

Laurea Triennale in Scienze Geologiche Anno Accademico 2018/2019

Università degli Studi di Padova

Studio microstrutturale delle associazioni a corindone - ercinite negli inclusi delle granodioriti di La Galite (Tunisia)

Microstructural study on corundum - hercynite associations in La Galite's granodiorite enclaves (Tunisia)

LAUREANDO - Riccardo Simionato

RELATORE - Prof. Bernardo Cesare

CORRELATORE - Dott. Luca Peruzzo

Introduzione alla tematica affrontata

Possibile relazione di epitassia tra corindone ed ercinite

associazione regolare tra cristalli, naturali o sintetici, appartenenti a fasi mineralogiche differenti, caratterizzati da iso-orientazione cristallografica

Corindone:

- ossido di alluminio (Al₂O₃)
- sistema cristallino trigonale -3m
- genesi metamorfica di alta T e magmatica

Spinello:

- famiglia isomorfa degli spinelli
- soluzione solida spinello p.d. (MgAl₂O₄) ercinite (FeAl₂O₄)
- sistema cristallino cubico m3m
- genesi metamorfica di alta T; accessorio in rocce magmatiche

Studi su campioni naturali e sintetici hanno proposto la presenza di condizioni di epitassia tra i due minerali, con parallelismo degli assi cristallografici:

- lungo una direzione (111) dello Spl e l'asse c del Crn
- lungo le direzioni $(10\overline{1}0)$ del Crn e le (110) dello Spl

Obiettivi del progetto

Studio microstrutturale dei cristalli in un campione naturale per risolvere:

- rapporti reciproci di crescita
- orientazione dei cristalli ----> capire se i cristalli sono in relazione epitassiale

Indagini effettuate sul campione mediante diverse tecniche analitiche

Contesto geologico e litologico

Isola di La Galite (Tunisia):

- contesto di magmatismo da slab break-off
- roccia subvulcanica a composizione granodioritica con età tra i 10 e i 14 Ma
- presenza di inclusi pelitici di provenienza crostale

Foto del campione di granodiorite in studio

Vista di La Galite (Tunisia)

Tecniche analitiche utilizzate

- Microscopio ottico a luce polarizzata
- SEM (Scanning Electron Microscope):
 EDS (Energy-Dispersion System)
 EBSD (Electron Backscatter Diffraction)
- EMPA (Electron Micro Probe Analyzer)

Petrografia

Granodiorite:

- cristalli di Pl e Bt immersi in una pasta di fondo
 roccia subvulcanica
- presenza di Qtz, Tur, Crd

Incluso metapelitico:

- all'interno, aggregato centimetrico di Sil
- doppio orlo: internamente Crn, verso il magma Hc

ristalli isolati

→ cristalli a contatto

Rapporti microstrutturali

Le due fasi sono caratterizzate da un marcato abito allungato

Contatto Crn-Hc:

- netto
- ortogonale, parallelo o inclinato rispetto alla direzione di allungamento

Immagini al microscopio ottico a luce polarizzata (colonna sx) e al SEM con elettroni retrodiffusi (BSE; colonne centrale e dx)

Chimica delle fasi (EMPA)

Plagioclasio

- (Ca_x Na_{1-x}) Al_{1+x}Si_{3-x}O₈
- zonatura chimica evidente (BSE)
- componente An tra 43 e 81%
- basso contenuto in componente Ks

Ercinite

- (Mg, Fe²⁺) Al₂O₄
- $0,21 \le \chi_{Mg} \le 0,25$
- componente Gah $\leq 2\%$

Fillosilicati

- muscoviti e cloriti
- minerali da alterazione

Corindone

- Al₂O₃
- stechiometrico (contenuto Fe₂O₃ ≤ 0,8%)

Sillimanite

polimorfo Al₂SiO₅

Pattern di diffrazione EBSD

Indicizzazione del pattern di diffrazione EBSD

Introduzione alla tecnica

- diffrazione elettronica causata dall'interazione del fascio elettronico emesso dal SEM con il campione; gli elettroni diffratti vengono raccolti da uno schermo al fosforo
- si ottiene un pattern di diffrazione
 EBSD, in cui le *Kikuchi lines* forniscono una rappresentazione dei piani reticolari
- l'indicizzazione del pattern da parte di un software, permette di ricavare l'orientazione del cristallo

Nel caso in studio, si ricerca il parallelismo tra assi cristallografici (relazione epitassiale tra le fasi)

Risultati dell'indagine (I)

Monocristalli di Crn ed Hc \rightarrow consideriamo i punti prossimi alle interfacce

Risultati dell'indagine (II)

Altri risultati:

- corrispondenze tra le $(10\overline{1}0)$ (assi 2) del Crn e le (100) (assi 4) dell'Hc
- assenza di corrispondenze

2110

Risultati dell'indagine (III)

- monocristalli di Crn e Hc, con diverse orientazioni
- iso-orientazione diffusa dei cristalli, siti in aree limitrofe, di una stessa fase

 sembra essere presente parallelismo – o prossimità al parallelismo – tra assi cristallografici di Crn ed Hc

Discussione e conclusioni

Rapporti reciproci di crescita:

Nodulo pelitico di Sil inglobato in un magma contenente Fe e Mg, da cui si formano cristalli di Crn e Hc:

- non ci sono microstrutture che indicano se una fase si forma prima o dopo l'altra o a spese dell'altra
- Crn si trova internamente rispetto ad Hc: si potrebbe ipotizzare che il Crn si formi prima dell'Hc

Possibile relazione epitassiale Crn-Hc:

- limitato numero di dati → statisticamente non sufficientemente significativi
- problemi di indicizzazione dei pattern
- presenza frequente di parallelismo tra coppie di assi cristallografici, in particolare tra $(0001) \rightarrow (111)$ (assi 3) e $(10\overline{1}0) \rightarrow (110)$ (assi 2), come già riportato in letteratura

orientazione non casuale tra i cristalli di Crn e quelli di Hc

Prospettive future

- maggior numero di sezioni sottili, tagliate anche con orientazioni diverse
- acquisizione di un numero maggiore dati con l'EBSD, specialmente su campioni ottenuti con FIB – SEM
- analisi al TEM (*Transmission Electron Microscope*), su campioni ottenuti con FIB – SEM, per ottenere informazioni sulla microstruttura a livello nanometrico

Microscopio elettronico a trasmissione

Grazie dell'attenzione