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Introduction

Climate and carbon risks, land artificialisation, the bioeconomy and above all forests,
in both temperate and tropical regions, are at the crossroads of many economic, social
and environmental issues. Research on the management, conservation and development
of particularly vulnerable ecosystems offers stimulating prospects for analysing and un-
derstanding how societies react to environmental crises and how they redefine their
relationship with natural resources. Given the global impact of the climate crisis, it is
becoming increasingly important to investigate international relations and negotiations
on climate change.
This has been in fact a much-debated topic in recent decades and the focus of many po-
litical strategies. That is why in 1988 the Intergovernmental Panel on Climate Change
(IPCC) was founded, the United Nations body for assessing the science related to cli-
mate change. It provides governments with scientific information that they can use to
develop climate policies, through regular assessments of the scientific basis of climate
change, its impacts and future risks, and options for adaptation and mitigation. But
what concerns us the most is that IPCC reports are also a key input into international
climate change negotiations.
Indeed, IPCC’s participation at the United Nations Climate Change Conferences is be-
coming more and more relevant during the years. At the last United Nations Climate
Change Conference of 2022 for example, known as COP27, the IPCC made several
interventions providing information based on the collection of thousands of scientific
articles that have guided governments in new climate strategies at national and in-
ternational level. Another very important conference to consider is the COP21 held
in Paris in 2015 with 196 participating countries from all the world, where the Paris
Agreement was drafted.
The Paris Agreement is a legally binding international treaty on climate change. It
is a landmark in the multilateral climate change process because a binding agreement
brings all nations together to combat climate change and adapt to its effects. It was
adopted by 196 Parties on 12 December 2015, entering into force on 4 November 2016.
Its overarching goal is to hold “the increase in the global average temperature to well
below 2°C above pre-industrial levels” and pursue efforts “to limit the temperature
increase to 1.5°C above pre-industrial levels.” However, in recent years, the IPCC has
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stressed the need to limit global warming to 1.5°C by the end of this century.
The Paris Agreement works on a five-year cycle of increasingly ambitious climate action.
Since 2020, countries have been submitting their national climate action plans, known
as nationally determined contributions (NDCs) and each successive NDC is meant to
reflect an increasingly higher degree of ambition only compared to the previous version
(no specific targets are imposed to countries). In this way, in contrast to the 1997
Kyoto Protocol, the distinction between developed and developing countries is blurred,
so that the latter also have to submit plans for emission reductions.
One of the crucial points of the Paris Agreement is the Article 6, which establishes three
approaches for Parties to voluntarily cooperate in achieving their emission reduction
targets and adaptation aims set out in their NDCs. One of these approaches is through
the Article 6.4 Mechanism, that is a mechanism “to contribute to the mitigation of
greenhouse gas emissions and support sustainable development” (Paris Agreement, Ar-
ticle 6, paragraph 4). Through this mechanism a company in one country can reduce
emissions in that country and have those reductions credited so that it can sell them to
another company in another country. That second company may use them for comply-
ing with its own emission reduction obligations or to help it meet net-zero. In the first
case we speak of carbon offset systems, while in the second case we speak of carbon
(or more generally greenhouse gases) reduction systems. In other words, the Article 6.4
Mechanism is what we call “voluntary carbon credits market”.
The agreement, however, only lists general rules to be respected in this voluntary
market, leaving room for different types of agreements and initiatives managed au-
tonomously by countries. This creates inhomogeneity and often imbalances between
the various areas of the Earth, making it difficult to have a clear overview.
At this moment, the aim of governments is to set up as clearly as possible the rules
of the voluntary carbon credits market, facing most of the problems and risks due to
these new mechanisms. In fact, most of them have collateral effects to be considered
and risks to be mitigated (asymmetry of information, leakage, non-permanence, etc.)
which sometimes have more influence than the environmental benefits they provide.
The goal of our work is to make a game-theoretical analysis of international climate
negotiations, in order to understand whether is possible to reach a profitable agreement
which overcomes the risks and preserves the environmental integrity or not. As a very
broad topic, we chose to focus on those negotiations about rainforests, or rather, those
contracts concerning the reduction of emissions from deforestation and forest degrada-
tion (also called REDD+ contracts).
Moreover, after showing a wider view on all the benefits and risks affecting rainforests
projects in the literature review of Chapter 1, we focus on some strategical aspects of
those negotiations as the asymmetry of bargaining power and the commitments issue.
We are interested in the following questions: “Is there a case for robust forestal con-
tracts? Is it possible to reach such a profitable agreement that is fair, efficient and
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affordable?”.
To better investigate them, we start by reviewing in Chapter 1 the articles already exist-
ing in the literature about this topic, and by giving our personal elaboration and analysis
of all risks affecting REDD+ contracts. We then highlight the structural similarities and
differences with our model in Chapter 2, where we state rigorously the mathematical
results obtained by extending the analysis of the equilibria of Rubinstein’s bargaining
game. In particular, our contribution here is to give a formal definition of strategies
and a characterization of sub-game perfect equilibria in a sequential bargaining game
with a non-trivial exit option, analysing both the case of a negotiated cake of constant
and variable size. In Chapter 3, we describe our model and analyse the set of sub-game
perfect equilibria of an ultimatum game applied to it, i.e., a negotiation between a
developed and a developing country on the total welfare made by a single offer that
can be accepted or rejected, interchanging the roles of the two countries. The original
resolution of this game, improved by making the size of the quantity of goods traded
dependent on the offer, uses basic tools of convex analysis and it is entirely of our own
making. Then we come to the main part in Chapter 4: the analysis of the bargaining
game applied to our model. Adding dynamism to the previous game, the discount
factors of the two countries come into play and determine the new sub-game perfect
equilibria. At this point, we develop our model in two further steps, firstly introducing
a new intermediate discount factor specific to carbon credits and then considering a
flow of payments instead of a single one-shot transfer. Mathematically speaking, we
start by analysing the sub-game perfect equilibria of a sequential bargaining game with
two players that want to share a “cake” of constant size and two different discount
factors, in complete information, as the one studied by Mohr[1]. We continue with the
analysis of the same game but with the introduction of a third discount factor and,
finally, with the flow of payments, we make the size of the “cake” dependent on the
negotiated variable (i.e. no longer constant), applying the mathematical results proved
in Chapter 2. Finally, in Chapter 5, we conclude by proposing research perspectives
in three particular directions: one involves an empirical calibration of the model with
plausible data; an other includes asymmetry of information between the two countries,
making one or more parameters visible only to the country hosting the forest; while the
last one proposes a Mean-Field Game Theory approach.
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Chapter 1

Literature review

As it can be inferred from what has just been said in the Introduction, international
climate negotiations are at the centre of many political and environmental discussions
and are studied by many researchers from different perspectives and on different scien-
tific bases. In fact, many articles about this topic have been published. Most of them,
however, study a situation from a strictly economic and not a strategic point of view.
Indeed, there are not many publications on game theory directly applied to this topic,
especially if the focus is on environmental integrity.
Our aim, indeed, is to analyse the strategic aspects of international negotiations on
greenhouse gas emission reductions through a solid game theory basis. We will focus
on those agreements aimed at Reducing Emissions from Deforestation and forest Degra-
dation (REDD+ contracts). At a broader level, we would like to contribute to a clearer
overview of the risks associated with carbon credits contracts and in particular with
REDD+ contracts and their true effectiveness in terms of environmental integrity and
global emissions reduction.
This complicated subject can be approached in many different ways and with different
techniques, and being new and developing, what happens is that different branches of
thought are created in the literature that are difficult to reconcile for a practical and
effective solution. However, the IPCC’s regular reports come to our aid. As mentioned
before, the IPCC publishes scientific reports on climate change, on its impact and future
risks and adaptation and mitigation options, collecting data globally from thousands
of scientific articles. This provides a comprehensive overview of climate change trends
through the thousands of data collected, analysed and processed in these assessments
reports (AR) and then summarised in the so-called Summary for Policymakers (SPM).
Official reports are published every 6 to 7 years and the latest, the Fifth Assessment
Report, was completed in 2014 and provided the main scientific input to the Paris
Agreement in 2015. At its 41st Session in February 2015, the IPCC decided to produce
a Sixth Assessment Report (AR6) which at this moment is still being terminated. It
incorporates all the results obtained by three different working groups (The Working
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Group I, II and III) published separately between 2021 and 2022.
In this context, the Summary for Policymakers of AR6 of Working Group III is partic-
ularly interesting for our research, as it gives a complex and accurate vision of climate
change mitigation options (“Climate Change 2022: Mitigation of Climate Change” [10]).
Regarding AFOLU (Agriculture, Forestry and Other Land Use) carbon sequestration
and GHG emission reduction options, the SPM of the Working Group III’s AR6 high-
lights that they have both “co-benefits and risks in terms of biodiversity and ecosystem
conservation, food and water security, wood supply, livelihoods and land tenure and
land-use rights of Indigenous Peoples, local communities and small land owners. The
scale of benefit or risk largely depends on the type of activity undertaken, deployment
strategy (e.g., scale, method), and context (e.g., soil, biome, climate, food system, land
ownership) that vary geographically and over time.”
The main environmental benefit is that restoring natural forests and improving sus-
tainability of managed forests, generally enhances the resilience of carbon stocks and
sinks. Examples of adaptation options in managed forests are “sustainable forest man-
agement, diversifying and adjusting tree species compositions to build resilience, and
managing increased risks from pests and diseases and wildfires”.
Instead, one of the main risks of removal and storage of CO2 through vegetation and
soil management is that it can be reversed by human or natural disturbances and it is
also prone to climate change impacts. In comparison, for example, CO2 stored in geo-
logical and ocean reservoirs and as carbon in biochar is less prone to reversal. However,
the IPCC is keen to emphasise the importance of investment in protecting forests, as
avoiding deforestation is cheap and has much potential. Indeed, it affirms that “in most
global modelled pathways that limit warming to 2°C (> 67%) or lower, the AFOLU
sector, via reforestation and reduced deforestation reach net zero CO2 emissions earlier
than the buildings, industry and transport sectors.” Moreover, “the projected eco-
nomic mitigation potential of AFOLU options between 2020 and 2050, at costs below
USD100 tCO2-eq–1, is 8–14 GtCO2-eq yr–1 and the largest share of this economic po-
tential [4.2–7.4 GtCO2-eq yr–1] comes from the conservation, improved management,
and restoration of forests and other ecosystems, with reduced deforestation in tropical
regions having the highest total mitigation.”
In summary, the overview provided by the IPCC report further stresses the importance
of mitigation options for rainforests and above all the avoided deforestation, which is
the cheapest and the most effective one. At the same time, the IPCC reaffirms the
importance and also the limit of carbon offsetting schemes, as they should not replace
or delay the reduction of greenhouse gases emissions.
This largely motivates our interest in the subject and the need for new scientific studies
to provide clarity.
Now a question naturally arises:“What is the role of the voluntary carbon credit market
in this context?”.
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Introduced by Article 6 of the Paris Agreement, the voluntary carbon market plays a
very important role in helping companies and the world achieve ambitious targets to
reduce greenhouse gas emissions, as the attainment of a 1.5-degree pathway. Indeed,
voluntary carbon credits can both accelerate the transition to a lower-carbon future by
enabling companies to support decarbonization beyond their own carbon footprint and
help neutralize residual emissions by financing carbon dioxide removal projects. More-
over, they manage private financing to climate-action projects that would not otherwise
be implemented. These projects can have additional benefits such as biodiversity pro-
tection, pollution prevention, public-health improvements and job creation. Carbon
credits also support investment into the innovation required to lower the cost of emerg-
ing climate technologies. And scaled-up voluntary carbon markets would facilitate the
mobilization of capital to the Global South, where there is the most potential for eco-
nomical nature-based emissions-reduction projects and this will be the case analysed in
our model about rainforest emissions-reduction projects.
Given the high demand for carbon credits, it is clear that the world will need a volun-
tary carbon market that is large, transparent, verifiable, and environmentally robust.
Today’s market, though, is fragmented and complex. The negotiations about the Paris
Agreement’s Article 6 are ongoing and, as a result, the implications of Article 6 for the
voluntary carbon market are still unclear. Some credits have turned out to represent
emissions reductions that were questionable at best as stressed by West in his last work
(West et al. 2023 [17]). Limited pricing data make it challenging for buyers to know
whether they are paying a fair price, and for suppliers to manage the risk they take
on by financing and working on carbon-reduction projects without knowing how much
buyers will ultimately pay for carbon credits.
It is clear that the unresolved issues and doubts are still many and other questions arise
such as “Will governments continue to allow projects to issue voluntary carbon cred-
its?” or “When is double counting an issue, and how can that be avoided?”. The only
way to develop this voluntary market on a large scale is to reduce regulatory uncertain-
ties, thus encouraging more buyers to make long-term commitments, and developers to
make large-scale investments.
Our purpose is to investigate whether one can have robust REDD+ contracts in terms
of environmental integrity, fairness, efficiency and feasibility. The aim is also to provide
data and conclusions at a game theoretical level to help address the socially beneficial
market design.
Let us begin by taking a closer look at the individual risks associated with forestry con-
tracts that may threaten the integrity of carbon credits and how they are addressed in
the existing literature. Indeed, carbon credits should represent emission reductions or
carbon dioxide removals that are real (not projected or planned but realized), mea-
surable, permanent, additional, independently verified, unique and traceable. The
most significant risks are those that threaten one of these characteristics, like the non-
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permanence of emission reductions or carbon removals. Regarding the latter, forestry
projects are the most exposed to a reversibility risk because they could suffer from fire,
logging or disease. In these cases, comprehensive risk mitigation and a mechanism to
compensate for any reversals, need to be in place. It is common practice for standard
bodies to include buffer provisions (requiring all projects with reversibility risk to set
aside a certain percentage of credits in a buffer or insurance pool). In the unfortunate
event of a reversal of emission reductions and/or removals, credits from the buffer would
be used to cover the losses.
Another relevant risk regarding rainforests is the leakage. It occurs when a carbon-
reduction project displaces emission-causing activities and produces higher emissions
outside the project boundary. For example, protecting a certain forest area may cause
loggers to go elsewhere. This may create problems in measuring the global effectiveness
of projects, as they partially displace carbon emissions out of the region considered.
Leakage risk can be mitigated by strengthening project design as well as conservatively
quantifying emission reductions and removals, making appropriate adjustments for es-
timated leakage.
From a management and traceability point of view, a major problem is the double
counting. In fact, projects should be transparently tracked in a public registry to avoid
that both countries, the one implementing the emission reduction and the one buying
the credits, get profit of the same carbon credits. To fix this, more advanced measure-
ment, reporting, and verification practices are needed.
Moving on, one of the most debated and analysed risks is the additionality. A carbon-
reduction project is considered “additional” when its impact (emission reductions and/or
removals) would not have been realized if the project had not been carried out, and
when the project itself would not have been undertaken without the proceeds from the
sale of carbon credits. The problem of additionality affects REDD+ contracts very
closely as it is often the case that there is not complete transparency on the part of the
forest host country towards the developed country that wants to finance the project.
This is referred to as information asymmetry in the sense that the buyer does not have
full access to all data in order to evaluate the project and the associated costs, and so
the developing country takes advantage from that.
A solution to this kind of problem is given by Chiroleu-Assouline, Poudou, and Roussel
in their paper “Designing REDD+ contracts to resolve additionality issues” [2], where
they use mathematical optimization techniques combined with some participation and
incentive constraints.
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1.1 Designing REDD+ contracts to resolve addi-

tionality issues

The original idea of the REDD+ scheme is rather simple and intuitive: developed
countries delegate a part of their climate change mitigation obligations to developing
countries through a contract, by rewarding them to implement reductions in carbon
emissions from forests, while covering their opportunity costs. This reward is a pay-
ment that can occur either through a direct monetary transfer or through carbon offsets
or credits saleable on the carbon market. The payment-basis lies in per unit reductions
of deforestation in comparison to a baseline that needs to be agreed upon. Indeed, the
reductions of deforestation should be measured and compared to a business-as-usual
(BAU) deforestation scenario as a baseline, defined as a projected deforestation path
that would be pursued if no REDD+ contract was signed. Facing the difficulty of es-
tablishing such a BAU baseline taking account of all of the current and future national
drivers of deforestation, an agreement was reached at COP17 in Durban in 2011 about
a pragmatic determination of a reference level (RL) relying on the extrapolation of his-
torical deforestation trends. This methods turned out to underestimate the future BAU
deforestation for countries at the early stages in the forest transition (the developing
ones), but overestimate BAU deforestation for countries at the later stages (the devel-
oped ones). Proposals were made either to include a Development Adjustment Factor
(DAF)(Coalition for Rainforest Nations) or to take into account the “common but dif-
ferentiated responsibilities” of countries in the collective fight against climate change.
However, they all turned out to be inefficient due to the presence of information rents
caused by the private information about the BAU baseline of some countries. In this
paper, Assouline, Poudou and Roussel show how such a definition of reference levels
can lead to reward “hot air” for some countries, i.e., avoided deforestation that would
also have been achieved without the REDD+ contract.
They propose, on the contrary, to base the contract only on observable variables imple-
menting a results-based scheme, using the theory of incentives with a Principal–Agent
relationship in designing contracts with informational asymmetry, where the Principal
is the developed country and the Agent is the developing one.
In their model, they assume that the BAU deforestation baseline is privately known
by the country hosting the forest, which can jeopardize additionality, and that per-
formance monitoring could be achieved either by observing deforestation levels or by
controlling policy levers implemented by the developing country. However, measuring
forest coverage and monitoring the domestic policies entails high costs. This leads the
developed country to choose whether proposing a contract based on realized deforesta-
tion (deforestation-based contract) or a contract based on policy implementation to
avoid deforestation (policy-based contract). These two types of contract are compared
with the first-best contract, where there is perfect information about the BAU baseline
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and, consequently, both levels of forest coverage and policies are well known.
Through an analysis that maximises the gains of the two countries with the addition of
a participation constraint and incentive compatibility, they obtain the following results:

• A deforestation-based contract (DC):

– creates incentives to overestimate the level of deforestation of the BAU base-
line;

– leads to more deforestation and less resulting avoided deforestation by poli-
cies than the first-best contract, except for the lowest BAU baseline;

– has an optimal deforestation level which increases and a REDD+ optimal
transfer which decreases with the BAU baseline.

• A policy based contract(PC):

– creates incentives to underestimate the level of deforestation of the BAU
baseline;

– leads to less avoided deforestation by policies and more resulting deforesta-
tion than the first-best contract, except for the highest BAU baseline;

– has an optimal avoided deforestation level and a REDD+ optimal transfer
which increase with the BAU baseline.

They practically show that it is more effective and also optimal for the donor to propose
DC to countries with the lowest true deforestation BAU baseline and to propose PC to
countries with the highest deforestation BAU baselines. For this reason, their propose
to use an endogenous contract, called general contract (GC), that is based on deforesta-
tion for those countries who declare a BAU baseline under a certain medium threshold,
and on domestic policies for the others. In other words, REDD+ deforestation-based
contracts should be preferentially proposed to countries in the early stages of their
forest transition, which are known to be characterized by high forest cover and low
deforestation rates; when the deforestation rate accelerates in later stages, policy-based
contracts may be more adapted as REDD+ mechanisms. In this way, offering the choice
among different REDD+ contracts, they create countervailing incentives for developing
countries, inducing them to reveal their private information and rewarding them ac-
cording to their actual efforts, obtaining at the end more efficiency for REDD+ scheme
proposals.

Other important strategical risks in international negotiations are also the asymme-
try of bargaining power, commitment issues and the ecological blackmail. By asymme-
try of bargaining power we mean the unbalanced advantage of one of the two parties in
a negotiation due, for example in our case, to the order of the beginning of negotiations.
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On the commitments issue, however, the problem lies in the confidence that the funder
of the project must have without a formal guarantee to the other country, which in turn
must commit to respecting the agreements. While we are going to face the first two
problems in our work, the latter is analysed by Mohr in his article “Burn the forest:
A bargaining theoretic analysis of a seemingly perverse proposal to protect the rain-
forest.” [1]. He uses game theory to model an international negotiation between two
countries, computing the perfect equilibria of a sequential bargaining game in complete
information.

1.2 Ecological blackmail

Consider a country which hosts one of the world’s rainforests. As determinants of the
global climate, rainforests provide a multitude of ecosystem services to the world, but
still the hosting country does not earn any income from these exports. Mohr explains
that this is because it lacks a technology turning services produced into the exclusive
property of the country. Then, the main question he aims to answer is:“Possessing a
sector which produces such a good, how can a country earn income from the environ-
mental services it provides?”
In this regard, financial compensations for the ecosystem services the rainforests provide
to the international community, are essential to encourage developing countries to pro-
tect and preserve them. In his article, Mohr entertains the view that such transfers are
the result of negotiations between countries hosting rainforests and recipient countries
of forestal services. Thus, applying the strategic bargaining approach to negotiations,
he investigates the determinants of a bargaining solution and the incentives as well as
the opportunities of the countries hosting rainforests to strike a better deal.
He considers a sequential bargaining game where two countries (A and B) alternate
proposals, concerning the division of a cake which is defined by country B’s benefit
from forestal services. Here, country A is a country hosting a rainforest, as Brazil for
example, and country B is a developed one, getting profit from forestal services. He
supposes that country B receives a constant stream of forestal services V and that
country A initiates negotiations to extract some fraction of the cake from country B.
The bargaining game is structured as the Rubinstein’s model [3], explained in details in
the next chapter, with the addition of an outside option, i.e. the country receiving the
proposal can terminate negotiations by taking an exit option that gives the share eA
to A and eB to B of the cake bargained. However, the presence of an exit option only
affects the outcome of negotiations if such option is attractive. The outcome, hence,
differs as to whose outside option poses a credible threat.
Now, if country A possesses no alternative opportunity to use its land besides hosting
the rainforest, its exit option is eA = 0. In this case, the country exporting forestal ser-
vices is unable to obtain a share of the recipient country’s value of these services. This
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bargaining situation may be viewed as a good approximation to the situation Central
African, South Asian or South American countries would have been in when trying to
strike a deal on their forestal services, before they possessed the resources to put their
land to an alternative use.
Suppose instead that country A has an available a project of developing the rainforest.
Let Π(P ) be the period profit from undertaking the project, being a function of the
resources P , allocated per period to the project. Undertaking the project requires some
destruction of the rainforest that causes environmental costs DA(S) in country A and
DB(S) abroad. The magnitude of these costs depends on the environmental safeguards
applied, whose cost accruing to the developing country is S. Thus, the budget con-
straint for A is Ȳ = P + S, where Y are its given total resources. To sum up, the
net gain of A is given by Π(P )−DA(S), while B gets V −DB(S) and he calls SA the
optimal level of safeguards for A and SG the one maximizing the sum of the two payoffs
(also called social-optimum).
Let us remark that, if there is the same amount of resources, Ȳ , available for de-
velopment and environmental protection, then it immediately follows that SG > SA.
Moreover, if country A upsets negotiations by terminating bargaining before having
reached an agreement, it can proceed with the project and it allocates the optimal
amount SA of its resources for environmental safeguards. In this way, country A’s
choice of environmental safeguards, in case an agreement on the implementation of the
project is reached, influences country B’s gains from a breakdown of negotiations and
hence increases A’s bargaining power. In particular, when country B’s direct gain from
forestal services, under an agreement involving the implementation of the project, ex-
ceeds that under a breakdown of negotiations, i.e when S > SA, B is willing to accept
some payments to country A even if it undertakes the project. Now, the magnitude
of environmental diligence applied to development, when an agreement is reached, de-
pends on country A’s ability to commit to certain environmental safeguards.
Let us distinguish, then, two different cases and let us illustrate the article’s results:

• when commitment is unfeasible, when an agreement is reached, country A will
implement its optimal level of safeguards Snc (non-cooperative level) which, how-
ever, is greater than SA as soon as A receives some monetary transfer by B under
the agreement;

• when A can commit itself to a certain level of safeguards Sc, it has incentive to
softer development, as Sc > Snc;

• when A can commit itself to softer development, B’s gain and so the transfer
payment increase, so that A has to face a trade-off between securing a higher
project income through hard development and a higher bargained income from
providing forestal services through soft development;
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• when commitment is possible, country A’s negotiated transfer income is strictly
positive even if the project is undertaken.

In both cases, the equilibrium transfer under an agreement is the net environmental
gain, in money terms, from reaching the agreement (DB(S

A)−DB(S) when the project
is implemented).
Finally, if an agreement is not reached, A is still able to negotiate a transfer income up
to its own net total project income (Π(Ȳ − SA)−DA(S

A)).
As an answer to the main question mentioned above, he observes that the option of
commitment to different degrees of softness in developing the rainforests, provides a
country with a technology to extract some of the world’s benefits from forestal services
provided. In addition, he shows that hosting countries may have an incentive to commit
to environmentally “too” wasteful development. The environment, however, ultimately
may benefit from this commitment as it helps extract more resources from the recipients
of forestal services. This happens because the opportunity to commit to wasteful de-
velopment when negotiations fail, creates an incentive to commit to softer development
when negotiations succeed. In this way, the “ecological blackmail” is described in this
article as an instrument used by a country hosting a forest, to repatriate some of the
environmental benefits it provides to the rest of the world and to help protect the forest.

Finally, to conclude our overview of the existing literature and the problems anal-
ysed, we want to give a concrete example of a real situation affected by ecological
blackmail, happened this year in Ecuador.

1.2.1 Ecuador and Galapagos Islands

[16] In May 2023, a ‘debt-for-nature’ deal was concluded by Ecuador, who exchanged
its debt in return for funding measures to protect the biodiversity of the Galapagos
Islands, classified as a World Heritage Site.
It is a financing technique that could provide breathing space to many low and middle-
income indebted countries. Ecuador said, on May 9, it had secured a reduction in its
debt in exchange for its commitment to fund the conservation of the archipelago, for
$450 million over 18 years. The amount corresponds, in part, to the savings made
by the country on the repayment of its debt, which was cut by $1 billion. Some in-
vestors agreed to sell bonds for $656 million that were worth $1628 million when they
were issued, fearing that the country’s financial and political situation would deteri-
orate further. Others have agreed to buy them despite the risks, on condition that
the transaction be used to protect the Galapagos. In order to benefit from debt relief,
governments must now identify viable conservation projects. In September 2022, for
example, the Ecuadorian government announced the extension of a marine reserve in
the Galapagos Islands, bringing the protected area to 200,000 square kilometres.
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Let us now proceed with our work, starting from illustrating the results obtained
from a purely mathematical point of view, extending the analysis of the sub-game
perfect equilibria of Rubinstein’s bargaining game [3].



Chapter 2

Theoretical results

The purpose of this chapter is to theoretically show the results of game theory that
we will use in our work and to highlight our own contribution in the extension of the
latter. We begin by formally describing the Rubinstein model[3], which is the starting
point for both the Mohr model and our.

2.1 Rubinstein Model

In one of his most important articles[3], Rubinstein studies a sequential bargaining game
with two players in complete information. The game involves two agents who set out
to divide a cake of size 1 between them. If they agree, each receives his agreed share;
if they fail to agree, both receive zero. The sequential bargaining process is made of
alternating proposals by the two parties, player A and B. At time 0, player A proposes
that he receive some share x and player B immediately replies ”Yes” or ”No”. If he
says ”Yes” the game ends; otherwise, at time 1, player B makes a proposal to which
player A immediately replies; and so on. The payoff gA to player A (gB to player B)
equals his share x (resp. 1− x) of the cake as agreed at time t, multiplied by δtA (resp.
δtB ), where δA, δB represent discount factors. To provide some incentive for the players
to reach an agreement, he assumes δA, δB < 1. A strategy for player A specifies his
proposal/reply at each point, as a function of the history of the game up to that point.
It is easy to see that any partition of the cake can be supported as a Nash equilibrium,
so he proceeds to seek a sub-game perfect equilibrium, i.e. such that the strategies
induced in every sub-game form a Nash Equilibrium in that sub-game.
It is shown by Rubinstein that, in this game, there is a unique equilibrium partition of
the cake, which can be supported as a sub-game perfect equilibrium. In this equilibrium,
agreement is immediate and the two players receive the following shares (payoffs):{

gA = x = 1−δB
1−δAδB

gB = 1− x = δB(1−δA)
1−δAδB

. (2.1)

19
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Moreover, we can observe that if we assume that the size of the cake is constant, but
not normalized to 1, for example gA + gB ≡ K, then we have the similar results:{

gA = x = 1−δB
1−δAδB

K

gB = K − x = δB(1−δA)
1−δAδB

K
, (2.2)

where we just consider the equilibrium partition multiplied by the cake’s size K.
To prove this, Rubinstein uses a particular backward reasoning, that is a “game-
theoretical dynamic programming”. To better understand the logical demonstration
process, just follow the proof of Theorem 2.1, in the base case where the cake size is
normalized (K = 1) and the output option is null (eA = eB = 0).

2.2 Mohr model

Mohr in his article “Burn the forest!:a bargaining theoretic analysis of a seemingly
perverse proposal to protect the rainforest”[1], extend the Rubinstein model by adding
the possibility of a valid output option (not necessarily equal to zero) and apply it in
the context of REDD+ schemes. Therefore, he still considers a sequential bargaining
game with two players A and B who take turns to make proposals with the following
improved bargaining process.
Assuming that A makes an offer at time t = 0, then B can accept ending the game,
refuse and make a new offer at time t = 1 or take an outside option which ends the
game as well. Taking the outside option, A receives a share eA and B a share eB of the
cake under negotiations. At each step, during the game, the payoffs and outside options
are discounted by two discount factors δA and δB for A and B, respectively. As before,
the game continues until one country accepts a proposal made or until a country takes
its outside option.
The size of the bargained cake is considered as a general constant number K instead
of 1. The results are quite similar, as he obtains a unique equilibrium partition of the
cake, which can be supported as a sub-game perfect equilibrium, where agreement is
again immediate. The main difference is that, in this case, the outcome differs as to
whose outside option poses a credible threat. That is, there are three possible outcomes
of the bargaining where the shares (payoffs) of the two players are the following:{

gA = x = 1−δB
1−δAδB

K

gB = K − x = δB(1−δA)
1−δAδB

K
if

{
eA ≤ δA(1−δB)

1−δAδB
K

eB ≤ δB(1−δA)
1−δAδB

K
, (2.3)

{
gA = x = K − δB(K − eA)

gB = K − x = δB(K − eA)
if

{
eA > δA(1−δB)

1−δAδB
K

eB ≤ δB(K − eA)
, (2.4)
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gA = x = K − eB

gB = K − x = eB
otherwise. (2.5)

Here, Equation (2.3) gives the equilibrium division of the cake if neither party possesses
a credible outside option, where by “credible” outside option we simply mean that it
is more convenient than the respective equilibrium partition offered. In this case, since
both players have not a good outside option, they are encouraged to seek an agreement
with other countries and the result is quite balanced.
If only player A, who start negotiating, has a credible outside option available, then the
equilibrium partition is given by Equation (2.4). In this intermediate case, player A
can still exploit his potential gain getting profit from the deal, while offering a slightly
convenient amount to the other player.
Finally, Equation (2.5) represents the case where (only or in addition to player A)
player B possesses a credible outside option. In this situation, the exit option no longer
increases the bargaining power, but only the first bidder counts. The one who answers,
in fact, earns the same amount of his outside option, while the other wins the remaining
part of cake.

This article, however, focuses more on the economic aspects and the interpretation
of these new results than the mathematical formalization of the game setting. The main
aspect he considers is the possibility for a developing country (player A) to extrapolate
the environmental benefits dispersed and exploited by the rest of the world (player
B), through its ability to commit to a certain level of forest safeguards. This entails
considerations on the level of forest protection implemented (and not negotiated) by A,
that determines the amount of total goods to be divided. Speaking in mathematical
terms, he discusses the size of the cake to be fixed at the beginning of the game, based
on player A’s ability to commit and his economic resources.
Instead, we will also consider the idea of including the level of forest protection in the
bargaining, so that it is not decided a priory only by the player who is the country
hosting the forest. This leads to a series of consequences and considerations that we
will better explain in the next section, once described our game in more detail.

2.3 Developments

Inspired by the application of the Rubinstein model implemented by Mohr in his ar-
ticle, we also study a sequential bargaining game with the presence of an exit option
with complete information and we apply it to the context of the REDD+ schemes. So
we start our analysis on the basis of the same bargaining game analysed by Mohr, but
changing perspective. From an interpretative point of view, in fact, our objective is to
understand whether a contract leads to an outcome that is profitable for both countries
(one developing and forest-hosting and the other developed) to cooperate in order to
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protect the environment. For this reason, the difference between the two countries is
less evident than in Mohr’s article and, in particular, the idea is that the level of forest
protection is also under discussion and added to the monetary transfer as another ele-
ment to be negotiated.
Theoretically speaking, even if the sequential bargaining process is the same, we con-
sider, at first, the two shares of the cake (the payoffs) as functions of two variables
(a, b) such that their sum, i.e. the size of the cake, is no more constant but depen-
dent of both variables (for us, the level of forest protection and monetary transfer):
gA(a, b) + gB(a, b) = f(a, b).
We find that, actually, is possible to solve this kind of bargaining game following the
same idea behind the proof of Rubinstein and Mohr, as the reasoning made on the
equilibrium shares the players receive, can be extended to shares of a cake with vari-
able size. The results, however, are more implicit and less useful for applications. In
fact, having formulas for the payoffs gA(a, b)

∗ and gB(a, b)
∗ at equilibrium, we can just

define an equivalence relation for those couples (a, b) such that gA(a, b) = gA(a, b)
∗ and

gB(a, b) = gB(a, b)
∗ to characterize the equilibrium variables (a∗, b∗), which are usually

infinite. Although this result may be interesting from a mathematical point of view, it
is not really helpful when applied to a concrete model, having a very specific practical
purpose in mind, as in our case. So we decide to proceed in a direction that allows us to
find specific a∗ and b∗ at equilibrium, possibly uniquely or at least finitely determined.
Anyway, we will illustrate how to solve the generic case in Theorem 2.3 (see Section
2.3.2). Motivated by the objective of our specific application, we then opt to fix one of
the two variables, e.g. the first one (a∗)1, and bargain only the second one (b), assuming
at first that the size of the cake is constant: gA(a

∗, b) + gB(a
∗, b) = K.

Given the univocal relationship between b and gi(a
∗, b), we fall in the basic case of

Mohr’s bargaining game. For this reason, from now on, having only one variable in play,
without loss of generality we can use the notation x := gA(a

∗, b) and K−x := gB(a
∗, b)

for the shares of the two players of a cake with constant size K.
Let us now describe in detail the game we solved and results we proved, adding all
the formal elements missing in Mohr’s paper, with the help of the formalization of
Rubinstein paper [3] and the one of Shaked and Sutton [6].

2.3.1 Bargaining game: definitions and equilibria.

As mentioned above, the game consists of a series of alternate proposals between the
two players A and B, to split a cake of constant sizeK. At each step one player proposes
a share x that player A would get. The player who receives the offer can immediately
accept, take the exit option or continue the game by making a proposal himself to the

1The way we decide to fix this variable will be better discussed below, where a∗ = π∗ in our applied
model.
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next round. By accepting the offer, player A receives the agreed share x and player
B gets K − x. By taking the exit option (also called outside option), the two players
receive respectively the shares eA and eB, where eA + eB < K.
A strategy for a player, then, specifies his proposal/reply at each point as a function of
the history of the game up to that point.

Definition 2.1. (Strategies of a Bargaining Game with exit options.)
Let x ∈ X = [0, K] be the set of all possible values of x, and let S be the set of all
strategies of the player who starts the bargaining. Then, S is the set of all sequences
of functions s = {st}∞t=0, where s0 ∈ X , for t even st : X t−1 → X , and for t odd
st : X t → {Y,N,E}, where X t is the set of all sequences of length t + 1 of elements
in X (it includes X 0 = X ) and Y,N and E represent the possible actions of the player
who responds to the offer. Here, “Y ” staying for “Yes” means that the player accepts
the offer, “N” staying for “No” means that he refuses and goes on with the game, and
“E” means that he “Exit” the negotiation.
Similarly, let R be the set of all strategies of the player who in the first move has to
respond to the other player’s offer; that is, R is the set of all sequences of functions
r = {rt}∞t=0 such that, for t even rt : X t → {Y,N,E} and for t odd rt : X t−1 → X .

At this point, we can easily define:

• σ(s, r) the sequence of offers in which A starts the bargaining and adopts s ∈ S,
and B adopts r ∈ R;

• T (s, r) be the length of σ(s, r) (may be ∞);

• X(s, r) be the last element of σ(s, r) (if there is such an element) and it is the
agreed portion x of the cake received by A and induced by (s, r), or the exit option
eA earned by A.

The outcome function of the game is defined byO(s, r) =

{
(X(s, r), T (s, r)) if T (s, r) < ∞
(0,∞) if T (s, r) = ∞.

Thus, the outcome (x, t) is interpreted as the reaching of agreement with a partition x
and K − x at time t, or the breakdown of negotiations with the exit options at time t
and the symbol (0,∞) indicates a perpetual disagreement.
For the analysis of the game we will have to consider the case in which the order of
bargaining is revised and country B is the first to move. In this case a strategy for
country B is an element of S and a strategy for country A is an element of R. Let
us define σ(r, s), T (r, s), X(r, s) and O(r, s) similarly to the above, for the case where
country B starts the bargaining and adopts s ∈ S and country A adopts r ∈ R.
The last component of the model is the preference of the players on the set of outcomes,
determined by the discounting of payoffs. We assume to have uniform constant discount
factors δA, δB ∈ (0, 1) and that each player i has a preference relation ≳i (complete,
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reflexive, and transitive) on the set of outcomes X × N ∪ {(0,∞)}, where N is the set
of natural numbers. Thus, for all x1, x2 ∈ X and t1, t2 ∈ N we have:

• (x1, t1) ≳A (x2, t2) ⇐⇒ δt1A · x1 ≥ δt2A · x2;

• (x1, t1) ≳B (x2, t2) ⇐⇒ δt1B · (K − x1) ≥ δt2B · (K − x2).

Once we have defined the strategies, outcomes and preferences of the players on the lat-
ter, we are ready for the analysis of the equilibria. Before the definition of a Sub-game
Perfect Equilibria of this game, let us give an example of a Nash Equilibrium (NE) of
a Bargaining Game, taken from Rubinstein’s paper [3].

Example 2.1. (NE of a Bargaining Game.)
Let x̂ ∈ X be a possible share that player A can get in an equilibrium. Then a profile
strategy (ŝ, r̂) ∈ S×R defined as follows, is a NE of a Bargaining Game with equilibrium
payoffs (x̂, K − x̂) and outcome X(ŝ, r̂) = (x̂, 0).

For t even, let ŝt ≡ x̂, r̂t(x̂1 . . . x̂t) =

{
Y if x̂t ≤ x̂, K − x̂ ≥ eB

N otherwise
;

for t odd, let r̂t ≡ x̂, ŝt(x̂1 . . . x̂t) =

{
Y if x̂t ≥ x̂ , x̂ ≥ eA

N otherwise.

In other words, assuming that x̂ ≥ eA and K − x̂ ≥ eB, we can always define a NE
where both players always propose x̂ and player A refuses all the offers with a share
smaller than that and player B refuses those with a share for A greater than x̂, so
a correspondent smaller share for himself. In this way, each player has no unilateral
deviation and the equilibrium agreement is naturally reached at the first step (t = 0).

As can be seen from the example, in this particular game the notion of NE is very
weak, which is why we restrict ourselves to the study of a particular Nash equilibrium
concept, namely the Sub-game Perfect Equilibrium (SPE).
In words, the SPE represents a NE of every sub-game of the original game. Informally,
this means that at any point in the game, the players’ behavior from that point onward
should represent a Nash equilibrium of the continuation game (i.e. of the sub-game),
no matter what happened before.
To give a formal definition of a SPE in a sequential bargaining game with exit option,
we need some additional notation.
Let x0 . . . xT ∈ X . Define s | x0 . . . xT and r | x0 . . . xT as the strategies derived from s
and r after the offers x0 . . . xT have been announced and already rejected. That is, for
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example, for T odd and t even:

(s | x0 . . . xT )
t (N0 . . . Nt−1) = sT+t (x0 . . . xT , N0 . . . Nt−1) ,

(r | x0 . . . xT )
t (N0 . . . Nt) = rT+t (x0 . . . xT , N0 . . . Nt) .

Notice that if T is odd, it is A’s turn to propose a partition of the pie, and B’s first
move is a response to A’s offer. Thus s | x0 . . . xT ∈ S and r | x0 . . . xT ∈ R. If T is
even, it is B’s turn to make an offer and therefore r | x0 . . . xT ∈ S and s | x0 . . . xT ∈ R.

Definition 2.2. (SPE in a Bargaining Game.)
The strategy profile (ŝ, r̂) ∈ S ×R is a SPE of the bargaining game if ∀x0 . . . xT ∈ X ,
if T is odd:

(P-1) ∄ s ∈ S s.t. O(s, r̂ | x0 . . . xT ) >A O(ŝ | x0 . . . xT , r̂ | x0 . . . xT );
(P-2) if ŝT (x0 . . . xT ) = Y , ∄ s ∈ S s.t. O (s, r̂ | x0 . . . xT ) >A (xT , 0);
(P-3) if ŝT (x0 . . . xT ) = N, O (ŝ |x0 . . . xT , r̂|x0 . . . xT ) ≳A (xT , 0) ∨ (0, 0);
(P-4) if ŝT (x0 . . . xT ) = E, ∄ s ∈ S s.t. O (s, r̂ | x0 . . . xT ) >A (0, 0);

and if T is even:
(P-5) ∄ s ∈ S s.t. O(ŝ | x0 . . . xT , s) >B O(ŝ | x0 . . . xT , r̂ | x0 . . . xT );
(P-6) if r̂T (x0 . . . xT ) = Y , ∄ s ∈ S s.t. O (ŝ | x0 . . . xT , s) >B (xT , 0);
(P-7) if r̂T (x0 . . . xT ) = N, O (ŝ |x0 . . . xT , r̂|x0 . . . xT ) ≳B (xT , 0) ∨ (0, 0);
(P-8) if r̂T (x0 . . . xT ) = E, ∄ s ∈ S s.t. O (ŝ | x0 . . . xT , s) >B (0, 0).

Remark 2.1. Note that (P-1) and (P-5) ensure that after a sequence of offers and
rejections x0 . . . xT , the player who has to continue the bargaining has no better strategy
other than to follow the planned strategy. While (P-2) and (P-6) ensure that a player
who has planned to accept the offer xT , has no better alternative than to accept it, and
(P-3) and (P-7) ensure that if a player is expected to reject an offer, it is not better for
him to accept it or to exit the negotiation. Finally (P-4) and (P-8) ensure that a player
who has planned to take the outside option, has no better alternative to it.

Remark 2.2. Notice that a strategy has been defined as a sequence of functions which
is interpreted as the player’s plans after every history, including histories which are not
consistent with his own plans.

Now, we are ready to state the main results about the characterization of the set of
SPE of a sequential bargaining game with exit option (eA, eB) and constant size K of
the cake, starting by the case where player A starts the negotiation.

Theorem 2.1. (Characterization of SPE of a Bargaining Game.)
In every SPE (ŝ, r̂) ∈ S ×R an agreement is reached at the first step (i.e., the outcome
induced is O(ŝ, r̂) = (x̂, 0)). The Sub-game Perfect payoffs (SPEP) are uniquely deter-
mined and depend on the available exit option of each player, so there are three possible
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cases: {
x̂ = 1−δB

1−δAδB
K

K − x̂ = δB(1−δA)
1−δAδB

K
if

{
eA ≤ δA(1−δB)

1−δAδB
K

eB ≤ δB(1−δA)
1−δAδB

K
(2.6){

x̂ = K − δB(K − eA)

K − x̂ = δB(K − eA)
if

{
eA > δA(1−δB)

1−δAδB
K

eB ≤ δB(K − eA)
(2.7){

x̂ = K − eB

K − x̂ = eB
otherwise . (2.8)

Remark 2.3. As seen for Mohr’s results, here (2.6) represents the equilibrium partition
when both players have no valid exit option and (2.7) when only the player starting the
bargaining (player A) has a valid outside option. Instead, (2.8) is the solution when
(only or in addition) player B has a valid exit option, so A is forced to offer him the
same value of eB if he wants the offer to be accepted and gain more than its exit option
(eA < K − eB).

Proof. Let x̂ denote the supremum of the share which player A can obtain in any SPE
of this game. Now, reasoning as a “game-theoretical backward induction”, consider the
sub-game beginning with an offer made by player A at time t = 2 (see Table I). Note
that this sub-game starting at time t = 2 has the same structure as the original game,
apart from a re-scaling of payoffs, so the supremum of the share which player A can
obtain in any SPE of the game is again x̂ (see the bottom row of Table I).

Consider the offer made by player B in the preceding period. Any offer which gives
A a share of more than δAx̂ ∨ eA, being the supremum between its discounted value of
a share x̂ received one period later and its outside option, will certainly be accepted.
Hence, B offers to A at most the minimum share accepted, i.e. δAx̂∨ eA. Let us denote
the greatest offer that B would make at t = 1 as x̄ := δAx̂ ∨ eA.
Now, assume that δAx̂ ≥ eA. Then, B offers x̄ = δAx̂ and player A accepts it, as
it is more convenient than the outside option and the maximum gain it would get by
waiting. Assume, instead, that eA > δAx̂, then B proposes x̄ = eA, so he will get K−eA,
which is indeed more convenient than just getting out of negotiations (by assumption
K − eA > eB).
To sum up, in the sub-game starting at t = 1, the share of the cake which A can obtain
in any perfect equilibrium is at most x̄, so the cake obtained by B is at least K − x̄.

Now consider A’s offer at t = 0. Any offer which gives B a share strictly less than
δB(K − x̄)∨ eB will certainly be rejected. Then, A should make an offer which gives B
at least the smallest share accepted, that is δB(K − x̄) ∨ eB.
Firstly, assume that we are in case where both players have no valid outside option:{

eA ≤ δAx̂

eB ≤ δB(K − δAx̂).
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Then A makes an offer such that B gains at least δB(K − δAx̂) and B accepts it, so
A obtains at most a share of the cake equal to K − δB(K − δAx̂). Actually, the latter
represents the supremum of what A receives in any perfect equilibrium, i.e. it equals x̂
(see Table I below). Solving the following equation, we get the formula in (2.6):

x̂ = K − δB(K − δAx̂) =⇒ x̂ =
1− δB

1− δAδB
K.

In the second case, we assume that only player A has a valid exit option, so we have

the following system of conditions:

{
eA > δAx̂

eB ≤ δB(K − eA).

Then A makes an offer such that B gains at least δB(K − eA) and B accepts it, so A
obtains at most a share of the cake equal to K − δB(K − eA). By equalling this to x̂,
we get the formula in (2.7):

x̂ = K − δB(K − eA).

Finally, assuming that player B has a valid exit option, we obtain that player A’s most
convenient offer is just K − eB so we get the formula in (2.8).

TABLE I

Period
Offer made

by

player A
receives at most

share

player B
receives at least

share

t = 0 A x̂ =


K − δB(K − δAx̂)
K − δB(K − eA)
K − eB


δB(K − δAx̂) if ≥ eB
δB(K − eA) if ≥ eB
eB oth.

t = 1 B x̄ =

{
δAx̂ if ≥ eA
eA oth.

K − x̄ =

{
K − δAx̂
K − eA

t = 2 A x̂ K − x̂

Now it remains only to prove that the share x̂ is actually the equilibrium share
obtained by A and not only the supremum one. To show this, it suffices to observe
that the preceding argument can be repeated with x̂ defined, instead, as the infimum of
the share received by player A in any SPE of the game and with the words more/less,
most/least, greatest/smallest, accepted/rejected and supremum/infimum interchanged
throughout. At this point, the same conditions and equations also define x̂ as the
infimum of the share received by A; thus the shares received in any perfect equilibrium
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are uniquely defined by formulas in (2.6),(2.7),(2.8) and their respective conditions. It
is easy to show that this outcome is in fact supported as a sub-game perfect equilibrium,
and so there exists a unique “Perfect Equilibrium Partition” once we understand which
of the three cases we are in. The strategies are defined such that a player demands an
amount corresponding to this Perfect Equilibrium Partition at each stage, and his rival
accepts any demand which does not exceed that amount. This completes the proof.

Let us now state a similar result for the case where player B starts the negotiation.

Theorem 2.2. (Characterization of SPE of a Bargaining Game - symm.case.)
In every SPE (r̄, s̄) ∈ R×S an agreement is reached at the first step (i.e., the outcome
induced is O(r̄, s̄) = (x̄, 0)). The Sub-game Perfect payoffs (SPEP) are uniquely deter-
mined and depend on the available exit option of each player, so there are three possible
cases: {

x̄ = δA(1−δB)
1−δAδB

K

K − x̄ = 1−δA
1−δAδB

K
if

{
eA ≤ δA(1−δB)

1−δAδB
K

eB ≤ δB(1−δA)
1−δAδB

K
(2.9)

{
x̄ = δA(K − eB)

K − x̄ = K − δA(K − eB)
if

{
eA ≤ δA(K − eB)

eB > δB(1−δA)
1−δAδB

K
(2.10)

{
x̄ = eA

K − x̄ = K − eA
otherwise . (2.11)

Remark 2.4. As before, (2.9) represents the equilibrium partition when both players
have no valid exit option and (2.10) when only the player starting the bargaining (player
B) has a valid outside option. Instead, (2.11) is the solution when (only or in addition)
player A has a valid exit option, so B is forced to offer him the same value of eA if he
wants the offer to be accepted and gain more than its exit option (eB < K − eA).

Proof. See the proof of Theorem 2.1 with the role of player A and B exchanged.

At this point, we proceed with the analysis of the game with a cake’s size depending
on the variable bargained. Referring to our old notation we are in the case where
gA(a

∗, b) + gB(a
∗, b) = f(b), where a ≡ a∗ is still fixed. Using the new notation, we

have that the shares of the cake of the two players are x and f(x) − x for A and B,
respectively. Note that if we set y = (a, b), then we are still in the case of one variable
bargained with a cake’s size depending on that single variable. In other words, following
the same reasoning, we can also solve the game with gA(a, b)+gB(a, b) = f(a, b) defined
at the beginning. In any case, we won’t go in that direction in our work, since it is less
interesting from the interpretation point of view of our applied model.
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2.3.2 Equilibria with non-constant cake’s size.

The formalization of the game, such as dynamics, strategies, outcomes and preferences
are the same of the previous case. Moreover, also the Sub-game Perfect Equilibria
(SPE) are defined in the same way as before (see Subsection 2.3.1). The only differ-
ence lies in the definition of the shares of the two players because their sum is now
non-constant, i.e. player A receives a share x and player B receives a share f(x) − x.
Consequently, the exit options (eA, eB) are such that eA + eB < f(x).
Let us then directly state the main result about the SPE of this new game.

The following Theorem describes the set of SPE of a bargaining game with exit
options (eA, eB) and a non-constant size of the cake f(x) depending on the share of
player A, where the latter starts the negotiation.

Theorem 2.3. (Characterization of SPE of a Bargaining Game.)
In every SPE (ŝ, r̂) ∈ S ×R an agreement is reached at the first step (i.e., the outcome
induced is O(ŝ, r̂) = (x̂, 0)). The Sub-game Perfect payoffs (SPEP) are uniquely deter-
mined and depend on the available exit option of each player, so there are three possible
cases: {

x̂ = f(x̂)−δB f(δAx̂)
1−δAδB

f(x̂)− x̂ = δB(f(δAx̂)−δAf(x̂))
1−δAδB

if

{
eA ≤ δA(f(x̂)−δBf(δAx̂))

1−δAδB

eB ≤ δB(f(δAx̂)−δAf(x̂))
1−δAδB

(2.12)

{
x̂ = f(x̂)− δB(f(eA)− eA)

f(x̂)− x̂ = δB(f(eA)− eA)
if

{
eA > δA(f(x̂)−δBf(δAx̂))

1−δAδB

eB ≤ δB(f(eA)− eA)
(2.13)

{
x̂ = f(x̂)− eB

f(x̂)− x̂ = eB
otherwise . (2.14)

Proof. Repeat the proof of Theorem 2.1 paying attention to the specific size of the cake
at each step (f(x̂) or f(x̄)) when computing the proposal made by the bidder with
respect to the gain of the other player.
For example, let us assume that we are in the first case where neither of the two players
has a valid exit option.
At time t = 1, if player B wants to make an offer such that A gain at most x̄ = δAx̂,
then he gains at least the remaining part of the cake that is in this case f(x̄)− x̄.
On the other hand, at time t = 0, if A makes an offer such that player B gains at least
δB(f(x̄)− δAx̂), then he should propose at most x̂ = f(x̂)− δB(f(x̄)− δAx̂), and so on.

All the differences can be summarised in the following Table II.
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TABLE II

Period
Offer made

by

player A
receives at most

share

player B
receives at least

share

t = 0 A x̂ =


f(x̂)− δB(f(x̄)− δAx̂)
f(x̂)− δB(f(x̄)− eA)
f(x̂)− eB


δB(f(x̄)− δAx̂) if ≥ eB
δB(f(x̄)− eA) if ≥ eB
eB oth.

t = 1 B x̄ =

{
δAx̂ if ≥ eA
eA oth.

f(x̄)− x̄ =

{
f(x̄)− δAx̂
f(x̄)− eA

t = 2 A x̂ f(x̂)− x̂

In addition to the previous proofs, since the definition of x̂ in the first two cases, depends
on the cake’s size f(x̄), we should also specify what is x̄ in each case.
Firstly, when none has a valid exit option, we have the following conditions:{

eA ≤ δAx̂

eB ≤ δB(f(x̄)− δAx̂)
,

and x̄ = δAx̂, so we get:{
x̂ = f(x̂)− δB(f(x̄)− δAx̂)

x̄ = δAx̂
=⇒ x̂ =

f(x̂)− δB f(δAx̂)

1− δAδB
,

from which we derive f(x̂)− x̂ and we obtain the formulas in (2.12).
Finally, when only player A has a good exit option (second case), we have that:{

eA > δAx̂

eB ≤ δB(f(x̄)− eA)
,

and x̄ = eA, so we get:{
x̂ = f(x̂)− δB(f(x̄)− eA)

x̄ = eA
=⇒ x̂ = f(x̂)− δB(f(eA)− eA),

from which we derive all the formulas in (2.13).
Using the same argument as the proof of Theorem 2.1, we can conclude that the par-
titions found are those of all SPE and this completes the proof.
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Let us now state a similar result for the case where player B starts the negotiation.

Theorem 2.4. (Characterization of SPE of a Bargaining Game - symm.case.)
In every SPE (r̄, s̄) ∈ R×S an agreement is reached at the first step (i.e., the outcome
induced is O(r̄, s̄) = (x̄, 0)). The Sub-game Perfect payoffs (SPEP) are uniquely deter-
mined and depend on the available exit option of each player, so there are three possible
cases: {

x̄ = δA(f(x̄/δA)−δBf(x̄))
1−δAδB

f(x̄)− x̄ = f(x̄)−δAf(x̄/δA)
1−δAδB

if

{
eA ≤ δA(f(x̄/δA)−δBf(x̄))

1−δAδB

eB ≤ δB(f(x̄)−δAf(x̄/δA))
1−δAδB

(2.15)

{
x̄ = δA(f(x̄/δA)− eB)

f(x̄)− x̄ = f(x̄)− δA(f(x̄/δA)− eB)
if

{
eA ≤ δA(f(x̄/δA)− eB)

eB > δB(f(x̄)−δAf(x̄/δA))
1−δAδB

(2.16)

{
x̄ = eA

f(x̄)− x̄ = f(x̄)− eA
otherwise . (2.17)

Proof. Repeat the proof of Theorem 2.3 with the roles of A and B exchanged.

2.3.3 Ultimatum Game.

Finally, speaking of our personal contribution, we cannot fail to mention the analysis
of the ultimatum game from which we began our research.
In a standard Ultimatum game one player, the proposer, is endowed with a sum of
money and is tasked with splitting it with another player, the responder (who knows
what the total sum is). Once the proposer communicates his decision, the responder
may accept it or reject it. If the responder accepts, the money is split per the proposal;
if the responder rejects, both players receive nothing. Both players know in advance
the consequences of the responder accepting or rejecting the offer, i.e. there is complete
information. In other words, it is a bargaining game consisting only in one offer.
In our ultimatum game, the difference is that if the responder rejects the offer, both
players receive a fixed value that can be seen as an exit option (eA, eB) > 0 as before.
Moreover, we analyse the case where the amount to be divided depends on the variable
bargained, i.e. gA(a, b) + gB(a, b) = f(a, b) in the previous notation, where gA and gB
are the portions of the cake bargained gained by player A and B, respectively, and they
depend on two variables (a, b).
As explained above, then, we add the possibility of a positive exit option and the
variability of the size of the cake to the standard ultimatum game.
The originality lies in having applied this game to the context of REDD+ contracts,
introducing also the forest to be protected as a parameter to be negotiated and in
the alternative resolution of the game applied to our model, easily extendable to more
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general economic models. The resolution of the sub-game perfect equilibria is based on
simple observations of an analytical nature, in particular of convex analysis, and has
been completely conceived by us, without any reference to other articles.
In what follows, it is very interesting to see how the characterization of the sub-game
perfect equilibria changes when it comes from static to dynamic bargaining.
For a more detailed discussion of this game, we refer to the next chapter where, after
an accurate description of our model in the context of REDD+ schemes, we analyse
the ultimatum game directly applied to it.



Chapter 3

Application to REDD+ schemes

In this chapter we give a detailed description of our model, inspired by that of Mohr[1]
(see Section 1.1), but renewed and conceived from a new perspective.
Then, we dedicate the second part to the study of an ultimatum game applied to the
model just described.

3.1 The model

Let us consider two groups of countries bargaining the level of protection of a rainforest
and any resulting monetary exchange. Let A be the groups of all countries hosting a
rainforest, mostly developing ones (Brazil, Congo and Indonesia for example) and let B
represent the rest of the international community, mostly made of developed countries,
signatories of an international agreement concerning the reduction of global carbon
emissions (US, European Union and so on).

Remark 3.1. For the sake of simplicity, from now on we will identify all the countries
hosting the rainforests as a single developing country, while the rest of the international
community as a single large developed country. We will therefore use the word “country”
to indicate a community of countries, remaining aware of the initial idea that persists
throughout the work.

Let us introduce the following parameters and utility functions:

• F : the total amount of the forest suitable for development (in hectares);

• π ∈ [0, 1] : the percentage of the forest at risk F protected by A;

• cA(π) : [0, 1] → R+ : increasing, strictly convex costs function for A due to the
active protection of the forest and the opportunity cost of development, i.e., the
amount of the potential sale of agricultural products that would be obtained by
developing the area πF instead of protecting it (in US dollars);

33
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• bA+B(π) : [0, 1] → R+ : increasing, concave environmental benefits function ob-
tained by both A and B (in US dollars);

• µA ∈ (0, 1) : the percentage of the global benefits bA+B internalized by A.

Let us motivate our choices and make some observations:

1. Considering only the part of the forest F suitable for development, the lack of pro-
tection of a certain area means its destruction for the implementation of projects
aimed at exploiting the land.

2. The choice of an increasing, convex function for cA is due to the fact that landown-
ers prefer to start protecting the most remote and least accessible areas of the
forest, since it would be more expensive to develop them (for example building
roads to reach the place). This practically means that the more land is protected,
the closer you get to the most easily exploitable areas, i.e., the more π grows,
both the potential agricultural sales and its growth rate increase (the opportunity
cost function is therefore increasing and convex).

3. Regarding the benefit function, one can interpret the environmental benefits de-
rived from the protection of the forest as avoided mitigation costs, as protecting
forests is assessed as the cheapest mitigation method by the IPCC. They represent
the avoided costs of mitigation actions and additional project implementation that
the global community would face to achieve agreed targets if part of the forest
was destroyed. In this sense, since there is a global target to achieve, the avoided
costs concern all the countries and they fall on countries destroying the forest as
much as they are held responsible for their own “bad” actions. This “responsibil-
ity” is represented by the exogenous parameter µA and it depends on the current
institutional setting resulting from international negotiations.

4. One can think of bA+B(π) as being evaluated proportionally to the amount of car-
bon captured or retained, that is as a linear function, according to the proportion
of 100USD/ton of CO2 proposed by the “Report of the high-level commission on
carbon prices” in 2017 [13]. However, since the remotest forest areas are likely to
be the ones which retain more carbon because more unaffected and the first to be
protected, it is natural to assume that the benefit function is concave.

5. Finally, let us remark that the environmental benefits (or the avoided mitigation
costs) which are not internalized by A, fall on the rest of the global community
(B), whose profit is (1− µA)bA+B.

Proceeding with the description of the model, given all the parameters involved, we
highlight the net gains of the two countries and therefore their objectives, or defining
the functions that each wants to maximise when no agreement is taken into account.



3.1. THE MODEL 35

• µA · bA+B(π)− cA(π): country A’s payoff consisting of the difference between the
internalized benefits and costs;

• (1−µA)bA+B: country B’s payoff simply consisting of the external benefits of the
forest;

• bA+B(π) − cA(π): global payoff consisting of the difference between the global
benefits and A’s costs.

As mentioned, the environmental benefits partially accrue to the international commu-
nity because avoided carbon emissions in the forest, contribute to the global emissions
target. For this reason, the developed country (B) wants to persuade country A to
implement a higher protection of the forest, offering as incentive a monetary transfer,
that will compensate for the environmental protection costs. On the other side, the de-
veloping country (A) wants to get profit from its environmental policies both in terms
of forestal services and economic growth.
Following these purposes, the two players bargain a couple (π,M) which represents
the portion π of the forest at risk F that is protected by A, if B pays an amount M
to A (valued in US dollars). When an agreement is reached, the monetary transfer
must also be considered in calculating the net gains of the two countries, resulting in
µA · bA+B(π)− cA(π) +M for country A and (1− µA)bA+B −M for country B.
Concluding the description of our model, we introduce a particular notation for two
levels of protection that will be relevant in the following. We denote them as follows:

• πnc = argmax
(
µA · bA+B(π) − cA(π)

)
the non-cooperative optimal protected

portion of the forest for country A without any agreement (baseline path);

• π∗ = argmax
(
bA+B(π) − cA(π)

)
the globally optimal protected portion of the

forest (social optimum).

Remark 3.2. Note that πnc < π∗ because µA ∈ (0, 1), b′A+B decreasing (concavity) and
c′A strictly increasing (strictly convexity) (See Remark 3.7). This is very important for
our analysis because if the two levels of protection are equal, then the developed country
(B) has no incentive to finance projects that would have been implemented without
financial aid anyway (baseline path). Its investment is in fact tied exclusively to the
improvement of the environmental conditions of the forest of the other country and its
purpose is to convince A to implement a level of protection closer to the social-optimum
π∗ than the non-cooperative value πnc.
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3.2 Ultimatum Game

At first analysis, let us consider an ultimatum game, that is a negotiation made by a
single offer which can be accepted or rejected.
Let country B be the player who makes a proposal (π,M). If country A accepts the
offer, then it will protect a portion π and gain an amount gA defined by π and the
monetary transfer M ; while B will pay M and get benefits from the level of protection
π, gaining an amount gB. If country A refuses the offer, then it will protect its optimal
portion πnc of the forest and B will pay nothing (non-cooperative solution).
Despite the notation, we assume that country B is the first player moving. However,
later in our work, the roles of A and B will be interchanged and both cases will be
analysed. Moreover, in Chapter 4 (Section 4.2.2), we will explore the limit case of
discount factors getting closer to 1, where the advantage of who starts the negotiation
is almost cancelled.
Let us define the strategies of the two players as follows:

• SB = {(π,M)|π ∈ [0, 1],M ∈ [0,∞[};

• SA = {f : [0, 1]× [0,∞[→ {Y,N}} where “Y”(resp. “N”) means “Yes” i.e. accept
(resp. “No” i.e. refuse)1;

Let us define the payoffs gA and gB of player A and B, respectively, as follows:

• gA(f, (π,M)) =

{
gA(π,M) := µA · bA+B(π)− cA(π) +M if f(π,M) = Y

eA := µA · bA+B(π
nc)− cA(π

nc) if f(π,M) = N
;

• gB(f, (π,M)) =

{
gB(π,M) := (1− µA) · bA+B(π)−M if f(π,M) = Y

eB := (1− µA) · bA+B(π
nc) if f(π,M) = N

.

In other words, when an agreement on (π,M) is reached, the two players gain gA(π,M)
and gB(π,M); while when they disagree the gain is eA for A and eB for B, which are
also called “exit options”.
Let us now recall the standard definition of Nash Equilibrium (NE) and Nash Equilib-
rium Payoff (NEP) (see [4][4.5] for more details).

Definition 3.1. (NE and NEP.)
A NE of a game G = (I, S = {(Si)i∈I}, G = {(gi)i∈I)}) with |I| players, S set of
strategies and G sets of payoffs, is a strategy profile s∗ = (s∗i )i∈I ∈ S such that
gi(ti, s

∗
−i) ≤ gi(s

∗
i , s

∗
−i) for all i ∈ I and ti ∈ Si.

A NEP of the game G is a payoff profile g = (gi(s
∗))i∈I computed in a NE s∗.

1Note that here N = E with the notation of the Definition 2.1 in Chapter 2.
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In order to calculate the Nash equilibria of the game, we want to investigate when
an agreement is more convenient than an “exit option” for each player. It will be useful,
for this purpose, to denote by C the set of offers that are more advantageous for both
players than the respective gains in the non-cooperative case, i.e.,

C =

{
(π,M) s.t.

{
M ≥ µA · (bA+B(π

nc)− bA+B(π)) + cA(π)− cA(π
nc)

M ≤ (1− µA) · (bA+B(π)− bA+B(π
nc))

}
,

where the first inequality means that the offer is convenient for country A (gA(π,M) ≥
eA) and the second that is convenient for country B (gB(π,M) ≥ eB).

Remark 3.3. The set C of “convenient” proposals for both players is non-empty.
Indeed, C ̸= ∅ ⇐⇒ ∃ π ∈ [0, 1] s.t.

µA · (bA+B(π
nc)− bA+B(π))+ cA(π)− cA(π

nc) ≤ (1−µA) · (bA+B(π)− bA+B(π
nc)) (3.1)

⇐⇒ cA(π)−cA(π
nc) ≤ bA+B(π)−bA+B(π

nc) ⇐⇒ bA+B(π
nc)−cA(π

nc) ≤ bA+B(π)−cA(π).

From the definition of social optimum as the point of maximum of bA+B(π)− cA(π), we
know that π∗(≥ πnc) satisfies this condition and, in any case, at least πnc always attains
the equality. Hence, in the worst case, we have at least (πnc, 0) ∈ C ̸= ∅. Moreover, we
have C = {(πnc, 0)} ⇐⇒ π∗ = πnc ⇐⇒ µA = 1, which case is out of our interest
as no negotiation can take place. In the general case, we have an interval starting
from πnc, where condition (3.1) is satisfied, and it contains π∗ (when the difference
bA+B(π)− cA(π)− (bA+B(π

nc)− cA(π
nc)) is maximised).

Figure 3.1: Region C of convenient strategies.
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Theorem 3.1. (NE in Ultimatum Game.)
A strategy profile (f̃ , (π̃, M̃)) is a NE of the ultimatum game if and only if it satisfies
one of the following:

(i)

{
M̃ ≤ µA · (bA+B(π

nc)− bA+B(π̃)) + cA(π̃)− cA(π
nc) s.t. f̃(π̃, M̃) = N

f̃(π,M) = N ∀(π,M) s.t. M < (1− µA) · (bA+B(π)− bA+B(π
nc))

and the NEP in this case is (eA, eB);

(ii)


f̃(π,M) = Y ∃(π,M) ∈ C

f̃(π,M) = N ∀(π,M) s.t.

{
M < µA · (bA+B(π

nc)− bA+B(π)) + cA(π)− cA(π
nc)

gB(π,M) > gB(πc,Mc) ∀(πc,Mc) ∈ C s.t. f̃(πc,Mc) = Y

(π̃, M̃) = argmax
(
gB(π,M) | (π,M) ∈ C , f̃(π,M) = Y

)
and the NEP in this case is (gA(π̃, M̃), gB(π̃, M̃)).

Proof. We want to prove that given the strategy f̃ for player A, then (π̃, M̃) satisfying
(i) or (ii) is a best response for B, and viceversa.
Let us assume that we are in the case (i), so player A chooses a strategy f̃ such that
refuses any offer strictly convenient for B. In this case, the best response for B is any
strategy that earns him the value of the exit option eB and (π̃, M̃) described in (i) is
one of them. Now, staying in case (i), let us assume that B chooses a strategy (π̃, M̃)
such that

M̃ ≤ µA · (bA+B(π
nc)− bA+B(π̃)) + cA(π̃)− cA(π

nc),

which equivalently writes µA · bA+B(π̃)− cA(π̃) + M̃ ≤ µA · bA+B(π
nc)− cA(π

nc), that is
gA(π̃, M̃) ≤ eA. Since B’s offer is unsuitable for A, any strategy f such that f(π̃, M̃) =
N is a best reply strategy for A to (π̃, M̃) and f̃ defined in (i) is one of them. We have
just proved that a strategy profile which satisfies (i) is a NE.
Let us now analyse the case (ii). Let us assume that A chooses a strategy f̃ satisfying
condition (ii). This means that there exists at least one offer in the convenient region C
which will be accepted, but also, that A will refuse any unsuitable offer for itself that is
strictly convenient for B with respect to the others accepted in the convenient region.
At this point, the best reply for B is the offer that maximises the payoff gB(π,M),
chosen between those that are convenient for itself and accepted by A. Hence, (π̃, M̃)
defined in (ii) is one of B’s best replies to f̃ .
Conversely, let B choose a strategy satisfying condition (ii). Then, a best reply for
country A, knowing that B will propose an offer in the “convenient” region C, is any
strategy that accepts that offer, as f̃ is.
Finally, let us show that these are the only Nash equilibria. Let f0 be a strategy
described in (ii) and let

(π0,M0) = argmax
(
gB(π,M) | f0(π,M) = Y ,M < µA·(bA+B(π

nc)−bA+B(π))+cA(π)−cA(π
nc)

)
.
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Since (π0,M0) is unsuitable for A, it has a unilateral deviation in choosing any strategy
which refuses that offer.
Now, let f0 be neither of type (i) nor type (ii). Then, there should exists an offer that
is convenient for B and accepted by A, i.e.,

∃(π0,M0) s.t.

{
M0 < (1− µA) · (bA+B(π0)− bA+B(π

nc))

f0(π0,M0) = Y.

If (π0,M0) ∈ C, then we are again in case (ii). If f0(π,M) = N ∀(π,M) ∈ C, then the
best reply for B is (π0,M0) which is unsuitable for A, and we come back to the case
analysed above.
Finally, it remains the case where B makes an offer that is not convenient for itself. If
it is not convenient for country A as well, then we are in the case (i) where the only
solution is the breakdown of negotiations. If we have (π0,M0) convenient only for A, i.e.,{

M0 > (1− µA) · (bA+B(π0)− bA+B(π
nc))

M0 > µA · (bA+B(π
nc)− bA+B(π0)) + cA(π0)− cA(π

nc)
,

then a best reply for A is a strategy which accepts (π0,M0), but B has a strictly
profitable deviation choosing any rejected offer.

Remark 3.4. From the characterisation of Theorem 3.1, we can identify two types of
Nash equilibria: the first type is a non-cooperative equilibrium where both players do
not want to compromise, so the unique solution is the exit option; while the second one
represents a reached agreement which is convenient for both parties. Moreover, as it
usually happens with Nash equilibria, there are some equilibrium strategies of country
A that do not seem to be rational. In fact, since in a best reply strategy of A the only
thing that matters is whether the specific offer of the other country is accepted or not
(i.e., the value of f̃(π̃, M̃)), there are several equilibrium strategies that behave strangely
with other offers. For example, it can happen that the developing country accepts the
equilibrium offer made by the developed one, while refusing some others which are more
convenient for itself. Another example of strange equilibrium is when country A accepts
some offers which are inconvenient for itself, since it knows that there are others more
advantageous proposals for B.

The analysis carried out so far shows that there are infinite Nash equilibria, many of
which seem to be unreasonable from a practical and rational point of view. Therefore,
since we have an extensive form game, we are interested in a more specific type of
equilibrium that outlines equilibrium strategies for players in any given situation (even
those that do not occur): the Sub-game Perfect Equilibrium (SPE)(see [4][6.2.6] for
more details).
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Definition 3.2. (SPE and SPEP.)
A SPE of the game G = (I, S = {(Si)i∈I}, G = {(gi)i∈I)}) is a strategy profile σ∗ ∈ S
that represents a NE of every sub-game of the original game, i.e., such that for each
state p of G, the continuation strategy profile σ∗[p] induced by σ∗, is a NE of the sub-
game G[p] starting from p.
A SPEP of the game G is a payoff profile g = (gi(σ

∗))i∈I computed in a SPE σ∗.

The next result shows the characterization of all sub-game perfect equilibria in our
ultimatum game.

Theorem 3.2. (SPE in Ultimatum Game.)
A strategy profile (f̃ , (π̃, M̃)) is a SPE of the ultimatum game if and only if:
f̃(π,M) = Y ∀(π,M) s.t. M > µA · (bA+B(π

nc)− bA+B(π)) + cA(π)− cA(π
nc)

f̃(π,M) = N ∀(π,M) s.t. M < µA · (bA+B(π
nc)− bA+B(π)) + cA(π)− cA(π

nc)

f̃(π∗, eA − (µA · bA+B(π
∗)− cA(π

∗))) = Y

(π̃, M̃) =
(
π∗, eA − (µA · bA+B(π

∗)− cA(π
∗))

)
and the Sub-game perfect equilibria payoff (SPEP) is

(
eA, bA+B(π

∗)− cA(π
∗)− eA

)
.

Proof. We already know that the first two lines of the system are the condition under
which an offer is strictly convenient for A, so when it will accept, and strictly unsuitable
for A, so when it will refuse.
The only case to be discussed is when gA(π,M) = eA, or equivalently (π,M) s.t.
M = µA · (bA+B(π

nc)− bA+B(π)) + cA(π)− cA(π
nc) = eA − (µA · bA+B(π)− cA(π)).

In this case, since accepting or rejecting is indifferent for A, there exists infinitely many
equilibrium strategies, one for each possible choice of a subgroup of those offers, selected
to be accepted. Anyway, the indifferent offer (π∗,MB(π

∗)) :=
(
π∗, eA− (µA ·bA+B(π

∗)−
cA(π

∗))
)
, must be accepted, otherwise B would have no best reply.

Let us now prove that the offer (π∗,MB(π
∗)) maximises the payoff of B in the domain

C of convenient offers. Firstly, let us observe that the curve defined by M = (1 −
µA) · (bA+B(π) − bA+B(π

nc)) is a contour line of the function gB(π,M) (solid red line
in Figure 3.2), indeed, it is derived from the equation gB(π,M) = gB(π

nc, 0) (= eB).
Moreover, choosing πϵ := πnc + ϵ ( ∀ ϵ > 0) instead of πnc, we get a downward shifted
contour line (dotted red line in Figure 3.2) with a greater value of the payoff gB i.e.
gB(πϵ, 0) = (1−µA) · bA+B(π

nc+ ϵ) > (1−µA) · bA+B(π
nc), since bA+B is increasing, and

gB(π,M) = gB(πϵ, 0) =⇒ M = (1−µA) · (bA+B(π)− bA+B(πϵ)) < (1−µA) · (bA+B(π)−
bA+B(π

nc)).
Having said that, the couple (π,M) that maximises the payoff of B, chosen between
the offers that are accepted by A and convenient for B (that is (π,M) ∈ C), lies on
the contour line of gB with the highest value whose intersection with the set C is non-
empty (dotted red line in Figure 3.2). In other words, (π̃, M̃) is the tangent point of
the contour lines of gB and the curve delimiting the lower boundary of the set C, that is
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M = µA · (bA+B(π
nc)− bA+B(π))+ cA(π)− cA(π

nc) (see Figure 3.2). Assuming that the
derivative of the two curves is the same, the tangent point results to be (π∗,MB(π

∗)).
Indeed,

(1− µA) · b′A+B(π) = −µA · b′A+B(π) + c′A(π) ⇐⇒ b′A+B(π)− c′A(π) = 0 ⇐⇒ π = π∗

since π∗ is defined as the point of maximum of the concave function bA+B(π)− cA(π).
This proves that (π∗,MB(π

∗)) is the agreed couple we wanted and ends the proof.

Figure 3.2: Sub-game perfect equilibrium offer (π∗,MB(π
∗)).

Remark 3.5. Let us emphasise that, even if there are many different SPE, depending
on the offers accepted or refused by A, the equilibrium offer is always (π∗,MB(π

∗)) and,
consequently, the SPEP of A is equal to the exit option value eA. This practically means
that, at the end, the two players will agree on the portion of the forest π∗, which is the
one that optimizes the sum of their payoff ( i.e. bA+B(π)− cA(π)), so they will always
reach the social optimum.

Until now, we analysed the case where country B is making an offer and A can
accept or refuse. Let us consider, now, the symmetric2 situation where A proposes a
couple (π,M) and B can accept or refuse. As can be guessed, the set of strategies of
the two players are reversed in this new ultimatum game, while the payoffs and the exit
options remain unchanged, as well as the set C of convenient offers.
Let us show the characterization of the NE and the SPE of the symmetric ultimatum
game, that is when A is the bidder.

2From now on, in the rest of our work, we will use the term “symmetric” to specifically refer to the
two cases in which country A or B initiates the negotiation.
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Theorem 3.3. (NE in Ultimatum Game - symm. case.)
A strategy profile ((π̃, M̃), f̃) is a NE of the symmetric ultimatum game if and only if
it satisfies one of the following:

(i)

{
M̃ ≥ (1− µA) · (bA+B(π̃)− bA+B(π

nc)) s.t. f̃(π̃, M̃) = N

f̃(π,M) = N ∀(π,M) s.t. M > µA · (bA+B(π
nc)− bA+B(π)) + cA(π)− cA(π

nc)

and the NEP in this case is (eA, eB);

(ii)


f̃(π,M) = Y ∃(π,M) ∈ C

f̃(π,M) = N ∀(π,M) s.t.

{
M > (1− µA) · (bA+B(π)− bA+B(π

nc))

gA(π,M) > gA(πc,Mc) ∀(πc,Mc) ∈ C s.t. f̃(πc,Mc) = Y

(π̃, M̃) = argmax
(
gA(π,M) | (π,M) ∈ C , f̃(π,M) = Y

)
and the NEP in this case is (gA(π̃, M̃), gB(π̃, M̃)).

Proof. Similar to the proof of Theorem 3.1 with the roles of the two players exchanged.

As in Theorem 3.1, we can identify two types of Nash equilibria: type (i) repre-
senting the non-cooperative solution (also called outside option); type (ii) representing
the agreement concluded. Moreover, as before, there are some equilibrium strategies
of country B that do not seem to be rational, since the concept of NE is too weak for
this type of game. This motivates us to find the SPE also in the symmetric ultimatum
game.

Theorem 3.4. (SPE in Ultimatum Game - symm. case.)
A strategy profile ((π̃, M̃), f̃) is a SPE of the symmetric ultimatum game if and only if:
f̃(π,M) = Y ∀(π,M) s.t. M < (1− µA) · (bA+B(π)− bA+B(π

nc))

f̃(π,M) = N ∀(π,M) s.t. M > (1− µA) · (bA+B(π)− bA+B(π
nc))

f̃(π∗, (1− µA) · (bA+B(π
∗)− bA+B(π

nc))) = Y

(π̃, M̃) =
(
π∗, (1− µA) · (bA+B(π

∗)− bA+B(π
nc))

)
and the SPEP is

(
bA+B(π

∗)− cA(π
∗)− (1− µA) · bA+B(π

nc) , eB
)
.

Proof. Similar to the proof of Theorem 3.2 but with the roles of the two players and
their contour lines exchanged. Indeed, here the first two lines of the system delineate the
offers strictly convenient for B, which will be accepted, and those strictly unsuitable
for B, which will be refused. The non-trivial case to be discussed is when the offer
made by A is indifferent for B (i.e., when M = (1 − µA)(bA+B(π) − bA+B(π

nc))) and
the aim is to maximise the payoff of A between those offers. To do this, it is sufficient
to repeat the argument made in the proof of Theorem 3.2, but this time considering
the contour lines of gA(π,M), the payoff of A (violet lines in Figure 3.3). The tangent
point is now defined by the intersection of the indifferent curve of B (solid red line)
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and the upward shifted contour line of A (dotted violet line) and, in formulas, it is
(π∗,MA(π

∗)) =
(
π∗, (1− µA) · (bA+B(π

∗)− bA+B(π
nc))

)
.

Figure 3.3: Sub-game perfect equilibrium offer (π∗,MA(π
∗)).

Remark 3.6. Note that also in the symmetric case, the social optimum is reached
and the equilibrium offer is (π∗,MA(π

∗)) :=
(
π∗, (1 − µA) · (bA+B(π

∗) − bA+B(π
nc))

)
.

Consequently, the SPEP of B is equal to the value of its exit option eB, as it happened
before for country A (see Remark 3.5).

Remark 3.7. Let us observe how the results we obtained depend on the assumptions
of strictly convexity and concavity of the cost and benefit function (respectively).
In the first place, as mentioned before, we need these two assumptions to state that πnc <
π∗. Indeed, from the strictly convexity of cA we have that the payoff µA ·bA+B(π)−cA(π)
is a strictly concave function, so µA · b′A+B(π) − c′A(π) is strictly decreasing, and from

the definition of πnc and π∗ we have

{
µA · b′A+B(π

nc)− c′A(π
nc) = 0

b′A+B(π
∗)− c′A(π

∗) = 0
.

Now, for every µA < 1, we get µA ·b′A+B(π
∗) = µA ·c′A(π∗) < c′A(π

∗) =⇒ µA ·b′A+B(π
∗)−

c′A(π
∗) < 0 =⇒ πnc < π∗.

Secondly, the convexity/concavity of the cost/benefit function implies the convexity/concavity
of the contour line of the payoff of A/B and, consequently, the convexity of the Con-
venient region C. The latter property is fundamental to have that the tangent point
(π∗,Mi(π

∗)) for i = A,B, is the SPE offer of the ultimatum game.

Remark 3.8. Conclusions on the Ultimatum Game.
Comparing the results of the two symmetric cases, we can observe that different sub-
game perfect equilibria are obtained, but with common features.

• In every SPE the social optimum is reached and, consequently, we can observe
that this type of contract does indeed protect an additional part of the forest, since
π∗ > πnc.
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• When B makes the offer, the equilibrium payoff of country A is equal to its exit
option eA, while in the other case the equilibrium payoff of B is eB. In other
words, in both cases, for the country receiving the proposal it is indifferent to sign
the contract or take the outside option; while all the gain from achieving the social
optimum is for the bidder. In this sense, we can deduce that the player who is
making a proposal has more “bargaining power” than the other one.

In what follows, we would like to find a solution that depends as little as possible on
the player initiating the negotiation. To this purpose, we improve our model by making
it dynamic, so that in the next chapter we analyse an applied bargaining game made
by several offers.



Chapter 4

Bargaining Game

In order to continue our analysis, let us introduce the dynamics to the bargaining
model, making it more realistic, being an exchange of proposals and responses. Let us
recall what is a sequential bargaining game and apply it to our model, considering a
negotiation made by several alternating offers (see Section 2.3.1 for technical details).
Let the community of countries A be the player who starts the bargaining and makes
the first offer. Then, B has three possible reactions: accept the offer and thus end the
game; refuse the offer and make a new one in the next step; or refuse the offer and
end the negotiation by taking an outside option (eA, eB). If the game continues, in the
second step country B makes an offer and the other one has three possible reactions as
before, and so on.
To simplify the analysis of the model and have a concrete result, instead of negotiating
both variables (π,M) as in the ultimatum game, we assume that the two players agree
to set a portion of the forest π∗ to be protected and negotiate only the relative payment.
In this way, we have also that the size of the “cake” they want to share is constant, that
is the sum of the two payoffs determined by (π∗,M) is fixed: gA(π

∗,M) + gB(π
∗,M) =

bA+B(π
∗) − c(π∗). The hypothesis of setting the forest portion π∗ comes from the

idea that the two players decide to fix the size of the cake when it is maximised (social
optimum) and then find an agreement by changing the monetary transfer. This concept
can be summarised saying that the sub-game perfect equilibria we want to find, satisfy
the efficiency property.
The exit option (eA, eB) is defined as the one of the ultimatum game of Chapter 3,
that is the gain respectively of country A and B with no agreement, so with the non-
cooperative level of protection πnc of the forest and without any monetary transfer.
Given that, at each step, a country proposes a possible monetary transfer M leading
to a partition of the cake bA+B(π

∗)− c(π∗), which gives under an agreement:

• the share gA(π
∗,M) = µA · bA+B(π

∗)− cA(π
∗) +M to A;

• the share gB(π
∗,M) = (1− µA) · bA+B(π

∗)−M to B.

45
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While, with a breakdown of negotiations, the two countries gain the value of their own
exit option:

• eA := gA(π
nc, 0) = µA · bA+B(π

nc)− cA(π
nc) for A;

• eB := gB(π
nc, 0) = (1− µA) · bA+B(π

nc) for B;

where we recall that the portion of forest protected πnc is the one chosen by A, max-
imising its own payoff gA(π, 0) with no monetary transfer. In other words, it is the level
of protection implemented by the country hosting the forest in its baseline path (with
no additional projects).
A strategy for a player, then, specifies his proposal/reply at each point as a function
of the history of the game up to that point, as formally described in Chapter 2 (see
Section 2.3.1).
The last component of the model is the preference of the players on the set of out-
comes. By adding the dynamics to the model, when we want to specify the preferences
of players, we have to take into account the time variable and thus, also the discount
factors due to the time passing. In this regard, we introduce the discount factors of
the two countries and, in the following sections, we will analyse two different ways of
discounting the payoffs of the two players.

4.1 Uniform discount factors

Firstly, let us start by studying a base case, where the two countries have two different
discount factors that discount the entire payoff uniformly, defined as follows:

• δA = 1
1+rA

where rA ∈ (0,+∞) is the discount rate of country A;

• δB = 1
1+rB

where rB ∈ (0,+∞) is the discount rate of country B.

We assume the discount rates to be positive and, therefore, that the discount factors
are between 0 and 1 (δA, δB ∈ (0, 1)) as usual.

Remark 4.1. The choice of the discount factors strictly smaller than 1 is also necessary
to give the two countries an incentive to reach an agreement, since they lose money as
the time goes by.

Remark 4.2. We also assume that the developing country is more eager to reach an
agreement, as he is more interested in receiving funding from the other country by
necessity. In other words, we assume that rA > rB =⇒ δA < δB.

Remark 4.3. Recall that we are always thinking about A and B as groups of countries
forming a global community (see Chapter 3, Section 3.1). Thus, regarding the discount
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factors, they are thought to be an average of discount factors of those countries involved
in each group. For simplicity, we continue to refer to them as the discount factors of
country A and B.

We are now ready to define the preferences of the two players. For all possible
payments M1,M2 ∈ M and times t1, t2 ∈ N we have:

• (M1, t1) ≳A (M2, t2) ⇐⇒ δt1A · gA(π∗,M1) ≥ δt2A · gA(π∗,M2);

• (M1, t1) ≳B (M2, t2) ⇐⇒ δt1B · gB(π∗,M1) ≥ δt2B · gB(π∗,M2).

Similarly to the previous case of the ultimatum game, the concept of Nash equilibria
is too weak and often unrealistic from the practical point of view. Hence, we are going
to analyse the sub-game perfect equilibria of our dynamic game, defined formally in
Definition 2.2 (Section 2.3.1), following the formalization of Rubinstein in [3].
At this point, we proceed with the characterization of the sub-game perfect equilibria
(SPE) of our game, recalling that we are studying the case in which country A, the
developing country, is starting the bargaining. Applying Theorem 2.1 to our model, we
obtain the following result.

Theorem 4.1. (SPE in our Bargaining Game.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, M̂). The
SPE payoffs (SPEP) (gA(π

∗, M̂), gB(π
∗, M̂)) are uniquely determined but differ as to

whose outside option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗, M̂) = 1−δB
1−δAδB

(bA+B(π
∗)− cA(π

∗))

gB(π
∗, M̂) = δB(1−δA)

1−δAδB
(bA+B(π

∗)− cA(π
∗))

if

{
eA ≤ δAgA(π

∗, M̂)

eB ≤ gB(π
∗, M̂)

(4.1)

where M̂ =
(1− µA − δB + µAδAδB) · bA+B(π

∗) + δB(1− δA) · cA(π∗)

1− δAδB
;

(2)

{
gA(π

∗, M̂) = (1− δB) (bA+B(π
∗)− cA(π

∗)) + δBeA

gB(π
∗, M̂) = δB((bA+B(π

∗)− cA(π
∗))− eA)

(4.2)

if

{
eA > δAgA(π

∗, M̂)

eB ≤ gB(π
∗, M̂)

where M̂ = (1− µA) · bA+B(π
∗)− δB · (bA+B(π

∗)− cA(π
∗)− eA);

(3)

{
gA(π

∗, M̂) = (bA+B(π
∗)− cA(π

∗))− eB

gB(π
∗, M̂) = eB

otherwise (4.3)

where M̂ = (1− µA) · bA+B(π
∗)− eB.
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In other words, this theorem says that a bargaining in which the developing country
A makes the first offer, always ends at the first step with an agreed monetary transfer M̂
from B to A. However, the specific value of M̂ and of the payoffs, depends on whether
each country has a valid exit option or not.
In particular, (1) represents the case where neither of the two countries has a good
exit option and, consequently, their equilibrium portion of the total amount of bene-
fits (bA+B(π

∗) − cA(π
∗)) is completely determined by their discount factors. Case (2)

describe a SPE when only country A (the one who starts negotiating) has a credible
outside option; while (3) includes those situations where (only or in addition) country
B has a valid exit option.

Proof. Let us go through the demonstration of Theorem 2.1, explaining the parameters
in our applied case and any additional steps (see Table III below for further clarifica-
tions).
Let x̂ = gA(π

∗, M̂) denote the supremum of the share which country A can obtain
in any SPE of this game and consider the sub-game beginning with an offer made by
country A at time t = 2. Note that this sub-game has the same structure as the original
game, apart from a re-scaling of payoffs, so the supremum of the share which country
A can obtain in any perfect equilibrium of the game at time t = 0 and of the sub-game
at time t = 2 is always gA(π

∗, M̂) (see the top and bottom row of Table III).
Now repeat the same backward procedure as in the demonstration of Theorem 2.1,
obtaining the possible values of the payoffs collected in Table III.
Note that in our case, the size of the cake is fixed as K = bA+B(π

∗) − cA(π
∗), and so

K − x̂ = K − gA(π
∗, M̂) = gB(π

∗, M̂).

TABLE III

Period
Offer
made
by

country A
receives at most

share

country B
receives at least

share

t = 0 A

 K − δB(K − δAgA(π
∗, M̂))

K − δB(K − eA)
K − eB

 δB(K − δAgA(π
∗, M̂)) if ≥ eB

δB(K − eA) if ≥ eB
eB oth.

t = 1 B x̄ =

{
δAgA(π

∗, M̂) if ≥ eA
eA oth.

K − x̄ =

{
K − δAgA(π

∗, M̂)
K − eA

t = 2 A gA(π
∗, M̂) gB(π

∗, M̂)
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By setting the value of the bottom row equal to the one of the top row, and solving
the resultant equations, we get the applied formulas of Theorem 2.1 for the equilibrium
payoffs (SPEP).
At this point, we can explicit the payoff functions using their definitions, so we can
compute an explicit formula for the SPE monetary transfers.
Case (1):{

gA(π
∗, M̄) = δAgA(π

∗, M̂)

gB(π
∗, M̂) = δBgB(π

∗, M̄)
=⇒

{
gA(π

∗, M̂) = 1−δB
1−δAδB

(bA+B(π
∗)− cA(π

∗))

gB(π
∗, M̂) = δB(1−δA)

1−δAδB
(bA+B(π

∗)− cA(π
∗))

(4.4)

and (gA(π
∗, M̂) =)µA · bA+B(π

∗)− cA(π
∗) + M̂ =

1− δB
1− δAδB

(bA+B(π
∗)− cA(π

∗))

=⇒ M̂ =
(1− µA − δB + µAδAδB) · bA+B(π

∗) + δB(1− δA) · cA(π∗)

1− δAδB
. (4.5)

Case (2):{
(gA(π

∗, M̂) =)µA · bA+B(π
∗)− cA(π

∗) + M̂ = (1− δB) (bA+B(π
∗)− cA(π

∗)) + δBeA

gB(π
∗, M̂) = δB((bA+B(π

∗)− cA(π
∗))− eA)

=⇒ M̂ = (1− µA) · bA+B(π
∗)− δB · (bA+B(π

∗)− cA(π
∗)− eA). (4.6)

Case (3): {
gA(π

∗, M̂) = (bA+B(π
∗)− cA(π

∗))− eB

(gB(π
∗, M̂) =)(1− µA) · bA+B(π

∗)− M̂ = eB

=⇒ M̂ = (1− µA) · bA+B(π
∗)− eB. (4.7)

This ends the proof.

Remark 4.4. This result is the direct application of Theorem 2.1 to our model. The
only difference is the fact that payoffs (gA(π

∗,M), gB(π
∗,M)) are functions of the vari-

able bargained M . In fact, in a standard bargaining game, the players bargain directly
their portion of the cake but, in our case, the two countries bargain the monetary trans-
fer M , while receiving a portion gi(π

∗,M) for i = A,B.
This generalizes the bargaining model, making it more suitable for the underlying setting
we are considering, but, at the same time, since there is a bi-univocal correspondence
between M and gi(π

∗,M), it does not change the analytical results about the payoff
gained.

Remark 4.5. We can observe that, in the case where both countries have no valid
outside option, having fixed a portion of the forest π and bargaining only over M , the
equilibrium share of the “cake” (i.e., the total welfare) received by the two players is
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directly proportional to the total welfare
(
bA+B(π

∗)− cA(π
∗)
)
to be divided (see (4.1)).

Since at first we assumed that the countries agree on the social optimum, we fixed π∗

before the negotiation. A posteriori, we can say that the two countries have no incentive
to “deviate” from the agreed portion π∗, since it maximises the “Perfect Equilibrium
Portion” gA(π, M̂) for A and gB(π, M̂) for B. In other words, if the two parties agree
on a portion π to be fixed during the negotiations, the optimal choice would always be
π∗, even if agreed once the monetary exchange has been decided. Indeed, by definition

of social optimum, π∗ = argmax
(
bA+B(π)− cA(π)

)
and we have:{

max gA(π, M̂) = max 1−δB
1−δAδB

(bA+B(π)− cA(π)) = 1−δB
1−δAδB

(bA+B(π
∗)− cA(π

∗))

max gB(π, M̂) = max δB(1−δA)
1−δAδB

(bA+B(π)− cA(π)) =
δB(1−δA)
1−δAδB

(bA+B(π
∗)− cA(π

∗))

given that 1−δB
1−δAδB

> 0 and δB(1−δA)
1−δAδB

> 0 and this is true since δA, δB ∈ (0, 1).

This could mean that, by negotiating M at first and then also π, the outcome (π∗, M̂)
is still obtained in one of the equilibria of the new game. With this remark, we simply
want to give further motivation for the choice of π∗. In fact, we are not allowing a
country to deviate after an agreement has been made. If the deal is not respected, the
developing country receives a punishment.

An important question arises now from this remark, that we will not discuss in this
work: what would change if both π and M were negotiated at the same time? More
specifically, (π∗, M̂) would still be an outcome of some equilibrium?

From the previous theorem, we can almost automatically deduce a similar result
in the symmetric case, that is when country B starts the bargaining. We then apply
results of Theorem 2.2 to our model.

Theorem 4.2. (SPE in our Bargaining Game - symm.case.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, M̄). The
SPEP (gA(π

∗, M̄), gB(π
∗, M̄)) are uniquely determined but differ as to whose outside

option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗, M̄) = δA(1−δB)
1−δAδB

(bA+B(π
∗)− cA(π

∗))

gB(π
∗, M̄) = 1−δA

1−δAδB
(bA+B(π

∗)− cA(π
∗))

if

{
eA ≤ gA(π

∗, M̄)

eB ≤ δBgB(π
∗, M̄)

(4.8)

where M̄ =
(δA − µA − δAδB + µAδAδB) · bA+B(π

∗) + (1− δA) · cA(π∗)

1− δAδB
;

(2)

{
gA(π

∗, M̄) = δA (bA+B(π
∗)− cA(π

∗)− eB)

gB(π
∗, M̄) = (1− δA) (bA+B(π

∗)− cA(π
∗)) + δAeB

(4.9)
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if

{
eA ≤ gA(π

∗, M̄)

eB > δBgB(π
∗, M̄)

where M̄ = cA(π
∗)− µA · bA+B(π

∗) + δA · (bA+B(π
∗)− cA(π

∗)− eB);

(3)

{
gA(π

∗, M̄) = eA

gB(π
∗, M̄) = (bA+B(π

∗)− cA(π
∗))− eA

otherwise (4.10)

where M̄ = eA − (µA · bA+B(π
∗)− cA(π

∗)).

Proof. The proof is similar to Theorem 4.1 with the role of country A and B exchanged.

Remark 4.6. As seen in Remark 4.5, also in the first case of Theorem 4.2, the equi-
librium share received by the two countries is directly proportional to the total amount
negotiated (see (4.8)). Therefore, also in this case they have no incentive to “deviate”
from the agreed portion π∗ of protected forest (social optimum) and the outcome (π∗, M̄)
is still obtained in one of the equilibria of a game where also π is bargained.

Remark 4.7. An important remark on Theorem 4.1 and 4.2 is that of monotonicity of
the payoff functions with respect to the discount factors. More precisely, in any of the
three cases, the payoff of A is increasing (actually non-decreasing) with respect to its
own discount factor δA and also the payoff of B is increasing (non-decreasing) in δB.
In other words, in the simple case of uniform discount factors, we are able to see that
the more patient the players are (δA or δB → 1), the more they gain. Anyway, we will
better analyse the case where they are “infinitely patient” in Section 4.2.2.

Remark 4.8. Ultimatum vs Bargaining game.
Let us compare these results with the one obtained in the ultimatum game of the previous
chapter (see Theorem 3.2 and Theorem 3.4).
We note that the ultimatum game is a special case of the bargaining game. This follows
from the fact that the negotiation is structured in the same way, but a single offer is
allowed. In other words, it is like having a bargaining game where by waiting for the next
round everything is lost, so that the possible choice to continue negotiating is eliminated.
Formally, the static case therefore corresponds to the dynamic case where the discount
factors are zero (δA = δB = 0).
The opposite case anyway, i.e. when δA, δB ⋍ 1, is analysed in Section 4.2.2.
Setting the discount factors to zero means that the exit options are always valid for both
players, as they are simply positive, and this leads to the occurrence of only one case of
the bargaining game, the third.
Indeed, we notice that the SPEP and the monetary transfers of case (3), in both normal
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and symmetrical cases (see (4.3) and (4.10)), are the same of the ultimatum game (see
Theorem 3.2 and 3.4). In particular,

M̂ = MA(π
∗) and M̄ = MB(π

∗).

As observed in Remark 3.8, in this case, the solution is extremely unbalanced from the
point of view of additional gain to the exit value, since the country replying to the offer
can earn only the value of its outside option and only the bidder can profit from social
optimum.
However, the bargaining game offers a more complete solution with the addition of two
further cases, where it is interesting to see if the solution is still unbalanced between the
two countries.
Firstly, we observe that the results of the first two cases ( case (1) and case (2)) look
very different from the one of the static case ( i.e., also case (3)). Indeed, while in the
ultimatum game the solution comes from the purely profit-related conveniences, here the
level of “patience” of the players comes into play and becomes predominant, i.e. how
important it is for them to conclude the deal as soon as possible. Secondly, we remark
that in these cases the advantage of the country starting the negotiation is less obvious
than before. To see this, let us observe that, taking for example the case in which A
starts and none has a valid exit options (see Theorem 4.1, case (4.1)), the conditions
to be satisfied are the following:{

eA ≤ δAgA(π
∗, M̂)

eB ≤ gB(π
∗, M̂)

,

where we can see that B’s share can be at least equal to its exit option, while A’s share
should be a little larger than it, i.e. eA ≤ δAgA(π

∗, M̂) < gA(π
∗, M̂). The same happens

in the symmetric case for country B.
This highlights the fact that the bargaining game provides a more complete and balanced
solution with respect to a negotiation made by a single-offer, even if the equilibrium is
reached at the first step (as in our case). In other words, even just the possibility to
exchange offers in a dynamic bargaining makes it more balanced.

4.2 Intermediate discount factor

Let us now improve our model by modifying the way we discount player payoffs.
In particular, we introduce an additional intermediate discount factor δ ∈ (δA, δB)
acting only on the benefit function bA+B(π) and representing a global discount factor
which is an average of the countries’ discount factors involved. To better explain the
role of this intermediate discount factor, let us illustrate how we intend to evaluate the
function of environmental benefits bA+B(π).
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4.2.1 The “Hotelling rule”.

As we already mentioned in the introduction of the model, the environmental benefits
resulting from the forest protection are designed as avoided mitigation costs.
More specifically, assuming that there is an international market where carbon credits
are bought and sold with no arbitrage opportunities, one can consider the purchase of
carbon credits as a carbon mitigation action. At this stage, one should understand how
to value carbon credit works and how it changes over time.
The common rule to evaluate carbon credits is the following:
Carbon credit social value=carbon social value*quantity of retained carbon

There are two ways to evaluate the social value of carbon: the cost-benefit approach
(US) and the cost-effectiveness approach (France, UK) (Bureau et al. 2021 [18]).
The cost-benefit approach is based on the estimation of marginal additional damage to
the economy, due to additional carbon emission. Sometimes this method can be blind
for a lot of “non-market” collateral damages, underestimating the real risk. For this
reason we opted for the second approach.
The cost-efficiency approach, indeed, is more operational and it suits our model. It is
based on the estimation of marginal costs to the economy for achieving a given target,
decided by an agreed optimal path (e.g. 2-Degree path). An important result regarding
this approach is the so called “Hotelling rule” saying that, to not have arbitrage oppor-
tunities, the growth rate of the social value of carbon should be equal to the discount
rate along a globally efficient trajectory to achieve net zero.
In our case, seeing A and B as international communities and assuming that the carbon
credits are sold in an international market, it is rational to consider an intermediate
rate r ∈ (rB, rA) as a sort of “global discount rate”, equalling the growth rate of carbon
social value. In this way, it comes naturally that the benefit function is linked to an
intermediate discount factor δ ∈ (δA, δB), defined by the “global discount rate” r i.e.
δ = 1/(1 + r). However, since δ represents a growth rate of the social value of carbon,
we will multiply the term involved by δ−1.

Returning to the analysis of the improved model, we need to specify all the ingredi-
ents to compute the equilibria. The strategies of the two players are the same as before,
as well as the definition of payoffs gA and gB. The difference lies in the preferences of
the players and, in particular, in the way payoffs are discounted. Since we dispose of
δA < δ < δB, at each step, payoffs are discounted uniformly with respect to the discount
factors δA and δB, but every time that the term bA+B(π) appears, it has an additional
growth rate δ−1. Formally, we have that ∀M1,M2 ∈ M and t1, t2 ∈ N:

• (M1, t1) ≳A (M2, t2) ⇐⇒ gδ,t1A (π∗,M1) ≥ gδ,t2A (π∗,M2);

• (M1, t1) ≳B (M2, t2) ⇐⇒ gδ,t1B (π∗,M1) ≥ gδ,t2B (π∗,M2);
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where we define gδ,ti (π,M) for i = A,B in the following way:

• gδ,tA (π,M) := δtA · (δ−tµA · bA+B(π)− cA(π) +M);

• gδ,tB (π,M) := δtB · (δ−t(1− µA) · bA+B(π)−M).

Following the idea of the proof of Theorem 4.1, we get a similar result about the SPE
in this new framework, where the difference is in the definition of the discounted payoff.
We start by stating the equilibrium theorem when A starts negotiating.

Theorem 4.3. (SPE in our Bargaining game - delta case.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, M̂). The
SPE payoffs (SPEP) (gA(π

∗, M̂), gB(π
∗, M̂)) are uniquely determined but differ as to

whose outside option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗, M̂) = µA(1−δB−δAδB+δ−1δAδB)+(1−µA)(1−δ−1δB)
1−δAδB

bA+B(π
∗)− 1−δB

1−δAδB
cA(π

∗)

gB(π
∗, M̂) = µAδB(1−δ−1δA)+(1−µA)δB(δ−1−δA)

1−δAδB
bA+B(π

∗)− δB(1−δA)
1−δAδB

cA(π
∗)

(4.11)

if

{
eA ≤ gδ,1A (π∗, M̂)

eB ≤ gB(π
∗, M̂)

where

M̂ =
(1− µA − δ−1δB + µAδ

−1δB + µAδ
−1δAδB − µAδB) · bA+B(π

∗) + δB(1− δA) · cA(π∗)

1− δAδB
;

(2)

{
gA(π

∗, M̂) = (1− δ−1δB)bA+B(π
∗)− (1− δB)cA(π

∗) + δBe
δ
A

gB(π
∗, M̂) = δB(δ

−1bA+B(π
∗)− cA(π

∗))− δBe
δ
A

(4.12)

if

{
eA > gδ,1A (π∗, M̂)

eB ≤ gB(π
∗, M̂)

where M̂ = (1− µA − δ−1δB) · bA+B(π
∗) + δBcA(π

∗) + δBe
δ
A

and eδA := µA δ−1 · bA+B(π
nc)− cA(π

nc);

(3)

{
gA(π

∗, M̂) = (bA+B(π
∗)− cA(π

∗))− eB

gB(π
∗, M̂) = eB

otherwise (4.13)

where M̂ = (1− µA) · bA+B(π
∗)− eB.

Proof. Paying attention to the discounting of payoffs, it is sufficient to go over the
demonstration of Theorem 4.1.

As before, we have a similar result for the case in which B starts the negotiation.
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Theorem 4.4. (SPE in our Bargaining game - delta symm. case.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, M̄). The
SPEP (gA(π

∗, M̄), gB(π
∗, M̄)) are uniquely determined but differ as to whose outside

option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗, M̄) = µAδA(δ−1−δB)+(1−µA)δA(1−δ−1δB)
1−δAδB

bA+B(π
∗)− δA(1−δB)

1−δAδB
cA(π

∗)

gB(π
∗, M̄) = µA(1−δ−1δA)+(1−µA)(1−δA−δAδB+δ−1δAδB)

1−δAδB
bA+B(π

∗)− 1−δA
1−δAδB

cA(π
∗)

(4.14)

if

{
eA ≤ gA(π

∗, M̄)

eB ≤ gδ,1B (π∗, M̄)
where

M̄ =
(µAδ

−1δA − µA + δA − µAδA − δ−1δAδB + µAδ
−1δAδB) · bA+B(π

∗) + (1− δA) · cA(π∗)

1− δAδB
;

(2)

{
gA(π

∗, M̄) = δA(δ
−1bA+B(π

∗)− cA(π
∗))− δAe

δ
B

gB(π
∗, M̄) = (1− δ−1δA)bA+B(π

∗)− (1− δA)cA(π
∗) + δAe

δ
B

(4.15)

if

{
eA ≤ gA(π

∗, M̄)

eB > gδ,1B (π∗, M̄)

where M̄ = (δ−1δA − µA)bA+B(π
∗) + (1− δA)cA(π

∗)− δAe
δ
B

and eδB = (1− µA) δ
−1 · bA+B(π

nc);

(3)

{
gA(π

∗, M̄) = eA

gB(π
∗, M̄) = (bA+B(π

∗)− cA(π
∗))− eA

otherwise (4.16)

where M̄ = eA − (µA · bA+B(π
∗)− cA(π

∗)).

Remark 4.9. Comparison delta and not-delta case.
Comparing the sub-game perfect equilibria of the “delta-game” (the bargaining game
with the presence of an extra factor δ−1) with the previous bargaining game, we notice
a lot of common features as the conditions which determines the three possible cases,
the fact that the equilibrium is reached at the first step and the uniqueness of the agreed
monetary transfer.
Moreover, the solution still depends on the country starting the negotiation, even if in
this case is more complicated to understand how and how much the equilibrium payoff
is unbalanced between the two countries and whether is more balanced than the previous
game or not. We can only observe that, as described in Remark 4.8, also in this case the
solution of case (1) occurs under a condition that partly favours the country initiating
the negotiation and the one of case (3) is still completely unbalanced.
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On the other hand, an important difference is that, in the case (1), the shares gained
by the players are no more proportional to the size of the “cake”, that is the total net
amount of benefits gA(π,M) + gB(π,M) = bA+B(π) − cA(π). This implies that there
exists a portion of the protected forest π ̸= π∗ which maximises the payoff of A, giving
it an incentive to deviate from (π∗, M̂) to (π, M̂), if there is a possibility. The portion
π∗ set at the beginning is no longer optimal in an a posteriori analysis.
Actually, we are assuming that the two countries only contract the monetary transfer
and that, once the portion of forest to be protected is decided at the beginning, it can
no longer be changed. On the contrary, if A chooses another π, thus deviating from
the agreement, the contract is broken and country A receives a punishment. For this
reason, it is still reasonable to set the amount π∗ at the beginning, since it is always the
one maximising the sum of the two players’ payoffs.

4.2.2 What happens when countries are patient?

In terms of interpretation, the players are patient when it is almost indifferent for them
to conclude a deal today rather than tomorrow. This case is interesting to analyse for
multiple reasons. Firstly, what happens in reality in most cases is that discount rates
are in a range of 1% to 20%, so that discount factors are in a range of 0.83 to 0.99. This
means that is reasonable to assume the discount factors to be close to 1 in the interval
between 0 and 1, where 1 means that they are totally indifferent since the monetary
value is constant in time. Furthermore, we note that the discount rate also depends on
the period between two offers, which can be arbitrary small (eg few hours instead of
one day). In such a case, the discount factors are even closer to 1.
In addition, let us recall that with uniform discount factors, both players have an in-
centive to be more patient as their bargaining power would increase, and so would their
payoffs (see Remark 4.7).
Formally, we continue by investigating the cases in which δA, δB approach 1.
Let us see then what happens in each of the three possible cases and in the two different
ways of discounting we have seen in the previous sections.

Case 1: Uniform discount factors.
Case (1): neither of players has a valid exit option.
Let us recall the system of equations 4.4 obtained in the proof of Theorem 4.1, referring
to the first case. We have that the payoffs of the two symmetrical cases are linked by
the following conditions: {

gA(π
∗, M̄) = δAgA(π

∗, M̂)

gB(π
∗, M̂) = δBgB(π

∗, M̄).

From this, it is immediate to conclude that when both factors δA, δB are close to 1, the
payoffs gA(π

∗, M̂) and gB(π
∗, M̂) are close to the one of the symmetric case gA(π

∗, M̄)
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and gB(π
∗, M̄) respectively and, therefore, the solution of the game becomes indepen-

dent of who initiates the negotiation.
Let us assume, now, that only δB ⋍ 1 and let us see how A’s payoff changes with respect
to δA. We notice that both gA(π

∗, M̂) and gA(π
∗, M̄) tends to zero, as the factor (1−δB)

multiplies them. This is reasonable because if the developed country is infinitely pa-
tient, then it has a great bargaining power and the other country automatically earns
a very small amount that is almost nothing.

Case (2): only the country who starts negotiating has a valid outside option.
It is interesting to see that, if we assume the country who responds to the first offer to
be infinitely patient, then the solution turns out to be completely in its favour, despite
the other country being the only one with a valid exit option and the one starting the
negotiation.
To better clarify, let us take the case where country A starts negotiating and δB ⋍ 1.
From (4.2) we derive:{
gA(π

∗, M̂) = (1− δB) (bA+B(π
∗)− cA(π

∗)) + δBeA

gB(π
∗, M̂) = δB((bA+B(π

∗)− cA(π
∗))− eA)

=⇒

{
ĝA = eA

ĝB = (bA+B(π
∗)− cA(π

∗))− eA
,

where country A can earn only the value of its exit option, so the agreement only
benefits country B. This emphasises the fact that a player’s patience (when its discount
factor is close to 1) brings him much more bargaining power than having a worthy
alternative and starting the negotiation.
Note also that, it is not possible to perform the same analysis when δA ⋍ 1. Indeed,
this implies that to be in this case, the condition eA > δA(1−δB)

1−δAδB
(bA+B(π

∗) − cA(π
∗))

should be satisfied, which becomes eA ≳ (bA+B(π
∗)− cA(π

∗)) which can never occurs.
In other words, when both countries are infinitely patient, case (2) never occurs, since
the country starting the negotiation cannot have a valid exit option when it always
prefers to wait.

Case (3): only the responder or both countries have a valid outside option.
On the contrary of the previous case, when the country who does not start the negotia-
tion is infinitely patient, case (3) cannot occurs. Indeed, it cannot have a valid outside
option as it is always more convenient for it to wait rather than leave the negotiation.
For example, when A starts negotiating, if δB ⋍ 1 we have that:

eB > gB(π
∗, M̂) =

δB(1− δA)

1− δAδB
(bA+B(π

∗)− cA(π
∗)) =⇒ eB ≳ (bA+B(π

∗)− cA(π
∗)),

or eB > (bA+B(π
∗)− cA(π

∗))− eA =⇒ eA + eB ≳ bA+B(π
∗)− cA(π

∗),

where both cases can never occur, since eB or eA + eB cannot be greater than the total
amount of benefits (bA+B(π

∗)− cA(π
∗)).
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Moreover, recall that, from the assumption δA < δB, it follows that if δA ⋍ 1, then
automatically also δB ⋍ 1. For this reason, the only case that can occur is when
B starts the negotiation and it is the only one to be infinitely patient. In this case,
the level of patience of B does not affect the result of the negotiation. Indeed, B has
already gained the maximum payoff it could gain, earning the total welfare minus the
exit option value of A, so it cannot make a better deal.

Case 2: Intermediate discount factor.
Case (1): neither of players has a valid exit option.
In the game where an extra factor δ−1 is also considered, we get a similar system of
equations of (4.4): {

gA(π
∗, M̄) = gδ,1A (π∗, M̂)

gB(π
∗, M̂) = gδ,1B (π∗, M̄).

Here, too, we can conclude that the payoffs of the two symmetrical cases get closer as
all discount factors δA, δ and δB approach 1.
Assume instead that only the discount factor δB ⋍ 1. Then, unlike the previous result,
we obtain:

gA(π
∗, M̂) ⋍

µAδA(δ
−1 − 1) + (1− µA)(1− δ−1)

1− δA
bA+B(π

∗)

and gA(π
∗, M̄) ⋍

δA(1− 2µA)(1− δ−1)

1− δA
bA+B(π

∗).

But, as soon as δ ⋍ 1 too, both gA(π
∗, M̂) and gA(π

∗, M̄) tends to zero as before.

Case (2): only the country who starts negotiating has a valid outside option.
Following the same argument of the uniform discounting, the only case to be considered
is when A starts negotiating and only country B is infinitely patient. In this case, when
both δ, δB ⋍ 1, we get the same conclusion as the reasoning for the uniform discount
factors; while when only δB ⋍ 1, we get:{

gA(π
∗, M̂) = (1− δ−1)bA+B(π

∗) + eδA
gB(π

∗, M̂) = δ−1bA+B(π
∗)− cA(π

∗)− eδA.

Case (3): only the responder or both countries have a valid outside option.
As before, when this case occurs, the countries’ level of patience does not affect the
equilibrium.
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4.3 Infinite stream of payments

Until now, our model provided for a single transfer of money M at the moment the
contract is signed. However, to address the commitment issue, it is interesting to analyse
the case where, instead of a single transfer, there is an infinite stream of payments
equivalent to it, which stops as soon as the receiving country fails to comply with the
agreement. In this way, country A commit itself to respect the deal and for country B
it’s easier to trust it if the agreement provides for small successive payments, separated
by shorter periods of, for example, one year. This is what happens quite often with real
contracts.
Let us show, then, how to model this new situation. It is still a sequential bargaining
model, indeed, strategies and dynamics are defined similarly as before, where the only
difference is that we negotiate m instead of M . The main difference is in fact that the
monetary transfer M is now a cash flow of a constant quantity m, discounted at each
period. Thus the two countries exchange offers (π,m), regarding the decision of the
forest portion π to be protected by A and a constant amount of money m, which will
be permanently paid by the developed country B to the developing country A every
year, as long as A complies with the rules of the agreement. Each year, this quantity
m is discounted differently by the two countries according to their yearly interest rates,
which determine their yearly discount factors fA and fB. So that the total amount of
money received by country A and the one payed by country B will be different. In
particular,

MA(m) =
∞∑
t=0

f t
A ·m =

m

1− fA
(4.17)

MB(m) =
∞∑
t=0

f t
B ·m =

m

1− fB
. (4.18)

Notice that the offers alternate at intervals as short as one or more days and that at the
same time the flow of payments has not yet started because the quantity m has not yet
been decided. For these reasons and for the stationary nature of games with discount
factors, we can equivalently analyse a game with a single money transfer that is the
sum of all future payments. In fact, at each instant the same framework conditions
exist and, therefore, it can be assumed without loss of generality that if an agreement
is convenient today, it will also be convenient in the future and vice versa, if it is not
convenient today, it will never be convenient.
As before, we assume that the developing country is less patient than the developed
one, so fA < fB =⇒ MA < MB. Then, the payoffs of the two players become{

gA(π,MA(m)) = µAbA+B(π)− cA(π) +MA(m)

gB(π,MB(m)) = (1− µA)bA+B(π)−MB(m)
(4.19)
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and their sum is no longer constant with respect to the monetary transfer, as it depends
on the permanent amount of money m negotiated, i.e.

gA(π,MA(m)) + gB(π,MB(m)) = bA+B(π)− cA(π) +MA(m)−MB(m)

= bA+B(π)− cA(π)−
(

1

1− fB
− 1

1− fA

)
m. (4.20)

However, this does not prevent the resolution of the game and the characterisation of
the equilibria.
The start of the payment flow only begins after the signing of the agreement, which
takes place at the end of the negotiation, once an equilibrium has been achieved. For
this reason, the outside option will always be the payoff with no monetary transfer
m = 0 and with the non-cooperative level of protection of the forest πnc (as before).
Formally, (eA, eB) = (gA(π

nc, 0), gB(π
nc, 0)).

As previously introduced, during the bargaining, offers alternate in several steps with a
short time interval such as for example one day. This delay in concluding the negotiation
results in a discount in the value of the payoffs given by the daily discount factors of
the two countries, δA and δB. Notice that we are considering a uniform discounting
of the payoffs, including the intermediate discount factor δ only in a second moment.
So the discounted payoffs determining the preferences of the two players on the set of
offers, will be δAgA and δBgB, as in previous cases in Section 4.1.

Remark 4.10. Note that the game only serves to understand what the initial quantity
m, determining future payouts, should be and does not, in the formulation of its strate-
gies, foresee the possibility that after accepting an offer one may break the contract.
This only concerns an ex-post analysis, regarding the incentives of countries to deviate
from the contract. It should include considerations about the evolution over the years
of the parameters considered in the model, as the yearly discount factors or the benefits
and costs functions, due to considerable changes in the country’s economy.

Remark 4.11. Choice of the level of protection.
Regarding the incentives of countries to deviate from the contract, just mentioned in
the previous remark, we should comment the choice of the level of forest protection we
want to fix. Indeed, as we have done previously, we assume that the two parties decide
to set a level of protection at the beginning of the negotiations. The choice of this level
to be set, however, is more complicated in this game that includes a payments stream.
The reason is that it is no longer true that π∗ maximizes the sum of the two payoffs,
i.e., it is no more the social-optimum, since the sum of the payoffs has become depen-
dent on the quantity m (see Equation (4.20)). Despite this, the level π∗ can still be
considered because it maximises the part of the sum of the two payoffs depending on π
(that is always bA+B(π) − cA(π)) and that is independent of the part depending on m
(see Equation (4.20)).
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Otherwise, one can also fix a generic level πg, then compute the equilibrium payoffs
gA(πg,MA(m)) and gB(πg,MB(m)) and a posteriori substitute πg with the social opti-
mum value, i.e.,

πg = π̂ s.t. π̂ = argmax (gA(π,MA(m̂)) + gB(π,MB(m̂)))

and

πg = π̄ s.t. π̄ = argmax (gA(π,MA(m̄)) + gB(π,MB(m̄)))

differentiating the three possible situations at the equilibrium. In this way, the sum of
two equilibrium payoffs is maximised with respect the level of forest protection fixed.
In any case, for the sake of simplicity, we will continue to use the notation π∗ for the
level of protection fixed in the following results.

Now, before stating the characterizations of SPE of this game, let us again remark
that, even if we fix π = π∗, the cake’s size is still non-constant (see Equation 4.20).
Thus, in this case we apply to our model the results on SPE of a bargaining game
with exit options and a non-constant size of the cake (see Theorem 2.3 and 2.4, Section
2.3.2). Let us start from the case where country A starts the negotiation.

Theorem 4.5. (SPE in our Payoffs’ stream-Bargaining Game.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, m̂). The SPE
payoffs (SPEP) (gA(π

∗,MA(m̂)), gB(π
∗,MB(m̂))) are uniquely determined but differ as

to whose outside option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗,MA(m̂)) = 1−δB
1−δAδB

1−fB+µA(fB−fA)
1−fA

bA+B(π
∗)− 1−δB

1−δAδB
cA(π

∗)

gB(π
∗,MB(m̂)) = δB(1−δA)

1−δAδB

1−fB+µA(fB−fA)
1−fB

bA+B(π
∗)− δB(1−δA)(1−fA)

(1−δAδB)(1−fB)
cA(π

∗)

(4.21)

if

{
eA ≤ δAgA(π

∗,MA(m̂))

eB ≤ gB(π
∗,MB(m̂))

where

m̂ =
δB(δA − 1)(1− fA)µA + (1− δB)(1− fB)(1− µA)

1− δAδB
bA+B(π

∗)−δB(δA − 1)(1− fA)

1− δAδB
cA(π

∗);

(2)

{
gA(π

∗,MA(m̂)) = (1−δB)(1−fB+µA(fB−fA))
1−fA

bA+B(π
∗)− (1− δB)cA(π

∗) + δBeA

gB(π
∗,MB(m̂)) = δB(1−fB+µA(fB−fA))

1−fB
bA+B(π

∗)− δB
1−fA
1−fB

cA(π
∗)− δB

1−fA
1−fB

eA
(4.22)

if

{
eA > δAgA(π

∗,MA(m̂))

eB ≤ gB(π
∗,MB(m̂))

where

m̂ = [(1−δB−µA)(1−fB)−δBµA(fB−fA)]·bA+B(π
∗)+δB(1−fA) cA(π

∗)+δB(1−fA) eA;
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(3)

{
gA(π

∗,MA(m̂)) = 1−fB+µA(fB−fA)
1−fA

bA+B(π
∗)− cA(π

∗)− 1−fB
1−fA

eB

gB(π
∗,MB(m̂)) = eB

otherwise

(4.23)

where m̂ = (1− fB) · [(1− µA) · bA+B(π
∗)− eB].

Proof. The statement is obtained by directly applying the results of Theorem 2.3 to
the applied problem, explaining what is x̂ and f(x̂).
We set x̂ = gA(π

∗,MA(m̂)), so f(x̂) − x̂ = gB(π
∗,MB(m̂)). Let us make explicit the

size of the cake as a function of the payoff ĝA := gA(π
∗,MA(m̂)).

Firstly, from the definition of ĝA we can derive the following formula for the amount m̂:

ĝA = µAbA+B(π
∗)− cA(π

∗)+
1

1− fA
m̂ =⇒ m̂ = (1− fA) · (ĝA−µAbA+B(π

∗)+ cA(π
∗)).

Secondly, we recall the function f(m̂) from (4.20) and we finally get f(ĝA):

f(m̂) = bA+B(π
∗)− cA(π

∗)− fB − fA
(1− fB)(1− fA)

m̂

=⇒ f(ĝA) = bA+B(π
∗)− cA(π

∗)− fB − fA
1− fB

(ĝA − µAbA+B(π
∗) + cA(π

∗)).

Now, using this expression of f(ĝA) in the formulas of Theorem 2.3, we get the explicit
formula of payoffs of our game. Given the payoffs, we can easily derive the expression
for m̂ in each case and this complete the proofs.

Let us state the symmetric result for the case where country B makes the first offer.

Theorem 4.6. (SPE in our Payoffs’ stream-Bargaining Game - sym. case.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, m̄). The
SPEP (gA(π

∗,MA(m̄)), gB(π
∗,MB(m̄))) are uniquely determined but differ as to whose

outside option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗,MA(m̄)) = δA(1−δB)
1−δAδB

1−fB+µA(fB−fA)
1−fA

bA+B(π
∗)− δA(1−δB)

1−δAδB
cA(π

∗)

gB(π
∗,MB(m̄)) = 1−δA

1−δAδB

1−fB+µA(fB−fA)
1−fB

bA+B(π
∗)− (1−δA)(1−fA)

(1−δAδB)(1−fB)
cA(π

∗)

(4.24)

if

{
eA ≤ gA(π

∗,MA(m̄))

eB ≤ δBgB(π
∗,MB(m̄))

where

m̄ =
(δA − 1)(1− fA)µA + δA(1− δB)(1− fB)(1− µA)

1− δAδB
bA+B(π

∗)−(δA − 1)(1− fA)

1− δAδB
cA(π

∗);
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(2)

{
gA(π

∗,MA(m̄)) = δA(1−fB+µA(fB−fA))
1−fA

bA+B(π
∗)− δAcA(π

∗)− δA(1−fB)
1−fA

eB

gB(π
∗,MB(m̄)) = (1−δA)(1−fB+µA(fB−fA))

1−fB
bA+B(π

∗)− (1−δA)(1−fA)
1−fB

cA(π
∗) + δAeB

(4.25)

if

{
eA ≤ gA(π

∗,MA(m̄))

eB > δBgB(π
∗,MB(m̄))

where

m̄ = [δA(1−fB+µA(fB−fA))−µA(1−fA)]·bA+B(π
∗)+(1−δA)(1−fA) cA(π

∗)−δA(1−fB) eB;

(3)

{
gA(π

∗,MA(m̄)) = eA

gB(π
∗,MB(m̄)) = 1−fB+µA(fB−fA)

1−fB
bA+B(π

∗)− 1−fA
1−fB

cA(π
∗)− 1−fA

1−fB
eA

otherwise

(4.26)

where m̄ = (1− fA) · [eA − (µA · bA+B(π
∗)− cA(π

∗))].

Proof. Similar to the proof of Theorem 4.5, exchanging the roles of country A and
country B.

Remark 4.12. Note that, although in this game the amount to be divided varies de-
pending on the choice of payment m, the characterization of the equilibria is similar to
the previous cases. This is possible due to the fact that we can explicit the relationships
between the two payoffs and, consequently, their sum, that is the function that governs
the amount of “cake” to be divided (f(ĝA)). In this way, we can still make explicit the
expressions of the two payoffs and, consequently, the one of the amounts m̂ and m̄.
Moreover, this allows us to analyse the problem with a new point of view that introduces
the possibility of commitments.

Remark 4.13. Regarding the behaviour of equilibria when the discount factors are close
to 1, i.e. when countries are infinitely patient, we observe that the same conclusions
can be drawn as for the bargaining game with a single payment. The observations made
in Section 4.2.2 therefore still apply.

Let us conclude the theoretical analysis of our model, combining the new payment
method and the introduction of the intermediate discount factor linked specifically to
carbon credits (see Section 4.2). We can see that results are similar to the one of
Theorem 4.5 and Theorem 4.6 with small changes in the computation of payments and
payoffs formulas. Recall in fact that, in this case, the discounting of payoffs follows a
different rule, as in the game of Section 4.2. Formally, they are discounted as follows:

• gδ,tA (π,m) := δtA · (δ−tµA · bA+B(π)− cA(π) +MA(m));

• gδ,tB (π,m) := δtB · (δ−t(1− µA) · bA+B(π)−MB(m)).
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A part from that, the game is set in the same way as before and so the strategies, exit
options and payoffs are the same as in the previous case, as well as the way of proving
the following theorems about SPE of this new game.

Theorem 4.7. (SPE in our Payoffs’ stream-Bargaining Game - delta case.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, m̂). The SPE
payoffs (SPEP) (gA(π

∗,MA(m̂)), gB(π
∗,MB(m̂))) are uniquely determined but differ as

to whose outside option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗,MA(m̂)) = (1+δAδB(δ−1−1)−δB)(1−fA)µA+(1−δ−1δB)(1−fB)(1−µA)
(1−δAδB)(1−fA)

bA+B(π
∗)− 1−δB

1−δaδB
cA(π

∗)

gB(π
∗,MB(m̂)) = δB(1−δ−1δA)(1−fA)µA+δB(δ−1−δA)(1−fB)(1−µA)

(1−δAδB)(1−fB)
bA+B(π

∗)− δB(1−δA)(1−fA)
(1−δAδB)(1−fB)

cA(π
∗)

(4.27)

if

{
eA ≤ gδ,1A (π∗,MA(m̂))

eB ≤ gB(π
∗,MB(m̂))

where

m̂ =
δB(δ

−1δA − 1)(1− fA)µA + (1− δ−1δB)(1− fB)(1− µA)

1− δAδB
bA+B(π

∗)−δB(δA − 1)(1− fA)

1− δAδB
cA(π

∗);

(2)

{
gA(π

∗,MA(m̂)) = (1−δ−1δB)(1−fB+µA(fB−fA))
1−fA

bA+B(π
∗)− (1− δB)cA(π

∗) + δBe
δ
A

gB(π
∗,MB(m̂)) = δ−1δB(1−fB+µA(fB−fA))

1−fB
bA+B(π

∗)− δB
1−fA
1−fB

cA(π
∗)− δB

1−fA
1−fB

eδA
(4.28)

if

{
eA > gδ,1A (π∗,MA(m̂))

eB ≤ gB(π
∗,MB(m̂))

where

m̂ = [(1−δ−1δB−µA)(1−fB)−δ−1δBµA(fB−fA)]·bA+B(π
∗)+δB(1−fA) cA(π

∗)+δB(1−fA) e
δ
A

and eδA := µA δ−1 · bA+B(π
nc)− cA(π

nc);

(3)

{
gA(π

∗,MA(m̂)) = 1−fB+µA(fB−fA)
1−fA

bA+B(π
∗)− cA(π

∗)− 1−fB
1−fA

eB

gB(π
∗,MB(m̂)) = eB

otherwise

(4.29)

where m̂ = (1− fB) · [(1− µA) · bA+B(π
∗)− eB].

Proof. The proof follows that of Theorem 4.5 with the necessary adjustments due to
the different way of discounting, as previously done in Theorem 4.3.

Let us state a symmetric result in the case where country B starts negotiating.
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Theorem 4.8. (SPE in our Payoffs’ stream-Bargaining Game - delta symm.
case.)
In any SPE, the negotiation stops at the first stage with an agreement (π∗, m̄). The
SPEP (gA(π

∗,MA(m̄)), gB(π
∗,MB(m̄))) are uniquely determined but differ as to whose

outside option poses a credible threat, so there are three possible cases:

(1)

{
gA(π

∗,MA(m̄)) = δA(δ−1−δB)(1−fA)µA+δA(1−δ−1δB)(1−fB)(1−µA)
(1−δAδB)(1−fA)

bA+B(π
∗)− δA(1−δB)

1−δAδB
cA(π

∗)

gB(π
∗,MB(m̄)) = (1−δ−1δA)(1−fA)µA+(1+δAδB(δ−1−1)−δA)(1−fB)(1−µA)

(1−δAδB)(1−fB)
bA+B(π

∗)− (1−δA)(1−fA)
(1−δAδB)(1−fB)

cA(π
∗)

(4.30)

if

{
eA ≤ gA(π

∗,MA(m̄))

eB ≤ gδ,1B (π∗,MB(m̄))
where

m̄ =
(δ−1δA − 1)(1− fA)µA + δA(1− δ−1δB)(1− fB)(1− µA)

1− δAδB
bA+B(π

∗)−(δA − 1)(1− fA)

1− δAδB
cA(π

∗);

(2)

{
gA(π

∗,MA(m̄)) = δ−1δA(1−fB+µA(fB−fA))
1−fA

bA+B(π
∗)− δAcA(π

∗)− δA(1−fB)
1−fA

eδB

gB(π
∗,MB(m̄)) = (1−δ−1δA)(1−fB+µA(fB−fA))

1−fB
bA+B(π

∗)− (1−δA)(1−fA)
1−fB

cA(π
∗) + δAe

δ
B

(4.31)

if

{
eA ≤ gA(π

∗,MA(m̄))

eB > gδ,1B (π∗,MB(m̄))
where

m̄ = [δ−1δA(1−fB+µA(fB−fA))−µA(1−fA)]·bA+B(π
∗)+(1−δA)(1−fA) cA(π

∗)−δA(1−fB) e
δ
B

and eδB = (1− µA)δ
−1 · bA+B(π

nc);

(3)

{
gA(π

∗,MA(m̄)) = eA

gB(π
∗,MB(m̄)) = 1−fB+µA(fB−fA)

1−fB
bA+B(π

∗)− 1−fA
1−fB

cA(π
∗)− 1−fA

1−fB
eA

otherwise

(4.32)
where m̄ = (1− fA) · [eA − (µA · bA+B(π

∗)− cA(π
∗))].

Proof. The proof follows that of Theorem 4.7 with the roles of country A and B ex-
changed.

Remark 4.14. Conclusions on the Bargaining Game.
After numerous achievements in the continuous improvement of our model and the game
setting, we list the general conclusions we are able to draw from them.

• The type of equilibrium partition of global goods depends on the value of the exit
option of each country, but in all cases it is possible to reach an agreement that
is uniquely determined. Formally, in every game analysed, there is always a sub-
game perfect equilibrium and its respective payoffs are unique.
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• It is always convenient to reach an agreement such as the one modelled in our
game. In the worst case scenario, indeed, a country earns the same amount it
would earn without any negotiations, i.e. its gain in following the Business-As-
Usual(BAU) path. At the same time, the rainforest would benefit from that in
terms of greater protection and less deforestation.

• The bargaining power is influenced in small part by the order of the first bidder
and by who has a valid exit option, but above all by the country’s interest rate. The
benefit from the agreement compared to the exit option, indeed, can be completely
unbalanced towards a country that is infinitely patient.



Chapter 5

Research perspectives

As a conclusion to our work, we would like to propose research perspectives for future
developments of this analysis in three main directions. We think it is very interesting
to enrich our overview of the situation of REDD+ contracts by giving a concrete form
to the model we have created and illustrated so far, via an empirical simulation of it. In
the first paragraph we illustrate some preliminary tools for calibrating the parameters
of our model, giving an idea of its importance and usefulness. Then, in the second
paragraph, we present an other possible direction, that is the asymmetry of information,
by treating the bargaining game in an incomplete information setting. We conclude in
the third paragraph by giving an idea of a possible different analysis of this model with
the Mean-Field Game Theory.

5.1 Empirical simulation

An empirical simulation of our model includes a careful calibration of the parameters
involved according to plausible data, taken from real estimates. In this way, one can
give an idea of the feasibility of the possible agreements we have found, quantifying the
amount of money needed to implement them. With this in mind, we propose below an
example of parameter calibration to give an idea of the type of analysis that can be
performed.
However, being only the beginning of a more complicated study, we choose only one
country that represents the community A of countries hosting the rainforests, like Brazil,
and only one developed country that represents B, like the United States.
Thinking of simulating the bargaining game with a payment stream analysed in Section
4.3 (see Theorem 4.7 and Theorem 4.8), we need three daily discount factors (one per
player and one intermediate) and two annual discount factors of the two countries.
Let us now proceed to a review of the data collected in Table IV and their respective
sources. Let us start with the choice of discount factors in the model, taken from one

67
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of the official websites that collect the interest rates of all the world’s banks [12]. We
consider the “overnight interest rates” to compute the daily discount factors δA, δB
and δ, and the yearly interest rates in the case of fA and fB of 2020, since all the
other information dated back to 2020. In particular, we use the high and low value
of the interest rates to set the range of uncertainty and the average as a mean value
of our parameter. Specifically, we look at the overnight and annual interest rates of
the Brazilian central bank for δA and fA, and of the US dollars for δB and fB. Then,
we take an intermediate value for the intermediate δ, as it represents a global discount
factor governing the price development of carbon credits.

We then continue with very specific and technical data concerning forests, such as the
amount of forest that is at risk of deforestation (F parameter) and the total amount of
CO2 present in the forest on average (Cf parameter). For the first information, speaking
of the Brazilian Amazon rainforest, the IPCC’s Assessment Report[9] states that on an
expanse of 496.62 million hectares (12% of global forest cover), the latest annual rate
of forest loss is 0.3%, according to statistics reported by the “Global Forest Resources
Assessment” (FAO 2020)[11][Table 3,Table 7] (the most recent so far). This rate of loss
leads to delineate an area of Brazilian Amazon rainforest at risk of 1.5 million hectares
per year. Regarding the second parameter, the “Global Forest Resources Assessment”
of 2020 [11][Table 42] also reported that there are 629.2 tCO2-eq/ha on average in
tropical forests of South America which include the Brazilian forest.
These two parameters, together with the price of carbon credits (Pc parameter), serve
to define the benefit function bA+B(π), which we assume to have the following form:

bA+B(π) = π · F · Cf · Pc

where π is the portion of protected forest and so π · F is the actual area of protected
forest. In other words, we are assuming that the environmental benefits have the value
of the number of carbon credits attained protecting the forest, counting the avoided
carbon emissions that would have been realised with the deforestation (π · F · Cf ).
Indeed, the carbon credit price (Pc) is based on the annual amount of tonnes of CO2-eq
reduced and it is likely to set it at 100 USD/tCO2-eq·y, as stressed by the “Report of
the high-level commission on carbon prices”[13] in its conclusions.

On the other hand, the costs function cA(π) is more complex to model and calibrate.
Indeed, while choosing a linear function makes the search for empirical data more
accessible, it also means that there is no reason for the developed country to engage in
negotiation. With a linear cost function, what happens is that both country A’s and
B’s payoffs, and thus also their sum, are linear (and theoretically increasing) and thus
the optimal level of forest protection for A is the same with or without the negotiation.
At that point, with the assumption that the agreement cannot provide for a higher level
of protection than the social optimum, country B no longer has any reason to finance
any project for A, since there would be no additional protection of the forest. To solve
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this problem, it is sufficient to consider a cost function that is strictly convex, but this
makes calibration more complicated, so further research is needed.

Finally, the last parameter in the table is µA, representing the percentage of environ-
mental benefits that Brazil internalises. This is an exogenous parameter and it depends
on the country’s current environmental policies, so further research is also needed to
specify this. Our suggestion is to try out different values for this parameter and study
the evolution of the solution as it changes.

All the parameters we described so far are gathered in the following table.

TABLE IV

Parameter Mean value Uncertainty range Unit

δA 0.97 [0.955− 0.98] -

δB 0.996 [0.98− 0.999] -

δ 0.98 [0.96− 0.99] -

fA 0.97 [0.955− 0.98] -

fB 0.992 [0.98− 0.997] -

F 1.5 · 106 [−] ha/year

Cf 629.2 [−] tCO2-eq/ha

Pc 100 [−] USD/tCO2-eq·year

µA - [0.1− 0.9] -
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Once numerical results have been obtained, a lot of interesting comments and con-
siderations can be added. Some of the questions that can arise that we find interesting
to investigate are for example “Which parameters influence more the results?”, “How
the parameter µA affects the agreed monetary transfer?”, or, “Under which conditions
the contract will be more expensive for the developed country?”.
Furthermore, one can compare the results with data taken from many different coun-
tries all over the world, trying to understand which of the three possible equilibrium
agreements is the one that occurs more often, always with the aim of investigating those
conditions under which these contracts are convenient for both countries and for the
environment.

5.2 Incomplete information

A different but complementary direction is that of information asymmetry. A natural
continuation of a game in the context of which there is a possible asymmetry of infor-
mation is, in fact, to analyse in an incomplete information setting.
From a game theory point of view, this type of game could fall under the Principal-Agent
theory, which is currently much explored and debated. The Principal–Agent problem
refers to the conflict in interests and priorities that arises when one person or entity
(the “agent”) takes actions on behalf of another person or entity (the “principal”). The
problem worsens when there is a greater discrepancy of interests and information be-
tween the principal and agent, as well as when the principal lacks the means to punish
the agent. In our case the Principal would be the developed country and the Agent the
developing one.
Mathematically speaking, means that one of the data referring to the domestic economy
of the developing country (e.g the level πnc or the shape of benefits and costs functions)
would only be accessible by the owning country and would therefore become a random
quantity (a random variable) in the other country’s perspectives.
From an interpretative point of view, this would also make the model more truthful,
capturing details and aspects of the real situation, where normally the private data of a
country are not always available to everyone. For instance, the country hosting the for-
est, representing the Agent, has more information about the degree of forest protection
that it wants to implement (πnc in our model) and the viability of its forest (shapes of
the benefits and costs functions) than the developed country.

5.3 Mean-Field Game Theory

Finally, to better capture the polyhedral nature of the two players in our model, another
approach to consider may be that of Mean-Field Game Theory.
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In fact, remember that the two players are defined as the collection of countries with
a rainforest (A) and the rest of the developed international community (B). We then
observe, also by examining the empirical simulation example in Section 5.1, how com-
plicated it is to select collective numerical data for a community of countries and how,
for this reason, we have reduced ourselves to investigate only two countries representing
each community. This is why we think the Mean-Field Game Theory approach, which
considers instead of two players a very large number N of players using control theory
and stochastic analysis, could be appealing.

We are persuaded that future works will be able to extend our analysis in the possi-
ble directions we have outlined or in other new directions, in order to give concrete form
to our model and launch a new series of global agreements that will halt deforestation.
Indeed, we believe that in the future this research can help shape new global environ-
mental policies concerning forest protection and emissions reduction from deforestation.
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