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What we usually consider as impossible
are simply Engineering problems...

There’s no law of Physics preventing them.

- Michio Kaku



Abstract

Spiking Neural Networks (SNNs) hold the potential to revolutionize neuromorphic com-
puting by better emulating the human brain’s natural processing capabilities, offering in turn
significant advantages in terms of power efficiency and real-time performance. This thesis fo-
cuses on the detailed RTL (Register Transfer Level) modeling and FPGA (Field Programmable
Gate Array) resourcemapping of a general architecture for SNNs, so providing a comprehensive
description of the design steps which lead to its final realization. Emphasis has been placed on
the hardware-level representation of individual SNN components, specifically leveraging the
Leaky Integrate-and-Fire (LIF) neuron due to its computational efficiency. Key to this approach
is the efficient handling of fixed-point arithmetic to optimize resource utilization on the FPGA.
Various optimization strategies, such as pipelining, loop unrolling, and resource sharing, are
employed to maximize performance and minimize resource overhead. The implementation is
validated through both functional simulations and synthesis results, providing insights into the
design’s resource utilization, timing performance, and power consumption.
To benchmark the SNN, a classification problem has been tackled submitting to the network two
standard timeseries datasets.
Moreover, an innovative application for the SNN is proposed regarding the problem of filtering
the noisy datastream of drift-tube-chambers muon detectors employed in fundamental research
in Particle Physics. In this context, the SNN is used within the muon trigger system, for which
ultra-low latency hardware implementation is required.
Finally, a comparative analysis is performedwith anASIC implementationusing 130nm technolo-
gy custom cell libraries. This second possibility, although more optimized under some aspects,
will be shown to lack the substantial benefits in terms of reconfigurability, rapid prototyping
capabilities and further integration with other systems, such as IP cores for handling communi-
cations.
A GitHub repository containing the most relevant code has been arranged at [39].



Sommario

Le Reti Neurali Impulsive (SNN) hanno il potenziale per rivoluzionare il calcolo neuromor-
fico, riuscendo ad emulare più fedelmente le capacità di elaborazione naturale del cervello umano,
ed offrendo in tal modo significativi vantaggi in termini di efficienza energetica e prestazioni in
tempo reale. Questa tesi si concentra sulla dettagliatamodellazione a livello RTL (Register Trans-
fer Level) e sulla mappatura delle risorse necessarie su FPGA (Field Programmable Gate Array)
di un’architettura generale per le SNN, fornendo una descrizione completa dei passaggi pro-
gettuali che ne portano alla realizzazione finale. L’enfasi è stata posta sulla rappresentazione a
livello hardware dei singoli componenti della SNN, utilizzando in particolare il neurone Leaky
Integrate-and-Fire (LIF) per la sua efficienza computazionale. Chiave per questo approccio è
la gestione efficiente dell’aritmetica in virgola fissa per ottimizzare l’utilizzo delle risorse su
FPGA. Varie strategie di ottimizzazione, come il pipelining, il loop unrolling e la condivisione
delle risorse, vengono impiegate per massimizzare le prestazioni e minimizzare il consumo di
risorse. L’implementazione è validata attraverso simulazioni funzionali e risultati di sintesi,
mostrando l’utilizzo delle risorse, il rispetto dei vincoli temporali e il consumo energetico del
circuito.
Per valutare la SNN, sono stati affrontati dei problemi di classificazione sottoponendo alla rete
due dataset espressi come serie temporali standard.
Viene inoltre proposta un’applicazione innovativa per le SNN, concernente il problema del fil-
traggio del rumoroso flusso di dati proveniente dai rivelatori di muoni delle camere a fili impie-
gate nella ricerca fondamentale in fisica delle particelle. In questo contesto, la SNN verrebbe
utilizzata all’interno del sistema di trigger per i muoni, che impone l’utilizzo di hardware che
possa garantire una latenza bassissima.
Infine, viene eseguita un’analisi comparativa con un’implementazione ASIC effettuata con li-
brerie di celle standard basate su tecnologia a 130nm. Questa seconda implementazione, sebbene
più ottimizzata sotto alcuni aspetti, manca dei sostanziali benefici in termini di riconfigurabi-
lità, capacità di prototipazione rapida e ulteriore integrazione con altri sistemi, come processori
proprietari per la gestione delle comunicazioni.
È stato predisposto un archivio contente il codice di maggior rilevanza in [39].
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1
Introduction

This work is intended to illustrate the development of a circuital implementation of a generic
neural network architecture based on spiking neurons. As a first step, a brief introduction to the
topic of Spiking Neural Networks (SNNs) will be assessed in this chapter, comparing themwith
their well-established “classical” Artificial Neural Networks (ANNs) counterparts. In particular,
some of the peculiar aspects of the training procedure will be shown.
Then, in chapter 2, the approach used to simulate the network inference phase, as well as for
network training on timeseries datasets, is going to be presented from a practical standpoint,
making use of commonly available tools such asMatlab and Python libraries. Next, in chapter 3,
the core of this thesis is found, namely the actual register-transfer-level description of the spiking
neural network through VHDL code: a step-by-step analysis will be carried out, emphasizing
the choices made to keep the project the most modular and generic possible.
To follow, in chapter 4, the actual implementation on KCU1500 harware evaluation board is
discussed, highlighting how the RTL model of the network has been physically mapped on the
available processing blocks andwhich strategies have been applied to favour the use of elements
such as LUTs and BRAM w.r.t. other less abundant blocks. After that, the network will be used
to realise a classifier and will be tested on two distinct natively-spiking datasets, analyzing its
effectiveness as function of the network structural complexity and parameters quantization.
Another very interesting proposed use case in the realm of particle detectors is described in
chapter 5, showing how a “direct” application of the net for instant-by-instant signal filtering has
revealed not to perform well enough, for which a more complex architecture involving multiple
identical SNN-based classifiers was adopted to realize a smart neural filter for muon hits in drift
tube chambers.
Finally, chapter 6 presents an ASIC implementation of a SNN, comparing it to its equivalent
FPGA-implemented version. Some conclusions and a few points for future investigations are
then discussed in chapter 7.

1



1.1. TYPES OF SPIKING NEURONS

1.1 TYPES OF SPIKING NEURONS

Classical neurons and spiking neurons fundamentally differ in their operation and applica-
tions. Classic neurons output continuous values and operate based on an activation function.
The output 𝑦 of a classic neuron is computed as:

𝑦 = 𝜑(𝑤1𝑥1 + 𝑤2𝑥2 + . . . + 𝑤𝑛𝑥𝑛 + 𝑏) (1.1)

where 𝜑 is a nonlinear activation function such as the sigmoid, hyperbolic tangent (tanh), or
rectified linear unit (ReLU), 𝑤𝑖 are the input weights, 𝑥𝑖 are the inputs, and 𝑏 is the bias. These
neurons have an instantaneous response to their inputs and rely on differentiable activation
functions to facilitate optimization during the training process. Classic neurons are the back-
bone of many artificial neural network architectures, including feedforward, convolutional, and
recurrent neural networks (RNNs), which are extensively used in tasks like image recognition
and natural language processing.

In contrast, spiking neurons produce discrete events known as spikes or action potentials. A
spiking neuron integrates incoming signals over time, andwhen itsmembrane potential exceeds
a certain threshold, it generates a spike. The behavior of spiking neurons can be represented by
models such as the leaky integrate-and-fire (LIF):

𝜏𝑚
𝑑𝑈(𝑡)
𝑑𝑡

= −𝑈(𝑡) + 𝑅𝐼(𝑡) (1.2)

where 𝑈(𝑡) is the membrane potential, 𝜏𝑚 is the membrane time constant, 𝑅 is the membrane
resistance, and 𝐼(𝑡) is the input current. A spike is emitted when𝑈(𝑡) exceeds a threshold𝑈𝑡ℎ𝑟 .

Figure 1.1: Spiking neuron as a compromise between biological accuracy and computational
utility. Taken from [33].

The origin of Eq. 1.2 stems from observing that biological neurons communicate through
electrical signals, largely influenced by the ions movements across the neuronal membrane, cre-
ating a voltage known as the membrane potential, pictorically presented in Fig. 1.1.
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CHAPTER 1. INTRODUCTION

These ionic currents can be split into capacitive and resistive components¹. Equation 1.2 governs
𝑈(𝑡) based on the principle of conservation of charge, obtained by equating the total incoming
current to the rate of change of charge on the membrane capacitor:

𝐶𝑚
𝑑𝑈(𝑡)
𝑑𝑡

= 𝐼total(𝑡), (1.3)

where the total current comprises ionic currents (𝐼ion) and external currents (𝐼ext). The ionic
current through leak channels can be further described by Ohm’s law as

𝐼ion(𝑡) = 𝑔𝐿(𝑈(𝑡) − 𝐸𝐿), (1.4)

where 𝑔𝐿 is the leak conductance and 𝐸𝐿 is the equilibrium potential for the leak current. Sub-
stituting 𝐼ion(𝑡) into the membrane equation yields:

𝐶𝑚
𝑑𝑈(𝑡)
𝑑𝑡

= −𝑔𝐿(𝑈(𝑡) − 𝐸𝐿) + 𝐼ext(𝑡). (1.5)

Dividing by 𝐶𝑚 , introducing the membrane time constant 𝜏𝑚 = 𝐶𝑚
𝑔𝐿

and assuming 𝐸𝐿 = 0 for
simplicity, Eq. 1.5 finally becomes

𝑑𝑈(𝑡)
𝑑𝑡

= −𝑈(𝑡)
𝜏𝑚
+ 𝐼ext(𝑡)

𝐶𝑚
. (1.6)

The threshold condition triggers a spike when 𝑈(𝑡) ≥ 𝑈𝑡ℎ𝑟 , immediately followed by the reset
condition 𝑈(𝑡) = 𝑈𝑟𝑒𝑠𝑒𝑡 , which may correspond to zero or could alternatively set by the current
value minus that of the threshold. For numerical simulation, the model needs to be discretized
w.r.t. time², and requires subsequent iteration of the membrane potential, threshold check, and
evaluation of whether reset should be applied at each time step. Ultimately, the LIF model sim-
plifies neuronal dynamics, capturing integration and spiking behavior derived from membrane
physics and ionic currents. A glimpse of other more complicatedmodels is reported in Table 1.1.

It is worth here to introduce the 2𝑛𝑑 order version of the LIF neuron, precisely as defined in
[33], where an additional dynamic variable, namely the synaptic current 𝐼𝑠𝑦𝑛(𝑡), is introduced
alongside the membrane potential 𝑈𝑚𝑒𝑚(𝑡). The model is described by the following system of
differential equations: 

𝜏𝑚𝑒𝑚
𝑑𝑈𝑚𝑒𝑚 (𝑡)

𝑑𝑡 = −𝑈𝑚𝑒𝑚(𝑡) + 𝑅(𝐼𝑒𝑥𝑡(𝑡) + 𝐼𝑠𝑦𝑛(𝑡)))
𝜏𝑠𝑦𝑛

𝑑𝐼𝑠𝑦𝑛 (𝑡)
𝑑𝑡 = −𝐼𝑠𝑦𝑛(𝑡) + 𝑤𝑈𝑚𝑒𝑚(𝑡)

(1.7)

Note that here two time constants are employed: 𝜏𝑚𝑒𝑚 and 𝜏𝑠𝑦𝑛 , allowing for more complex
neural dynamics and modeling capabilities, and 𝑤 is a proportionality constant emulating the
strength of a synaptic interconnection.

¹Inside human brain, in fact, the lipid bilayer acts as a capacitor, while ion channels offer non-negligible resistance
to ions flow.

²Discretization employing Forward Euler method is shown in Eq. 2.3 at the beginning of chapter 2, while an alter-
native one employing bilinear transfmor is later shown in Sec. 3.1.2.
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1.2. DATA ENCODING

Neuron Type Equation/Model Description

Integrate-and-Fire
(IF) 𝑑𝑉(𝑡)

𝑑𝑡 = 𝐼(𝑡)
𝐶𝑚

Simplest model capturing the ba-
sic mechanism of membrane po-
tential integration and spike gen-
eration without the leakage term.

Hodgkin-Huxley
(HH)

𝐶𝑚
𝑑𝑉
𝑑𝑡

= 𝐼 − 𝑔̄Na𝑚
3ℎ(𝑉 − 𝐸Na)

− 𝑔̄K𝑛4(𝑉 − 𝐸K) − 𝑔̄ 𝑙(𝑉 − 𝐸𝑙)
𝑑𝑚
𝑑𝑡

= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚

𝑑ℎ
𝑑𝑡

= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ

𝑑𝑛
𝑑𝑡

= 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛

Detailed biophysical model repli-
cating the ionic currents through
the neuronmembrane that gener-
ate action potentials.

Izhikevich Model 𝑑𝑉
𝑑𝑡

= 0.04𝑉2 + 5𝑉 + 140 − 𝑢 + 𝐼
𝑑𝑢
𝑑𝑡

= 𝑎(𝑏𝑉 − 𝑢)

Combines biologically realistic
spiking behavior with compu-
tational efficiency. Suitable for
large-scale simulations.

FitzHugh-
Nagumo Model

𝑑𝑣
𝑑𝑡

= 𝑣 − 𝑣
3

3
− 𝑤 + 𝐼

𝑑𝑤
𝑑𝑡

= 0.08(𝑣 + 0.7 − 0.8𝑤)

Simplified version of the
Hodgkin-Huxley model fo-
cusing on qualitative features
of neurons like excitability and
spike generation.

Adaptive Expo-
nential Integrate-
and-Fire (AdEx)

𝐶𝑚
𝑑𝑉(𝑡)
𝑑𝑡

= −𝑔𝐿(𝑉 − 𝐸𝐿) + 𝑔𝐿Δ𝑇 exp
(
𝑉 −𝑉𝑇
Δ𝑇

)
= −𝑢 + 𝐼

𝜏𝑤
𝑑𝑢
𝑑𝑡

= 𝑎(𝑉 − 𝐸𝐿) − 𝑢

Extends the LIF model by adding
an adaptation mechanism and an
exponential term for membrane
potential dynamics.

Table 1.1: Overview of alternative spiking neurons models to LIF.

1.2 DATA ENCODING

SpikingNeuralNetworks leverage the temporal dimension of neural activity to process infor-
mation, which requires encoding input data into spike trains. This encoding process is crucial as
it influences the effictiveness and accuracy of the network, whose outputs also need to be some-
how decoded. Several encoding methods have been developed to represent continuous-valued
inputs as spike trains that can ultimately be processed by SNNs, such as the ones presented in
[2], [43] and [13]. The most prominent of them are presented in the following.

Rate coding is one of the simplest andmost commonly used encoding schemes. In rate coding,
the intensity of a stimulus is represented by the firing rate of a neuron. The neuron emits spikes
at a frequency proportional to the input signal’s magnitude. Mathematically, if 𝐼(𝑡) is the input
signal, the firing rate 𝑟 is given by: 𝑟 = 𝑓 (𝐼(𝑡)), where 𝑓 (·) is a function mapping input intensity
to spike rate. The spike train can be generated using a Poisson process where spikes occur with
a probability directly proportional to the desired firing rate. While rate coding is easy to imple-
ment and interpret, it may not capture the full richness of temporal dynamics of the input data.
Nevertheless, the vast majortiy of the examples employing SNNs which are found in literature
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CHAPTER 1. INTRODUCTION

are based on this principle.

An alternative approach is that of temporal encoding, which grasps the precise timing of spikes
to encode information. Unlike rate coding, where only the spike count within a time window
is of interest, temporal coding considers the exact timing of individual spikes. This method can
convey more information per single spike, making it a more efficient encoding scheme. Exam-
ples of temporal coding include:

• Latency Coding, in which the temporal delay between the onset of a stimulus and the
time of the first spike encodes the input magnitude, where shorter latencies correspond to
stronger stimuli.

• Phase Coding, aligning instead spikes with a periodic signal, where the phase shift of
spikes relative to a reference oscillation captures the desired information.

One challenge with temporal coding is its sensitivity to spike timing precision, which surely
needs more computational effort during the training phase and may require high-resolution
timing mechanisms to be implemented in hardware.

Another interesting approach is that of population coding, which makes use of the collective
activity of a group of neurons to represent information. Each neuron in the population responds
to a specific range of the input signal, and the overall population activity pattern encodes the
input. Thismethod can bemore robust to noise and can capture a broader range of input samples
compared to single-neuron rate or temporal coding. An example formula for population coding
might involve a Gaussian tuning curve where each neuron’s firing rate 𝑟𝑖 is a function of the
input signal 𝐼(𝑡) and the neuron’s preferred stimulus 𝐼𝑖 :

𝑟𝑖 = exp
(
−(𝐼(𝑡) − 𝐼𝑖)

2

2𝜎2

)
(1.8)

where 𝜎 determines the tuning curve width.

Rank order coding then relies on the order in which neurons fire to encode information. The
relative timing or sequence of spikes across a set of neurons represents the input stimulus. This
method is particularly useful when the precise timing between spikes matters less than the se-
quence of activation. Finally, delta modulation also exists, in which the production of spikes is
regulated by the change in magnitude of the input data.

Each of the presented encoding methods, graphically summarized in Fig. 1.2, has its own
advantages and trade-offs. The choice of encoding scheme depends on the specific application
and constraints of the SNN. For instance, rate coding may be preferred for its simplicity and
ease of implementation, whereas temporal or rank order coding might be chosen to exploit the
temporal dynamics for richer information representation. In this work, rate encoding has been
employed formost of the considered network use cases, as will be later discussed in chapters 4-5.
Nonetheless some examples were also developed encoding input and output data according to
their latency w.r.t. a properly set starting instant, even though some training challenges arose
due to the extremely sparse nature of the considered dataset.
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1.3. TRAINING PECULIARITIES

Rate
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Figure 1.2: Summary of the possible encoding schemes for SNNdata, most ofwhich are depicted
on the left side. In rate coding, 2 spikes are produced with random timing every 5 time instants,
while for latency type the spike is the second to last w.r.t. the red start point. For phase type,
a constant shift of 2/5 of the period is kept w.r.t. the green reference signal. Then, population
counts the number of simultaneous spikes on different channels at the instant of interest and
rank order takes as “winner” the second channel, which is the first to spike. Finally, a sketch of
the underlying principle of delta modulation is also shown in the right half, namely that a spike
gets produced every time there is a sufficiently big amplitude variation of the original signal.

1.3 TRAINING PECULIARITIES

Adapting training techniques for SNNs involves rethinking how information is processed
and learned. Training SNNs involves adjusting synaptic weights to improve the network’s per-
formance on specific tasks. This process typically leverages the unique temporal dynamics of
spikes, guiding the network to accurately process and respond to time-dependent inputs. Mod-
ern approaches often employ biologically inspired learning rules and optimization techniques
that incorporate the discrete nature of spikes. A technique of the former type is discussed in Sec.
1.3.2, while one of the latter type is immediately presented in Sec. 1.3.1. In their own way, these
methods ensure efficient adaptation and synchronization of neuron firing patterns, enabling
SNNs to learn from temporal data and achieve robust performance.

1.3.1 BACKPROPAGATION THROUGH TIME

The Backpropagation Through Time (BPTT) technique was introduced in 1990 by Paul Wer-
bos in [45]. It is an extension of the backpropagation algorithmused for training recurrent neural
networks (RNNs), which works by unrolling the RNN through time and then using backprop-
agation to calculate gradients through this “extended” version of the network, allowing for the
adjustment of weights (and other parameters) based on the temporally extended sequences of
data. The necessity of BPTT for SNNs arises from the inherent temporal dependencies in these
networks. In fact, each neuron’s spike not only influences its immediate neighbours but also
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CHAPTER 1. INTRODUCTION

affects neural activity over subsequent time steps. Traditional feedforward networks lack this
temporal aspect and cannot therefore capture the dynamic behavior of SNNs. BPTT addresses
this by unrolling the network across many time steps, effectively transforming it into a deep
feedforward network where each layer corresponds to the network’s state at a specific time step.
A graphical depiction of this underlying principle is reported in Fig. 1.3.

Figure 1.3: Recurrent representation of spiking neurons on which BPTT lies its foundation.
Taken from [9].

BPTT unfolds the recurrent structure of an SNN over time. At each time step, the network’s
state is represented by its neurons’ membrane potentials and spike outputs. During the forward
pass, the algorithm calculates the network’s response to a sequence of inputs, storing the states
and spikes at each time step. The loss function, typically involving the difference between the
expected and actual spike patterns, is then evaluated.

In the backward pass, BPTT computes the gradients of the loss function with respect to the
network’s parameters. This involves backpropagating the error through the unfolded network
layers, taking into account the temporal dependencies, as explained in [9]. The gradients are
then used to update the synaptic weights, minimizing the loss and improving the network’s
performance over time. Mathematically, the parameter updates are ruled by the gradient descent
equation:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝜕ℒ
𝜕𝜃𝑡

(1.9)

where 𝜃𝑡 represents the network parameters (synaptic weights and time constants) at time step
𝑡, 𝜂 is the learning rate, and ℒ is the loss function. The error gradients 𝜕ℒ

𝜕𝜃𝑡
are computed by

backpropagating the loss through time:

𝜕ℒ

𝜕𝜃𝑡
=

𝑇∑
𝜏=𝑡

𝜕ℒ

𝜕ℎ𝜏

𝜕ℎ𝜏
𝜕𝜃𝑡

(1.10)

where ℎ𝜏 represents the hidden states of the network at time step 𝜏. A review of the view of the
main steps of BPTT is provided in Alg. 1.
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One significant challenge in training SNNswith such amethod is related to the non-differentia-
bility of the spiking function. The hard thresholding nature of spikes³ means that traditional
gradient-based optimization methods are not directly applicable. To address this, a common
solution is to replace the non-differentiable spike function with a smooth, differentiable approx-
imation during the backward pass only. Common surrogate functions include the so-called
“fast” sigmoid or some kind of piecewise linear function, which approximate the spiking be-
havior well enough to allow gradient-based optimization.

During training, the forward pass uses the actual spiking dynamics, while the backward pass
uses the surrogate gradient to compute the error gradients. This approach effectively ”tricks”
the optimization process into working with the non-differentiable spike events.
The application of BPTT with surrogate gradients allows SNNs to be trained on a wide range of
tasks, including time-series prediction, classification, and even control systems. The temporal
dynamics captured by SNNs make them particularly well-suited for tasks involving sequence
learning and real-time processing. This is, in fact, the approach that will be considered for train-
ing the networks to be mapped on hardware devices.

Algorithm 1 Backpropagation Through Time (BPTT)
Initialize network parameters 𝜃
Initialize learning rate 𝛼

Initialize truncation parameter 𝑇
Initialize initial hidden state ℎ0

for each training sequence (𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) do
Forward Pass:
for 𝑡 = 1 to 𝑁 do
ℎ𝑡 ← 𝑓 (ℎ𝑡−1 , 𝑥𝑡 ;𝜃)
𝑦̂𝑡 ← 𝑔(ℎ𝑡 ;𝜃)
Compute loss 𝐿𝑡 ← ℓ (𝑦̂𝑡 , 𝑦𝑡 )

end for
Backward Pass:
Initialize gradient accumulators: ∇𝜃𝐿← 0
Initialize gradient at final time step: 𝛿𝑁 ← 𝜕𝐿𝑁

𝜕ℎ𝑁
for 𝑡 = 𝑁 to 1 do

if 𝑡 ≥ 𝑇 then
𝛿𝑡−𝑇 ← 𝛿𝑡−𝑇 + 𝜕𝐿𝑡

𝜕ℎ𝑡−𝑇
end if
Accumulate gradients: ∇𝜃𝐿← ∇𝜃𝐿 + 𝜕𝐿𝑡

𝜕𝜃

Propagate gradients through time: 𝛿𝑡−1 ← 𝛿𝑡 · 𝜕ℎ𝑡
𝜕ℎ𝑡−1

end for
Update parameters: 𝜃← 𝜃 − 𝛼∇𝜃𝐿

end for

³Mathematically represented with an Heaviside step function.
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1.3.2 SPIKE TIMIMING DEPENDENT PLASTICITY

The tecnique discussed until this point regards supervised learning, still, a well-established
technique also exists forunsupervised learning, namely Spike-Timing-Dependent Plasticity (STDP).
This is a biologically inspired learning rule that adjusts the synaptic weights in spiking neural
networks (SNNs) based on the precise timing of spikes between pre- and post-synaptic neurons.
The core idea is that the synaptic modification is influenced by the relative timing of spikes: if a
pre-synaptic neuron fires shortly before a post-synaptic neuron, the synaptic weight is typically
increased, in which case the process takes the name of long-term potentiation (LTP), whereas if
the pre-synaptic neuron fires shortly after the post-synaptic neuron, the synaptic weight is de-
creased (long-term depression, LTD). This temporal learning rule is mathematically formulated
to capture these dynamics, in fact, according to [19] the weight change (Δ𝑤) in STDP needs to
be calculated as:

Δ𝑤 =

{
𝐴+𝑒−Δ𝑡/𝜏+ , if Δ𝑡 > 0
−𝐴−𝑒Δ𝑡/𝜏− , if Δ𝑡 < 0

whereΔ𝑡 = 𝑡post−𝑡pre is the timedifference between the post-synaptic and the pre-synaptic spike.
The parameters 𝐴+ and 𝐴− are positive constants that determine the maximum magnitude of
potentiation and depression, respectively, whereas the time constants 𝜏+ and 𝜏− control the rate
of exponential decay for potentiation and depression.

Figure 1.4: Synaptic weights correction mechanism of STDP. Taken from [35].

When Δ𝑡 > 0, i.e. the pre-synaptic neuron fires before the post-synaptic one, the synaptic
weight𝑤 is increased, conversely, whenΔ𝑡 < 0, 𝑤 is decreased. This equation reflects the princi-
ple that the closer in time pre-spike and post-synaptic spikes are, the greater will be the increase
in synaptic strength.

The combined learning window of STDP is often visualized as an asymmetric window func-
tion that integrates both the LTP and LTD components, as depicted in Fig. 1.4. This window
function indicates that synaptic modification is highly sensitive to the exact temporal relation-
ship between pre- and post-synaptic spikes, fostering an intrinsic mechanism for temporal pat-
tern learning. The parameters 𝐴+, 𝐴−, 𝜏+, and 𝜏− can be tuned to reflect biological observations
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or tomeet specific computational goals. In practice, these parameters are set based on the desired
learning dynamics and the specific application domain. By carefully choosing these parameters,
STDP can be harnessed for various unsupervised learning tasks such as pattern recognition [44],
feature extraction [10] and anomaly detection [3]. Regardless of how promising this approach
has demonstrated to be, it has not been considered for training the physically-realized network to
the tasks required by this work, since a supervised learning approach has revealed to be manda-
tory.

Algorithm 2 Spike-Timing-Dependent Plasticity (STDP)
Initialize parameters: synaptic weights 𝑤𝑖 𝑗 , decay constant 𝜏, potentiation &
depression time constants 𝜏+ & 𝜏−
Initialize hyperparameters: learning rate 𝛼

for each pair of pre-synaptic neuron 𝑖 and post-synaptic neuron 𝑗 do
Initialize spike timing trace 𝑠𝑖 ← 0 and 𝑠 𝑗 ← 0

end for
for each time step 𝑡 do

for each pre-synaptic neuron 𝑖 do
if neuron 𝑖 fires at time 𝑡 then
𝑠𝑖 ← 𝑠𝑖 + 1

end if
end for
for each post-synaptic neuron 𝑗 do

if neuron 𝑗 fires at time 𝑡 then
𝑠 𝑗 ← 𝑠 𝑗 + 1
for each pre-synaptic neuron 𝑖 do

Δ𝑡 ← 𝑡 𝑗 − 𝑡𝑖
if Δ𝑡 > 0 then
𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗 + 𝛼 · exp(−Δ𝑡/𝜏+)

else
𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗 − 𝛼 · exp(Δ𝑡/𝜏−)

end if
end for

end if
end for
for each pre-synaptic neuron 𝑖 and post-synaptic neuron 𝑗 do
𝑠𝑖 ← 𝑠𝑖 · exp(−1/𝜏)
𝑠 𝑗 ← 𝑠 𝑗 · exp(−1/𝜏)

end for
end for

1.4 ADVANTAGES OF SNNS

Spiking Neural Networks offer several advantages over traditional artificial neural networks,
some of which are:

• Event-Based Processing: Unlike ANNs that process data in a continuous manner, SNNs
operate in an event-driven manner where information is processed only when there is a
spike event. This can lead to improved efficiency and reduced computational costs, espe-
cially in tasks that involve sparse or asynchronous data.
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• Temporal Dynamics: SNNs naturally capture the timing and sequence of spike events, al-
lowing them to encode and process temporal informationmore effectively than traditional
neural networks. This makes them well-suited for tasks involving time-sensitive data and
dynamic patterns.

• Energy Efficiency: The event-driven nature of SNNs can lead to significant energy sav-
ings, especially in applications where power consumption is a critical factor, as suggested
by [20]. Its spike-based communication in fact allows them to be temporally dynamic and
energy-efficient, making them suitable for processing sequential and time-dependent data.
This makes SNNs promising candidates for low-power neuromorphic hardware imple-
mentations and edge computing devices.

• Robustness to Noise: According to [29], SNNs exhibit inherent fault tolerance and robust-
ness to noise due to their spiking nature. They can handle noisy inputs and partial infor-
mation more effectively, making them suitable for harsh environments with uncertain or
variable data.

• Sparse Connectivity: SNNs often employ sparse connectivity patterns, where neurons are
only connected to a subset of other neurons. This sparse connectivity can lead to more
efficient information processing and improved scalability in large-scale neural networks.

These advantages make spiking neural networks a compelling choice for tasks that require
efficient and temporally sensitive processing of data. While there are challenges in training and
optimizing SNNs, ongoing research and developments are addressing these issues, paving the
way for broader adoption of spiking neural networks in various applications. With this work the
event-based processing capabilities of SNNs have been explored, leading to the considerations
later reported in chapter 5.
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2
Modeling and training SNNs

After the brief description of SNNs assessed in the previous chapter, it is time to direct the
reader’s attention to how to practically deal with these networks, i.e. how tomodel and track the
evolution of its internal nodes and, most importantly, how to train them for a specific purpose.

In order to derive a finite difference equation (FDE) describing the LIF neuron internal state,
the Forward Euler discretization has been applied, for which the derivative of a generic contin-
uous function (of time 𝑡) can be approximated as

𝑑𝑦
𝑑𝑡

= 𝑓 (𝑡 , 𝑦) ≈ 𝑦(𝑡 + Δ𝑡) − 𝑦(𝑡)
Δ𝑡

=
𝑦[𝑡𝑛+1] − 𝑦[𝑡𝑛]
𝑡𝑛+1 − 𝑡𝑛 (2.1)

from which the following iterative expression for the future value of 𝑦 is obtained:

𝑦[𝑡𝑛+1] = 𝑦[𝑡𝑛] + ℎ 𝑓 (𝑡𝑛 , 𝑦(𝑡𝑛)) (2.2)

where ℎ = 𝑡𝑛+1 − 𝑡𝑛 . Writing the discrete time instant directly as 𝑡, for which the distance
between two consecutive samples is simply ℎ = 1, and applying Eq. 2.2 to Eq. 1.2 finally yields
the following expression for the LIF neuron membrane potential

𝑈[𝑡 + 1] = 𝛽𝑈[𝑡] +𝑊𝑋[𝑡 + 1] − 𝑆[𝑡]𝑈𝑡ℎ𝑟 , where 𝑆[𝑡] =


1, if𝑈[𝑡] > 𝑈𝑡ℎ𝑟

0, otherwise
(2.3)

This equation, upon further addition of a constant bias term 𝑏, will be used to describe the
network both in software, for monitoring and training purposes, as well as in hardware. A
discrete-time version of Eq. 1.7 can also be easily obtained employing a set of two FDEs, and it
is directly reported in Sec. 3.1.2 when discussing the HDL code for a second order LIF neuron.
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CHAPTER 2. MODELING AND TRAINING SNNS

2.1 INFERENCE

Matlab has been used to reproduce the inner workings of the SNN. To begin with, the func-
tion that was written to reproduce the behaviour of a LIF neuron is reported in Code 2.1. As
a first step, the output state is determined by comparing the current membrane potential value
(passed as input of the function) and the defined threshold. Secondly, the new value of the po-
tential, i.e. 𝑈[𝑡+1] of Eq. 2.3, is calculated and brought to the output with the previous one. The
same code can actually be used to simulate an entire layer of neurons of the same type, thanks to
the use of elementwise products (.*) operated on the array defining the decay constant and the
one containing each neuron’s membrane potential, between the threshold of each neuron in the
layer and output the spike values, and finally with the matrix product between the input vector
and the weight matrix describing all the layer interconnections.

1 funct ion [ spk , mem] = LIF_neuron_original (mem, x , w, beta , threshold )
2 spk = (mem > threshold ) ;
3 mem = beta . ∗mem + ( x ’ ∗w) ’ − spk . ∗ threshold ;
4 end

Code 2.1: Matlab function for implementing LIF neuron signal elaboration. Actually, this
function simulates an entire layer of neuron, as it accepts a vector as input 𝑥 and a matrix for
weights 𝑤.

An example of simulation of a LIF neuron based on Code 2.1 is reported in Fig. 2.1. In this
case the neuron features a single input, allowing to observe the evolution of𝑈[𝑡] as a function of
the state of the only input. Every time the membrane potential exceeds the threshold, 𝑈𝑡ℎ𝑟 = 1
the state of the output is brought high. Note how the exponential decay of 𝑈[𝑡] takes about 9
timesteps to fall below 5% of the starting value, since 𝛽 = 0.7.

Figure 2.1: LIF neuron response to a random input stimulus over 200 timesteps. Here𝑊 = 0.7,
𝑏 = 0, 𝑈𝑡ℎ𝑟 = 1, 𝛽 = 0.7.

Since the training of the network will be operated on mini-batches of input samples, as later
discussed in Sec. 2.2-2.3, a new version of the LIF_neuron funtion was realized, exploiting Mat-
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2.1. INFERENCE

lab vectorization capabilities to immediately and efficiently perfom the inference of an entire
layer of neurons over multiple sets of stimuli simultaneously. In order to do so a tensor multi-
plication function was defined, after having previously reshaped the w tensor to the adequate
dimensions, as shown in Code 2.2.

1 funct ion [ next_spk , next_mem] = LIF_neuron ( curr_mem , x , w, b , beta , threshold )
2 next_spk = ( curr_mem > threshold ) ;
3 w = permute (w, [ 2 , 1 , 3 ] ) ;
4 next_mem = beta . ∗ curr_mem + multiply3Dmat (w, x ) + b − next_spk . ∗ threshold ;
5 end

Code 2.2: Matlab function of LIF neuron (entire layer, actually), accepting a tensor as input data
(𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × 𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 × 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠).

Finally, to simulate the inference of a SNN with generic structure, cell arrays have been used
to store the arrays of network parameters, as well as spikes andmembrane potential of each neu-
ron. Each of this arrays has, in fact, its own dimension, depending on the corresponding layer
size and position within the net. Indeed, a loop is perfomed on the layer index starting from
the second¹ up to the last one and for each layer the LIF_NEURON function is applied for all the
timesteps in sequence, as described by Code 2.3.

1 funct ion [ spk_data , mem_data ] = SNN( in_data , layer_dim , w, b , beta , thr )
2 x = in_data ;
3 n_layer = length ( layer_dim ) ; n_t imesteps = s i z e ( in_data , 2 ) ; n_samples = s i z e ( in_data , 3 ) ;
4 spk_data { 1 } = x ; % The output of the input neurons i s simply the input data
5 mem_data { 1 } = [ ] ;
6 fo r j = 2 : 1 : n_layer
7 w_prime = repmat (w{ j −1} , 1 , 1 , n_samples ) ; % Extending dimensions to allow
8 b_prime = repmat ( b { j −1} , 1 , 1 , n_samples ) ; % matrix c a l cu l a t i on s a l l a t once ,
9 beta_prime = repmat ( beta { j } , 1 , 1 , n_samples ) ; % ins tead of looping through

10 thr_prime = repmat ( thr { j } , 1 , 1 , n_samples ) ; % samples
11 out_spk = zeros ( layer_dim ( j ) , n_timesteps , n_samples ) ; % Prea l l o c a t i ng the s i z e
12 out_mem = zeros ( layer_dim ( j ) , n_timesteps , n_samples ) ; % of output matr ices
13 fo r i = 1 : 1 : n_t imesteps
14 [ spk , mem] = LIF_neuron (out_mem ( : , i , : ) , x ( : , i , : ) , w_prime ( : , 1 , : ) , . . .
15 . . . b_prime ( : , 1 , : ) , beta_prime ( : , 1 , : ) , thr_prime ( : , 1 , : ) ) ;
16 out_mem ( : , i +1 , : ) = mem; out_spk ( : , i +1 , : ) = spk ;
17 end
18 x = out_spk ( : , 2 : end , : ) ;
19 spk_data { j } = x ; mem_data { j } = out_mem ( : , 2 : end , : ) ;
20 end
21 end

Code 2.3: Matlab function for general-structure SNN simulation.

An example of network evolution is reported in Fig. 2.2. Specifically, themembrane potential
of the first neuron of each layer is shown. Note how the sudden drops in value of the blue curve,
corresponding to 𝑈[𝑡] of the first neuron of the last layer, are caused by that neuron producing
a spike. The exponential decay then does not tend to settle around zero in absence of external
stimulation, since a noteworthy bias term is added at every new timestep.

¹The first layer does not need any membrane potential to be calculated, as its outputs spikes are simply given by the
input stimulus to the network.
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CHAPTER 2. MODELING AND TRAINING SNNS
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Figure 2.2: Evolution of 𝑈[𝑡] over 40 timesteps for the first neuron of each layer of a SNN with
structure [16, 64, 32, 16].

2.2 TRAINING VIA SNNTORCH

Over the past few years many tools for spiking neural network simulation and training have
been developed, and among all of them SNNTorch [33] has been chosen to first approach SNN
training. As the name suggests, it is a Python library designed to facilitate the use of spiking
neural networks within the PyTorch ecosystem. After installing the framework and importing
the training dataset, the definition of a SNN is done by instantiating a snn.Leaky() object, which
implements a layer of LIF neurons and which is combined with the other normally used blocks
for ANNs, such as linear layers, implementing feedforward layer interconnections, as well as
1d/2d convolutions and max/average pooling operations. Several types of spiking neurons are
present, the alreadymentioned one and snn.Synaptic(), implementing 2𝑛𝑑 order LIF, being the
most useful. Additionally, spike_grad needs to be assigned accordingly to the type of surro-
gate gradient function to apply. An example of network definition is reported in Code 2.4. Since
neurons chained together in nn.Sequential() expect only one value, the init_hidden flag is
used to initialize the hidden states as instance variables to be processed in the background. The
final layer is not bound by this constraint, and can return multiple tensors: “output = True”
enables the final layer to return the hidden states in addition to the spikes, allowing to monitor
the overall evolution of the net and to eventually apply loss functions directly to 𝑈[𝑡]. It is also
possible make 𝛽 and𝑈𝑡ℎ𝑟 of LIF layers learnable parameters by enabling the corresponding flag,
and by passing a numpy array containing the parameter initialization for each neuron.

1 net = nn . Sequent ia l ( nn . Linear ( num_inputs , num_hidden )
2 snn . Leaky ( beta =0 .7 , spike_grad=surrogate . fas t_s igmoid ( ) , in i t_h idden=True ) ,
3 # Addit ional l aye r s may be added e . g .
4 # nn . Conv2d ( in_ch , out_ch , ke rne l _ s i ze ) ,
5 # nn . MaxPool2d ( ke rne l _ s i ze ) ,
6 # nn . F l a t t en ( ) ,
7 nn . Linear ( num_hidden , num_outputs ) ,
8 snn . Leaky ( beta =0 .7 , spike_grad=surrogate .ATan ( ) , in i t_h idden=True )
9 ) . to ( device )

Code 2.4: Python code snippet for single hidden layer SNN definition, using Sequential()
construct.
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2.2. TRAINING VIA SNNTORCH

Then, network inference on the given input stimuli is carried out by looping net(In_stimulus)
execution over all the timesteps in sequence, recording the value of spikes and membrane po-
tentials (if needed) at each instant. These will be used to evaluate the necessary gradients for
network parameters learning.

1 def forward_pass ( net , data , num_steps ) :
2 spk_rec = [ ] # record spikes over time
3 u t i l s . r e s e t ( net ) # r e s e t/ i n i t i a l i z e hidden s t a t e s fo r a l l LIF neurons in net
4 fo r s tep in range ( num_steps ) : # loop over time
5 spk_out , mem_out = net ( data ) # one time step of the forward−pass
6 spk_rec . append ( spk_out ) # record spikes
7 mem_rec . append (mem_out ) # record po t en t i a l s
8 re turn torch . s tack ( spk_rec , mem_rec )

Code 2.5: Python function executing SNN inference.

Finally the type of loss, e.g. snntorch.functional.mse_count_loss(), which calculates the
mean square error on the accumulated spike count over the number simulation timesteps, or
ce_rate_loss(), which instead provides the cross-entropy error as 𝑒(𝑥) = −∑𝑥 𝑝(𝑥)𝑙𝑜𝑔 (𝑝(𝑥)),
and the employed optimizer, e.g. torch.optim.Adam(), are set up. With that, all the prelimi-
nary steps are completed, and the training loop can be set up as per Code 2.6.

1 fo r epoch in range ( num_epochs ) :
2 fo r i , ( data , t a r g e t s ) in enumerate ( i t e r ( t r a in_ loade r ) ) :
3 data = data . to ( device )
4 t a r g e t s = t a r g e t s . to ( device )
5 net . t r a i n ( )
6 spk_rec = forward_pass ( net , data , num_steps ) # forward−pass
7 l o s s _va l = lo s s_ fn ( spk_rec , t a r g e t s ) # l o s s c a l cu l a t i on
8 optimizer . zero_grad ( ) # nul l gradients
9 l o s s _va l . backward ( ) # c a l cu l a t e gradients

10 optimizer . s tep ( ) # update weights
11 l o s s _ h i s t . append ( l o s s _va l . item ( ) ) # s to r e l o s s
12 acc = SF . accuracy_ra te ( spk_rec , t a r g e t s ) # check accuracy on a s ing l e batch
13 a c c_h i s t . append ( acc ) # keep t rack of accuracy evolut ion

Code 2.6: Training loop within SNNTorch.

The adam optimizer, introduced by Diederik P. Kingma and Jimmy Ba in 2014, implements by
itself an adaptive adjustment of the learning rate for each parameter in the model based on the
history of gradients calculated for that parameter. This helps the optimizer converge faster and
more accurately than fixed learning rate methods like SGD. Nonetheless, overfitting may still oc-
cur, for which reason an early-stopping mechanism may be introduced to avoid this phenomenon,
for instance by exiting the minibatch loop if no improvement on the accuracy of the evaluation
dataset is found after a significant number of iterations, or whether the corresponding global
loss has continued to diminish instead of being more or less stuck to the same value.

A significant advantage of SNNTorch w.r.t. its “competitors” is that it natively embeds many
different loss function metrics, neuron models, specifically designed spiking layers, as well as
surrogate gradient functions, allowing more flexibility in designing custom SNN architectures.
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CHAPTER 2. MODELING AND TRAINING SNNS

2.3 TRAINING VIA MATLAB

Python-based frameworks allow to use the autodiff function to perform backpropagation.
However, for a training procedure purely based on Matlab all the partial derivatives making up
the corrective factors for the various parameters need to be expressed analytically, as outlined in
[25]. Taking as an example a simple feedforward network with one hidden layer composed by a
single 1𝑠𝑡 order neuron, the correction quantities are given by:
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· · ·
where e.g. 𝜕ℒ

𝜕𝑊 (2) = (𝑦(2) − 𝑦̂(2)) for MSE (Mean Square Error) loss function ℒ = 1
2
∑
𝑖(𝑦𝑖 − 𝑦𝑖ˆ )2,

where 𝑦̂ is the expected output. For surrogate gradient calculation two functions have been
employed: the fast sigmoid function, given by dS_over_dU = 1./(1+k.*abs(Uod)).^2 and the
arctangent deribvative, dS_over_dU = 1/pi./(1+(pi*mem_pot).^2), where 𝑈𝑜𝑑 = 𝑈[𝑡] −𝑈𝑡ℎ𝑟

is the so-called overdrive potential, and 𝑘 becomes another hyperpameter.
For a generic number of hidden layers, the following recurrent term comes up:

𝑥(𝑘) =


𝜕ℒ
𝜕𝑦(𝑘) ⊙

𝜕𝑦̃(𝑘)
𝜕𝑈 (𝑘) , if 𝑘 = 𝑛(

𝑊 (𝑘) × 𝑥(𝑘+1)
)
⊙ 𝜕𝑦̃(𝑘)

𝜕𝑈 (𝑘) , for 𝑘 from 𝑛 − 1 downto 2
(2.8)

where the ⊙ symbol is used to indicate Hadamard (or elementwise) product. From this equation
the gradients w.r.t. the learnable paramaters yield

𝜕ℒ

𝜕𝑊 (𝑘−1) = 𝑦(𝑘−1) ×
(
𝑥(𝑘)

)𝑇
,

𝜕ℒ

𝜕𝑏(𝑘−1) = 𝑥(𝑘) , 𝜕ℒ

𝜕𝑈 (𝑘)𝑡ℎ𝑟
= −𝑦(𝑘) ⊙ 𝑥(𝑘) , 𝜕ℒ |𝑡

𝜕𝛽(𝑘) |𝑡 = 𝑈
(𝑘) |𝑡−1 ⊙ 𝑥(𝑘) |𝑡 ∀𝑡

(2.9)

At this point one should apply the BPTT algorithm, due to the recurrent definition of the LIF
neurons’ membrane potential. For each traing quantity 𝑞 the actual value to be multiplied by
the learning rate and later substracted to 𝑞 itself to apply gradient descent is given by:
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}
(2.10)

since 𝑞 is constant over time.
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2.3. TRAINING VIA MATLAB

The just completed mathematical digression brings to the train_SNN Matlab function, the
most significant part of which is reported in Code 2.7. Commands for parameters update ex-
ploiting stochastic gradient descent (SGD) are not here reported for brevity, but they simply
implement Eq. 1.9, where the correction factor is calculated as the mean of Eq. 2.10 terms over
each minibatch. Four learn_param flags are then used to select which quantities to learn.

1 for l = 1 : 1 : n_epochs % needs to be executed sequen t i a l l y
2 order_permutation = randperm ( s i z e ( t ra in_data , 3 ) ) ; % Randomly permuting the order of t r a in ing examples
3 t ra in_da ta = t ra in_da ta ( : , : , order_permutation ) ; exp_out_data = exp_out_data ( : , : , order_permutation ) ;
4 fo r i = 1 : 1 : n_minibatch % needs to be executed sequen t i a l l y
5 count = count + 1 ;
6 % Forward pass : input −to−output network execut ion
7 samples = ( i −1) ∗minibatch_s ize +1 : 1 : i ∗minibatch_s ize ;
8 [ spk_data , mem_data ] = SNN( t ra in_da ta ( : , : , samples ) , ne t_s t ruc ture , w, b , beta , thr ) ; % Bui l t −in p a r a l l e l implementation
9

10 % Backward pass
11 % Evaluate the surrogate gradient of the l o s s funct ion w. r . t . net outputs
12 dL_over_dy = los s_grad ien t ( exp_out_data ( : , : , samples ) , spk_data { end } , ”MSE”) ;
13 % Evaluate surrogate gradient of s tep funct ion for each layer of neurons
14 dy_over_dU = c e l l ( n ) ;
15 parfor k = 2 : 1 : n % Pa r a l l e l i ng fo r loop execut ion
16 dy_over_dU {k } = surrogate_gradient (mem_data { k } , thr { k } , fast_s igmoid_k ) ;
17 end
18 % Backpropagation re l a t ed ca l cu lus : chain ru le fo r de r iva t i ve s
19 x = c e l l ( 1 , n−1) ; % Prea l l o c a t i ng memory to gain speed
20 x {n } = dL_over_dy . ∗ dy_over_dU {n } ; % i n i t i a l condi t ion of common backpropagation term
21 for k = n−1: −1:2 % needs to be executed sequen t i a l l y
22 x { k } = ( multiply3Dmat (w{ k } , x { k+1} ) ) . ∗ dy_over_dU {k } ;
23 end
24 x { 1 } = zeros ( 1 , s i z e ( t ra in_data , 2 ) , 1 ) ;
25 e x t r a c t i on _ i n t e r v a l = 2 : 1 : s i z e ( t ra in_data , 2 ) ;
26 U_t_minus_one = c e l l ( 1 , n ) ;
27 U_t_minus_one ( 2 : end ) = ex t r a c t _va lue_a t _ t (mem_data ( 2 : end ) , e x t r a c t i on _ i n t e r v a l ) ;
28 y = spk_data ;
29 fo r k = n : −1 :2
30 U_t_minus_one { k } = ca t ( 2 , U_t_minus_one { k } , zeros ( ne t _ s t ruc tu re ( k ) , 1 , minibatch_s ize ) ) ;
31 dL_over_dW{k−1} = multiply3Dmat ( y { k−1} , permute ( x { k } , [2 1 3 ] ) ) ; dL_over_db {k−1} = x { k } ;
32 dL_over_dUthr { k } = −y { k } . ∗ x { k } ; dL_over_dbeta { k } = U_t_minus_one { k } . ∗ x { k } ;
33 end
34 [ . . . ]
35 % Back propagation through time
36 for t = 1 : 1 : s i z e ( t ra in_data , 2 ) % needs to be executed sequen t i a l l y
37 immediate_W = dL_over_dW ; immediate_b = dL_over_db ; immediate_Uthr = dL_over_dUthr ; immediate_beta = dL_over_dbeta ;
38 tprime = 1 ;
39 prior_W = s c a l a r _ c e l l _ b y _ c e l l ( 0 , immediate_W ) ; pr ior_b = s c a l a r _ c e l l _ b y _ c e l l ( 0 , immediate_b ) ;
40 prior_Uthr = s c a l a r _ c e l l _ b y _ c e l l ( 0 , immediate_Uthr ) ; p r io r_be ta = s c a l a r _ c e l l _ b y _ c e l l ( 0 , immediate_beta ) ;
41 while tprime < t
42 temp_x = e lementwise_ce l l _by_ce l l ( e x t r a c t _va lue_a t _ t ( x , t ) , ex t_be ta ) ;
43 temp_W = mat r i x _ c e l l _by_ ce l l ( e x t r a c t _va lue_a t _ t ( y ( 1 : end−1) , tprime ) , t r an spose_ c e l l _by_ c e l l ( temp_x ( 2 : end ) ) ) ;
44 temp_b = temp_x ( 2 : end ) ; temp_beta = s c a l a r _ c e l l _ b y _ c e l l ( 0 , pr io r_be ta ) ;
45 temp_Uthr = e lementwise_ce l l _by_ce l l ( e x t r a c t _va lue_a t _ t ( s c a l a r _ c e l l _ b y _ c e l l ( −1 , y ) , tprime ) , temp_x ) ;
46 i f tprime >=2
47 temp_beta = e lementwise_ce l l _by_ce l l ( e x t r a c t _va lue_a t _ t (mem_data , tprime −1) , temp_x ) ;
48 end
49 tprime = tprime + 1 ;
50 prior_W = sum_ce l l_by_ce l l ( prior_W , temp_W) ; pr ior_b = sum_ce l l_by_ce l l ( prior_b , temp_b ) ;
51 prior_Uthr = sum_ce l l_by_ce l l ( prior_Uthr , temp_Uthr ) ; p r io r_be ta = sum_ce l l_by_ce l l ( pr ior_beta , temp_beta ) ;
52 delta_W = sum_ce l l_by_ce l l ( immediate_W , prior_W ) ; de l ta_b = sum_ce l l_by_ce l l ( immediate_b , pr ior_b ) ;
53 del ta_Uthr = sum_ce l l_by_ce l l ( immediate_Uthr , prior_Uthr ) ; de l t a_be ta = sum_ce l l_by_ce l l ( immediate_beta , pr io r_be ta ) ;
54 end
55 % Now apply gradient descent . . .
56 end

Code 2.7: Matlab code snippet for SNN training using BPTT.

Further improvements to the code allow for concurrent processing of all minibatches sam-
ples also during training, thanks to the use of Matlab’s parallel processing toolbox. This results
particularly helpful in reducing the training processing time, as well as allowing for an imme-
diate update of parameters using SGD, for which the mean value of the corrections obtained for
each training samples needs to be calculated. Furthermore, not disposing of any built-in opti-
mizer such as torch.optim.Adam(), a weight decay mechanism has also been included, namely
𝐿2 regularization for interconnection weights and 𝐿1-type for all the other parameters.
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CHAPTER 2. MODELING AND TRAINING SNNS

2.4 PARAMETERS EXTRACTION

Once the network has been trained following some of the presented methods, its defining
parameters, represented as 32-bit precision floating point numbers, need to be adapted to a
finite resolution fixed point representation that can be handled by an FPGA. In order to do so,
the following sequence of Matlab commands has been employed for each constant:

1. p_quant = fi(p, sign, nbit, frac) is used to effectively quantize the original number,
where sign is set to 0 for unsigned types and to 1 for signed ones², nbit is the total number
of bits used for representation and frac tells how many of these need to be allocated for
the fractional part.

2. p_hex = hex(p_quant) then returns the hexadecimal string representing the resulting
nbit precision number, which can then be saved to a file using the writematrix() com-
mand or can directly be employed for initialization a constant in VHDL.

This procedure is of course valid also for Python-obtained parameters, which can be passed
to Matlab by directly exporting them into a .mat file using the savemat() method from scipy
library. Moreover, the opposite procedure can be also be put into action to analyze or debug
the hexadecimal codes provided by a logic state analyzer. In order to do so a quantizer object
resembling the type of data encoding has to be defined³, which is then passed as argument to
the hex2num() function together with the hexadecimal code of interest.

The number of integer and fractional bits must be carefully assigned so not to disrupt the
equivalence between the Matlab model and the physically realized network, which must be op-
erated under the rules of fixed point arithmetic. An example of the impact of quantization on
the network parameters is reported in Fig. 2.3, in which 4 bits are allocated for the integer part
(one of which is needed for sign encoding) and the remaining fractional part width is made to
vary between 12 and 3. Clearly, as the representation resolution is lowered, more and more
discrepancies appear between the expected and actual evolution of the network. In Fig. 2.3, for
instance, even by using only 13 bits in total for parameters encoding, 9 of which are reserved
to the fractional part, no macroscopic differences are found between the two. As resolution
is further lowered, indeed, the two plots tend to diverge. A counterexample, in this sense, is
however given by the red curve of Fig. 2.3-(b), labeled as FP11, which seems to “recover” the
quantization error accumulated by the previous representation featuring an extra fractional bit.
This shows how no general analysis on the effects of quantization is possible, as the actual net-
work behaviour is totally dependent of the network structure, on the actual values assumed by
the parameters and the operating conditions under which inference is performed, i.e. the input
stimulus and current state of all neurons. Moreover, the analysis just shown is carried out in
Matlab, where the various operations between fi objects cause their data width to be adjusted,

²In this case, by default, Matlab uses 2’s complement for representing the integer part. It is nonetheless possible to
change this specification to ‘signed magnitude’ by setting the corresponding property.

³An example of quantizer declaration is the following: q = quantizer([16, 10], ’ufixed’), which instantiates an unsigned
fixed number with a total length of 16 bit, of which 10 are reserved to the fractional part. By default, sfixed type is used,
and requires no additional string to be parsed.
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2.5. DIRECT CONVERSION FROM PRETRAINED ANN

and no explicit resizing command has been placed inside the LIF_NEURON functionwhere assign-
ment for the next value of the membrane potential is performed⁴. This differs from the actual
implementation discussed in chapter 3, where the value of 𝑈[𝑡] is resized to the same resolu-
tion for each of the neurons composing the network. Therefore, the lesson learned here is that
one should always apply the best possible quantization compatible with the available hardware
resources so to avoid unaccounted errors.
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(a) Decreasing the number of fractional bits
from 12 to 8.
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Figure 2.3: Comparison between the ‘ideal’ evolution of 𝑈[𝑡] and the actual one as a result of
some possible quantizations.

An alternative, smarter, way to overcome the problem of finding the correct data width is the
direct quantization of the network evolution during inference and the subsequent application
of the so-called Quantization-aware training (QAT) to deploy the SNN on resource-constrained
devices. SNNTorch and other tools offer some support in this sense, however training conver-
gence is not trivially obtainable with a limited amount of bits, and for this reason no example
based on this technique will be shown. Further advancements for easing covergence of QAT of
SNNs have nonetheless recently been presented in [8]. Also in this second case, however, an in-
vestigation on how PyTorch libraries apply quantization is needed, in order to evaluate whether
the outcome of the training procedure will exactly resemble the behaviour of the SNN circuit or
if it is possible to adapt QAT to the same rules used by HDL description.

2.5 DIRECT CONVERSION FROM PRETRAINED ANN

As a last point, a method for direct ANN to SNN conversion is now reported, even tough
it has not been taken under consideration for experimental analysis. First, an already trained
ANN, typically with ReLU activation functions, is used as the starting point. Each layer in the
ANN is mapped to a corresponding layer in the SNN. The ReLU activation function in the ANN
can be directly interpreted in the SNN by representing neural activation levels as spiking rates,
as explained in [6]. A caveat is that the neurons reset must be imposed to zero for this procedure

⁴i.e. at line 4 of Code 2.2.
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CHAPTER 2. MODELING AND TRAINING SNNS

to work. To ensure robust conversion, the weights𝑊 of the ANN are normalized as:

𝑊̂ =
𝑊

max(|𝑊 |)
where the denominator is the maximum absolute value of the weights in a given layer. Inputs
to the SNN are typically encoded in a rate-based or temporal coding scheme. Based on the
discussion of Sec. 1.2, in rate encoding input values 𝑥 are converted into spike rates as follows:

𝑟𝑖 =
𝑓max · 𝑥𝑖
max(𝑥)

where 𝑟𝑖 is the spike rate for input 𝑥𝑖 , and 𝑓max is the maximum firing rate. Each neuron in the
SNN then integrates incoming spikes and generates an output spike train when the membrane
potential𝑈 exceeds a certain threshold𝑈𝑡ℎ𝑟 . Mathematically, this can be expressed as:

𝑈(𝑡) =
∑
𝑖

𝑊̂ 𝑖 𝑗 · 𝑆𝑖(𝑡)

where 𝑆𝑖(𝑡) is the spike train from presynaptic neuron 𝑖, and 𝑊̂ 𝑖 𝑗 is the synaptic weight between
neurons 𝑖 and 𝑗. As usual, a spike is then generated when 𝑈(𝑡) ≥ 𝑈𝑡ℎ𝑟 . A critical step in the
conversion process is tuning the membrane potential thresholds and the synaptic weights to
match the firing rate dynamics, as sketched in Fig. 2.4. Weight scaling is used to align the firing
rates with the activation levels of the corresponding neurons in the ANN:

𝑊 ′ˆ = 𝛼 · 𝑊̂

where 𝛼 is a scaling factor chosen to balance the dynamic range of theweights and the threshold.
Finally, the performance of the converted SNN is validated against the original ANN by run-

ning inference on test data and comparing the outputs. Iterative fine-tuning of the weights 𝑊̂
and thresholds 𝑈𝑡ℎ𝑟 may be necessary to optimize spiking behavior and ensure the converted
SNN performs comparably to the ANN in terms of accuracy and efficiency.

Figure 2.4: ANN-to-SNN conversion principle. Taken from [21].
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3
RTL description of SNNs

In this chapter the structure of a generic spiking neural network will be constructed step by
step using a series of VHDL entities, the main of which are reported in Fig. 3.5. In particular,
the 2008 standard of VHDL has been used due to its enhanced fixed-point arithmetic support
(through the inclusion of the IEEE.fixed_pkg library), better handling of generics and uncon-
strained arrays, and finally for the native hex_read function for direct acquisition of net coeffi-
cients from file. Of course, all of this was done by first ensuring that Xilinx Vivado¹, namely the
software used for programming the FPGA, fully supported VHDL-2008 during RTL elaboration,
simulation, synthesis and implementation of the design.

Let’s first state that the aforementioned package defines two main types, both of which are
unconstrained arrays of std_logic elements, called sfixed and ufixed. The former represents
signed fixed-point numbers using 2’s-complement notation, whilst the latter encodes unsigned
numbers using a simple magnitude notation. Note that the range of the type uses integer, not
natural as with signed or unsigned. This means that the range can include negative indices,
which are used to represent numbers’ fractionary part. Therefore, the range of a fixed-point
number is defined by the number of bits used in its array representation and by the offset of the
binary point. Throughout this section, the following convention will be used when referring to
fixed-point data (i.e. network parameters and neruons’ state variables) representation format:

• NBIT = total number of bits

• FRAC = number of bits reserved for fractional part

• INT = number of bits reserved to the integer part

Note that for sfixed type the last two terms do not simply add up to the first, but follow the
equality NBIT = FRAC + INT + 1, where the extra bit is needed to take the sign of the numbers
into account. More information about operators, conversion functions etc. may be found in [26].

¹Specifically, Vivado 2022.1 was used for project development.
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CHAPTER 3. RTL DESCRIPTION OF SNNS

3.1 NEURON STRUCTURE

The fundamental processing block of a SNN is the LIF neuron, whose proposed RTL scheme
is reported in Fig. 3.1. Formally, the NEURON entity does not only account for the evolution of
membrane potential and related output spikes generation as outlined in Eq. 2.3, but also in-
cludes the synapses entering into it, i.e. the interconnections from the preceding layer (or the
input of the network) to the neuron under consideration. Classically, indeed, one needs to dis-
tinguish between linear layers (summing up the products of the input variables with the inter-
connections weights) and non-linear layers, which are actually what allows the network to learn
a specific task. This distinction results clear by actually looking at how neural networks are nor-
mally defined e.g. in PyTorch². From the hardware implementation perspective, however, this
distinction has been dropped. The main reason for this choice is that the general transformation
applied from the weight matrix W to the input signal vector X, which yields the synaptic cur-
rent feeding the neuron’s membrane potential and that in general needs to be implemented as a
collection of products between two scalar quantities, now just becomes, in fact, a selective sum
of some of the weights when X is supposed to assume just the two discrete values 0 and 1. This
justifies the presence of the “mask” block in Fig. 3.1, which has exactly the function of deciding
whether the stored value of a given interconnnection strenght should be passed to the summing
stage or whether a zero should go instead. Therefore, this block has been obtained by looping
over a for ... generate construct a given number of 2-input muxes, in which the selection
input is simply the input spike to a given connection and the two data inputs are simply a zero
and the correspondent connection weight.
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Figure 3.1: RTLmodel of the LIF spiking neuron. The red-coloured region inside theMAC block
is present only in case the 2𝑛𝑑 order model is considered.

After the weight have been masked, a summation needs to be performed. To do that in a
hardware-efficient way an adder tree can be employed, perfoming at each stage the addition of
two sfixed(INT downto -FRAC) terms at a time. After that aMultiply-and-ACcumulate (MAC)
unit hadles the evolution of the membrane potential and finally a comparator to the defined
threshold outputs the state of the neuron in response to a given set of input stimuli. Further

²Refer to Sec. 2.2.
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3.1. NEURON STRUCTURE

details about this fundamental blocks are provided in Sec. 3.1.1 and 3.1.2.
Code 3.1 reports a snippet of a simplified version of a 1𝑠𝑡 order, reset-by-substraction LIF

neuron as an example³. As it is evident, the structural modeling approach was here employed to
mimick the underlying RTL model. The entity here shown is self-sustaining, as revealed by the
fact that a control unit is also present with the aim of coordinating the interactions between the
various blocks. Moreover, for debugging purposes, the output membrane potential is brought
at the output in order to monitor the evolution of the internal state of the neuron and compare
it, for example, with a Matlab simulation given the same operating conditions, as will be later
presented at the end of this chapter.

1 l i b r a r y IEEE ;
2 use IEEE . STD_LOGIC_1164 . a l l ; use IEEE .NUMERIC_STD. a l l ;
3 use STD . TEXTIO . a l l ; use IEEE . STD_LOGIC_TEXTIO . a l l ;
4 use IEEE . FIXED_PKG . a l l ;
5 use WORK.SNN_PACK. a l l ;
6

7 en t i t y NEURON i s
8 gener ic (N_INPUT : na tura l ;
9 WEIGHT_FILE , BIAS_FILE , THR_FILE , DECAY_FILE : s t r i ng ) ;

10 port (CLK, RESET , IN_VALID : in s td_ log i c ;
11 SPIKE_IN : in s td_ log i c _vec to r (0 to N_INPUT−1) ;
12 SPIKE_OUT , OUT_VALID : out s td_ log i c ;
13 MEM_POT_OUT : out s f i xed ( INT downto −FRAC) ) ;
14 end NEURON;
15

16 a r ch i t e c t u r e STRUCT of NEURON i s
17 constant weight : T_DATA(0 to N_INPUT−1) := init_ram_hex (WEIGHT_FILE , N_INPUT) ;
18 constant b ias : s f i x ed ( INT downto −FRAC) := init_ram_hex ( BIAS_FILE , 1 ) ;
19 constant thr : s f i x ed ( INT downto −FRAC) := init_ram_hex (THR_FILE , 1 ) ;
20 constant decay : s f i xed ( INT downto −FRAC) := init_ram_hex (DECAY_FILE , 1 ) ;
21 s igna l to_be_summed : T_DATA(0 to N_INPUT−1) ;
22 s igna l sum : s f i xed ( INT downto −FRAC) ;
23 s igna l thr_mask , update_pot , res_pot , res_out : s td_ l og i c ;
24 begin
25

26 MASK: en t i t y WORK.W_MASK
27 gener ic map (MSIZE => N_INPUT)
28 port map (IN_DATA => weight , SEL => spike_in , OUT_DATA => to_be_summed ) ;
29

30 ADD: en t i t y WORK.ADDER
31 gener ic map (ASIZE => N_INPUT)
32 port map (IN_DATA => to_be_summed , CLK => CLK, OUT_DATA => sum) ;
33

34 MAC: en t i t y WORK.MAC
35 port map (W_SUM => sum, B => bias , D => decay , THR => thr ,
36 RESET => res_pot , THR_MASK => thr_mask , STATE_UPDATE => update_pot ,
37 CLK => CLK, MEM_POT => MEM_POT_OUT) ;
38

39 P : process (CLK) −− Out spike comparator process (+ threshold sub t rac t i on masking )
40 begin
41 i f CLK’ event and CLK = ’1 ’ then
42 i f RES_OUT = ’1 ’ then
43 SPIKE_OUT <= ’ 0 ’ ;
44 e l s i f (MEM_POT_OUT >= THR) then
45 SPIKE_OUT <= ’ 1 ’ ; thr_mask <= ’0 ’ when RES_POT = ’0 ’ e l s e ’ 1 ’ ;

³As stated in the abstract, the full code related to the project can be found at https://github.com/marcotoffano/
SNN_Thesis.git.
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CHAPTER 3. RTL DESCRIPTION OF SNNS

46 e l s e
47 SPIKE_OUT <= ’ 0 ’ ; thr_mask <= ’ 1 ’ ;
48 end i f ;
49 end i f ;
50 end process ;
51

52 CU : en t i t y WORK.CU
53 gener ic map (N_INPUT => N_INPUT)
54 port map (START => IN_VALID , RESET => RESET , CLK => CLK,
55 UPDATE_POT => update_pot , RES_POT => res_pot ,
56 Y => SPIKE_OUT , THR_MASK => thr_mask , DATA_VALID => OUT_VALID) ;
57

58 end STRUCT;

Code 3.1: LIF neuron (1𝑠𝑡 order) VHDL code snippet.

3.1.1 BINARY ADDER TREE

For a given number of terms to be added together, the actual number of inputs of this struc-
ture is equal to 2𝑛 , where 𝑛 =

⌈
𝑙𝑜𝑔2

(
𝑛𝑖𝑛𝑝𝑢𝑡𝑠

)⌉
is the number of stages composing the adder. In-

serting a register after each summation helps reducing timing problems and allows for pipeline
operation. Unused bits are simply grounded and are therefore subsequently removed by the
optimizer during synthesis phase, as shown by the Vivado compilation log snippets of Fig. 3.2.

Figure 3.2: Vivado synthesis engine log showing removal of unused adder inputs. Removal of
subsequent adder and registers block is also performed, but not here reported.

The VHDL code needed to generate this structure is composed of a for ... generate loop
over the number of summing stages 𝑛, which at every iteration instantiates a clocked process
performing the needed amount of assignments using another for loop, as outlined in Code
3.2. An “oversized” two-dimesional array is defined so to contain all the signals along the adder
path⁴. As the generate construct proceeds to the later stages of the addermore andmore registers
are left unused andwill be removed as well during compilation. The VHDL fashion for 2D array
instantiation consists of the following lines of code:

type res_i_t is array (0 to 2**N-1) of sfixed(INT+N downto -FRAC);
type res_t is array (0 to N) of res_i_t;
signal res_i: res_t;

Note how, in order to avoid overflow (or underflow) as partial sums get accumulated, the
number of bits allocated for the integer part of all the intermediate signals has been extended
by a certsin amount 𝑛, owing to the fact that fixed point logic imposes an extra bit on every

⁴A similar approach will be also used in Sec. 3.3 for storing network parameters before distributing them over to
the corresponding neurons.
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3.1. NEURON STRUCTURE

two-terms addition of data having the same size. Actually, only the final result will need all of
the extra bits, while in the previous stages additional resources will be freed once again during
synthesis.

1 ADD_GEN: fo r k in 1 to N generate
2 ADD_PROC: process (CLK)
3 begin
4 i f CLK’ event and CLK = ’1 ’ then
5 fo r i in 0 to ( ( 2 ∗ ∗N) /(2∗k ) ) −1 loop
6 r e s _ i ( k ) ( i ) <= r e s i z e ( r e s _ i ( k−1) ( i ∗2 ) + r e s _ i ( k−1) ( i ∗2+1) , INT+N, −FRAC) ;
7 end loop ;
8 end i f ;
9 end process ;

10 end generate ;

Code 3.2: VHDL code snippet for cascade summation of an arbitrary number of input sfixed(INT
downto -FRAC) signals.

3.1.2 MAC

The LIF neuron discrete-time state equation (Eq. 2.3) needs at this point to be implemented.
In order to do so, each time a valid input is submitted to the network (corresponding to the
STATE_UPDATE signal going high) a sum between the cumulative value of the “active” connec-
tions weights, the bias constant and membrane potential value at the previous instant needs to
be executed. Moreover, an additional term comes into play after the output neuron fires, namely
the threshold value, which actually needs to be substracted to the previous quantity. This, of
course, in case reset-by-substraction is desired. Otherwise, when reset-to-zero mechanism is
needed e.g. in order to apply the direct ANN-SNN conversion method presented in Sec. 2.5,
the𝑈[𝑡 − 1] term is dropped and the new value of𝑈[𝑡] simply becomes the sum of

∑
𝑖 𝑤𝑖 and 𝑏.

An RTL description of such behaviour is obtained using Code 3.3.
Even better, the proposed MAC entity allows for further generalization of the neuron model. De-
pending, in fact, on the value of the NEUR_TYPE generic parameter, a second accumulation stage
may be added so to implement the discrete time version of Eq. 1.7, which, in particular, can be
expressed as 

𝐼𝑠𝑦𝑛[𝑡 + 1] = 𝛼𝐼𝑠𝑦𝑛[𝑡] +𝑊𝑋[𝑡 + 1]
𝑈𝑚𝑒𝑚[𝑡 + 1] = 𝛽𝑈𝑚𝑒𝑚[𝑡] + 𝐼𝑠𝑦𝑛[𝑡 + 1] − 𝑅𝑒𝑠𝑒𝑡[𝑡]

(3.1)

In Code 3.3, 𝐼𝑠𝑦𝑛 corresponds to sum1, while 𝑈𝑚𝑒𝑚 is mapped to sum2. The partial products are
evaluated outside of the clocked process, where instead the non-blocking assignments perform-
ing the conditional sum between the various terms reside. In case NEUR_TYPE = “1ord” the first
stage is “skipped” in the else ... if construct and it is not therefore physically implemented.
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1 en t i t y MAC i s
2 gener ic (NEUR_TYPE : s t r i ng (1 to 4) ; RES_TYPE : s t r i ng (1 to 4) ) ;
3 port (W_SUM : in s f i xed ( INT downto −FRAC) ;
4 B , D1 , D2 , THR : in s f i xed ( INT downto −FRAC) ;
5 RESET , THR_MASK, STATE_UPDATE, CLK: in s td_ log i c ;
6 SYN_POT, MEM_POT : out s f i xed ( INT downto −FRAC) ) ;
7 end MAC;
8

9 a r ch i t e c t u r e BHV of MAC i s
10 s igna l sum1 , sum2 , prod1 , prod2 : s f i xed ( INT downto − FRAC) ;
11 begin
12

13 P : process (CLK, RESET)
14 begin
15 i f RESET = ’1 ’ then −− Asynchronous r e s e t
16 i f NEUR_TYPE = ”1ord” then
17 sum2 <= ( others => ’ 0 ’ ) ;
18 e l s i f NEUR_TYPE = ”2ord” then
19 sum1 <= ( others => ’ 0 ’ ) ; sum2 <= ( others => ’ 0 ’ ) ;
20 end i f ;
21 e l s i f CLK’EVENT and CLK = ’1 ’ then
22 i f NEUR_TYPE = ”1ord” then
23 i f STATE_UPDATE = ’1 ’ then
24 i f THR_MASK = ’0 ’ then
25 i f RES_TYPE = ”zero” then
26 sum2 <= ( others => ’ 0 ’ ) ;
27 e l s i f RES_TYPE = ” subt ” then
28 sum2 <= r e s i z e (W_SUM+B+prod2−thr , INT , −FRAC) ;
29 end i f ;
30 e l s e
31 sum2 <= r e s i z e (W_SUM+B+prod2 , INT , −FRAC) ;
32 end i f ;
33 end i f ;
34 e l s i f NEUR_TYPE = ”2ord” then
35 i f STATE_UPDATE = ’1 ’ then
36 sum1 <= r e s i z e (W_SUM+prod1 , INT , −FRAC) ;
37 i f THR_MASK = ’0 ’ then
38 sum2 <= r e s i z e ( sum1+B+prod2−thr , INT , −FRAC) ;
39 e l s e
40 sum2 <= r e s i z e ( sum1+B+prod2 , INT , −FRAC) ;
41 end i f ;
42 end i f ;
43 end i f ;
44 end i f ;
45 end process P ;
46

47 prod1 <= r e s i z e ( sum1∗D1 , INT , −FRAC) when NEUR_TYPE = ”2ord” e l s e ( o thers => ’ 0 ’ ) ;
48 prod2 <= r e s i z e ( sum2∗D2 , INT , −FRAC) ;
49 SYN_POT <= sum1 when NEUR_TYPE = ”2ord” e l s e ( o thers => ’ 0 ’ ) ;
50 MEM_POT <= sum2 ;
51

52 end BHV;

Code 3.3: Full VHDL code of generic MAC entity.

Recent literature suggests that as for ANNs, also the recurrent version of SNNs should be
explored. Recurrency may be associated with the output spikes or with the input spikes as well.
At this juncture, it is interesting to note that apart from the generic parameterization of theMAC
entity and its nonlinear reset mechanism⁵, the MAC unit is effectively acting as infinite impulse

⁵Which only acts on the last on the last stage of the filter, i.e. the one preceding the output.
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response filter (IIR) as suggested by [27], whose feedback coefficients correspond to 𝛼 and 𝛽 of
Eq. 3.1, respectively. The feedforward coefficients, in this case, are instead both set to zero, since
no recurrent action of the input is present in the equation defining the hidden variable that
regulates the output spiking activity, i.e. membrane potential. If the following more general
formula is however considered for potential evolution:

𝑈[𝑡 + 1] = 𝛽𝑈[𝑡] + 𝑋[𝑡 + 1] − 𝑅[𝑡]𝑈𝑡ℎ𝑟 + 𝛾𝑌[𝑡] + 𝛿𝑋[𝑡] (3.2)

a non-zero feedforward term 𝛿 coming from the input side is also present.
The same authors of [27] also propose an IIR modeling for the neuron which does not necessary
correlate with the deep learning concept of recurrent networks, but rather has to do with how
neuron dynamics is brought to the discrete time domain in the first place. A feedforward term
surely appears when, for instance, the Tustin time-discretization method is applied, for which
the following approximation holds for the differential terms of Eq. 1.2 and 1.7:

𝑑𝑥(𝑡)
𝑑𝑡
≈ 𝑥[𝑡 + 1] − 𝑥[𝑡 − 1]

2 · Δ𝑡 (3.3)

Regardless of what the origin for the presence of the feedforward terms is, a generalization to
an arbitrary number of coefficients is possible, and a commonly employed approach for efficient
generic-order IIR filter realization is that of cascading several digital biquad filters, as depicted
in Fig. 3.3. The decision on what form to use for the implementation of the single stages needs
then to be pondered considering the overall availability of resources.

Figure 3.3: Generic-order IIR filter implemented as cascade of biquad stages.

3.2 DATAPATH SIZING

Two possible approaches have been experimented for datapath sizing. In the first one:

• Weight summation within the ADDER entity is perfomed without loss of precision till the
last stage, were the output is finally truncated back to sfixed(INT downto -FRAC).

• The 𝑈[𝑡 − 1] × 𝑑 multiplication is also immediately truncated to the size of the single
operands. In fact, since 𝑑 is by definition a value less than unity, the loss of precision
only affects digits with the lowest significance: one has to understand if the resulting error
can be tolerated.

• Finally, the conditional sumbetween
∑
𝑖 𝑤𝑖 , 𝑏,−𝑈𝑡ℎ𝑟 and𝑈[𝑡−1]×𝑑 is resized to sfixed(INT

downto -FRAC) as well, to be comprared with the equally defined𝑈𝑡ℎ𝑟 constant.
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When comparingwith the golden reference network inferencemodel inMatlab, slight differences
in the exact values of the membrane potential are found. In particular, if no input stimulus is
presented to the neuron,𝑈[𝑡] tends to the LSB instead of actually settling to zero.
It is important to specificy that in order not to saturate, and consequenly cause data overflow, at
any stage of the neuron datapath the resolution for network parameters has been set considering
the worst possible case for max and min value of 𝑈[𝑡] state variable and then by choosing a
sufficently high number of INT bits so not to exceed that value plus the threshold. Even after
having kept track of the most extremes 𝑈[𝑡] values, it is good to take a safety margin on that,
so to ensure a correct network operation even in conditions different from the nominal ones,
specifically in case of greater incoming spiking activity, which implies a greater value needs to
be accumulated in the MAC. The FRAC precision, however, remains totally arbitrary.

The compiler will, in the end, optimize all the worst-case extra (and unneeded) resources, as
shown by the info messages reported in Fig. 3.4.

Figure 3.4: Datapath width optimization performed by Vivado synthesis compiler.

If, instead, an approach sticking closer to fixed point arithmetic rules is wanted, then:

• Weight summation output is kept at increased resolution: INT+𝑙𝑜𝑔2(𝑛) downto -FRAC.

• The𝑈[𝑡−1]×𝑑multiplication is kept to max resolution: sfixed(INT×2+1 downto -FRAC×2),
too.

• The conditional sum between
∑
𝑖 𝑤𝑖 , 𝑏, −𝑈𝑡ℎ𝑟 & 𝑈(𝑡 − 1) × 𝑑 is also set to max resolution,

i.e. sfixed(max {𝐼𝑁𝑇 × 2 + 1, 𝐼𝑁𝑇 + 𝑙𝑜𝑔2(𝑛)} + 𝑘 𝑑𝑜𝑤𝑛𝑡𝑜 − 𝐹𝑅𝐴𝐶 × 2), where 𝑘 is the ad-
ditional number of bits needed for subsequent accumulation and may be chosen to be the
𝑙𝑜𝑔2

(
𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

)
or set to a more realistic value, possibly observing how many spikes are

likely to arrive in sequence.

• Finally, the stored membrane potential, which has to be compared with threshold, to be
multiplied by 𝑑 and to be sent as output of the neuron, is resized back to INT downto -FRAC.

Also in this case some optimizations will be perfomed by Vivado compiler, but the overall
resource utilization results greater, since higher precision levels are kept for the fractional part.

3.3 HIERARCHY MANAGEMENT

A sketch of the project structure is depicted in Fig. 3.5. Neurons exhibiting the same number
of input terms are grouped together to form a LAYER entity, and layers with different character-
istics are cascaded with one another to form the final network. Since all the neurons are made
from the same fundamental blocks, a control unit ensuring correct data processing has been
placed for each layer, even though it has been omitted in Fig. 3.5. The only common signals
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between different layers are clock and reset, while all the others depend on the layer’s position
within the net.

Binary 
Adder 
Tree

ComparatorWeight 
memory

neuron.vhd

layer.vhd

network.vhd

MASK
w_filename

Decay  rate
memory

Bias
memory

State
register

Threshold
memory

b_filename

d_filename

spike_in

mem_pot_out

spike_out

t_filename

(-)

Figure 3.5: Hierarchical organization of SNN entity, with simplified internal scheme of the neu-
ron.

The input signals to each layer are sent to all of its neurons, and different ways of retrieving
the coefficients for each neuron have been studied:

1. Reading the values of 𝑤𝑖 , 𝑏, 𝑡 and 𝑑 directly from a file, whose name is passed as generic
string type parameter of the NEURON entity. Four different files were generated for each
neuron⁶, namely one per parameter type. In this way no constraint is imposed to how
many values a file should contain, but the number of parameters to read⁷ is imposed by
another generic constant at neuron level (N_INPUT). This is the approach of Code 3.1.

2. Alternatively, the parameters of each neuron are defined as input of the network and for
each layer a uniquely-sized array need to be defined to reproduce the network hierarchy.
Oversized array types can also be defined so not to modify the code for every structural
change of the net, in which case the compiler will take care of removing all the unused
elements. It is even possible to define a new type collecting together all the arrays of layer
parameters, which can be set directly as input of the NETWORK entity. This approach wil be
used in Sec. 4.4 to allow coefficients reprogrammability. Moreover, this strategy also has
the advantage of being retrocompatible, not exploiting, in fact, any feature of VHDL 2008,
and will therefore be exploited also in chapter 6 when compiling the design with Synopsys
PRESTO.

3. Finally, an attempt was done to simplify the previous approach by generating (in Mat-
lab) a very long hexadecimal string containing all the network parameters in sequence,

⁶Assuming first order LIF model is used, otherwise an extra file is needed to store the additional time constant.
⁷Which corresponds to the actual number of stored values. The writematrix() Matlab functionwas sequentially used

to this scope, feeding it with a truncated part of the array containing the parameters of a layer, namely that representing
a specific neuron.
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following the order dictated by the project hierarchy. This string is defined as a global
constant of std_logic_vector type in the package, and differently-sized portions of it
are then passed within the NETWORK entity as inputs for the various layers. The range of
indexes corresponding to each layer are retrieved by exploiting the array defining the net-
work structure. Then, inside the LAYER entity other divisions of the parameters array took
place to finally bring to each neuron the required parameters. Even tough the approach
seemed promising, Vivado compiler faced some difficulties in correctly synthesizing the
coefficients assignment, probably due to execution memory overutilization related to the
huge length of the parameters bit vector.

3.4 CONVOLUTIONAL AND POOLING LAYERS

Another type of layer that may be valuable also for spiking neural networks is the convo-
lutional one, due to its ability to efficiently process spatially structured data. By incorporating
convolutional layers into SNNs, it is possible to grasp the advantages of spatially localized re-
ceptive fields and weight sharing, which reduces the number of parameters and computational
complexity. This enhances the network’s ability to detect spatial patterns and hierarchies in the
input data, similarly to traditional artificial neural networks. Moreover, the translation invari-
ance property of convolutional layers can contribute to the robustness and generalization capa-
bilities of SNNs, making them effective for tasks such as image and video recognition, where
recognizing patterns irrespective of their position in the input space is crucial.

0   0   0   0   0   0
1   0   1   0   1   1
1   0   0   1   1   1
1   1   0   1   0   1
1   0   0   1   1   0
1   1   1   1   0   1

 0.5605   -0.1921    0.8840

-0.2205   -0.8071    0.9124

-0.5166   -0.7361    0.1504

3x3 Kernel

Kernel weights

MASK +

2nd window

MASK +

1st window

MASK +

N-th window

SOFTWARE

4x4 Output

To MAC and COMP

HARDWARE

Figure 3.6: Skecth of convolution meschanism with input spikes for a given kernel matrix: soft-
ware algorithm and hardware circuit.

For this reason an hardware implementation of a generic convolutional layer is here pro-
posed, specifically in the case where the inputs of the convolutional layer are not the membrane
potentials of the previous layer of neurons, but rather their output spikes. As in the case of fully-
connected layers of Sec. 3.1, this assumption leads to a strong simplification of the architecture.
In fact, for one-dimensional convolution, implemented using conv1d()method in PyTorch, sim-
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ply using a set of MASK blocks for each available kernel yields the final result. The same reasoning
also applies for 2D convolution (used in most image processing tasks), with some extra com-
plexity being associated for correctly addressing the input channels to the corresponding kernel
weight mask, expressed graphically in Fig. 3.6. In both cases the output, which would originally
be composed of 𝑚 sets of 1D or 2D arrays of numbers, is squeezed out to a mono-dimensional
vector of coefficents, which are then taken as input of a MAC block to introduce spiking dy-
namics. On the network definition and training side, this dimensional compression is carried
out with the Flatten()method in PyTorch and with consecutive applications of the squeeze()
function in Matlab.

1 a r ch i t e c t u r e BHV of MAX_POOL i s
2 constant DIM: natura l := N_INPUT/N_OUTPUT;
3 begin
4 GEN: for i in 0 to OUT_SPIKE ’ high generate
5 OUT_SPIKE( i ) <= or IN_SPIKE_VEC( i ∗DIM to ( i +1) ∗DIM−1) ;
6 end generate ;
7 end BHV;

Code 3.4: VHDL code snippet implementing max pooling exploiting OR reduction operator.

1 funct ion count_ones ( s lv : s td_ log i c _vec to r ) re turn natura l i s
2 var i ab l e n_ones : na tura l := 0 ;
3 begin
4 fo r i in slv ’ range loop
5 i f s lv ( i ) = ’1 ’ then
6 n_ones := n_ones + 1 ;
7 end i f ;
8 end loop ;
9 re turn n_ones ;

10 end funct ion count_ones ;
11 begin
12 GEN: for i in 0 to OUT_SPIKE ’ high generate
13 OUT_SPIKE( i ) <= ’1 ’ when count_ones ( s lv => IN_SPIKE_VEC( i ∗DIM to ( i +1) ∗DIM−1) ) > DIM/2
14 e l s e ’ 0 ’ ;
15 end generate ;
16 end BHV;

Code 3.5: VHDL code snippet for average pooling of a group of spikes.

In ANNs, convolutional layers are often followed by pooling layers, which perform a reduc-
tion of the number of connections to the subsequent layer of the network. Codes 3.4-3.5 show
how simple it is to implement maximum and average pooling layers when the inputs are only
0s or 1s. In case of max pooling, in particular, VHDL 2008 allows to use a “reduction” operator⁸
instead of having to loop through the all the inputs to evaluate their logical state. This was not
however possible for the other pooling time, which required the use of a process, then incapsu-
lated into the count_ones function of Code 3.5. By then evaluating if the spike count is greater
or equal than half of number of analyzed channels, the desired result is obtained.

⁸Truthfully, the same simplification can be obtainedwith the 1993 standard of VHDL by including the std_logic_misc
package, which provides the or_reduce function.
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3.5 SOFTMAX

One of the most used types of output layers in neural networks employed for multi-class
classification purposes is the so-called softmax, which performs the following mathematical op-
eration over an input vector 𝑋 = {𝑥1 , 𝑥2 , ..., 𝑥𝑁 }:

{ 𝑓 (𝑋)}𝑖 =
𝑒𝑥𝑖∑𝑁
𝑘=1 𝑒

𝑥𝑘
(3.4)

Indeed, the softmax of a given value within a lager set of values returns the probability of that
value being the most relevant, i.e. begin associated with the class having the highest probability
of being the correct one.
Even though this operation iswidely used in neuromorphing computing perfomed onCPUs and
GPUs, it is not trivial to implement it on programmble logic devices due to its computational
complexity. It results clear from Eq. 3.4 that for each of the output values of the softmax, the
calculation can be decomposed in three fundamental steps:

1. Calculate the exponential of each of the input values.

2. Sum up all the obtained values.

3. Divide each 𝑒𝑥 term by their sum.

   LUT
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   LUT
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Figure 3.7: RTL scheme of the softmax unit.

The proposed circuit for this task is shown in Fig. 3.7, where also the structure of the expo-
nential unit analised in Sec. 3.5.1 is highlighted. More details about the CORDIC-based division
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unit will also be presented in Sec. 3.5.2. Putting aside for a moment the details of what the in-
ner workings of such entities are, let us rather focus on the timing constraints imposed by this
circuit. By construction, the exponential unit takes 2 𝑇𝑐𝑙𝑘 to produce the result, then in the best
possible scenario an additional 𝑇𝑐𝑙𝑘 is lost for summing all the exponential terms together⁹, and
finally an additional arbitrary number of clock strokes is needed by the CORDIC divider, de-
pending on the desired precision of the output data, which is generally limited, since it is only
representing a probability value¹⁰. Indeed, this last stage adds significant latency to the struc-
ture. Fortunately, all of the fundamental elements of the processing unit are natively pipeline or
can be parallelized at the expense of additional resource usage, as it is the case for the CORDIC
processor.

EXP
s(3, -12) u(10, -5)

DIV
u(-1, -16)

u(10+k, -5+k)

+

nout

with
k = log2(nout)

u(-1, -16)
resize to 

u(-1, -niter)
truncate to 

>> 11+k

>> 11+k

u(-1, -16)
resize to 

Figure 3.8: Softmax unit internal signals widths in the specific case of sfixed(3 downto -12) input
data.

For what concerns the signals width along the various processing steps, the case of an input
data of type sfixed(3 downto -12) is considered. First of all, the result of exponentiation of
such a signal yields a purely positive number, so the type can be changed from sfixed to ufixed.
Secondly, as further discussed in Sec. 3.5.1, a total of 11 bits are needed to correctly encode the
exponential unit output when the input is at its maximum, so that if the total number of bits
is kept constant¹¹ (at 16) the actual data type needs to be set as ufixed(10 downto -5). Then,
a given amount of this values is summed together, so that their sum will require an additional
number of bits which is given by the logarithm of the number of terms on which to calculate the
softmax. Finally, the CORDIC divider needs both the divider and the divisor to be of the same
type, which will be the same used for the division result. Therefore, as this value is in any case
smaller than one, the same totally fractional 16-bit unsigned fixed point number type has to be
employed for all CORDIC unit ports. Indeed, both inputs are divided by the same quantity so to
become purely fractional numbers and an efficient way of doing this is to simply right shift them
by the number of bits representing the integer part of the biggest of the two, and finally resizing

⁹For standard classification datasets such as MNIST and its variations, only 10 output classes are present so a sigle
adder summing 10 signals at a time is likely not to create any timing bottleneck till a resonably high clock frequency.
Nonetheless, if the number of classes starts growing a more efficient structure should be considered, such as the one
discussed in Sec. 3.1.1.

¹⁰Moreover, the aim of softmax function is exactly that of clearly separating what is the most likely outcome from
all the rest, so few bits of fractional precsion are only needed, and, obviously, no space for the integer part has to be
allocated.

¹¹In this way some precision is lost at the output, notwithstanding there is no input variation for which the corre-
sponding difference on the output side smaller than 2−5 can be appreciated.

34



CHAPTER 3. RTL DESCRIPTION OF SNNS

the result to ufixed(-1, -16)¹². The actual precision on the divison result finally depends on
the number of processing steps granted to the CORDIC processor, meaning the actual result
can be truncated to contain only the first 𝑛𝑖𝑡𝑒𝑟 bits. Visually, Fig. 3.8 best summarizes the just
discussed signal bus width manipulation.

3.5.1 EXPONENTIAL UNIT

Here a revision of the architecture proposed in [11] is considered with the aim of reproduc-
ing the application of the exponential function to the membrane potential of of the neurons of
the output layer. A “naive” way of doing this operation on an FPGA is to simply employ a LUT
associating to any possibile combinations of the bits composing the input signal the correspond-
ing exponential value. This is the general method used to produce any function once the input
data range is known. That is also how non-trivial combinatorial functions get realised on FP-
GAs, instead of using logic gates.

There is however a caveat to consider: the number of input combinations of the lookup table
goes like 2𝑛𝑏𝑖𝑡 , therefore using even a modest amount of bits for representing information may
lead to an explosion of the resources to be employed. Moreover, LUTswithmany input addresses
are realized combining multiple smaller sized LUTs which are readily available in an FPGA.
In particular, LUT6 blocks are normally present, featuring 6 single-bit inputs and one output
as shown in Fig. 3.9, and can be used a an asynchronous 64-bit ROM with 6-bit addressing.
Nevertheless, the same primitive can also be exploited to realize 4-to-1 muxes, by considering
4 of the input bits as “data” inputs and the remaining 2 bits as “select” lines. A LUT of generic
length is then realized by cascading many LUT6 logic levels together, where the first stage is
composed of a series a concurrently-operated ROMs and all the others are just needed to ensure
propermultiplexing of outputs coming from the first stages. A simple example of this procedure
can be seen in Fig. 3.9, where the standard LUT6 block is realized as a combination of two LUT5
and one 2-to-1 mux, whose selection bit is the 6𝑡ℎ bit, which does not fit inside LUT5 modules.

Figure 3.9: Xilinx’s LUT6 primitive internal block scheme.

¹²Internally to the CORDIC unit, the two inputs will be aligned to the same type of the angle signal 𝑧, which needs
to be an sfixed(0 downto -15), as its value is given by the algebraic sum of fractional powers of 2, starting from 20 = 1
downto 2−15, as later explained in Sec. 3.5.2.
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As presented in [32], the following formula can be used to estimate the LUT6 utilization for
a given input data size¹³ bigger then six:

𝑛𝐿𝑈𝑇𝑠 =
2𝑛𝑖𝑛𝑝𝑢𝑡𝑠

64
+
⌈𝑙𝑜𝑔4(𝑛𝑖𝑛𝑝𝑢𝑡𝑠−6)⌉∑

𝑘=1

⌈
2𝑛𝑖𝑛𝑝𝑢𝑡𝑠−6

4𝑘

⌉
=
⌈𝑙𝑜𝑔4(𝑛𝑖𝑛𝑝𝑢𝑡𝑠−6)⌉−1∑

𝑘=0

(
2𝑛𝑖𝑛𝑝𝑢𝑡𝑠−6−2𝑘

)
+ 1 (3.5)

where the first term accounts for the LUTs used as ROMs, while the other gives the number
needed to realize the 2𝑛𝑖𝑛𝑝𝑢𝑡𝑠−6-to-1 multiplexer that finally yields the result.
For input data having 𝑛𝑏𝑖𝑡 = 16 of resolution, the total resource usage to implement a general
function whose result has, as well, 16-bit of resolution amounts to 𝑛𝐿𝑈𝑇𝑠 = 16 × 1365 = 21840,
corresponding to 4.12% utilization of total LUTs¹⁴ present on the FPGA empoyed for circuit im-
plementations of chapters 4-5.

In order to avoid such congestion, the following property of exponentials has been exploited:

𝑒𝑥 = 𝑒 𝑎+𝑏+𝑐 = 𝑒 𝑎 · 𝑒𝑏 · 𝑒 𝑐 (3.6)

Therefore, by subdividing the input into the sum of three terms, namely:

a) the first four bits, representing the integer part when employing sfixed(3 downto -12)

b) the second four bits, representing the most significant bits of the fractional part

c) the last eight (less significant) bits

and calculating the exponential separately for each of them, it is possible to obtain the final value
bymultiplying the resulting terms. Moreover, for the last 8 bits itmaynot be necessary to actually
use a lookup table. In fact, if a sufficiently large number of fractional bits is used, those last eight
bits represent a quite small quantity, forwhich itmakes sense to approximate the result using the
Taylor expansion 𝑒𝑥 =

∑∞
𝑘=0

𝑥𝑘
𝑘! ≈ 1+𝑥. Doing so, a very simple addition, two 4-input-bits lookup

tables (for a total of 16 possible combinations) whose mapping is reported in Table 3.1-3.2, and
two multiplications yield the desired processing. Note how the exponentiation of the integer
part of the input data requires a total of 𝑙𝑜𝑔2 (8914) = 11 bits not to overflow, therefore to ease
hexadecimal code reading from file in VHDL, the ufixed(10 downto -5) encoding scheme has
been used.

¹³The actual number of synthesized LUTs may differ, due to the application of resourse sharing mechanisms by Vi-
vado compiler, which may decide to substitute groups of LUT6s with some kind of mux (e.g. MUXF7, MUXF8, MUXF9)
or underutilizted LUT6s with smaller LUTs (e.g. LUT3).

¹⁴Consult Appendix A.1 for further information on total XCKU115-2FLVB2104E FPGA resources.
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Input Output
Address (hex) Value (dec) Code (hex) Value (dec)

0 0 0020 1
1 1 0057 2.7188
2 2 00EC 7.375
3 3 0283 20.0938
4 4 06D3 54.5938
5 5 128D 148.4062
6 6 326E 403.4375
7 7 8914 1096.625

{8, 9, A, B} {-8, -7, -6, -5} 0000 0
C -4 0001 0.0313
D -3 0002 0.0625
E -2 0004 0.1250
F -1 000C 0.3750

Table 3.1: Lookup table input address mapping to reproduce 𝑓 (𝑥) = 𝑒𝑥 using as 𝑥 the 4 MSBs of
a sfixed(3 downto -12) type, whose possible values are the integers in the range [−8, 7].

Input Output
Address (hex) Value (dec) Code (hex) Value (dec)

0 0 40 1
1 0.0625 44 1.0625
2 0.125 49 1.1406
3 0.1875 4D 1.2031
4 0.25 52 1.2812
5 0.3125 57 1.3594
6 0.375 5D 1.4531
7 0.4375 63 1.5469
8 0.5 6A 1.6562
9 0.5625 70 1.75
A 0.625 78 1.875
B 0.6875 7F 1.9844
C 0.75 87 2.1094
D 0.8125 90 2.25
E 0.875 9A 2.4062
F 0.9375 A3 2.5469

Table 3.2: Lookup table input address mapping to reproduce 𝑓 (𝑥) = 𝑒𝑥 using as 𝑥 the successive
4 bits of a sfixed(3 downto -12) type, whose possible values are reported in the second column.
Note that no sign encoding is present since a purely fractional part of the data is considered.

3.5.2 CORDIC DIVIDER

The COordinate Rotation DIgital Computer (CORDIC) is a simple and efficient algorithm
to calculate trigonometric, hyperbolic and even linear functions. Originally developed by Jack
Volder in 1959, CORDIC is particularly suited for hardware implementations as it primarily
uses shift-add operations instead of multiplications. The CORDIC algorithmworks in either ro-
tation mode or vectoring mode and can be used to compute a wide range of functions including
sines, cosines, exponentials, logarithms, multiplications, and, interestingly, also divisions. To
understand its mathematical background, it is sufficient to consider that the standard CORDIC
algorithm employs iterative approximations of vector rotations in a plane to achieve the desired
angle. The angles used in each iterative step are given by 𝛼𝑘 = arctan(2−𝑘), where 𝑘 is the itera-
tion index. The sequence of these angles 𝛼𝑘 ensures convergence towards the desired end angle.
A graphical depiction of this process is presented in Fig. 3.10-(a). Additionally, the process can

37



3.5. SOFTMAX

be extended to so-called “linear” rotations and “hyperbolic” rotations, which are reported as
well in Fig. 3.10-(b). In the former modality, in particular, the algorithm scales one of the vector
components by a constant factor, as exemplified by the purple vectors, whereas in the latter one
the predefined angles correspond to the hyperbolic tangent of fractional power of two. How-
ever, repeated iterations for certain steps (commonly labeled as “extra passes”) are often needed
to ensure convergence.

α0

α1 α2 θ

R=1

R=K

(a) Example of circular pseudo-rotation. The de-
sired angle 𝜃 is obtained by rotating the original
vector (of unit magnitude) by the angles 𝛼0 , 𝛼1,
etc. in sequence. Note how the direction of rota-
tions is adjusted so to converge to 𝜃. After all the
rotations have been applied, the resulting vector
has amplitude 𝐾 =

∏𝑛
𝑖=0
√

1 + 2−2𝑖 , where 𝑛 is the
number of iterations of the algorithm.

Generalized CORDIC

• Generalized CORDIC
iteration:

– 𝑥𝑘+1 = 𝑥𝑘 − 𝑦𝑘𝜇𝑑𝑘2
−𝑘

– 𝑦𝑘+1 = 𝑥𝑘𝑑𝑘2
−𝑘 + 𝑦𝑘

– 𝑧𝑘+1 = 𝑧𝑘 − 𝑑𝑘𝛼𝑘𝑒 𝑖

• Variations:
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1 Circular rotation (basic CORDIC) tan−1(2−𝑖)

0 Linear rotation 2−𝑖

-1 Hyperbolic rotation tan−1(2−𝑖)

D. Vogrig - D.C.N.N.

(b) Generalization to linear (𝜇 = 0) and hyperbolic
(𝜇 = −1) rotations. The starting and ending point
of the different rotations applied to the red, purple
and green vector are identified by {𝐴, 𝐶, 𝐸} and
{𝐵, 𝐷, 𝐸}, respectively. The ending point actually
given by pseudo-rotations, which for 𝜇 = {1,−1}
modifies the expected rotated vector magnitude,
is plotted with a discontinuous line. Note how for
𝜇 = −1, the CORDIC amplitude is reducedw.r.t its
purely-rotational counterpart.

Figure 3.10: CORDIC pseudo-rotation mechanism.

Iterative equations of generalized CORDIC (see [1]) are given by:


𝑥𝑘+1 = 𝑥𝑘 − 𝑦𝑘𝜇𝑑𝑘2−𝑘
𝑦𝑘+1 = 𝑥𝑘𝑑𝑘2−𝑘 + 𝑦𝑘
𝑧𝑘+1 = 𝑧𝑘 − 𝑑𝑘𝛼𝑘

, where (𝜇, 𝛼𝑘) =

(
1, arctan(2−𝑘)) , for circular mode(
0, 2−𝑘

)
, for linear mode(−1, 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(2−𝑘)) , for hyperbolic m.

(3.7)

For division, operation in the vectoring mode is required, where the goal is to make the starting
vector alignwith the 𝑥-axis through successive rotations. In particular, given two numbers 𝑥 and
𝑦, the objective is to compute 𝑧 = 𝑦

𝑥 . The CORDIC algorithm initializes these numbers as vector
components and applies a sequence of predefined rotational angles to nullify the 𝑦-component,
ensuring that the 𝑥-component converges to the vector’s magnitude, and the rotation angle con-
verges to the arctangent of 𝑦

𝑥 . Using CORDIC for division involves several steps:

• Initialize the vectors with the given values: 𝑥0 = 𝑥, 𝑦0 = 𝑦, and 𝑧0 = 0.

• Then, for each iteration 𝑘, we compute the rotational direction 𝑑𝑘 = sign(𝑦𝑘).

• Subsequently, we update the vector components as per Eq. 3.7, with 𝜇 = 0 and 𝛼𝑘 = 2−𝑘 .
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• After 𝑛 iterations, the 𝑥-component approximates the magnitude, and the accumulated
angle 𝑧𝑛 approximates arctan

( 𝑦
𝑥

)
. For division, the result is given by 𝑦

𝑥 ≈
∑𝑛−1
𝑖=0 𝑑𝑖2−𝑖 .

Finally, the convergence of the CORDIC algorithm hinges on the iterative reduction of the 𝑦-
component. Each rotation decreases the magnitude of the 𝑦-component by a factor related to
the powers of two, ensuring that, after sufficient iterations, the 𝑦-component becomes negligi-
ble. The number of iterations 𝑛 determines the precision of the result. Convergence is rapid
and depends on the desired accuracy, with more iterations yielding greater precision. The only
limitation concerns the input data range, which should be such that 𝑦

𝑥 ≤ 1. Since, however,
the division to perform yields by definition a quantity less than unity as a result, this is not
problematic at all. Let’s finally note that for circular and hyperbolic rotation a scaling factor
needs to be applied to the final results due to the original vector being also stretched out at each
rotation. This is not the case for linear rotations, which do not need the final result to be rescaled.

(a) Sequential version.

α2

x0 y0 z0

>>0 >>0 α0

x1 y1 z1

>>1 >>1 α1

x2 y2 z2

>>2 >>2

xn−1 yn−1 zn−1

xn yn zn

>>n−1 αn−1>>n−1

sgn( )z0

sgn( )z1

sgn( )z2

sgn( )zn−1

(b) Pipeline version.

Figure 3.11: RTL schemes of CORDIC processor. Registers between stages are omitted in (b).

Two hardware implementation of CORDIC exist, both reported in Fig. 3.7. The iterative ver-
sionmakes use of a read-onlymemory (ROM) storing the rotation angles 𝛼𝑘 , threemuxes used to
select the data on which to work on, and three externally-selectable adders/substractors blocks.
What is missing are the two barrel shifters, used to produce a divison by a generic power of two,
and of course the registers put in between to store the result of elaboration at a given iteration
𝑘. Finally a control unit is needed to manage iteration counting and angle sign flag generation.
The alternative pipeline version uses instead fixed shift registers and physical repetition of all
the other resources but the muxes.
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3.6 PIPELINE AND SEQUENTIAL EXECUTION

The SNN entity as described till this point is natively suited for pipeline operation, due to the
presence of multiple registers within each module. Indeed, coordination between the different
blocks of a neuron is obtained as follows:

1. The input spikes are always fed to the adder, no matter the state of the IN_VALID signal.
If power consumption results critical in the final design, gating the adder inputs to this
signal may help reducing energy consumption.

2. The IN_VALID signal needs to be propagated to theMAC so to enable accumulation. There-
fore, the STATE_UPDATE signal of Code 3.1.2 follows the same trend of the former, just de-
layed of 𝑛 clock cycles, where 𝑛 refers to the number of stages of the binary adder tree.

3. After membrane potential has been correctly set, comparison to the threshold is done
(again, with no check on the readiness of the value of 𝑈[𝑡]) and after a 𝑇𝑐𝑙𝑘 the result
is available, and the OUT_VALID flag should go high. Indeed, this signal is a version of
STATE_UPDATE forward-shifted in time by NEUR_ORDER+1 samples.

4. Finally, if 𝑌[𝑡] = ‘1’, the neuron fired due to its membrane potential overcoming the fixed
threshold and so within the MAC a substraction of the threshold needs take place. Prac-
tically, this means the THR_MASK signal, which is normally at ’1’, now settles at a low logic
value.

Additionally, handling RESET simply means propagating it to the MAC and output spike regis-
ter¹⁵. Assuming all this operations are handled by a control unit at layer level, this will simply
consist of a series of shift registers involving the aforementioned signals.

For sequential execution, the CU should instead follow the state diagram of Fig. 3.12. The
same sequence of operations is carried out, with the only difference lying in the fact that this
time if new data arrives before the completion of the previous execution, the unfulfilled calcula-
tions are discarded and new data processing is started over. A different strategy may have been
adopted, namely that of ignoring new data until processing of a neuron module is finished.
The fact that the “refresh rate” of every neuron input and output happens at a fraction of the
clock frequency implies by all means that under this conditons the architecture can be classified
as multi-cycle. This translates to the fact that timing constraints for input and output nodes of
the network can be relaxed, for instance by imposing a set_multicycle_path directive from one
layer’s outputs to the inputs of the following one in the constraint (.xdc) file of the entity. This
can be particularly beneficial during physical mapping on hardware resources where obtaining
a positive slack time for each and every signal path may be critical. By telling the optimizer that
some paths need less attention than others, more effort can be put where timing was not likely
to be closed in the first place.

¹⁵Being the output clocked, this can be reset independently of the value of the membrane potential (if needed for
some reason), since a FDRE primitive will be physically used for storing that value.
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COMP
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Figure 3.12: State diagram of Moore-type control unit for a layer of neurons in case sequential
SNN execution is desired.

The proposed control unit realizes a Moore finite state machine (FSM), however a Mealy-
type one could also have been used for the scope. When considering which of the two models
to adopt, it is worth observing that from a discrete logic and HDL perspective:

• Mealy machines generally have fewer states, since they change their output based on their
current input and present state, rather than just on the present state. However, fewer states
don’t ensure an easier implementation from coding perspective.

• Moore machines may be safer to use, because they change output states at each clock
edge¹⁶, however Mealy machines are faster, as, even tough synchronous, their output is
directly dependent on the inputs, and lacks the intrinsic latency typical of Moore FSMs.

Knowing all of this,Mooremodel has been taken into consideration to ensure FSMpredictability.
Nonetheless, an alternative Mealy FSM is proposed in Fig. 3.13. Its equivalence w.r.t. the other
one has been checked with the help of Simulink Stateflow tool.
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end}
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Figure 3.13: State diagram of Mealy-type control unit. Note how fewer states are present, even
though the same signals timing and output spike latency are mantained.

¹⁶under the assumption a clocked process is used for present and next state assignments, which is the case.

41



3.7. VERIFICATION

In case a sequential execution is wanted, hoping to reduce resource utilization and relax
some timing constraints when the update frequency of the inputs is a submultiple of the clock
frequency, another implementation of the adder should be preferred. In fact, once the max
arrival rate of input data is known, it is sufficient to ensure that every neuron terminates the
elaboration in that time. So, knowing that one clock cycle is spent for clocking the output com-
parator and that another one or two clock cycles are spent within the MAC (depending whether
the first order or the second order model is wanted), the timing budget for the adder is obtained.
By simply splitting the sum of the coefficients between 𝑚 of them at a time, were 𝑚 is the total
number of input divided by the number 𝑠 of necessary clock cycles to complete the elaboration,
only a fraction of the resources is needed w.r.t. the binary tree structure¹⁷. A block scheme of
such a structure is reported in Fig. 3.14. A similar strategy may also be applied for convolu-
tional layer, if employed, by only including a fraction of the masking blocks for the coefficients
of a given kernel and allowing different selection windows to pass sequentially.

1st m inputs

2nd m inputs

s-th m inputs

+

PARTIAL SUMS
ACCUMULATOR

Addend selection

n inputs

Figure 3.14: Sequential adder for neuron synaptic weights.

3.7 VERIFICATION

In this section several snapshots from the Vivado simulator will be included, with the aim of
showing the simulated behaviour of the most relevant blocks discussed within this chapter.

At first, the evolution of the output spike and membrane potential of the first and second
order versions of a pipeline-operated neuron are shown in Fig. 3.15-3.16. The neuron is stim-
ulated with a random sequence of 16 spikes over 10 timesteps (SPIKE_IN signal) and it is sub-
sequently compared with its golden reference Matlab model in Fig. 3.17-(a) and 3.17-(b). With
the employed quantization, no visible difference emerges with respect to their theoretical coun-
terparts. Here, the quantization of parameters was done considering just 3 bits for the integer
part¹⁸ (included the sign bit) and 14 bits for the fractional one. However, a visible difference in
Fig. 3.17-(a) can only be observed when just 4 fractional bits are used, as highlighted by the red
curve. If the residual quantization error can be tolerated, an 8-bit encoding may be applied to
the neuron coefficients so to save hardware resources.

¹⁷Which, in the end, requires a number of adders equal to the number of inputs minus one: 𝑛𝑎𝑑𝑑 =
∑𝑁−1
𝑖=0 2𝑖 = 𝑁 − 1.

¹⁸In fact, the maximum registered value of 𝑈[𝑡] for the given stimulus does not exceed 3 as integer part, as evident
in Fig. 3.17-(a).
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Figure 3.15: Testing of 1𝑠𝑡 order pipeline neuron.

Figure 3.16: Testing of 2𝑛𝑑 order pipeline neuron.
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(a) 1𝑠𝑡 order neuron.
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(b) 2𝑛𝑑 order neuron.

Figure 3.17: Comparison between the evolution of𝑈[𝑡] obtained from RTL simulation and from
golden reference model in Matlab.

Note, instead, how the second order model causes 𝑈[𝑡] to saturate, due the extra accumu-
lation operated by the d1 time constant, which gets however clamped to the maximum repre-
sentable as as by default setting of the overflow_style flag to “fixed_saturate” within the
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VHDL resize() function¹⁹ used at lines 37-40 of Code 3.3 to assign to the membrane potential
value. Here an additional bit for the integer part should have therefore been employed.

A sequentially-operated neuron is then reported in Fig. 3.18. Here all the relevant quantities
have been encodedwith real settingsmatching the data definition, i.e. sfixed(5 downto -10), to
provide an immediate sense to the monitored values. Moreover, 𝑈[𝑡] has been plotted in “ana-
log” style so to highlight the exponential decay and the polarity inversion that happens when
the threshold is exceeded. Clearly, the values in between two actual updates of𝑈[𝑡], happening
the instant before VALID_OUT goes high, are only a linear interpolation useful to track visually
the evolution of the internal variable. The state of the CU is also shown in the bottom part of
Fig. 3.18. Since the simulated neuron only has 2 inputs, as IN_VALID goes up the current state
remains to ADD for one only 𝑇𝑐𝑙𝑘 , then transitions to MAC, staying here just one instant as the
neuron is of 1𝑠𝑡 order type, then to COMP and finally to DONE, before getting back to IDLE.
Note how the UPDATE_POT flag goes high when the CU is in MAC state and how the THR_MASK
signal goes down when the need of𝑈𝑡ℎ𝑟 substraction from𝑈[𝑡] arises.

Figure 3.18: Scope view of the evolution of a sequential neuron with 2 inputs. Here 𝑇𝑐𝑙𝑘 = 10 ns.

An example of inference for a sequential network is then reported in Fig. 3.19. The output
spikes correspond to the prediction obtained by using Matlab function of Code 2.4. The latency
of the network, composed of 1𝑠𝑡 order neurons arranged according to the scheme [16, 40, 32, 16],
is given by Δ𝑡 =

∑
𝑖 𝑡𝑙𝑎𝑦𝑒𝑟(𝑖) =

∑𝑛𝑙𝑎𝑦𝑒𝑟𝑠−1
𝑖=1

[
𝑙𝑜𝑔2

(
𝑛𝑖𝑛𝑝𝑢𝑡𝑠(𝑖)) + 3

] − 1 = 23 𝑇𝑐𝑙𝑘 . The processing time
of each layer can also be seen as the corresponding output spikes (plus their respective valida-
tion signal) is reported ordered from top to bottom of the scope.

Finally, exponentiation and division units used in softmax are verified in Fig. 3.20-3.21.

¹⁹Further clarifications on the handling of fixed point types in VHDL 2008 can be obtained by consulting [26] and
[5].
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Figure 3.19: Simulation of inference for a sequential SNN having [16, 40, 32, 16] structure.

Figure 3.20: Result of exponentiation realized as explained in Sec. 3.5.1. Intermediate results are
also shown, together with the LUTs output mapping reported in Tab. 3.1-3.2.

Figure 3.21: Simulation of pipeline CORDIC divider. Here 𝑇𝑐𝑙𝑘 = 100 ns and the type of handled
data is sfixed(3 downto -12).

Since the CORDIC divider has been implemented in pipeline fashion, it is possible to have a
glimpse of all the intermediate results, which are stored in the Y and Z signal arrays, as X is not
involved for division. Specifically, it can be observed how Y tends to zero, as the hex values after
each iteration stick closer and closer to ± LSB (0001 and ffff, respectively), while Z approchaes
the actual value of the quotient.
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4
Implementation and Benchmarking

After having discussed in detail the fundamental blocks composing a general SNN archi-
tecture in chapter 3, it is now time to focus on the actual implementation of the circuit on a
programmable logic device, namely the AMD KCU1500 hardware evaluation board, and to its
functional testing on common machine learning tasks. In order to do so, Xilinx Vivado has been
used, sticking to the following key design steps:

• Design entry, the initial step where the digital design is created using either schematic
capture or HDL coding. The source files are then added to the project. Vivado provides
extensive code editors and graphical interfaces to facilitate this process.

• Synthesis, in which the HDL code is translated to a netlist, i.e. a gate-level representation
of the design abstracted from the high-level functional description. Vivado’s synthesis tool
optimizes this netlist for area, speed, and power based on specified constraints.

• Implementation: the synthesized netlist undergoes implementation, which includes three
main phases: translation, mapping, and place-and-route. Translation converts the synthe-
sized netlist into a format suitable for further processing. Mapping assigns the logic to
specific components within the FPGA, and place-and-route determines the physical lay-
out by positioning elements and routing the interconnections between them.

• Bitstream Generation: after successful implementation, a bitstream is produced. The bit-
stream is a binary file that can be loaded onto an FPGA to configure it with the desired
design. This file contains all the necessary information to control the FPGA’s logic blocks
and interconnects.

• Verification, to be carried out throughout the design realization process. Vivado provides
simulation tools for functional verification at the HDL level. Post-implementation, timing
and power analysis, as well as hardware debugging through the integrated logic analyzer
(ILA), ensure the design meets all requirements.
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4.1 TOP ENTITY

In order to communicate with the XCKU115 model FPGA on which the network is imple-
mented, a Xilinx direct memory access (XDMA) IP core, whose symbol from IP integrator catalog
is reported in Fig. 4.1, was included inside the TOP entity. In this way, it was possible to exploit
PCI express ports of KCU1500 to send the input spikes from the host machine to the card and
collect the output spikes moving in the opposite direction. In particular, this is done by sending
256 bit long packets according to AXI stream protocol, whose aspects are further discussed in
Sec. 4.1.1. During testing only a fraction of this payload has been used, all the remaining bits
being set to zero. A counter has then been used to keep track of data transmission from host to
card and vice versa, properly setting the various flag signals for the AXI stream protocol.

Figure 4.1: XDMA IP core handled thorugh AXI protocol.

A simplified version of the code for the TOPentity is reported inCode 4.1. An in_data_valid
bit starts the net execution by feeding the input spikes to the first layer binary adder tree and
then, after a given number of user_clk periods, the validity of the output is retrieved as the
out_data_valid is enabled. The sys_clk signal dictating the board operation is different from
the user_clk regulating the execution of network inference, whose frequency is 2.5 times greater
owing to an internal PLL setting. Independently of the specific design to be implemented, re-
source occupation of the XDMA core is in any case not significantly impacting the design when
used only for online validation of the network¹, as data just pass through the FPGA I/Os.

1 en t i t y SNN i s
2 port (PCI_EXP_RXP , PCI_EXP_RXN : in s td_ log i c _vec to r (7 downto 0) ;
3 SYS_CLK_P , SYS_CLK_N : in s td_ log i c ;
4 SYS_RST_N : in s td_ log i c ;
5 PCI_EXP_TXP , PCI_EXP_TXN : out s td_ log i c _vec to r (7 downto 0) ) ;
6 end SNN;
7

8 a r ch i t e c t u r e TOP of SNN i s
9 −− s igna l s dec l a ra t i on

10 begin
11

12 xdma_i : xdma_0 −− I n s t a t i a t i o n XDMA core component declared in SNN_PACK. vhd
13 port map( −− . . .
14 ) ;

¹If, on the other hand, the XDMA core is used as an hardware accelerator, then a considerable amount of resources
should be dedicated to it.
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15 m_axis_h2c_tready_0 <= ’ 1 ’ ;
16 spike_ in <= m_axis_h2c_tdata_0 (200 −1 downto 0) ;
17

18 NETWORK_INST : en t i t y WORK.NETWORK
19 port map (CLK => user_clk , RESET => user_resetn ,
20 SPIKE_IN => spike_in , IN_VALID => snn_valid ,
21 SPIKE_OUT_VEC => spike_out , OUT_VALID => out_val id ) ;
22

23 snn_val id <= m_axis_h2c_tval id_0 ;
24 s_axis_c2h_tkeep_0 <= ( others = > ’1 ’) when snn_val id = ’1 ’ e l s e ( o thers = > ’0 ’) ;
25 s_ax i s_c2h_tdata_0 <= x”00000000 _000000” & spike_out ;
26 s_ax i s_c2h_ tva l id_0 <= out_val id ;
27 new_sample <= snn_val id and s_axis_c2h_tready_0 ;
28 s _ ax i s _ c 2h_ t l a s t _ 0 <= ’1 ’ when cn t _ l a s t = unsigned ( packet_ lenght ) −1 e l s e ’ 0 ’ ;
29

30 −− . . . Process fo r packet counter and secondary components i n s t a n t i a t i o n ( buf fers , e c t . )
31

32 end TOP;

Code 4.1: VHDL code of the TOP entity.

4.1.1 AXI4 STREAM COMMUNICATION

The AXI4-Stream protocol is part of the Advanced eXtensible Interface (AXI) family of proto-
cols developed by ARM, designed specifically for high-speed data transmission. Introduced in
the 2010s as part of the AMBA 4 specification, it addresses the need for a highly efficient way to
handle continuous data flows without the overhead of addressing, making it particularly suit-
able for applications such as video transmission and data acquisition systems. This protocol
facilitates the unidirectional flow of data from a single source to a single destination, ensuring
high throughput and low latency. It operates efficiently without addressing overhead and sup-
ports data streaming with widths ranging from 8 to 1024 bits. To understand the functionality
of this protocol, the main signals used to control the data flow and their respective functions are
summarized in Table 4.1.

Signal Direction Description
TDATA Source to Destination The primary data signal carrying the payload from

the source to the destination.
TKEEP Source to Destination Byte qualifier signal indicating valid bytes within

the data stream.
TSTRB Source to Destination Write strobe signal for the corresponding byte in

TDATA; used for marking bytes that are part of the
transfer.

TLAST Source to Destination Indicates the last data word in a stream packet.
TREADY Destination to Source Handshake signal asserting that the destination is

ready to receive data.
TVALID Source to Destination Handshake signal asserting that the source is send-

ing valid data on the TDATA bus.
TID Source to Destination Identifies the data stream, useful for maintaining

transfer order for interleaved streams.
TDEST Source to Destination Specifies the destination for the data stream packet,

allowing dynamic packet routing.
TUSER Source to Destination Optional user-defined sideband information accom-

panying the stream data.

Table 4.1: Description of AXI4-Stream signals.

The AXI4-Stream protocol operates on a handshake mechanismwhere a data transfer occurs
only when both TVALID and TREADY are asserted, ensuring valid data is present and can be
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accepted. The absence of addressing overhead simplifies the protocol, making it optimal for con-
tinuous data streams. The TKEEP and TSTRB signals provide additional flexibility by indicating
which bytes within the data are valid, which is particularly useful for handling variable-length
data packets. Moreover, the TLAST signal is essential for delineating packet boundaries within
a stream, facilitating proper segmentation and reassembly. An example of data trasmission for
packets featuring 16 channels for a total of 25 timesteps is reported in Fig. 4.2.

aclk

aresetn

tvalid

tready

tdata[15:0] T0 T1 T2 T3 T4      T21 T22 T23 T24

tlast

Figure 4.2: AXI4 Stream signals timing diagram for the consecutive processing of 25 timesteps
of a varying 16-bit wide input signal.

4.2 TESTING ON SPIKING TACTILE MNIST

The Spiking Tactile MNIST (ST-MNIST) is a novel dataset introduced in [31] and designed to
capture the tactile information associated with natural writing. It consists of handwritten digits
from 0 to 9, which were generated by 23 human subjects using a 100-taxel biomimetic event-
based tactile sensor array. This means that the dataset records the motion and pressure dynam-
ics of the participants’ handwriting, providing a more detailed and realistic representation of
tactile interactions compared to traditional vision-based datasets. A total of 6953 samples from
23 participants ere collected, a glimpse of which is available in Fig. 4.3. Each sample is saved as
a .mat file which contains an array named spiketrain. This array has a size of 101 × n, where n is
the total number of events in the sample. The increase and decrease of the pressure exerted on
the taxels are denoted by 1 and −1 in the spiketrain, respectively, with 0 for no event. The last
row of spiketrain provides the event timestamps (in seconds).

A PREPRINT - MAY 12, 2020

Figure 1: Spatial distribution of the 100 taxels on the tactile sensor array. The taxel addresses
are in bold, and the X and Y addresses are provided in brackets, i.e., (X,Y).

Figure 2: Decoded FA responses (i.e., events) of the tactile sensor array for Digit 8.

2.3 File Formats

The full ST-MNIST dataset can be accessed online2. A separate directory exists for each
digit, and each sample is saved as a .MAT file which contains an array named spiketrain
(Fig. 3, left). This array has a size of 101 × n, where n is the total number of events in
the sample. The FA responses captured by the individual taxels are appended to the rows
of spiketrain according to the taxel addresses (which are represented by the row indexes).
The increase(FA+) and decrease(FA−) of the pressure exerted on the taxels are denoted
by 1(ON) and −1(OFF) in the spiketrain, respectively, with 0 for no event. The last row
of spiketrain provides the event timestamps (in seconds). A lookup table (i.e., LUT.mat) is
included to map the taxel addresses to the X and Y addresses of the tactile sensor array (Fig.
3, right).

3 Results

3.1 Dataset Properties

Table 1 presents some basic properties of the ST-MNIST dataset. The large standard
deviations (SDs) of the number of ON and OFF events for the individual classes are attributed

2http://www.benjamintee.com/stmnist

4

Figure 4.3: Decoded events of the tactile sensor array for a sample corresponding to 8 digit.
Taken from [31].

Training of the network was done via SNNTorch adapting the Colab notebook prepared at
[42]. The dataset was split as: 80% for training, 10% for evaluation and 10% for testing. A sim-
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ple feedforward network of has been employed for the task, featuring the following pyramidal
structure: [200, 128, 64, 32, 10], in which all parameters have been made learnable. Indeed, since
the network has been mapped on the FPGA using the first method explained in Sec. 3.3, a total
of 936 files for its parameter have been prepared, experimenting different quantization options.
The loss metric for gradient descent was set to MSE on the spike count at each output channel,
namley the snntorch.functional.mse_count_loss() method.

Physically realizing an image classifier involves counting the number of output spikes for
each output class within a given number of timesteps, taking then the class with the maximum
count as the prediction operated by the net, as shown in Fig. 4.4. Since input data is not strictly
binary but ternary, (1, 0, -1), a modification to the input layer was applied, applying a sign in-
version block after the 1/0 selection of the coefficients, which, thanks to the FIXED_PKG package
can be simply realized with the following assignment:

y <= resize(-x, INT, -FRAC);

In this way, two different sets of input were provided to the net: a 200-bit long vector encoding
if a spike was present or not, and a second 200-bit long vector for distinguishing if the incoming
pulse is positive or negative.

SNN

Spike Counter

Spike Counter

      MAX

STMNIST  CLASSIFIER

Figure 4.4: Block scheme of the SNN-based classifier for the STMNIST dataset.

Finally, to determine the correct output class the index corresponding to the output neuron
with the highest spike count should be returned, and this is done by simply performing the
following continuous assignment:

DIGIT_OUT <= to_unsigned(integer(maxindex(count)), DIGIT_OUT'length);

where the circuit generating thatmaximum index is described bymeans of the function reported
in the following code snippet:

1 funct ion maxindex ( a : spk_count_log ) re turn natura l i s
2 var i ab l e index : na tura l ;
3 var i ab l e foundmax : unsigned (COUNT_SIZE−1 downto 0) ;
4 begin
5 fo r i in 0 to a ’ high loop
6 i f a ( i ) > foundmax then
7 index := i ; foundmax := a ( i ) ;
8 end i f ;
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9 end loop ;
10 re turn index ;
11 end funct ion ;

Code 4.2: VHDL Function for determining the index of the element with the greatest value in
an array.

In the following, some empirical observations regarding the SNN-based classifier are pre-
sented. No general conclusions can be drawn however since a strong training parameters depen-
dency has been observed. By slightly changing the structure of the network or even by settling
on modestly different coefficients for the net, some of the points of the following analysis are
also changed. Changing test data also affects results in a non-trivial way. For example, Fig. 4.5
shows how two different parametrizations of 𝑤, 𝑏, 𝑡 and 𝑑 affect the final classification accuracy.
The rough conclusion one can take is that since no quantization-aware methodologies have been
considered during training, when quantizing the network parameters by a significant amount
it is difficult to predict what is going to happen. It is likely to think that those “steps” between
the experimentally found accuracies and the “theoretical” ones in full precision are due to an
increasing number of interconnections dramatically changing their values: as the number of
“failing” links increases, more and more error is accumulated, disrupting the network function-
ality.
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Figure 4.5: STMNIST digits classification accuracy as function of the parameters resolution.
A general descending trend may be identified, however the exact trimming point for network
breakdown is strongly dependent on the employed test dataset and parameter configuration.

For what concerns timing closure, with a 12-bits coefficients resolution an upper limit of
80 MHz was reached, whereas with 16-bits the maximum clock frequency could not exceed 50
MHz. Regarding FPGA utilization, instead, in these both extreme cases over 80% LUTs where
employed, and a total of 234 DSPs (1 per neuron), corresponding to 4.2% of the totally available
slices. However, for sufficiently low 𝑓𝑐𝑙𝑘 , e.g. 10 MHzwhen using 12-bits parameters, it has been
observed how the optimizer of Vivado preferred not to use DSPs in favour of generic combina-
tional logic elements realized through LUTs and BRAM. The rationale for this choice is likely
to be that DSPs are tought for ‘fast’ operation, and since other resources are still available, it is
advantageous to use less specialized hardware.
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4.3 TESTING ON SPIKING HEIDELBERG DIGITS

The Heidelberg spiking digits (SHD) is a comprehensive dataset that has been developed for
classification purposes. The dataset includes a wide range of audio stimuli that cover various
speech patterns and characteristics, providing a diverse set of inputs for classification models.
The data is structured in a way that captures the temporal information of the audio signals, al-
lowing for the analysis of spike timing and patterns within the dataset. More specifically, it
consists of approximately ten thousands high-quality recordings of spoken digits ranging from
zero to nine in English and German language², therefore 20 output classes need to be arranged
for the SNN. An example of the input stimulus for the network is shown in Fig. 4.6. Both spa-
tial and temporal binning have been applied to the original dataset. For each sample, in fact,
SHD dataset provides the activation of 700 channels over an interval of 0.7 seconds, with a time
resolution of 1 𝜇s, and has been reduced to 64 channels with an update period of 10 ms. This
“pruning” procedure has been adapted from the Python script presented in [41].

Figure 4.6: SHD input sample. The number of channels has been reduced by about 10 times
w.r.t. the raw sensor acquisition. Original samples have been averaged out together, as well,
remaining with a total of 70 samples only.

In order to decide the architecture to be used, the scoreboard on proposed nets for SHD
classification available at [34]was consulted. Here several candidates propose their architectures
and report the obtained accuracy on the dataset. In the end, the classifier was realized following
the work presented in [14] and [15]. In the proposed dilated convolution with learnable spacings
(DCLS) SNN architecture, spike timing is utilized by incorporating delays between layers using
1D convolutions across time. These delays allow for spikes to reach neurons at different times,
influencing the spike arrival times and enhancing the network’s expressivity. Spiking neurons
function as coincidence detectors by responding more strongly to synchronous input spikes,
where the spike arrival times coincide, rather than asynchronous spikes, as depicted in Fig. 4.7.

²More information on the dataset and they way it was aquired are found in [7].
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Preprint. Under review.

In the brain, the delay of a connection corresponds to the sum of the axonal, synaptic, and den-
dritic delays. It can reach several tens of milliseconds, but it can also be much shorter (1 ms or
less) (Izhikevich, 2006). For example, the axonal delay can be reduced with myelination, which
is an adaptive process that is required to learn some tasks (see Bowers (2017) for a review). In
other words, learning in the brain can not be reduced to synaptic plasticity. Delay learning is also
important.

A certain theoretical work has led to the same conclusion: Maass and Schmitt demonstrated, using
simple spiking neuron models, that a SNN with k adjustable delays can compute a much richer class
of functions than a threshold circuit with k adjustable weights (Maass & Schmitt, 1999).

Finally, on most neuromorphic chips, synapses have a programmable delay. This is the case for Intel
Loihi (Davies et al., 2018), IBM TrueNorth (Akopyan et al., 2015), SpiNNaker (Furber et al., 2014)
and SENeCA (Yousefzadeh et al., 2022).

All these points have motivated us and others (see related works in the next section) to propose delay
learning rules. Here, we show that delays can be learned together with the weights, using backpropa-
gation, in arbitrarily deep SNNs. More specifically, we first show that there is a mathematical equiv-
alence between 1D temporal convolutions and connection delays. Thanks to this equivalence, we
then demonstrate that the delays can be learned using Dilated Convolution with Learnable Spacings
(Khalfaoui-Hassani et al., 2023a;b), which was recently proposed for another purpose, namely to
increase receptive field sizes in non-spiking 2D CNNs for computer vision. In practice, the method
is fully integrated with PyTorch and leverages its automatic differentiation engine.

0

Input spike trains

Membrane potential

: Firing Threshold

Time

Figure 1: Coincidence detection: we consider two neurons N1 and N2 with the same positive synap-
tic weight values. N2 has a delayed synaptic connection denoted d21 of 8ms, thus both spikes from
spike train S1 and S2 will reach N2 quasi-simultaneously. As a result, the membrane potential of
N2 will reach the threshold ϑ and N2 will emit a spike. On the other hand, N1 will not react to these
same input spike trains.

2 RELATED WORK

2.1 DEEP LEARNING FOR SPIKING NEURAL NETWORKS

Recent advances in SNN training methods like the surrogate gradient method (Neftci et al., 2018;
Shrestha & Orchard, 2018) and the ANN2SNN conversion methods (Bu et al., 2022; Deng & Gu,
2021; Han et al., 2020) made it possible to train increasingly deeper spiking neural networks. The
surrogate gradient method defines a continuous relaxation of the non-smooth spiking nonlinearity:
it replaces the gradient of the Heaviside function used in the spike-generating process with a smooth
surrogate gradient that is suitable for optimization. On the other hand, the ANN2SNN methods
convert conventional artificial neural networks (ANNs) into SNNs by copying the weights from
ANNs while trying to minimize the conversion error.

Other works have explored improving the spiking neurons using inspiration from biological mech-
anisms or techniques used in ANNs. The Parametric Leaky Integrate-and-Fire (PLIF) (Fang et al.,
2021a) incorporates learnable membrane time constants that could be trained jointly with synaptic
weights. Bellec et al. (2018) were the first to propose a method for dynamically adapting firing

2

Figure 4.7: Coincidence detection using spiking neurons. Here two neurons with the same pos-
itive synaptic weight values are shown. Both spikes from spike train S1 and S2 will reach N2
quasi-simultaneously, resulting in N2 emitting a spike, while N1 has no reaction. Taken from
[14].

Network training on SHD dataset was carried out by simply adapting the official DCLS-SNN
implementation available at [38]. A different framework from the already introduced ones was
used, namely Spikingjelly, which is based on TensorFlow instead of Pytorch. An accuracy of 93%
was reached by training a DCLS-SNN composed of two hidden layers of 128 and 32 LIF neu-
rons of the 1𝑠𝑡 order, respectively, each with a different decay time constant. More precisely,
each feedforward layer is implemented using a DCLS module where each synaptic connection
is modeled as a 1D temporal convolution with one Gaussian kernel element³, followed by batch
normalization, LIF layer and dropout. The readout layer finally consists of 20 LIF neurons with
an infinite threshold⁴ and the generic output 𝑖 at a given time instant 𝑡 is given by the softmax of
the 𝑖-th neuron membrane potential at time 𝑡. The final output of the model after T time-steps is
defined as summation of all the softmax values at each time instant. Cross-entropy was applied
on this quantity as a loss function for backpropagation.

The only difference of this new design w.r.t. the previous structure is the addition of a vari-
able delay block in front of every input of each neuron, plus some adjustments of the control
unit so to account for the incerased latency due to delay blocks. In fact, an additional 𝑇𝑚𝑎𝑥 clock
cycles are needed for each layer processing, where 𝑇𝑚𝑎𝑥 is the longest delay to be applied in the
entire layer, i.e. the size of the longest shift register. Moreover, the softmax unit of Sec. 3.5 is
now put after the output neurons and an actual accumulator (not just a binary counter) needs
to be placed as well. The bit length of the accumulator register is increased of

⌈
𝑙𝑜𝑔2

(
𝑛𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠

)⌉
w.r.t. that of the softmax-generated probability. Finally, after that, the index corresponding to
the maximum value is again taken the output prediction. A graphical description of this new
entity is shown in Fig. 4.8.

³Please refer to [14] for an in-depth explanation of the training procedure for neuron connections delays.
⁴Meaning that membrane potential is only accumulated, and no output spiking mechanism is included in the final

set of LIF entities.
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Figure 4.8: Block scheme of the SNN-based classifier for the SHD dataset.

If for the pipeline control unit a “classical” shift register implementation using flip flops
could be accepted, given the undoubtedly overall low utilization of this components (a bunch of
them for each layer), for introducing the delays in [15] the FFs utilization could be much greater,
i.e. proportional to the number of neurons, to the number of inputs of each layer and also to
average delay to be applied to the input spikes. A hardware description favouring the use of
BRAM instead of FFs, without the use of explicit directives for Vivado compiler, is proposed in
Code 4.3, following the approach of [17]. A given number of this optimized shift registers (in the
same quantity as the inputs of the layer) are grouped together, each with its own custom length
defined by the generic parameter SR_DEPTH, to form the delay_block entity, as shownby Fig. 4.9.

1 process (CLK)
2 begin
3 i f CLK’ event and CLK= ’1 ’ then
4 i f RES = ’1 ’ then
5 res_counter <= 0 ; DELAYED_SPIKE <= ’ 0 ’ ;
6 e l s e
7 r <= r ( r ’ high−1 downto r ’ low ) & SPIKE ;
8 i f res_counter = SR_DEPTH−1 then
9 DELAYED_SPIKE <= r ( r ’ high ) ;

10 e l s e
11 res_counter <= res_counter + 1 ; DELAYED_SPIKE <= ’ 0 ’ ;
12 end i f ;
13 end i f ;
14 end i f ;
15 end process ;
16

17 end a r ch i t e c t u r e BHV;

Code 4.3: VHDL process realizing a generic-length shift register minimizing the use of FFs in
favour of BRAM.

The aim of batch normalization is that of ease training: by keeping track of the mean and
variance of consecutiveweights and biases adjustments along loss function gradient descent, it is
not necessary anymore to use small learning rates or fancy learning rate scheduling techniques.
Batch normalization has not been performed in hardware, but rather at coefficient quantization
level. Mathematically, in fact, the contribution of a weight-normalization layer is the following:

[𝑊𝑋(𝑡 − 𝑑) + 𝑏] · 𝜇 + 𝜎 =𝑊𝜇 · 𝑋(𝑡 − 𝑑) +
(
𝑏𝜇 + 𝜎

)
=𝑊 ′𝑋(𝑡 − 𝑑) + 𝑏′ (4.1)
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Therefore, after training has been completed it is simply necessary to rescale the linear layer co-
efficients, as clarified in [16]. Droput layers are also included in DCLS Python model, but are
not used during inference phase and have therefore been omitted in HDL. In fact, dropout is a
regularization technique used during the training phase to prevent overfitting, and consists in
randomly setting a fraction of the input units to zero at each update step, effectively creating
a different “thinned” network each time, which helps in making the model more robust and
generalizable. However, during inference (when the model is making predictions on new data),
dropout is typically turned off. Instead of randomly dropping units, the weights of the network
are scaled to account for the dropped units during training. This ensures that the entire model
is used for making predictions, and the outputs are more stable.
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Figure 4.9: Vivado schematic view of delay_block module.

Finally, some tests have been assessed aiming at determining the impact of the total number
of timesteps on network accuracy. It has nonetheless been oberserved that no significance influ-
ence on the final accuracy is found by reducing the dataset temporal binning, the only difference
lying in the larger number of training epochs necessary to reach a given performance level⁵.

4.4 RUNTIME COEFFICIENTS SETTING

As a final improvement to the processing system, the possibility of changing the values of the
network defining parameters without needing to recompile the design was taken into consider-
ation. The aim of this was to allow the system to become more versatile and potentially serve
purposes different from the originally designated ones, even once fixed into place for operation.
An AXI-Lite memory IP was manually instantiated within Vivado to ensure this functionality,
connecting it (configured in slave operation) to the DMA IP, and porting out of the entity its
registers, so to feed them to the network for its parameters definition. The AXI-Lite protocol was
introduced to provide a simplified version of the full AXI protocol for low-throughput control
register access scenarios. AXI-Lite reduces the overhead associated with the full AXI protocol
by omitting certain features, thereby simplifying its implementation in systems where only ba-
sic read/write operations are required. This streamlined protocol is ideal for register access in

⁵An accuracy level of 93% has been considered as the arrival point for network training.
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peripheral devices or simple memory-mapped interfaces. To understand the functionality of
AXI-Lite, a summary of the main signals used in the protocol and their respective functions in
Tab. 4.2. Not every one of these signals will be used in the final circuit, though, and the corre-
sponding component ports will be left in the open logical state.

Signal Direction Description
AWADDR Master to Slave Write address. Specifies the address of the target lo-

cation for the write operation.
AWPROT Master to Slave Write protection type. Indicates the privilege level

and security status of the write transaction.
AWVALID Master to Slave Write address valid. Indicates that the address and

control information are ready to be accepted by the
slave.

AWREADY Slave to Master Write address ready. Indicates that the slave is ready
to accept the address and control information.

WDATA Master to Slave Write data. Contains the data to be written to the
target location.

WSTRB Master to Slave Write strobes. Indicates which byte lanes of the data
bus are valid during the write operation.

WVALID Master to Slave Write valid. Indicates that the write data is ready to
be accepted by the slave.

WREADY Slave to Master Write ready. Indicates that the slave can accept the
write data.

BRESP Slave to Master Write response. Provides feedback on the status of
the write transaction.

BVALID Slave to Master Write response valid. Indicates that the feedback on
the status of the write transaction is available.

BREADY Master to Slave Write response ready. Indicates that the master has
accepted the write response.

ARADDR Master to Slave Read address. Specifies the address of the target lo-
cation for the read operation.

ARPROT Master to Slave Read protection type. Indicates the privilege level
and security status of the read transaction.

ARVALID Master to Slave Read address valid. Indicates that the address and
control information are ready to be accepted by the
slave.

ARREADY Slave to Master Read address ready. Indicates that the slave is ready
to accept the address and control information.

RDATA Slave to Master Read data. Contains the data read from the target
location.

RRESP Slave to Master Read response. Provides feedback on the status of
the read transaction.

RVALID Slave to Master Read valid. Indicates that the read data and status
are available.

RREADY Master to Slave Read ready. Indicates that the master can accept the
read data and status.

Table 4.2: Description of AXI-Lite signals.

The AXI-Lite protocol operates using a handshake mechanism where each transaction con-
sists of address and data phases for both read and write operations. A transaction begins when
the master asserts the AWVALID or ARVALID, indicating valid address information. The slave re-
spondswith AWREADY or ARREADY, acknowledging readiness to accept this information. For write
transactions, the master sends the data along with WSTRB signals, and for read transactions, the
slave returns the data when it asserts RVALID. The simpler design of AXI-Lite reduces resource
usage and implementation complexity, making it ideal for low-throughput, low-latency control
applications in modern digital systems. Simple timing examples of AXI LITE register reading
and wrinting are provided in Fig. 4.10-(b) and 4.10-(a), respectively.

For the ultimate implementation of the circuit, the FALSE_PATH constraint needs to be set
from AXI LITE registers to the NETWORK entity. This relaxation condition holds since network
coefficients are known to be kept constant during network inference.
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Figure 4.10: AXI Lite register transaction timing diagram.

The fact that coefficients can be reprogrammed allows for training the network performing
the inference phase in hardware, while the more complex backpropagation phase can be han-
dled by floating point arithmetic on a host machine. With such kind of networks, in which par-
allelization of execution instances is limited by the inherent temporal dependency of each layer
with the previous one, there can still be a substantial benefit in reducing the effort and time
spent in calculating all network quantities during the feedforward phase. In this case, however,
no value-dependent optimization is possible on the network coefficients, meaning the overall
resource utilization for the same design will be somewhat greater, in particular for FFs used
to implement the cofficient registers and LUTs/CLBs/LUTRAM for additions operations. Also
themultiplications performed by each neuron becomemore complex operations, since now they
are performed between two signals, and not between one signal and one constant scalar, as in
the previous case. This implies a different setting of DSPs, when in use, or of additional logic
when implemented “discretely”, e.g. at lower clock frequencies. Indeed, this is the price to pay
to have reprogrammable coefficients.
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5
Case study: drift tubes hits filtering

Owing to their event-driven nature, the application of spiking neural networks to datasets
natively expressed as timeseries seems promising. After having discussed “standard” classi-
fication tasks reproposing input data as time varying quantities in the previous chapter, it is
now high time to discuss a more specific task, for which low latency hardware implementation
is needed. Specifically, an application to the elaboration of data coming out of particle detec-
tors placed inside the Large Hadron Collider (LHC) at CERN will be shown. Particle Physics
experiments at CERN require low latency hardware for data processing since:

• particle collisions occur at extremely high rates, often millions of times per second (e.g.
at 40 MHz) and efficient and prompt capture of interesting events (such as rare particle
decays) is essential before readout buffers fill up and new events are overwritten;

• experiments use complex multi-level trigger systems to filter out uninteresting events in
real-time and retain only the most relevant data for detailed analysis, therefore low la-
tency is crucial to ensure the triggers operate swiftly and accurately, minimizing the risk
of discarding significant events.

5.1 THE EXPERIMENT

The drift tube (DT) chambers used in the Compact Muon Solenoid (CMS) experiment at
CERNare a type of gaseous particle detector designed to track the trajectory of charged particles,
depicted in Fig. 5.1. They consist of long tubes filled with a gas, typically a mixture of argon and
carbon dioxide, which are usually arranged in parallel with each other. When a charged particle
passes through the drift tube chamber, it ionizes the gas along its path, creating electrons and
positive ions. The electric field within the chamber drifts these electrons towards a wire in the
center of the tube, where they are collected. By measuring the time it takes for the electrons to
reach the wire, the position of the charged particle along the tube can be precisely determined.
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Figure 5.1: Working principle of muon drift tubes. Taken from [24].

DTs are particularly well-suited for detectingmuons due to their penetrating power and abil-
ity to travel through dense materials. They are used in conjunction with other detectors in the
CMS experiment to reconstruct the paths of particles produced in high-energy collisions, such
as resistive plate chambers (RPCs) and cathode strip chambers (CSCs). They are arranged in
a specific geometry to maximize their efficiency in detecting muons. These chambers are typi-
cally organized in multiple layers or “stations” around the collision points where particles are
produced. Layers are placed parallel to the beamline, allowing for the measurement of the par-
ticle’s position in both the transverse and longitudinal directions, as outlined by Fig. 5.2. Finally,
two types of chambers exist: Phi (Φ), measuring the azimuthal angle around the beam axis and
Theta (Θ), measuring instead the polar angle w.r.t. it.

There are approximately 250 drift tube chambers distributed throughout the detector. These
chambers are placed in different regions of the CMS detector to provide efficient coverage for
detecting and tracking charged particles. A ”superlayer” in the context of particle detectors, then
refers to a group of individual detection layers or modules that are stacked together to increase
the coverage and precision of particle tracking. The proposed application for a SNN architecture
is as a filter for the event detections from a group of cells within a superlayer. Precisely, a block
of 4×4 cells is considered, as it is expected to be sufficiently extended in the transversal direction
to “catch” an impinging muon for sufficiently small angles of incidence. This is particularly true
for MS2 (muon station) and MS3, in which the trajectory of particles is almost linear, due to the
change in direction of the applied magnetic field, whose intensity is of about 3.8 T.

Figure 5.2: CMS cross-sectional view in correspondence of DTs. Note how the trajectory of
charged particles generated during collisions causes multiple cells to fire (coloured in blue)
within each superlayer.
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The DAQ and triggering system is currently under upgrade as the requirements in terms of
trigger rate are going to exceed the capabilities of current electronics once the new High Lumi-
nosity (HL) LHC will enter into operation¹. On-Board Electronics for Drift Tubes (OBDT) board
represents the main part of the electronics that will be deployed in the upgrade of the detec-
tor. The OBDT board is built using a Microsemi Polarfire MPF300 FPGA. The time digitization
of up to 240 channels is performed inside this FPGA through a deserialization method. Each
input signal is sampled by a 640 MHz DDR deserializer, and then 0 to 1 transitions are detected
in the parallel array of sampled data. The detected transitions are converted to a digital value
which includes the coarse count in steps of the LHC bunch crossing (BX), that is 25 ns, and a
fine bin size with a least significant bin of 1/32 of a BX. That is, the least significant bin of the
TDC (Time-to-Digital Converter) is 0.78125 ns. Further details about the DAQ system are found
in [28], however the provided information is sufficient to follow the discussion presented in the
following sections.

Figure 5.3: DAQ system for muon events detected by drift tubes. Taken from [4].

5.2 DATASET GENERATION

The starting point for approaching the filtering problem with SNN was the work presented
by Migliorini et al. in [22], showing a demonstrator for a muon triggering system with a set of
fast ReLU-basedANNs. In this case anANNwas devoted to the task of filtering the spurious hits
due to noise originating from DTs operating environment. The filtering action was performed
on the “coarse” time measurement, i.e. the BX count, and the TDC value of the firing cells was
then taken into account to determine the absolute time of passage of a particle by applying the
well-established mean-timer technique explained in [12], which exploits geometrical relations
associated to the staggering of cells in adjacent layers. Since however different formulas hold
for muons arriving from opposite direction w.r.t. the normal of a given cell, another network
was used for left/right disambiguation, and an additional one was futher employed as a first
preprocessing step with the aim of grouping hits together.

¹A comprehensive presentation of the upgrades taking place within the CMS detector in relation to HL-LHC are
reported in [37].
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(a) Histogram of muon drift times in DTs. The
simulation was carried out for 10000 events.

(b) Cross-sectional view of cells struck by muons: 4
true hits case and 3 true + 3 noise hits scenario.

Figure 5.4: Simulated muon arrivals: hits time and crossed cells.

The spiking version of the just mentioned filtering network requires a binary input for each
drift tube status reading, instead of an integer value indicating the count w.r.t. the last LHC
orbit² starting instant. For direct ANN-SNN conversion using the coefficients rescaling method
of Sec. 2.5 the BX count provided by the OBDTs should be converted to the spike domain us-
ing firing rate encoding and then wait for a sufficiently large number of instants so to have the
output predictions ready. A smarter approach is that of reducing the BX reading to the last 𝑛
instants, instead of considering the entire orbit as a reference. It would be even more interesting
to directly use the arrival timeslot of muons to encode the BX value within the time window
of interest. Stated differently, temporal encoding (with reversed magnitude assignment w.r.t.
what explained in Sec. 1.2, meaning the later the spike arrives, the bigger its associated value)
can be efficiently applied to input data, and, indeed, this is the approach that has been used.
More precisely, a Python code was provided³ to simulate Poisson arrivals of muons at a given
time, and taking into account geometric relations of gas-filled chambers, the expected drift time
of excited electrons, i.e. cells firing times, were obtained. A 40 bin suddivisionwas then applied,
taking into account that:

• muon impact was set to happen at a randomly distributed angle between ±10° w.r.t. nor-
mal axis;

• muon arrival time 𝑡0 was set to the 20𝑡ℎ BX, where 1 BX = 1
𝑓 𝐿𝐻𝐶𝑐𝑙𝑘

= 25 ns

• considering a 1 𝜇s (= 40 BX) time interval, all the cell firing times appearing in the drift
time histogram of Fig. 5.4-(a) are taken into account, even for remote events located at the
tails of the distribution.

The inefficiencies of DTs due to aging were also simulated, randomly removing some of the
hits occurring on the cells along themuons tracks. Then, uniformly distributed noise was finally

²In the LHC, a single orbit is completed approximately every 89.3 𝜇s. In fact, the LHC operates at a radio frequency
of 40.078 MHz, which means that there are about 3564 bunch crossings per orbit.

³A huge thanks goes to Dr. Migliorini, Ph.D.
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added to the samples. For each hit, a label was assigned to identify it as a true event or as an
artifact to be discarded. For a number of true events in between 3 and 4 (occurring on groups
of adjacent cells, as ordered according to official CMS naming rules), only the extra noisy hits
are discarded as shown in Fig. 5.5, whereas if the true hit count is lower or equal to 2, also the
true events need to be discarded as themean timer requires at least three points towork properly.

Figure 5.5: Generated hits labeling. Here only 25 timesteps have been simulated for brevity.

5.3 TRAINING CHALLENGES

The BX arrival time for each channel for each 40-timesteps long simulation outcome is then
converted to a spike train in which a 1 is generated at the proper time, being all the rest of
the stream left to zero. In order to account for the events that could occur at the ‘boundaries’
of the muons drift time range, all samples have been assembled together to form a very long
timestream, as graphically shown in Fig. 5.6. The actual stimulus for the SNN is then retrieved
by considering the content of a 16-timesteps long window sliding over the entire dataset. The
length of the window has been chosen to such value since almost all muon events take less than
400 ns (= 16 BX) to drift the deposited charge inside the chamber towards the central wire. This
will be the starting value fore the decay time of LIF neurons, effectively regulating the “temporal
memory” of the network.
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Resulting datastream

Sliding window over 16 timesteps

Figure 5.6: Generation of training dataset: the single samples originated from muon arrival
simulation are merged together to form a unique datastream. Then, each training sample for
the SNN is obtained by sliding a window of 16 timesteps over all the available time instants.
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After this kind of data-augmentation procedure, the network has initially been trained with
the Matlab script of Sec. 2.3 so to exactly match the values of each channel at every time instant.
The resulting samples were feeded to the net sequentially, and MSE was employed as loss func-
tion for the output valuemismatch. A fixed latency of 16 sampleswas then imposed between the
current output value and the desired output value, even tough some tests were also performed
decreasing this delay. A glimpse on the training status log in Matlab shell is shown in Fig. 5.7
for a simple [16, 100, 16] feedforward net, together with the overall utilization of the multicore
CERN machine on which the program was running. Indeed, the procedure is quite resource
intensive (even for a simple dataset) w.r.t. a standard ‘static’ dataset training of an ANN.

Figure 5.7: Server resource usage during SNNMatlab-based training. Thanks to the use of parallel
computing toolbox almost all cores of the employed machine are involved into calculations.

Actually, to limit the effects of the strong imbalance of the input, the following modification
was introduced on the classic mean square error, so to penalize the occurrence of false negatives:

ℒ = 1
2 (𝑦 − 𝑦̂)2 · (1 + 𝐾𝑦̂)

𝑑ℒ
𝑑𝑦 = (𝑦 − 𝑦̂) · (1 + 𝐾𝑦̂)

, where 𝐾 is the penalty term. (5.1)

Fig. 5.8 reports the trend of train loss, train accuracy and evaluation accuracy for a [16, 40, 32,
16] net when 1000 events are considered, having set 𝐾 = 9, meaning the error associated with
false negatives is 10 times grater than that of false positives. Even though the final accuracy is
nearly unitary, the actual F1-score⁴ on the predicted output is very low, since the network has the
tendency to “filter out” all input spikes if training is not stopped early enough, as the resulting
total error is in any case very small, and it difficult to direct gradient descent toward the absolute
minimum. As an alternative, the use of MSE applied to the spiking time difference w.r.t. the
expected output has also been tried, however no fundamental change was observed.

⁴The F1 measure for binary classification problems is given by 𝐹1 = 2 · 𝑃×𝑅𝑃+𝑅 , where 𝑃 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 is

the so-called precision, and 𝑅 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 is the recall.
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Figure 5.8: Learning curves for SNN filter training with Code 2.7. Note how training and eval-
uation losses follow the same trend, indicating that overfitting is not occurring until the last
minibatches.

5.4 PROPOSED APPROACH FOR SPURIOUS HITS FILTERING

Given the effectiveness of rate-based output codes methods for SNN training, as presented
in chapter 4, the same approach of counting the number of output spikes produced in a given
time lapse has also been applied to the muon hit filtering problem, with the aim of solving the
problem of total input cancellation. In order to do so, for each sample (16 channels × 16 instants)
the network outputs a positive prediction on one or more channels that have experienced the
passage of a muon. The prediction is ready after the last set of input stimuli has passed, i.e. at
the 16𝑡ℎ time step, as the output state of a channels is determined by comparing the spike count
with a given threshold (to be properly set after training).

From the machine-learning point of view, the problem has changed from a multi-class task
(as for the examples of chapter 4), to a multi-label classification problem. SNNTorch has been
used to adjust the previously developed training algorithm following the indications found in
[40]. As an additional step, the values to which the spike counters should be compared for each
output channels were defined based on the spikes produced on the test dataset: the compromise
best separating firing and non-firing cells was chosen. A relatively small net with structure [16,
20, 20, 16] has revealed sufficient for the task, gasping a testing accuracy of about 83%. This
value is not good enough to justify the use of such a complex network w.r.t. to other simpler
denoising algorithms, however further exploration of other architectures may yield better re-
sults. The practical advantage of using such a tiny deep SNN, is that the resulting filter circuit
fits inside the available FPGA.

Particular care was taken in the initialization of parameters before starting training. In fact,
the still very low input spikign activity does not allow the training to converge to the desired re-
sults. The main idea to overcome the sparsity of the input was that of allowing a non-negligible
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bias to be applied at each neuron summing node, instead of being initially set to zero⁵. In this
way the network is forced to into an ”awake” state featuring a mild neuronal activity: some
spikes are produced even without external simulation. An example of that is shown in Fig. 5.9,
which, in particular, details the evolution of the neurons’ membrane potentials. Note how a sud-
den drop in 𝑈[𝑡] indicates that a spike occurred in the interested neuron. If no hits arrive the
spike count at the output is too low to overcome the threshold to classify the channel as affected
by the impact of a muon. On the other hand, if some of the detectors fire, the evolution of the
network is perturbed and may increase or decrease the spiking count of some channels.

Figure 5.9: Membrane potential evolution for a [16, 64, 32, 16] net with bias accumulation effect.

From hardware perspective, in order to achieve online filtering aswith a single SNN,multiple
SNN-based classifiers are needed to operate in parallel, as depicted in Fig. 5.10. These networks
are identical in every aspect, and they are operated with on 𝑇𝐵𝑋 = 25 ns of difference w.r.t. the
adjacent one. The output of the filter is finally obtained by choosing the results of the compari-
son operations for the network that has concluded its execution, i.e. for which OUT_VALID = ‘1’
in that instant. This multiplexing action is needed so to ensure no incorrect partial results are
send to the output.

The total latency of the network, considering a 𝑓𝑐𝑙𝑘 = 240 MHz, is given by:

𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 16 ·𝑇𝐵𝑋+𝑇𝑛𝑒𝑡+𝑇𝑐𝑜𝑢𝑛𝑡+𝑇𝑐𝑜𝑚𝑝+𝑇𝑚𝑢𝑥 = (96+22+1+1+1) ·𝑇𝑐𝑙𝑘 = 121 ·𝑇𝑐𝑙𝑘 ≈ 20 ·𝑇𝐵𝑋 (5.2)

Resource utilization instead yields about: 53% of total LUTs, 19% of FFs, 16% of DSPs, 47%
of CARRY8 units and a negligible consume of LUTRAM and MUX7.

⁵which is the standard way of initializing biases, as stated in [25].
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Figure 5.10: Sketch of the structure of the online neural filter for drift tubes particle detectors.

5.5 ENHANCING RELIABILITY

Given the harsh working environment in which the just described system is to be operated,
a brief digression on a common technique employed in radiation-subject environments such as
CERN for limiting as much as possibile the appearance of soft errors when running a circuit
for data acquisition or process control is mandatory. If, in fact, the design is to be implemented
on the FPGAs mounted on the OBDTs, and not on those of the backend electronics, which are
located inside the counting room and experience much lower radiation levels, some kind of
mitigation for radiation-induced errors must be applied. The most straightforward approach
is employ triple modular redundancy (TMR). This technique simply consists in producing three
copies of the same entity and executing the same operation on each separate module in parallel,
evaluating thereafter the result by applying a majority voting operation on produced results. In
thisway, if a just one single event upset occurs the result of the operationwill be unaffected, while
at least two errors are needed to trigger a wrong result, as depicted in Fig. 5.11. Mathematically,
the probability of all three modules operate correctly is given by 𝑃3 = 𝑅3, while that of two
modules only operating correctly and one failing by 𝑃2 = 3 · 𝑅2 · (1−𝑅), where 𝑅 represents the
reliability of a single module. Thus, the reliability of the TMR system can be expressed as:

𝑅𝑇𝑀𝑅 = 𝑃(all 3 modules working) + 𝑃(2 modules only working) = 𝑅3 + 3𝑅2(1 − 𝑅) (5.3)

Expanding and simplifying, one finally gets:

𝑅𝑇𝑀𝑅 = 3𝑅2 − 2𝑅3 = 𝑅2(3 − 2𝑅) (5.4)
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This formula shows that the TMR system offers enhanced reliability compared to a single
module, as long as the base reliability 𝑅 is sufficiently high (𝑅 ≥ 1

2 ). By triplicating the critical
components and using majority voting, TMR effectively mitigates single-point failures, improv-
ing the overall system’s fault tolerance.

Figure 5.11: Triple Modular Redundancy working principle.

Moreover, thanks to the sparse nature of the network structure, an unwanted bit flip is likely
to occurr on one only of the many processing block, either in the memory storing the coefficients
or within the registers storing partial sums and accumulated potentials. The most tragic effect
could be related to 𝑈[𝑡] overflowing or simply passing the threshold, for which an unwanted
spike gets generated. If the number of spurious spike is contained, however, the influence of
the final result may not be so relevant, depending totally on the network parametrization. In
fact, SNNs have been suggested to be potentially less sensitive to radiation-induced soft errors
like bit flips and stuck-at-value errors compared to conventional ANNs⁶. This hypothesis stems
from the fact that SNNs operate on the principle of spiking activity and event-based processing,
which could potentially offer inherent fault tolerance properties. Since information is encoded in
the timing and frequency of spikes, rather than in continuous values of activations as in ANNs,
it may allow for more robustness against certain types of errors since individual spikes can carry
discrete and invariant information. Additionally, the asynchronous and event-driven nature of
SNNsmay help in localizing errors to specific spikes or synapseswithout affecting the entire net-
work. However, the entire working of the network may be compromised if the syncronization
between the various blocks is lacking. This depends on a few signals generated by one control
unit for each layer. If an error occurs at control unit level all the neurons of a given layer may fall
into an erroneous state. Therefore, if some kind of assurance is wanted without triplicating the
resource utilization of the design, a good compromise could be to just triplicate the CU of each
layer which could safeguard from fatal errors. The introduction of a majority voting operation
will indeed slightly increase the latency of the network.

If hardware resources are not of particular concern, the entire design could be triplicated,
in which case a fast approach to generate the new datastream for the FPGA could be to used
CERN’s TMRG toolset [18], which assists one in the process of creating digital designs immune
to single event upsets by exactly exploiting TMR.

⁶Relative to the topic, a report by NASA on radiation tolerance and mitigation for meuromorphic mrocessors is
available at [30].

67



6
ASIC realization

Once a satisfying version of the VHDL code describing the network has been produced and
meticulously tested, mapping the design to a given technology is a choice based purely onwhich
resources are available to the designer. Chapters 4-5 proposed some FPGA-based implementa-
tions of the spiking neural network model previously discussed in chapter 3. In the following
sections, the synthesis on Faraday’s standard cell libraries¹ based on UMC-130nm CMOS process
is going to be presented. A concise overview of the steps leading to the final realization of the
ASIC (Application Specific Integrated Circuit) layout of Fig. 6.6 will be drawn up as well, as the
various subtleties of the mapping process are addressed.

In order to implement the design, the following software tools have been employed:

• Synopsys VCS Compiler, used to analyze the design² entities and compile them (using the
vcs command, with all the desired options set) for further testing through the use of DVE
interface.

• Synopsys Design Compiler (DC), and specifically Design Vision, its graphical user interface,
utilized to re-analyze the code, elaborate the compiled RTL models and finally sythesize
the design using the aforementioned technological libraries. Several reports about the syn-
thesized design can be requested at this time, the content of which is discussed in Sec. 6.2.

• Cadence Innovus Implementation System, to finally transform the netlist obtained from DC
into the physical layout of the chip to be produced, taking care of components placement
and signal³ routing, as well as power routing. Several optimization runs were needed
in order to ensure signal and power integrity of the design, especially after the clock tree
synthesis.

¹The primitive cells of such library are reported in Appendix A.2.
²This is done by applying the vhdlan -vhdl08 command, followed by the list of the relative paths at which the various

entities of the design are placed, listed starting from the leaf modules and going up to the TOP one.
³In particular, clock signal routing, which is fundamental for the circuit to properly operate.
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6.1 PRELIMINARY STEPS

A first obstacle that was encountered when transporting the design files from Vivado to De-
sign Compiler is that the latter does not accept VHDL 2008 as language for its input files. Thus,
the code has been adapted so to maintain the same functionality while being totally written ac-
cording to VHDL ’93 fashion. DVE has then been used to re-check the behaviour of the HDL
code after the aforementioned modifications.

Nevertheless, it was fundamental to somehow include the IEEE.fixed_pkg library and all
its features for fixed point types handling, which are ubiquitous in the design and cannot there-
fore be easily substituted by signed types⁴. This was done through the inclusion of VHDL-2008
compatibility libraries, following the instructions reported in [36].
Apart from this aspect, some minor modifications were applied so to ensure no unconstrained
arrays were actually employed in the design. Practically, this meant that within the newly cre-
ated NETWORK_SYNTH entity, each layer needed to have its own data type collecting all the para-
meters of the enclosed neurons. Furthermore, PRESTO compiler used for standard cell mapping
did not support impure functions, such as the one reported in Code 6.1, which was used to read
the parameters from their correspondent files in the original design. Therefore, the second ap-
proach of Sec. 3.3 was employed to set the network coefficients, namely that of grouping them
together into a single array at layer level and then perform an assignment to a package-defined
constant.

1 impure funct ion init_ram_hex ( f i lename : s t r i ng ; ram_depth : na tura l ) re turn T_DATA i s
2 f i l e t e x t _ f i l e : t e x t open read_mode i s f i lename ;
3 var i ab l e t e x t _ l i n e : l i n e ;
4 var i ab l e temp : s td_ log i c_vec to r (N−1 downto 0) ;
5 var i ab l e ram_content : T_DATA(0 to ram_depth −1) ;
6 begin
7 fo r i in 0 to ram_depth − 1 loop
8 read l ine ( t e x t _ f i l e , t e x t _ l i n e ) ;
9 hread ( t e x t _ l i n e , temp ) ;

10 ram_content ( i ) := to_ s f i x ed ( temp , INT , −FRAC) ;
11 end loop ;
12

13 re turn ram_content ;
14 end funct ion ;

Code 6.1: Impure VHDL function used to read network coefficients from file.

In this way it was possible to synthesize a “test” network with structure [16, 40, 32, 16]. The
upper limit for timing closure for such a net was reached at 320 MHz, i.e. at a clock frequency
one third greater than its FPGA counterpart, for which the optimizer of Vivado was not able to
push synthesis to more than 240 MHz. Hereafter, the results of the implementation of the afore-
mentioned net realized with standard cells andmapped on an XCKU115-2FLVB2104E FPGA are
reported, where 𝑓𝑐𝑙𝑘 has been set to 240 MHz for both cases, in order to allow for a comparison
to be made between the two implementations. The circuit netlist obtained after synthesis will
then be used to generate the physical layout later discussed in Sec. 6.3.

⁴Which would also require the fractional point to be “manually” aligned during arithmetic operations.
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6.2 SYNTHESIS

After design compilation is terminated, the first thing to do is to control whether the synthe-
sized circuit is correct by launching the check_design command, and, if this is the case, the next
mandatory step is to ensure the timing for the given constraints on the clock signal frequency
and input/output delay is met. In digital circuits, in particular, the so-called “slack” refers to the
difference between the required time and the actual time taken for a signal to propagate from
one point to another within the circuit. Considering setup and hold time requirements, it can
be further divided into:

• 𝑆𝑒𝑡𝑢𝑝𝑠𝑙𝑎𝑐𝑘 = 𝑇𝑐𝑙𝑘 − 𝑡𝐶𝑄 − 𝑡𝑠𝑒𝑡𝑢𝑝 − 𝑡𝑝𝑟𝑜𝑝 , where 𝑡𝐶𝑄 is the time interval between the clock
edge and the moment the output of the FF can be considered stable and valid and 𝑡𝑝𝑟𝑜𝑝 is
the propagation delay of the combinational logic.

• 𝐻𝑜𝑙𝑑𝑠𝑙𝑎𝑐𝑘 = 𝑡𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑡ℎ𝑜𝑙𝑑, where 𝑡𝑎𝑐𝑡𝑢𝑎𝑙 is the actual duration the data remains stable after
the clock edge.

Positive slack means that the signal arrives earlier than required, which implies that there is a
safety margin in the timing. This is typically a desirable situation as it indicates that the circuit
can operate reliably within the specified timing parameters. Conversely, negative slack means
that the signal arrives later than required, indicating a timing violation. This is a critical issue as
it suggests that the circuit will not function correctly at the intended clock frequency, and cor-
rective measures must be taken, such as optimizing the design or reducing the clock speed. On
the other hand, zero slack means that the signal arrival time exactly matches the required time,
which is indicative of optimal timing but leaves no margin for variation or uncertainty, that may
be problematic in the subsequent place and route phase. The slack histogram for the design is
reported in Fig. 6.1, where no path yields a negative slack and therefore timing is met. The most
critical paths of the design are located at HIDDEN2/NEUR_10/MAC/ and, more specifically,
within the multiplier, adder and final register used for storing the value of the membrane po-
tential.

Figure 6.1: Slack histogram in Design Vision. Slack (on the 𝑥-axis) is reported in 𝑛s.
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The report_timing command also precisely lists which kind of standard cells are critical,
uponwhich the following are found: MAC_38_DW02_mult_0_DW02_mult_37, FA1DHD, XOR2
EHD, MAC_38_DW01_add_5, AO12EHD and many others.

The report on the circuit area is shown in Tab. 6.1. About 70% of the total area is occupied
by combinational logic, whereas 29.7% by sequential elements and only the remaining 0.3% for
buffer⁵/inverter area for signal distribution across the various blocks of the design. From the
total area it is possible to estimate the actual size of the final chip: considering that a core uti-
lization factor of 0.7 has been used, the side length of the square silicon die of Sec. 6.3 for the

SNN is found to be 𝑙 ≈
√

4.86 𝑚𝑚2

0.7 = 2.635 𝑚𝑚.

Metric Value
Number of ports 413269
Number of nets 802674
Number of cells 339774
Number of combinational cells 277337
Number of sequential cells 56239
Number of buf/inv 29931
Number of references 4
Combinational area 3414187.5 𝜇𝑚2

Buf/Inv area 127847.7 𝜇𝑚2

Noncombinational area 1445479.7 𝜇𝑚2

Total cell area 4859667.2 𝜇𝑚2

Table 6.1: Area report of SNN ASIC.

A brief report of SNN power consumption are reported in Tab. 6.2. The total dynamic power
is found to be 𝑃𝑑𝑦𝑛 = 1

2
∑
𝑖 𝛼𝑖𝐶𝐿,𝑖𝑉

2
𝑑𝑑 𝑓𝑐𝑙𝑘 ≈ 192 mW, which is dissipated for the most part within

the clock networks inside the cells. Since the operating voltage is fixed by technological specs
to 1.2 V, and the logical activity 𝛼 and capacitance 𝐶𝐿 of a given node are dependent on the
circuit structure, the primary way to diminish power consumption is to simply reduce the clock
frequency, if at all possible. To improve the energy consumed by the circuit, clock gating could
also be employed, which involves selectively turning off the power supply to certain portions
of a circuit when they are not in use, thereby reducing leakage power. This could be beneficial
since the SNN may remain inactive for relatively long periods of time.

Metric Value
Global Operating Voltage 1.2 V
Cell Internal Power 187.8006 mW (98%)
Net Switching Power 4.7302 mW (2%)
Total Dynamic Power 192.5308 mW (100%)
Cell Leakage Power 1.5928 mW

Table 6.2: Power report summary.

⁵Buffers are used to strengthen signals, drive large loads, or restore signal integrity over long interconnects. They
do not change the logic value but provide amplification or isolation.
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The fundamental processing blocks employed by XCKU115-2FLVB2104E FPGA for the exact
same circuit are reported in Fig. 6.3. Clearly, a DSP slice is used to perform themultiplication in-
side theMAC entity of every neuron, as confirmed by the fact that a total of 𝑛 = 40+32+16 = 88
neurons are present in the sample net. A great number of flip flops is then used, but FPGAs have
plenty of them, so this is not likely to present an issue even for a growing number of nodes. More
critical is instead the usage of lookup tables, which are needed to implement combinational logic
for arithmetic operations and are used as memory for the various coefficients. A careful look
at Fig. 6.2, showing directly Vivado’s utilization report, better details the blocks usage following
the design hierarchy: apart the single DSP per neuron, the number of CLB LUTs and F7 muxes,
mainly related to the W_MASK block, registers, and CARRY8 (employed in ADDER and MAC) has
been optimized w.r.t. the actual value of the parameters.
Finally, input and output pins are simply physically limited to a given amount: if the design
requires more than the available ones, it will need to be incapsulated into some kind of “wrap-
per” entity that has to take care of demultiplexing the inputs and, conversely, multiplexing the
outputs of the design. An ASIC does not suffer from such a limitation in priciple, even though
an increased pin count is likely to increase routing congestion and might therefore decrease the
chance of meeting timing requirements under the same constraints.

Resource type Used Available Utilization [%]
LUT 48293 663360 7.28
FF 35437 1326720 2.67
DSP 88 5520 1.59
IO 39 702 5.56

Table 6.3: Resource employed by FPGA-based SNN.

Figure 6.2: Extensive XCKU115-2FLVB2104E FPGA utilization report for a [16, 40, 32, 16] SNN.

An overview of power consumption for the FPGA-based design is also reported in Fig. 6.3.
The absorbed current is split between the 3.342 A of the 0.95 V rail of internal processing blocks
and an additional 237 mA for the auxiliary 1.8 V rail. Almost the same amount of static power
is consumed by both supply rails, namely 𝑃𝑠𝑡𝑎𝑡 ≈ 430 mW, while the remaining part is due to
internal nodes switching activity. Note, finally, how a non-negligible amount of power is lost
on clock signal distribution and how DSPs, even if present in the lowest amount, are efficiently
performing a complex operation as the product between two 16-bit values is.
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Figure 6.3: FPGA-based SNN power consumption.

Evidently, a great saving of power is accomplished by using a custom ASIC architecture. In
fact, FPGA power consumption is generally greater due to several inherent design factors:

• the additional logic and interconnects necessary to allow deisgn flexibility, that lead to
increased switching activity and interconnect overhead;

• the presence of programmable resources, such as LUTs and configuration memory, that
further elevate base-level losses.

Additionally, while both options can make use of advanced process technologies, and in this
case the FPGA is favoured with its 20 nmminimum feature size, ASICs still benefit from specific
low-power optimizations performed during standard cells design phase, which inevitably result
in 20 times lower power consumption.

6.3 PHYSICAL DESIGN

The ultimate jump to the lowest possible level of abstraction occurs by transforming the gate-
level netlist obtained at the end of synthesis phase into a geometrical description of the physically
placed transistors, called layout. Precisely, physical design consists of the following steps:

1. Floor planning, defining the available silicon area, divided between core and boundary
area (for I/O pads), fixed to 10 𝜇m for each side, and creating tracks for cell placement.

2. Design partitioning, i.e. the act of subdiving complex circuits into their fundamental
blocks, with the aim of minimizing the required interconnects and the associated delay.

3. Power planning, in which rings of large metal interconnections⁶ surrounding the core and
the main individual blocks are placed, together with stripes of metal connections running
horizontally and vertically so to form a grid prodiving power to all the design elements.

4. Cell placement, i.e. defining the (𝑥, 𝑦) coordinates of each standard cell, which also adjusts
floor and power planning so to fit timing requirements. The so-called “amoeba” view from
Innovus is reported in Fig. 6.4, which shows which parts of the die have been assigned to
each of the entities instantiated inside the TOP file i.e. NETWORK_SYNTH. In FPGAs,

⁶At least two levels of metal have to be used, one for VDD and one for GND.
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instead, placement requires allocating each programmable cell to a logic block (e.g. CLB,
FDRE, MUX7, etc.) and define the content of its configuration memory. This information
will be encoded inside the bitstream generated by Vivado for FPGA programming.

Figure 6.4: Physical repartition of chip area between the layers of the network.

5. Clock tree synthesis (CTS), generating the distribution network of the clock signal, consti-
tuted by metal interconnections and buffers. Different approaches may be used to ensure
the skew of CLK between different part of the circuit remains within acceptable limits. The
resulting path slack histogram after CTS is reported in Fig. 6.5. Sincemany negative slacks
were present, several optimization rounds have been launched before passing to the next
step, until timing was met with a discrete margin.

6. Routing, initially performed at a global level for outlining an approximate route for each
net, and then in a more detailed manner to the actual geometric layout of the regions. In
this phase, physically near blocks may be compacted together to decrease the overall area
of the chip.

Figure 6.5: Path slack historam after clock tree synthesis.
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7. Design-for-Manufacturability (DFM) enhancements for improving the yield of the fabrica-
tion process, e.g. the addition of inactive metal segments⁷, used to minimize the variations
of metal layers thickness, which could be responsible for parasitic capacitance change and
ultimately timing inconsistencies.

8. Physical verification, which is subdivided between design rules checking (DRC), looking
for any violations of rules such as minimum spacing/width/enclosure, min/max area,
antenna violations, and other geometrical rules to which the mask for photolithography
should stick to, and layout-vs-schematic (LVS), which extracts an equivalent netlist from the
layout and compares it with the gate-level netlists originally generated by the logic syn-
thesis step.

Fig. 6.6 shows a picture of the resulting layout after all the aforementioned steps have been
performed, plus multiple post-route optimization runs. Different colours are used for the eight
metal layers of the UMC 130 nm process. The pins found on the sides of the chip are equally
spaced and placed simmetrically w.r.t. its centre: their position must be defined in a .io file
according to a specific syntax.

Figure 6.6: Final layout of [16, 40, 32, 16] SNN with 1𝑠𝑡 order reset-by-subtraction LIF neurons.
The 16 input pins are located on the top side, while the output pins reside on the lower one. On
the left, instead, the RESET, CLK and IN_VALID pins can be found, whereas the OUT_VALID
pin is placed on the right. Chip side length is about 2.6 mm.

⁷called metal fill patterns.
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The average amount of power consumed by the final circuit is two and a half times greater
w.r.t. the one obtained in Sec. 6.2, as reported in Fig. 6.7, but still way smaller than that of the
FPGA-based SNN. There are several reason for this fact:

• During logical synthesis, the power estimation does not accurately account for the addi-
tional capacitance due to the interconnections between various components. After place
and route, instead, the actual physical layout is known, and the power consumption due
to the wiring (especially for long lines) can be substantial.

• The proximity and placement of cells can affect leakage currents, and the physical dis-
tances betweenwires can lead to crosstalk and subsequently higher coupling capacitances.
Moreover, IR voltage drop due to resistive paths in power delivery networks might not be
fully estimated during logical synthesis, further increasing the total leakage current. The
power analysis tool of Innovus allows one to find out how relevant the impact of this phe-
nomenon is and also to seek where there excessive power dissipation is likely to cause
electromigration.

• More clock buffers and inverters may be needed to meet timing requirements (and also for
CTS), adding to the overall dynamic and leakage power consumption.

• Place and route might introduce logic duplication, retiming, or pipelining to meet timing,
which can increase the overall switching activity and thus power consumption. Changes
made to fix DRC or LVS errors can introduce additional elements as well, affecting power
dissipation.

Figure 6.7: Power report of the final layout for the SNN ASIC.

For comparison, the place and route of the same SNN implemented on theXCKU115-2FLVB2-
104E FPGA is shown in Fig. 6.8. Here, in accordance with Tab. 6.3, a small portion of the device
overall area is occupied for the 88 neuron operation. Only one of the two Super Logic Regions
(SLR) is involved, and among that only some of the XY resource slices are used⁸. Furthermore,
a zoomed view showing the fundamental cells of both implementation is reported in Fig. 6.9.
While on the ASIC the blocks are closely packed and interconnections are distributed all around,
connections between different block in FPGAs are constrained by switchboxes, namely a grid of

⁸And they are only used partially, as well, since this is the configuration providing better timing closure.
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programmable switches that link various input and output lines, with their configuration be-
ing part of the bitstream loaded onto the FPGA. Different topologies, such as full crossbar or
diagonal, offer various trade-offs in terms of area, delay, and flexibility, ultimately affecting the
routing efficiency and ease of implementation within the FPGA.

Fig. 6.9-(b) also depicts a SLICEM (Slice with Memory) block, which not only supports basic
logic functions but also includes additional capabilities for memory and arithmetic operations.
In fact, each SLICEM consists of several Lookup Tables (LUTs) that can be configured as either
logic resources or compact distributed RAMs. Knowing all of this, it results clear why a greater
amount of power is consumed by the FPGA whatsoever the design to be implemented: due to
the fixed resource overhead allowing a general block to be realized!

Figure 6.8: Physical view of the circuit realized employing the FPGA of KCU1500 board. The
elementary processing blocks are drawn in blue, while the green lines show the interconnetions.

(a) ASIC layout showing standard cells (with
their names) and power grids (thicker lines).

(b) SLICEM configurable logic block (on the left) and
switchbox (on the right).

Figure 6.9: Close-up look at SNN circuit realizations.
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7
Conclusions and Outlook

This work has just scratched the surface of the emerging topic of SNNs, showing one ofmany
possible architectures and hardware implementations for emulating the spiking nature of neu-
ronal dynamics. Nonetheless, it fulfilled the main objective of the thesis, i.e. demonstrating the
feasibility of transporting SNNs, which enjoy full support of many software tools, to low latency
devices, potentially pushing the use of this kind of neural networks towards more demanding
environments, such as that of DAQ and triggering for particle Physics experiments, in which the
timescale of the relevant information to be detected is comparable with the internal operating
period of the involved devices. Moreover, implementation results reveal how the actual foot-
print of a SNN even of considerable dimensions is not critical on XCKU115-2FLVB2104E FPGA.
For growing number of nodes an analysis should be assessed to understand of howmuch quan-
tization can be tolerated for physically representing the neurons’ coefficents, in order to find the
best compromise between fidelity in network behaviour (w.r.t. the Matlab/Python golden refer-
ence model), resources utilization¹ and maximum operating frequency.

Further points for future investigations could be:

• Performance comparison betweenANN-converted nets and BPTT-trained SNNs, given the
same data encoding, operating conditions and amount of allocated physical resources on
the target device. A first study case could be the net proposed in [22], and available at [23].

• Exploration of higher-order LIF neuron models and recurrent SNNs architectures both
from the training side, which may require writing some custom code, and from the evalu-
ation side, exploiting the general IIR implementation cited in Sec. 3.1.2.

• Employment of quantization aware training, also exploring alternative frameworks to SNN
Torch, so to verify whether an effective network could be realized also at lower numeric

¹Some resources must be allocated as well for “secondary” but absolutely necessary blocks, such as the IP cores
taking care of data exchange between the target hardware device and an host machine, as discussed in chapter 4.
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precision (and, in turn, minor resource utilization).

• In case any the previous point succeeds in enhancing the classification accuracy of the
muon hit filter, it could be of interest to recast the design implementation on the Ultrascale
FPGA mounted on the OBDT board introduced in Sec. 5.1. Moreover, the extension to
blocks of cells spanning over two or more DT superlayers could be explored so to limit the
effect of the chamber’s ageing and still achieve a good detection efficiency. In this case,
though, the target FPGA is the Ultrascale used in the backend electronics², since an OBDT
only “covers” a single superlayer. Additional effort is likely to be put into network training
phase (i.e. defining architecture, setting initial parameters values, etc.), as the extended
event view is even sparser than for a block of cells inside a single superlayer.

• Combining hardware inference performed on FPGAwith backprogation phase in software
so to speed up SNN training. This last point could be particularly interesting as the quan-
tization of network inference is not simulated by clipping the values on higher resolution
variables, but is truly carried out also for the various arithmetic operations.

²Refer to Fig. 5.3.
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A.1 HARDWARE RESOURCES OF KCU1500 BOARD

The KCU1500 development board, designed around the Xilinx Kintex UltraScale XCKU115-
2FLVB2104E FPGA, provides a broad array of hardware resources optimized for advanced digi-
tal design applications. The FPGA consists of key elements, including configurable logic blocks
(CLBs), dedicated hardware multipliers, and an extensive assortment of I/O pins, which collec-
tively enable the implementation of highly complex digital circuits. A detailed overview of the
primary hardware resources is provided in Table A.1.

Resource Type Quantity Description
CLBs 663360 Each CLB is made up of 8 LUTs and 16 flip-flops.

LUTs 530000

Serving as the primary method for implementing
combinational logic. Each LUT can be configured
as either a 6-input single-output LUT or two
5-input single-output LUTs.

Flip-Flops 1327680 Implementing sequential logic and state machines.

Block RAM 75.9 Mb
Including 36 Kb dual-port memory blocks, suitable
for implementing efficiently large memory arrays
and FIFOs.

DSP Slices 5520
Each DSP is equipped with a 27x18 multiplier,
adder, and pre-adder, which are essential for
high-speed arithmetic operations.

I/O Pins 676
Facilitating extensive external interfacing, which is
critical for connecting the FPGA to other hardware
components and peripherals.

GTY Transceivers 32
Supporting data rates up to 32.75 Gbps, enabling
high-speed serial communication for applications
such as PCIe Gen3/Gen4, and 100G Ethernet.

Clock Management
MMCM and PLL blocks supporting flexible clock
generation and distribution for rigorous timing
requirements within the FPGA.

Table A.1: Primary hardware resources of the UltraScale XCKU115-2FLVB2104E FPGA.

In addition to the FPGA resources, KCU1500 offers a set of ancillary hardware resources
designed to enhance system integration and maximize performance, such as a PCI Express
(PCIe) Gen3 x16 interface that provides a high-bandwidth pathway for data exchange between
the FPGA and host systems, supporting up to 128 Gbps aggregate bandwidth. The board also
features 8 GB of DDR4 SDRAM connected through a 64-bit bus for ample storage and fast ac-
cess, and a QSPI flash for FPGA bitstream storage and configuration, ensuring reliable startup.
Networking capabilities are then enhanced by 1 and 10 gigabit Ethernet (GbE) ports with ded-
icated MAC and PHY layers for robust and low-latency communication. For high-speed I/O,
the KCU1500 includes SMA connectors for applications requiring precise timing and high band-
width. USB interfaces include USB 3.0 and 2.0, supporting versatile communication pathways
for configuration, debugging, and data transfer, with USB 3.0 supporting speeds up to 5 Gbps.
The board’s clocking resources feature programmable oscillators and PLLs for versatile clock
management, with multiple clock inputs and outputs. Power management includes multiple
voltage regulators and monitoring systems for stable power delivery. Debugging and monitor-
ing are facilitated through an integrated JTAG interface, onboard LEDs, push-buttons, and DIP
switches, providing ease of development, troubleshooting, and real-time monitoring.
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A.2 STANDARD CELLS OF FARADAY 130NM TECHNOLOGICAL LIBRARY

The Faraday 130nm technological library is built on a robust process technology that offers
a balanced combination of performance, power efficiency, and cost-effectiveness. The process
utilizes advanced doping techniques to optimize the electrical characteristics of transistors, in-
cluding precise control over channel doping to achieve desired threshold voltages andminimize
leakage currents. Furthermore, the process supports up to 7 layers of metal interconnects, pro-
viding the necessary routing capabilities for complex integrated circuits. The metal layers are
composed of aluminum or copper, with the top layers generally reserved for power and ground
distribution to minimize resistive losses.

Table A.2: Main types of standard cells in the Faraday UMC-130nm technological library

Cell Category Description
Logic Gates The library includes a variety of logic gates such as AND, OR,

NAND, NOR, XOR, and XNOR gates. Specific examples include
2-input AND (AND2), 6-input AND (AND6), 2-input OR (OR2),
and 3-input XOR (XOR3). These gates are available in multiple
drive strengths to accommodate different load conditions and
performance requirements.

Flip-Flops and Latches A range of flip-flops and latches are provided, including D flip-
flops like FD1S, JK flip-flops like FJK1, and SR latches. Both edge-
triggered and level-sensitive varieties are included. These cells
are crucial for constructing sequential logic circuits and storing
state information within digital systems.

Buffers and Inverters The library offers multiple types of buffers and inverters such as
INV, BUFX2, and IB1, necessary for signal buffering, propagation
delay control, and logic level inversion. These cells are available
in various drive strengths to ensure signal integrity across differ-
ent stages of the circuit.

Adders and Arithmetic
Units

Arithmetic functions are supported by cells such as half-adders
(HA1), full-adders (FA1), and more complex units like 4-bit Rip-
ple Carry Adder (RCA4) and 16-bit Multiplier (MULT16). These
cells are essential for performing arithmetic operations in digital
systems.

Multiplexers and
Demul-tiplexers

Multiplexers (MUX) like MUX2x1 and demultiplexers (DEMUX)
such as DEMUX1x2 are available to facilitate the selection and
routing of data within a circuit. These cells support configurable
data paths and are fundamental in designing efficient data control
mechanisms.

Decoders and Encoders The library includes decoders such as DEC2x4 for converting en-
coded data into a specific format and encoders like ENC8x3 for
the opposite function. These cells are vital in addressing mem-
ory and implementing control logic.

Special Function Cells Special function cells include clock gating cells (CG1), power
management cells (PM1), and scan cells (SCAN_FF) for design-
for-test (DFT) purposes. These cells enhance power efficiency, en-
able clock domain crossing, and facilitate testing and verification
of the circuitry.

The gate oxide thickness is approximately 2.1 nm, which ensures reliable transistor operation
whilemaintaining control over short-channel effects. Theminimum feature size of 130nmallows
for the fabrication of transistors with sufficient drive strength while maintaining good yields,
and the typical operating voltage for circuits designed in this process technology is 1.2V, with
options for lower voltage operation to reduce power consumption.
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A.3 VHDL TESTBENCH FOR GENERIC TIMESERIES DATASET

1 en t i t y NETWORK_tb i s
2 end NETWORK_tb ;
3

4 a r ch i t e c t u r e BHV of TB_NETWORK i s
5 constant N_INPUT : in t ege r := 8 ; constant T_CLK : time := 10 ns ; constant T_LATENCY:

in t ege r := 4 ;
6

7 s igna l CLK, RESET , IN_VALID , OUT_VALID: s td_ log i c := ’ 0 ’ ;
8 s igna l SPIKE_IN : s td_ log i c_vec to r (0 to N_INPUT−1) := ( o thers => ’ 0 ’ ) ;
9 s igna l SPIKE_OUT_VEC : s td_ log i c_vec to r (0 to N_INPUT−1) ;

10

11 component NETWORK i s
12 port (CLK : in s td_ log i c ;
13 RESET : in s td_ log i c ;
14 SPIKE_IN : in s td_ log i c _vec to r (0 to N_INPUT−1) ;
15 IN_VALID : in s td_ log i c ;
16 SPIKE_OUT_VEC : out s td_ log i c _vec to r (0 to N_INPUT−1) ;
17 OUT_VALID : out s td_ log i c ) ;
18 end component ;
19

20 begin
21

22 DUT: NETWORK
23 port map (CLK => CLK,
24 RESET => RESET ,
25 SPIKE_IN => SPIKE_IN ,
26 IN_VALID => IN_VALID ,
27 SPIKE_OUT_VEC=> SPIKE_OUT_VEC ,
28 OUT_VALID => OUT_VALID) ;
29

30 P : process
31 begin
32 while t rue loop
33 CLK <= ’ 0 ’ ; wait fo r T_CLK/2; CLK <= ’ 1 ’ ; wait fo r T_CLK/2;
34 end loop ;
35 wait ;
36 end process ;
37

38 P_IN : process
39 begin
40 −− I n i t i a l i z e S igna l s
41 RESET <= ’ 1 ’ ; wait fo r 20 ns ; −− Wait fo r g loba l r e s e t to f i n i s h
42 RESET <= ’ 0 ’ ; SPIKE_IN <= ( others => ’ 0 ’ ) ;
43 IN_VALID <= ’ 0 ’ ;
44

45 wait fo r T_CLK∗5 ; −− Wait a few clock cyc l e s
46

47 −− Submit SPIKE_IN samples every T_LATENCY clock periods
48 fo r i in 0 to 15 loop
49 SPIKE_IN <= data ( i ) ; −− Ret r iev ing proper st imulus from package−defined constant .
50 IN_VALID <= ’ 1 ’ ; wait fo r T_CLK ;
51 IN_VALID <= ’ 0 ’ ; −− s t a r t s data process ing
52 wait fo r (T_LATENCY − 1) ∗ T_CLK ; −− Wait fo r T_LATENCY−1 Tclk
53 end loop ;
54

55 wait ;
56 end process ;
57

58 end BHV;
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A.4 BASH SCRIPT FOR AXI LITE REGISTERS READ/WRITE

1 # !/ bin/bash
2

3 # Function to wri te to an AXI L i t e r e g i s t e r and ve r i f y the wri te
4 # Arguments :
5 # 1 − Address of the AXI L i t e r e g i s t e r
6 # 2 − Value to wri te to the r e g i s t e r
7 wr i t e _ and_ve r i f y _ ax i _ l i t e _ r eg i s t e r ( ) {
8 l o c a l address=$1
9 l o c a l value=$2

10

11 # Use devmem to wri te the value to the address
12 echo ”Writing value 0x$ ( p r i n t f ’%08X’ $value ) to AXI L i t e r e g i s t e r a t address 0x$ ( p r i n t f ’%08X’

$address ) ”
13 devmem $address 32 $value
14

15 # Read back the value
16 read_value=$ (devmem $address 32)
17 echo ”Read back value 0x$ ( p r i n t f ’%08X’ $read_value ) from address 0x$ ( p r i n t f ’%08X’ $address ) ”
18

19 # Check i f the read back value i s the same as the wri t ten value
20 i f [ [ $read_value −eq $value ] ] ; then
21 echo ” Ve r i f i c a t i o n succe s s fu l : Value a t address 0x$ ( p r i n t f ’%08X’ $address ) i s 0x$ ( p r i n t f

’%08X’ $read_value ) ”
22 e l s e
23 echo ” Ve r i f i c a t i o n f a i l e d : Expected 0x$ ( p r i n t f ’%08X’ $value ) but read 0x$ ( p r i n t f ’%08X’

$read_value ) ”
24 e x i t 1
25 f i
26 }
27

28 # Example of s c r i p t usage :
29 # Define the base address of your AXI L i t e i n t e r f a c e
30 AXI_LITE_BASE_ADDR=0x400
31

32 # Define the address o f f s e t s of the r e g i s t e r s
33 REGISTER_0_OFFSET=0x00
34 REGISTER_1_OFFSET=0x04
35

36 # Define the values to wri te to the r e g i s t e r s
37 VALUE_0=0x12345678
38 VALUE_1=0x9abcdef0
39

40 # Write to the r e g i s t e r s and ve r i f y
41 wr i t e _ and_ve r i f y _ ax i _ l i t e _ r eg i s t e r $ ( (AXI_LITE_BASE_ADDR + REGISTER_0_OFFSET ) ) $VALUE_0
42 wr i t e _ and_ve r i f y _ ax i _ l i t e _ r eg i s t e r $ ( (AXI_LITE_BASE_ADDR + REGISTER_1_OFFSET ) ) $VALUE_1
43

44 echo ”AXI L i t e r e g i s t e r wri te and v e r i f i c a t i o n completed . ”

84



References

[1] Ray Andraka. “A survey of CORDIC algorithms for FPGA based computers”. In: Proceed-
ings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Ar-
rays. FPGA ’98. Monterey, California, USA: Association for Computing Machinery, 1998,
pp. 191–200. ISBN: 0897919785. DOI: 10.1145/275107.275139. URL: https://doi.org/10.
1145/275107.275139.

[2] DanielAuge et al. “A survey of encoding techniques for signal processing in spiking neural
networks”. In: Neural processing letters/Neural Processing Letters 53.6 (July 2021), pp. 4693–
4710. DOI: 10.1007/s11063-021-10562-2. URL: https://doi.org/10.1007/s11063-021-
10562-2.

[3] Dennis Bäßler, Tobias Kortus, andGabriele Gühring. “Unsupervised anomaly detection in
multivariate time series with online evolving spiking neural networks”. In: Machine Learn-
ing 111.4 (Apr. 2022), pp. 1377–1408. ISSN: 1573-0565. DOI: 10.1007/s10994-022-06129-4.
URL: https://doi.org/10.1007/s10994-022-06129-4.

[4] M. Bellato et al. “Radiation hardness and quality validation of the on-detector electron-
ics for the CMS Drift Tubes upgrade”. In: Journal of Instrumentation 19.06 (June 2024),
p. C06001. DOI: 10.1088/1748-0221/19/06/C06001. URL: https://dx.doi.org/10.
1088/1748-0221/19/06/C06001.

[5] DavidBishop. Fixed Point Package User’s Guide by David Bishop (dbishop@vhdl.org). URL: https:
//freemodelfoundry.com/fphdl/Fixed_ug.pdf.

[6] Tong Bu et al. Optimal ANN-SNN Conversion for High-accuracy and Ultra-low-latency Spiking
Neural Networks. 2023. arXiv: 2303.04347 [cs.NE].

[7] Benjamin Cramer et al. “The Heidelberg Spiking Data Sets for the Systematic Evaluation
of SpikingNeural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems
33.7 (2022), pp. 2744–2757. DOI: 10.1109/TNNLS.2020.3044364.

[8] Jason K. Eshraghian et al. Navigating Local Minima in Quantized Spiking Neural Networks.
2022. arXiv: 2202.07221.

[9] Jason K. Eshraghian et al. “Training Spiking Neural Networks Using Lessons From Deep
Learning”. In: Proceedings of the IEEE 111.9 (2023), pp. 1016–1054. DOI: 10.1109/JPROC.
2023.3308088.

85

https://doi.org/10.1145/275107.275139
https://doi.org/10.1145/275107.275139
https://doi.org/10.1145/275107.275139
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s11063-021-10562-2
https://doi.org/10.1007/s10994-022-06129-4
https://doi.org/10.1007/s10994-022-06129-4
https://doi.org/10.1088/1748-0221/19/06/C06001
https://dx.doi.org/10.1088/1748-0221/19/06/C06001
https://dx.doi.org/10.1088/1748-0221/19/06/C06001
https://freemodelfoundry.com/fphdl/Fixed_ug.pdf
https://freemodelfoundry.com/fphdl/Fixed_ug.pdf
https://arxiv.org/abs/2303.04347
https://doi.org/10.1109/TNNLS.2020.3044364
https://arxiv.org/abs/2202.07221
https://doi.org/10.1109/JPROC.2023.3308088
https://doi.org/10.1109/JPROC.2023.3308088


REFERENCES

[10] Kazuhisa Fujita. “Spatial Feature Extraction by Spike Timing Dependent Synaptic Modi-
fication”. In: Neural Information Processing. Theory and Algorithms. Ed. by Kok Wai Wong,
B. Sumudu U. Mendis, and Abdesselam Bouzerdoum. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 148–154. ISBN: 978-3-642-17537-4.

[11] Yue Gao, Weiqiang Liu, and Fabrizio Lombardi. “Design and Implementation of an Ap-
proximate Softmax Layer for Deep Neural Networks”. In: 2020 IEEE International Sympo-
sium on Circuits and Systems (ISCAS). 2020, pp. 1–5. DOI: 10.1109/ISCAS45731.2020.
9180870.

[12] F. Gasparini et al. “Bunch crossing identification at LHC using a mean-timer technique”.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 336.1 (1993), pp. 91–97. ISSN: 0168-9002. DOI: https://
doi.org/10.1016/0168-9002(93)91082-X. URL: https://www.sciencedirect.com/
science/article/pii/016890029391082X.

[13] Wenzhe Guo et al. “Neural Coding in Spiking Neural Networks: A Comparative Study for
Robust Neuromorphic Systems”. In: Frontiers in Neuroscience 15 (2021). ISSN: 1662-453X.
DOI: 10.3389/fnins.2021.638474. URL: https://www.frontiersin.org/journals/
neuroscience/articles/10.3389/fnins.2021.638474.

[14] IlyassHammouamri, Ismail Khalfaoui-Hassani, and TimothéeMasquelier. Learning Delays
in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings. 2023. arXiv:
2306.17670 [cs.NE].

[15] Ilyass Hammouamri, Ismail Khalfaoui-Hassani, and Timothée Masquelier. “Learning De-
lays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings”.
In: The Twelfth International Conference on Learning Representations. 2024. URL: https : / /
openreview.net/forum?id=4r2ybzJnmN.

[16] JohannHuber. “Batch normalization in 3 levels of understanding - Towards Data Science”.
In: (Jan. 2023). URL: https://towardsdatascience.com/batch-normalization-in-3-
levels-of-understanding-14c2da90a338.

[17] Jonas Julian Jensen. 8 ways to create a shift register in VHDL. July 2023. URL: https : / /
vhdlwhiz.com/shift-register/.

[18] S. Kulis. “Single Event Effects mitigation with TMRG tool”. In: Journal of Instrumentation
12.01 (2017), p. C01082. URL: http://stacks.iop.org/1748-0221/12/i=01/a=C01082.

[19] Robert Legenstein, Christian Naeger, and Wolfgang Maass. “What Can a Neuron Learn
with Spike-Timing-Dependent Plasticity?” In:Neural Computation 17.11 (Nov. 2005), pp. 2337–
2382. ISSN: 0899-7667. DOI: 10.1162/0899766054796888. eprint: https://direct.mit.
edu/neco/article- pdf/17/11/2337/816258/0899766054796888.pdf. URL: https:
//doi.org/10.1162/0899766054796888.

[20] Edgar Lemaire et al. “An Analytical Estimation of Spiking Neural Networks Energy Ef-
ficiency”. In: Lecture Notes in Computer Science. Springer International Publishing, 2023,
pp. 574–587. ISBN: 9783031301056. DOI: 10.1007/978-3-031-30105-6_48. URL: http:
//dx.doi.org/10.1007/978-3-031-30105-6_48.

86

https://doi.org/10.1109/ISCAS45731.2020.9180870
https://doi.org/10.1109/ISCAS45731.2020.9180870
https://doi.org/https://doi.org/10.1016/0168-9002(93)91082-X
https://doi.org/https://doi.org/10.1016/0168-9002(93)91082-X
https://www.sciencedirect.com/science/article/pii/016890029391082X
https://www.sciencedirect.com/science/article/pii/016890029391082X
https://doi.org/10.3389/fnins.2021.638474
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.638474
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.638474
https://arxiv.org/abs/2306.17670
https://openreview.net/forum?id=4r2ybzJnmN
https://openreview.net/forum?id=4r2ybzJnmN
https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338
https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338
https://vhdlwhiz.com/shift-register/
https://vhdlwhiz.com/shift-register/
http://stacks.iop.org/1748-0221/12/i=01/a=C01082
https://doi.org/10.1162/0899766054796888
https://direct.mit.edu/neco/article-pdf/17/11/2337/816258/0899766054796888.pdf
https://direct.mit.edu/neco/article-pdf/17/11/2337/816258/0899766054796888.pdf
https://doi.org/10.1162/0899766054796888
https://doi.org/10.1162/0899766054796888
https://doi.org/10.1007/978-3-031-30105-6_48
http://dx.doi.org/10.1007/978-3-031-30105-6_48
http://dx.doi.org/10.1007/978-3-031-30105-6_48


REFERENCES

[21] Cuixia Li et al. “IC-SNN: Optimal ANN2SNN Conversion at Low Latency”. In: Mathemat-
ics 11.1 (2023). ISSN: 2227-7390. DOI: 10.3390/math11010058. URL: https://www.mdpi.
com/2227-7390/11/1/58.

[22] M. Migliorini et al. “Muon trigger with fast Neural Networks on FPGA, a demonstrator”.
In: Journal of Physics: Conference Series 2374.1 (Nov. 2022), p. 012099. ISSN: 1742-6596. DOI:
10.1088/1742- 6596/2374/1/012099. URL: http://dx.doi.org/10.1088/1742-
6596/2374/1/012099.

[23] Mmiglio. GitHub - 40MHz/SmallModelFirmware. URL: https://github.com/40MHz/Small%
20ModelFirmware.

[24] Muon Drift Tubes | CMS Experiment. May 2024. URL: https : / / cms . cern / detector /
detecting-muons/muon-drift-tubes.

[25] MichaelA.Nielsen.Neural Networks and Deep Learning. 2018. URL: http://neuralnetworks%
20anddeeplearning.com/.

[26] A. Rushton and an O’Reilly Media Company Safari. Vhdl for Logic Synthesis, Third Edition.
John Wiley & Sons, 2011. URL: https://books.google.it/books?id=yRU_zQEACAAJ.

[27] Sai Sanjeet et al. “IIR Filter-Based Spiking Neural Network”. In: 2023 IEEE International
Symposium on Circuits and Systems (ISCAS). 2023, pp. 1–5. DOI: 10.1109/ISCAS46773.
2023.10182209.

[28] Javier Sastre Alvaro. The OBDT board: A prototype for the Phase 2 Drift Tubes on-detector elec-
tronics. Tech. rep. Geneva: CERN, 2020. URL: https://cds.cern.ch/record/2797780.

[29] Sarah Ali El Sayed. Fault tolerance in hardware spiking neural networks. Oct. 2021. URL: https:
//theses.hal.science/tel-03681910v2.

[30] Johann Schumann. Radiation tolerance and mitigation for neuromorphic processors. Jan. 2022.
URL: https://ntrs.nasa.gov/citations/20220013182.

[31] Hian-Hian See et al. “ST-MNIST - The Spiking Tactile MNIST Neuromorphic Dataset”. In:
CoRR abs/2005.04319 (2020). arXiv: 2005.04319. URL: https://arxiv.org/abs/2005.
04319.

[32] Sahil Singh. LUT in FPGA: A Brief understanding of FPGA Resources [2023]. Feb. 2024. URL:
https://www.logic-fruit.com/blog/fpga/lut-in-fpga/.

[33] snnTorch Documentation — snntorch 0.9.1 documentation. URL: https://snntorch.readthe%
20docs.io/en/latest/index.html#.

[34] Spiking Heidelberg digits and Spiking Speech Commands – Zenke Lab. URL: https://zenkelab.
org/resources/spiking-heidelberg-datasets-shd/.

[35] P. Stoliar et al. “Spike-shape dependence of the spike-timing dependent synaptic plasticity
in ferroelectric-tunnel-junction synapses”. In: Scientific Reports 9 (Nov. 2019). DOI: 10.1038/
s41598-019-54215-w.

[36] Synopsys — VHDL-2008 Support Library 1.0.0 documentation. URL: https://fphdl.readthe%
20docs.io/en/docs/synopsys.html.

87

https://doi.org/10.3390/math11010058
https://www.mdpi.com/2227-7390/11/1/58
https://www.mdpi.com/2227-7390/11/1/58
https://doi.org/10.1088/1742-6596/2374/1/012099
http://dx.doi.org/10.1088/1742-6596/2374/1/012099
http://dx.doi.org/10.1088/1742-6596/2374/1/012099
https://github.com/40MHz/Small%20ModelFirmware
https://github.com/40MHz/Small%20ModelFirmware
https://cms.cern/detector/detecting-muons/muon-drift-tubes
https://cms.cern/detector/detecting-muons/muon-drift-tubes
http://neuralnetworks%20anddeeplearning.com/
http://neuralnetworks%20anddeeplearning.com/
https://books.google.it/books?id=yRU_zQEACAAJ
https://doi.org/10.1109/ISCAS46773.2023.10182209
https://doi.org/10.1109/ISCAS46773.2023.10182209
https://cds.cern.ch/record/2797780
https://theses.hal.science/tel-03681910v2
https://theses.hal.science/tel-03681910v2
https://ntrs.nasa.gov/citations/20220013182
https://arxiv.org/abs/2005.04319
https://arxiv.org/abs/2005.04319
https://arxiv.org/abs/2005.04319
https://www.logic-fruit.com/blog/fpga/lut-in-fpga/
https://snntorch.readthe%20docs.io/en/latest/index.html#
https://snntorch.readthe%20docs.io/en/latest/index.html#
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://doi.org/10.1038/s41598-019-54215-w
https://doi.org/10.1038/s41598-019-54215-w
https://fphdl.readthe%20docs.io/en/docs/synopsys.html
https://fphdl.readthe%20docs.io/en/docs/synopsys.html


REFERENCES

[37] The Phase-2 Upgrade of the CMS Muon Detectors. Tech. rep. This is the final version, approved
by the LHCC. Geneva: CERN, 2017. URL: https://cds.cern.ch/record/2283189.

[38] Thvnvtos. GitHub - Thvnvtos/SNN-delays: Official implementation of ”Learning Delays in Spik-
ing Neural Networks using Dilated Convolutions with Learnable Spacings” [ICLR2024]. URL:
https://github.com/Thvnvtos/SNN-delays.git.

[39] Marco Toffano. Hardware Implementation of a Spiking Neural Network for online processing of
muon detectors datastream. https://github.com/marcotoffano/SNN_Thesis. 2024.

[40] Pierian Training. Multi-Label image classification in PyTorch: A guide - Pierian training. Apr.
2023. URL: https://pieriantraining.com/multilabel-image-classification-in-
pytorch-a-guide/.

[41] Training an audio classification task using Torch — Rockpool 2.7 documentation. URL: https:
//rockpool.ai/tutorials/rockpool-shd.html.

[42] Training on ST-MNIST with Tonic + snnTorch Tutorial — snntorch 0.9.1 documentation. URL:
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_stmnist.html.

[43] Tutorial 1 - Spike Encoding — snntorch 0.9.1 documentation. URL: https://snntorch.readthe%
20docs.io/en/latest/tutorials/tutorial_1.html.

[44] Alex Vigneron and Jean Martinet. “A critical survey of STDP in Spiking Neural Networks
for Pattern Recognition”. In: 2020 International Joint Conference on Neural Networks (ĲCNN).
2020, pp. 1–9. DOI: 10.1109/IJCNN48605.2020.9207239.

[45] P.J.Werbos. “Backpropagation through time:what it does and how to do it”. In:Proceedings
of the IEEE 78.10 (1990), pp. 1550–1560. DOI: 10.1109/5.58337.

88

https://cds.cern.ch/record/2283189
https://github.com/Thvnvtos/SNN-delays.git
https://github.com/marcotoffano/SNN_Thesis
https://pieriantraining.com/multilabel-image-classification-in-pytorch-a-guide/
https://pieriantraining.com/multilabel-image-classification-in-pytorch-a-guide/
https://rockpool.ai/tutorials/rockpool-shd.html
https://rockpool.ai/tutorials/rockpool-shd.html
https://snntorch.readthedocs.io/en/latest/tutorials/tutorial_stmnist.html
https://snntorch.readthe%20docs.io/en/latest/tutorials/tutorial_1.html
https://snntorch.readthe%20docs.io/en/latest/tutorials/tutorial_1.html
https://doi.org/10.1109/IJCNN48605.2020.9207239
https://doi.org/10.1109/5.58337

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Snippets
	List of Acronyms
	Introduction
	Types of Spiking Neurons
	Data Encoding
	Training peculiarities
	Backpropagation through time
	Spike timiming dependent plasticity

	Advantages of SNNs

	Modeling and training SNNs
	Inference
	Training via SNNTorch
	Training via Matlab
	Parameters extraction
	Direct conversion from pretrained ANN

	RTL description of SNNs
	Neuron structure
	Binary Adder Tree
	MAC

	Datapath sizing
	Hierarchy Management
	Convolutional and pooling layers
	Softmax
	Exponential unit
	CORDIC divider

	Pipeline and sequential execution
	Verification

	Implementation and Benchmarking
	TOP entity
	AXI4 Stream communication

	Testing on Spiking Tactile MNIST
	Testing on Spiking Heidelberg Digits
	Runtime coefficients setting

	Case study: drift tubes hits filtering
	The experiment
	Dataset generation
	Training challenges
	Proposed approach for spurious hits filtering
	Enhancing reliability

	ASIC realization
	Preliminary steps
	Synthesis
	Physical design

	Conclusions and Outlook
	Appendix
	Hardware resources of KCU1500 board
	Standard cells of faraday 130nm technological library
	VHDL testbench for generic timeseries dataset
	Bash script for AXI LITE registers read/write

	References

