors set a weighting
cost function to either avoid type I error (i.e. a bankrupt firm classified as non-bankrupt,
generally considered more dangerous in the literature) or type II error (i.e. non-bankrupt firm
classified as bankrupt). They report that at all weights considered, RPA significantly
outperforms MDA in its predictive ability. Interestingly, at a cost level of 50 (both errors
considered equal) the RPA tree uses a specific cash flow to total debt level as cut-off point,

which underlines the ratio pivotal predictive ability at classifying failing firms inside the model.
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1.3 FROM THE 1990S TO PRESENT - THE ‘ADVANCED’ MODEL PHASE

Thanks to the evolution and accessibility of more reliable and faster computing technologies,
new, advanced approaches combining multiple academics fields have been more and more

adopted for prediction purposes (Liang et al. 2016).

In 1990 the first relevant authors adopting the Neural Network (NN) technique appeared in the
literature. In general terms, neural network architecture can be described as biologically
inspired, involving the intricate interconnection of many nodes (the equivalent of brain neurons)
through which inputs are transformed into outputs. Once a specific network architecture is
defined, the overall network is repeatedly presented with training cases from an estimation
sample, and the connection weights between nodes are updated to bring the network outputs
closer to the actual target output values. This training process is referred to as network learning.
One of the best advantages of neural network modelling is the capability to capture nonlinear

Processes.

Bell, Ribar and Verchio (1990) were interested in the comparison of a logit model and the
prediction accuracy gained with a NN framework composed by a twelve nodes input layer, a
six nodes hidden layer and a final output layer. They identified 28 candidate predictor variables
using the results of prior research. Variables relate to the following features: size, loan exposure,
capital adequacy, asset quality, operating performance, non-operating performance and
liquidity. Authors applied logit and neural net models to an estimation sample formed by 102
banks failed in 1985 to be added to 906 non failed (1984 annual financial statement data) and a
separate holdout sample containing 131 banks that failed during 1986 on top of 928 non
defaulting institutions (1985 annual financial statement data). The conclusions of the study
highlight a 69.5% and 97.3% average accuracy in predicting failing and non-failing banks
respectively for the logit model. Similar levels are achieved by the NN model as well. Indeed,
Bell et al. (1990) stress the fact that the two models are essentially comparable in performances
showed. It is however also reported that NN tends to have a significant, though not large, higher

precision for what concerns type Il error (an average 5% lower rate of error).

Cadden (1991) follows a similar path comparing a backpropagation NN models with an MDA
framework applied to three years, prior to failure, accounting data belonging to 59 companies
defaulted in the ‘70s. In addition, data from 59 non-failing firm from the same time period is
elicited. He sets up an estimation sample composed of 98 firms (49 from each group) and a
testing sample with 10 pairs. Moreover, twelve ratios are included as predicting variables:

current assets to current debt, net profits on net sales, net profits on tangible net worth, net
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profits on net working capital, net sales on tangible net worth, net sales on net working capital,
net sales to inventory, fixed assets to tangible net worth, current debt to tangible net worth, total
debt to tangible net worth, inventory to net working capital and current debt to inventory.
Results on the estimation sample indicate that while the first-year lead time accuracy is
substantially comparable between MDA and NN, with the latter slightly outperforming the
former, a significant difference is spotted in the subsequent year predictions. Indeed, if NN
almost holds onto the same level of accuracy, MDA drastically decreases in performances going
from a maximum of 93.9% on the first year to a minimum of 61.2% accuracy on the third. Even
greater divergence in performance is significantly affecting the test sample results. Here in all

the three years lead time considered, backpropagation NN overcomes MDA accuracy.

Luoma and Laitinen (1991) apply what is known as proportional hazards (PH), in the form of
the semi-parametric PH model defined by Cox (1972), to compare its predictive power to both
MDA and Logit models. To understand proportional hazards, it is necessary a brief introduction
to survival analysis (SA). Following Gepp and Kumar (2010), SA technique is a dynamic
statistical tool used to analyse the time probability until a certain event. Thus, the SA approach
to bankruptcy prediction is fundamentally different from the other aforementioned approaches
(i.e. MDA, Logit, NN, etc.). While other techniques model default predictions as a classification
stance, SA models them considering businesses’ datapoints as represented by lifetime
distributions. Lifetime distributions can be characterised by a number of descriptor functions,
the most common being the survival or hazard function. Survival function S(t) represents the
probability that a business will survive past a certain time t, while hazard function h(t)

represents the instantaneous rate of failure at a certain time t.

Further, the basic difference between various SA models is the assumptions about the
relationship between the hazard (or survival) function and the set of explanatory variables (X).
Thus, the general regression formula can be written as h(t) = g(t,XTB), where XT is the
transpose of X, B is the vector of explanatory variable coefficients (the covariates), t is the time
considered and g an arbitrary function. Traditionally, SA has been divided into two main types
of regression models. These types are the proportional hazards (PH) and accelerated failure
time (AFT) models, both of which have fully parametric and semiparametric versions. Due to
its flexibility, the most prominent model applied in business failure field is the semi-parametric

PH model defined by Cox (1972).

In such settings, Luoma and Laitinen (1991) selected 36 failed Finnish limited companies and
36 successful counterparts with data from the ‘80s. Their predictions are made by dividing the

businesses into two groups based on their hazard ratios, according to the ratio of failed and non-
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failed businesses in the original sample. They report an average 68% accuracy for the PH model
for both defaulted and successful companies. While MDA registered 64% and 76% accuracy
for bankrupt and non-bankrupt firm respectively (essentially in line with PH performance),
Logit model reached an overall average of 71% accuracy showing a slightly higher predictive
power with respect to the others. Nevertheless, authors argue that the SA approach is more
appropriate and flexible, and, thanks to its time dependent configuration, uses information more
valuably. Also, they point out that the empirical under-performance could have been due to the

small sample size, an issue that can be overcome with relative ease.

Another relevant methodology was introduced by Tam and Kiang (1992), who studied the
impact of machine learning K - Nearest Neighbour (KNN) and Decision Trees, also known as

Inductive Dichotomizer 3 (ID3), approaches to the field.

On the one hand, KNN is a distribution-free, non-parametric method for classifying
observations into one or several groups based on one or more quantitative variables. Compared
to MDA and Logit, its main advantage lies in the possibility of both relaxing the normality
assumption and eliminating the functional form required in MDA and logistic regression. The
group assignment of an observation is decided by the group assignments of its first k nearest
neighbour (hence the name). Using the nearest neighbour decision rule, an observation is
assigned to the group to which the majority of its k nearest neighbours belong. This method has
the merits of better approximating the sample distribution by dividing the variable space into
any arbitrary number of decision regions, with the maximum bounded by the total number of

observations.

On the other, ID3 instead of generating a decision rule in the form of a discriminant function,
it creates a decision tree that properly classifies the training sample in a recursive manner. It
entails a nonbacktracking splitting procedure that recursively partitions a set of subsamples
(randomly selected) into disjointed subsets. The subsets obtained are then aggregated to reach

the final group classification.

Tam and Kiang (1992) compare KNN and ID3 with MDA, Logit and Backpropagation neural
network. They employ data sample consisting two years prior to failure ratios of 59 Texas banks
that failed in the period 1985-1987. They claim to have selected only Texas banks to increase
datapoints homogeneity. Moreover, these were matched with 59 non-failed entities on the basis
of asset size, number of branches, age and charter status. To make sure the models could then
be adopted by practitioners, authors selected 19 accounting ratios following CAMEL criteria

(Capital, Asset, Management, Equity, and Liquidity) used by the FIDC (Federal Deposit
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Insurance Corporation), a US banking system supervisor institution. Findings show that there
is no clear best predictive model among those applied: Logit seems to have the highest average
accuracy in predicting non-failed banks (95% in one year prior to default and 100% for two
years) while KNN manifests the lowest accuracy for prediction concerning failed banks (59%
and 80% for respective lead years). Overall though, authors prize the structure of the
backpropagation NN framework because of attributes that, in their view, best fit with the needs
and challenges that bankruptcy prediction entails and thus suggest further research in this

direction.

Bryant (1996) was among the first to apply Case-Based Reasoning (CBR) artificial intelligent
methodology to bankruptcy predictions. In general terms, the basic principle underlying CBR
refers to the fact that human experts use analogical or experiential reasoning to solve complex
problems and to learn from problem-solving experiences. However, in searching their
memories, human experts may suffer from primacy (remembering the first thing more vividly)
and/or recency (remembering the last thing more vividly) effects. CBR model basically corrects
for such biases allowing for a systematic search of a case library (memory) in order to retrieve
cases that most closely match the problem at hand. In doing so, CBR relies on sets of
independent decision trees. She further suggests CBR for bankruptcy prediction modelling
because of its adaptability to articulated set of data, ease of revision/update, comparability with
other studies and clarity in results interpretation. Bryant (1996) primary research objective is to
verify if CBR can actually be favourably employed for prediction purposes and if so, comparing
its performances with Ohlson (1980) nine factors model. To enhance comparability of the
predictive accuracy of the two models, the author closely follows Ohlson’s logit model
sampling procedures. Accordingly, the proportion of bankrupt to nonbankrupt firms roughly
attains 1:20, and only manufacturing and industrial firms are included. A random sample
consisting of 85 bankrupt and 2,000 nonbankrupt manufacturing and industrial firms from the
1975-1994 period is generated. For each firm, 25 financial ratios found significant in the
literature are calculated and included. Three (one per each first three years heading to failure)
CBR models are derived using data from 1975-1989. The remaining data is used as holdout
sample to validate the three models. Bryant (1996) finds that CBR behaves rather poorly on
bankrupt firms: the estimation sample (1975 to 1989 firms) is best predicted in the first year
with only 47.3% accuracy while the worst relates to the third year with 39.7% accuracy (lower
than a complete random process would perform). On the contrary, CBR algorithms execute
rather well in predicting non-bankrupt firms: the lowest accuracy level achieved among the

three years stands at 94.8% for the third year. Similar findings connote the holdout sample
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accuracies. The conclusion of her study is that Ohlson’s logit model have superior predictive
accuracy than the CBR. She adds that although there is limited academic research on CBR, her
findings cannot support claims of overall CBR superiority to other methods, such as logit.
Specifically, in minimizing classification errors of bankrupt firms (type I errors, considered to

be the more important than type II), logit far outperforms CBR.

In the same year, Wallrafen, Protzel and Popp publish a work seeking to find more accurate
prediction results by combining different models. Specifically, they adopted what is known as
“Soft computing““(Zadeh (1994)): a combination of two or more artificial intelligence methods
which are capable of pinpoint data patterns looking at seemingly unrelated parameters. In
particular, authors decided to analyse the optimization role of Genetic Algorithms applied to a
neural network model applied to the prediction task. The advantage for such a decision lies on
the fact that neural network learning encounters problems with generalizing its results to
unknown cases and this might be avoided by using Genetic Algorithms to pre-emptively select

training data.

Genetic Algorithms (GA) can generally be seen as modelling the principles of biological
evolution through a four-step cycle: they firstly generate an initial population of potential
solutions called individuals; then an evaluation of the fitness of each member of the population
is carried out; further, they select promising individuals to be manipulated through genetic
operators (mutation, crossover, selection), where a proportionate selection scheme gives
individuals with higher fitness a larger chance of being included in the modelling cycle; finally,

the manipulation of selected individuals through genetic operators takes place.

Wallrafen et al. (1996) comprise of a 6667 German corporations’ dataset, including 2667
entities as hold out sample. Moreover, they employed 73 financial ratios as predicting variable.
These financial ratios can be subdivided into eight clusters: capital structure, liquidity, financial
strength, profitability, current account turnover, short-term liabilities, repayment behaviour and
miscellaneous ratios. For each company at least three data sets from different years are
available. Companies are assigned to one of the binary classes ’solvent” or “insolvent’ based
upon their actual historical performance, where ‘Insolvency” is defined by specific legal
conditions under German statutes. A period of at least 18 months between the date of the last
financial statements used for the ‘Insolvent” companies and the date insolvency actually
occurred, ensures a meaningful time horizon for the prediction. Authors report lower-than-
expected results. The GANN methodology (Genetic Algorithms combined with Neural
Network) reached at most a 64% predictive accuracy on the testing sample and only after a

fairly long time: 295 generations (iterations) which required about four computing days. What
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1s more, they add that few improvements can be considered with such specific techniques and
that further research should look at completing the framework with other more powerful

models.

In 1999, Dimitras, Slowinski, Susmaga and Zopounidis published a paper introducing a novel
framework, Rough set theory, with the aim of comparing it with the more adopted MDA and
Logit models. The rough set philosophy is anchored on the assumption that every object of a
conceptualized universe can be associated with some information (data, knowledge). Objects
characterized by the same information are thus to be considered indiscernible. The
indiscernibility relation generated in this way is the mathematical basis for the rough set theory.
Any set of all indiscernible objects, called elementary set, forms a basic element of knowledge
about the universe. Any set of objects being a union of some elementary sets is referred to as
crisp (precise); otherwise the set is defined as rough (imprecise, vague). Consequently, each
rough set has limit cases, i.e. objects which cannot be classified with certainty as members of
the contemplated set. Therefore, a rough set can be represented by a pair of crisp sets, the lower
and the upper approximation, where the lower approximation consists of all objects which
belong to the set with certainty whilst the upper approximation contains objects which belong

to the set only with certain probability. From such setting, a classification can be carried out.

Authors collected data from a large number of firms which failed in Greece during the 1986-
1990 period. From them, 40 firms belonging to 13 industries were selected and paired with non-
failing companies. The healthy firms were chosen among those of the same industry, having
similar total assets and number of employees. Furthermore, a second, hold out, testing sample
consisting of 19 pairs of entities was collected using a similar approach. For it, however, only
firms failed in the 1991-1993 timeframe were considered. Five years (three for the hold-out
sample) prior to default financial statements were collected and analysed to identify 28
accounting ratios (mainly suggested by the previous literature). In their findings, authors report
that the accuracies reached by the rough set framework were generally better than those
obtained by the classical discriminant analysis and logit analysis, although the superiority over
logit was not so distinct as that over discriminant analysis. Moreover, their conclusions stress
that rough set accuracy measures on the testing sample drop abruptly in the second and third
year (from 73.7% to 47.4% and 36.8% respectively) which indicates low reliability in the model
aside from one-year lead time predictions. Nonetheless, Dimitras et al. (1999) underline the
relevance of their model for predictive purposes asserting that many advantages can be obtain
given the similarity between the bankruptcy prediction connotating elements and the working

structure of rough sets models: it accepts both quantitative and qualitative attributes; it
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contributes to the minimization of the time and cost of the decision making process; it offers
transparency of classification decisions, allowing for clearer argumentation; and it takes into

account background knowledge of the decision maker.

In 2005, Min and Lee sought to introduce Support Vector Machines approach into the
bankruptcy prediction field comparing its performances against MDA, Logit and a three-layer
fully connected back-propagation neural networks (BPN).

Support Vector Machines is a machine learning technique conceived by Vapnik (1998). SVM
optimisation model is based on the transformation of a mathematical function by another
function, called the ‘kernel’, by which it identifies the greatest distance between the most
similar observations that are oppositely classified. It does so by means of a higher space optimal
separating hyperplane (OSH) of some specified dimension which is specifically “constructed”
and used for clustering purposes. SVM looks to find a special kind of OSH: the maximum
margin hyperplane. The maximum margin hyperplane gives the maximum separation between
decision classes. The training examples that are closest to the maximum margin hyperplane and
thus define the minimum distance between groups identified, are called support vectors. All

other training data is essentially irrelevant for defining class boundaries.

Many attractive features make SVM suitable for prediction goals. First, SVM is considered to
achieve excellent generalization performance on a wide range of settings, particularly useful
when combining differing characteristics. Also, SVM follows the structural risk minimization
principle, SRM, which has been shown to be superior to traditional empirical risk minimization,
ERM, principle employed by conventional neural networks. SRM minimizes an upper bound
of generalization error as opposed to ERM that minimizes the error on training data. Therefore,
the solution of SVM may be closer to global optimum while other neural network models tend
to fall into local optimal solutions. Third, the technique is broadly acknowledged as easily
tractable under a mathematical viewpoint. Finally, overfitting seems to occur much less

frequently than in other machine learning approaches.

Min and Lee (2005) evaluate 1888, 944 pairs of bankrupt and non-bankrupt in random order,
Korean’s small and medium size enterprises with data obtained from the Korea’s largest credit
guarantee organization. 11 accounting ratios, from an initial set of 38 figures retrived from the
literature, are then selected applying a stepwise logistic regression analysis. To fine tune the
SVM model, authors implement and compare 4 types of kernels in the study: Linear,
Polynomial, Radial Basis Function (RBF) and sigmoid. Among them, the best performing is

found to be the RBF kernel with 88% average prediction accuracy in the training data and 83%
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in the holdout sample. This results to be also the overall best predictor model. In fact, BNN
display a slightly lower accuracy of 85% and 82% respectively, followed by the MDA approach
with 78% and 79% accuracy and finally by the logit framework, 79% and 78%.

Finally, it is worth mentioning a paper published by Barboza, Kimura and Altman in (2017).
They selected and compared eight among the most relevant framework adopted in the previous
bankruptcy prediction literature: Bagging, Boosting, Random Forest (RF), Support Vector
Machines with both a linear kernel (SVM-Lin) and a Radial Basis Function kernel (SVM-RBF),
Artificial Neural Networks (NN), Logistic regression and MDA.

Bagging, whose name shortens “bootstrap aggregating” is a technique involving independent
classifiers that uses portions of the data to then combine them through model averaging,
providing the most efficient clustering results (Breiman, (1996)). It creates random new subsets
of data through sampling, with replacement, from a given dataset, generating confidence-
interval estimates. The final objective of the bagging approach is to reduce class overfitting
within the model. Their Bagging algorithm follows Breiman’s: first, a random bootstrap set, t,
is selected from the parent dataset; second, classifiers, C;, are configured on the dataset from
step 1; further, steps 1 and 2 are repeated for t=1, . . ., T.; finally, each classifier determines a
vote C(x) = T~ 1Y¥T_, C.(x) where x is the data of each element from the training set. In the
last step, the class that receives the largest number of votes is chosen as the classifier for the

dataset.

Secondly, the Boosting technique consists of the repeated use of a base prediction rule or
function on different sets of the initial set. Boosting builds on other classification schemes and
assigns a weight to each training set, which is then incorporated into the model. The data are
then reweighted. Boosting can apply the base classifier to find a model that better classifies the
set, identified by a lower error rate in the training set. A derived algorithm, AdaBoost (“adaptive
boost™) has proved powerful for classification prediction. AdaBoost initialises giving equal
weights to all observations. Thus, the first sample is uniformly generated from the initial
observations. After the training set, Xi, is extracted from X, a classifier Yi is trained on Xi. The
error rate is calculated, considering the number of observations inside the training set. The new
weight for each observation is based on the effectiveness of the classifier Yi. If the error rate is
greater than a random guess, the test set is discarded, and another set is generated with the
original weights. Alternatively, if the error rate is satisfactory, the weights of the observation
are updated according to the importance of the classifier. These new weights are then used to

generate another sample from the initial observations.
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Further, the random forest technique (RF) is based on decision tree models, also known as
generalised classification and regression trees’ (CART). It is particularly robust and allows for
the presence of outliers and noise in the training set. Finally, RF identifies the importance of
each variable in the classification results. Therefore, it provides not only the classification of
observations but also information about the determinants of separation among groups. The RF
technique follows an approach similar to bagging, as it repeatedly generates classification
functions based on subsets. However, RF randomly selects a subset of characteristics from each
node of the tree, avoiding correlation in the bootstrapped sets. The forest is built for several
subsets that generate the same number of classification trees. The preferred class is defined by
a majority of votes, thus providing more precise forecasts and, more importantly, avoiding data

overfitting (Breiman, (2001)).

Authors run the analysis on American and Canadian companies covering the 1985 to 2013
period using Compustat. Furthermore, a subset covering 1985 to 2005 (133 bankrupt and 13300
solvent) was extracted to provide the training set, which included information on 449 companies
that filed for bankruptcy during this period as well as information on the same number of non-
bankruptcy firms. Insolvent firms in the training set include all companies in the database that
filed for bankruptcy during this period and for which financial data were available three years
prior to filing. The solvent firms were randomly chosen and were limited to companies that did
not file for bankruptcy during the entire period and for which financial data for at least two
consecutive years were available. They included variables following Altman (1968) and Carton
and Hofer (2006): liquidity (X1), profitability (X2), productivity (X3), leverage (X4), and asset
turnover (X5) (Altman, 1968); growth of assets (GA), growth in sales (GS), growth in the
number of employees (GE), operational margin (OM), change in return on equity (CROE), and
change in price-to-book ratio (CPB) (Carton and Hofer, 2006). As usual in the literature, two
kind of accuracy measures are retrieved: Sensitivity, type I error, also called True Positive
Ratio, measures the proportion of bankrupt firms correctly classified on the total number
considered; Specificity, type II error, also known as True Negative Ratio, measures the
proportion of solvent firms correctly classified. For lending purposes, it is firstly necessary to
prioritize the minimization of type I error (increase sensitivity) in order to avoid losses (Ohlson
(1980)). However, prioritizing type I error also bears the risk of limiting credit access to solid,

creditworthy enterprises.

Barboza et al. (2017) report a significant difference in performance between traditional
statistical frameworks and the more advanced machine learning approaches. Specifically,

looking at the overall accuracies registered in the training sample, it registered the superiority
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of the Random Forest approach (87.06% accuracy) even though both boosting and bagging
achieve very close levels (86.65% and 85.65% accuracy respectively). Logit model (76%)
reaches the mean accuracy of SVM-Lin, SVM-RBF and NN (71.50%, 79.77% and 72.98%)
while MDA displays quite poor results with just 52.18% average accuracy.

To conclude the historical section, it is worth reporting Bellovary et al. (2007) conclusions,
which, despite their relatively old date of publication, are still valid: a great amount of model
has already been suggested and fine-tuned and high levels of accuracy with low number of
ratios have been reached (Beaver (1966) reported 92% overall accuracy with just one variable
employed). Thus, the challenge should not be now concerned with contrive and introducing
new, more powerful frameworks but rather with finding the right paths to put the most

promising models into practice.

1.4 THE DEFINITION OF BANKRUPTCY

A crucial issue for the identification of prediction models able to classify bankrupt and non-
bankrupt entities resides in the definition of bankruptcy itself. In other terms, as put by Ohlson,
“one may ask a basic and possibly embarrassing question: why forecast bankruptcy?” (Ohlson
(1980), p. 4). The question is all but trivial since behind it lies the need for better understanding
what dynamics (losses, inefficiencies, non-suitable market/financial approach, etc.) should be
avoided by lenders and practitioners alike while examining companies. Ohlson argument
underlines that no obvious answers can be found and that, ultimately, the hurdle reflect the
impossibility of reducing firms’ complex reality to a binary status: bankrupt and non-bankrupt.
Alternatively said, there is not a simple and univocal way to determine exactly when a firm can
be said to be defaulted. Most of the researches reported so far, interpret bankruptcy as the legal
status attributable whenever some legal condition is recognised and thus processed (the
condition being logically dependent on the jurisdiction considered). This incontrovertible legal
status, however, can only be contemplated as the ‘lower bound’ of the bankruptcy definition.
The real issue relates with deciding at which point, along the distance between “legally
defaulted” and “sound”, should be set the discriminant boundary. As Ohlson asserts, empirical
studies do not agree on what constitute “failure”, with definitions varying significantly and

arbitrarily across studies.

Correlated with above is the question on how to realistically interpret prediction model results.
In this sense, Beaver (1966) posed an important argument: if accounting ratios are applied to
detect financial “illness” of a firm, there may be many companies whose illnesses were detected
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before failure occurred. If this is the case and an unknown proportion of them happens to be
included in the data of the solvent entities, there may be the risk of overstating the model ability
to predict bankruptcy. In other terms, there is again an incomprehension due to the complexity
in determining the definition of bankruptcy. If in fact, a precise threshold for default
classification was to be identified, Beaver’s problem would not stand because the actual
proportion of firms saved just before irreversible complications would be known and thus a
correct estimation of the model accuracy could be computed. Beaver decided to consider
bankruptcy as the inability to repay interest and principal from liabilities due for both simplicity

and need to limit as much as possible the drawback just mentioned.

In line with the issue faced by Beaver (1966), Laswad, Kuruppu and Oyelere (2003) looked for
prediction model aimed at classifying going concern from non-going concern corporations
based on the probability for the firm to be facing liquidity procedures. The assumption behind
the article refers to the fact that too many differences are present among bankrupt firms in
different countries and that a framework with good generalization ability need to begin from
more objective, shared elements. Such elements cannot be found in the definition of bankruptcy
found in previous articles. They spot a critical problem in the bankruptcy prediction literature:
there are profound differences in the legal determination and rights/obligations granted under
bankruptcy acts among countries in the world. For instance, in the US where the insolvency
laws are debtor oriented, corporate bankruptcy procedures encourage companies in financial
difficulty to continue as going concerns. Therefore, it is possible for companies that file for
bankruptcy to reorganise and emerge from bankruptcy, or to merge with another entity as a
going concern. This is in contrast to the insolvency procedures in creditor-oriented countries
such as the UK, Germany, Australia and New Zealand where liquidation is the most common
outcome of corporate insolvency. So, to overcome the problem, they propose a prediction model
based on liquidation risk rather than bankruptcy filing (inability to repay principal and interest
of some sort of liability). Authors examined a total of 135 from the 1987 — 1993 period using
the logit model. They show that their model outperforms Altman (1968) Z-score procedure in
the overall accuracy achieved and thus could have great implications in credit-oriented

legislations as those mentioned above.

Laswad et al. (2003) stands as an example of how hurdles pertaining the definition of
bankruptcy may be limited pursuing alternative solutions. Nonetheless, the prediction

inaccuracy that results from it is still to be taken into account as an unknown factor in practice.
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1.5 OTHER RELEVANT RESEARCHES: CORP. GOVERNANCE INDICATORS

Accounting and financial ratios are not the only type of predictive variables tested in the
literature. Following Liang et al. (2016), corporate governance indicators (CGI) also can be
useful parameters to predict firms’ failure. In their comprehensive examination of the
application of prediction models combining accounting ratios and CGI, they define corporate
governance as the set of mechanisms, processes and relations by which corporation are
controlled and directed by the chief team. Further, these are to be intended as integrated with
internal and external control mechanisms allowing shareholders to exercise appropriate
oversight on the company to ensure proper profitability levels. In such defined context, many
corporate governance indicators (CGls) have been identified in the literature which have been
used for enhancing bankruptcy or financial crisis management. These can be broadly classified
into five categories including board structure (e.g. Number of seats on board, number of
directors, number of supervisors, etc.), ownership structure (e.g. Shareholding ratio of board,
shareholding ratio of advisor, etc.), cash flow rights (e.g. Amount of investments in other
enterprises divided by stockholder’s equity), key person retained (e.g. Turnover of spokesman
within a month, Turnover of CEO within a month), and others. Authors research looks to
compare prediction accuracies on financial ratios with and without CGI on five prediction
models, namely support vector machines (SVM), k-nearest neighbour (K-NN), naive Bayes
classifier (NB), classification and regression tree (CART), and multilayer perceptron (MLP).
Feature selection, to reduce irrelevant or redundant features by selecting more representative
features having more discriminatory power over a given dataset, is carried out applying five
feature selection methodologies to find the most promising predictors (financial ratios and
CGI): stepwise discriminant analysis (SDA); stepwise logistic regression (SLR); t-testing;
genetic algorithm (GA); and recursive feature elimination (RFE). Data were collected from the
Taiwan Economic Journal for the years 1999-2009. The resultant sample includes companies
from the manufacturing industry composed of industrial and electronics companies (346
companies), the service industry composed of shipping, tourism, and retail companies (39
companies), and others (93 companies). Consequently, the collected dataset is composed of 239
bankrupt and 239 nonbankrupt cases, with each company represented by 95 financial ratios and
95 CGls as the input variables, to be filtered with the feature selection processes. Liang et al.
(2016) report that overall Financial ratios show higher predictive ability compared to CGI alone
but also that indeed the financial ratios and CGIs combination enhances the predictive power

in all models examined. Furthermore, the best performing framework, that combines SDA in

29



the feature selection process and SVM, achieves an average 81% accuracy with a 16.3% type |

error rate.

A similar study was conducted the subsequent year by Elshahat 1., Elshahat A. and Rao who
compared the introduction of a corporate governance index against Altman’s Z-score
framework. They include variables such as Board of Director’s characteristics, Board
Committees, internal control and auditing systems add to the understanding of the firms’
corporate governance. Interestingly, they explain that corporate governance can be used as a
comprehensive measure for the agency problems that directly affect the firm structure and
survival and that in these terms corporate governance indices might be a good proxy for the risk
brought about. For a one-year prediction window, authors find no significant differences for
bankrupt and non-bankrupt firm accuracy averages between Altman (1968) data and z-score
applied to their data. The inclusion of the corporate governance index, however, slightly
improves the predictability of the bankrupt firms. Nonetheless, both prediction models, with
and without corporate governance index, achieve an overall accuracy of about 69%. This,
compared with Altman’s original 95% maximum accuracy, seems quite irrelevant even though,
as they continue, Altman (1968) has been criticized for inconsistency in results many times in
the literature. Thus, it is not always clear what role is actually performed by Corporate

governance indices in enhancing models’ predictive ability.

1.6 OTHER RELEVANT RESEARCHES: BLACK - SCHOLES - MERTON

Another material branch of the bankruptcy prediction literature has to do with the application
of market-based measures alone as predictive variable. An example of it is the study conducted
by Hillegeist, Keating, Cram and Lundstedt in 2003 in which they compare Altman (1968) Z-
score and Ohlson (1980) O-score with an approach based on the Black, Scholes and Merton
(BSM) option-pricing theory. Authors assert four main advantages in adopting a market-based
model: first, the going-concern principle implies the assumption that firms will not go bankrupt,
thus their data might be under/overstated; also, the conservativism principle often causes asset
values as reported in financial statements, to be understated relative to their market values;
third, accounting-based bankruptcy prediction models fail to incorporate a measure of asset
volatility, crucial in in capturing the likelihood that the value of a firm will decline to such an
extent that the firm will be unable to repay its debts; finally, accounting ratios can only be

computed at financial statements publication (few times a year), with the logic consequence of
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risking to timely alert of distress conditions, while market-based variables can be exploited with

greater frequency.

BSM starts from the intuition that equity can be viewed as a call option on the value of the
firm’s assets. Thus, following their pricing model, the equation for valuing equity as a European

call option is given by
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Where Vj is the current value of equity; V, is current market value of assets; X is the face value
of debt maturing at time T; r is the continuously-compounded risk-free rate; 6 is the continuous
dividend rate expressed n terms of V,; and o, is the standard deviation of assets returns. Value
of equity equation is modified for dividends and reflects that the stream of dividends paid by

the firm accrue to the equity holders.

The BSM model assumes that the natural log of future asset values is distributed normally as
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where u is the continuously compounded expected return on assets.

From it, and following McDonald 2002 (p. 604), authors derive the probability that V,(T) < X
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is a function of the distance between the current value of the firm’s assets and the face value of

that is BSM — prob = N(—

) which shows that the probability of bankruptcy

2
its liabilities [;—A adjusted for the expected growth in assets values ( u—3986— %) relative to assets

volatility ag. Authors included 756 bankrupted (chapter X, XI and XII filings) industrial
companies during the 1980 — 2000 period and about 13 500 non-failed enterprises. Data was
elicited from Moody’s Risk Services’ Corporate Default database and is comprised of only
publicly traded companies. They find that Ohlson (1980) framework outperforms Altman’s
(1968) in predictive accuracy reached. However, both show significantly lower predictive
power compared with the BSM-prob model. A Vuong test certifies that BSM-prob display
higher accuracy at the 1% significance level. Moreover, the pseudo-R?for BSM-prob (0.12) is
20% larger than for O-score (0.10) and twice as larger compared with Z-score (0.6) confirming

the higher propensity of BSM-prob in capturing the probability of bankruptcy.
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Hillegeist et al. (2003) attest that higher accuracy levels may be achieved considering market-
based parameters. However, the great limit to their analysis, and of the whole market-based
prediction branch, is represented by the fact that only publicly traded entities can be taken into
consideration. Thus, all small and medium size firms are excluded from the BSM-prob model

and need to be included in other frameworks.

1.7 OTHER RELEVANT RESEARCHES: MACROECONOMIC PARAMETERS

An additional research stream in the corporate default prediction literature is constituted by the
analysis of macroeconomic variables and their relationship with companies’ risk of failure.
Related to it, an interesting article was published in 2010 by Zhou, Lai and Yen. They
considered two sample (S1 and S2) with data obtained from the Fundamentals Annual Dataset
of Compustat North America regarding 962 pairs of bankrupt and non-bankrupt companies, S1,
and 227 bankrupt and 237 non-bankrupt entities for S2. Firms belong to non-financial sectors
like energy, materials, industrial, consumer staples, utilities, automobiles, media and others.
Further, data pertains to the 1980-2006 period. 23 financial ratios were selected following the
best performing in the previous literature. Moreover, four macroeconomic indicators are also
added as proxy for the general economic cycle. These are (US) GDP, to account for the country
level trend; Personal Income Index, to take care of any significant fluctuation in aggregate
goods and services demand; Consumer Price Index, to include any inflationary effects that
might affect corporate operations; and M2 index, which reflect the amount of money supplied
to the economy. Macro variables are employed in the form of year-to-year ratios other than

absolute values: for instance, GDP for year t is defined as the proportional increment with

GDP¢—GDP;_4

respect to t-1 level. GDP, = op
t—1

. Authors, along with other popular models adopted

as benchmarks, examine the impact of a popular configuration of the Neural Network
framework: the Multilayer Perceptron Neural Network (MLPNN). MLPNN is typically
composed of an input layer, one or more hidden layers and an output layer, each consisting of
several neurons. MLPNN has the advantage of being relatively easy and versatile in identifying
inner patterns. It started to be widely adopted after Hect-Nielsen 1987 who proved that a two

hidden layers MLPNN can represent any continuous function mapping.

Authors report that when macroeconomic parameters are included, models in general (MDA,
Logit, CART, etc.) perform slightly better, with a maximum overall accuracy delta of just under
2% points for the Logit model. Moreover, the most promising model seems to be MPLNN with
an overall accuracy of 78.61% points when including macroeconomic indices. The benefit, as
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they stress, coming from macroeconomic figures appears to be slight enough that they
themselves call for further research to prove whether their adoption may be cost effective in

terms of time spent and complexity added for academics and practitioners.

On a similar path can be traced also the work of Ptak-Chmielewska (2019), who studies the
influence of macroeconomic variables on small and medium enterprises (SME) in Poland. He
specifically takes into consideration 1,138 SMEs operating in the industry, trade and services
sectors, half defaulted in the 2002-2010 period and half successful. 16 ratios considered reliable
by the previous literature are selected and successively filtered by a clustering variables
procedure to avoid collinearity issues. The resultant six ratios (quick ratio, capital share in
assets, current assets turnover, operating profitability of sales, net profitability of equity and
inventory turnover) are then applied through the Logit model. The results of the logistic
regression are successively confronted with the exact same model enriched with three
macroeconomic variables: GDP, inflation rate and unemployment rate. Ptak-Chmielewska
reports that the overall classification effectiveness was improved in the model with the
macroeconomic variables. However, the benefit is significant in type II error while type I error
(the one considered to be more important by most of literature researches) do not show any
decrease achieving comparable values (33.4%, 33.7%, without and with macroeconomic
parameters). Interestingly, as he points out, the application of the macro variables in the model

displays improvements on the average classification of non-bankrupt companies.

Thus, again macroeconomic figures seem to only slightly improve the prediction accuracy in

the models applied so far in the literature.

To conclude, a table with all relevant researches presented along with a brief description for
each one of them. Only the section about ‘definition of bankruptcy’ is not included for it does
not add any information on studies developed on the bankruptcy prediction topic but rather

takes a different view angle from those already reported.

LITERATURE UP TO 1966 — THE UNIVARIATE PHASE

FitzPatrick | Analyse 24 ratios from 29 industrial firms. The ratios were compared with

(1932) their overall average to look for specific trends affecting failing firms

Smith and | Studies individual ratios contribution to bankruptcy prediction on a variety of

Winakor industry sectors

(1935)

Merwin Reports that failing firms display signs of weakness starting as early as four or
(1942) five years before failure looking at small manufacturers
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Chudson

Looks for patterns of companies’ financial structure in order to unveil if any

(1945) factor follows ‘normal’, repetitive and visible sequences.

Jakendoff | Compared ratios of profitable and unprofitable firms to identify ratios
(1962) individual role on bankruptcy

Beaver Compared the mean values of ratios from 79 pairs composed by failed and a
(1966) non-failed firm belonging to 38 industries.

Pinches et | Determining the hierarchical relationship among 48 empirically based
al. (1975) financial ratio and proposing those with highest predictive ability

Chen and | Conduct a research on the individual best performing ratios adopting Principal
Shimerda Component Analysis.

(1981)

FROM 1966 TO THE 1990S — THE MULTIVARIATE STATISTICAL PHASE
Altman Introduces Multivariate Discriminant Analysis. His research is considered
(1968) pioneering in the field and is treated as comparison benchmark
Meyer and | Run a multiple linear regression, with a dummy variable to discriminate
Pifer (1970) | between viable and less viable banks, based on 28 operating ratios and 4

balance sheet groupings
Wilcox Develops a binomial model applied to 52 pairs of bankrupted and non-
(1973) bankrupted industrial firms selected from the Moody’s Industrial Manual
Bilderbeek | Applied a step wise discriminant framework to classify 58 Dutch companies
(1977)
Martin Selects the logit model to conduct a research on early signs of banks failure
(1977) commissioned by the Federal Reserve of New York
Weinrich Aanalyse risk classes, based on six risk-related accounting ratios, in order to
(1978) predict insolvency on German SME
Ohlson Applies Logistic regression acieving 96,12 % accuracy. After Altman (1968)
(1980) his research is considered pioneering
Begley et | Investigating the field performances that Altman (1968) and Ohlson (1980)
al. (1997) models are actually able to reach. They find Ohlson to be the best performer
Zimmer Looked at prediction accuracies achieved by loan officers in executing the task
(1980) of making annual predictions of corporate failure based on a time series of
ratios
Frydman Among the first to apply Recursive Partitioning Algorithm (RPA) on
(1985) Compustat firms
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FROM THE 1990S TO PRESENT — THE ‘ADVANCED’ MODEL PHASE

Bell et al. | Introduce Artificial Neural Network for prediction purposes

(1990)

Cadden Compares Backpropagation Neural Networks with Multivariate Discriminant
(1991) Analysis finding the former almost always overcaming the latter

Luoma and

Apply Proportional Hazards model, in the settings designed by Cox (1972), on

Laitinen Finnish entities
(1991)
Tam  and | Compare KNN and ID3 with MDA, Logit and Backpropagation neural
Kiang network on Texas banks
(1992)
Bryant Introduce Case-Base Reasoning and compares results with Ohlson (1989)
(1996) finding higher accuracy
Wallrafen | Employs 73 ratios as random variables on German corporations through
(1996) Genetic Artificial Neural Network
Dimitras Apply Rough Set Theory on Greek companies
(1999)
Min  and | Fine tune Support Vector Machines to 1888 Korean's SME
Lee (2004)
Barboza et | Compare Bagging, Boosting, Random Forest, Support Vector Machines,
al. (2017) Artificial Neural Networks, Logistic Regression and Multivariate

Discriminant Analysis

OTHER RELEVANT RESEARCHES

Liang et al. | Thoroughly analyse CGIs and build a modle to exploit their predictive power
(2014)
Elshahat Combine Altman's Z-scores with corporate governance ratios with mixed
(2014) results
Hillegeist et | Show high accuracies applying Black-Scholes-Merton based approaches for
al. (2003) predictions
Zhou et al. | Includes GDP based measure to predict North America firms' bankruptcy and
(2010) reports higher accuracy through the use of macroeconomic parameters
Ptak- Analysis of SME in Poland through 16 ratios including macroeconomic
Chmielews | parameters
ka (2019)

35



2. DATA DESCRIPTION, ASSESSEMENT AND PREDICTION MODELS

This chapter aims at describing the application of six statistical methodologies, namely Logistic
regression, Support Vector Machines, K-Nearest Neighbour, Adaptive Boosting (AdaBoost),
Decision Tree and XG Boost, to companies’ financial statements in order to predict bankruptcy.
More specifically, after computing the relevant financial indices and checking for the
correlation among them to avoid multicollinearity issues, the above models are trained and

tested on purposely pre-processed data to retrieve the degree of accuracy per each model.

To describe how the project was handled and conducted a first general description of the firms
data will be carried out along with the Propensity Score Matching procedure, through which
data is filtered to obtain an homogeneous starting point for prediction; secondly, it will be
detailed how financial ratios are computed, assessed and built from Italian financial statements;

finally, the application of statistical and machine learning methodologies is shown.

2.1 DATA DESCRIPTION AND PROPENSITY SCORE MATCHING

The following section will comprise a general and statistical description of the data used
throughout the project. Furthermore, the Propensity Score Matching (PSM) procedure that has
refined the initial non-defaulting dataset is presented. Specifically, the following topics will be
undertaken: first, a description of the defaulting sample is set out; following, the PSM procedure

is explained; at last, the description of the filtered non-defaulting firms’ sample is detailed.
2.1.1 The Defaulting Sample

Before delving into knowing the data exploited in the project, it is worth mentioning that data
was treated via Excel, a Microsoft Office software and, more often, with Python, an opensource
programming language featuring ease of use and flexibility. Further, included inside the Python
framework, Numpy, Pandas and Matplotlib, have been among the packages most frequently

applied.

Data comprises 29711 non-defaulting firms and 424 failing entities. All companies are based
in the Veneto region (North-east of Italy) but they do not necessarily have their major profits
coming from the same geographical area. Ten years of financial statements, from 2009 up to
2018, were elicited from each company. Financial statements include balance sheet and income
statements in the Italian form. Data was retrieved from the AIDA database, a software
belonging to the Bureau Van Dijk, a Moody’s Analytics company. Mentioned database easily

enables to filter data from any entity based in Italy and to operate conditional selections, e.g.
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geographical selections. For this study, it has been of particular utility the possibility of

selecting the definition of failure wanted and applying it as further filter on data.

In this context the definition of failure lays in the Italian ‘Concordato preventivo’ and
‘Procedura concorsuale liquidatoria’. To this respect, ‘Concordato preventivo’ (Arrangement
with creditors) is defined in the Italian Civil Code (art. 2221) as an insolvency procedure
granted by law to the commercial entrepreneur who is in a state of irreversible insolvency, but
who, at the same time, demonstrates that he possesses certain merit requirements in order to
escape the negative consequences of bankruptcy. It consists of a formal agreement between
debtor and creditors regarding the methods by which all obligations must be extinguished: the
bankrupt debtor has to arrange the full payment of the privileged creditors and the payment of
a share of the unsecured creditors. The offer that derives from it must be approved by the

majority of creditors involved and ratified by the court.

On the other hand, ‘Procedura concorsuale liquidatoria’ or simply ‘Fallimento’ (Failure), is
established by the Italian Civil Code (art. 2221) in the event of insolvency from behalf of the
commercial entrepreneur in order to ascertain the inability of the same to honour all its debts
and the overall debt situation towards the various creditors. Its ultimate aim is that of liquidating
all the assets of the company and distribute it according to the criterion of par condicio
creditorum (without prejudice to legitimate causes of pre-emption). In order to satisfy the
largest possible number of creditors, the entrepreneur's assets can be replenished with

appropriate actions, in particular through the bankruptcy revocation.

Each and every company set of data, for both failing and non-failing companies, includes 2455
datapoints spread among ten years of financial statements items and other descriptive elements
like business name, VAT number, ATECO classification (‘ATtivita ECOnomiche’, business
activities), a six figures code to identify the company business activity, ATECO description,

province of the headquarter and number of employees.

Geographically, the defaulted entities are located for the majority in Vicenza, 120 firms, and
Padova, 96, provinces while the remaining are distributed as follows: 67 from Verona, 57 from
Venice, 16 based in Rovigo province and 10 from Belluno. Here density in population is at
play: Rovigo and Belluno are by far the least densely populated areas in Veneto and they thus
display lower defaults. An interesting observation comes by looking at the national levels of
defaults. In fact, the comparison with other Italian provinces indicates a higher than average
rate of default in Veneto region. It is particularly impressive that, overall, the 2009-2018 period

lists Vicenza and Padova inside the top five provinces for defaulted companies. This is
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remarkable because Padova and Vicenza cannot be placed among the most densely populated
areas in the Italian landscape. Such interesting evidence could be due to at least two reasons:
the first relates to the physiognomy of the typical company in the north-east area in Italy and

the second is linked to the recent failure of two major local Banks.

Related to the former, Venetian companies are for the majority pertaining to what is defined,
for total annual revenues, net income, overall value and number of employees, as small and
medium enterprises (SME). Understanding the reasons and the implications behind this fact is
beyond the scope of this analysis; nonetheless, said enterprises configuration can already
explain why higher than average failing rate are, ceteris paribus, affecting this area. Indeed,
SME tends to be more subjected to adverse economic conditions and fail more rapidly in higher
numbers. Since the argument is being analysed in absolute number of defaults per province,
then it comes plausible that the higher occurrences are related to it. Another probable reason,
possibly added to the previous one, has to do with the recent default of two local major banks:
Veneto Banca and Banca Popolare di Vicenza. The two institutions started displaying
difficulties beginning from 2015, which may explain why Padova and Vicenza are so high
ranking in these last, ensuing years. In fact, the lack of immediate liquidity granted by the
banking partners and, more importantly, the loss of millions of euros in savings in the local
economy, may have been leading factors in the default of many of the 424 firms taken into

account in the analysis. Both conclusions, however, need further exploration.

To better understand the composition of the defaulting firms, three major parameters can be
helpful: Total Assets, EBIT (earnings before interest and taxes), and Net Income. To plot levels
of the three measures the year 2009 is selected.This should bring at least two advantages
compared with other years: first, many of firms included in the sample began filing for failure
from 2013 and 2014, so that considering 2009 limits lack of data and better represents entities
conditions; secondly, taking values too close to failure might affect the quality of data itself

since it may already be gravely affected from the defaulting status.

The following two charts present a comparison between EBIT in 2009 and Net Income in 2009
(Figure 1) and between the same measures and Total Assets in 2009 (Figure 2). Values are
reported in thousands of Euros and grouped per deciles (x-axis). The first histogram quite
clearly depicts a struggling condition for eight out of ten deciles of companies. Indeed, the first
three deciles show negative EBIT and Net Income while the first eight deciles report either
negative or almost zero profits. Only the last two deciles of firms seem to produce positive
outcomes both in terms of EBIT and profits. However, it seems clear that even the best

performing, among the 2009 results, cannot sustain in the long term, the total levels of Assets.
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In fact, focusing on the second chart, it stands the constant huge difference between Assets and
EBIT and Profits. The sustainability of assets in the long term is a crucial aspect for firms
survival: when a company ability of profiting from its activity cannot produce enough value to
replace/develop its assets, it will be obliged to find new way of financing or, over years, declare

failure.

Though, the clarity offered by the two charts seems to be sufficient to draw conclusions, it is
nonetheless crucial taking them as only a first attempt to describe the defaulting dataset. Indeed,
at least two external variables may play a role in hiding more subtle conclusions that cannot be
drawn from a chart based on absolute levels. First of all, it is important to bear in mind that a
timing element may be distorting conclusions. This has to do with the fact that many of the
defaulted companies have filed for default only from 2015 onward. Now, given that, following
Ohlson (1980), five years before default a company may still be considered to be sound in its
fundamentals on average, last deciles of the distribution might positively affect the whole
scenario. Indeed, higher values, belonging to far-from-failure entities (the last deciles), may
overestimate the actual levels when they are not considered. Secondly, there might be an
historical reason as well: 2009 comes right in the middle of the Great Financial Crisis aftermath
which may have caused a decrease in all performance indices in both failing and non-failing

corporations.

Figure 2.1 Comparison between EBIT 2009 and Net Income 2009, default dataset
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Figure 2.2 Comparison: Total Assets 2009, EBIT 2009 and Net Income 2009, default dataset
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The first issue can be tackled by looking at the year-of-default distribution over all defaulted
companies. The following table (table 1) display the year of default and the number of defaulted

companies for said years.

Table 2.1 Years of default and frequency in the default dataset

2013 2014 2015 2016 2017 2018 2019
102 97 67 25 20 38 77

From Table 1 it can be appreciated that 37.5% (160) of defaulted companies filed for
bankruptcy in or after 2016. These should be considered as sound companies in 2009 values for
the reason explained before. 31.3% of the reported 37.5% (50 entities) belongs to the last three
deciles in Figure 1, indicating that firms defaulting after 2016 seem to be evenly spread through
all deciles in their 2009 data. However, if one looks at the mean per decile, related to the last
three deciles of companies defaulted between 2016 and 2019 only, the timing issue starts being
revealed. Indeed, the mean retrieved for the last decile of 2016-2019 firms reaches for EBIT,
5086,3 (thousands of euros), almost one thousand points above the overall mean of the last
decile alone (visible in chart 1). Similarly, the average Net Income stands at 2154,62 (thousands
of euros) if computed in the same subsample, almost 400 thousand euros higher than the overall
mean. Conversely, the eighth and seventh deciles exhibit a different behaviour: here the average
contribution of 2016 onwards defaulted companies is very much in line with the mean value

calculated with all defaulted companies. From such evidences on the last three deciles, it can
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be concluded that the timing issue affects materially only the nineth decile of the distribution
and thus chart 1 overestimates both EBIT and Net Income only in the last decile. Said
overestimation is, again, result of choosing 2009 datapoints to describe the sample of the

defaulting companies.

On the other hand, the historical reason, linked to understanding whether charts 1 and 2 are
effectively representing defaulting companies on average or, on the contrary, macroeconomic
factors from the 2009 GFC are at play in the data, can only be resolved by comparing the charts
with non-defaulted companies data. This, for sake of simplicity will be carried out after the
section related to the Propensity Score Matching procedure through which all 29711 non-

defaulting corporations have been filtered to better match the defaulting dataset.

Lastly, to grasp the composition of the defaulting dataset it is worth examining the composition
in terms of field of activity. To do so we can rely on the ATECO code which precisely bears
the role of defining the sector to which a firm activity belongs to for fiscal purposes. ATECO
is commonly composed by six figures that identify a specific industry sector by the following
procedure: the first two figures pertain to the division, the third identifies the group, the fourth
figure tells the class which is followed by the category and finally (sixth figure) by the
subcategory®. Each subdivision deepens the specification of the economic sector to which the
entity belongs to. For the purposes of this study, only the first figure is considered which provide
an indication of the macroeconomic sector of membership. The following table (Table 2)

reports the frequency per each ATECO first figure.

Table 2.2 Frequency per each ATECO first figure

0 1 2 3 4 5 6 7 8 9
3 56 83 27 156 4 67 15 6 0

ATECO 0 is composed by agriculture committed firms; ATECO 1 is mainly concerned with
the textile, painting and packaging industries; the third macro group is then related to chemical
and plastic-linked sectors; ATECO 3 counts a majority of furniture factories; then, the most
numerous macro group has to do mainly with real estate related activities; ATECO 5 revolves

to editorial communication and logistics; the seventh section is composed by enterprises mainly

5> To complete the picture there must be mentioned that before any numeric subdivision there is an alfa
division, the section, aimed at declaring the macro economic sector in which thee firm operates. The section
same information, however, can be found in the first two figure, those considered in the study. These and
other details can be found at www.codiceateco.it.
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dependent on constructions; ATECO 7 comprises engineering and scientific activities; ATECO
8 includes goods exchanging commercial companies while, finally, ATECO 9, which does not

belong to any of the 426 defaulting companies in the dataset, refers to entertainment firms.
2.1.2 The Propensity Score Matching procedure

Following Rosenbaum and Rubin (1983) in their examination on propensity scores in
observational studies for causal effects, there is a key difference between randomized and non-
randomized experiments. If in randomized experiments, the results in the two treatment groups
may often be directly compared because their units are likely to be similar, in nonrandomized
experiments, such direct comparisons may be misleading because the units exposed to one
treatment generally differ systematically from the units exposed to the other treatment. In other
terms, any procedure applied to non-randomizable data carries the risk of being inconsistent,
biased, due to the precise effect that the impossibility to randomize the sample builds into the
model. To avoid this risk it can be helpful computing balancing scores to build a new, pseudo-
randomized initial sample. These can be described as functions, b(x), of the observed covariates
x such that the conditional distribution of x given b(x) is the same for treated (z = 1) and control
(z = 0) units. In this setting, the most trivial balancing score is b(x) = x, what actually happens
in randomized experiments. Further, Rosenbaum and Rubin (1983) call the coarsest among the
possible balancing score functions ‘propensity score’ and adduce five theorems whose
conclusions may be summarized as follows: (i) The propensity score is a balancing score; (i)
Any score that is 'finer' than the propensity score is a balancing score; moreover, x is the finest
balancing score and the propensity score is the coarsest one; (iii) If treatment assignment is
strongly ignorable given X, then it is strongly ignorable given any balancing score; (iv) At any
value of a balancing score, the difference between the treatment and control means is an
unbiased estimate of the average treatment effect at that value of the balancing score if treatment
assignment is strongly ignorable. Consequently, with strongly ignorable treatment assignment,
pair matching on a balancing score, subclassification on a balancing score and covariance
adjustment on a balancing score can all produce unbiased estimates of treatment effects; (v)
Using sample estimates of balancing scores can produce sample balance on x.

In this analysis, the propensity score concept conveniently suggests a procedure to filter the

non-defaulting dataset making it more aligned with the defaulting sample®. Indeed, matching

6 Rosenbaum and Rubin (1983) were primarily concerned with causal effects in observational studies, a topic
not directly link with this thesis. Nonetheless, propensity score matching represents a valuable procedure to
identify meaningful matches for defaulting firm on the basis of selected covariates and improve final results.
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defaulting and non-defaulting firms on the basis of selected covariates should result in more

comparable data sample and thus more reliable prediction results.

To carry out the procedure, there was implemented the PyMatch Python package which deploys
a specific instance called Matcher’. Matcher makes use of the logistic regression to compute
the propensity scores. In general terms, Matcher follows this procedure: it splits defaulting and
non-defaulting companies assigning binary values; runs a logistic regression on the basis of the
given covariates; it then fine-tunes the relevant threshold from which scores are computed in a
random fashion; compute all scores, for both types of firms; and finally, after ranking the
obtained scores, search for the closest n non-defaulting matches looping over all defaulted

entities. Python code related to this section is available in the appendix 1.

For this project two covariates have been selected: Sales and Equity to total Assets. Sales was
reported from the Italian “Ricavi vendite e prestazioni” while Equity to total Assets was
computed as the ratio between “Totale Patrimonio Netto” and “Totale Attivo”. Such voices
have been selected for their relevancy: Sales represents the overall dimension in operations a
company is capable of reaching; Equity to total Assets, on the contrary, features the solidity in
ownership that connotes a firm (it should indeed be intended as a sort of opposite index of
leverage). Ultimately, choosing Sales and Equity to total Assets as covariates, determines
matches operated on volume and ownership solidity dimensions. Here any match on the
performance in profitability is purposely avoided for its high level of year by year variance and,

more importantly, to let its implications and drivers be directly embedded in prediction models.

As it can be seen from the code in appendix 1, only 2009 to 2015 data was loaded to be exploited
with PyMatch. This fact relates with the choice of considering only the fifth year prior to default
for all defaulted entities. The logic behind such choice looks at implementing the matching
procedure avoiding data already affected by a failing condition. On average, as reported above,
it is safe considering about five years before default to prevent it. Indeed, matching still-sound
firm data brings the advantage of improving the capability of subsequently identifying those
parameters that better describe a failing dynamics compared with a successful one. In other
terms, examining the historical path followed by companies with similar fundamentals while

still both in good shape, should simplify the recognition of the drivers towards default.

7 PyMatch and its Matcher instance are open source resources available at github.com/benmiroglio/pymatch
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Aside from the year-level distinction, only datapoints from the same year could be matched
together, an additional subdivision, based on the ATECO code®, was put in place. For this
purpose, ten sub classes were created based on the first figure of the code to give more
importance to the business sector in which each firm operates. In this regard, matches could not
fall outside the subgroup. At least one disadvantage and one advantage are brought about from
this decision. The main disadvantage relates with the low overall number of companies included
in the defaulting sample. Indeed, only considering the Veneto region does not guarantee enough
datapoints to cover all subgroups. To understand the implication of this disadvantage it is
sufficient looking at Table 2. From it, it is immediately clear that subgroup 9, the last reported,
has no companies at all. This, in turn, prevents any subgroup 9 non-defaulting firm from been
selected in the matching procedure and thus, no final prediction can be truly representative of
it. Nonetheless, splitting on the base of the ATECO code increases similarities between the two
types and thus refine the final prediction. This happens because increasing similarities,
examining only similar sector companies in this case, permits a higher level of precision in the
identification of the hidden drivers toward default for a specific enterprise. In other terms,
further increasing similarities improves predictions by enhancing the predictive model training

procedure.

It is finally worth adding that a number of five non-defaulting entities were decided to be
matched with every defaulted firm. Moreover, since companies defaulting years range between
2009 and 2015, it is important to notice that the same non-defaulting entity can be selected for
more than one defaulting company not just in the same year, because perhaps it represents the

closest score of multiple defaulting datapoints, but also over multiple years.

Before describing the results from the Propensity Score Matching procedure, it is needed to be
pointed out that not all of the 426 failing companies were matched through the Matching
instance. In fact, only for 395 could be computed propensity scores, while the remaining 31
could not, with the subsequent impossibility of being matched. The reason behind is to be
searched among the implications caused by the subdivision implied by the ATECO code
summed to the year to year split: where the number of firms per group was not higher than two,
the logistic regression could not figure out how to assign scores. To overcome such limitation
a final piece of code was supplemented after the Matcher. The ‘Manual Matching’, as it was

titled, proceeds as follows: first a python Data Frame with all the left-out defaulting firms is

8 As already specified, ATECO first figure does not represent a specific macro business sector per se. Though,
the so formed subdivision represents a practical methodology to increase feature similarities among matches.
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Sales

created; it is then computed a scaling factor ( ) to account for the scale

Equity to total Assets
difference between sales and equity to total assets data; after, the distance between the level of
defaulting and non-defaulting firms covariates is computed, per each of the two covariates, for
all non-defaulting companies; then, the sum of the distance registered from Sales and the scaled
distance coming from Equity to Total Assets is carry out per each non-defaulting firm and a
rank is established; finally, the five ‘closest’ non-failing entities, those showing at the top of the
rank, are chosen as matches. Of the 31 left-outs however, only 10 found matches with the
Manual Matching, all the remaining were discarded for low quality of data reported (they

disclosed either zeros or missing values in great proportions).

Thus, a total of 405 failing entities were matched with five non-failing firms for a total of 2430

firms considered for prediction purposes.

To check for the validity of the matches obtained, an Ordinary Least Square regression is run
to determine whether a significant difference between the defaulting and non-defaulting groups
is in place over the two considered covariates, Sales and Equity to total Assets. To do so, the
OLS is configured so that as dependent variable was selected one covariate at the time while as
independent variable was selected the dummy constituted by a vector of reflecting the failing,
non-failing status of the two groups. If the dummy is determined to be statistically significant
at 5% level, then a new OLS regression was run introducing a constant term, and keeping the
dummy variable, to control for it. Results indicates that the failing/non-failing dummy is indeed
significant at 5% level for Sales, without constant term (Figure 3), p-value at 0,1%, but becomes
not statistically significant when the constant term is added, p-value at 6%. Since the p-value
concerning the constant term is > 0,001 it can be concluded that it is statistically significant at
the 5% level and it is thus appropriate preferring this model to the previous. On the other hand,
when running the same OLS regression on Equity to total Assets, both options deliver a not
statistically significant dummy with p-values of 12,3% without constant (Figure 4) term and
9,4% with constant term respectively. In this case also the constant term is not statistically

significant, p-value at 51,4%.

In either cases, the dummy results to be not statistically significant, which implies that the two
groups, failing and non-failing, do not display any difference with respect to either covariate:
the Propensity Score Matching procedure has successfully combined data on the basis of the

covariates.
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Figure 2.3 The result from OLS regression on Sales with and without constant term (‘Default

represents the dummy variable, ‘const’ the constant term).

coef std err t  P=t coef std err t  P=|t
Default 1.444e+04 4202571 3437 0.001 const 2.285e+04 1821756 12541 0.000
Default -8402.0379% 4462373 -1.883 0.060

Figure 2.4 The result from OLS regression on Equity to total Assets with and without constant

term
coef std err t  P=t|
coef std err t  P=t const 00402 0062 0653 0514
Default -0.2125 0138 -1543 0123 Default -0.2527 0151 -1675 0.094

2.1.3 The non-defaulting sample

Since the analysis of the defaulting firms has already been conducted, it is now worth examining
general features connotating the non-defaulting sample. Following the same approach applied
above, a chart comparing 2009 mean levels of EBIT and Net Income distributed over deciles

(Figure 5) and another adding total Assets to the picture (Figure 6), are reported.

After just a quick look, it already become evident an interesting similarity between Figure 5
and Figure 1. Indeed, after a first decile exhibiting high average loss levels in terms of both
EBIT and Net Income, the subsequent deciles appear to remain at relatively constant low levels
before an upsurge starting from the 9™ deciles and boosted in the last percentiles. Curiously
though, if the absolute values for EBIT are almost identical between defaulting (Figure 1) and
non-defaulting (Figure 5) entities, with physiological differences that can be easily expected,
what attract the attention should be the divergence in the levels of Net Income. In fact, almost
every decile shows lower profits for the defaulting sample. Moreover, shifting the focus toward
the comparison with the average total Assets quantities, again it can be concluded that the
condition of the two samples remains almost indistinguishable, not just in terms of trend over
deciles but also accounting for absolute values. Strikingly, it actually seems even slightly higher

the level of total assets for defaulting companies, on average, than for non-defaulting ones.

These two last considerations, fairly similar EBIT and total Assets and slightly lower levels of
profits in a context of similar trend, can be the basis to try formulating an answer to the second
issue raised above on the historical role of the GFC and its influence in the data. Observing the

four graph, it can be concluded that though it is surely possible that the overall peculiar pattern
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affecting all three variables and common to both samples may be resulting from the historical
context, the difference in mean Net Income values indicates a clear delta in performance
independent from the context per se. Rather, it signals a deterioration in the ability to generate
profits of companies inside the defaulting sample with respect to their counterparts, on average,

within the historical context of the GFC.

It is finally worth adding a further consideration to the frame. Firstly, Figure 5 first two deciles
depict the condition of those firms able to re-establish a flourishing activity and avoid default.
It should be noted that these are precisely those companies whose ‘sickness’ was detected and
cured before failure occurs, as in Beaver (1966), with the consequence of making harder the
identification of distress drivers and thus carrying the risk of overstating the prediction model

reliability.

Figure 2.5 Comparison between EBIT 2009 and Net Income 2009, non-defaulting dataset
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Figure 2.6 Comparison between Total Assets 2009, EBIT 2009 and Net Income 2009, non-
defaulting dataset
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Two additional features might be examined to deepen the analysis on data from both samples:
a comparison of the geographical location of firms and the analysis of the average number of
employees. To accomplish the geographical comparison, it is sufficient to integrate to the
defaulting entities locations already set out the provinces where non-defaulting firms are
headquartered. Table 3 shows the number of firms based in each province for both samples,

resulted from the PSM procedure.

Table 2.3 Headquarters of Propensity Score Matched firms by province in Veneto

Province | Belluno | Padova | Vicenza | Venezia | Rovigo | Verona | Treviso
Failing 10 94 113 55 14 63 56
Non-fail. | 38 420 478 230 52 431 377

Table 3 underlines that the vast majority of non-failing enterprises is located inside the
provinces of Vicenza, Verona and Padova respectively, followed, not far behind, by Treviso.
Except form Verona and Treviso, the results are in line with the failing firms’ geographical
distribution. Covering all provinces is critical for prediction purposes. Indeed, training models
while including all possible conditions, geographical in this case, ensure higher reliability in
results when testing predictions on hold-out companies’ data. In particular, the presence of
enterprises based and operating in more marginal locations like Rovigo and Belluno, guarantees
specific parameters related to location of activities, to be indirectly included in the trained

model, thus making it more reliable. Nonetheless, questions may arise on the actual number of
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firms’ data effectively needed to avoid any form of overfitting towards more represented areas.
This issue is however not further explored in this study due to the fact that the final frequency
per province is not a primary concern when looking for predictions on the Veneto region as
whole, given that all provinces are, in any case, represented. In other words, here is not critical
a province balanced sample because all Veneto firms are actually assumed to share common
basic feature (culture, management style, relation among firms, etc.) regardless from the

province of origin.

Secondarily, looking at the average number of employees might better contextualize the data
that are going to be used to perform predictions afterward. To analyse it, the 5™ year prior to
default is taken into consideration for what concerns defaulting firms. The same rule is applied
also to non-defaulting companies as follows: for each failing entity, the five Propensity Score
Matched sound firms are selected and only the average number of employees belonging to the
matching year, is considered (remark that the 5" year is precisely the one exploited in the PSM
procedure). Therefore, eventually, only years from 2009 up to 2015 are reported (Figure 7).
The chart shows average values for failing, non-failing and all companies together. As expected,
blue bars always stand between the orange and the grey ones but closer to the latter given the
higher number of occurrences between failing and non-failing entities (1 vs 5). Except for 2010,
with lowest levels registered, and 2014, the highest on record, all other years exhibit a fairly
similar level of average employment over the enterprises included in this study. Interestingly,
the failing sample always display lower number of employees. This may indicate that on the 5%
year prior to default, some sign of distress is already at play, which perhaps forces the
management to cut costs, and substantially contradicts the belief, true to most of the relevant
literature, of firms sounding fundamentals five years before default. However, some other, and
possibly more subtle, process might determine the delta employees delineated in Figure 7.
Indeed, if a deeper focus is pointed toward the dimension of companies considered, usually
SMEs, it comes logically that bigger dimensions companies may misrepresent the average
population of failing entities. Larger corporations can in fact be more resilient in hard times
with respect to smaller ones due to more capital (assets, liquidity, etc.) to exploit before filing
for bankruptcy. This fact may indicate that relatively big firms may endure more than five years
before bankruptcy and that are thus to be considered above average inside the framework of the
five years rule. Implication of this is that if on the one hand it can still be true that, on average,
the 5™ year prior to default bears no distress signs, on the other, above average entities may
actually be already suffering. Now, given that usually, larger corporations hire more employees,

it comes naturally that outliers, bigger than average companies, may be the reason behind the
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smaller orange bars. To check for this possibility, Table 4 reports the weight of the last decile
on the overall distribution of number of employees for those years reporting higher difference
between failing and non-failing entities (2011, 2013, 2014 and 2015). Moreover, it also shows,
in ‘Delta (absolute)’ denominated row, the absolute delta between the average in the last decile
and the average computed on all other deciles (in brackets is also present the 1% nine deciles
average). Two major observations can be drawn from it. first it is clear that the last decile plays
a pivotal role in the determination of the final average number of employees. In this sense, it
can be argued that for all four years, the last deciles represent a sort of aggregated outlier, which
vastly affects the final outcome: a decrease in the last decile more than proportionally decreases
the mean of the whole distribution. Secondly, it should be underlined that the weight seems to
be directly correlated with the distance between the orange and grey bars. In fact, where the
difference is larger in absolute terms (2014), the weight of the last decile is relatively heavier,
whilst it is lighter for closer values (2015). Table 4 cannot be interpreted as a conclusive proof,
nonetheless it concisely suggests that few companies may have a determinant role in explaining
Figure 7 results. This, in turn, rejects the hypothesis of unreliability over the five years prior to

default rule, confirming the literature argument.

Figure 2.7 Number of employees on the 5" year prior to failure
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Table 2.4 Weight of last decile on years with greater difference in the number of employees

Year 2011 2013 2014 2015
Last decile | 43,4% 41,2% 63,8% 38,4%
weight

Delta (absolute) | 201 (19) 119 (24) 391 (21) 251 (25)
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2.2 FINANCIAL RATIOS

The following section is dedicated to the description of how financial ratios have been built
from Italian statements and the successive assessment of their individual quality level. First, the
structure of each ratio is described; then, the results from the univariate logistic regression are
reported; third, Binning categorization, Weight of Evidence and Information Values valuation
are carried out; finally, the examination of ratios interrelations is considered through correlation

analysis.
2.2.1 Financial Indices Composition

The first crucial step to apply any prediction model has to do with the selection of the parameters
that will then be useful for running prediction models. For the purposes of this study, said
parameters ought to be found among the various financial indices that can be elicited from
financial statements. 54 different ratios have been included, all retrieved from components of
either Balance Sheet or Income Statement for each company. Table 5 reports all ratios
employed (left-hand side of the table) along with their components (right-hand side). The first
45 have been collected directly from Bellovary et al. 2007 summary research while the last 9
from other authors analysed in the literature dedicated chapter. The table is conceived as
follows: each element reported in Italian inside the ‘DESCRIPTION’ column features the actual
quantity elicited from financial statements; when it happens to be marked by an asterisk (*) it
1s further defined in the bottom attached table. All components find their ultimate definition in
Italian financial statements quantities. Moreover, the only difference between upper-cased and
lower-cased components is referred to whether the component is an aggregate item (upper-case)
in the statement or not (lower-case). For sake of clarity upper- and lower-cased items have been
integrally transcribed. Python code tailored for the formation of indices can be found in

appendix 2.

Table 2.5 List of ratios employed and their components

RATIO DESCRIPTION

Net Income/Total Assets UTILE/PERDITA DI ESERCIZIO / TOTALE ATTIVO

Total Debt/Total Assets TOTALE DEBITI / TOTALE ATTIVO

Net Income/Equity Utile/perdita di esercizio / TOTALE PATRIMONIO NETTO
Total Liabilities/Total Assets Total Liabilities* / TOTALE ATTIVO

Inventory/Sales Var. rimanenze prodotti / Ricavi vendite e prestazioni
Operating Income/Total Assets RISULTATO OPERATIVO / TOTALE ATTIVO

Net Income/Sales Utile/perdita di esercizio / Ricavi vendite e prestazioni
Long-term debt/Total Assets Totale debiti oltre I'esercizio / TOTALE ATTIVO

Total liabilities/Equity Total Liabilities* / TOTALE PATRIMONIO NETTO
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Operating expenses/Operating income

COSTI DELLA PRODUZIONE / RISULTATO OPERATIVO

Current Ratio

Current Assets* / Current Liabilities*

Working Capital/Total Assets

Net Working Capital * / TOTALE ATTIVO

Retained earnings/Total assets

Utile/perdita a nuovo / TOTALE ATTIVO

Current Assets/Total Assets

Current Assets* / TOTALE ATTIVO

Current Liabilities/Total Assets

Current Liabilities* / TOTALE ATTIVO

Current Assets/Sales

Current Assets* / Ricavi vendite e prestazioni

Working Capital/Equity

Net Working Capital * / TOTALE PATRIMONIO NETTO

quick ratio (quick ass/current liabilities)

Quick Assets* / Current Liabilities*

Sales/Total assets

Ricavi vendite e prestazioni / TOTALE ATTIVO

quick assets/Total assets

Quick Assets* / TOTALE ATTIVO

quick assets/Sales

Quick Assets* / Ricavi vendite e prestazioni

EBIT/Total assets

RISULTATO OPERATIVO / TOTALE ATTIVO

EBIT/Interest

RISULTATO OPERATIVO / TOTALE PROVENTI E ONERI
FINANZIARI

Working capital/Sales

Net Working Capital * / Ricavi vendite e prestazioni

CFO/Total assets

Cash Flow from Operations* / TOTALE ATTIVO

CFO/Total debt

Cash Flow from Operations* / TOTALE DEBITI

CFO/Sales

Cash Flow from Operations* / Ricavi vendite e

prestazioni

CFO/Current Liabilities

Cash Flow from Operations* / Current Liabilities*

CFO/Total liabilities

Cash Flow from Operations* / Total Liabilities*

Cash/Total Assets

TOT. DISPON. LIQUIDE / TOTALE ATTIVO

Equity/Total Assets

TOTALE PATRIMONIO NETTO / TOTALE ATTIVO

Total Debt/Equity

TOTALE DEBITI / TOTALE PATRIMONIO NETTO

Cash/Current Liabilities

TOT. DISPON. LIQUIDE / Current Liabilities*

Equity/Total liabilities

TOTALE PATRIMONIO NETTO / Total Liabilities*

no-credit interval (Current Ass/Daily
Operating expenses)

Current Assets* / (COSTI DELLA PRODUZIONE/365)

Asset Turnover

Ricavi vendite e prestazioni / [(TOTALE ATTIVO (t-1) +
TOTALE ATTIVO (t)) /2]

Return on Total Asset

RISULTATO OPERATIVO / TOTALE ATTIVO

Ebitda/EBIT EBITDA* / RISULTATO OPERATIVO
CFO/EBIT Cash Flow from Operations* / RISULTATO OPERATIVO
Tax Expenses/EBIT Totale Imposte sul reddito correnti, differite e anticipate

/ RISULTATO OPERATIVO

Other Revenues/Total Produced Value

Altri ricavi / TOT. VAL. DELLA PRODUZIONE

Cash Flow ratio

Cash Flow from Operations* / Current Liabilities*

Interest Coverage

EBTDA* / TOTALE PROVENTI E ONERI FINANZIARI

Cash Flow from Operations

Cash Flow from Operations*

log(Total Assets)

Log (TOTALE ATTIVO)

Turnover Payables

Cost of Good Sold* x 1,22 / (Fornitori entro + Fornitori
oltre)

Turnover Receivables

Cost of Good Sold* x 1,22 / (Cred. vs Clienti entro + Cred.
vs Clienti oltre)

Turnover Inventory

(COSTI DELLA PRODUZIONE - Incrementi di immob.) /
TOTALE RIMANENZE
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Acid Ratio

(ATTIVO CIRCOLANTE - TOTALE RIMANENZE) / Current
Liabilities

Net sales/Cash from sales

Ricavi vendite e prestazioni / Cash from Sales*

Sales/Net Account Receivables

Ricavi vendite e prestazioni / Total Customer
Receivables* - Svalut. crediti

CFO/Financial Debt

Cash Flow from Operations* / (Banche entro + Banche a
lungo + Altri finanziatori entro + Altri finanziatori oltre)

Fixed Charges Cash Coverage

(Delta Principal* + Totale Oneri finanziari + Cash Flow
from Operations*) / Current Liabilities*

Fixed Charges EBIT Coverage

(Delta Principal* + Totale Oneri finanziari + RISULTATO
OPERATIVO) / Current Liabilities*

* %k %

* % %k

* Total Liabilities

TOTALE PASSIVO - TOTALE PATRIMONIO NETTO

* Current Assets

TOT. DISPON. LIQUIDE + Crediti a breve + CREDITI FIN. A
BREVE + TOTALE RIMANENZE

* Current Liabilities

DEBITI A BREVE + Obblig.ni entro + Obblig.ni convert.
entro

* Net Working Capital

Current Assets - Current Liabilities

* Quick Assets

Current Assets - TOTALE RIMANENZE

* Cash Flow from Operations

EBITDA* - Delta Net Working Capital*

* EBITDA

RISULTATO OPERATIVO + TOT Ammortamenti e svalut.

* Delta Net Working Capital

Net Working Capital (t) - Net Working Capital (t-1)

* Cost of Good Sold

Materie prime e consumo + Servizi + Godimento beni di
terzi

* Cash from Sales

Ricavi vendite e prestazioni - Delta Customer
Receivables*

* Delta Customer Receivables

Total Customer Receivables* (t) - Total Customer
Receivables* (t-1)

* Total Customer Receivables

Cred. vs Clienti entro + Cred. vs Clienti oltre

* Delta Principal

Principal* (t) - Principal * (t-1)

* Principal

Obblig.ni entro + Obblig.ni oltre + Soci per Finanziamenti
entro + Soci per Finanziamenti oltre + Banche entro +
Banche a lungo + Altri finanziatori entro + Altri
finanziatori oltre + Titoli di credito entro + Titoli di credito
oltre

In general, the most important characteristic of financial indices concerns with the high level

of comparability between different companies that they allow. Indeed, the primary reason why

they can be adopted for prediction goals, as in this research, is precisely linked to the possibility

of uniformly treat all datapoints regardless of the underling dissimilarities (firm structure,

indices components absolute levels, etc.). Further, since each single ratio expresses only a

specific feature of the data being analysed, it logically follows that the combination and use of

multiple indices could be a reliable way to look at multiple characteristics on all companies’

data altogether. In other words, the adoption of indices is key for the employment of
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multivariate models, able to combine numerous ratios and thus aggregate the (comparable)
knowledge they carry. Nevertheless, before applying any multivariate technique, it is essential
conducting an examination of both the quality and interconnectedness of ratios. This would
bring two main benefits: first, the identification of ratios individual ability to predict bankruptcy
can already indicate which items is best to include in the multivariate approach as well as set a
minimum level of accuracy that needs to be overcome by multivariate techniques; second, the
determination of the correlation level of each financial ratio with all others can clarify the need
to select some items against their correlated counterparties to avoid multicollinearity® issues.
To achieve them, three analysis are pursued: a univariate logistic regression, to look for the
individual performance in prediction; a binning categorization followed by the computation of
each bin weight of evidence and information value, to further explore each index ability to
perform predictions; and an average correlation classification, to, again, prevent any

multicollinearities due to indices carrying similar information.
2.2.2 Univariate Logistic Regression analysis

For the univariate logistic regression, the average index value of four years prior to default were
considered. For non-defaulting firms, the identification of the four years is accomplished by
considering as reference year the defaulting year for the matched bankrupt entity. To clarify,
the five non-failing enterprises matched with the same failing firm through the Propensity Score
procedure, take as reference year the defaulting year of the failing firm. From the reference
year, the average value of the index is computed including the previous four years data.
Whenever four years were not available!?, only three years were taken into account. Average
values, collected in a matrix composed by as many rows as companies and columns as ratios,

are then employed to run the univariate logistic regression.

° To understand the issue related with multicollinearity few lines from M. P. Allen, 1997, Understanding
Regression Analysis, are reported: ‘Other things being equal, an independent variable that is very highly
correlated with one or more other independent variables will have a relatively large standard error. (...)
Multicollinearity exists whenever an independent variable is highly correlated with one or more of the other
independent variables in a multiple regression equation. Multicollinearity is a problem because it undermines
the statistical significance of an independent variable. Other things being equal, the larger the standard error of
a regression coefficient, the less likely it is that this coefficient will be statistically significant.” (p. 176, M. P.
Allen, 1997, Understanding Regression Analysis, published by: Springer, Boston, MA).
10 The unavailability of all four years occurred only to those indices computed through the use of delta
components and only for companies with 2013 as reference year. Delta components are those items resulting
from the difference between the value of the index at time t and the same index at time t-1. Example of this
class of indices can be Cash Flow from Operations which results from EBITDA - Delta Net Working Capital,
where the latter, a delta component, is precisely defined as Net Working Capital (t) - Net Working Capital (t-1).
These indices lack from the 2009 values because delta components cannot be computed for 2009 (t) since no
records are available for 2008, (t-1).
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The model entails three steps to be undertaken: data pre-processing; the selection of the relevant
parameters (solver function, proportion of train and test sets, etc.); and the definition of the

measures of performance.

Data pre-processing, the procedure that takes care of the arrangement of data to ensure model
efficiency and reliability in results, has been conducted on outliers and missing values (also
known as NaN values inside the Python framework). In practice, pre-processing was handled

as follows: first, outliers have been spotted by standardizing all values from the 4 years averages

matrix, index by index, through the relation z = % (where z is the standardized value, x the

initial value, m the mean of all values and sd the standard deviation) and looking for |z| > 3;
secondly, all spotted outliers are converted into NaN values and the matrix is restored to the
initial values; and finally, all missing values are filled with the mean of all other values in the

same column (where each column is related to a specific financial index).

Afterwards, the selection of the relevant parameters was performed. In this case, two parameters
have been modified from the default settings'!. First, the ‘solver’ of the Logistic Regression
Class has been set to ‘Ibfgs’ in accordance with the best performing solver for the available
samples. Solver is the name of the algorithm portion assigned to carry out the computational
task involved with the application of the logistic regression. Lbfgs refers to the limited-memory
version of the BFGS, the iterative method for solving unconstrained nonlinear optimization
problems based on the work of Broyden, Fletcher, Goldfarb and Shanno'?. Secondly, the test
size proportion was changed to 0.25 to result in a division of 75% of items randomly selected

for the training set and 25% kept as hold-out testing sample.

Finally, five measures of performance are considered: a confusion matrix reporting the number
of True Negatives, non-defaulting companies correctly predicted, False Negatives, non-
defaulting companies predicted as failing, True Positives, failing firms correctly spotted, and
False Positives, defaulting companies predicted as non-defaulting (Figure 8 shows the
conventional format for confusion matrices); the Recall measure (also known as sensitivity or
true positive rate) or the ability of a model to find all the relevant cases within a dataset, is
defined as the number of True Positives over the total occurrences of Positives (True Positives

+ False Negatives); the Precision measure (also known as positive predicted value), or the

11 The settings in question relates to those provided by Sklearn.linear_model.LogisticRegression, an opensource
python based statistical package that can be recovered from https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
2 More on this topic can be found on Saputroa and Widyaningsih (2017) paper available at
https://aip.scitation.org/doi/pdf/10.1063/1.4995124
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ability of a classification model to identify only the relevant data points, is defined as the
number of True Positives to the total number of predicted Positives (True Positives + False
Positives); the Accuracy measure, entailing the aggregate performance of the model in
prediction, is defined as the sum of True Positives and True Negatives to the sum of all Positives
and all Negatives (TP + FP + TN + FN), which, in other words, refers to the frequency of the
correct predictions; and the Receiving Operating Characteristics Area Under Curve (ROC
AUC), equal to the probability that a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative one (assuming 'positive' ranks higher than 'negative').

Figure 2.8 the Confusion Matrix conventional format

Predicted Values
% | True Negatives False Positives
=S
=
>
E False Negatives True Positives
(5]
<

For sake of clarity, only two among the 54 financial ratios will here be presented in their results.
All results can however be explored in appendix 3. Also, Python code referred to the univariate
examination of indices can be found in the same appendix, right after results. For the univariate

logistic regression sklearn opensource package was employed.

The two selected ratios are Net Income to Total Assets (NI-TA) and Working Capital to
Equity'® (WC-NW). The former resulted to be among the best individual performers while the
latter displayed lower than average achievements. This difference should be helpful in marking

pros and cons of the measures of performance considered.

First of all, both confusion matrices are transcribed (Table 6). Divergencies are immediately
visible: if, on the one hand, NI-TA shows 430 True Negatives and 90 True Positives, with a
total of 520 correct predictions; WC-NW, on the other only stands at 121 correct predictions
with 117 True Positives and only 4 True Negatives. Moreover, although WC-NW seems to
perform better than NI-TA in terms of False Negatives (0 against 27 respectively), the opposite
situation occurs for the False Positives but at higher order of magnitude (a staggering 487 for
WC-NW versus 61 for NI-TA). Overall, the two confusion matrices, who both total 608 cases
(the number of cases grouped inside the test set), suggest a situation in which False Negatives

are more easily handled while False Positives are missed at much higher frequency by the logit

13 From now on Equity will be reported as ‘Net Worth’. From it ‘WC-NW’.
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model. In addition, they already convey the intuition of a better performing NI-TA against WC-
NW.

Table 2.6 Confusion Matrices for univariate NI-TA and WC-NW.

NI-TA WC-NW
430 61 4 487
27 90 0 117

True Positives

The second performance measure is Recall ( ). NI-TA reaches

True Positives+False Negatives
0.822497 (82%) as result of the 27 incorrectly predicted False Negatives. WC-NW, on the other
hand, overcomes it achieving 100% recall. Logically, zero errors in terms of False Negatives,

come at the cost of increasing the rate of False Positives.

True Positives

Further on, Precision ( ) is reported. Here, a reversed scenario is

True Positives+False Positives

depicted: NI-TA records 0.768473 (77%) while WC-NW only generates a precision of
0,2402464 (24%).

From Recall and Precision measures, again, it can be pointed out that the logit model performs
better on the identification of False Negatives than False Positives, which is why Recall

outperforms Precision in both indices.

The fourth and most comprehensive measure of performance 1is Accuracy

(
at 0.199013 (20%), due to mainly WC-NW inability to correctly classify False Positive cases.

True Posits + True Negats

. As expected, NI-TA accuracy, at 0.855263 (86%) outruns WC-NW’s,
) p y

Negatives + Positives

Finally, the last measure of performance is given by the area under curve, where the curve in

question is the receiving operating characteristics curve. It charts the False Positive Rate

(

dotted line representing the diagonal is visualized to compare the curve against its halfway

False Positives

— —) against the True Positive Rate (the Recall measure). Moreover, a
False Positives+True Negatives

level'. The comparison against Figure 8 and Figure 9 confirms the conclusion obtained through
the accuracy measure. First, the curve for NI-TA increases faster than WC-NW toward high
level of TPR while keeping low the FPR. Secondly, NI-TA AUC (0.88) more than doubles WC-
NW’s, confirming the higher reliability on the logit model applied with NI-TA.

4Indeed, a ROC curve precisely lays on the diagonal would imply an AUC of 0.5.
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2.2.3 Binning, Weight of Evidence and Information Value

In general, binning can be defined as a categorization process aimed at transforming a
continuous variable into a small set of groups (also known as bins). It usually serves the purpose
of reducing the scale of data being used to better examine the prediction ability of a variable (a

115

financial ratio) inside a model >, prior to the application of the model itself. Usually, in presence

of multiple potential parameters to be included in a multivariate prediction model (as this case

15 More on binning can be found in Zeng (2014), A Necessary Condition for a Good Binning
Algorithm in Credit Scoring, available at
https://www.researchgate.net/profile/Guoping_Zeng/publication/264455896_A_Necessary_Condition_for_a_
Good_Binning_Algorithm_in_Credit_Scoring/links/5675770908aebcdda0Oe46b34.pdf
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entails), binning introduces the sequence of procedures to eventually compute the Information

Value through which operate a selection among all variables available'®.

After the creation of bins to summarize the distribution of a specific parameter, the Weight of

% of non—events

Evidence (WoE) for each bin can be computed. WoE is defined as In ( ), where

% of events

the numerator indicates the frequency of non-occurrences of the considered bin against all non-

nof non—events in bin;

occurrences related to the observed variable ( ) and the denominator

Y.(n of non—events in bin;)

refers to the frequency of occurrences against all occurrences of the variable

nof events in bin;

(Z (r of events in bin) ). Specifically, non-occurrences are to be assigned to the number of non-

defaulting firms while occurrences to defaulting ones. The natural logarithm establishes how
WOoE results should be read: if WoE < 0, then the percentage of default occurrences exceeds the

percentage of non-defaults, else the opposite holds'”.

Finally, with the availability of frequency of non-events and events and WoEs, the Information

Value (IV) for each bin can be calculated. IV is defined as

Y.(% non — events; — % events;) * WOE; and represents an aggregate measure of the

quality of a certain variable for prediction objectives.

Similarly to the univariate section above, to illustrate binning, WoE and IV only three ratios
have been selected: Net Income to Net Worth (NI-NW), CFO to Current Liabilities (CF-CL)
and EBIT to Total Assets (EB-TA). Again, all other ratios results, along with Python code
applied can be found in appendix 4.

As a first step, binning is applied. In this case bins have been made corresponding to the deciles
of the distribution of both indices. Following, for every decile it has been calculated the
frequency of failing and non-failing companies and results have been charted in Figure 10, 11
and 12. Charts report on the y-axis the proportion of failing companies and on x-axis the
sequence of deciles. What is more, a red dotted line is added as to show the best fitting line for

all ten points.

The graphs already represent an initial proxy to assess the quality of the ratio for predictive
purposes. Indeed, it can logically be assumed that ratios displaying higher concentration of

default events in the first (last) deciles and lower in the last (first) ones, convey the knowledge

16 In this project, the procedure adopted cannot be technically reminded to the binning concept since no
continuous variable is considered. Nonetheless, given the similarity with the binning process, it will continue to
be referred to as binning.
17 Where the rare result of In(1), is considered to be not interesting.
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of higher risk of default for ratio values belonging to the initial (final) part of the distribution.
In principle, the bigger the gap between the higher defaults zone and the lower default zone,
the more precisely the prediction should result. Instead, whenever the ratio distribution of
default frequencies deviates from describe pattern, the prediction model becomes either more

complex or less reliable.

In Figure 10, EB-TA does in fact show a behaviour pretty close to the ideal: a high concentration
of defaulting cases appears only on the first three deciles while from the fourth onward, a clear
decrement in bankruptcy events occur. CF-CL instead, seems to follow a much less linear
pattern: firstly, the scale of difference between the high and low frequency zones is much
smaller than EB-TA; moreover, the overall trends appears to be more chaotic and thus less
interpretable and reliable in prediction. Finally, Figure 12 reports the distribution pattern
followed by NI-NW. Although at first glance the model does not seem to follow the ideal
pattern, the overall accuracy it registers reaches 75,8%, one of the highest of all recorded via
the univariate logit. The reason of it has to be looked for in Figure 12: tough there is not only a
single high frequency of default zone, the two displayed are pretty concentrated in the first and
last deciles. What is more, the gap between the high frequency zones and the low one is
material. In this case it can be concluded that the variable can be highly performing in
predictions even though the predictive model cannot follow a linear approach. Accuracies

confirm the reasoning: EB-TA, 83,8%; CF-CL, 28,9%; NI-NW, 75,8%.

EBIT/Total assets

Figure 2.10 Binning chart for EB-TA

deciles
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CFO/Current Liabilities Figure 2.11 Binning chart for CF-
CL
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From the charts is also clear the role of the line of best fit (dotted red): its slope absolute level
can be interpreted as a proxy for eliciting whether the ratio is either linearly reliable or not. In
other terms, it signals whether the index can be a ‘good’ candidate for linear prediction
approaches (high absolute slope) or ‘bad’ one (low absolute slope), where ‘bad’ indicates either

low quality or higher level of complexity for it to elicit valuable knowledge.

After the binning procedure is applied, WoE values are computed and the overall IV is
generated. To illustrate it, Table 7 shows the results obtained per each decile considering EB-

TA.
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Table 2.7 WoE and IV computation procedure results for EB-TA

Decile # of non-events # of events % of non-events % of events WoE v

1 83 160 4,10% 39,51% -2,266 0,802
2 132 111 6,52% 27,41% -1,436 0,300
3 196 47 9,68% 11,60% -0,181 0,003
4 215 28 10,62% 6,91% 0,429 0,016
5 222 21 10,96% 5,19% 0,749 0,043
6 221 22 10,91% 5,43% 0,698 0,038
7 232 11 11,46% 2,72% 1,439 0,126
8 242 1 11,95% 0,25% 3,879 0,454
9 242 1 11,95% 0,25% 3,879 0,454
10 240 3 11,85% 0,74% 2,773 0,308
Total 2025 405 2,416

After the computation of all financial indices IVs an important issue is to understand how to
interpret them. If on the one hand, the benefit brought by IVs can be easily recognized when
comparing ratios predictive quality, on the other, it is not immediately comprehensible how to
evaluate IV in absolute terms (or, better, relatively to other studies comparable results). Indeed,
as pointed out above, the higher the IV score the more performing the index should be. This
principle allows for ranking all ratios and run prediction trials on different numbers of ratios
always including the best performers. Nonetheless, without any other comparable data, also

retrieved outside of this study, nothing can be said by IVs per se'®.

It can be however useful to look at the sorted distribution of the obtained I'Vs to shed light on

its boundaries and relevant thresholds. To do so, Table 8 exhibit the decile of IVs distribution.

Table 2.8 Deciles from the sorted distribution of all financial ratios IVs

1 2 3 4 5 6 7 8 9 10
0,0619 | 0,1018 | 0,1227 | 0,16560 | 0,2395 | 0,44846 | 0,68317 | 0,83129 | 1,73791 | 2,81963

2.2.4 Correlations among financial indices

The third and final examination undertaken is related with the observation of all interrelations

each ratio demonstrates with all others. This is of particular importance to avoid including in

18 Siddiqi (2006) is one of the few authors found to report thresholds to interpret Vs in the credit scoring field.
His results however, cannot be applied to this context for the differences between the treated topics
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the predictive model, indices carrying the same fundamental information. In other terms,
whenever two or more ratios, belonging to the same firm, exhibit a fairly similar behaviour over
time, it logically follows that the knowledge they bear, shares some affinity. Further, such
affinity increases with the level of correlation. Then, if a certain correlation threshold is
overcome the issue known as multicollinearity might appear, along with the consequences

discussed above.

In practice, all correlations have been computed with the Pearson method through the ‘.corr()’

instance available in the Pandas package!®. Pearson correlation coefficient for a population is

cov(X)Y)
0x0y

defined as p(X,Y) = , where the numerator corresponds to the covariance between X

and Y variables and the denominator normalizes the numerator through X and Y standard

deviations.
All Python code created to compute correlations is available in appendix 5.

To achieve a matrix with all average correlations among indices, the following steps have been
executed: first, to ensure a reliable measure, only non-defaulting companies are included in the
computation, thus all bankrupt companies’ ratios are discarded?’; second, to account for those
indices derived by ‘delta components’ (explained above), only the period between 2010 and
2018, extremes included, is taken into account; third, a correlation matrix is computed for all
remaining firms through the .corr() instance; finally, a comprehensive correlation matrix is built
by averaging out all single firms matrices. The comprehensive matrix is thus the average of all

correlations computed for each and every company considered.

To complete the picture, it is worth mentioning how missing values and ‘inf” values, deriving
from ratios with null denominator, were handled during the steps. ‘Inf” values have been
considered as missing value altogether because of evidences in the initial data. As example of
this, ‘Inventory/Sales’ suffers by the presence of inf values in the ratios belonging to multiple
companies and, per each firm, over multiple years. This results from Sales (the Italian ‘Ricavi
vendite e prestazioni’) being null inside financial statements. Now, null Sales over multiple
years can either indicate that the company is not set to engage with any kind of customer,
typically useful for legal purposes only, or that the values comes from some form of simplified

financial statement, usually granted to firms within certain produced values. In both cases it is

¥ More on the .corr() instance can be found inside the Pandas documentation available at

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html

20 Discarding all defaulting entities’ ratios give more reliability to the final correlations since the failing

condition may affect the relationship among ratios in ways not dependent to the underline, true relationship.
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fair considering null values on sales as a missing value. Missing values, on the other hand, have

been simply discarded in every step of the process to limit any effect deriving, for example,

from filling their values with means or medians from the distribution of each ratio.

To show the results obtained from the correlation Table 9 and Figure 13 report the average

correlations and their graphical representation, respectively.

Table 2.9 Average correlation among five selected financial ratios

Net Total Met Total
IncomeTotal DebtTotal Income/Met Liabilities/Total Inventory/Sales
Assets Assets Worth Assets
e 1.000000 -0.319694 0701873 0.372463 0.028436
Assets
Total DebtTotal 440004 1000000  -0.081887 0.906469 0.069653
Assets
e 0701873 -0.081887  1.000000 -0.111642 0.007473
Worth
Total
Liabilities/Total  -0.372463  0.006468  -0.111642 1.000000 0.059160
Assets
Inventory/Sales 0.028436  0.069653  0.007473 0.059160 1.000000

Figure 2.13 Graphical representation of five selected financial ratios average correlation
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The chart shows the graphical representation of the ten selected financial ratios average

correlation with each other (indices have been limited to five only for allowing a clearer

representation). Whilst the diagonal, which should report p(X,X) = CovEX) 1, given that

Ox0x
both numerator and denominator equal to the variance of X, shows the distribution of the index,

all other cells display the direction of covariance between X and Y.
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2.3 PREDICTION MODELS

This section explains the procedure aimed at applying multivariate prediction models. It
comprises three main steps: the creation of ‘priority lists’; their refinement through the
‘correlation funnel’; and the actual application of six prediction models (Logit, Support Vector
Machines, K Nearest Neighbour, AdaBoost, Decision Tree and XG Boost). Figure 14

schematizes the steps followed to carry out predictions.

Figure 2.14 Steps toward the application of multivariate prediction models

Accuracy Precision Recall Binning v Literature

Correlation funnel

‘ @

2.3.1 Priority Lists

The first step concerns the creation of priority lists. These are lists resulting from ranking all
available indices on the basis of a common parameter. In total, six parameters have been
selected: the accuracy measure elicited from the univariate logistic regression, to account for
ratios’ individual overall ability to predict bankruptcy/non-bankruptcy occurrences; the
precision parameter, still from Logit, to include the individual qualification in avoiding
mispredictions; recall, again from the univariate Logit, to prioritize those ratios that best
recognize defaulted firms; the slope of the line of best fit, obtained through the first step of the
binning procedure, to give more importance to those ratios that reveals to be linearly powerful,

21

thus subordinating messy and ‘complex’~" ratios; the Information Values resulting from the

21 complex here is used to define those ratios which, in the binning procedure, appear to resemble good
predictors only if applied by prediction models able to handle higher dimension than the simplest, linear
approach.
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Weights of Evidence; and a final list based on the most used and appreciated ratios in the

relevant literature observed??.

In other terms, each list contains the same 54 financial ratios permuted in differing orders. The
importance of ranking all ratios in different lists prioritizing them on the basis of one of the six
parameters will become clear only after the ‘correlation funnel” section and is here introduced.
Given the risk of multicollinearity, a selection between over correlating ratios is needed before
the application of any multivariate prediction model. It is however not clear a priori what
reasoning should be put into practice to implement such selection. To this end, priority lists

offer a logical answer to the matter.

In relation to this, it can be argued that setting up only one priority list might restrict the final
prediction due to the ranking of ratios. Further, expanding the argument, even all six lists may
still be insufficient to represent a sufficient number of outcomes, thus limiting the analysis on
the final prediction results. Maximizing the scope of analysis to all possible permutations, a
total of 2,3 x 1072 priority lists should be considered. Such vast number of possibilities,
however, is too costly in terms of computational power required to run compute and analyse all
possible predictions. Moreover, said analysis would out fall the purpose of this study, which is
primarily related with the examination of feasible ways to apply prediction models on financial
statements belonging to Veneto region enterprises, rather with the observation of theoretically
sound models. For these reasons, only the six described priority lists will be considered. All

other permutations are left for further study.

Before proceeding, it is worth mentioning one interesting detail: Net Income to Total Assets
always ranks first in all lists. This confirms the literature preference for such an item, which is

individually able to reach about 85% of accuracy in the univariate logit.

For sake of clarity, all priority lists are reported in appendix 6 along with the code written to

build them.
2.3.2 Correlation funnel

After priority lists are set up, ratios can be filtered by the ‘correlation funnel’. It represents the
step concerning with the selection of ratios on the premise of priority lists, to prevent

multicollinearity issues.

22 The Literature priority list is based on the review published by Bellovary et al. (2007).
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The code executing the filtering process is structured as follows: first, a correlation threshold is
establish; secondly, from the threshold, all combinations of ratios whose absolute value of
correlation exceeding it are pinpointed; third, all correlating pairs are looped over as inputs of
the prioritizing function which has the role of determining the ‘winner’ and ‘loser’ ratios per
each pair, on the basis of the rank established in the considered priority list; further, all indices
not belonging to any correlating pair are added in order at the bottom of the list of winners. This

procedure is looped over all six priority lists.

To meaningfully expand the scope of the analysis, the procedure described above is repeated
considering multiple correlation values. Specifically, all values in the range from 0.3 to 0.9 with
interval of 0.1 are applied as correlation thresholds?’. This ensures a finer look into the role of

the correlation threshold and its effects onto prediction results.

The core of the correlation funnel, once the average correlation matrix is available, is
represented by the prioritizing function. The function takes as inputs the set correlation
threshold, the average correlation matrix and the six priority lists arranged, while returns as
output six lists, one per priority, containing only the ratios to be applied inside prediction
models. It does so by executing two main body of code: it first determines ‘winners’ and ‘losers’
of each identified over correlating pair, through a series of if-else statements; secondly, it
composes the final ready-to-use lists, keeping winners and non-paired and discarding losers,

checking the appropriateness of it.

The first section, after setting up the loop over the six priority lists and pinpointing those pair
of ratios with absolute correlation higher than the threshold, makes use of nine if-else
statements. Initially, eight of them check whether the ratios contained in the pair under
examination have already been assigned. The logic governing these eight statements is as
follow: if any index is found to be losing in any of the pairs it might be belonging to, it is
directed to the ‘losers’ list with no changing option; else, if the index is found to be winning in
its correlating pair, then it is provisory directed to the ‘winners’ list; if, further, a previously
winning index is found to be loosing in a second pair, then the first if statement described is
executed. The underlying logic is to consider ‘victory’ provisory, it only holds in the time
during which no better ranking index is paired, and ‘defeat’ permanent. Finally, the nineth if
statement, simply regulates the occurrences in which both ratios have not already been directed,

chasing the same logic. The second section instead, is undertakes the role of constituting the

23 Here only positive values of correlation are considered since the prioritizing function identifies the over
correlating pairs on the basis of the absolute value of their correlation.
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final list that will then passed on to the prediction models. In doing so it also checks and rectify

for any mistakes committed in the previous section.

All the describe Python code, along with some examples of ready-to-use lists are reported in

the appendix.
2.3.3 Multivariate Prediction Models

This section relates with the illustration of pre-processing procedure applied to the data before
running any prediction and of the models being used to predict defaulting and non-defaulting

entities.

Data Pre-processing

The relevant data for predictions is computed, similarly to the univariate Logit, as the average
of four years prior to default, per financial index, per each company selected by the PSM. The
number of averaging years prior to default decreases to three for those indices without an
available 2009 value, only for companies with 2013 as relevant defaulting year?*. In other terms,
from each subgroup created in through the PSM procedure (1 defaulting and 5 non-defaulting

firms) is taken the average of four years prior to the defaulting year of the bankrupt firm inside.

The decision of taking the four years prior to default average bears at least two consequences:
first, any model thus trained will be performing optimally on a new, hold-out, firm only with a
similar data structure as input; what is more, the prediction outputted should be considered
effective for a time span of one year. To overcome these limitations, other structures have been

implemented and will be described directly looking at prediction results in the next chapter.

Before applying it, the resulting data is pre-processed to comply with the requirements needed
to run all six statistical methods. Data pre-processing involves three main steps: handling
outliers, filling missing values and scaling variables. The first two steps closely follow the

symmetric procedure adopted for the univariate logistic regression. Outliers are initially spotted

by standardizing all values (i.e. retrieving z = %, where z is the standardised value, x the

initial value, m the mean of the distribution and sd its standard deviation) and searching for
|z| > 3. They are then replaced with NaN values (also known as missing values) and the rest
of values is brought back to the initial amount. Then, all the missing values resulting are filled
with the mean of the newly formed distribution. It is referred to as ‘new’ distribution since

outliers are not anymore included. Finally, in addition to that, feature scaling is carried out. It

24 As for the univariate logit, for relevant defaulting year is intended either the actual defaulting year, for
bankrupt firms or the defaulting year of the matched bankrupt firm, for non-bankrupt companies.
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is performed to avoid any issue related with the differences in the absolute levels of the ratios.
Indeed, the output from it is a value between 0 and 1: this smooths out the previous possible
greater disparities between indices merely deriving from the underlying components and/or
structure of indices themselves. Feature scaling is executed through the default version of

MinMaxScaler sub package which pertains to the sklearn.preprocessing opensource module®”.

Prediction models

A total of six prediction models were adopted: Logistic regression, Support Vector Machines,

K — Nearest Neighbour, AdaBoost, Decision Tree and XGBoost.
Logistic Regression

Following Peng, J. (2002), the central mathematical concept that underlies logistic regression
(LR) is the logit, the natural logarithm of an odds ratio, where the odds are usually referred to
dichotomous cases. Indeed, LR is generally well suited for describing and testing hypotheses
about relationships between a categorical outcome variable and one or more categorical or
continuous predictor variables. LR is able to handle dichotomous dependent variables better
than, for instance, Ordinary Least Squares regressions transforming y, the dependent variable
through the logit function. From this, it occurs that the LR can be described, in its simplest
form, by

ln(&r) = a + (X, where 7 is the probability of y happening, @ and f are coefficients of the

regression and X is the independent variable (or group of variables, in the multivariate case).

For the purposes of this study, it was adopted the LogisticRegression sub module from the
opensource sklearn.linear model package®®. As for the univariate section, little has been fine
tuned with respect to the default setting of the module. The solver selected is ‘Ibfgs’, previously
explained and the proportion between train and test (hold-out) samples is set to 25%. Moreover,
to correct for the defaulting threshold of 50%, through which the testing values are declared
bankrupt or non-bankrupt, a new, better threshold is evaluated. Figure 15 reports the code for
the new threshold. For it, True Positive Rates and False Positive Rates are computed from the
confusion matrix resulting from the 50% limit; their difference is initiated (‘J* in Figure 15) and

maximised through the argmax function; the new threshold is then identified among all

%5 More information on MinMaxScaler default version can be consulted at https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
26 More can be found at https://scikit-
learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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potential ones; finally, it is applied the old set of dependent variables (Y pred[‘new _thrsld’] in
Figure 15).

Figure 2.15. Code to retrieve the optimize threshold
the best threshold

ix = np.argmax(])

best_thresh = thresholds[ix]

y_pred = pd.DataFrame(y_pred)

y_pred[ 'new_thrsld'] = np.where(y_pred »= best_thresh, 1, @)

Support Vector Machines

From Cervantes et al. (2019), Support Vector Machines (SVM) was introduced by Vapnik as a
kernel-based machine learning model for both classification and regression task. Due to its good
theoretical foundations and good generalization capacity, however, in recent years, SVMs have
become one of the most used classification methods. In particular, its generalization capacity
stands out against other classification models. By generalization is intended the ability of the
classifier, the model, to recognise the relevant patterns useful for organizing data into the correct
groups. When the model, as an example, is too fit for the training data, the model begins to
memorize training data rather than learning to generalize, degrading the generalization ability

of the classifier.

SVM carry out classifications through the determination of the ‘optimal separation hyperplane’.
This is the only separation hyperplane with maximum margin, the distance between the
hyperplane and the support vectors. Support vectors, in turn, are those hyperplanes, parallel to

the optimal one, identified by the closest datapoints standing at the margin distance.

A key element of the SVM theory is the kernel, critical if the training data are not linearly
separable. Indeed, the basic idea in designing non-linear SVMs is to transform the input vectors
into vectors of a higher dimensional feature space. The function adopted for the transformation
is, precisely, the kernel. There is no unanimous conclusion about which kernel is better or worse
for specific applications. For purposes of the study a polynomial kernel has been applied. In
general, the polynomial kernel follows: K (xl-, xj) = (x;.x; + 1)P , where p is the polynomial

degree, following from Mercer’s condition for function to be implemented as kernels.

To implement SVM in the analysis, the SVC module of the sklearn.svm package has been

selected?’. For it a C parameter of 150 is set and, as mentioned a polynomial kernel selected. C

27 More on it is available at https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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refers to the Regularization parameter that defines the amount of misclassification allowed by
the model. Too high C determines overfitting problems, too low C diminishes the quality of the

final classification. C equalling 150 has been appointed as the best performing level.
K — Nearest Neighbour

The intuition underlying Nearest Neighbour Classification is quite straightforward: examples
are classified based on the class of their nearest neighbours. In particular, after selecting k, the
number of nearest neighbours that will be taken into consideration, the classification is made
on the basis of the number of neighbours obtained per each class. As then pointed out in
Cunningham, P. and Delany, S. J. (2007), starting from this basic frame the model can be fine
tuned to the data being used: the definition of distance may be adjusted, differing weights can

be given to classes when determining the classification, etc.

Similarly to above, sklearn.neighbors.KNeighborsClassifier module has been implemented in
the study?®. K is set to 12 given that it showed higher than average performances. All other

parameters have been kept in default settings.
AdaBoost

AdaBoost comes from ‘Adaptive Boosting’ and refers to one of the first practical declinations
of the boosting methodology. In general, boosting is an ensamble approach to machine learning
based on the idea of creating a highly accurate prediction rule by combining many relatively
weak and inaccurate rules. Following Schapire, R. E. in his Explaining AdaBoost review, the

pseudo code for the AdaBoost algorithm can be summarized as:
Given: (x1,y1),...,(xm,ym) where xi € X,yi € {—1,+1}
Initialize: D1(i) = 1/mfori = 1,...,m.

Fort = 1,...,T : » Train weak learner using distribution Dt;

* Get weak hypothesis ht : X — {—1,+1}.

* Aim: select ht with low weighted error: et = Prj_p, [ht(xi) 6 # yi].

1-¢t
et

* Choose at = %ln (

)

28 More at https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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Dt(i) exp(—at yi ht(xi))

» Update, for i = 1,...,m: Dt +1(i) = P

, Where Zt is a normalization

factor (chosen so that Dt + 1 will be a distribution).
Output the final hypothesis: H(x) = sign (3 at ht(x))

Here we are given m labelled training examples (x1,y1),..., (xm, ym) where the xi’s belong
to some domain X , and the labels yi € {—1,+1}. Oneachroundt = 1,...,T, a distribution
Dt is computed over the m training examples, and a given weak learner is applied to find a weak
hypothesis ht : X — {—1,+1}, where the aim of the weak learner is to find a weak hypothesis
with low weighted error et relative to Dt. The final, combined hypothesis H computes the sign
of a weighted combination of weak hypotheses.

Cleared the general functioning of the algorithm, it is critical to deepen the basic feature of the
weak learner adopted. Usually, AdaBoost makes use of Decision Stumps (DS). These are the
simplest form of decision trees and are only able to carry out classifications entailing one, single
independent variable. They are call weak learners because the accuracy deriving from DS would
already be optimal if they guessed whichever answer, 1 or 0, is most common in the data. If,
for instance, 60% of the examples are 1s, then the model will obtain 60% accuracy just by
predicting 1 every time. The main advantage of weak learners like DS is their adaptability to
different scenario: their lower than average results are pretty stable over differing datasets and
independent variables, even though individually poor. The power of AdaBoost precisely comes
from leveraging DS adaptability and does so combining multiple DS results to reach high

degrees of accuracy for complex classification tasks.

For purposes of the research, sklearn.ensemble.AdaBoostClassifier module has been applied
setting a number of weak learning estimators to 150%°. This has been selected on the basis of

performances.
Decision Tree

Following Maimon and Rokach (2005) a decision tree is a classifier expressed as a recursive
partition of the instance space. It consists of nodes that form a rooted tree, meaning that it is a
directed tree with a node called ‘root’ that has no incoming edges. All other nodes have exactly
one incoming edge. A node with outgoing edges is called an internal or test node. All other
nodes are called leaves (also known as terminal or decision nodes). In a decision tree, each

internal node splits the instance space into two or more sub-spaces according to a certain

2% More on the sklearn algorithm can be found at https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
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discrete function of the input attributes values. In the simplest and most frequent case, as already
seen for Decision Stamps above, each test considers a single attribute, such that the instance
space is partitioned according to the attribute’s value. In the case of numeric attributes, the
condition refers to a range. The process followed by decision trees dealing with multiple
predictors can be generally described as follows: First, the root node predictor is chosen by
selecting the one displaying lower overall impurity; secondly, all other nodes are linked to the
remaining predictors looking at the lowest impurity classification; finally, classification is
carried out through the constituted tree. Impurity generally refers to the degree of
misclassification reached by a single predictor. Usually, the impurity measure applied is the
Gini index, which can be defined as G =1 — (Proutcome 1) 2 — (Pr outcome 0) ? for
binary classifications®®. For instance, to determine the predictor at the root node are executed
these steps: a confusion matrix is initially generated (on the testing sample) taking as single
independent variable each one of the 54 financial ratios®!; then the Gini impurity index is
computed to all 54 generated confusion matrices; finally the lowest Gini index ratio is selected
as root node. These steps are then repeated for all nodes of the tree to establish ratios order

among them. Eventually, the constituted tree model is run.

For the implementation of Decision Tree model, the sklearn.tree.DecisionTreeClassifier

module is chosen in its default settings™2.
XGBoost

XGboost was developed by Chen and Guestrin in 2016 and stands for “Extreme Gradient
Boosting”. It belongs to the supervised learning gradient boosted trees family. As with the other
ensemble methods, the idea of XGBoost is to combine weak learners such as decision trees into
a strong learner. A series of decision trees, of usually constant shape and depth, is created which
together form a single predictive model. New learners are trained on the errors, the residuals,
of the previous learners so to increase the final predictive power. Put differently, the idea of
tree boosting is to add a new tree to the ensemble fit to the residual of the predictions from
earlier trees. The residual is typically defined in terms of derivative of the loss function.
XGBoost is an optimized distributed gradient boosting library designed to be highly efficient

and flexible especially for large datasets. XGBoost supports various objective functions

30 The probabilities are easily retrieved from the confusion matrix generated.
31 The example considers all 54 financial ratios. In the study however the actual number of ratios included in
the model varies according to the correlation threshold and the relative winner and loser lists.
32 Any further information can be consulted at https://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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including regression, classification and ranking. It recently gained much popularity and

attention both among academics and practitioners for its features.

To run it in this project the XGBoost python package was selected, which differently from
above, does not belong to sklearn framework>?. All settings have been kept at their default state:

number of estimators at 100 and a binary and logistic objective function.

33 More can be found at https://xgboost.readthedocs.io/en/latest/python/python_intro.html
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3. RESULTS

This chapter aims at illustrating the results collected from the application of the six prediction
models. Specifically, two sets of results will be outlined: first, the measures of performance
retrieved from the testing, hold-out sample (25% randomly selected datapoints from the whole
initial sample) and, secondly, the outcomes from applying the same prediction models (i.e.
trained on the same training sample as in the previous point implies) on data belonging to
companies external to the Veneto region. While the first sets of results logically follow the path
already delineated, the second set will be especially useful for examining how the models
behave with comparable but not identical samples. This should, for instance, shed light onto the

risk of overfitting the models might be exposed to.

As explained in the previous chapter, the starting point to carry out any prediction in this
analysis is the average ratios matrix. This, as illustrated in Figure 3.1, is composed by rows
referring to each of the companies selected from the Propensity Score Matching procedure and
columns representing the 54 financial ratios previously computed. Each cell carries the value
of the column ratio and row firm that has been chosen from all firm ratios available in the initial
sample. In this case, such value is determined as the average resulting from four years of the
specified firm-ratio selected on the basis of the chosen distance from the relevant year**. As for
example, assuming as chosen distance one year, then for each firm will be associated values of
ratios equal to the average of four years starting from one year prior to the relevant year. If 2014
happens to be the relevant year for the examined firm 1, then its ratio 54 value will be equal

to the average of the firm_1’s ratio_54 in 2013, 2012, 2010 and 2009.

Figure 3.1 Matrix of ratio averages for each firm with stylized computations of ratios averages

(the chosen distance from the relevant year is one year).

Ratio_1 ... | Ratio_54 Relevant
year

1 1
e * F I-R I 2 * F I-R 54

Firm_1 4 4 2014
(2009+2010+201142012) (2009+2010+2011+2012)
Z%F 2430-R_1 2 % F 2430-R 54

Firm 2430 | * 4 2018
(2014+2015+2016+2017) (2014+2015+2016+2017)

34 As in the previous chapter, by ‘relevant year’ is intended the year of default for defaulting companies and the
year of default of their Propensity Scores Matched defaulting firms for non-defaulting companies (remark that
each defaulting firm has been matched with five non-defaulting)

76



Whenever a ratio is not available in a specific year, perhaps because the four years average
dates back to 2008 values which have not been found available in AIDA database, the average
is simply computed on the remaining, available years. This is shown in Figure 3.2 when,
considering 2014 as relevant year and three years as chosen distance, the average only includes

2009, 2010 and 2011 ratios (yellow segment).

Figure 3.2 Three chosen distances, the four years average and the unavailable 2008 ratio

2008 2009 2010 2011 2012 2013 2014

X | | | | | I >
Relevant
year

As Figure 3.2 illustrates, to look for the robustness of prediction models in both sets of results
-testing sample internal to the Veneto region and external to it- over time, three distances from
the relevant year are chosen and observed: one, two and three years. These, in the example
depicted above, corresponds to the brown line (averaging from 2010 to 2013), the green one

(from 2009 to 2012) and to the yellow segment (from 2009 to 2011, excluding 2008).
3.1 TESTING SAMPLE RESULTS OF VENETO FIRMS

In this section it will be deepened the results reached by the six prediction models on average
ratios computed with all three chosen distances from relevant years. In particular, two main
assessments will be carried out for each of the three cases: first, an analysis of the accuracy
levels reached by every prediction model on all six priority lists created over several correlation
thresholds* will be accomplished; second, three target correlation thresholds, namely 0,3, 0,6
and 0,9, are compared examining accuracy, recall, precision and ROC AUC for each prediction
model and priority list. As to conclude, along with their individual analysis, the three scenarios
(i.e. brown, green and yellow segments in Figure 3.2) will be submitted to a concise

comparison.

35 As pointed out in the previous chapter, the creation of a ready-to-use priority list entails first the ranking of
all 54 financial ratios on the basis of a common parameter (e.g. the ratio individual accuracy in the univariate
Logistic regression); secondly, the setting of a correlation threshold (e.g. 0,7); third, the isolation of those pairs
of indices whose absolute level of correlation exceeds the thresholds (where pairs are identified on the basis of
the average correlation matrix, still described in chapter 2); finally, the selection of the best ranking indices
among over correlating pairs and rejection of the low ranking ones. The ready-to-use priority list is thus the
sum of best ranking indices and those ratios not over correlating with any other. The ready-to-use priority list
determines which ratios will be applied to the prediction model.
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3.1.1 One-year distance from the relevant year

The first of the three cases entails the construction of the matrix of ratio averages considering
one year as the distance between the four years average and the relevant year. Logically, since
this scenario is the closest to the relevant year, one should expect it to outperform the two others
in terms of overall accuracy in prediction. On the other side, however, its practical employment
seems to be limited with respect to the other scenarios. Indeed, being able to predict failure/non-
failure one year before it should actually happen, is certainly less useful than forecasting it with

two or even three years in advance, ceferis paribus.

That said, the first analysis relates to the examination of prediction models’ accuracy charts
built to compare all six priority lists over multiple correlation level. Specifically, the correlation
thresholds taken into account belongs to the 0,3 to 0,9 range with inner interval of 0,01 (i.e.
0,30, 0,31, ..., 0,89, 0,90). Moreover, the six priority lists are, again, structured on the basis of:
ratio individual accuracy, precision and recall deriving from the univariate Logistic regression;
complexity*® and Information Value retrieved from the Binning and Weight of Evidence
procedures; and finally, from the literature most frequent financial ratios*’. All Python code

written for these results is available in appendix 8.

At each correlation level, a final ready-to-use list of ratios is created for every priority list
through the correlation funnel procedure detailed in chapter 2. Then, all six ready-to-use lists
are applied in each prediction model, namely Multivariate Logistic regression, Support Vector
Machines, K-Nearest Neighbour, AdaBoost, Decision Tree and XGBoost. To run the prediction
models, the sample data is split into a 75% randomly selected training set and 25% test set. The

random composition of both sets should guarantee unbiasedness of outcomes.

Following, six charts showing the accuracy levels reached by each model one year before
failure, are reported. On the y-axis can be found the accuracy in prediction while the x-axis
constitutes the correlation threshold applied. In the lower left, the legend indicates which curve
belong to which priority list. In this case, by priority list is, of course, intended as the ready-to-

use list of ratios determined at each correlation level.

36 Complexity is proxied by the slope of the line of best fit in the binning curve described in chapter 2.
37 The Literature priority list is based on the review published by Bellovary et al. (2008)
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Accuracy over corr. thresholds: Logit Figure 3.3 Accuracy levels
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Figure 3.3 describes the performance in terms of overall accuracy gained by the Logit model.
The highest level is reached around a correlation threshold of 0.8 by the priority list based on
the individual accuracy of each ratio. Moreover, precision and recall lists appear to behave
especially well for relatively lower levels of correlation thresholds. Overall, there does not seem
to be a best performer among priority lists while IV almost always displays as least performer.
On average Logistic regression stands between 60% and 80% of accuracy at one year before

default, in line with the relevant literature.

Accuracy over corr. thresholds: SVM Figure 3.4 Accuracy levels
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Further, Figure 3.4 describes the accuracy levels achieved by the SVM model. Three facts are
immediately clear from it: first, the average accuracy level is significantly higher than the
Logistic regression model; second, the interval in accuracy (y-axis) is substantially narrower
than Logit’s; third, unlike previously, there seems to be a relative constant difference among
priority lists in general, with the literature list steadily outperforming all others. One conclusion
can already be drawn from chart 3.4: SVM performs significantly better than Logistic

regression at one year before default on Veneto region firms. Also, the highest results, over
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90% accuracy, are achieved by applying the literature most frequent financial ratios and
filtering them up at relatively low correlation thresholds (i.e. admitting low degrees of
correlation among indices). Again, lists retrieved from binning complexity proxy and IV exhibit

lower than average accuracy.

Accuracy over corr. thresholds: KNN Figure 3.5 Accuracy levels
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Figure 3.5 illustrates the accuracy levels from the KNN classification model over multiple
correlation thresholds. Interestingly, the first immediate feature that can be noticed is the
difference between accuracy gained before and after 0,6 as threshold. In fact, there appears to
be a sharp decrease in performance at said correlation boundary and, furthermore, it is clear the
strong negative relationship between accuracy and threshold applied: the higher the correlation
allowed among ratios, the lower the accuracy. The reason for this peculiar behaviour should be
searched in the KNN execution algorithm. In general, KNN builds a classification on the basis
of the distance between each datapoint and k™ neighbours: the closest neighbours belong to the
same group. When a relatively high level of correlation is allowed, datapoints distance between
each other is affected by the trends introduced by correlating ratios, resulting in higher numbers
of overlapping neighbours. This, in turn, increases the frequency of misclassifications. To
conclude the argument, it needs to be added that, though this behaviour is clearly occurring, its
effect has only slight implication since the loss in prediction entails only few percentage points

overall (5% to 6% points at most).

Other than that, Figure 3.5 indicates that KNN performs better than Logistic regression but
worse than SVM on average. Finally, Binning and IV curves display, contrarily to the previous
models, highest average performances against the other lists, especially within low correlation

thresholds.
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The previous conclusion can now be updated: SVM model outperforms both Logit and KNN

in terms of overall accuracy, with KNN achieving significantly higher performances than Logit

in the testing sample.
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Figure 3.6 Accuracy levels
achieved by the AdaBoost model
on the six ready-to-use lists of

financial ratios

Figure 3.6 depicts AdaBoost accuracy performance over all correlation thresholds identified.

The chart brings about three main considerations: first, the accuracy levels obtained are

contained in a relatively narrow interval (from 90% to 92% accuracy if the marginal 0,3 to 0,4

correlation thresholds are not taken into account); also, AdaBoost appears to be the best average

performer with slightly higher values than SVM; as last, priority lists are constantly overlapping

without a clear best performer.

An interesting observation can be suggested from the first consideration: so far there seems to

be a quite clear relationship between best performing models and length of the accuracy

interval. In other words, the most accurate models also exhibit narrow intervals of prediction

accuracy over correlation thresholds, which may indicate that the best models are also less

sensitive to changes in correlation boundaries.
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Figure 3.7 Accuracy levels
achieved by the Decision Tree
model on the six ready-to-use lists

of financial ratios
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accuracy in prediction

Figure 3.7 represent the one year to bankruptcy accuracy levels in prediction of Decision Tree
model. The average accuracy, among all lists, seems to perform just better than KNN and worse
than SVM. Moreover, literature ready-to-use list of indices appears to be the best overall
performer peaking above 90% of accuracy between 0,4 and 0,5 as correlation thresholds. Again,
the suggestion previously made about the relationship between the average level of accuracy
and the length of the accuracy interval appears to be here confirmed. Indeed, Decision Tree
shows narrower accuracy range than both Logit and KNN, which are, on average, less optimal,
but wider than SVM and AdaBoost. Finally, given the steady mean trend of the six curves, it
does seem that Decision Tree is only weakly affected, if none at all affected, by the correlation

level allowed in the sample.

Accuracy over corr. thresholds: XGboost Figure 3.8 Accuracy levels
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The final chart, Figure 3.8, presents the accuracy trend over correlation thresholds achieved by
XGBoost. This results to be the overall best performers with average accuracy slightly but
significantly higher than AdaBoost. Again, the model does not seem to particularly ‘prefer’ any
of the six priority lists even though Recall does exhibit a steadily higher than average accuracy.
More importantly, XGBoost further corroborates the suggestion over the relationship between
narrow interval and high average accuracy (indeed this ensemble method shows the narrowest
interval of all). Finally, XGBoost does not appear to be affected by the level of correlation
allowed: the only observation at this regard indicates, very weakly, that the higher the
correlation threshold, the narrower the accuracy interval and thus more precise the final

prediction.

To summarize, Table 3.1 summarizes the rank on the basis of the average accuracy, of which

is reported an indicative range.
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Table 3.1 Ranking of the best predicting models (left to right) with accuracy intervals (in %)

MODEL

XGBoost

AdaBoost

SVM

Decision T

KNN

Logistic

RANGE

90,5-93

88-92

87-90

85,5-90

81 - 88

60 - 80

Table 3.1 confirms once more the relationship between higher accuracy and narrower interval
in results. Indeed, with the sole exception of AdaBoost, whose interval features wider range of
accuracy levels compared with SVM which follows in the ranking?®, all other ranges are
perfectly in line with the average accuracy ranking. This bring to the conclusion that better
performing models are also those less affected by different levels of correlation allowed inside

the sample.

A second analysis that comes at help for the interpretation of results is the examination of the
Area Under the Receiving Operating Characteristic Curve (ROC AUC) per each prediction
model. ROC AUC measures the entire two-dimensional area underneath the entire ROC curve
and provides an aggregate measure of performance across all possible prediction frameworks.

It is plotted through a True Positive Rate (y-axis) and False Positive Rate (x-axis) chart, where

the TPR = £ = I
P TP+FN

defaulting, and FPR = P
N FP+TN

, 1s the ratio between the correctly predicted defaulting firms and all

, 1s the ratio between the incorrectly predicted non-failing

companies and all non-defaulting. The AUC is built so to fall in the range between 0, poorest

results, and 1, maximum achievable.

To report ROC AUCs and compare their values under different parameters, three correlation
levels have been identified: 0,3, 0,6 and 0,9. These three have been chosen for they allow to
clarify the behaviour of prediction models in a correlation range that do not discards too many
financial indices from the initial group of 54°°, which is crucial to study the combined ratios
behaviour in multivariate methodologies, while also showing outcomes with relatively high risk
of multicollinearity issues. Further, to deepen the research on the predictions elicited, each ROC

AUC chart will be joint by a table showing three features: the accuracy in prediction, the

38 It should also be noted that AdaBoost regains its second position also accounting for the length of its interval
when the first correlation levels from 0,3 to 0,4, marginal to the overall picture, are disregarded from the
examination.
39 Indeed, through the correlation funnel described in chapter 2, ratios figuring into over correlating pairs are
always discarded or kept on the basis of the ranking defined by the order inside the priority list at use.
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precision in prediction and the recall measure for every model. Finally, to complete the picture,

the list of financial ratios effectively implemented in the models is detailed.

For sake of clarity, only metrics concerning the Accuracy priority list, at every correlation level,

have been reported, whilst all other priority lists charts can be found in appendix 9.

Figure 3.9 graphs models’ ROC curves at 0,3 correlation boundary against the diagonal, dotted
red, indicating a hypothetical model with a performance, measured by the AUC, of 1/2.

Priority list: accuracy; Correlation threshold: @.2  Figure 3.9 ROC AUC for all
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False Positive Rate
Model Accuracy Precision Recall
Logit 8.5620866 g.6182847 B8.5080857
SWM 8.893692 8.8934604 0.745803
KMNN B8.84375 B.834239 0.613548
AdaBoost 8.9629601 B.864372 0.806456
Decision Tree B.886513 B.831855 B.783252
XGhoost 8.922697 B.912325 B.828442

Confirming the previous analysis, Figure 3.9 suggests XGBoost as best performing predictor,
with an assessment as high as 0.93, followed by AdaBoost, 0.91, SVM, 0.90, KNN, 0.80,
Decision Tree, 0.78, and eventually Logistic regression, 0.74. It is moreover straightforward
that the models can basically be split into two main groups of performance: XGBoost,
AdaBoost and SVM belongs to the first, best performing, while the other three to the least

performing. Inside the two groups, the differences are significant but fairly small.

Attached to the chart, a table showing accuracy, precision and recall is reported. The table draws
a different picture with respect to what can be elicited from the chart. Here, the difference
among models toward Logistic regression is exacerbated in essentially all three dimensions,

with the only exception of the recall measure for KNN. Interestingly, recall is higher than
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accuracy and precision only for Logistic regression, with KNN and SVM being the most
exposed to weaknesses under it. This marks that the percentage of correctly predicted failing
firms on the total sample of defaulting entities is relatively lower for the higher accuracy models
than the overall weaker Logistic regression. This, in turn, indicates a certain exposition of
models to type I error, the misprediction of defaulting companies, the error bearing higher risks
for lenders. Though Logit has a relatively higher recall performance, its absolute percentage

remains lower than all other prediction models with the sole exception, again, of KNN.

At 0,3 threshold and under the ranking established by the accuracy priority list, models apply
only 9 of the 54 ratios: Net Income/Total Assets, Net sales/Cash from sales, Cash Flow from
Operations, Inventory/Sales, Operating expenses/Operating income, Sales/NAR, Cash/Total
Assets, Other Revenues/Total Produced Value and log(Total Assets).

FPriority list: accuracy; Correlation threshold: @.6

Figure 3.10 ROC AUC for all
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Logit a.783947 g.633883 BH.68958514
SWVM 6.898826 B.888823 B6.70433%
KM 6.814145 8.715725 B.53%88
AdaBoost g.985853% 8.87071% 6,813785
Cecision Tree 68.,378866 8.8686831 6.743773
XGhoost @.922697 B.912325 B6.8328442

An intermediate set of results is then represented in Figure 3.10 which report the same metrics
setting the correlation threshold at 0,6. The graph shows how the overall picture remains similar
to the previous set of results. XGBoost still appears to be the best performing model with
AdaBoost and SVM respectively, although totalling lower AUCs, chasing right after.
Interestingly though, KNN drastically lowers its AUC, -0,07, ranking last after Decision Tree,

also lowering its overall performance and Logistic regression which is slightly improved.
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Modifications also occur on the three dimensions in the attached table. Again, KNN reveals
lower accuracy while Logit materially increases its own. KNN behaviour should not be
surprising since, as illustrated by Figure 3.5, all priority lists accuracy levels decrease
substantially at the 0.6 correlation threshold. Further, recall records confirm the intuition on the

general weakness in prediction of defaulting firms with even lower recall outcomes.

At 0,6 correlation boundary and under the ranking established by the accuracy priority list,
models apply 20 of the 54 initial ratios. Other than those already applied for 0,3 correlation,
other 11 are added: Total Debt/Total Assets, Working capital/Sales, Retained earnings/Total
assets, EBIT/Interest, CFO/EBIT, Tax Expenses/EBIT, Current Assets/Total Assets, Current

Assets/Sales, Long-term debt/Total Assets, Turnover Payables, Turnover Inventory.

As last assessment, Figure 3.11 illustrates the ROC AUC and the accuracy, precision and recall

table under 0,9 correlation threshold and accuracy priority list.

Priority list: accuracy; Correlation threshold: @.9

ROC AUC Figure 3.11 ROC AUC for all
101 six prediction models and
08 | related to the results obtained
2 with the accuracy list of ratios
[=3
0.6 ) .
z at a 0,9 maximum correlation
£ 04 - Logit {AUC = 0.75) threshold
2 g SVM (AUC = 0.87)
-~ —— KNN (AUC = 0.75)
021 L —— AdaBoost (AUC = 0.9}
- Decision Tree (AUC = 0.77)
0.0 - — KGboost (AUC = 0.94)
0.0 02 0.4 06 08 10
False Positive Rate
Model Accuracy Precision Recall
Logit B.792763 B.672376 B.782421
SVM 6.891447 8.8819a7 B.747245
KNN B.817434 8.74435 B.545172
AdaBoost 8.981316 6.80883C B.8085438
Decision Tree B8.876645 B8.8125 B6.767377
XGhoost 6.921853 0.918842 B.824168

Here, a much similar evaluation to the 0,6 correlation can be carried out. The first observation
concerns with the fact that both ensemble methods, XGBoost and AdaBoost benefit from the
higher level of interconnection allowed among ratios: both models increase their AUC by 0.01.

On the contrary, SVM seems to be slightly disadvantaged with a loss of 0.01. Finally, while
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Decision Tree improves its score, KNN and Logit end the ranking at par, 0.75 AUC each. What

is more, the table attached does not appear to exhibit drastic changes from the previous version.

At 0,9 threshold 35 of the 54 ratios have been applied. From the 0,6 correlation list, other 15
are added: Operating Income/Total Assets, Fixed Charges EBIT Coverage, Net Income/Sales,
Net Income/Net Worth, Total liabilities/net worth, Working Capital/Total Assets, Current
Liabilities/Total Assets, Acid Ratio, quick assets/Sales, no-credit interval (Current Assets/Daily
OPEX), Asset Turnover, CFO/Financial Debt, quick assets/Total assets, EBITDA/EBIT and
Working Capital/Net worth.

3.1.2 Two- and three-year distances from the relevant year

In this section the same metrics of outcomes considered in the precedent paragraph are
examined. This time, however, results relate to four years average ratio values taken both two
and three years before the relevant year of default. In other terms, this section studies prediction
model performances when asked to predict with a forecasting timespan of two and three years.
Here, two- and three-years distances from the relevant year results are condensed for sake of

brevity.

Similarly to above, first, accuracy levels over multiple correlation thresholds will be displayed

while ROC AUC and attached table of features will be left as conclusion.

Accuracy over corr. thresholds: Logit

0.70 4 Figure 3.12 Accuracy levels
achieved by the Logistic
=
£ 065 . .
2 regression model on the six
a
o 060 ready-to-use lists of financial
%‘ —— accuracy ratios
[ r
3 055 A literature L
E — Precision
— Recall
0.50 1 Binning
—_—
03 0.4 05 06 07 08 09

corr thresholds

Starting from two-years distance, Figure 3.12 plots the accuracy levels per each priority list
reached by Logistic regression on the test set over different correlation thresholds. Three main
arguments are immediately clear from it: first, as for the one-year distance, accuracies span over
a relatively wide range of levels which, in this case, is significantly lower than the one-year
distance outcome; also, the accuracy shaped priority list appears to be the least performing
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except for the very last thresholds while there is no clear best performer, though literature
ranking display an above average behaviour overall; higher correlation thresholds seem to
benefit worse performers without materially impacting high accuracy gainers on average. Thus
in general, Figure 3.12 describes a scenario with essentially the same features chart 3.3 holds

but at an all lower range of accuracy.

Proceeding on, Figure 3.13 accomplishes the same task as Figure 3.12 but for Support Vector
Machines. Here again the first main observation relates with the lower range of accuracy
achieved. Interestingly, the width of the accuracy range almost perfectly resembles the parallel
range in Figure 3.4 at the one-year distance. Moreover, a similar trend as for Logit is exhibited:
while accuracy priority list performs rather poorly compared with other lists, except for the last
thresholds, literature outperforms others in much of the chart. Finally, there seems to be a slight

tendency in higher accuracies the higher the correlation allowed among financial indices.

Accuracy over corr. thresholds: SWM Figure 3.13 Accuracy levels
0.835 -
achieved by the SVM model on
0.830 -
the six ready-to-use lists of
5 0825 : .
= financial ratios
E 0.820
£ fiv A
ED-SIE‘ 1 — accuracy !
E literature
g 0B | — precision
— Recall

0.805 1 Binning \ f
— IV

03 04 05 06 07 08 04
corr thresholds

0800 -

Chart 3.14, then, illustrates the trends followed under the KNN framework. Its behaviour quite
surprisingly leads the accuracy range at being significantly narrower than in Figure 3.5 and at
the exact same level of the accuracies elicited from 0,6 to 0,9 range of correlation thresholds.
Further, there is no sign of the negative relationship between correlation allowed and level of
accuracy which has been discussed for one-year distance outcomes. Here in fact, KNN do not
show any meaningful and visible dependence to the level of correlation allowed. The only
traceable observation in this sense links to the fact that higher thresholds bring to much narrow
accuracy range. Again, as for Logit and SVM before, the accuracy ready-to-use priority list
performs below average except for the very final thresholds. On the other hand, there does not
seem to be an individual best performer with basically all other priority lists gravitating around

the same mean. Finally, a comparison among the three first model presented brings interesting
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conclusions. If on one side, Logistic regression is clearly the least performer overall, on the
other, there is no clear-cut way to establish which model shows superiority in results. What
should be underlined, in any case, is that KNN shows so far, the highest robustness in terms of

distance from relevant year of default.

Accuracy over corr. thresholds: KNN Figure 3.14 Accuracy levels
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Afterward, Figure 3.15, depicts the evolution of the six priority lists under the AdaBoost
ensemble model. AdaBoost shows a 10% average accuracy loss from the previous scenario of
one-year distance. Excluding Logistic regression for its wider than average accuracy ranges,
such loss is the deepest so far encountered and signals AdaBoost relative weakness as the
prediction time increases. Moreover, in contrast with the first three models presented, accuracy
priority list does not underperform the others. Indeed, here there does not seem to appear either

a clear ‘winner’ or ‘loser’.

Accuracy over corr. thresholds: AdaBoost Figure 3.15 Accuracy levels
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achieved by the AdaBoost
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Moving over, Figure 3.16, instantiates Decision Tree model reached accuracy levels over

multiple correlation boundaries. Again, the chart suggests an overall loss of accuracy with the
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greater time distance, though not as deep as AdaBoost shows. Also, the accuracy priority list
ranks again at the bottom, on average, in terms of performance with a trough between 0.4 and
0.5 thresholds. Finally, different levels of covariance allowed among ratios do not appear to

affect the mean accuracy unless marginally.

Accuracy over corr. thresholds: Decision Tree Figure 3.16 Accuracy levels
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The last graph, picture 3.17, reports XGBoost model accuracy outcomes. Interestingly, as with
the only other ensemble model, also XGBoost presents a loss of about 10% in its average
accuracy. However, it is hard to conclude that ensemble methods suffer more than others a
greater timespan of prediction. Indeed, both AdaBoost and XGBoost, also share the highest
prediction performances in the one-year distance scenario. To shed more light on this it will be

helpful looking at the behaviour at a three-years distance from the relevant defaulting year.

A second observation for Figure 3.17, is represented by the fact that it looks to be a weak but
significant negative relationship between the correlation allowed and the overall level of

accuracy reached. This contrast with the very weak or absent relationship in Figure 3.8.

Accuracy over corr. thresholds: XGboost Figure 3.17 Accuracy levels
0.840
achieved by the XGBoost
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To conclude, table 3.2 ranks prediction models (left to right) and reports their ranges.
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Table 3.2 Ranking of the best predicting models (left to right) with accuracy intervals (in %)

MODEL

XGBoost

SVM

KNN

AdaBoost

Decision T

Logistic

RANGE

80 - 84

80 - 84

80 - 84

78 - 83

75 -82

50-70

From Table 3.2 an interesting conclusion can be drawn: adding one year to the final prediction
period, levels prediction models accuracies to the point that there is not anymore a best
performer. This is of course true excluding Logistic regression which confirms a certain poorer

than average ability to predict companies’ status.

To spot even more clearly the differences of performance due to increased prediction time, the
curves entailing three-year distance accuracy levels over multiple correlation thresholds are

plotted.

To this end, Figure 3.18 charts Logistic regression results. Remarkably, the model does not
worsen its outcomes in the new scenario, the bottom boundary is still limited to 50% accuracy,
but rather exhibit a slight enhancement as the upper bound rises to 75% with the accuracy
priority list. Though, the arguably more surprising fact relates with the increased performance
of the accuracy priority list which was found as poorest performer in the two-years case. Finally,

literature list results appear to be almost perfectly in line with the precedent chart, Figure 3.13.

Accuracy over corr. thresholds: Logit Figure 3.18 Accuracy levels
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Further, Figure 3.19 also describes an intriguing occurrence. Contrary to the logical reasoning
through which the loss generated from two- to three-years prediction timespan should resemble
the previous loss generated from one- to two- years distance, SVM seems to be suffering less
than the one- to two-years change. Indeed, the average accuracy deviation stands at just 3,5%
points for the upper bound and near to nothing for the lower bound. In other words, the average
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loss in accuracy does not translate into a general shift of the range over the y-axis, but rather in
only a decrease of the upper bound level. This may already suggest, at a practical stage, that it
is more valuable following SVM predictions at a three years horizon rather than two since the
cost in terms of efficiency is so little that the benefit coming from one more year of ‘knowledge’

might be greater.

Accuracy over corr. thresholds: SWM
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Going forward, Figure 3.20 plots KNN outcomes. Here the same dynamic as with SVM is
detected: there is only a loss in average accuracy due to the thinning of the accuracy range.
Furthermore, as for the two-years distance from the relevant year, there appears to be no strict

relationship between the correlation threshold and the average level of accuracy.

Accuracy over corr. thresholds: KNN Figure 3.20 Accuracy levels
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Unlike the previous cases, Figure 3.21, showing AdaBoost results over multiple correlations,
illustrate that the model lowers both upper and lower bounds. Indeed, the chart exhibit a small
but relevant shift in the y-axis, of about 1,5% points. The shift, however, confirms once more

that the loss from increasing the prediction time between one and two years and from two and
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three years has differing magnitude. Further, as manifested by the one- and two-years distance
charts, there seems to be no clear interrelation between the set correlation threshold and the

average level of accuracy in the model.
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Finally, Figure 3.22 and 3.23, reports Decision Tree and XGBoost accuracy achievements under
a three-years distance timespan scenario respectively. Both plots follow AdaBoost findings in
that their accuracy intervals shift of few percentage points on the y-axis, 1% for Decision Tree
and just less than one for XGBoost. In both, moreover, there does not appears to be a best
performer nor a worst one. The only observation in this sense is linked to the accuracy priority
list trend which overperforms its peers in up to 0,6 correlation threshold and only under

XGBoost prediction frame.

What 1s more, both graphs do not exhibit any definitive relationship between accuracy levels
and correlation thresholds. The only, rather weak, connection can be evidenced for XGBoost

which, similarly to the one-year distance time, shows a narrower range of accuracy records at

Accuracy over corr. thresholds: Decision Tree higher correlation thresholds.
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Accuracy over corr. thresholds: ¥Ghoost Figure 3.23 Accuracy levels
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To conclude, table 3.3 ranks prediction models (left to right) and reports their ranges for the

three-years distance from the relevant defaulting time.

Table 3.3 Ranking of the best predicting models (left to right) with accuracy intervals (in %)

MODEL XGBoost | SVM KNN AdaBoost | Decision T | Logistic
RANGE 79 - 83 80 - 81 79 - 82 77 - 81 74 - 80 50-75

The second step of the analysis, entailing the examination of ROC AUC for specific correlation
boundaries is here limited to the observation of the 0,6 threshold scenario and only for the
individual accuracy based priority list. This will pursue two objectives: first, it allows to conduct
a relevant comparison between the three years distance cases on the most critical, for practical
applications, correlation threshold; second, it will keep the analysis straightforward since the
differences from 0,3, 0,6 and 0,9 do not appear substantial, as verified in the previous section
dedicated to the one-year distance case. Nonetheless, results related to 0,3 and 0,9 thresholds

for both two- and three-years distances can be consulted in appendix 10.

Figure 3.24 represents the ROC AUC for all six prediction models under the 0,6 correlation
threshold and two-years distance scenario. Although the final ranking it suggests very much
resembles Figure 3.10’s, it depicts an interesting situation. The primary observation that can be
spotted, relates to the closedness in AUC results. Indeed, contrary to the one-year case all AUC
measures, except for AdaBoost and XGBoost, appear to be close to each other. This may be
explained by the average loss of predictive ability that the increase prediction time has brought
to the picture. Also, from AUC AdaBoost is solidly performing as second best predicting model
which is in neat contrast to the ranking based on accuracy only. Further, XGBoost performance
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reveals a relative high robustness to the increased prediction time since its AUC mark is the
least damaged among the top three in the one-year case (SVM, AdaBoost and XGBoost).

Overall then, AUC prizes the ensemble models significantly more than the accuracy measure.

The least performing model is Decision Tree which, except for Logistic Regression, is in line
with the accuracy findings. Finally, at a general level, SVM appears to suffer the most from the

change in prediction timespan.

Attached to the chart a table presents accuracy, precision and recall measures at the 0,6
correlation threshold. It, as already pointed out, present a different situation than the one elicited
from AUC data. Although it is evident a loss in performance affecting all six models, the
accuracy dimension clearly identifies Logit as the worst predictor. Moreover, the gap in
performance between AdaBoost and XGBoost seems here replenished: they appear to achieve
the same level. Also, in line with the observation for the one-year distance case, the recall
dimension shows poor results, when compared with precision and accuracy for all models

except Logistic regression.

Priority list: accuracy; Correlation threshold: @.6 Figure 3.24 ROC AUC for all

ROC AUC six prediction models and
107 related to the results obtained
05 - with the accuracy list of ratios
u at a 0,6 maximum correlation
- 0.6 -
- threshold
g
= 04 . Logit (AUC = 0.66)
2 e SVM [AUC = 0.66)
—— KMN {AUC = 0.64)
0.2 —— AdaBoost {AUC = 0.77)
Decision Tree (AUC = 0.62)
0.0 A = XGboost (AUC = 0.82)
0.0 02 04 06 08 10
False Positive Rate
Model Accuracy Precision Recall
Logit 8.5832805 8.504292 6.048382
SVM 8.8689287 8.571868 6.5068947
KMN B8.8687566 8.654881 06.568651
AdaBoost B.826724 6.706264 6.631843
Decision Tree a.776316 B.62%626 6.617369
XGhoost B.8223608 B.716821 6.08682

Figure 3.25 plots ROCs and reports AUC values for 0,6 correlation thresholds and three-years

distance to the relevant defaulting time. The first impactful information the chart conveys
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relates to AUC outcomes for Logistic regression, SVM and KNN. These are in fact labelled as
performing better on a three years timespan than on, the more reasonable, two years. This fact,
given that the difference is by no means substantial, indicates again that the loss in performance,
on average, suffered between two years and three years cases is only marginal compared to the
loss experienced in moving from the one-year to the two-years distance. The other three
prediction models, namely AdaBoost, Decision Tree and XGBoost, instead follow an expected
behaviour and decrease their overall valuation. Interestingly, the three years scenario features
the lowest total gap among models. The actual ranking, however, appears to remain unchanged

from the previous cases.

The attached table confirms the findings with several models that slightly improve their
outcomes instead of decreasing them. Interesting is in particular the accuracy recorded for the
Logit analysis since it drastically improves, by 10% points, against Figure 3.24 attached table.
This behaviour is reflected in the already seen unexpected trend of the accuracy priority list
followed in chart 3.18 (blue line). Finally, recall measures display a behaviour essentially in

line with the preceding findings.

Priority list: accuracy; Correlation threshold: @.6 Figure 3.25 ROC AUC for all

ROC ALC six prediction models and
10 1 related to the results obtained
05 - with the accuracy list of ratios at
o a 0,6 maximum correlation
= 06 -
g = threshold
8
= 041 Logit (AUC = 0.70)
g SVM (AUC = 0.72)
KNN {AUC = 0.67)
0.2 1 AdaBoost (AUC = 0.74)
Decision Tree (AUC = 0.57)
0.0 1 XGboost (AUC = 0.77)
0.0 0.2 04 06 0.8 10
False Positive Rate
Model Accuracy Precision Recall
Logit B.688320 6.686441 B8.571166
SV 6.887566 B.65687% B.519531
KN 6.885021 B.643872 B.525823
AdaBoost 8.7993432 6.646846 B.582708
Decision Tree 6.754034 B.58365% B.57157%
XGboost 68.889211 B.678538 B8.54%846

The list of ratios applied at 0,6 correlation threshold is the same adopted for the one-year case

and is thus not reported.
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3.2 TESTING SAMPLE RESULTS OF EXTERNAL FIRMS

This section aims at examining the six prediction models’ performance on a test set composed
of 3482 companies headquartered in Italy. The analysis compares Veneto only models’
accuracy measures and ROC AUCs with the new test sample to look for model ability to
generalize predictions. All companies’ data are taken from the AIDA database as already
described for Veneto only firms. Moreover, entities only belong to a selected list of ATECO
subclasses as they are object of analysis in a parallel study looking to identify the best prediction

models for Italian firms with specific features.

All 3482 are employed as test for the prediction models trained on the previous described
training set. That is to say that the training set is only composed by Veneto companies while
this test set includes also, and in majority, external companies. Such train and test sets
composition bring about an appreciable drawback: results on the test set might be distorted due
to specific characteristics affecting companies outside Veneto region. In other terms, training
the models on data related to a restricted area, Veneto in this case, may result in biased
performance metrics from external firms since the peculiarities, the features, through which
models determine their key parameters and thresholds might be insufficient to truly represent
companies headquartered outside Veneto. The analysis here proposed is nonetheless relevant
and reliable. This because of two reasons: first, the main characteristics connoting firms in
Veneto can be extended to all Italian companies as proxy of their activity with limited degree
of misrepresentation; secondly, since all ATECO classes have been included in the training set,
models are to be considered able to handle them also for larger samples*. It is also true,

however, that the issue aforementioned should be bore in mind when interpreting results.
3.2.1 One-year distance results

Table 3.4 Veneto test set accuracy results (already introduced) per model and priority list

Logit SVM KNN AdaBoost Decision T XGBoost

0 0703947 0893026 0514145 0909539 D.865421  0.922697
1 0657895 0899671 0514145 0911184 0879934 0919408
2 0679276 0283158 0809211  0.902981 0.870066 0.907295
3 0771382 0883224 0814145 0914474  0.824868 0918118
4 0702303 0886513 0809211  0.904605 0.833224 0916118
5 0707237 0883224 04804276  0.899671 0883224 0916118

40 As explained in chapter 2, ATECO first figure 9 is not included in the sample for lack of data. This however do
not hinder the analysis since no external company belongs to the 9t class.
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Table 3.5 External test set accuracy results per model and priority list

Logit SV KNN AdaBoost Decision T XGBoost

0 0709352 0820505 0820218 0819070 0815049 0.402642
1 0733886 02321080 0820793 0831132 0.442275 0708501
2 0735210 02812464 0823952 0818782 0650483 0283171
3 0729179 0822303 0819644 0812177 0663125 0365754
4 0637852 0819644 0823952 08213867 0.309879  0.339480
5 0680386 0217921 0821367 0590485 0808720 0253185

The first set of results assessed relates to the one-year distance from the relevant defaulting
year. looking at it, only the 0,6 correlation threshold and accuracy based priority list are taken
into account. This allow a thorough comparison between the external test set and the Veneto
one, while keeping only informative metrics. All results concerning to 0,6 threshold and other

priority lists, not illustrated here, are reported in appendix 11.

Table 3.4 and 3.5 present the accuracies achieved by all six prediction models on the various
priority lists in the Veneto test set and the external test set respectively. Row numbers represent
a specific priority list, namely: 0 for accuracy, 1 for Literature, 2 for precision, 3 for recall, 4

for binning and 5 for IV based list of ratios.

The comparison between the two table elicits interesting results. As first, looking the three least
performers for Veneto only test set, logistic regression and KNN appears to be behave equally
well under the two test sets. On the contrary, Decision Tree suffers from the change operated.
Specifically, Decision Tree exhibit low results for the binning based priority list where it
reaches only 31% overall accuracy. Since this is an isolated result, in the sense that 31%
represents an outlier with respect to the other accuracies achieved, this may well be attributed
to the changing features of the external test set. In other words, it can be assumed that given
31% is the lowest recorded performance, far from the other recorded measures, the thresholds
set by Decision Tree under binning priority list during the training process can be assumed as
different from those that would have been set if the training set included a significant number
of external firm data. A comparable argument can be applied to Decision Tree results on the

literature list, reaching 44% accuracy.

A second observation considers the top three performers in Veneto only test set: SVM,
AdaBoost and XGBoost. While the two former show in-line performances with an expected
small decrease in accuracies, XGBoost reports fairly poor results. Indeed, if SVM and

AdaBoost only loose few percentage points, with the only exception represented by the latter
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applied to IV based priority list, XGBoost always looses more than 50% accuracy with the sole
exception represented by the literature priority list. Its poor results might be symptom of
overfitting. Overfitting occurs whenever a model does not show a sufficient ability to generalize
the performances obtained on a limited test set on o broader number of tests. Here in fact,
XGBoost shows poor ability in extending to the new, broader test set, the achievements reached
under the Veneto only test set. Even discounting for the presence of the external factors, that
brings in any case to essentially comparable results in the other models, it cannot be explained
the lower than average results related with XGBoost. For this reasoning it can be concluded

that XGBoost might suffer from overfitting.

As a further step in the analysis, the ROC AUC curve plot is examined.

Priority list: accuracy; Correlation threshold: @.8 Figure 3.26 ROC AUC for all
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Cecision T g.815849 B.555161 B.584828
XGBoost a.482642 8.594271 ©.61534%

Figure 3.26, reporting the ROC AUC values for the six prediction models under 0,6 correlation
threshold and for the accuracy based priority list, depicts quite a different scenario from what
just seen from the accuracy metrics. The chart indeed, presents Logistic regression as the best
absolute model, confirming the generalization ability of the model. Then, AdaBoost and
XGBoost follow. If the former could be expected from Table 3.5 to be ranked as second best
performing, the same cannot be stated for the latter. To understand it, it is sufficient to look at

the table attached in Figure 3.26. From it can be elicited that whilst XGBoost accuracy, as
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previously seen, is lower than average, its recall ability stands as second best, 61% recall.
Through this fact it can be assumed that is accuracy drops significantly, other measures of
performance show different outcomes so to determine an AUC value seemingly reversed in

results. To conclude, KNN, AUC of 0,64, is chased by SVM, 0,56, and Decision Tree, 0,50.
3.2.1 Two-years distance results

Moving on, the two-years distance from relevant defaulting year scenario is analysed. Table 3.6
and 3.7 report the accuracy over all models and for all priority lists for Veneto only and external
test sets respectively. In the first table it is possible to recognize the loss in accuracy risen from
the increased prediction timespan discuss in chapter 3.1 and visible with respect to Table 3.4.
From the comparison between the two tables is then possible to see the change in performance
brought from the new test set. The first, main consideration that can be adduced from such
comparison regards the difference between the relative modifications in the increase prediction
period with the different test sets. Indeed, when focusing on the passage from Table 3.4 to Table
3.6 and from Table 3.5 to Table 3.7 the deltas that can be spotted appear to differ in magnitude

from model to model.
Table 3.6 Veneto test set accuracy results (already introduced) per model and priority list

Logit SVM KNN AdaBoost Decision T XGBoost

0 0503289 0300987 02807566 0820724  0.776316 0.822363
1 0608908 0825658 0824013 0.80921 0784538 0815789
2 0600329 0220724 0814145 0802632 0.797697 0827303
3 0531250 0219079 0827303 0812500 0781250 0.810855
4 0593684 0315789 0822368 0799342 0.766447 0.8310855
5 0626645 0820724 0817434 0796053 0781250 0814145

Table 3.7 External test set accuracy results per model and priority list

Logit SVM KNN AdaBoost Decision T XGBoost

0 0515796 0326324 03819070 0.8158782 0.454543  0.319070
1 0700480 0215681 0799540 0580414 0532165 0455644
2 0632970 0578967 0822516 0213613 05528013 0481333
3 0582008 0483343 0820505 0.812495 0473866 0770524
4 0549397 0310167 0733774 0319070 0663125 0513900
5 0623779 0802412 0751580 0.784032 0674612 064101
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That is to say, all prediction models exhibit a higher decrease in overall accuracy for the new
test set rather than Veneto only sample. The only exception being XGBoost, which seems to
regain one of the first position in the accuracy ranking, and, slightly, Decision Tree, which does
not decrease its average accuracy more than the decrease experienced under the smaller test set
case. The worst achiever results to be SVM which, in line with the precedent reasoning on
XGBoost might reveal signs of overfitting in this phase. Further, Logistic regression again show
certain degree of generalization ability with accuracies essentially comparable among
scenarios. Finally, also AdaBoost and KNN remarks their compatibility with the new test set

with values equal, or approximately equal, in the two tables.

As for the second assessment step, Figure 3.27 plots the ROC AUC of the six prediction models
undergoing the same conditions of correlation threshold and priority list. The chart describes a
situation basically dominated by two groups of results. On the one hand the group of models
totalling more than 0,5 in AUC and those below the red dotted line with lower than 0,5 AUC.
Confirming the findings from Figure 3.26, Logistic regression leads in pair with AdaBoost and
strictly followed by XGBoost, 0,69 and 0,68 respectively. Then, still higher than 0,5, KNN
reaches 0,61 while SVM and Decision Tree confirms to be the least performers with just 0,46

and 0,45.

Friority list: accuracy; Correlation threshold: @.6

ROC AUC _
10 Figure 3.27 ROC AUC for all
six prediction models and
0.8 1 )
Y related to the results obtained
T . . .
< 06 - with the accuracy list of ratios
=
7 at a 0,6 maximum correlation
= 041 "/ —— Logit (AUC = 0.69)
E SWM (AUC = 0.46) threshold
KMNN {AUC = 0.61)
0.2 1 —— AdaBoost (AUC = 0.69)
Decision T (AUC = 0.45)
0.0 - = XGBoost (AUC = 0.68)
0.0 02 04 06 08 10
False Positive Rate
Model Accuracy Pracision Recall
Logit @.5157%6 B.58%6206 0.04438¢%
SWM g.3265824 8.485582 ©.431918
KMNH g.819a7 g.64%834 ©.511448
AdaBoost .818782 9.501031 ©.501958
Decision T g.454543 g.4670%8 B.445751
XGBoost 8.819a7 §.534862 ©.500271
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Finally, from the attached table it can be elicited both that precision and recall measures reach
quite low outcomes for all models and once more recall for logistic regression corroborates the

model generalization ability.
3.2.1 Three-years distance results

The third and last scenario considered refers to the three-years distance from the relevant
defaulting year under the 0,6 correlation threshold and accuracy based priority list conditions.
To complete it, Table 3.8 and 3.9 report accuracy levels for all six prediction models over all

six priority lists for Veneto and external test sets.

A first consideration relates with the level of SVM which appears to achieve higher results than
under the two-years case. This fact might indicate that the probable overfitting condition is
limited to the two-year status. All other models reach results essentially in line to what expected
from the previous analysed tables. Here KNN and AdaBoost rank as best performers, followed
by XGBoost, SVM and logistic regression in average values. The fact that XGBoost both in
two- and three-years scenarios achieves over average accuracy outcomes and that it exhibits
AUC values that almost always stand in the top positions, strengthen the possibility that Table
3.5 records truly reflect an overfitting condition. The final, least performing framework is

represented by Decision Tree with 24% as lowest point.

Logit SVM KNN AdaBoost DecisionT XGBoost lable 3.8 Veneto test set

0 0500329 0.807566 0.805921 0799342 0759868 0809211 accuracy results (already
1 0641447 0204276 0797607 0.781250 0746711 0.807566 introduced) per model and
2 0557566 0.810855 0799342 0797697 0764803 0797697 priority list

3 0496711 0804276 0.812500 0792763  0.756579 0.812500

4 0552632 0.810855 0796053 0.302632 0774671 0.300987

5 0559211 0.804276 0796053 0.794408 0769737 0.791118

Logit SVM KNN AdaBoost Decision T XGBoost Table 3.9 External test set

0 0635267 0211088 0.813326 0.818208 0511775 0721989 accuracy results per model
1 0645803 0.265039 0.811028 0.817346 0747846 0.823952 and priority list

2 0577829 0.806720 0.819070 0.697300  0.252728 0.547387

3 0531017 0.818208 0.819931 0.810741  0.556577 0.820793

4 0559736 0797530 0.819357 0.612202  0.235497 0.702757

5 0550258 0.797530 0.819644 0.540781  0.543653 0.822229
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Decision T @.511775 @.412551 ©&.304356
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From Figure 3.27 moreover, an interesting result can be observed: not only logistic regression
is confirmed as the overall best prediction model but it also increases, though only slightly, its
AUC value. Other than Logit, also KNN slightly increases its AUC performance while all the
others lower their outcomes for few points. The exception to this is objectified by Decision Tree
which drastically worsen its condition, reaching only 0,36. The fact that all prediction models,
except Decision Tree, display similar outcomes to the two-years distance scenario confirms the
tendency first spotted in the previous analysis, of steady results between the two- and three-
years distances. In other words, it is once more clear that the gap in performances created when
moving from one- to two-years of prediction timespan finds almost no comparison with the

subsequent time change generated gap.

To conclude, the attached table presents a situation very much alike to the one depicted by the
AUC measures. The least performers are SVM and Decision Tree which reaches the lowest
recall at 36%. Also, logistic regression outperforms all others in the recall statistics while it is

joint and slightly overcome by AdaBoost under the precision parameter.
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4. CONCLUSIONS

The following section recaps the main steps undertaken throughout the research, outlines the
conclusions reached, suggests new direction of research and ends with the author personal

comment.

To begin with a brief recap, this study aims at developing and applying sound bankruptcy
prediction frameworks on datasets composed by companies headquartered inside Veneto region
in Italy. To do so, six prediction models ranging from more traditional statistical concepts to
newer machine learning based algorithms, have been employed, namely: Logistic regression,

Support Vector Machines, K - Nearest Neighbour, AdaBoost, Decision Tree and XGBoost.
Deepening, the whole process can be split into 6 steps:

-At first, an analysis of the data available have been carried out. Data, ten years of financial
statements drawn from Bureau Van Dijk’s AIDA database (a Moody’s analytics company),
refers to 424 companies defaulted between 2013 and 2019 and 29711 non-defaulting firms.
‘Default’ entails here the Italian legal discipline of ‘Concordato preventivo’ and ‘Procedura
concorsuale liquidatoria’. Firms are for the majority small and medium enterprises mainly
based in Vicenza and Padova provinces with high defaulting occurrences between 2014 and

2017.

-Secondly, all non-defaulting entities have been filtered through the Propensity Score Maching
procedure. This has been applied to both reduce the imbalance in datapoints availability
between the two groups and to optimally match sound companies to failing ones. Five non-
defaulting firms have been associated with each defaulting on the basis of Sales, to account for
the size of the business run, and Equity to total Assets, to include features pertaining to the
balance sheet solidity (e.g. leverage) to which firms are exposed to. A total of 2430 firms’ data,

405 failing and 2025 non-failing, results from the procedure.

-Further, 54 financial indices have been computed for each enterprise. Indices refers to the most

used ratios in the relevant literature and are mostly chosen from Bellovary et al. (2007) review.

-As fourth step, an individual analysis of each financial index has been executed. It comprised
undertaking an univariate logistic regression, from which measures of ROC AUC, accuracy,
precision and recall have been elicited, and the binning procedure. Binning is performed by
charting the number of defaults per decile inside the specific ratio distribution to look for the

average ability in prediction as well as generally determining the complexity associated with it;
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calculating Weight of Evidence values per every decile; and finally compute the overall

Information Value granted by the ratio.

-Forward, from results obtained in the fourth step, six rankings of ratios have been established.
These, called ‘priority lists’, defines best and worst financial ratios on the basis of their
individual assessment and are based upon: accuracy, precision, recall measures from the
univariate logistic regression analysis, the slope of the best fitting line from the binning charts
(which accounts for either inability or complexity in interpretation of the single ratio), the
individual Information Value scored and the frequency of adoption in relevant past researches

on bankruptcy prediction.

-Moreover, correlations among all financial indices have been computed. These, contained in
the average correlation matrix, refers to the average correlation found over ratios in each
company dataset. From the correlation matrix it has been then possible to select a maximum
correlation threshold to determine the maximum degree of interrelation accepted. After setting
it, those ratios found to be over correlating have been judged on the premise of priority lists:

identified the over correlating pair, the ‘loosing’ ratio is discarded.

-Finally, all surviving datapoints, after a pre-processing phase to take care of outliers and
missing data, have undergone the six multivariate prediction models. Three main scenarios have
been tested: one, two and three years of prediction time (i.e. the timespan between the prediction
and the predicted moments). Models have been proved on both hold-out Veneto firms and

Italian companies test sets.
4.1 Resulting remarks

A first relevant conclusion concerns Net Income to total Assets and Working Capital to Equity

(or Net Worth) ratios.

Indeed, looking at appendix 6 reporting all six individual assessment-based priority lists, Net
Income to total Assets always appears in the top position. This already tells that in line with the
relevant literature, as implicitly stated by the literature based list, such financial ratio exhibits
the highest individual level of performance for prediction purposes. In other words, in order to
conduct a basilar and simple evaluation of companies in which just one parameter is considered,
the most useful indicators is Net Income to total Assets for firm headquartered in Veneto region.
Further, confirming the main theory on bankruptcy prediction, this conclusion can be extended
to point out that whenever only a single parameter has to be involved in the assessment, then

applying Net Income to total Assets should maximise results reliability.
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On the contrary, at bottom positions of the majority of priority lists figures Working Capital to
Equity (or Net Worth). This fact indicates that, under analysis conducted through the univariate

logistic regression, it should not be preferred to any of the other 53 financial ratio considered.

It is however needless to set out that already these first observation should be taken as only
applicable in contexts similar to the one set up in this study. For instance, it is possible that a
revision might occur if a different individual assessment model was to be selected. Moreover,
following the same reasoning it is hard to establish a conclusive and objective ranking of ratios
individual predictive ability. This is due to the fact that weights can be assigned to priority lists
to reflect the variety of needs that come in practice, making essentially subjective the final score
given to each ratio. Here, however, Net Income to total Assets and Working Capital to Equity
(or Net Worth) are the only two clearly positioned, leaving small or no room for subjective

modifications.

A second straight conclusion comes from the comparison of the three prediction time scenarios
considered. In fact, results suggest that the drop in performance observable from one year to
two years dwarfs the parallel drop occurring when moving from two years to three years
prediction period. This, in turn, implies that at a practical level choosing two years as prediction
time to predict bankruptcy for Veneto companies with the model fine-tuned in this analysis, is
essentially useless. In other words, since the performances elicited from two years and three
years scenarios are almost comparable, it should always be more productive selecting the latter
to have longer time predictions. The critical trade-off is thus between the single year scenario

and the three years one whose performances differ significantly in favour of the one year setting.

What is more, looking at chapter 3 presenting the results, the metrics of performance achieved
are in line with the literature except for the mentioned fairly limited drop in performance

operated from two to three years. This outcome is in fact quite rare in other studies.

A third deduction relates to the fact that there do not seem to be an optimal level of correlation
overall. This is particularly true looking at all prediction models’ charts showing accuracy levels
over multiple correlation thresholds for all six priority lists under all three prediction times
scenarios. From them all is indeed clear that the level of maximum correlation allowed among
financial ratios only slightly affect accuracy outcomes. In addition, ROC AUC charts for the
three selected thresholds (i.e. 0,3; 0,6; 0,9) confirm the intuition. That is to say that inside the
examined 0,3 to 0,9 range of thresholds, no one appears to display substantially better outcomes
than the others. The sole exception is represented by Figure 3.5 illustrating the accuracy levels

for KNN model over multiple correlation thresholds for one year prediction time and Veneto

106



only test set. In this case the level of interrelations does affect the average level of accuracy.
Nonetheless, the same behaviour disappears under any other scenarios (e.g. increased
prediction time span or different test set) and the actual change in average accuracy only

accounts to six percentage points.

Furthermore, a fourth conclusion can be gained examining results from the external test set,
which comprises companies headquartered in all Italy. From them, Logistic regression and
KNN show the highest generalization ability. In other terms, they demonstrate the ability to
reach accuracy and ROC AUC outcomes comparable to those achieved under the Veneto only
test set. At an intermediate level of reliability figures then AdaBoost which seems to suffer only
under particular combination of ratios and in the minority of results. The other three models on
the contrary, show a rather significant inability in generalization. Specifically, while Decision
Tree appears to score low but stable metrics on all three prediction times scenarios, XGBoost
and SVM exhibit drastic decrease in accuracy and ROC AUC for only one specific time period:
one-year and two-years prediction period respectively. These latter may be considered to overfit
training datapoints for the two mentioned scenarios. However, the overfitting argument, as
deepened in the previous chapter, cannot be conclusive since the inability in generalization
shown could be due to radical differences in the characteristics connoting the external test set
with respect to the internal, Veneto only, sample test. Nonetheless, it appears as an evidence
the different behaviour in generalization between ensemble, tree-based prediction models (i.e.

XGBoost, AdaBoost and Decision Tree) with SVM and Logistic regression with KNN.

A final, perhaps most interesting in practice, conclusion has to do with the definition of a
general ranking of the six prediction models in the context analysed (i.e. for companies
headquartered in Veneto). Carrying out this task is however quite a challenging operation due
to mainly two reasons: first, looking to Veneto only results lowers the impact of the
generalization argument which has not been proved except for a relatively small test set, set at
25% of the overall initial sample; further, the absence of an optimal correlation threshold
implies a ranking based on intervals of results rather than straight and clean outcomes thresholds

with the issue represented by overlapping section among intervals.

That being cleared, metrics of performance from the Veneto only test set, univocally indicate
XGBoost as the most accurate and reliable prediction model. This is constantly confirmed by
both metrics such as accuracy (e.g. it reaches a maximum accuracy of 93%), precision and recall
and ROC AUC values at multiple correlation thresholds, under all three prediction times
scenarios and for every priority list built. Following AdaBoost shows slightly higher degree of

reliability with respect to SVM. Both models achieve just below 90% accuracy in their best
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conditions and scenarios. Although the two models appear to suffer particularly the change
from one- to two- and three-years distance from the relevant defaulting year, they always
exhibit performances only limitedly poorer than XGBoost. Following, KNN stands as
intermediate framework. Its metrics of performance, along with its shown generalization ability
make it preferable to Logistic regression and Decision Tree. An important but secondary
comment on KNN concerns its easy to interpret outcomes. Indeed, for its simplicity in
execution, KNN represents a solid methodology with relevant results: 88% maximum accuracy
under one-year prediction time scenario. To conclude, even though their performance metrics
are many times overlapping each other, it can be said that Logistic regression is a more reliable
prediction model than Decision Tree. The former indeed shows higher metrics of performance
in both two and three years of prediction time scenarios to which it should be added that these
are constant over prediction time while Decision Tree’s outcomes drop drastically moving from
one scenario to another, making them less predictable. Moreover, Logistic regression appears
to embed a fairly higher generalization ability, to which Decision Tree demonstrate poor

capability.

Again, it should be noted that the ranking so far detailed is only worth inside a context featuring

equal setting and characteristics as those developed all over the analysis.
4.2 Further research directions

Along with the conclusions so far delineated, the author of this thesis is convinced that
significant importance should be put on the suggestion of future research paths to pursue.
Indeed, though conclusive and employable for practical use, the results listed above only
represent a narrow and first attempt toward a general application of the bankruptcy prediction
knowledge in Veneto and, more ambitiously in Italy. In other words, lots can be done to expand
and deepen the efficacy of the six prediction models here included, let alone introducing

altogether new prediction models or approaches.

Specifically, four main directions have been identified as valuable future streams of research:
financial indices’ structure and dynamic time composition, integration of parameters from

additional fields, model integration with human intuition and prediction models combination.

The first suggestion refers to both the exploration of new financial indices structures and their
time relevant composition. On the one hand, by ‘exploration of new financial indices structures’
is intended the possibility of considering new form of indices previously unseen. In fact, so far,
the literature has been concerned with the exploitation of financial indices introduced from
either practitioner intuition or the necessity some firm faced in its internal accounting processes.
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In other terms, up to now the source of indices structure has historically been identified in
figures (firms, academics, practitioners, etc.) aiming to solve some kind of measurement issue.
On the contrary, all those non-practical, and perhaps more subtle, indices have not been
adequately explored. The suggestion thus relates to a more rigorous exploration of all, or many
more, kinds of financial ratios to look for less human-friendly parameters achieving high
individual assessments. The reasoning underpinning this proposal starts exactly from
recognizing that there may be some machine-friendly financial ratios, some hidden knowledge,
that could be exploited in team with the traditional, more understandable indices to achieve

higher prediction performances and reliability.

On the other hand, for ‘time relevant composition’ is considered the computation of the average
financial ratio then applied to prediction models. In this research four years mean has been used
as conclusive parameters. It would be undoubtedly useful looking for other combination of year
ratios as a two, three, five or six average values to look for the most efficient and efficacious
overall. Moreover, and more importantly, new, less trivial form of averages could be
considered. As an example, a more dynamic average could result from a moving average with
the advantage of incorporating some degree of knowledge from parameters past levels. In such
a case the ‘amount of knowledge’ from the past could be fine-tuned assigning weights during

the average computation.

Another path of research that could be sought concerns the inclusion of parameters measuring
different set of dimensions related to firms and their failure. As mention at the end of chapter
1, macroeconomic and corporate governance indicators could be beneficial for predictions due
to the measurement of relevant factors, able to significantly affect the performances of a
company, that financial ratios do not capture. This would lead to a clearer background of the
specific area being scrutinized (e.g. Veneto region in this study) and consequently to more
reliable and accurate outcomes. Another quite known example in this sense entails the use of
market based ratios (e.g. prices, trends, etc.). Though undoubtedly useful and valid when
applicable, market based parameters carry the critical problem of being essentially useless for
any non-quoted enterprise. This should evidently taken into consideration since the vast
majority of companies is usually not quoted to exchanges and thus models developed in such a

way could find little adoption for small firms.

As last suggestion, prediction frameworks should integrate the formal financial statement
analysis, as described in this study, with an overall judgement reached by expert analysts. As a
matter of facts this suggestion could be considered as an extension of the previous point. Indeed,

it could be well said that a significant portion of soft information that can easily be identified
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as crucial to predict bankruptcy remains hidden behind the rigorousness of financial statements.
By soft information it is here referred to all knowledge describing non-quantifiable, or hardly
and costly so, dimensions that can find examples in type of relationships of intercurrent among
employees, or the responsibility and intrinsic ability of the management to find proportionate
solution to their companies hurdles, etc. These and similar dimensions are in fact hard to
measure but nonetheless crucial and determinant for company success. In this context, the
suggestion relates to seeking methodologies to fruitfully integrate and exploit machine and
human prediction abilities*!. This would have the advantage on one side, of filling the gap of
soft information parameters with the human ability to recognize at least general behavioural
patterns inside companies, while, on the other, to limit human biasedness in assessments,
plentifully examined and proved by, as first, Kahneman and Tversky famous Prospect theory

(1979).
4.3 Conclusive comments

In this last section a conclusive comment by the author of the study is proposed. The need for
it comes from Ohlson (1980) nipping question on the reasons that should underpin the search
for more and more performing prediction models. In part, the reasons adduced in the
introduction of this document, already answer said need of reasons. To recap, the main whys
driving researches on bankruptcy prediction relates to the need to decrease lending institutions
operating risk while increasing their overall profits, define sound provisions to guarantee the
stability of the modern credit-based financial systems, look for enhanced ways to allocate

resources more wisely to productive activities with higher likelihood to succeed, etc.

Cleared the perspective chased by bankruptcy prediction researches, the matter that is here
introduced questions whether the approach so far presented and followed is the right one: the
one capable to reach the objectives just listed. The approach under assessment, the one applied
also in this study, starts from the assumption that with a substantial amount of data, financial
data, there could be drawn a picture precise enough to even propose forecasts on newly
considered entities. This is carried out in practice by observing large amount of financial
statements records, training prediction models and applying those trained models to the new
entity being scrutinized. In other words, can this procedure, for how complete and sophisticated

a future prediction model might become, find answers to at least one of the goals listed above?

# Human prediction abilities are tested and claimed by Zimmer (1980) who, as explained in chapter 1, looked
at prediction accuracies achieved by loan officers in executing the task of making annual predictions of
corporate failure based on a time series of ratios
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I am convinced that this approach can, and will, only partially represent those answers.

The reasons for it is to be sought in the fact that by its own nature statistical models guarantee
a level of quality and reliability proportional to the quality of data being deployed. Machine
learning practitioners slang it as GIGO, which stands for ‘garbage in, garbage out’. In the
context of bankruptcy prediction, data employed does not resemble ‘garbage’, though is not
always clear whether some financial statement aggregate results from real world quantities or
rather the company own interest. Nonetheless, a question arises as to what amount of data, both
in terms of absolute number of records available and viewpoints covered*’, should be
considered sufficient to ascertain the reliability of results. In the case of bankruptcy prediction,
the amount of data needed for models to achieve higher and higher performances needs to be
set in accordance with every aspect of a firm life. Thus, in this sense, it is already clear the
limitation of the statistical approach so far applied: an important amount of critical data cannot

be collected and employed.

It can be pointed out that it is in any case useful have a prediction with the data that can be
retrieved, so to reach at least a viewpoint. I disagree with statements of this sort. The reason for
it can be found in the brilliant description that professor Taleb depicts in his bestseller The Black
Swan where he introduces two fictitious countries: Mediocristan and Extremistan. Mediocristan
is to be considered as the place where everything averages out, a ‘boring’ place where outliers
do not appear. On the contrary, Extremistan is the country of outliers, where all distributions
depart from the Gaussian description of the world. Then, in our picture, prediction models are
dealing with some kind of Extremistan. In other terms, the determination of the binary ‘failure’
‘non-failure’ is so dependent to events whose occurrence is inherently not predictable that a
prediction based on the average patterns followed by a company resembling, in terms of data
points, the one under assessment might even be cause of distortion of more naive forecasts.
These events are related to the business of the company, the macroeconomic and socio-political
context surrounding it, the intricate set of human interconnections and abilities, etc. that

dominate the life of a firm.

To summarize, the very same presence of black swans affecting companies’ life makes the
bankruptcy prediction research so far conducted only partially effective to materially achieve a

decrease in lending risk, more stable financial markets and an effective allocation of resources.

42 By viewpoints are here intended the fields, relevant for the model to meaningfully operate, the data belongs
to. As an example, financial data only covers the aspect of financial results that firms are subjected to, leaving
vacant any information on the management team, employees loyalty, etc. which are all relevant factors to
predict the firm future.
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APPENDIX 1. Python code for Propensity Score Matching procedure

Loading and arrangement section

import warnings
warnings.filterwarnings( ignore’)
from pymatch.Matcher import Matcher
import pandas as pd

import numpy as np

%matplotlib inline

# relevant columns names might change from file to file
name_treated = 'treatd Veneto only’
relevant_cols = ['Ragione sociale', 'Partita IVA', 'ATECO 2887 codice', 'Default’]
relavant_changing = ["Ricavi wvendite e prestazioni migl EUR °, 'TOTALE ATTIVO migl EUR °
"TOTALE PATRIMONIO METTO migl EUR ']
years_relev = [2089,20810,2011,2012,2013,2014,2015]
for x in years_relev:
for t in relavant_changing:
relevant_cols.append(t+ {}".format(x))
relevant_cols

)

#loading treated file with its column - must have treted in excel file in same folder of this .ipynb document

xl_file treated = pd.read_excel({name_treated + ".xlsx")[relevant_cols]

#renaming
¥l _file treated = x1_file treated.rename(columns={'Ragicne sociale': 'Rag_soc’,
"Partita IvAa': 'P_iva', 'ATECO 28@7 codice’: "ATECO_2087'})
for d in years_relev:
xl file treated = x1_file_treated.renams(columns={

'Ricavi vendite e prestazioni migl EUR {}'.format(d): 'ricavi_{}'.format(d),

'TOTALE ATTIVO migl EUR {}'.format(d): 'Tot_a_{}'.format(d),

'TOTALE PATRIMONIO METTO migl EUR {}'.format(d):'Tot_pn_{}'.format(d)})

xl_file treated.drop_duplicates(subset="P_iva', keep="first', inplace=True)

#adjusting for relevant default years
x1_file treated_adjusted = pd.DataFrame()
for a in years_relev:
meta_reader = xl_file treated[xl_file treated.Default == a+4]
meta_reader2 = meta_reader[[ 'Rag_soc', 'P_iva', "ATECO_2887', 'Default’,
‘ricavi_{}'.format(a), 'Tot_a_{}'.format(a), 'Tot_pn_{}".format(a)]]
x1l_file treated_adjusted = pd.concat([x1_file treated_adjusted, meta_reader2])
#xL_file treated adjusted

lista_voci_utili = []

for 1 in years_relev:
lista_voci_utili.append( Ricavi vendite e prestazioniinmigl EURAn{}' .format(l))
lista_wvoci_utili.append('TOTALE PATRIMONIO MWETTOWnmigl EURNn{}'.format({l)})
lista_voci_utili.append( TOTALE ATTIVO\nmigl EURMn{}'.format(l})

questa = ['Ragione sociale’,’'Partita IVA','ATECO 2887\ncodice’] + lista voci_wutili
questa

#loading CONTROL file with Lits column
reng = list(range(27,71))+1list(range(72,1081))
¥l _file control= pd.DataFrame()

for v in reng:
meta_reader = pd.read_excel('control group total/Aida_Export_{}".format(v) + ".xlsx")[questa]
x1_file control = pd.concat({[x]l file control,meta_reader])
print(v)

#renaming
x1_file_control = x1_file control.rename(columns={'Ragione sociale': 'Rag_soc’,
"Partita IVA': "P_iva', "ATECO 2@8@7\ncodice’: "ATECO_2807'})
for d in years_relev:
x1 _file control = x1_file control.renams(columns={

‘Ricavi vendite e prestazioni‘\nmigl EUR\n{}'.format(d):'ricavi_{}'.format(d),
"TOTALE ATTIVOA\nmigl EURNn{}'.format(d): 'Tot_a_{} .format(d)},
"TOTALE PATRIMONIO NETTOWnmigl EURAn{}'.format(d):'Tot_pn_{}'.format(d)})

¥l _file control.drop_duplicates(subset="P_iva', keep="first', inplace=True)

#creating the Default (=status) column for control group

¥l _file control['Default’] = @
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#deleting duplicates in the 2 groups
for t in x1_file_treated_adjusted['P_iva']:
x1_file control = x1_file control [x1 _file_control['P_iva"] != t]

#concatening treated adjusted and control groups
aggregato = pd.concat([xl_file_treated_adjusted,xl_file_control], ignore_index=True)
#aggregato

aggregati_anni = {}
#dropping n.d. and NaN and creating dictionary
for d in years_relev:
aggregati anni[ 'aggregato_{}'.format(d)] = aggregate[['Rag_soc', 'P_iva', "ATECO_2887',
‘Default’, 'ricavi_{}'.format(d),
‘Tot_pn_{}'.format(d), 'Tot_a_{}.format(d)]]

for s in years_relev:

aggregati_anni[ 'aggregato_{}'.format(s)].dropna(inplace=True)

aggregati_anni[ 'aggregato_{}'.format(s)] = aggregati_ anni['aggregato_ {}'.format(s)]
[aggregati_anni[ 'aggregato_{}'.format(s)][ 'ricavi_{}'.format(s)] = 'n.d."]
aggregati_anni[ 'aggregato_{}'.format(s)] = aggregati_anni['aggregato_{}'.format(s)]
[aggregati_anni[ 'aggregato_{}'.format(s)][ 'Tot_pn_{} .format(s)] = 'n.d."]
aggregati_anni[ 'aggregato_{}'.format(s)] = aggregati_anni['aggregato_{}'.format(s)]
[aggregati_anni[ 'aggregato_{}'.format(s)][ 'Tot_a_{}'.format(s)] !'= 'n.d."]

#computing e_tot a

aggregami = aggregati_anni
for s in years_relewv:
aggregami[ 'aggregato_{} ' .format(s)]['e_tot_a_{}'.format(s)] = aggregami['aggregato_{}'.format(s)]
['Tot_pn_{}'.format(s)]/aggregami[ 'aggregato {}'.format(s) ][ 'Tot_a_{} ' .format(s)]
aggregami[ 'aggregato {}'.format(s)][ 'meta_{} .format(s)] = aggregami[ 'aggregatc_{}'.format(s)]
["ATECO 2@87'].astype(str).str[8] #for ATECO 1st figure splitting
aggregami[ 'aggregato_{}'.format(s)] = aggregami[ 'aggregato {}'.format(s)]
[['Rag_soc','P_iva', '"ATECO_2887', 'Default’, 'ricavi_{} .format(s), 'e_tot_a_{} .format(s), 'meta_{}'.format(s)]]
aggregami[ 'aggregato_{} .format(s)].reset_index{drop= True, inplace=True)

#aggregami[ "aggregato 2689 " ]

#further splitting based on Ateco 1st figure
prime_cifre = [1,2,3,4,5,6,7,8,9]
agg_ateco_year = {}

for z in prime_cifre:
for d in years_relev:
agg_ateco_year['agg {} {}'.format(z, d)] = aggregami[ "aggregato_{} ' .format(d)]
[aggregami[ 'aggregato_{} ' .format(d)][ 'meta_{} .format(d)] == str(z)]
agg ateco_year['agg {} {}' .format(z, d)].drop{columns=["meta_{} ' .format(d)], inplace=True)
agg ateco_year['agg {} {} ' .format(z, d)].reset_index(drop = True, inplace = True)

agg_ateco_year['agg_ 1 2889°']

#computing proportions defaulted vs controlled

#getting the np.floatéd on relevantt data

for g in agg_ateco_year:
agg_ateco_year[g]['ricavi_{}'.format(int(g[6:]))] = agg_ateco_year[g]
["ricavi_{} " .format(int(g[6:]))].astype(np.floated)
agg_ateco_year[g]['e_tot_a_{}'.format(int(g[6:]))] = agg ateco_year[g]
["e_tot_a_{}'.format(int(g[6:]))].astype(np.float64)
print{g+':"',len(agg_ateco_year[g][agg_ateco_year[g][ 'Default’] != @].index), 'on a total of’,

len{agg_ateco_year[g].index) )
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PyMatch application section

name_to be = "agg 7&8 281%°

test = agg_ateco_year[name_to_be][agg_ateco_year[name_to_be][ 'Default'] != 8]
control = agg_ateco_year[name_to_be][agg_ateco_year[name_to_be][ 'Default'] == 8]
test.Default = 1

control.Default = &

#checking if it is meaningful to run the psm
if test.shape[8] == @:
print{ 'test is empty!")

#applying matcher
m = Matcher(test, control, yvar = "Default", exclude = ["Rag_soc", "P_iwva", "ATECO_2887"])

# for reproducibility
np.random.seed(28178926)

m.fit_scores(balance=True, nmodels=2}

m.predict_scores()
m.plot_scores()

m.tune_threshold(method="random")

thrs = float(input({'e.ea8"))
m.match{methed="min", nmatches=5, threshold=thrs)

m.record_frequency()

tobeexported = m.matched_data.sort_values("match_id")
tobeexported.to_excel('PSM_results/"+ name_to be + '.xlsx’, index = False)
tobeexportad

# pvalues from both the KS-test and the grouped permutation of the Chi-Square distance after matching should be > 8.85
cc = m.compare_continuous(return_table=True)
cc

Manual Matching section

year_used = 14 #last 2 figures

man_name = ‘agg_3_2814°

manuale = agg ateco_year[man_name][agg_ateco_year[man_name][ 'ATECO_2887°] > 1]
#condition to avoid modifications to original

manuale_treated = manuale [manuale[ 'Default’] != @]

manuale_control = manuale [manuale[ 'Default'] == 8]

manuale_finale = pd.DataFrame()
#print(manuale_treated.Rag soc)

for name in manuale_treated.Rag_soc:

man_treat_only = manuale_treated [manuale_treated['Rag_soc'] == name]

man_treat_only.reset_index(drop = True, inplace = True)

scaling_factor = man_treat_only[ 'ricavi_28{}'.format(year_used)][@]/man_treat_only[ 'e_tot_a_28{} .format(year_used)][&]

#porint(scaling factor)

manuale_control ['scores'] = abs(manuale_control
["ricavi_28{}'.format(year_used)]- man_treat_only
["ricavi_28{}'.format(year_used)][8]) + (abs{manuale_control
["e_tot_a_28{}' .format(year_used)] - man_treat_only
["e_tot_a_28{} .format(year_used)][8]) * scaling_ factor)

manuale_control.sort_walues('scores’,inplace=True)

manuale_fin = pd.concat([man_treat_only, manuale_control])

manuale_fin = manuale_fin.head(s)
manuale finale = pd.concat ([manuale_finale, manuale_fin])

manuale_finale.to_excel( 'PSM_results/"+'manual_{}".format(man_name)+ .xlsx’, index = False)
manuale_finale
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APPENDIX 2. Python code for retrieving financial indices

import warnings
warnings.filterwarnings( ignore")
from pymatch.Matcher import Matcher
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
from sklearn import datasets

%matplotlib inline

#ratios are computed on PS5 Matched items
#loading data ready for ratios.xslx file
ready_for_indeces = pd.read_excel("ready for ratios.xlsx"™)

Computing components for ratios

#adding columns with semi-aggregates (e.g. current assets and liabilities)
relevant_years = [2089,2019,2811,2812,2013,2814,2015,2016,2817,20818]

#current assets
curret_assets_list = ['TOT. DISPOM. LIQUIDE migl EUR {}', 'Crediti a breve migl EUR {}',
'CREDITI FIN. A BREVE migl EUR {}', 'TOTALE RIMANENZE migl EUR {}']
for year in relevant_years:
ready for_indeces['Current Assets {}'.format(year)] = 8
for d in curret_assets_list:
ready_for_indeces['Current Assets {}'.format(year)] += ready_for_indeces[d.format(year)].replace('n.d.",8)

#current Liagbilities
for year in relevant_years:
ready for_indeces['Current Liabilities {}'.format(year)] =
ready_for_indeces['DEBITI A BREVE migl EUR {}'.format(year)].replace('n.d.’',8) +
ready_for_indeces['0Obblig.ni entro migl EUR {}'.format(year)].replace('n.d.’',8) +
ready_for_indeces['0Obblig.ni convert. entro migl EUR {}'.format(year)].replace('n.d.",8)
#quick assets
for year in relevant_years:
ready_for_indeces['quick assets {}'.format(year)] =
ready_for_indeces['Current Assets {}'.format(year)].replace('n.d."',8) -
ready_for_indeces['TOTALE RIMANENZE migl EUR {}'.format(year)].replace('n.d.’,8)

#EBITDA
for year in relevant_years:
ready_for_indeces[ 'EBITDA {}'.format(year)] =
ready_for_indeces['RISULTATO OPERATIVO migl EUR {}'.format(year)].replace('n.d.’,8) +
ready_for_indeces['TOT Ammortamenti e svalut. migl EUR {}'.format(year)].replace{'n.d.",®)

#Net Working Capital
for year in relevant_years:
ready_for_indeces[ 'Met Working Capital {}'.format(year)] =
ready_for_indeces['Current Assets {}'.format(year)].replace('n.d.’,@) -
ready_for_indeces['Current Liabilities {}'.format(year)].replace('n.d.",@)

relevant_years_delta = [2818,2e11,2812,2813, 20814, 2815,2016,20817,20818]

#elta NWC

for yeard in relevant_years_delta:
ready_for_indeces['Delta NWC {}'.format(yeard)] =
ready_for_indeces['Net Working Capital {}'.format(yeard}].replace('n.d.’,8) -
ready_for_indeces['Net Working Capital {}'.format(yeard-1)].replace('n.d.",@)

#Cash flow from operation
for years in relevant_years_delta:
ready_for_indeces['Cash Flow Operat {}'.format(years)] =
ready_for_indeces['EBITDA {}'.format(years)].replace('n.d.",8) -
ready_for_indeces['Delta NWC {}'.format(years)].replace('n.d.",8)

#Total Liabilities (Passivo-patrimonioc netto)
for year in relevant_years:
ready_for_indeces['Total Liabilities {}'.format(year)] =
ready_for_indeces['TOTALE PASSIVO migl EUR {}'.format(year)].replace(’'n.d.’,8) -
ready_for_indeces['TOTALE PATRIMONIO METTO migl EUR {}'.format(year)].replace('n.d.",8)

ready_for_indeces.reset_index(drop=True, inplace=True)
#ready for indeces
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Computing all 54 financial ratios: The majority of them is initialised in the next three lists:
name_ratio, containing the final name given to ratios; First comp, the list containing the

numerator components; Second_comp, the list including all denominators.

#Computing Indeces
final_indeces = pd.DataFrame()

indeces = pd.DataFrame()

#list with names of indeces
name_ratio = ['Net Income/Total Assets ', 'Total Debt/Total Assets ', 'Net Income/MNet Worth ',
"Total Liabilities/Total Assets ', "Inventory/Sales ',
'Operating Income/Total Assets °, 'Net Income/Sales ', 'Long-term debt/Total Assets °,
‘Total liabilities/net worth ', 'Operating expenses/Operating income °,
‘Current Ratio ', 'Working Capital/Total Assets ', 'Retained earnings/Total assets °,
'Current Assets/Total Assets ',
"Current Liabilities/Total Assets ", "Current Assets/Sales ', 'Working Capital/Net worth ',
"quick ratic (quick ass/current liab) ", 'Sales/Total assets ',
'quick assets/Total assets ', 'quick assets/Sales ', "EBIT/Total assets ', "EBIT/Interest ',
'"Working capital/Sales ',
"CFO/Total assets ', 'CFO/Total debt ', 'CFO/Sales ', 'CFO/Current Liabilities ', 'CFO/Total liabilities ',
"Cash/Total Assets ', 'Net Worth/Total Assets ', 'Total Debt/MNet Worth ', 'Cash/Current Liabilities °,
"Net Worth/Total liabilities ', "no-credit interval (Curr Ass/Daily OPEX) °,
‘Asset Turnover ', 'Return on Total Asset ', 'Ebitda/EBIT ', "CFO/EBIT ', 'Tax Expenses/EBIT ',
'Other Revenues/Total Produced Value °, 'Cash Flow ratio *, "Interest Coverage ']
#first component of the ratio
first comp = ['UTILE/PERDITA DI ESERCIZIO migl EUR ', °'TOTALE DEBITI migl EUR ', 'Utile/perdita di esercizio migl EUR °,
‘Total Liabilities ', 'Var. rimanenze prodotti migl EUR °,
"RISULTATO OPERATIVO migl EUR °, 'Utile/perdita di esercizio migl EUR °,
"Total debiti oltre 1'esercizic migl EUR ", 'TOTALE PASSIVO migl EUR °,
"COSTI DELLA PRODUZIONE migl EUR °,

"Current Assets ', 'Net Working Capital ', 'Utile/perdita a nuove migl EUR °,
"Current Assets ',

'Current Liabilities ', 'Current Assets ', 'Net Working Capital ', 'guick assets ",
'Ricavi wvendite e prestazioni migl EUR °,

‘guick assets °, 'quick assets ", "RISULTATO OPERATIVO migl EUR ', "RISULTATO OPERATIVO migl EUR °,

"Net Working Capital ',

'Cash Flow Operat ', 'Cash Flow Operat ', 'Cash Flow Operat ', 'Cash Flow Operat ', 'Cash Flow Operat ',

'TOT. DISPON. LIQUIDE migl EUR *, °"TOTALE PATRIMONIO METTO migl EUR *,

"TOTALE DEBITI migl EUR ', "TOT. DISPON. LIQUIDE migl EUR ", 'TOTALE PATRIMOWIO NETTO migl EUR ',
"Current Assets ',

'"Ricavi wendite e prestazioni migl EUR ', 'RISULTATO OPERATIVO migl EUR ', 'EBITDA ', 'Cash Flow Operat °,
'Totale Imposte sul reddito correnti, differite e anticipate migl EUR '

"Altri ricavi migl EUR ', 'Cash Flow Operat ', 'EBITDA ']

#2nd component of the ratioc
second_comp = ['TOTALE ATTIVO migl EUR ', 'TOTALE ATTIVO migl EUR ', 'TOTALE PATRIMONIO METTO migl EUR °,

'"TOTALE ATTIVO migl EUR ', 'Ricavi vendite e prestazioni migl EUR °,

"TOTALE ATTIVO migl EUR ', 'Ricavi wvendite e prestazioni migl EUR ", 'TOTALE ATTIVO migl EUR °,
"TOTALE PATRIMONIO NETTO migl EUR ', 'RISULTATO OPERATIVO migl EUR ",
'Current Liabilities ", 'TOTALE ATTIVO migl EUR ', 'TOTALE ATTIVC migl EUR ', "TOTALE ATTIVO migl EUR °,
"TOTALE ATTIVO migl EUR ', 'Ricavi wendite e prestazioni migl EUR ', 'TOTALE PATRIMONIC METTO migl EUR °,
'Current Liabilities ', 'TOTALE ATTIVO migl EUR ',

"TOTALE ATTIVO migl EUR ', 'Ricavi vendite e prestazioni migl EUR °, 'TOTALE ATTIVO migl EUR °,
'"TOTALE PROVENTI E ONERI FIMANZIARI migl EUR ', 'Ricavi wvendite e prestazioni migl EUR ',

"TOTALE ATTIVO migl EUR ', 'TOTALE DEBITI migl EUR ', 'Ricavi vendite e prestazioni migl EUR °,
"Current Liabilities ', 'Total Liabilities ',

"TOTALE ATTIVO migl EUR *, 'TOTALE ATTIVO migl EUR ', 'TOTALE PATRIMONIO METTO migl EUR °,
"Current Liabilities ", 'Total Liabilities ', "COSTI DELLA PRODUZIOME migl EUR °,

"TOTALE ATTIVO migl EUR ', 'TOTALE ATTIVO migl EUR ', 'RISULTATO OPERATIVO migl EUR ',
"RISULTATO OPERATIVO migl EUR ', "RISULTATO OPERATIVO migl EUR °,

"TOT. VAL. DELLA PRODUZIONE migl EUR ', "Current Liabilities ',
'TOTALE PROVENTI E ONERI FINANZIARI migl EUR ']
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The computation structure and the other, more complex indices (from ‘inserting “single” ratios’)

#check on grops Lenght
print{len(name_ratio)==len(first_comp), len(first_comp)==1len(second_comp})

for x in list(range (@,len(name_ratio)))
if name_ratio[x] not in ['CFO/Total assets ', 'CFO/Total debt ', 'CFO/Sales ', 'CFO/Current Liabilities ',
'CFO/Total liabilities ', "CFO/EBIT ', 'Cash Flow ratio ']:
for year in relevant_years:
indeces[name_ratio[x]+'{} .format{year)] =
ready_for_indeces[first_comp[x]+'{} .format(year)].replace('n.d.",8)/
ready_for_indeces[second_comp[x]+'{} .format(year)].replace('n.d.",8)
final_indeces = pd.concat([final_indeces,indeces[name_ratio[x]+ '{} .format(year)]], axis=1)
else:
for year in relevant_years_delta:
indeces[name_ratio[x]+'{} .format(year)] =
ready_for_indeces[first_comp[x]+'{} .format(year)].replace('n.d.",8)/
ready_for_indeces[second_comp[x]+'{}' .format(year)].replace('n.d.",8)
final_indeces = pd.concat([final_indeces,indeces[name_ratio[x]+ '{} .format(year)]], axis=1)

#inserting 'single’ ratios
#1.CFO
for years in relevant_years_delta:
final_indeces['Cash Flow Operat {}'.format(years)] = ready_for_indeces['Cash Flow Operat {}'.format(years)]

#2.log total assets
for year in relevant_years:
final_indeces['log(Total Assets) {}'.format(year)] =
np.log(ready_for_indeces['TOTALE ATTIVO migl EUR {}'.format(year)].replace('n.d."',8))

#C0GS (not relevant index)
for year in relewvant_years:
ready_for_indeces['COGS {}'.format(year)] =
ready_for_indeces[ 'Materie prime e consumo migl EUR {}'.format(year)].replace('n.d.’,8) +
ready_for_indeces['Servizi migl EUR {}'.format(year)].replace('n.d.’,8) +
ready_for_indeces['Godimento beni di terzi migl EUR {}'.format(year)].replace('n.d.",8)

#3. Turnover Payables
for year in relewvant_years:
final_indeces[ ' Turnover Payables {}'.format(year)] =
ready_for_indeces['COGS {}'.format(year)].replace('n.d."',8) * 1.22 /
(ready_for_indeces[ 'Fornitori entro migl EUR {}'.format(year)].replace('n.d.",8) +
ready_for_indeces[ 'Fornitori oltre migl EUR {}'.format(year)].replace('n.d.",@))

#4. Turnover Receivables
for year in relewvant_years:
final_indeces[ ' Turnover Receivables {}'.format(year)] =
ready_for_indeces['Ricavi vendite e prestazioni migl EUR {}'.format(year)].replace('n.d.",8) * 1.22 /
(ready_for_indeces[ 'Cred. vs Clienti entro migl EUR {}'.format(year)}].replace('n.d.",8) +
ready_for_indeces['Cred. vs Clienti oltre migl EUR {}'.format{year)].replace(’'n.d.’',8))

#5. Turnover Inventory
for year in relewvant_years:
final_indeces[ ' Turnover Inventory {}'.format(year)] =
(ready_for_indeces['COSTI DELLA PRODUZIONE migl EUR {}'.format(year)].replace('n.d.’,8) -
ready_for_indeces[ 'Incrementi di immob. migl EUR {}'.format({year)].replace(’'n.d.",@)) /
ready_for_indeces[ 'TOTALE RIMANENZE migl EUR {}'.format(year)].replace('n.d.",8)

#0.Acid Ratio
for year in relewvant_years:
final_indeces['Acid Ratio {}'.format(year)] =
(ready_for_indeces['ATTIVO CIRCOLANTE migl EUR {}'.format(year)].replace(’'n.d.",8) -
ready_for_indeces['TOTALE RIMAMENZE migl EUR {}'.format(year)].replace('n.d.",8)) /
ready_for_indeces['Current Liabilities {}'.format(year)].replace('n.d.",8)

#Total Customer Receivables (not relevant index)

for year in relevant_years:
ready_for_indeces['Total Customer Receivables {}'.format{year)] =
ready_for_indeces['Cred. vs Clienti entro migl EUR {}'.format(year)].replace('n.d.',8) +
ready_for_indeces['Cred. vs Clienti oltre migl EUR {}'.format(year)].replace('n.d."',8)

#Delta Customer Receivables (not relevant index)

for years in relevant_years_delta:
ready_for_indeces[ 'Delta Customer Receivables {}'.format{years)] =
ready_for_indeces['Total Customer Receivables {}'.format{years)].replace('n.d.",8) -
ready_for_indeces['Total Customer Receivables {}'.format{years-1})].replace('n.d.",@)
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#cash from sales (not relevant index)

for years in relevant_years_delta:
ready_for_indeces[ 'cash from sales {}'.format(years)] =
ready_for_indeces[ 'Ricavi vendite e prestazioni migl EUR {}'.format(years)].replace('n.d.',8) -
ready_for_indeces[ 'Delta Customer Receivables {}'.format(years)].replace('n.d.’',8)

#7.Net sales/Cash from sales

for years in relevant_years_delta:
final_indeces['Net sales/Cash from sales {}'.format(years)] =
ready_for_indeces[ 'Ricavi vendite e prestazioni migl EUR {}'.format(years)].replace('n.d.’,8) /
ready_for_indeces[ 'cash from sales {}'.format(years)].replace('n.d.’,8)

#8.Net Sales/NAR
for year in relevant_years:
final_indeces['Sales/NAR {}'.format(year)] =
ready_for_indeces['Ricavi vendite e prestazioni migl EUR {}'.format(year)].replace('n.d.",8) /
(ready_for_indeces['Total Customer Receivables [}'.format(year)].replace(’'n.d.",8) -
ready_for_indeces['Svalut. crediti migl EUR {} .format(year)].replace('n.d.",@))

#9.CFO/Financial Debt
for year in relevant_years_delta:
final_indeces['CFO/Financial Debt {}'.format(year)] =
ready_for_indeces['Cash Flow Operat {}'.format(year)].replace('n.d.",8) /
(ready_for_indeces['Banche entro migl EUR {}'.format(year)].replace('n.d.’,8) +
ready_for_indeces['Banche a lungo migl EUR {}'.format(year)].replace('n.d.’,@) +
ready_for_indeces['Altri finanziatori entro migl EUR {}'.format(year)].replace('n.d.’,8) +
ready_for_indeces['Altri finanziatori oltre migl EUR {}'.format(year)].replace('n.d."',8))

#Principal (not relevant index)
principal_set = ['Obblig.ni entro migl EUR {}', 'Obblig.ni oltre migl EUR {}', 'Soci per Finanziamenti entro migl EUR {}',
"soci per Finanziamenti oltre migl EUR {}', 'Banche entro migl EUR {}', 'Banche a lungo migl EUR {}',
"Altri finanziatori entro migl EUR {}',
"Altri finanziatori oltre migl EUR {}', 'Titoli di credito entro migl EUR {}',
'Titeli di credito oltre migl EUR {}']
for year in relevant_years:
for d in principal set:
ready_for_indeces['Principal {}'.format(year}] = @
ready_for_indeces['Principal {}'.format(year)}] += ready for_indeces[d.format(year)].replace('n.d.",8)

#elta Principal (not relevant index)

for year in relevant_years_delta:
ready_for_indeces[ 'Delta Principal {}'.format(year)] =
ready_for_indeces[ 'Principal {}'.format(year)].replace('n.d.’,8) -
ready_for_indeces['Principal {}'.format(year-1)].replace('n.d.",8)

#10.Fixed Charges Cash Coverage
for year in relevant_years_delta:
final_indeces['Fixed Charges Cash Coverage {}'.format(year)}] =
(ready_for_indeces['Delta Principal {}'.format(year)].replace('n.d.",8) +
ready_for_indeces['Totale Oneri finanziari migl EUR {}'.format(year)].replace('n.d.",8) +
final_indeces['Cash Flow Operat {}'.format(year)].replace('n.d.’,8)) /
ready_for_indeces['Current Liabilities {}'.format(year)].replace('n.d.",8)

#11.Fixed Charges EBIT Coverage
for year in relevant_years_delta:
final_indeces['Fixed Charges EBIT Coverage {}'.format(year)] =
(ready_for_indeces['Delta Principal {}'.format(year)].replace('n.d.",8) +
ready_for_indeces['Totale Oneri finanziari migl EUR {}'.format(year)].replace('n.d.",8) + r
eady_for_indeces[ 'RISULTATO OPERATIVO migl EUR {}'.format(year)].replace('n.d.’',8)) /
ready for indeces['Current Liabilities {1}'.format(year)].replace('n.d.’',8)

#taking defaulted out for correlation purposes
final_indeces['Default'] = ready_for_indeces[ 'Default']
final_indeces['Partita IVA'] = ready_for_indeces['Partita IVA']

#creating finall_all for future usage
final all = final_indeces[list(final_indeces)]

final_indeces = final_indeces[final_indeces['Default’'] == @] #considering only non-defaulting
final_indeces.drop_duplicates(subset=['Partita IVA']) #deleting duplicates
final_indeces.drop('Partita IVA', axis=1, inplace=True)

final_indeces.drop('Default’, axis=1, inplace=True)

final_ indeces.reset_index(drop=True, inplace=True}

#final_indeces

aggreg = @
for x in list(final_indeces):
#if final_indeces[x].isna().sum()!= 8:
#print (x,final_indeces[x].isna().sum())
aggreg += final_indeces[x].isna().sum()
#aggreg
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APPENDIX 3. Univariate logistic regression results

First are reported ROC AUC and confusion matrices; then, Recall, Precision and Accuracy; Finally,

python code is transcribed.
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ROC AUC : CFO/Total liabilities
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ROC AUC : Cash Flow ratio
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ROC AUC : CFO/Financial Debt
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ROC AUC : Turnover Receivables
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ROC AUC : quick assets/Sales
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ROC AUC : Net sales/Cash from sales
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Macro average Precision

Macro average recall

Accuracy

Cash/Total Assets
CFO/Current Liabilities

Fixed Charges EBIT Coverage
Net Income/Net Worth
log(Total Assets)

Total Debt/Net Worth
CFOiTotal liabilities

Turnover Inventony

Asset Turnover

Net Income /Total Assets
Inventory/Sales

Operating expenses/Operating income
Met Worth/Total liabilities
Cash Flow Operat

Cash Flow ratio

Net Income/Sales

quick assets/Total assets
SalesTotal assets

Return on Total Asset

Tax Expenses/EBIT

Working capital/ Sales

Other Revenues/Total Produced Value
CFO/Financial Debt

Fixed Charges Cash Coverage

quick ratio (quick ass/current liab)
Total liabilities/net worth

Sales/NAR

Acid Ratio

Turnover Receivables

Current Liabilities/Total Assets
no-credit interval (Curr Ass/Daily OPEX)
Total Debt/Total Assets
Retained earnings/Total assets
CFOiTotal debt

EBIT/Interest

0571154
0.583008
0701548
0.5674580
0.581656
0.540698
0.541045
0.545469
0.566629
0788778
0.523178
0.551616
0627519
0.563461
0.5850086
0.703456
0.556016
0.566629
0.736923

0.610585
0.637325
0.561851
0.579757
0.565718
0.612405
0.543865
0.553556
0.606774
0.539049
0.500724
0.530450
0.659257
0.523916
0.542048
0.631074

0612509
0.559260
0767765
0557233
06138152
0.541958
0.546413
0.57971
0600603
0820223
0.513805
0571893
0682132
0.539704
0.559260
0.7905090
0573608
0.600693
0.7534M

0654235
0683059
0601357
0.611412
0.560202
0623624
0.543312
0.575025
0675747
0.564480
0.641208
0.551073
0687134
0.609566
0.547316
0.705826

0.643172
0.289280
0.504699
0757709
0.452278
0722467
0709251
0.502203
0.459613
0.854628
0.763583
0674009
0731273
0775330
0.289280
0795883
0413502
0.459618
0.833473

0637285
0.753304
0.600303
0.436123
0.321586
0.613803
0.729809
0.674009
0.649048
0.497797
0.669604
0.516887
0.725609
0.715125
0.710720
0.703377
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Macro average Precision Macro average recall Accuracy

Current Ratio 0.618275 0697675 0638767

quick assets/Sales 0.545470 0576208 0558003
CFO/Total assets 0577415 0566106 0.7862115
Cash/Current Liabilities 0.600504 0.668037 0580029
CFO/EBIT 0.504279 0650685 0659325

CFO/Sales 0.550802 0.566004 0690162

Operating Income/Total Assets 0.736923 0783411  0.838473
Current Assets/Sales 0.555045 05036080 0571219

Met Worth/Total Assets 0.649082 0.70455% 0757709

Met sales/Cash from sales 0.553019 0519220 0.792952
Ebitda/EBIT 0.562054 0512567 0202643

Total Liabilities/Total Assets 0.649082 0.704558 0757708
Working Capital/Net worth 0.591716 0504488 0189427
Interest Coverage 0.614290 0685180 0.669604
EBITTotal assets 0.736923 0.788411  0.838473

Long-term debtTotal Assets 0.547865 0.580240 0559471
Working Capital/Total Assets 0.639839 0717040 0716593
Turnover Payables 0572869 0.620504 0.533040

Current Assets/Total Assets 0554283 0586154 0.625551

Data Pre-processing and univariate logistic regression code

for_logit = medie_dy

#preprocessing outliars

mean_ratio = np.mean(for_logit)

std_ratio = np.std(for_logit)

z_score = (for_logit-mean_ratio)/std_ratio

z_score[abs(z_score) »= 3] = np.nan

print(np.sum(z_score[abs(z_score) >= 3].count()}))

z_score = Z_score*std ratio+mean_ratio #getting back to normal values
for_logit = z_score

#filling nan

for_logit=for_logit.replace([np.inf, -np.inf], np.nan) #should not be necessary
for_logit.fillna(for_logit.mean(), inplace=True)

#adjusting default

for_logit[ 'Default’] = medie_4y[ 'Default']

#standardization already carried out for outliars detection

#df to store lLoop results
acc_n_ = pd.DataFrams()
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#standardization already carried out for outliars detection

#df to store loop results
acc_n_ = pd.DataFrame()

#Applying Logit (univariate)

#looping over all ratios

for ratio in list(for_logit):
x= np.array(for_logit[ratio]).reshape(-1,1)
y= for_logit[ 'Default’]

# train e test set

x_train, x_test, y train, y test= train_test_split(x, y, test_size= ©8.28, random_state=8)
# fit a model

model = LogisticRegression(solver="1lbfgs")
model.fit(x_train, y_train)

# predict probabilities

y_pred = model.predict_proba(x_test)

# keep probabilities for the positive outcome only

y_pred = y pred[:, 1] #taking only 'positive’ probability
# calculate roc curves

fpr, tpr, thresholds = roc_curve(y_test, y_pred)

#roc_auc = auc(fpr, tpr)

#plt.plot(fpr,tpr, Label = f"AUC: {round(roc_auc,2)}")
metrics.plot_roc_curve(model, x_test, y_test)
plt.plot([e, 1], [e, 1],"'r--")

plt.xlabel( 'False Positive Rate')

plt.ylabel( 'True Positive Rate')

plt.title(f'ROC AUC : {ratio}')

plt.legend()

plt.show()

# get the best threshold

] = tpr - fpr

ix = np.argmax(3J)

best_thresh = thresholds[ix]

#orint( 'Best Threshold=%f" % (best_thresh))

y_pred = pd.DataFrame(y_pred)

y_pred[ "new_thrsld'] = np.where(y_pred >= best_thresh, 1, 8) #new threshold set (sklearn Logit has default of 8.5)
#orint(y_pred[ ‘'new_thrsld'])

#reating the Confusion matrix

cm= confusion matrix(y_test, y_pred[ 'new_thrsld'])

print {(cm)

#check evaluation metrics for the confusion table

classif = classification_report(y_test, y pred[ new_thrsld'], output_dict=True)
metalist=[]

metalist.append({classif[ ‘macro avg'][ precision’])
metalist.append(classif[ ‘macro avg' ][ "recall'])

metalist.append(classif[ accuracy’])

#metalist.append(sklearn.metrics.r2 score(y_test, y pred[ 'new thrsld']))

acc_n_[ratio] = metalist
#fpr, tpr, thresholds = roc_curve(y_test,y pred[ 'new thrsld'])

acc_n_.drop('Default’, inplace=True, axis=1)

acc_n_ = acc_n_.T.rename(columns={8: 'Macro average Precision', 1: 'Macro average recall”, 2:'Accuracy', 3:'R2'})
acc_n

131



APPENDIX 4. Binning and Information Values results

All financial indices charts for binning categorization are reported along with the final IV
computed. For sake of brevity Weight of Evidence results are computed through the code but

not showed. Each chart is anticipated by the IV of the ratio it belongs to.
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68.14387337678636763 2.4159514500535675
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0.4526597686454751

Turnover Payables
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Long-term debt/Total Assets, Retained Earnings/Total Assets and Inventory/Sales could not

being displayed since their distribution reported a too high occurrences of 0s. This has

prevented the code from finding the right end of each decile. For this reason, the following

error message is printed on Python Console, for each of them:

Inventory/Sales distribution has too many equal values (0.0).
Binning cannot be carried out: python does not know how to create decil

es
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Python code for Binning, WoE and IVs

#computing deciles to ratios distributions
rel_dec = [©,1,2,3,4,5,6,7,8,9]

binning = medie_4y[:]

n_indeces_check=8
prepriority=pd.DataFrame()
prepriority_iv=pd.DataFrame()

for input_tobe in list(binning.drop( 'Default’, axis=1}):
n_indeces_check+=1
result_list=[]
#deciles_List=[]
stats=pd.DataFrame()
non_def = [] #WOE and IV
default = []

try:
binning['deciles’]= pd.gcut(binning[input_tobe],18,labels= rel_dec, retbins=False, precision=3, duplicates="raise")
except ValueError:

prepriority['{}'.format(input_tobe)] = [-1]

prepriority_iv['{}'.format(input_tobe)] = [-1888]

print(’{} distribution has too many equal values (8.8). \nBinning cannot be carried out:’,

‘python does not know how to create deciles'.format(input_tobe))
continue

beta={}
alpha = binning[[ 'deciles', 'Default’']]
for x in rel_dec:
beta[ 'decile {}'.format(x)] = alpha[alpha['deciles’]==x]
numb_defaulted = beta[ 'decile {}'.format(x)][ 'Default’].replace(np.inf,np.nan).sum()
non_def.append(len(beta[ "decile {}'.format(x)][ 'Default’].replace(np.inf,np.nan).dropna()) - numb_defaulted)
default.append(numb_defaulted)
result_list.append(beta[ 'decile {}".format(x)][ Default'].replace(np.inf,np.nan).mean()*168)
#deciles Llist.append(beta[ 'decile {}'.format(x)][ 'deciles"][8])
stats['freg_default'] = result_list
#orint(default, non_def)
woe=[]
iv =8
for x in default:
perc_non = ((non_def[default.index(x)]+8.5)/(sum{non_def)+&.5})
perc_def = ((x+8.5)/(sum(default)+8.5))
woe_decile = np.log( perc_non/perc_def )
woe. append(woe_decile) #WOE of the decile
iv += (perc_non - perc_def) * woe_decile
#print(sum(non_def), sum(default))
#orint{woe)
if input_tobe == "EBIT/Total assets':
print(non_def, default, woe)
meta_iv = []
meta_iv.append(iv)
print{iv)

stats['deciles’'] = ["ql', 'g2', 'g3', 'g4', 'q5’, 'gé', 'g7', 'g8', 'g9’, 'glé’]
stats = stats.set_index('deciles’)

linesl = stats['freq_default'].plot.line()

#tendency Line

z = np.polyfit(rel_dec, list(stats['freq_default']), 1)

p = np.polyld(z)

plt.plot(rel_dec,p(rel_dec),"r--")

slope_abs = abs(p(rel_dec)[1]-p(rel_dec)[8]) #we only care about abs slope
meta=[]

meta.append(slope_abs)

prepriority['{}".format(input_tobe)] = meta
prepriority_iv['{}'.format(input_tobe)] = meta_iv

plt.title(input_tobe)
plt.show()
print{n_indeces_check)

prepriority = prepriority.T.sort_values(by=[8], axis=8, ascending= False)
prepriority_iv= prepriority_iv.T.sort_values(by=[8], axis=8, ascending= False)
print(list(prepriority_iv[e]))}

priority_binning = list(prepriority.T)

priority_ IV = list({prepriority_iv.T)

#priority_IV,priority_binning
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APPENDIX 5. Code for retrieving correlations

#check with the ending check
print{len{list(final_indeces)})

#dropping every '2809° column --» dropping for sake of simplicity

for x in list(final_indeces):
if x[-4:] == "2889":
final_indeces.drop([x], inplace=True, axis=1)
#check
print(len(list(final_indeces)))

#creating matrices for correlation (TRANSPOSING ALL ELEMENTS PREVIOUSLY COMPUTED)

final_matrix = {}
#creating list of ratios name
index_name_list = []
for u in list(final_indeces):

if u[-4:]=="2818":

index_name_list.append(u[:-5])

#print(Llen(index_name List))
#print(index_name_List)

for a in list(range(@,final_indeces.shape[8])):
columns_index = pd.DataFrame()
#if aX500==0:
#print{a)
for name_ind in index_name_list:
columns_index[name_ind] =final_indeces.iloc[a]

[name_ind + ' 2818':name_ind + ' 2818'].T.rename(index={

name_ind + ' 2818°': 2818, name_ind + ' 2811':
name_ind + ' 2812°': 2812, name_ind + ' 2813":
name_ind + ' 2814°': 2814, name_ind + ' 2815°

name_ind + ' 2816': 2816, name_ind + ' 2817":

2011,
2013,
2015,
2017,

name_ind + ' 2818': 2818})

#print(columns_index{name] )

final_matrix ['azienda n {}'.format(a)] = columns_index

#final_matrix[‘azienda n 1']

#computing correlation coefficients
corr_dict = {}

for item in final_matrix:

corr_dict[item] = final_matrix[item].replace([np.inf, -np.inf], np.nan).corr()

#corr dict| ‘azienda n 2']

aggregat = @
for xi in list(corr_dict):
for yi in list(corr_dict[xi])
aggregat += corr_dict[xi][yi].disna().sum()
#aggregat

#average correlation

average_correls = pd.DataFrame(@, index=index_name_list, columns=index_name_list)
division_matrix = pd.DataFrame(@, index=index name_list, columns=index_name_list)

for azienda in corr_dict:

meta_matr = pd.DataFrame(l, index=index_name_list, columns=index_name_list)
meta_matr = meta_matr - corr_dict [azienda].isna().astype(int)

division_matrix += meta_matr
#division matrix

for t in corr_dict:
average_correls += corr_dict[t].replace(np.nan, @)

#dividing for the division _matrix
average_correls = average _correls / divisien_matrix

average_correls

%store average_correls
%store index_name_list
%store final_all

142



APPENDIX 6. Priority lists and the code to build them

accuracy

literature

Precision

Recall

Binning
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accuracy literature Precision Recall Binning v
Operating
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Code for Binning and IV priority lists

prepriority = prepriority.T.sort_values(by=[8], axis=8, ascending= False)
prepriority_iv= preprierity_iv.T.sort_values(by=[8], axis=8, ascending= False)
print{list(prepriority_iv[e]})
priority binning = list(prepriority.T)
priority IV = list(prepriority_iv.T)
#priority_IV,priority binning

Code for Accuracy, Precision and Recall priority lists

#rtriving priority accuracy

sorted_ =

acc_n_.sort_walues([ "Accuracy'])

priority_accuracy = list(sorted_.T)[::-1]
priority_accuracy
#rtriving priority_Precision

sorted_ =
priority Precision =

priority_accuracy
#rtriving priority Recall

sorted_ =

priority Recall = list(sorted_.T)[::-1]
priority Recall

acc_n_.sort_wvalues([ 'Macro average Precisiocn'])
list(sorted_.T)[::-1]

acc_n_.sort_walues(['Macro average recall’])

Assets

The priority list built on the relevant Literature has been created manually.

Assets
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APPENDIX 7. Data pre-processing and correlation funnel for prediction models

Prioritizing function
def prioritizing (threshold):

final = pd.DataFrames()
final = df_out[abs(df out[&]) > threshold]
#orint(Llen({final})

#orint(ratio A, ratio B)
#deciding which one is better to keep
to_be_used = {}

for prior_name in list(prior_dict):

winners = []
losers = []

left_out = []

index_name_list = prier_dict[prior_name][:]
for t in [1,2, 3]:
check = @
for pair in list({final.T}):
ratio A = pair [:list(pair).index('_")]
ratio B = pair [list(pair).index('_")+1:]
#print(ratio A, '-",ratio B)

if ratio A in losers and ratic B in losers:
check+=1
continue

elif ratio_A in winners and ratio B in winners:
check+=1

if index_name_list.index(ratic_A) < index_name_list.index(ratic_B):

winners.remove(ratioc B)
losers.append(ratio_B)
else:
winners.remove(ratio_A)
losers.append(ratio_A)

elif ratioc A in winners and ratic_B in losers:
check+=1

if index_name_list.index(ratio A) < index_name_list.index(ratio_B):

continue

else:
winners.remove(ratio A)
losers.append(ratio_A)

elif ratio_B in winners and ratio A in losers:
check+=1

if index_name_list.index(ratic_A) < index_name_list.index(ratic_B):

winners.remove(ratio B)

losers.append(ratio_B)
else:

continue

elif ratio A in winners:
check+=1

if index_name_list.index(ratic_A) < index_name_list.index(ratic_B):

losers.append(ratioc_B)
else:
winners.remove(ratio_A)
losers.append(ratio_A)
winners.append({ratio_B)

elif ratio A in losers:
check+=1

if index_name_list.index({ratic_A)} < index_name_list.index(ratic_B):

losers.append(ratio_B)
else:
winners.append({ratio B) #problem! 2 times rolling to solve it
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elif ratio B in winners:

check+=1

if index_name_list.index(ratic_A) < index_name_list.index(ratic_B):
winners.remove(ratio B)
losers.append(ratio_B)
winners.append({ratio_A)

else:
losers.append(ratio_A)

#preparing the final tabel
lista_assegna = []
for uy in index_name_list:
if uy in winners:
lista_assegna.append( winner')
elif uy in losers:
lista_assegna.append( loser')
elif uy in left_out:
lista assegna.append( to be used (no corr)”)
else:
print( ERROR!!! probabile errore: NON TORNANO I N DI INDICI MELLE DUE LISTE")
#print{lista_assegna)
#print( 'Per {}\nDa utilizzare: '.format(prior _name),(len(winners)+lLen(left out)), "\nDa scartare:
#', len(losers), "\nNON CORRELANTI: ', len(left_out))
final_tabel = pd.DataFrams()
final_tabel['INDICI'] = index_name_list
final_tabel['status’'] = lista_assegna
da_usare = list(final_tabel[final_tabel['status’'] != "loser']['INDICI'])
#final_tabel
to_be_used[prior_name] = da_usare
return to_be_used

elif ratio B in losers:
check+=1
if index_name_list.index(ratio_A) < index_name_list.index(ratio_B):
winners.append(ratio A) #problem! 2 times rolling to solve it
else:
losers.append(ratio_A)

else:

check+=1

if index_name_list.index(ratic_A) < index_name_list.index(ratic B):
winners.append(ratio_A)
losers.append(ratic_B)

else:
winners.append(ratio_B)
losers.append(ratio_A)

#taking care of left out values
metalistx = winners+losers
#print(metalistx)
for ¢ in index_name_list:
if ¢ not in metalistx:
left_out.append(c)
#check
#print(len(left_out+metalistx)==Len(index_name_List))
#union = (left_out+metalistx)
#checker = @
#for cv in index_name_Llist:
#1f cv not in union:
#checker+=1
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Pre-processing section

#try to put everything inside
corr_range=e.81

ROC_AUC_corr = 8.7  #it needs to be included in the range at the beginning of the Loop

#PREPROCESSING

multi_ = medie 4y

#preprocessing outliars

mean_ratio = np.mean(multi_}

std_ratic = np.std{multi_)

z_score = (multi_-mean_ratio)/std_ratio

z_score[abs(z_score} »= 3] = np.nan

print(np.sum{z_score[abs(z_score)} »= 3].count())==8)

z_score = Z_score*std_ratio+mean_ratio #getting back to normal values
multi_ = z_score

#filling nan

multi_=multi_.replace([np.inf, -np.inf], np.nan) #should not be necessary
multi_.fillna(multi_.mean(), inplace=True)

#adjusting default
multi_ ['Default’] = medie_4y['Default’]

Embedding Prioritizing into Correlation funnel

acc_logit ={}
acc_SWM ={}

acc_KNN ={}
acc_AdaBoost={}
acc_DecisionTree={}
acc_XGboost={}

test_logit =[]

test SVM =[]

test KNN =[]

test_AdaBoost=[]

test_DecisionTree=[]

test_XGboost=[] #it varies depending on ROC_AUC corr

ROC_AUC = {}

to_be_u = prioritizing(ROC_AUC_corr)

for screamed in list(to_be_u):
ROC_AUC[screamed]={}

for corr_level in list(np.around{list(np.arange(®.3,8.2,corr_range)),4)):
to_be_used = prioritizing(corr_level)
for screamed in list(to_be_used):
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APPENDIX 8. Multivariate prediction models complete code (with testing section)

#try to put everything inside

corr_range=8.81

ROC_AUC_corr = 8.7  #it needs to be included in the range at the beginning of the Loop
#PREPROCESSING

multi_ = medie_ 4y

#preprocessing outliars

mean_ratioc = np.mean(multi_)

std_ratio = np.std{multi_ )

z_score = (multi_-mean_ratio)/std_ratio

z_score[abs(z_score) »= 3] = np.nan

print(np.sum(z_score[abs(z_score) »= 3].count())==8)

z_score = 7_score*std_ratio+mean_ratio #getting back to normal values
multi = z_score

#filling nan

multi =multi_.replace([np.inf, -np.inf], np.nan) #should not be necessary
multi_ .fillna(multi_.mean(), inplace=True)

#adjusting default
multi ["Default’] = medie_4y[ 'Default”]

acc_logit ={}
acc_SWVM ={}

acc_KNN ={}
acc_AdaBoost={}
acc_DecisionTree={}
acc_XGboost={}

test_logit =[]

test SVM =[]

test KNN =[]

test_AdaBoost=[]

test_DecisionTree=[]

test_XGboost=[] #it varies depending on ROC_AUC corr

ROC_AUC = {1}

to_be u = prioritizing(ROC_AUC_corr)

for screamed in list(to_be_u):
ROC_AUC[screamed]={}

for corr_level in list(np.around(list(np.arange(8.3,8.9,corr_range)),4)):
to_be_used = prioritizing(corr_level)
for screamed in list(to_be_used):

if corr_lewvel == B.3: #only creating once
acc_logit[screamed] =[]
acc_SVM[screamed] =[]
acc_KNN[screamed] =[]
acc_AdaBoost[screamed] = []
acc_DecisionTree[screamed] = []
acc_XGboost[screamed] = []

X= np.array(multi_[to_be_used[screamed]])
#feature scaling

min_max_scaler = preprocessing.MinMaxScaler()
X_scaled = min_max_scaler.fit_transform(X)

X = pd.DataFrame(X_scaled)

y= multi_['Default’]

dial_ t = 8.25

#Llogistic regression
x_train, x_test, y_train, y_test= traln_test_split(X, y, test_size= dial_t, random_state=@)
model = LogisticRegression(solver="lbfgs")
model.fit(x_train, y_train)
y_pred = model.predict_proba(x_test)
# keep probabilities for the positive outcome only
y_pred = y pred[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
# get the best threshold
1 = tpr - fpr
ix = np.argmax(J)
best_thresh = thresholds[ix]
y_pred = pd.DataFrame(y_pred)
y_pred[ ‘new_thrsld'] = np.where(y pred >= best_thresh, 1, @) #new threshold set (sklearn logit has default of 8.5)
if corr_level==ROC_AUC_corr:
ROC_AUC[screamed][ "Logit'] = [x_test, y_test, model]
test_logit.append(model)
acc_logit[screamed].append(metrics.accuracy_score(y_test, y_pred[ 'new_thrsld']))
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# 5w

x_train, x_test, y_train, y_test= train_test_split(X, y, test_size= dial_t, random_state=8)

rbf_svc = svm.SVC({C=158, kernal="poly")
rbf_svc.fit{x_train, y_train)
y_pred = rbf_svc.predict(x_test)
if corr_level==ROC_AUC_corr:
ROC_AUC[screamed]['SVWM'] = [x_test,y test,rbf_swc]
test_SVM.append(rbf_svc)

acc_SVM[screamed].append(metrics.accuracy_score(y_test, y_pred))

# KNN

x_train, x_test, y_train, y_test= train_test_split(X, vy, test_size= dial t, random_state=8)

knn = KNeighborsClassifier(n_neighbors=12)

knn.fit(x_train, y_train)

y_pred = knn.predict(x_test)

if corr_level==ROC_AUC_corr:
ROC_AUC[screamed] [ "KNN'] = [x_test,y_test, knn]
test_KNN.append(knn)

acc_KNN[screamed].append(metrics.accuracy_score(y_test, y_pred))

#AdaBoost

x_train, x_test, y_train, y test= train_test_split(X, y, test_size= dial t, random _state=8)

ada = AdaBoostClassifier(n_estimators=158, random_state=8)
ada.fit(x_train, y_train)
y_pred = ada.predict(x_test)
if corr_level==ROC_AUC_corr:
ROC_AUC[screamed][ 'AdaBoost'] = [x_test,y_test,ada]
test_AdaBoost.append(ada)

acc_AdaBoost[screamad].append(metrics.accuracy_score(y_test, y_pred))

priorityz=prioritizing(e.7)
testing_models={"logit':test_logit, 'svm':test_SWM, 'knn': test_KNN,

"xgh’ rtest_XGboost}

%store testing models
%store priorityz

print{'loading plots...")

#one chart per method
methods = [acc_leogit, acc_SVM, acc_KMN, acc_AdaBoost, acc_DecisionTree, acc_XGboost]
names=["Logit', 'SWM', 'KNN', 'AdaBoost', 'Decision Tree', 'XGboost']
for method in methods:

x=[]

y=1list(np.arange(®.3,8.9,corr_range))

for screamed in list(method):
x.append(method[screamed])

for t in range(len(x)):
plt.plot(y,x[t], label = f"{list(method)[t]}")

# Show/save figure as desired.
plt.xlabel( 'corr thresholds')
plt.ylabel( accuracy in prediction’})

plt.title(f accuracy vs cerr thresholds: {names[methods.index(method)]}")

plt.legend()
plt.show()

#Decision Tree

x_train, x_test, y_train, y_test= train_test_split(X, y, test_size= dial t, random_state=8)

tree = DecisionTreeClassifier(random_state=8)
tree.fit(x_train, y_train)
y_pred = tree.predict(x_test)
if corr_level==ROC_AUC_corr:
ROC_AUC[screamed][ 'Decision Tree'] = [x_test,y_test,tree]
test_DecisionTree.append(tree)

acc_DecisionTree[screamed].append(metrics.accuracy_score(y_test, y_pred))

#XGboost

x_train, x_test, y_train, y_test= train_test_split(X, y, test_size= dial t, random_state=8)
xgho = XGBClassifier(n_estimators=188, objective="binary:logistic”, random_state=42)

xgbo.fit(x_train, y_train)

y_pred = xgbo.predict(x_ test)

if corr_level==ROC_AUC_corr:
ROC_AUC[screamed][ 'XGboost'] = [x_test,y_test,xgbo]
test_XGboost.append(xgbo)

acc_XGboost[screamed].append(metrics.accuracy_score(y_test, y_pred))

#print(metrics.accuracy_score(y_test, y pred))

ada':test_AdaBoost,

"tree' rtest_DecisionTree,
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#ROC AUC
for prior_mod in list(ROC_AUC):

for pred_model in list(ROC_AUC[prior_mod]):
classifier = ROC_AUC[prior_mod][pred_model][2]
y_test = ROC_AUC[prior_mod][pred model][1]
¥%_test = ROC_AUC[prior_mod][pred_model][8]
#fpr, tpr, thresholds = roc_curve(y_test,y pred)
#roc_aguc = aquc(fpr, tpr)
#plt.plot(fpr,tpr, Llabel = f"{pred model}: {round(roc_auc,2)}")
metrics.plot_roc_curve(classifier, x_test, y_test)
plt.plot([e, 1], [e, 1],'r--")
plt.xlabel( False Positive Rate')
plt.ylabel( True Positive Rate')
plt.title(f'ROC AUC : {prior_mod} : correlation threshold {ROC_AUC corrl}')
plt.legend()

Code to test for hold-out sample

%store -r testing models
%store -r priorityz

#preprocessing means

multi_ = medie_ 4y

#preprocessing outliars

mean_ratio = np.mean(multi_)

std_ratio = np.std(multi_)

z_score = (multi_-mean_ratio)/std_ratio

z_score[abs(z_score) »= 3] = np.nan

print{np.sum{z_score[abs(z_score) »= 3].count())==8)

z_score = 7_score*std_ratio+mean_ratio #getting back to normal values
multi_ = z_score

#filling man

multi =multi_.replace{[np.inf, -np.inf], np.nan) #should not be necessary
multi .fillna(multi_.mean(), inplace=True)

fin_test_acc={}
fin_test_acc['logit']=[]
fin_test_acc[ 'svm']=[]

fin_test_acc[ 'knn']=[]

fin_test_acc['ada’]
fin_test_acc[ 'tree’
fin_test_acc[ 'xgh’]

[]
=[]
[1

count=@

for priory in list(priorityz):
X= np.array(multi_[priorityz[priory]])
#feature scaling
min_max_scaler = preprocessing.MinMaxScaler()
¥_scaled = min_max_scaler.fit_transform(X)
¥ = pd.DataFrame(X_scaled)
y= multi_[ 'Default’]

#Logistic regression

y_pred = testing _models['logit’'][count].predict_proba(X)

y_pred = y pred[:, 1]

fpr, tpr, thresholds = roc_curve(y, y_pred)

# get the best threshold

1 = tpr - fpr

ix = np.argmax(J)

best_thresh = thresholds[ix]

y_pred = pd.DataFrame(y_pred)

y_pred[ “new_thrsld'] = np.where(y_pred >= best_thresh, 1, 8) #new threshold set (sklearn Logit has default of 8.5)
fin_test_acc['logit'].append(metrics.accuracy score(y, y_pred[ 'new_thrsld’]))

# SvM
y_pred = testing_models[ 'svm'][count].predict(X)
fin_test_acc[ svm'].append(metrics.accuracy_score(y, y_pred))

# KNN

y_pred = testing models['knn'][count].predict(X)
fin_test_acc[ knn'].append(metrics.accuracy_score(y, y_pred))
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# ADABOOST
y_pred = testing_models[ ada'][count].predict(X)
fin_test_acc['ada’].append(metrics.accuracy_score(y, y_pred))

# decision tree

y_pred = testing models[ tree'][count].predict(X)
fin_test_acc[ tree'].append(metrics.accuracy_score(y, y_pred))
# XGBoast

y_pred = testing models[ xgb'][count].predict(X)
fin_test_acc['xgb'].append(metrics.accuracy_score(y, y_pred))
count+=1

fin_test_acc=pd.DataFrame(fin_test_acc)
fin_test_acc
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APPENDIX 9 ROC AUC:s retrieved from prediction models for one-year distance

Priority list: literature; Correlation threshold: 8.3

ROC AUC
10 1
0.8 1
I
1=}
. 06 A
=
i 044 Logit (AUC = 0.74)
E SVM (AUC = 0.90)
— KMMN {AUC = 0.77)
0.2 7 —— AdaBoost (AUC = 0.90)
— Decision Tree (AUC = 0.77)
00 A = XGboost (AUC = 0.93)
I]IEI I]|2 I1I4 IJ.IE I]l.IS lI{I
False Positive Rate
Model Accuracy Precision Recall
Logit 8.6066118 8.618744 0.035858
SVM B.893892 6.593464 6.745808
KM 8.828947 B.854882 6.562866
AdaBoost a.876645 B.825767 6.744591
Decision Tree B.881579 B.824366 6.778432
¥Ghoost 8.914474 8.807434 B.813585

Priority list: Precision; Correlation threshold: 8.3

ROC AUC

10 4

03 4

0.6 1

04

True Pasitive Rate

02 A

0.0 4

Logit (AUC = 0.74)

SVM [AUC = 0.88)
= KNN {AUC = 0.B8)
= AdaBoost (AUC = 0.90)
== Decision Tree (AUC = 0.75)
= XGboost (AUC = 0.93)

KNN

AdaBoos
Decisio
XGhoost

T
04

T
06

00 0z
False Positive Rate

Accuracy Precision
B8.636513 B.562865
B.875924 8.855283
8.5873282 8.897948

t 8.5823892 B.8477

n Tree 8.5868421 B.886391
5.914474 B.5804840

0.8

.693L57
L 727896
.8967381
787326
. 746369
.81634
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Priority list: Recall; Correlation threshold: 6.3

ROC AUC
10 1
0.8 1
i
5
= 0.6
=z
:E‘
= 04+ . Logit {AUC = 0.74)
E - SVM (AUC = 0.89)
-~ —— KNN (AUC = 0.88)
0.2 1 - —— AdaBoost (AUC = 0.91)
= Decision Tree (AUJC = 0.75)
0.0 4 — XGhoost (AUC = 0.92)
I].IU I].IE I].I4 I].IE I].IB ]_Il'.]
False Positive Rate
Model Accuracy Precision Recall
Logit 8.641447 6.622784 B.696625
SVM B.886513 6.867525 6.748935
KM 8.88157% 6.893967 6.788584
AdaBoost 8.806382 8.854163 8.792018
Decision Tres B.871711 8.882491 8.743246
XGhoost 8.989539 8.89624% 0.797500

Friority list: Binning; Correlation threshold: 8.3

ROC AUC
10 1
0.5 1
i
[1]
o 06
=
:E
= 041 ) Logit {AUC = 0.74)
E ’f’ SWM [AUC = 0.88)
Lo —— KNN (AUC = 0.88)
0.2 1 7 —— AdaBoost (AUC = 0.92)
— Decision Tree (AUC = 0.78)
0.0 - — XGboost (AUC = 0.94)
I].IU I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit A.543892 B.623392 B.697643
SVM B.87828% 8.84%211 B8.726878
KNH 68.876645 B.888973 B.695763
AdaBoost 8.9829561 B8.864372 &.3064565
Cecision Tree 8,879934 8.81578% B8.77917%
XGhoost A.917763 B.987862 6.815621
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Priority list: IV; Correlation threshold: .3

ROC AUC

104

0.3 4

0.6 4

04

True Positive Rate

0.2 A

0.0 4

Logit (AUC = 0.74)

SVM (AUC = 0.88)

KNM {ALUC = 0.88)
AdaBoost (AUC = 0.91)
Decision Tree (AUC = 0.77)
XGboost (AUC = 0.93)

K NN

AdaBoost
Decision Tree
XGhoost

Priority list: literature; Correlation threshold: 8.6

T
0z 04

AcCcuracy
B8.6326513
LB71711
.B75
. 804737
.B873355
.912829

mm oD oD ®

T
06
False Positive Rate

Precision

8

e v B B %

.62866
848147
.B04783
.84174
.BB2585
886122

0. 10

Recall
@.69357
8.788984
8.088234
g8.88462
6.771851
8.81%a77

ROC AUC
10 A
0.8 1
I
1)
06 A
=
:E'
= 04 Logit {AUC = 0.75)
E 7 SWM (AUC = 0.89)
L —— KNN {AUC = 0.74)
021 el —— AdaBoost (AUC = 0.91)
- —— Decision Tree (AUC = 0.77)
00 - — XGboost (AUC = 0.94)
I].IU I].IE I].I4 I].IE I].IE ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.557805 B.62413 B.597842
SVM B.800671 6.984956 B6.758847
KNH 8.81414% 8.783482 B.545846
AdaBoost 8.9111284 8.887467 0.811548
Decision Tree B8.870924 8.828329 0.7608414
XGboost g8.912483 8.98936 B.819895
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Priority list: Precision; Correlation threshold: .6

ROC aAUC
10 1
0.8 1
]
(1]
o 06
=
:E'
E 0.4 1 . Logit (AUC = 0.72)
E _,f’ SWM (AUC = 0.B9)
L= —— KNN (AUC = 0.76)
0.2 7 - —— AdaBoost (AUC = 0.90)
= Decision Tree (AUC = 0.75)
0.0 - — XGboost (AUC = 0.93)
I].IU I].IE I].I-'Jf I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.679276 B.616298 B.4677729
SWM B.888158 B.873733 B.741953
KNHN 8.8685211 @.673335 B.536315
AdaBoost 8.9829601 8.86060911 6.363281
Decision Tree 8.870866 8.881453 @&.753538
XGboost 8.9878095 8.884821 0.8063801

Priority list:

Recall; Correlation threshold: 8.8

ROC AUC
10 1
0.8 1
3
[
06
=
.'E‘
t 0.4 1 . Logit (AUC = 0.74)
E f.a" SVM (AUC = 0.89)
L —— KNN (AUC = 0.74)
0.2 1 7 —— AdaBoost (AUC = 0.92)
= Decision Tree (AUC = 0.77)
0.0 - — XGboost (AUC = 0.94)
I].ICI I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit a.771382 f.6559434 B.695653
SVM B.883224 B.872782 B.725878
K NN 8.814145 8.73851% B.53337
AdaBoost 8.914474 B.882381 B.82%861
Decision Tree 8.834368 8.83269% B0.77246%
XGhoost 8.916118 6,8399838 B.817858
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Priority list: Binning; Correlation threshold: 8.6

ROC AUC
10 1
0.8 1
o]
=]
06
=
:'g'
E 0.4 1 . Logit (AUC = 0.72)
E f.a" SVM (AUC = 0.89)
o —— KNN {AUC = 0.75)
0.2 1 ’ —— AdaBoost {AUC = 0.91)
= Decision Tree (AUC = 0.78)
0.0 - — XGboost (AUC = 0.93)
I].IU I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit a.782383 f.625323 B.085475
SVM B.886513 @.871841 B.73768
KM a.885211 a.a78886 B.543336
AdaBoost 8.984685 6.874385 B.868904
Decision Tree B8.884868 8.838713 B.775724
XGhoost g.916118 8.962588 6.814083

Priority list: IV; Correlation threshold: 8.6

ROC AUC
10 1
0.8 1
o)
&
E 0.6 1
:E.
i 0.4 1 . Logit (AUC = 0.72)
E ,'_.a" SVM (AUC = 0.89)
e —— KNN {&UC = 0.75)
0.2 1 ol —— AdaBoost (AUC = 0.91)
= Decision Tree (AUC = 0.77)
00 = XGboost (AUC =0.93)
D.IU I1|2 I].I4 I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit a.787237 f.629851 B.69178%
SVM B.883224 8.86796% B.729133
K NN B.884276 f.638413 B.53377
AdaBoost B.89%4571 6A.85888 8.881165
Decision Tres 8.884808 B.837873 B.765958
XGboost 8.916118 B.89568% B.821113
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Priority list: literature; Correlation threshold: 8.9

ROC AUC
10 -
0.8
u
=)
06
=
E ;
= 04 Logit (AUC = 0.75)
2 e SVM [AUC = 0.86)
-~ —— KNN (AUC = 0.75)
021 L —— AdaBoost (AUC = 0.91)
7 —— Decision Tree (AUC = 0.76)
0.0 - = KGboost (AUC = 0.94)
0.0 02 0.4 06 0.8 10
False Positive Rate
Model Accuracy Precision Recall
Logit B.626513 6.624566 B.70B88
SWM B.804737 6.806881 B8.752537
KMN B.827363 6.814116 B8.564382
AdaBoost B.98953% 6.8280a45 B.2364815
Decision Tree B.883224 B8.832685 06.76494
XGhoost B.922697 6.912325 B8.823442

Priority list: Precision; Correlation threshold: @.9

ROC ALUC
10 1
0.8 1
o
=)
o 06
=
:E
E 0.4 1 = Logit (AUC = 0.74}
E e SWM (AUC = 0.88)
R —— KNN {AUC = 0.73)
0.2 1 ” —— AdaBoost (AUC = 0.92)
= Decision Tree (AUC = 0.74)
00 - = XGboost (AUC = 0.94)
I]l.IU I].IE Ill-'i I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.677632 g.0l1%2383 B6.683221
SWM g6.883224 8.872782 @&.725878
KNKN B,827363 8.858587 B8.557792
AdaBoost A.98953% B.876956 B6.81784
Cecision Tres a.363487 8.791356 6.735444
XGhoost @.922697 B.98873 @.831697
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Pricrity list: Recall; Correlation threshold: 8.9

ROC AUC
10
0.8 1
o)
o
o 06
=2
:'g"
E 0.4 1 . Logit (AUC = 0.74)
E f.a" SWM (AUC = 0.BT)
e —— KNN {AUC = 0.72)
0.2 1 ’ —— AdaBoost (AUC = 0.92)
= Decision Tree (AUC = 0.78)
0.0 - — XGboost (AUC = 0.94)
I].IU I].I2 I1|4 I].IE I].IB ]_Iﬂ
False Positive Rate
Model Accuracy Precision Recall
Logit 8.a75987 B.6194956 B6.085458
SVM B.389863 B.884966 8.73%717
KNN B.827363 B.858587 B.557792
AdaBoost 8.914474 B.887838 B.82335
Decision Tree 68.886513 B.834892 8.776742
XGhoost g.921a853 G.067211 o.827424

Priority list:

Binning; Correlation threshold: &.

ROC AUC
10 A
L8 1
I
=)
06
=
:'E:
E 04 1 Logit (AUC = 0.74)
E e SWM (AUC = 0.87)
o —— KMN {AUC = 0.73)
0.2 7 L —— AdaBoost (AUC = 0.92)
- —— Decision Tree {AUC = 0.75)
0.0 - — XGboost (AUC = 0.94)
I].IU I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.5680145 B.523212 0.B87894
SWVM B8.879934 8.863971 0.728586
KNN 8.827383 8.858587 B.537792
AdaBoost 8.98953%9 8.87871% 0.813785
Decision Tres 8.866776 8.795161 0.748246
XGbhoost 8.921853 8.918348 0.324163
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APPENDIX 10 ROC AUC:s retrieved from prediction models for two- and three-years cases

Priority list: accuracy; Correlation threshold: &.3

Two-years distance from the
relevant defaulting year

ROC AUC
10 1
0.8 1
1 F}
=
0.6
=2
E 0.4 1 . Logit (AUC = 0.65)
E - SVM (AUC = 0.67)
= KNN (aUC = 0.67)
0.2 1 —— AdaBoost (AUC = 0.78)
= Decision Tree (AUC = 0.60)
0.0 - — XGboost (AUC = 0.81)
I].IEI I1|2 I].I4 I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit 8.47532% f.59966%9 B.63%9346
SVM @.88%211 @.738292 B.58752¢
KNN 8.885921 B.027898 B.512862
AdaBoost 8.8125 8.080442 B.626752
Decision Tree 8.758868 B.088226 B.683931
XGbhoost g8.814145%5 g8.03%355 8.591%63

Priority list: accuracy; Correlation threshold: @.9

ROC AUC

10 1

0.8 4

0.6 1

04

True Positive Rate

02

00

Logit (AUC = 0.72)
SVM [AUC = 0.78)
KMMN (AUC = 0.72)
— AdaBoost (AUC = 0.77)
Decision Tree (AUC = 0.61)
XGboost (AUC = 0.82)

KM

AdaBoost
Decision Tree
¥Ghoost

Ac

T T T T
04 o0&

g 140
False Positive Rate

curacy Precision Recall
.682566 B.616242 B.876511
.524813 8.727831 8.5%98873
.828724 8.731592 B.569995

.869211 B8.6798 B8.62797
. 766447 B.619247 B.814514
.818855 B.67053 B.500802
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Priority list: accuracy; Correlation threshold: &.3 Three-years distance from the

ROC AUC
10 1
0.8 1
]
=
.g 0.6 1
g
% 0.4 1 . Logit (AUC = 0.68)
E o SVM (AUC = 0.70)
= KNN {AUC = 0.72}
0.2 —— AdaBoost (AUC = 0.71)
= Decision Tree (AUC = 0.60)
0.0 - — XGboost (AUC = 0.74)
I].IEI I].IE I].I4 I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit 8.507a3% 6.59582 B.652854
SWVM g8.887506 6.654881 6.58651
KNN 8.81578% 6.716314 &.5586004
AdaBoost 8.796853 8.632295 B.567741
Decision Tree 8.78782% 8.63699: 0.6849%6
XGhoost B8.818855 6.686743 6.54760%

relevant defaulting year

Priority list: accuracy; Correlation threshold: e.9

ROC AUC
10 1
0.8 1
o]
&
.g 0.6 1
i 0.4 1 . Logit (AUC = 0.70)
E - SVM (AUC =0.72)
= KNN (&LUC = 0.70)
0.2 7 —— AdaBoost (AUC = 0.74)
= Decision Tree (AUC = 0.58)
0o — XGboost (AUC = 0.78)
I].IEI I].IE I1I4 D.IE I]l.lﬁ ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit a.763158 A.5359356 6.061368%
SVM 8.884276 f.633163 B.52726
KM a.88%211 A.678538 B6.5495846
AdaBoost a.7291118 A.5824392 B.5711%6
Decision Trese 8.738487 B.578182 B.577672
XGbhoost B8.887566 g.064613 B.5651683
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APPENDIX 11 ROC AUC:s retrieved from testing, external sample

Priority list: literature; Correlation threshold: 6.6 One-year distance from the

relevant defaulting year

ROC AUC

104

0.3 1

0.6 4

04

True Positive Rate

0.2 A

0.0 4

Logit {AUC = 0.81)
SVM (AUC = 0.61)
= KNN {AUC = 0.66)

— AdaBoost (AUC = 0.81)

Decision T (AUC = 0.59)
KGBoost (AUC = 0.78)

KNN
AdaBoost
Decision T
XGBoost

T T
04 06 0. 10

02
False Positive Rate
Accuracy Praecision Recall
B.738656 B8.663627 0.756121
B.82188 8.918411 6.5639:281
B8.828793 8.918223 6.56318%5
8.821132 8.753146 B6.556866
©.442275 @.5573%95 ©.585878
8.7885081 8.526884 0.59674
Priority list: Precision; Correlation threshold:
ROC AUC
10 A
08 1
i
=
o 06
=
= 041 Logit (AUC = 0.81)
= SWM [AUC = 0.43)
— kNN {AUC = 0,659}
0.2 —— AdaBoost (AUC = 0.71})
= Decision T (AUC = 0.44)
0.0 - —— XGBoost [AUC = 0.72)
I].IU I1|2 I1|4 I].IE I].IE ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit 6.73521 B.555808 0.729736
SWM @.812454 ©.582582 ©.512387
KMNH 8.823952 0.882277 8.512564
AdaBoost 8.818782 0.480744 0.499474
Decision T 8.65e433 0.4468083 ©0.42966
XGBoost 6.283171 6.59323% 0.559614
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Priority list: Recall; Correlation threshold: 6.6

ROC AUC
10 1
0.8 1
i
2
= 06 -
=
% 0.4 1 Logit (AUC = 0.82)
E SVM (AUC = 0.64)
= KNMN (AUC = 0.63)
0.2 1 —— AdaBoost (AUC = 0.76)
= Decision T (AUC = 0.43)
0.0 —— XGBoost (AUC = 0.69)
I].IEI I].IE I].I-'-l I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.72917% g.a6l1d46d4 B.75717
SWVM B.822883 B.872752 B.58937¢
K NHN 8.8196044 B.658914 B.56885021
AdaBoost 8.812177 8.67797% B.866216
Decision T B.063125 B.432263 B.431843
XGBoost B8.368754 B.57898%91 B.598887

Priority list: Binning; Correlation threshold: 8.6

ROC AUC
10 1
0.5 1
i
2
w 06 1
=
E 0.4 1 Logit (AUC = 0.78)
E SWM (AUC = 0.51)
— KMN {AUC = 0.71}
0.2 1 —— AdaBoost (AUC = 0.73)
= Decision T (AUC = 0.53)
0.0 - —— XGBoost (AUC = 0.65)
I].IU I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.637852 B.028778 8.717664
SWVM 8.8196044 g.0614%2 6.511178
KNH 8.823952 g8.812862 ©.515848
AdaBoost B.8213a7 B.68968555 6.519681
Cecision T B.38987% B.534311 8.533859
XGBoost g.339446 B.574887 8.574761
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Priority list: IV; Correlation threshold: 6.5

ROC AUC
10 1
0.8 1
i
2
= 06 -
=
= 04 - Logit (AUC = 0.78)
E SVM (AUC = 0.51)
= KNMN (AUC = 0.70)
0.2 1 —— AdaBoost (AUC = 0.77)
= Decision T (AUC = 0.50)
0.0 —— XGBoost (AUC = 0.67)
I].IEI I].IE I].I-'-l I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Praecision Recall
Logit B8.088356 B.038838 B.713726
SVM @.817921 B.832961 B.513232
K NN 8.8213a67 B.848122 B.585388
AdaBoost g.588465 B.085945 B.678762
Decision T 8.88672 g.5814 g.58a13%
XGBoost B.258185 B.596824 @.5449493

Priority list: literature; Correlation threshold: 8.6 Two-years distance from

ROC ALUC
10 1
0.8 1
i
B
. 06
=
= 04 Logit (AUC = 0.75)
2 SWM (AUC = 0.42)
KMMN (AUC = 070}
0.2 1 AdaBoost (AUC = 0.75)
Decision T (AUC = 0.64)
00 4 XGBoost (AUC = 0.6&)
I]l.IU I].IE I1|4 I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit a.7824a6 8.0248384 6.69494
SWVM g.215681 2.4563891 ©.43366%
KN B.79954 B.815774 B.56536
AdaBoost g.58ed414 B.61111% B6.686292
Cecision T B.532165% B.586202 6.064195%6
XGBoost g.455644 B.589/382 B8.638712

the relevant defaulting year
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Priority list: Precision; Correlation threshold: .6

ROC AUC
10
0.8
[+F)
5
0.6
2
E 0.4 o= Loait (AUC = 0.75)
E SWM (AUC = 0.43)
— KMNN (AUC = 0.69)
0.2 1 —— AdaBoost (AUC = 0.71)
= Decision T (AUC = 0.50)
0.0 4 —— XGBoost (AUC = 0.71)
I].IU I].|2 I].I-'Jf I].IE I].IB ]_II'J
False Positive Rate
Model Accuracy Precision Recall
Logit B.63297 B.028134 B8.782827
SVM @.5769a7 B.468526 6.441384
KNK B.822516 B.787887 6.522244
AdaBoost @.813613 8.588927 B6.515572
Decision T @.558813 8.48988%3 8.496888
XGBoost 8.431333 8.591678 ©.539512

Priority list: Recall; Correlation threshold: 6.6

ROC AUC
10 1
0.8 1
i
g
= 06 -
=
% 0.4 1 e Lagit (AUC = 0.73)
3 ;,:* SVM (AUC = 0.48)
=
= KNN {AUC = 085}
0.2 1 —— AdaBoost (AUC = 0.70)
= Decision T (AUC = 0.64)
0.0 —— XGBoost (AUC = 0.73)
I].IEI I].IE I].I-'-l I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit B.5829098 g.084184 H.67544%
SWVM 8.483343 8.4858214 B.481766
K NHN g8.828585 8.678185 B.51685
AdaBoost 8.8184%5 g.5599%4 8.581162
Decision T 8.4738606 B.597622 B.6044853
XGBoost 8.778534 g.561481 8.017216
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Priority list: Binning; Correlation threshold: 8.4

ROC AUC
10
0.8 1
i
g
= 0.6 -
=
E 0.4 1 — Logit (AUC = 0.70)
E SWVM (AUC = 0.45)
= KNMN {AUC = 0.68)
0.2 1 — AdaBoost (AUC = 0.69)
= Decision T (AUC = 0.53)
0.0 - —— XGBoost (AUC = 0.71)
I].IEI I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Praecision Recall
Logit @.549347 @.584462 6.65%6814
SWVM a.31ela7 B.482221 86.479288
Ly B.733774 8.59%825 B.62584
AdaBoost @.819a7 8.02468% 8.583376
Decision T 8.663125 g.524864 @.532443
XGBoost g.8139 B.58568% 8.51877%

Priority list: IV; Correlation thresheold: 8.6

ROC AUC
10 1
0.5 1
i
=
w06 1
=
E 0.4 1 Logit (AUC = 0.73)
E SWVM (AUC = 0.4T7)
KMM {ALUC = 0.67)
0.2 1 AdaBoost (AUC = 0.71)
Decision T (AUC = 0.51)
0.0 XGBoost (AUC = 0.69)
I].IEI I].IE I].I4 I].IE I].IB ]_I{I
False Positive Rate
Model Accuracy Precision Recall
Logit B.02377% g.016214 6.680844
SWVM g.882412 8.471671 6.495658
KNH 8.75158 8.591662 @.598281
AdaBoost B.784832 B.488913 8.496285
Decision T B.674612 B.56889 B.518885
XGBoost a.041811 B.576818 6.622658
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Priority list: literature; Correlation threshold:

ROC AUC

8.5 Three-years distance from
the relevant defaulting year

104

0.8

0.6

0.4

True Positive Rate

0.2 A

0.0 A

—— Logit {AUC = 0.73)
SWM [AUC = 0.35)
" —— KNN [AUC = 0.69}
" = AdaBoost (AUC = 0.68)
Decision T (AUC = 0.56)
XGBoost (AUC = 0.76)

KN
AdaBoost
Decision T
XGBoost

T T
02 04 0&
False Positive Rate

Accuracy Precision

6.645803 B.56B6531 &
6.265939 6.42147 ]
B.811828 8.612386 8.
8.817346 8.548964 &
8.747346 B.567242 &
6.823052 6.780843 &

0a 10

.877178
.424965

t2el4

.56817683
.564874
.533a877

Priority list: Precision; Correlation threshold: .6
ROC AUC
10 1
0.8 1
i
5
= 0.6 -
=
E 0.4 1 Logit (AUC = 0.68)
E SVM (AUC = 0.57)
= KNM {AUC = 0.63)
0.2 1 — AdaBoost (AUC = 0.69)
= Decision T (AUC = 0.49)
0.0 - —— XGBoost (AUC = 0.60)
I].IEI I].IE I].I4 I].IE I].IB ]_IIZI
False Positive Rate
Model Accuracy Praecision Recall
Logit B.57782% @.588815 B.648698
SWVM B.88672 8.488985 8.497785
Ly @.819a7 8.02468% B6.583376
AdaBoost 8.8973 @.584432 8.638987
Decision T 8.252728 8.485685 ©.439562
XGBoost 6,547 387 B.528576 8.548157

166



Priority list:

Recall; Correlation threshold: 8.8

ROC AUC

104

0.3 4

0.6 4

04

True Positive Rate

02 A

0.0 4

Logit (AUC = 0.69)
VM [AUC = 0.62)
KNM {AUC = 0.61)
AdaBoost (AUC = 0.60)
Decision T (AUC = 0.58)
KGBoost (AUC = 0,64}

K NN
AdaBoost
Decision T
XGBoost

Priority list: Binning; Correlation threshold: 8.6

A

ccuracy
.531817
.8185268
.819931
.818741
.556577
.328793

T
04

T
06 0 10
False Positive Rate

Precision Recall
@.594504 B.654256
B.838875 B.518382
B.088880 B.58328
8.557732 B.588231
8.542441 ©6.583571
B.678354 B.522435

ROC AUC

104

0.5 4

06 4

04+

True Positive Rate

02 A

0.0 4

Logit (AUC = 0.68)
SWVM (AUC = 0.54)
KMN {AUC = 0.83)

— AdaBoost (AUC = 0.64)

Decision T (AUC = 0.53)

= XGBoost (AUC = 0.63)

KN
AdaBoost
Decision T
XGBoost

T
04

T
0.6

02 0 1a
False Positive Rate

Accuracy Precision Recall
B.559736 B.580692 B.54945%
B.79753 B.58683% B8.561414
B.819357 B.65173% B.567802
B.6122092 B.553453 B.58713
8.235407 B.577709 8.52420
8.782757 B.548671 B8.559725
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Priority list: IV; Correlation threshold: 8.6

ROC AUC
10 1
0.8 1
i
=
= 0.6
=z
E 0.4 1 Logit (AUC = 0.68)
E SVM (AUC = 0.55)
KHMN (AUC = 0.62)
0.2 1 AdaBoost (AUC = 0.63)
Decision T (AUC = 0.62)
0.0 1 XGBoost (AUC = 0.69)
I].IEI I1|2 I].I4 I].IE I].IB ]_ICI
False Positive Rate
Model Accuracy Precision Recall
Logit B@.558258 B.5859926 B.6049888
SVM @.78753 @.511665 B.5682656
K NN 8.8196044 g.o61364 B.589936
AdaBoost 8.5487381 B.55745% H.596912
Decision T @.54365%3 8.57245%4 B.62184
XGBoost B.822220 g.681561 B©.563675
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