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Introduction

The magnetic properties of certain materials have been known since ancient times, and the first
magnetic materials found in archaeology date back as far as the Egyptians, in the 4th millennium
BC [1]. The magnetism of macroscopic materials has therefore been widely investigated for an
extremely long time, but it is very recently (early 1990s) that nanoscopic materials have begun to
take on particular significance, after the first reported single molecule magnet SMM [2]. Some
molecules, in fact, are made up of metal atoms and display special magnetic properties that
give hope for industrial uses in quantum technologies and information storing, favored by their
nanometric sizes.

These molecules include those named Single Molecule Toroics or Single Toroid Magnets [3], in
which the particular arrangement of the ions and their total magnetic moments generates what
is called a toroidal moment. Intuitively it can be compared to an angular momentum of classical
mechanics, and its presence would guarantee particular stability properties to the molecule.
A promising example of toroidal molecules is given by compounds based on Dy3+ ions, with
toroidal arrangement of the anisotropy axis and a non-magnetic ground state, subject of a large
number of studies [4].

Also in this work, it will be analysed a new 3Dy3+ molecule, recently synthesised in the Institute
of Inorganic Chemistry of the Karlsruhe Institute of Technology and not yet published. The
aim will therefore be to derive the magnetic properties of this molecule and, in particular, to
see if a direct measurement of the toroidicity is possible using an experimental apparatus.

In chapter 2 it is provided a theoretical introduction to the main topics covered in this the-
sis, namely the spin Hamiltonian model used, definition of magnetization, susceptibility and
toroidicity, and a theoretical overview of neutron scattering experiments.

Chapter 3 will show in more details the structure of the molecule, its magnetic properties and
the adopted frame of reference.

In chapter 4, the complete Hamiltonian model will be first compared with the effective one.
After that, fits of the experimental susceptibility and magnetization data will be performed,
deriving a possible set of parameters which characterize the anisotropy axes. It will shown,
however, that it is not possible to obtain complete information on the orientation of these axes
(and thus on the toroidicity), which justifies the attempt to investigate the possibilities offered
by other experiments (Inelastic Neutron Scattering).

Before having a closer look into the toroidicity of the molecule, a detailed study of its energy
eigenvalues is carried out in chapter 5. In this way, we can better understand the orientation
of the spin expectation values in the various energy levels, and then relate each energy level to
a certain toroidal moment. In particular, it will be shown the analogous description between
ferromagnetic and antiferromagnetic coupling under particular conditions of the anisotropy polar
angles theta.

Chapter 6 will explore the toroidal moment of a compound of threeDy ions within the used spin
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vi INTRODUCTION

Hamiltonian model by varying the parameters on which it depends, in particular the reference
system and the anisotropy polar angles theta. This will show the possibility that the studied
Al2Dy3 molecule carries a toroidal moment, under the assumption of particular ideal azimuthal
angles phi.

Finally, in chapter 7 neutron scattering experiments will be simulated, showing how satisfactory
results cannot be obtained by focusing only on the lower energy states of the molecule and/or
considering a powder sample. Thus, preliminary results on the use of a single crystal inelastic
neutron scattering will be shown.



Chapter 1

Motivation

Single molecule magnets (SMMs) have become the subject of extensive studies, given their
possible applications in information storage or as quantum bits (QuBits) [5][6][7][8]. In fact, with
this particular types of molecules it is possible to obtain a slow relaxation of the magnetization
and long decoherence times. Previous works then (for ex. [9]) has shown the possibility of
synthesising compounds with practically zero total magnetic moment, increasing the stability
properties of the molecule.

Among these particularly stable molecules, there are those whose total magnetic moments ar-
rangement give rise to a toroidal moment, defined as t̂ = gµB

2

∑
i=1,2,3 ri × Ŝi, where g is the

Landé factor of the ions, µB the Bohr magneton, ri and Ŝi the vector position and spin operator
of the i-esim ion. A clear analogy can be made with a classical angular momentum L = r× p,
which tends to stabilize a rotating system. Toroidal molecules are bistable, presenting two spin
configurations in the ground state in which the total magnetic moment is canceled out. The pos-
sibility of reducing the total magnetic moment favours a lower decoherence rate and increases
the stability, since the molecule has a smaller possibility of coupling with external magnetic
noises.

A 3Dy molecule in a triangular arrangement, therefore, is an ideal candidate to exhibit such
properties. To avoid spin frustration, the total magnetic moments of the ions will tend to lie
on the plane formed by the three ions themselves. If then, thanks to the contribution of the
anisotropy, they are oriented in a circular, clockwise or anticlockwise manner, they can give rise
to a toroidal moment.

But from the definition of toroidal moment, one can see a dependence on the positions of the three
ions, whereas in the usual magnetic Hamiltonian model, there are only relations between the
spins, and it is therefore invariant on the positions of the ions. Moreover powder susceptibility
and magnetization measurements have trends that can be described with such a Hamiltonian
model; therefore it is not possible to derive complete information on the toroidicity of the
molecule since the dependency on the position cannot be investigated.

For this reason, other types of experiments must be considered, and, in particular, in this
thesis work we will simulate the possible results of inelastic neutron scattering experiments.
The intensity peaks of the transitions from one state to another of the molecule have in fact a
dependence on the scattering vector of the neutrons, thus enclosing a position dependence.

1
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Chapter 2

Theoretical Background

2.1 The spin Hamiltonian model

The key point in the modelling of the magnetic behaviour of molecules is the choice of the
Hamiltonian, through which all thermodynamic properties of interest can be derived. The
Hamiltonian operator then allows to obtain the energy eigenvalues of the system when applied
to the relative eigenfunctions. The latter live in a Hilbert space constructed from the bases of
the angular moments of each of the ions in the molecule. We need so an Hamiltonian in which
only spin-related interactions are taken into account to describe the magnetic properties we are
interested in.

Among these interactions, the fundamental contributions are: the Heisenberg exchange inter-
action, which can be assumed between neighbouring spins in a cluster and is linked to both
a Coulombian action and the Pauli principle; an anisotropy term, related to the environment
in which the system is immersed; the Zeeman interaction, which tends to align the magnetic
moments (spins) with an external magnetic field. In formulae, the complete Hamiltonian is thus
given by:

H = −
∑

i,j

Si · Ji,j · Sj +
∑

i

Si ·Di · Si + µB
∑

i

Si · gL ·B (2.1)

Further explanations of the various terms that make up Hamiltonian are given in the following.
It can be shown that in the case of isotropic exchange interactions between ions in the cluster,
the Hamiltonian just described commutes with the total spin operator Ŝ2. This makes possible
a spin-based description of the eigenfunctions.

It is important to make clear from the outset the nomenclature that will be used throughout. In
particular, the term ”spin” or ”total spin” will be used to indicate the total magnetic moment
given by the sum of the orbital magnetic moment and the usual spin magnetic moment.

2.1.1 Heisenberg coupling

The Heisenberg coupling is the term of the Hamiltonian that summarizes the interactions be-
tween couples of spins. The classical Hamiltonian of interaction between two electrons is

H =
p21
2me

+
p22
2me

+ V (r1, r2)

thus simply a sum of two kinetic terms and one interacting potential term, without considering
the spin of the particles.

3



4 CHAPTER 2. THEORETICAL BACKGROUND

However, due to the Pauli exclusion principle, the wave functions of the two particles must
contain a spin-orbit term, which leads to a splitting of the energy levels into a triplet and singlet
spin state. Therefore it must be considered an additional term in the Hamiltonian that operates
in spin space and, in particular, that describes the coupling between the spins of the particles.
It is possible to show that this Hamiltonian is simply related to the dot product between the
spin vectors and, up to an additive constant that can be omitted by redefining the zero energy,
it is given by the Heisenberg model, namely:

H = −
∑

i,j

Si · Ji,j · Sj (2.2)

where we directly considered the sum of the interactions between all the pairs of spin.

The terms Ji,j are tensors that describe the spins interactions, but in general they are not
symmetric and not traceless. It is so possible to write them as a sum of three contributes,
namely:

H = −
∑

i,j

Ji,jSi · Sj +
∑

i,j

Si∆i,jSj +
∑

i,j

dDM
i,j · (Si × Sj) (2.3)

these three terms are respectively:

− isotropic exchange, T01 tensor describing the scalar product which tends to align the spins
in a parallel or antiparallel manner, depending on whether the sign is positive (J > 0,
ferromagnetic) or negative (J < 0, antiferromagnetic); it can be represented as a diagonal
matrix.

− anisotropic exchange, traceless T2 tensor derived from the dot product, which tends to
align the spins along a certain spacial direction given by the anisotropy axes, and it includes
non-diagonal terms in the matrix.

− antisymmetric exchange, traceless T1 tensor derived from the cross product, which tends to
align the spins in different directions by 90° from each other; it is also known as Dzyaloshin-
skii–Moriya interaction.

Therefore in the code that will be used for the simulations, the input values are specified and
then converted into 3D matrices. These can be then summed up and multiplied by the spins
to describe the complete exchange Heisenberg coupling. Very often, however, the Dzyaloshin-
skii–Moriya term makes a negligible contribution to the energy. The Hamiltonian will be there-
fore considered in the following simulations as a simple sum of the isotropic and anisotropic
terms; further description is given in the following.

2.1.2 Magnetic anisotropy

Every day experience shows that, when we are dealing with magnets, a fundamental aspect
to take into account is the direction of alignment in space. Well known is, for example, the
tendency of a magnetic bar to align itself with respect to another bar to which it is near, or
the tendency of a metallic needle to align with respect to the Earth magnetic field, process
behind the operation of compasses. Thus, similarly, even at the microscopic scale of molecules,
materials are more likely to magnetize in one direction than another. This different material
response to different spatial orientations is called magnetic anisotropy.
As we pointed out above, the magnetic properties of an atomic specie are governed by the

1The notation Tn refers to a tensor of n-esim order.
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electronic structure, and so by the arrangement of the electrons in the atom. The spin of a
single electron has spherical symmetry, and so the description would be completely isotropic, as
there would be no difference between the different orientations in space. On the other hand the
anisotropy causes a distortion of the symmetry and a removal of the degeneracy of the energy
eigenvalues. This occurs in the coupling between the spin and a possible source of anisotropy like
the orbital motion of the electron itself or an external magnetic field. We can in fact summarise
the main sources of anisotropy in three different phenomena: the anisotropic interaction between
two neighbour spins; the interaction with an external magnetic field; the anisotropy of the single
ion, which depends on the interaction between spin-orbit coupling and the crystalline field.

Intuitive origin of anisotropy

Each of the three Dy3+ ions has 7 valence electrons that can be arranged in the seven different
f atomic orbitals, represented in different shapes and shown in figure 2.1.

Figure 2.1: Angular distribution of f orbitals.

As it is straightforward to see, none of the seven orbitals present a spherical symmetry, char-
acteristic that is typical only of the s orbital. So one can expect an angular dependency of the
electric density of the electrons that occupy different orbitals.

Moreover each ion is embedded in a complex structure of atoms that does not show a high
symmetry; in fact if the environment was spherically symmetric each electron would experience
the same global electrical effect. But in this case, due to the more complex structure, the
different f orbitals can overlap in a more ore less strongly way with the atomic orbitals of the
surrounding elements. This leads therefore to dissimilar Coulomb interactions and so to different
energy levels in which the electrons of the Dy ions can sit. In other words, the initial 2J + 1
degeneracy of the energy level of the electrons is partially removed and the f orbitals are split
in the interactions with the neighbouring ions and this effect is also called ligands field splitting.
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It is clear, therefore, how different ligand structures lead to a symmetry break in the molecule,
and thus to the anisotropy.

Mathematical description

Mathematically the interactions between the metal ions and the surrounding ligands are de-
scribed by the Crystal Field Theory (CFT), in which each ligand is approximated with a point
charge. In this view the interaction is simply treated as a Coulomb term depending on the
charge density of the neighbour atoms and on their relative distance with the ion. The complete
Hamiltonian was computed for the first time by Stevens[10] in 1952, applying the Wigner-Eckart
theorem to the expansion in spherical harmonics of the Coulomb potential, and it can be written
as:

ĤLF =
∑

k,q

BkqÔkq with |q| ≤ k and k > 0 (2.4)

where k is limited by the orbital angular momentum number of a partially filled shell of the ion.

- Bkq are called crystal field parameters, which should be calculated considering the actual
charge distribution of all the ligands. The calculation is very tedious and therefore certain
approximations are used, such as the not rigorous point-charge model, which we mentioned
above, or are used values coming from spectroscopic measurements. In any case they
depend on the coupling between the ion and the ligand structure, and so they has to be
calculated for each different molecule.

- Ôkq are then the Stevens Operators, and can be written as a combination of the angular

momentum operators Ŝx, Ŝy and Ŝz; these values strongly depend on the symmetry of the
molecule, which determines whether their value is zero or not.

The expressions of the first Stevens Operators up to k = 2 are listed in the following:

Ô20 = 3Ŝ2
z − Ŝ2 = 2Ŝ2

z − Ŝ2
x − Ŝ2

y

Ô21 =
1

4

[
Ŝz

(
Ŝ+ + Ŝ−

)
+
(
Ŝ+ + Ŝ−

)
Ŝz

]
=

1

2

[
ŜzŜx + ŜxŜz

]

Ô2−1 =
1

4i

[
Ŝz

(
Ŝ+ − Ŝ−

)
+
(
Ŝ+ − Ŝ−

)
Ŝz

]
=

1

2

[
ŜzŜy + ŜyŜz

]

Ô22 =
1

2

[
Ŝ+Ŝ+ + Ŝ−Ŝ−

]
= Ŝ2

x − Ŝ2
y

Ô2−2 =
1

2

[
Ŝ+Ŝ+ − Ŝ−Ŝ−

]
= ŜxŜy + ŜyŜx

(2.5)

The above coefficients are those commonly used to describe the Hamiltonian up to second order,
or in the so called zero-field splitting approximation. By inserting these results in equation 2.4,
and making the matrix notation explicit, one can arrive at a writing of the type

Ĥk=2
LF =

(
Ŝ′

x Ŝ′
y Ŝ′

z

)
·




B22 −B20 B2−2
1
2B21

B2−2 −B22 −B20
1
2B2−1

1
2B21

1
2B2−1 2B20


 ·




Ŝ′
x

Ŝ′
y

Ŝ′
z


 = Ŝ′BŜ′ (2.6)

where the notation ”′” has been inserted in the Stevens operators to distinguish the spin oper-
ators that will be used later.
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It is therefore possible to make some redefinitions of the matrix elements, in particular intro-
ducing the quantities D′ and E′ such that

B20 =
1

3
D, B21 = 2Dxy, B2−1 = 2Dyy, B22 = E, B2−2 = Dxy

In this way the Hamiltonian can be written in a simplified way, introducing the anisotropy tensor

D′, with which the Hamiltonian becomes:

Ŝ′D′Ŝ′ =
(
Ŝ′

x Ŝ′
y Ŝ′

z

)
·




−1
3D

′ + E′ D′
xy D′

xz

D′
xy −1

3D
′ − E′ D′

yz

D′
xz D′

yz
2
3D

′


 ·




Ŝ′
x

Ŝ′
y

Ŝ′
z


 (2.7)

The latter has simply been found rewriting in a different notation the tensor B, which is trace-
less, real and symmetric. This means that its eigenvalues (λ1, λ2, λ3) have to be real and the
eigenvectors (−→v 1,

−→v 2,
−→v 3) are real and orthonormal. As a consequence it is always possible to

find an orthogonal frame of reference in which the tensor is diagonal, so all the non-diagonal
terms are vanishing. This procedure consists of nothing more than aligning one of the axes of the
reference system with the principal axis of anisotropy. In this new notation[11] the Hamiltonian
reads:

ŜDŜ =
(
Ŝx Ŝy Ŝz

)
·




−1
3D + E 0 0
0 −1

3D − E 0
0 0 2

3D


 ·




Ŝx
Ŝy
Ŝz


 (2.8)

Where the anisotropy tensor, as pointed out above, is a diagonal matrix like:

D =



Dxx 0 0
0 Dyy 0
0 0 Dzz




in which, by convention, it holds usually |Dzz| > |Dyy| > |Dxx|, and the ratio E/D is usually
limited in the range

−1/3 ⩽ E/D ⩽ 1/3

since out of this range the same physics is described unless a rotation of the reference system.

It is then straightforward to relate the entries of the D matrix to the D and E values defined
above:

D = Dzz −
1

2
(Dxx +Dyy), E =

1

2
(Dxx −Dyy)

Computing the matrix product in 2.8 and neglecting the constants, it is possible to write the
anisotropy Hamiltonian as:

Ĥanis = DŜ2
z + E(Ŝ2

x − Ŝ2
y) (2.9)

from which it is easy to distinguish the spatial dependencies of the different contributions in
energy. In fact if E = D = 0 no magnetic anisotropy is present and the system is isotropic. If
E = 0 ̸= D an axial symmetry occurs with one of the eigenvalues of the tensor that becomes
bigger than the others so the spin has a preferential orientation called easy axis. When E is
non zero the reduction of symmetry leads to an additional anisotropy in the xy plane, with a
consequent removal of degeneracy and splitting of the energy eigenvalues even in the absence of
a magnetic field (from here the name zero-field splitting).
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Figure 2.2: Anisotropy energy contribution in a Cartesian frame of reference; uniaxial symmetry on the
left (a) and second order correction with the anisotropy term E on the right (b).

An intuitive representation of the behaviour of anisotropy can be seen in the figure 2.2, in which
the energy of a classical spin is represented in a Cartesian graph ([12]).

The E value breaks so the symmetry and introduces in general a splitting in the energy eigen-
values; but in the case of the molecules analyzed in this work, so made up of 3Dy3+ of spin
15/2, the lowest single ion energy spin state is |±15/2⟩, and the energies are non affected by
this E term. In fact, looking at the effect of the anisotropy from a perturbation theory point of
view, the second order correction is related to the product

〈
−15

2

∣∣∣∣Ê
∣∣∣∣m
〉〈

m

∣∣∣∣Ê
∣∣∣∣−

15

2

〉

withm a general state. Knowing the structure of the Ê operator, see eq. 2.9, it is straightforward
to see how there is no statem that makes the expression non-null. So at this order of perturbation
no energy splitting is introduced in the Dy molecule; only a quadratic curvature of the energy
eigenvalues is present, due to terms like

〈
−15

2

∣∣ Ê |m⟩ ⟨m| Ê
∣∣−15

2

〉
withm = 15/2 which introduce

this quadratic dependency on E.

Anticipating what will be discussed in chapter 7, it can be pointed out that in neutron scattering
experiments it is possible to assess the presence of the anisotropy E term despite not having
splitting in energy. In fact, the neutron scattering technique does not only provide information
on energies, but also on wave functions where the E term can introduce some changes.

2.1.3 Zeeman term

Another way in which the symmetry of the system can be broken is through the application
of an external magnetic field, since the space in which the atoms are immersed is no longer
isotropic. In this case, the different possible orientations of the total angular momentum J, i.e.
the different possible values of the quantum number mJ , are no longer degenerate, which leads
to a further splitting of the energy levels.

To explain this phenomenon, it can be considered that each particle possesses an orbital angular
momentum given by the application of the L̂ operator to the wave function, which can be seen
as a quantum extension of the classical definition L = r × p through the momentum operator
p̂ = −iℏ∇. It is then possible to define a magnetic dipole moment associated with the orbital
angular momentum L, given by:

µLµLµL = −gLµBL (2.10)
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with µB = eℏ
2m = 9.27× 10−24 A ·m2 the Bohr magneton and gL = 1 the gyromagnetic factor of

the orbital angular momentum. Similarly, it is also possible to define a dipole moment for the
spin angular momentum, given by:

µSµSµS = −gSµBS (2.11)

where this time the spin-related gyromagnetic factor is 2.00231, and can be measured with
extreme experimental precision [13].

Then by adding the two magnetic moments defined above, the total angular momentum can be
derived, namely:

µµµ = µLµLµL +µSµSµS = −µB(gLL+ gSS) (2.12)

Therefore, by introducing an external magnetic field BEXT, the ion will be subjected to an
external momentum given by τττ = µµµ×BEXT, and it can be shown ([14]) that this results in an
energy change given by:

δE = gLµBBMJ (2.13)

where gJ is called Landé factor and can be computed as:

gL = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.14)

We will see (chapter 3) that a Dy3+ ion has total, spin and orbital quantum number respectively
equal to J = 15

2 , S = 5
2 and L = 10

2 . It is so straightforward to compute the Landé factor, which
value is equal to:

gL =
4

3
≃ 1.33333 (2.15)

Finally, the equation 2.13 can be generalised by considering not only the projection of angular
momenta along the Z axis, but in all the three dimensions. Thus calling S the total angular
momentum (J above), the presence of the magnetic field in the ion system adds a term to the
Hamiltonian given by:

ĤZeeman = µBSḡLB (2.16)

2.2 Effective Hamiltonian model

Dimensions and computational time in the full model

The Hamiltonian described so far is a model that allows to obtain an optimally accurate descrip-
tion of the system, but the Hilbert space in which it operates can assume considerable dimensions
and greatly increases the computation time. In fact, the dimension of the Hilbert space depends
on the value of the total angular momentum of the ions that make up the molecule, and the
greater this value, the greater the number of ions and the greater will be the dimension of the
space.

In particular, the molecule under study is made of 3 ions of Dy of total angular momentum
S = 15/2; each ion will therefore have a Hilbert space dimension equal to:

dim(HDy) = 2S + 1 = 16

Therefore, the total dimension of the molecule, given by the number of all the possible combi-
nations of the spins of the Dy ions, will be given by:

dim(H3Dy) = dim(H3Dy)
3 = 16 · 16 · 16 = 4096
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Consequently a lot of computational time (up to days) is needed to perform fits and simulations
within this model.

Effective model of single ion(s)

One possibility to considerably increase the speed of calculation and still obtain satisfactory
results, is to use an effective Hamiltonian model, which allows the dimensions of the Hilbert
space to be reduced without jeopardize the final results too much. In this respect, one can
consider the approximation of high anisotropy, i.e. with a big anisotropy constant D. This
makes it possible to obtain, for a single ion, an energy spectrum characterised by a parabolic
pattern as a function of the spin of the ion, as can be expected from the Hamiltonian term
ŜiDŜi. An example plot for the Dy ion is shown in the left hand side of figure 2.3.

Figure 2.3: Energy spectra (on the left) and spin projection on the anisotropy axes (on the right) of a
single Dy ions with a strong anisotropy component directed along the z axes.

One can immediately recognise that the ground state turns out to be occupied by the spin states
S = ±15/2, while in the subsequent energy levels one finds the states S = ±13/2, S = ±11/2
and so on, where the z axis of the reference system has been made to coincide with the main
anisotropy axis. Consequently, given the large value of anisotropy and, in this case, the absence
of Heisenberg coupling, it can be expected that the ion´s spin tends to align with the anisotropy
axis, minimising its energy, while possible inclinations between spin and anisotropy axis end up
in the higher energy levels. It can then be seen that the ground state is doubly degenerate,
including both spin possibilities S = +15/2 and S = −15/2, which turn out to be perfectly
symmetrical.

At very low temperatures, then, used in experiments, the system can be expected to be in the
ground state, while the other states have extremely low probabilities of being occupied, also
given the usually large energy gap between the ground state and excited ones, due to the huge
anisotropy value considered. Hence the idea of neglecting the high-energy states and focusing
on the low energy ones, in which spins can only take on two values, namely S = +15/2 and
S = −15/2, aligned with the anisotropy axis. In this new binary system, therefore, the modulus
of the spin vector turns out to be only a multiplicative constant, while the physics of the ion
can be described with a simpler τ = ±1/2 spin system.

Even in the case of a system made up of several ions, in the absence of interactions between
them, it is possible to choose the reference system locally, so as to align, as just discussed,
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the z axis of each system with the relative anisotropy axis, and to describe the total angular
momentum in each of these systems as a spin of τ = ±1/2. See figure 2.4.

Figure 2.4: Basic idea of the effective model: local rotation of the Cartesian frame of reference aligning
each z axis with the main anisotropy axis of the relative ion. The rotation is performed through a
rotational matrix Ri, different for each ion.

Mathematically then, the local rotation can be seen as the inclusion of an identity in the Hamil-
tonian term in the form of a product between two rotation matrices. As a consequence, this will
lead the anisotropy matrix to be diagonal; in formulae:

SiDiSi = SiR
T
i RiDiR

T
i RiSi = S′

iRiDiR
T
i S

′
i = 15 · 15 · τiD′

iτi = 225τiD
′
iτi (2.17)

where we used the fact that in this binary system the spin can assume only the values ±15/2,
so it is possible to write S = ±15/2 = 15τ = ±1/2 · 15, and where we defined the rotated
anisotropy matrix D′

i as:

Di =



Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 ⇒ Di

′ = RiDiR
T
i =



D′

xx 0 0
0 D′

yy 0

0 0 D′
zz


 (2.18)

Including couplings

So far, the model described is correct in the ground state, as each ion is isolated, and the choice
of reference frame does not change the physics of the system. However, we are interested in the
study of a molecule in which Heisenberg interactions between the spins also appear, and we can
therefore show how the effective model is also applicable in this case, but introducing a small
approximation. This will consist of neglecting any inclinations of the spin vectors with respect
to their respective axes of anisotropy, and thus thinking of them as parallel. This approximation
will then be all the better as the anisotropy value is dominant with respect to the coupling value
(high anisotropy approximation).

In our framework, the tensor J of the Heisenberg coupling is isotropic in the initial reference
system (left-hand drawing in figure 2.4), and can therefore be represented as a diagonal matrix;
the introduction of local rotations, however, as done above, will lead to the appearance of off-
diagonal terms. Approximating the spin as parallel to the z axis, however, it is possible to
neglect all components of the tensor that provide contributions along x or y, and, consequently,
it will be sufficient to include only the Jzz term in the calculation. Mathematically we have:
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SiJijSj = SiR
T
i RiJijR

T
j RjSj = S′

iRiJijR
T
j S

′
j = 15 · 15 · τiJ ′

ijτj = 225τiJ
′
ijτj (2.19)

Where the matrix J ′
ij can be approximated as:

J ′
ij = RiJijR

T
j = JRi1R

T
j ≃ J



0 0 0
0 0 0
0 0 (RiR

T
j )zz


 (2.20)

Zeeman term

Similarly to what have been done for anisotropy and coupling, the same reasoning can be applied
to the Zeeman term, in which the Landé factor appears in the form of an isotropic tensor. We
can so apply the same approximation made for z component, along which the spins in our model
are aligned, and neglect what happens along x and y. We thus have:

SigB = SiR
T
i RigB = S′

iRigB = 15τig
′B (2.21)

where g′ can be approximated as:

g′ = Rig = gRi1 ≃ g



0 0 Rxz

0 0 Ryz

0 0 Rzz


 (2.22)

2.3 Magnetization and Susceptibility

Magnetization

By applying the Hamiltonian operator described so far to the eigenfunctions of the system, it is
possible to derive the eigenvalues of energy E1, E2, ...En, where n is the dimension of the Hilbert
space, with n = 4096 in the case of the 3Dy molecule. Using the eigenvalues, it is then possible
to calculate the system’s partition function, given by:

Z(T,B) =
∑

n

e−βEn (2.23)

where β = 1
kBT and kB is the Boltzmann constant.

Thus, by calculating the free energy of the system as F = −kBT ln(Z), one can define the
magnetization as the response of the free energy to small variations of an externally applied
magnetic field B. In formulas:

M(B) = −∂F
∂B

= kBT
∂(ln(Z))

∂B
= kBT

1

Z

∂Z

∂B
(2.24)

Therefore, in principle, the calculation of the magnetization follows directly from the diagonal-
isation of the Hamiltonian, with which the energy eigenvalues are derived.

As can be seen from the definition, the magnetization has a vector nature in this case, depending
directly on the magnetic field vector. In most experimental cases, however, such as the one
considered in the next chapter, the sample analysed is in the form of a powder and not a perfectly
aligned crystal, so the molecules will be found randomly oriented in space. The magnetization
measured will therefore be a sum of all the possible contributions, and similarly it can be seen as



2.3. MAGNETIZATION AND SUSCEPTIBILITY 13

a sum of the magnetic fields acting in various directions on the molecule. This type of observable
is called Powder magnetization.

Analytically, then, it will be nothing more than a mean value of all the magnetizations through-
out the solid angle, and can be calculated as:

MPowder(B, T ) =

∫ 2π
0 dϕ

∫ π
0 dθM(B, T, θ, ϕ) sin(θ)
∫ 2π
0 dϕ

∫ π
0 dθ sin(θ)

(2.25)

Numerically, the integral can be calculated as the sum of contributions in phase space, using, for
example, the Romberg method [15]; in this case, the number of points required for integration
will be:

N(θ) = N(ϕ) = 2k + 1 = 1, 3, 9, 17, 33... (2.26)

with k an integer number. Various tests have shown that optimal values for sufficiently accurate
magnetization calculations are N = 17 or N = 33.

As an example, figure 2.5 shows some magnetization curves as a function of the magnetic field
at different temperatures for an antiferromagnetic system. Given the possibility of seeing the
magnetization as the thermodynamic expectation value of the total magnetic moment, is clear
the asymptotic trend for high magnetic fields, in which all spins tend to align with the direction
of the field. While higher temperatures will lead to less rapid increases in magnetization, leaving
more opportunity for spin orientation given the higher energy of the system. More details will
be described later in the next chapter.

Figure 2.5: Example of magnetization curves as a function of the magnetic field for different temperatures
in a antiferromagnetic system. In the asymptotic region, for high enough magnetic fields, all the spins tend
to align to the external applied field. High temperatures lead to a lower increase of the magnetization,
since more energy is present in the system and the spins have more freedom of motion.

Susceptibility

Similarly to the magnetization, the susceptibility can also be calculated from the diagonalisation
result of the Hamiltonian, via the partition function Z and the free energy F . In fact, the
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susceptibility quantifies the change in the magnetization for small changes of the magnetic field,
and can thus be written as:

χi,j =
∂Mi

∂Bj
= − ∂2F

∂Bi∂Bj
=

1

β

∂2 ln(Z)

∂Bi∂Bj
(2.27)

so χ is a second-rank tensor. Here too, experimentally it is often measured a powder suscep-
tibility, and, consequently, it is required an average value of the quantity just described. By
choosing the reference system appropriately, it is possible to diagonalise the susceptibility tensor,
and thus calculate the mean value simply as χ = 1

3(χxx + χyy + χzz).

Often, the susceptibility values are represented as a product with the temperature, thus in a
χT (T ) graph, in order to show the behaviour of the susceptibility at low temperatures. Fur-
thermore, in the case of a paramagnetic system, the Curie law applies, according to which the
product of susceptibility and temperature results in a constant, called the Curie constant. In
formulae:

χT = C (2.28)

with C = µBg2

3kB
S(S + 1) = const.

A similar relationship exists for systems that can only be described by means of Heisenberg
couplings, without the presence of anisotropy, since the set of spins can ideally be replaced
by a single effective spin that will obey Curie’s relationship. By introducing an anisotropy
term, however, the product of susceptibility and temperature will no longer be constant, and
the behaviour will depend on the system considered. In the case of antiferromagnetic systems,
for example, the presence of anisotropy will lead to a rapid decrease in susceptibility for low
temperatures. An example of a susceptibility graph is shown in figure 2.6, where the temperature
is varied from 0 to 300°C, and the same vertical scale allows to appreciate the scaling of the
susceptibility when multiplied by the temperature.

Figure 2.6: Example of susceptibility curves as a function of the temperature in a antiferromagnetic
system.

In what follows, mainly χT graphs will be analysed, so without any risk of confusion, the term
”susceptibility” will also be used to refer to the product between the usual susceptibility and
temperature.
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2.4 Toroidicity

The toroidicity of the molecule is an indication of how much the spins are oriented in a vortex
way, but we need a quantitative way to describe it, so a variable that allows to quantify the
toroidicity of the molecule itself. We can consider the definition proposed in [16], in which the
observable that describes the toroidicity is called toroidal moment (t), and it is given by the
relation:

t̂ =
gµB
2

∑

i=1,2,3

ri × Ŝi (2.29a)

It is therefore a quantum operator, and to obtain some physical values, it is necessary to apply it
to an eigenfunction to find, for example, its mean value. The toroidal moment is then position-
dependent, so the coordinate system should be chosen in a proper way, and we will discuss this
in the following.

Spin operators and their average value

Once the the parameter to quantitatively describe the toroidicity is defined, it is necessary to
explicitly point out the calculation method used to obtain the numerical values. To do so we can
use the possibility of the owHc program to evaluate the matrix elements of the spin operators
Ŝ+, Ŝ− and Ŝz computed as:

⟨m| Ŝ+,−,z |n⟩ (2.30)

between two states |m⟩ and |n⟩.
The result is straightforward in the case of a non-degenerate subspace, i.e. of unitary dimension,
where En ̸= Em for each m ̸= n, and the only matrix element present is the average value of
each operator in the eigenspace considered, thus:

⟨m| Ŝ+,−,z |m⟩

The situation is more complicated in the case of degeneracy, i.e. a sub-space composed of
multiple eigenspaces corresponding to the same energy eigenvalue. In this case, the dimension
of the sub-space is greater than 1, and a diagonalization of the matrix describing the sub-space
is necessary in order to obtain the eigenvalues of the spin operators. In matrix notation, in
the case of a subspace of degeneracy 2 and initial eigenvectors |m′⟩ and |n′⟩ for a generic spin
operator Ŝ, we have:

(
⟨m′| Ŝ |m′⟩ ⟨m′| Ŝ |n′⟩
⟨n′| Ŝ |m′⟩ ⟨n′| Ŝ |n′⟩

)
−−−−−−−−−→
Diagonalization

(
⟨m| Ŝ |m⟩ 0

0 ⟨n| Ŝ |n⟩

)

Once the mean values of the spin operators Ŝz,+,− in each of the states under analysis have
been obtained, it is straightforward to find the mean values of the spin components, through
the relations:

Ŝx =
1

2

(
Ŝ+ + Ŝ−

)
(2.31a)

Ŝy =
1

2i

(
Ŝ+ − Ŝ−

)
(2.31b)
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Toroidal moment operator

Using the mean values of the coordinates of the spin vectors, it is then possible to calculate the
toroidal moment directly by applying the definition shown in the equation 2.29. In fact, calling
t the toroidal moment vector, this will be computed as the average value of the relative toroidal
moment operator t̂ in a state |n⟩; this reads:

t = ⟨n| t̂ |n⟩ = gµB
2

3∑

α=1

rα × ⟨n| Ŝα |n⟩ =
gµB
2

⟨n| r1 × Ŝ1 + r2 × Ŝ2 + r3 × Ŝ3 |n⟩ =

=
gµB
2

(r1 × ⟨n| Ŝ1 |n⟩+ r2 × ⟨n| Ŝ2 |n⟩+ r3 × ⟨n| Ŝ3 |n⟩)
(2.32)

We then ended up with a sum of vector products in which it appears the average value of the
spin operator in the state |n⟩ for each ion, namely:

⟨n| Ŝ |n⟩ = ⟨n|



Ŝx
Ŝy
Ŝz


 |n⟩ (2.33)

which are evaluated as discussed above.

2.5 Neutron scattering

[17][18][19]

Neutron scattering techniques are of fundamental importance in studying the properties of the
materials at the atomic scale, and combined with x-ray scattering they allow to cover a big
range of energies and momentum transfer for the experimental analysis. The usefulness of
neutrons in scattering processes derives from their physical properties (shown in table 2.1). In
particular there are several noteworthy advantages due to the fact that their electric charge is
zero, so they are not affected by the charge of the orbital electrons. Neutrons can so interact
with nuclei through the strong interaction, which occurs only at very low distances and so the
resulting scattering effect is weak. On the contrary the interaction between the neutron magnetic
moment and possible magnetic ions in the sample to analyze can give good scattering signals
that allow to investigate the properties of the material.

mass m = 1.675× 10−27 kg
charge 0
spin 1/2

magnetic dipole moment µn = −1.913µN

Table 2.1: Neutron physical properties

2.5.1 Energy and velocity

The de Broglie wavelength of a neutron with a certain velocity v is given by

λ =
h

mv
(2.34)

and so for reasonable values of the velocity the wavelength is comparable to the interatomic
distances of solid and liquid materials.
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The velocity of the neutron is directly related to their energy, and so to their production. There
are in fact two main ways of producing neutron: the first one uses the scattering between another
neutron and a Uranium core, and during the fission process three other neutrons are released,
one of which is used for another fission reaction while the other two can be collected and used
for the scattering experiments. In this way a continuous flux of neutron can be produced, and
this method is used for instance at the Institut Laue Langevin in Grenoble.

Otherwise it is possible to obtain neutrons using a spallation process, in which a proton is
accelerated with a linear accelerator to energies up to 1GeV and collides with a heavy metal
target (Hg, Pb, Tg...) that, because of the excitation of the nuclei, releases several neutron.

In both cases the neutrons carry energy of MeV s while for condense matter purpose energies of
the order of meV s are needed, therefore different moderating materials (such as water, heavy
water or graphite) at a different temperature are used to decrease the energy (temperature)
of the neutrons to the desired value. The neutrons emerging from the reactor have so a ve-
locity spectrum that follows a Maxwell distribution (figure 2.7) with the temperature T of the
moderator, so the probability of having a neutron with velocity between v and v + dv reads:

P (v)dv = 4π

(
m

2πkbT

)3/2

v2 · exp(−1

2

mv2

kbT
)dv (2.35)

with a maximum for v =
√

2kbT/m.

Figure 2.7: Maxwell distribution of neutrons for different temperatures.

Defining then the magnitude of the wave-vector k as:

k =
2π

λ
(2.36)

and the momentum of the neutron as:
p = ℏk (2.37)
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the maximum of the velocity probability corresponds to a kinetic energy of

E =
1

2
mv2 = kbT =

ℏ
2k2

2m
= hυ (2.38)

Based on these relationships, one can then classify neutrons according to their characteristics
into cold, thermal and hot neutrons, as summarized in table 2.2.

E(meV ) T (K) λ(10−10m)

Cold 0.1-10 1-120 30-3
Thermal 5-100 60-1000 4-1

Hot 100-500 1000-6000 1-0.4

Table 2.2: Neutron classification based on their energy, temperature or wavelength.

Therefore, in addition to having wavelengths comparable to the distances between atoms, also
the energies turn out to be of the same order of elementary excitations in matter. So, during
the scattering, the energy exchanged is comparable to the initial one, and accurate pieces of
information can be obtained about not only about the ”static” structure of the material, but
also on the dynamic properties.

2.5.2 Interaction with matter

Because of the null charge of the neutrons, they weakly interact with matter and this leads to
two main advantages: to reduce the damage due to radiations in the studied sample and to
increase the penetration length, thus enabling investigation of bulk material properties.

We can distinguish three main modes of interaction between a neutron and a material, namely
absorption, refraction and scattering.

• In the absorption process the beam of neutrons does not change in direction, but its
intensity is decreased exponentially with the law I(d) = I0e

−µd, where I0 is the initial
intensity, d is the distance traveled in the sample and µ is a coefficient depending on the
material. Some neutrons are so absorbed by the nucleus of the atoms of the material which
can then emit radiations like α, β, etc.

• The refraction phenomenons can be explained in analogy to classical optics but with a
proper refractive index which depends on the wavelength λ of the incident neutrons, on
the mean value b̄ of the scattering lengths of the nuclei and on the volumetric density ρ of
nuclei in the sample: nr = 1− 1

2πρb̄λ
2.

• The operation of scattering is very similar to that of most radiation in materials and will
be described in more details in the following subsections.

Scattering cross section

We are interested in the interaction between a beam of neutrons (considered for simplicity a as a
white beam, so with neutrons of the same wavelength) and a scattering system, i.e. any sample
made as a collection of atoms. In the hypothesis of a white incident beam we can describe it
quantum-mechanically as a planar wave of wave-vector ki, while from diffraction theory it comes
up that the wave description of diffracted beam will be spherically symmetric, and with a new
wave-vector kf . So the incident and scattered neutrons will be in the states:

ψi = eikiz ψf = − b
r
eikiz (2.39)
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where b is known as scattering length. We can call then λi and λf the initial and final states of
the target system, made of nucleus N in positions R1, ...,RN .

The properties of the scattering are encapsulated in the cross section, quantity that describes
the number of particles scattered in a certain region and it has the dimensions of an area. The
cross section can be actually computed starting from another similar quantity called partial

differential cross section which measures the number of neutrons scattered per second into a
solid angle dΩ = sinθdθdϕ with final energies between Ef and Ef + dEf and looks like:

d2σ

dΩdEf
(2.40)

The differential cross section can so be thought as a sum over all the possible processes that
ends with a state λf and a wave-vector kf in the direction θ, ω; using then the Fermi´s golden

rule to evaluate the transition rate from the state ⟨λi, λi| to the state ⟨λf , λf | and considering an
energy conservation condition, it is possible to arrive to an explicit expression of the differential
cross section like:

d2σ

dΩdEf
=
kf
ki

( m

2πℏ

)2
| ⟨kfλf |V |kiλi⟩ |δ(Eλi

− Eλf
+ Ei − Ef ) (2.41)

where the matrix element deriving from the Fermi´s golden rule can be written as:

| ⟨kfλf |V |kiλi⟩ | =
Φm

ℏk

∫
exp(−ikf · r)ζ∗λf

V exp(iki · r)ζλi
dRdr (2.42)

with Φ the incident flux of neutron, ζλi
and ζλf

the initial and final states of the target system,
r the vector position of the neutron and V the scattering potential. To obtain an explicit result
it is necessary then to choose an expression for the scattering potential V , which can be thought
as a sum of two main contributions: one that describes the scattering due to the strong nuclear
force and one due to the magnetic interactions. The two cases will be treated in the following.

Strong nuclear force potential

The interactions governed by the strong nuclear force are significant only if the distance between
the incoming neutron and one atom of the lattice is small, and we can therefore associate this
effect with a short range potential which can be written as:

V (r) = aδ(r) (2.43)

where we considered the atom in the origin, therefore R = 0. δ(r) is the Dirac delta, namely∫
space δ(r)dr = 1, while a is a real constant that can be determined inserting equation 2.43 in
2.46 and 2.42 and comparing the result with the scattering cross section with a single nucleus
computed from the flux and velocity of the neutrons. It is then possible to find that a = 2πℏ2

m b
and therefore the scattering potential becomes:

V (r) =
2πℏ2

m
bδ(r) (2.44)

The potential thus obtained is an approximation of the interaction potential between neutron
and nuclei, and it is called Fermi pseudopotential ; calling Q = kf − ki the scattering vector (or
momentum transfer) it is possible to write the Fourier transform of this potential as

V (Q) =
2πℏ2

m
beiQ·r (2.45)
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and this allows to find an expression for the differential cross section that looks like:

d2σ

dΩdEf
=

σ

4π

kf
ki
NS(Q, ω) (2.46)

where the function S(Q, ω) is called scattering function, and contains all the physics of the
process and the characteristics of the material under study, and it´s simply given by the Fourier
transform of the pair correlation function G(r, t).

Magnetic potential

As said from the beginning, the magnetic properties of magnetic ions are mainly due to unpaired
electrons, and therefore one can expect a considerable interaction between the neutrons (particle
with spin 1/2) and the magnetic ions of the sample.

To investigate this effect we can start by defining the magnetic dipole moment operator of the
neutron, given by:

µn = γµNσ (2.47)

where µN = eℏ
2mp

≃ 5.051 · 1027J/T is the nuclear magneton, γ = −1.913 is the gyromagnetic
ratio, and σ is the Pauli spin operator.

The magnetic interactions of a neutron can thus be summarized as the interaction between its
magnetic dipole moment and an external magnetic field B, namely:

Um = −µn ·B = −γµNσ ·B (2.48)

The magnetic field B will then be generated by the unpaired electron of the nucleus, and will
be made of two contributions, one due to the magnetic moment (spin) of the electron itself (Bs)
and the other due to its orbital momentum (BL). The first one can be written as the curl of a
vector potential A calculated with the magnetic moment µe of the electron, while the second is
derived directly from the law of Biot and Savart. The complete magnetic field can be written
so as:

B = Bs +BL =
µ0
4π

[
∇×

(
µe ×R

R3

)
− 2µB

ℏ

p×R

R3

]
(2.49)

Therefore, inserting the field just computed in relation 2.48, the magnetic interaction potential
will look like:

Um = −µ0
2π
γµNµBσ ·

[
∇×

(
s×R

R3

)
+

1

ℏ

p×R

R3

]
(2.50)

where we used the definition of the electron magnetic moment given by µe = γµBs with s the
electron spin operator.

As we did in the previous section we can so take the Fourier transform of the magnetic potential,
which will be a function of the scattering vector Q and can be written as:

Um(Q) =
2πℏ2

m

∑

j

pjFj(Q)δ(r − rj(t))) (2.51)

where the sum is performed over all the atoms of the systems in positions rj and the func-
tions Fj(Q) are the dimensionless magnetic form factor of the different atoms, so the Fourier
transform of the electric charge distribution in space. Furthermore, the pjs are the magnetic
scattering length of the electrons in the different atoms, and they have a analytical expression
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more complicated than the nuclear scattering length b since we are dealing now with a non-
central force. However the magnitude of p and b are comparable, so the magnetic and nuclear
scattering make a similar contribution to the neutron-atom interaction.

Having a formula for the interaction potential, it is again possible to derive the differential cross
section inserting equation 2.51 in equation 2.46 and this, indexing with α and β the Cartesian
coordinates x, y and z, leads to the expression2:

d2σ

dΩdω
=

γe2

mec2
kf
ki

∑

m,n

e−βEn

Z(T )
Im,n(Q)δ

(
ω − Em − En

ℏ

)
(2.52)

with

Im,n(Q) =
∑

i,j

Fi(Q)Fj(Q)eiQ·Ri,j

∑

α,β

(
δα,β − QαQβ

Q2

)
⟨n| Ŝi,α |m⟩ ⟨m| Ŝj,β |n⟩ (2.53)

where the sum is performed over the different magnetic ions and Ii,jλi,λf
(Q) is a function con-

structed out of the Bessel functions.

The quantity (δα,β − QαQβ

Q2 ) is called polarization factor and it allows the scattering only if the
magnetic moment is perpendicular to the scattering vector Q, otherwise no contribute is given
to the differential cross section; this allows so to detect the direction of the magnetic moment
by neutron scattering results. Moreover the dependency on the thermal population factor p, so
the probability to observe a specific transition, is also related to the temperature of the system
of ions, and so to the most probable energy eigenstates by which the system is described.

Even though it is not possible to directly observe it from this equation, it can be proven that
the possible transition are characterized by a maximal spin difference between the initial and
the final state of 1, which leads to the selection rules :

∆S = 0,±1 (2.54)

∆M = 0,±1 (2.55)

In general the result of the relation above is a complex number, in which the imaginary part
should cancel out; in fact usually the imaginary part is related to the absorption of the particle in
the scattering, but in this case this imaginary part come from just two sources, the exponential
and the matrix elements, but in non of there is anything about neutron absorption. Only the
result of interaction with the spin is included in the formula.

2.5.3 Powder and single crystal neutron scattering

Equation is the starting point for simulating neutron scattering experiments. It is therefore
possible to obtain the peak intensity of a powder sample by integrating the equation over the
entire solid angle dΩ, eliminating the dependence on the orientation of the vector Q. The
derivation of the final formula is complicated, and the result has already been derived and
implemented in a package of the code owMag called owIns. However, it is possible to obtain an
analogous formula in the case of crystalline samples, and this will be derived, implemented and
tested below in chapter 7.

2Computed in [20]
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Chapter 3

Al2Dy3 molecule

3.1 Compound: description and structure

The molecule studied in this thesis is a new compound synthesised in the Institute of Inorganic
Chemistry of the Karlsruhe Institute of Technology by dr. Thomas Ruppert, supervised by prof.
Annie K. Powell.

It consists of a core formed by three dysprosium ions (Dy3+) arranged in a triangular con-
figuration and two aluminium ions positioned along the axis of this triangle. A multitude of
other atoms, O, H, C, N , surrounds the central part of the molecule, forming what is called
the ligands structure. This structure influences the magnetic properties of the central ions, in
particular by introducing magnetic anisotropies, i.e. preferential directions in which the spins
tend to align. The ligand structure is designed to give high anisotropy values, and directions of
the anisotropy axes that can provide a good toroidicity to the molecule.

The scheme of the molecule, obtained through crystallographic measurements, is shown in figure
3.1, in which the complete structure of the ligands is shown (on the left) and a focus is made on
the central core (on the right).

Crystallographic measurements make it possible to derive the position of the different ions of
the molecule in a certain Cartesian reference system. For our purposes, however, we will only
be interested in the triangle of Dy ions, so it will be convenient to rotate the reference system
so that the three ions lie in the x-y plane, and one of the ions lies along the y axis. The z axis
then passes approximately through the centre of the Dy triangle. A scheme of the coordinate
frame and the position of the three Dy ions in it is shown in figure 3.2.

3.2 Magnetic properties

3.2.1 Dy3+ ions and Hilbert space dimension

As mentioned, the magnetic properties of the molecule are provided by the three triangularly
arranged dysprosium ions. Each dysprosium ion makes a contribution to the total ground state
magnetic moment of 15/2. A dysprosium atom can be represented in the notation:

[Xe]4f106s2

and so a Dy3+ ion will lose 3 of its electrons, 2 from the s orbital and 1 from the f orbital. 5
electrons will therefore remain unpaired, thus providing a spin contribution of 5 · 1

2 , i.e:

sDy3+ =
5

2
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Figure 3.1: Al2Dy3 chemical scheme of the molecule with all the surrounding ligands (on the left) and
a zoom in the core of it (on the right). The main focus will be on the three Dy ions, since they are the
ones that give the magnetic properties to the molecule.

Figure 3.2: Chosen Cartesian coordinate frame for the molecule, focusing on the 3 Dy ions. The Dy
triangle is lying on the x − y plane, and the z axis then passes approximately through the centre of
it. In the picture are shown the Cartesian coordinates of each ion obtained through crystallographic
measurements and rotated within the choice of the frame of reference.
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The ion´s orbital is then H type, so it will be characterised by an azimuthal quantum number
equal to:

ℓDy3+ = 5

By the rules for the sum of angular moments, there will thus be for each dysprosium a total
angular momentum equal to

jDy3+ =
15

2

So the dimension of the Hilbert space for a single ion will be:

dim(HDy3+) = 2j + 1 = 16

And, therefore, having 3 Dy ions, the total dimension of the Hilbert space of the molecule is:

dim(H3Dy3+) = 163 = 4096

The dimension found will also be the Hilbert space dimension of the entire molecule. In fact,
the only magnetic properties are given by the Dy ions, as the two Al3+ ions are non-magnetic,
as they do not have any unpaired electrons.

Since in our discussion we are interested in the total magnetic moment, a value that appears in
the Hamiltonian described in section 2.1, we will refer to it simply by the term ”spin” or ”total
spin”.

3.2.2 Susceptibility and magnetization

After the synthesis of the molecule, some magnetic measurements were carried out. In particular,
measurements of susceptibility as a function of temperature and of magnetization for different
temperatures as a function of the applied external magnetic field. In particular a superconducting
quantum interference device (SQUID) technique has been used, and the results have been plotted
in figure 3.3.

Figure 3.3: Acquired data of susceptibility χT as a function of the temperature (on the left) and mag-
netization M for different temperatures as a function of the magnetic field (on the right) for the Al2Dy3
molecule.
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The room temperature susceptibility χT reaches a value of 35 cm3Kmol−1, but at low T , how-
ever, the susceptibility is rapidly decreasing but without vanishing completely, as it happens in
[21].

The magnetization then shows an increasing trend starting with a zero value for zero magnetic
field and then increasing rapidly without showing an initial transient of zero magnetization
at low magnetic fields. For high magnetic fields, the sample is totally magnetised, given the
asymptotic behaviour of the magnetization, which settles around a value of 15 µB, irrespective
of the temperature at which the measurement is taken. The step in the magnetization that it
is possible to see around 1T is explained by the energy level crossing, and so by a transition
induced by the magnetic field between the first excited magnetic state and the ground state (see
chapter 5).

The aim will then be to fit these experimental data to derive the magnetic properties of the
molecule. In particular, we are interested in the orientation of the anisotropy axes of the three
Dy ions, which could give direct information on the spin orientation and thus on the toroidal
moment. The methodology and results of the fits will be shown in chapter 4.



Chapter 4

Fitting of experimental data

4.1 Algorithm and parameters

4.1.1 In-House program and fitting algorithm

The program used for analysing the experimental data and for the simulations that will be
shown in the following chapters is a code written in C language, developed in-house and called
owMag.

It requires a description of the molecular structure under analysis, specifying: the number of ions
involved; the magnetic coupling value (J ) between pairs of them; the total spin; the anisotropy
values (D and E ) and the orientation of the anisotropy axes via the angle triads (θ, ϕ, α); the
Landé factor (g). Further details concerning the simulation can be then specified, e.g. the type
of output files and their content, specific fit parameters etc. For using the effective model, then,
some commands allow us to specify the angles of local rotation of the anisotropy axes, and the
matrix elements to be considered and which ones to set to zero.

To simulate magnetization and susceptibility, the description of the molecule in the input file is
sufficient, obviously specifying the temperature and magnetic field ranges in which to simulate
the data. On the other hand, for what concerns the fits, the experimental data must also be
considered and fed to the code. It is therefore possible to specify in the input file the type of
data available, collected in an external text file, and its format and structure.

By populating and diagonalizing the Hamiltonian, the program can directly output the simula-
tion results, or proceed with several simulations for different parameter values to find the one
that best interpolates the data, thus performing a fit.

To perform those fits, owMag uses the Levenberg–Marquardt algorithm [15], which combines
two minimisation algorithms: the gradient descent method, in which the fit parameters are
updated following the steepest-descent direction, and the Gauss-Newton method, which aims
at minimising the least squares function. In particular, the function to be minimised used in
owMag is chosen to be the sum of the squares of the differences between the values to be fit
(ydatai ) and the fit values (ysimi ); in formulae:

χ2 =

data points∑

i

(ydatai − ysimi )2 (4.1)

Various choices can be made to normalise the differences shown in the equation in order to give
different weights to different points on the curve. These include, for example, dividing by a
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constant, by the experimental data or by the uncertainty on the experimental data. In owMag,
the first possibility was therefore adopted, choosing this constant equal to 1, in order to assign
the same weight to all the experimental points.

The standard method for the fit is therefore to proceed iteratively by minimising χ2; hence the
final result of the fit will be a configuration of values corresponding to a minimum of χ2 in
the parameter space. But, depending on the complexity of the landscape of χ2, this minimum
may be global, or only local. Therefore, the choice of the initial parameters may affect the final
results, and only parameters sufficiently close to the minimum may lead to convergence to the
global minimum.

To simulate susceptibility and magnetization in powder form, then, it is necessary to integrate
over all possible sample orientations, as described in section 2.3. For this purpose, the Romberg´s

method [15] for estimating definite integrals is used.

4.1.2 Choice of the fitting parameters

For the execution of the fits, it is necessary to weigh up the choice of the number and type of
parameters one wants to leave free to vary. The model used to describe the physics of the system
is in fact the Hamiltonian model shown in equation 2.1, in which a large number of degrees of
freedom appear; these include the parameters shown in table 4.1.

J1,2, J2,3, J3,1 Heisenberg couplings
D1, D2, D3

E1, E2, E3
Anisotropy parameters for each ion

theta1, phi1, alpha1 Anisotropy axis orientation first ion
theta2, phi2, alpha2 Anisotropy axis orientation second ion
theta3, phi3, alpha3 Anisotropy axis orientation third ion

g1, g2, g3 Landé factor for each ion
mscale Molar mass correction
χ0 Diamagnetic correction

Table 4.1: Possible fit parameters of the Hamiltonian model for a 3 ions system

Most of the parameters have already been described above, so particular attention can be paid
to the last two parameters.

Molar mass correction mscale

The crystal ((3,5-ditertbutylbenzoic acid)) synthesised containing the 3Dy molecules and used
for data collection, is unfortunately a system that allows for low accuracy regarding the purity
of the crystal, and consequently on its molar mass. This is due to the crystallisation process,
in which the amount of solvent (Isopropanol/Water C3H7OH) influences the final mass of the
compound due to the possibility of exchange of some of these molecules with those constituting
the sample. The normal correction of the molar mass of the system, by subtracting the molar
mass of the solvent, therefore, results in values that are not extremely accurate, and this may
affect the final values of the (molar) susceptibility and (molar) magnetization to be studied. To
take this deviation into account, it is therefore possible to use a corrective parameter mscale in
the fits, with a value around 1 for corrections that are not too large, which acts by rescaling
susceptibility and magnetization as:

χT = χTmscale

M =Mmscale

(4.2)
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Diamagnetic correction χ0

Similarly, another factor that may affect the goodness of the data collected is purely related to
an experimental aspect. By construction, the instrument used in the measurements can in fact
introduce diamagnetic contributions into the final data, connected, for example, to the material
from which the sample holder is made. This correction (called χ0) will act on susceptibility and
magnetization as a linear contribution in temperature or magnetic field respectively; one has in
fact:

χT → χT + χ0T

M →M + χ0B
(4.3)

Given this linear dependence, it is expected that the correction is more influential at high
magnetic fields and high temperatures. However, the measurements performed are obtained with
relatively low magnetic fields (order of T ) and consequently no great variations in magnetization
are expected. On the other hand, temperatures reach values in the order of 100° C, around which
the diamagnetic correction will be more important.

Parameters number reduction

The number of parameters listed in table 4.1 exceeds 20, so it is clear that the complexity of the
parameter space is extremely high. The aim is therefore to try to reduce the number of these
parameters by adopting different reasoning:

− Given the C3 symmetry of the molecule, with the dysprosium ions positioned approxi-
mately on the vertices of an equilateral triangle, it can be assumed that the parameters
related to the type of an ion are the same for all three of them. Accordingly, it is assumed
that

D1 = D2 = D3
def
= D,

E1 = E2 = E3
def
= E,

g1 = g2 = g3
def
= g

− In the high anisotropy approximation, thus allowing the effective model to be used, the
value of D will be irrelevant as long as it assumes sufficiently high values. It may therefore
be disregarded in the fit phase. Furthermore, considering the contribution of the anisotropy
as purely axial, the value of E is also irrelevant in the eigenvalues of energy, susceptibility
and magnetization, and can therefore also be set equal to 0 and neglected. Similarly,
with axial anisotropy, the alpha angle, which describes a rotation of the anisotropy tensor
around the principal axis, will make no contribution, and can be set at 0 for ease.

− For the same symmetry reasoning done before, the coupling value between ion pairs can
also be assumed constant, therefore:

J1,2 = J2,3 = J3,1
def
= J

− A further simplification can be achieved by reducing the number of parameters for describ-
ing the anisotropy axes. In particular, since the physics of the problem is independent of
the reference system, it is possible to choose an appropriate one in which one of the axes
(x axis) is parallel to the anisotropy axis of the first ion (theta1 = 90◦, phi1 = 0◦). In this
way it is possible to fix the anisotropy angles of the first ion and leave only those of the
other two free to vary.
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With these simplifications, we have therefore reduced the dimension of the parameter space to
8 degrees of freedom, namely:

J, theta2, phi2, theta3, phi3, g, mscale, χ0 (4.4)

However, the number of parameters is still very high when looking again at the experimental
curves in figure 3.3. The absence of particular features in the points leads to greater difficulty
in achieving an ideal fit and a case of overparametrization will have to be dealt with. One can
therefore expect the presence of several sets of parameters leading to the same simulated curve,
leaving aside the additional difficulty due to the possibility of the fit converging at a relative
minimum of the χ2 landscape.

4.2 Fitting the data in the effective model

4.2.1 Starting point: ideal configuration

As a first indication, from crystallographic measurements, we know that the dysprosium ions
are positioned approximately at the vertices of an equilateral triangle, and the molecule is
synthesised with the aim of having a good toroidicity (see chapter 6). In particular, we can
choose the orientation of the anisotropy axes so that they lie in the plane of the 3Dy triangle,
with azimuthal angles 120° apart. Under the assumption of high anisotropy, the Heisenberg
coupling J can then be chosen to be of low intensity and antiferromagnetic (J < 0), while the
diamagnetic and molar mass corrections can be initialised to 0 and 1 respectively, so that they
make no contribution. Moreover the Landé factor can be chosen as the theoretical one for Dy
ions, namely g = 4/3. Summarising what has been said so far, the choice of initial parameters
therefore results (see table 4.2):

J theta2 phi2 theta3 phi3 g mscale χ0

-0.05 K 90° 120° 90° 240° 1.33333 1 0 cm3Kmol−1

Table 4.2: Choice of the initial parameters supposing the 3Dy ions in an ideal configuration to maximize
the toroidicity.

A further simplification that can be initially adopted is to fix the position of the azimuthal angles
phi (0°, 120° and 240°) and to leave the polar angles theta free to vary at the same time, thus

imposing theta1 = theta2 = theta3
def
= theta. In the following we will refer to this configuration

as ”umbrella configuration”. The parameters to fit, with their initial values, will reduce therefore
to (table 4.3):

J theta g mscale χ0

-0.05 K 90° 1.33333 1 0 cm3Kmol−1

Table 4.3: Choice of the initial parameters in the umbrella configuration, thus fixing the phi angles to 0°,
120° and 240° and using the same polar angle theta for all the three ions.

Before going into the fit procedure, it is possible to compare the experimental curves with those
simulated using the parameters of the ideal configuration described above. The result can be
seen in figure 4.1, where, as conventionally adopted in the following, the experimental data are
shown as points in the graph, while the simulated (or fit) curves are shown as solid lines.
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Figure 4.1: Susceptibility and magnetization simulation (lines) for the ideal configuration, so with the
parameters of table 4.3, superimposed to the experimental data (points).

The simulated curves for the ideal configuration thus show a similar trend to the experimental
data, but they only overlap them in the extreme regions of the independent coordinate, while
in the majority of the graph the description of the system is clearly ineffective, which is also
confirmed by the high χ2 values shown inside the plots.

4.2.2 Role of each parameter in the simulated curves

As seen before, the ideal configuration does not lead to an acceptable representation of the data,
so an optimisation of the parameters is necessary. Before proceeding with the actual fits, it is
useful to gain a feeling for how larger or smaller variations in the parameters lead to larger or
smaller changes in the susceptibility and magnetization graphs. This will also make it possible to
assess how far the initial configuration is from the ideal fit, and to possibly adjust the initial fit
parameters in order to increase the probability of converging to the absolute minimum of the χ2.
We then vary one parameter at a time by values around those of the ideal configuration. And we
show then the corresponding simulated susceptibility and magnetization curves superimposed
to the usual experimental curve. The result is shown in the figures 4.2 and 4.3.
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Figure 4.2: Comparison between different simulated susceptibility and magnetization curves for different
values of the parameters: J coupling, polar angle theta and Landé factor g. Experimental data represented
by points.
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Figure 4.3: Comparison between different simulated susceptibility and magnetization curves for different
values of the parameters: diamagnetic correction χ0 and molar mass correction mscale. Experimental
data represented by points.

It can be seen from the graphs that the parameters of the ideal configuration are close to the
representation of the experimental data, but some adjustments are necessary. In particular, one
can expect a decrease in the polar angles theta with respect to the value theta = 90◦ in which
the anisotropy axes are arranged in the plane of the ions, as well as a value < 1 for the molar
mass correction and a reduction also in the Landé factor g. Nevertheless the parameters of the
ideal configuration seem to be a good starting point for fits, which will be discussed in more
detail in the next section.

4.2.3 Fit of 5 parameters: coupling, polar angle and corrections

One can then start the fit procedure by directly considering the five parameters shown in table
4.3, and simultaneously fit the magnetization and susceptibility data. The same table also shows
the initial fit values, which, as explained above, contribute to the goodness of the final results
and to the convergence of the algorithm in the global minimum or in a local minimum. The fit
converged to a minimum value of χ2 after 30 iterations, and the results are shown in picture 4.4
and table 4.4.
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Figure 4.4: Direct fit of both susceptibility and magnetization with 5 degrees of freedom with initial
parameters of table 4.3, so in the ideal configuration.

J −0.108(8) K
theta 80.0(7)◦

g 1.178(11)
mscale 1.091(17)
χ0 0.0200(12) cm3Kmol−1

Table 4.4: Fit parameters with initial parameters in the ideal configuration.

The results obtained show good agreement of the magnetization with the experimental data,
while a particularly different trend is seen with regard to the susceptibility. A quantitative
measure of the goodness of the two fits can be seen in the χ2s values, directly shown in the
plots.

With suspected convergence in a local minimum, therefore, one can attempt to improve the fit
result by changing the values of the initial parameters. In particular, as seen in figures 4.2 and
4.3, better trends are obtained by reducing the value of the theta angles, and the value of the
Landé factor g. We therefore repeat the fit using as initial parameters the values that provided
the smaller χ2 results in those simulations.

Moreover, the linear trend of the susceptibility for temperatures above 50°, with a slope that
does not respect the experimental data, suggests a too high value of the diamagnetic correction
χ0, which, remembering what was said before, gives a contribution of type χ0T , therefore linear
in temperature. In the following fits, it was therefore decided to initially set the value of χ0 to
0.005, as it can be seen in figure 4.3 that it only varies at temperatures > 50◦, and this curve is
the closest to the slope of the experimental data. After performing the fit with the value of χ0

fixed, a second fit is performed, leaving only χ0 free to vary, and fixing all the other parameters
according to the results of the first fit.

The initial parameters are shown in table 4.5 and the results in figure 4.5 and table 4.6.
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J theta g mscale

-0.05 K 20° 1.29 0.9

Table 4.5: Initial parameters choosing the one that gave the smallest χ2 values in the simulations of
figures 4.2 and 4.3.

Figure 4.5: Direct fit of both susceptibility and magnetization with 5 degrees of freedom with initial
parameters of table 4.5.

J −0.044(2) K
theta 22.0(9)◦

g 1.278(7)
mscale 1.015(1)
χ0 0.0078(5) cm3Kmol−1

Table 4.6: Fit parameters with initial parameters of table 4.5.

The fit converged after 41 iterations, reducing the χ2s of susceptibility and magnetization re-
spectively by a factor of 3 and a factor of 1.5.

The fit parameters obtained allow a good description of the physical model, but once again it
is possible that the global minimum was not reached. To check whether this is the case, it is
possible to directly observe the landscape of the χ2 as a function of two parameters at a time.
We then choose the pairs J − theta and mscale − g, and proceed to simulate the susceptibility
and magnetization curves for each pair of values by deriving a value for χ2. In figure 4.6, the
two landscapes for susceptibility and magnetization are shown separately (figures 4.6a and 4.6b)
and then superimposed in figure 4.6c. The plot in figure 4.6d then shows the total chi square
calculated as the sum of χ2

susc and χ2
magn. For each plot, it is then highlighted the point that

minimises the χ2 in the different cases considered.
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Figure 4.6: χ2 landscapes for the couple of parameters J − theta relative to susceptibility (a) and
magnetization (b). In plot (d) we superimposed the landscapes shown in (a) and (b), while in (d)
one can see the sum of the two χ2s. The blue points show in each case the couple of parameters that
minimizes the χ2.
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Figure 4.7: See figure 4.6 for parameters mscale − g.

The landscapes shown do not appear to have overly complicated elements, so it is possible to
ascertain that the configuration found is a global minimum of χ2 both visually and by comparing
the point of minimum of the landscapes with that obtained by fit of table 4.4. From the graph
in figure 1, it can also be seen that the mscale and g parameters are linked to each other, but
the mscale parameter does not affect the fit in a extremely significant way. It does, however,
allow the fit to be corrected and improved, taking into account the experimental difficulties in
measuring the molar mass of the molecule, so it will still be considered as a fit parameter.

4.2.4 Fit including other parameters

In the fits performed so far, we have reduced the number of parameters to a minimum, looking
for the simplest model close to the ideal configuration that could give a good interpretation of
the experimental data. The result obtained is satisfactory, but the question arises as to whether
the addition of further parameters can significantly improve the result of the fit.

In the following three subsections we will therefore add some fit parameters, in particular:
considering the ideal configuration but with three different theta angles free to vary, one for
each ion; ideal configuration with the same theta angle for each ion, but leaving the phi angles
free to vary, setting the ideal angles 0°, 120° and 240° as initial parameters; complete fit with
three different theta angles and three different phi angles.

For each case, a table is shown with the initial fit parameters, the corresponding graphs with
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the susceptibility and magnetization curves, and a table with the values resulting from the fit.
As before, the value of χ2 is shown within the graphs.

Different three theta angles, ideal phi angles

J theta1 theta2 theta3 g mscale

-0.05 K 20° 20° 20° 1.29 0.9

Table 4.7: Initial parameters of the fit letting change all the three theta angles individually.

Figure 4.8: Direct fit of both susceptibility and magnetization with initial parameters shown in table 4.7,
and adjusting the χ0 value with a second individual fit.

J −0.088(11) K theta1 11.5(1.7)◦

g 1.264(8) theta2 41(88)◦

mscale 1.046(12) theta3 41(88)◦

χ0 0.0063(5) cm3Kmol−1

Table 4.8: Fit results with initial parameters of table 4.5.

Different three phi angles free to vary

J theta phi1 phi2 phi3 g mscale

-0.05 K 20° 0° 120° 240° 1.29 0.9

Table 4.9: Initial parameters of the fit letting change also the phi angles individually.
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Figure 4.9: Direct fit of both susceptibility and magnetization with initial parameters shown in table 4.9,
and adjusting the χ0 value with a second individual fit.

J −0.043(8) K phi1 −19(77)◦

g 1.23(11) phi2 175(86)◦

mscale 1.012(17) phi3 259(138)◦

theta 25(7)◦ χ0 0.0067(5) cm3Kmol−1

Table 4.10: Fit results with initial parameters of table 4.9.

Different three phi and three theta angles free to vary

J theta1 theta2 theta3 phi1 phi2 phi3 g mscale

-0.05 K 20° 20° 20° 0° 120° 240° 1.29 0.9

Table 4.11: Initial parameters of the fit letting change both the phi and the theta angles individually.
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Figure 4.10: Direct fit of both susceptibility and magnetization with initial parameters shown in table
4.11, and adjusting the χ0 value with a second individual fit.

J −0.065(17) K mscale 1.030(17)
theta1 32(52)◦ phi1 295(79)◦

theta2 51(67)◦ phi2 37(55)◦

theta −10(55)◦ phi3 251(120)◦

g 1.273(11) χ0 0.0065(5) cm3Kmol−1

Table 4.12: Fit results with initial parameters of table 4.11.

4.2.5 Final considerations on the models: role of the azimuthal phi angles

The previous fitting attempts show that the addition of further parameters does not lead to any
improvement in the magnetization, but only slightly in the susceptibility (see the case of three
different theta angles).

The fit results show that the parameters also considered previously (J , mscale, theta, g, χ0)
always assume similar values and with acceptable accuracies. However, the results of the theta
and/or phi angles show extremely high uncertainties, comparable with the values themselves, a
sign of a low influence in the final curves of the fits.

We can empirically verify the non-dependence of the powder magnetization and susceptibility on
the phi angles. To do this in figure 4.11 are shown the graphs of susceptibility and magnetization
for different phi angle configurations of the anisotropy axes. All phi angles were increased by
the same ∆phi value, or the phi angle of a single ion was changed, or all angles were changed
independently. In particular are shown the configurations of phi angles (0°, 120°, 240°) and (90°,
210°, 330°), i.e. those which will then provide the maximum and minimum toroidal moment.



4.3. SIMULATION WITH THE FULL MODEL 41

Figure 4.11: Simulations of susceptibility and magnetization for different configurations of phi angles and
for the other parameters obtained from the fit relative to table 4.6. The simulations (solid lines) are
superimposed to the experimental data (points).

The figure thus clearly shows a negligible dependence of the simulated curves on the choice of
phi angles. This therefore has a fundamental consequence on the toroidicity of the molecule.
In fact, it has been possible to derive the tilting of theta angles with respect to the plane in
which the ions lie, but no information can be derived on the phi angles. As mentioned earlier,
therefore, the configurations exhibiting the highest and lowest toroidicity (choosing the same
theta angles) have the same powder magnetization and susceptibility values.

Thus, no complete information on the toroidicity can be derived from the common measurements
in a powder sample of magnetization and susceptibility, and different experimental techniques
has to be investigated (Inelastic Neutron Scattering).

4.3 Simulation with the full model

Given the results obtained, we can therefore follow the principle of Occam’s razor and consider
the simplest model to describe the experimental data, having thus shown how the ideal config-
uration with polar angles theta slightly inclined with respect to the axis perpendicular to the
plane provides a satisfactory result. Therefore, as mentioned above, the fits performed so far
have been carried out using the effective Hamiltonian model in order to reduce the computa-
tional time. We have already shown that the effective model and the full model provide results
that are extremely close to each other.

However, it is good practice to check that the fit parameters obtained with the effective model
also describe the experimental data with the same accuracy as with the full model. Since the
simulations (without fit) can also be performed in a reasonable time in the full model, we proceed
to simulate the susceptibility and magnetization curves using the fit parameters shown in table
4.4.
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Figure 4.12: Simulation in the full model using the parameters found through the fit and shown in table
4.4. The green curve of the susceptibility is obtained fitting only the diamagnetic correction χ0.

The simulation performed with the full model gives practically the same results for the magne-
tization, while the susceptibility (red curve in the left graph) shows a trend that diverges from
the data for temperatures higher than about 50 K. As explained previously, the effective model
focuses on the ground state, i.e. to the low temperatures range, and neglects possible state
mixing with high lying states.

However, at high temperatures, the contribution of the diamagnetic correction χ0 becomes
important. Maintaining the same parameters used for the simulation, we have therefore allowed
χ0 to vary and fitted this parameter. The result of the fit is therefore a diamagnetic correction
of χ0 = 0.0046(6) cm3Kmol−1, and the susceptibility curve (plot in green) returns to correctly
overlay the experimental data.

We can therefore once again confirm the reliability of the effective model, barring any corrections
at high temperatures, and validate the parameter values obtained by fit.



Chapter 5

Energy eigenvalues: exploration in
the parameter range

5.1 C3-fold symmetry and relation with the energy eigenvalues

As described previously (chapter 3), the molecule under study shows a particular geometrical
structure made up of the three Dy ions and of the surrounding ligands. One can therefore
expect this structure to present a symmetric behaviour, and in particular, due to the triangular
arrangement of the Dy ions, a C3-fold rotation symmetry can be investigated. The geometrical
shape of the molecule and its properties should remain so unchanged under rotations of 2

3π
around its principal axis, that in this case, due to the choice of the reference system described
in section 3.1, correspons to the z axis, which is approximately the perpendicular to the Dy
triangle plane passing through the central point.

In this instance we will focus on the energy response of the molecule if an external magnetic
field is applied, and, in particular, on how the direction of this field affects the energy spectrum
of the system. Using the standard configuration of the molecule and the same frame of reference
described in section 3.1, we can apply an external unitary magnetic field B = 1T changing its
orientation with respect to the xy plane (ϕB angle) and the yz (θB angle) and looking at the
lowest energy eigenvalue E0 of the molecule. The result is plotted in figure 5.1.

For clarity of exposition, one can also see the same behaviour in plots in figure 5.2, in which the
same data have been plotted fixing the angles θB and then ϕB respectively to 90 and 120.

From these graphs it is straightforward to recognize a 3-fold periodicity of 120◦, which come
from the C3-fold symmetry, when the B field is spanned around the Dys plane. But in addition
to this, one can also notice a periodicity of 60◦, so a duplication into 6 folds. This is caused
by the fact that a rotation of the anisotropy axes of 180◦ leads to the same results, since that
the anisotropy is described by an axes and not by a vector. This behaviour is a confirm of the
symmetry under study, and can be analytically proven looking at the anisotropy tensors D of
each ion. In table 5.1, are shown these tensors, obtained rotating the initial diagonal matrix
Dunrotated accordingly to the angles of the standard configuration.

It is so possible to verify the validity of the following relations:

D2 = Rφ=120D1RT
φ=120

D3 = Rφ=120D2RT
φ=120

D1 = Rφ=120D3RT
φ=120

D3 = Rφ=60D1RT
φ=60

D1 = Rφ=60D2RT
φ=60

D2 = Rφ=60D3RT
φ=60

(5.1)

43
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Figure 5.1: Lowest energy eigenvalue changing the orientation of the magnetic field acting on the 3Dy
molecule in the ideal configuration.

Figure 5.2: Lowest energy eigenvalue changing the rotating the magnetic field along the xy plane (on the
left) or perpendicular that (on the right).

Dunrotated D1(90,0,0) D2(90,120,0) D3(90,240,0)
100 0 0 -200 0 0 25 129.9 0 25 -129.9 0
0 100 0 0 100 0 129.9 -125 0 -129.9 -125 0
0 0 -200 0 0 100 0 0 -100 0 0 100

Table 5.1: Anisotropy tensors of the three ions rotating the initial matrix built with D = −200 and
E = 0.

where Rφ is the rotational matrix of a certain angle φ around the z axis. These relations confirm
so that the anisotropy axes are C3 fold symmetric, since the same matrices are obtained starting
from one of the three ion and rotating it of 60◦ or of 240◦, thus obtaining the same anisotropy
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axis in the positive or negative direction.

5.2 Effects of anisotropy and exchange coupling individually

Isolated ions: only Zeeman effect

To deeply understand the energetic behaviour of the molecule, we can analyze the first energy
eigenvalues when an external magnetic field of different intensities is applied. Starting from the
case of J = 0 and D = 0, we are here neglecting completely the coupling between the spins and
the interaction with the ligands, considering only the one with an external magnetic field. The
Hamiltonian will therefore be reduced to a single contribution made by the Zeeman term:

H = µBgLSB (5.2)

and this leads to the lowest energy values when all spins are aligned with the magnetic field,
while any misalignment increases the energy of the system to that of a state in which all spins
have the opposite direction to the field. This behaviour is present independently on the direction
of the magnetic field, since no couplings or ansiotropies are considered.

The resulting energy levels with their degeneracies are shown in figure 5.3.

Figure 5.3: First 8 energy eigenvalues (complete calculation in the inset plots) as a function of the
magnetic field oriented along the 3 axes for zero values of J and D.

From the inset plot of figure 5.3, one can see that there is no longer a clear separation between
the first eight energy levels and the remaining excited states, and the spectrum will therefore
be free of large energy gaps.
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The slopes of the straight lines of the E(B) plot will be simply given by δE = µBgS, where S
is the total spin of the state. The latter assumes the values 15

2 · 3 in the ground state, with all
the three spins equal to 15

2 , the value 15
2 · 2 + 13

2 when one ion is in the first excited state, and
so on.

In table 5.2 it is so possible to compare the theoretical value computed as discussed above,
considering a value of the Bohr magneton equal to µB = 0.671714 KT−1, with the slope of the
simulated energies for the 3Dy3+ molecule obtained with a linear fit.

Simulation slope Theoretical calculation Spin state(s)

-20.15138 -20.15141
∣∣15
2 ,

15
2 ,

15
2

〉

-19.25577 -19.25580
∣∣13
2 ,

15
2 ,

15
2

〉
,
∣∣15
2 ,

13
2 ,

15
2

〉
,
∣∣15
2 ,

15
2 ,

13
2

〉

-18.36016 -18.36018
∣∣11
2 ,

15
2 ,

15
2

〉
,
∣∣15
2 ,

11
2 ,

15
2

〉
,
∣∣15
2 ,

15
2 ,

11
2

〉
,∣∣15

2 ,
13
2 ,

13
2

〉
,
∣∣13
2 ,

15
2 ,

13
2

〉
,
∣∣13
2 ,

13
2 ,

15
2

〉

Table 5.2: Energy eigenvalues of the first 8 states applying a magnetic field to the 3Dy molecule neglecting
possible Heisenberg coupling J or local anisotropies D.

Note that the state with degeneration 4 in the figure would also include two further states (shown
instead in the table) that have been excluded from the first 8 energy levels of the ground state.

With a similar reasoning it is straightforward also to explain the degeneracy values of each
energy state, simply considering that the total energy must be the sum of the energies of each
of the three ions. The spin of the the Dy ion is 15/2, so it leads to 2s+1=16 different states,
and, in particular, the ground state is given only by the combination of the three groundstates
of the three ions, so only the 15

2 · 3 combination is possible.

The first excited state is then given by the combination of two ions in the ground state and
one in the excited state, which leads to 3 possible configurations. The third excited state is
then given by two ions in the first excited state and one in the ground state, or by two ions
in the ground state and one in the second excited state, leading to 6 different configurations
since the energy difference between two consecutive states is the same and the energy states are
equidistant.

Including an anisotropy D term

Introducing now an anisotropy term D the molecule will decrease its energy when the spins
are aligned with the relative anisotropy axis. And, in the case of the high-anisotropy regime, a
considerable energy gap will open between the lower 8 energy states and the higher lying states.
The value of this gap will be comparable with the chosen anisotropy value. See figure 5.4.

In the ground state, one will therefore no longer find a spin of value 13/2, but combinations
of spin +15/2 and -15/2 (in the local frame of reference in which the z axes is aligned to the
anisotropy axes). This is due to the strong tendency of the spins to align with the axes of
anisotropy, in absence of other interactions. Any misalignment leads to higher energy levels,
while the presence of the magnetic field leads to a further contribution of energy that divides
the energy levels themselves.

In figures 5.5, 5.6 and 5.7 it is possible to observe the behaviour of the energy eigenvalues as
a function of an external magnetic field for different values of anisotropy. The first 32 energy
eigenvalues were considered, 8 of which correspond, including the anisotropy term, to the low
lying states and the remaining 24 to the excited states.

Applying now a magnetic field, in both directions x and y the progressive increase in the
anisotropy leads to a splitting of the eigenvalues, creating a gap between the first 8 eigenvalues
and the excited ones. There is so a separation, as mentioned above, between the eigenstates



5.2. EFFECTS OF ANISOTROPY AND EXCHANGE COUPLING INDIVIDUALLY 47

Figure 5.4: Energy eigenvalues of the 3Dy molecule with an anisotropy term D = −100 K and in absence
of external magnetic fields..

Figure 5.5: Eigenvalues as a function of the magnetic field applied in the x direction for different values
of anisotropy.
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Figure 5.6: Eigenvalues as a function of the magnetic field applied in the y direction for different values
of anisotropy.

formed by spin ±15/2 and those formed by other possible combinations. For very low values of
anisotropy, the magnetic field appears to have the main impact on the energy structure, finding
a similar trend to that shown for D = 0 in figure 5.3.

When, on the other hand, the anisotropy term assumes high values, the spins of the ions tend
to align with these axes, thus, by construction, parallel to the plane in which the Dy triangle
lies. This explains why the magnetic field turns out to have a negligible effect when it is
perpendicular to the ions plane (fig. 5.7). In fact, the energy contribution depends on the scalar
product between the magnetic field and the spin vector, a product that is zero when the two
vectors are perpendicular to each other. If, on the other hand, the field lies on the plane, it
leads to a splitting effect of the energies, visible both in the low lying states and in the high
lying states. It is then clear how the magnetic field leads to different energy values depending
on its orientation in the plane, as mentioned in the figure 5.1.

We can see then in the plots an horizontal energy line that presents a degeneracy 2. These lines
can be traced back to the states

∣∣+15
2 , +15

2 , +15
2

〉
and

∣∣−15
2 , −15

2 , −15
2

〉
(see figure in the central

raw of table 5.3) in which there is a cancellation of the Zeeman contribution, since the sum
of the scalar products between the spins and magnetic field is zero. In this configuration, the
increase in the modulus of the magnetic field has no influence on the energy eigenvalues, which
are therefore constant.

The other lines of the 8 low lying states spectra are symmetrical to the horizontal one just
described. These describe the states in which the spins take mixed +15/2 and −15/2 values,
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Figure 5.7: Eigenvalues as a function of the magnetic field applied in the z direction for different values
of anisotropy.

thus leading to a non-zero Zeeman contribution. To numerically clarify what has been said, in
table 5.3 are shown the 8 possible low lying states with the relative slopes of the line in the
E(Bx) plane. These values has been appropriately compared with the relative theoretical one
obtained in a similar manner to that of relation 5.2.

Similar results could be found rotating the magnetic field in the y direction, with 4 degenerate
configurations in which the Zeeman contribution is cancelled out (horizontal line with degeneracy
4 in the figure 5.6 for D=-10 K). Two other states with degeneracy 2 each will then split with
respectively higher and lower energy than the central state just mentioned. It is therefore clear
how different directions of the magnetic field lead to different energy eigenvalues.

Including Heisenberg coupling J

As mentioned in the theoretical introduction chapter, the Heisenberg coupling term, described
by the Hamiltonian −∑i,j Ji,jSi · Sj , tends to align the different spins between each other,
reducing the energy of the system when they are parallel to each other. Excluding anisotropy
terms, it is therefore clear that the direction of a possible external magnetic field has no influence
on the energy structure, since the spins will tend to align with each other and with the magnetic
field itself. In figure 5.8 it is shown the energy spectrum as a function of an external magnetic
field for different values of the Heisenberg J coupling.

Given the low coupling values considered, the magnetic field will have a greater influence on the
energy structure; indeed, the same pattern can be recognised as found above in the absence of
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Spin scheme Spin state Slope (KT−1)

∣∣+15
2 , −15

2 , −15
2

〉
13.434

∣∣+15
2 , −15

2 , +15
2

〉
6.717

∣∣+15
2 , +15

2 , −15
2

〉
6.717

∣∣−15
2 , −15

2 , −15
2

〉
0

∣∣+15
2 , +15

2 , +15
2

〉
0

∣∣−15
2 , −15

2 , +15
2

〉
-6.717

∣∣−15
2 , +15

2 , −15
2

〉
-6.717

∣∣−15
2 , +15

2 , +15
2

〉
-13.434

Table 5.3: Spin ground states of the 3Dy system with an anisotropy value of D=-10 K and an external
magnetic field pointing in the x direction.

interactions for sufficiently large magnetic fields. When, on the other hand, the coupling and
Zeeman effects are comparable, i.e. at low values of the B field, a splitting in energy creates
small gaps between the eigenvalues, as can be seen in the inset plots of figure 5.8.

5.3 Ground state and low lying energy behaviour

In the low exchange coupling approximation, i.e. strong anisotropy, the spins of the ions will
then be forced to position themselves parallel to the anisotropy axes, thus at 120° from each
other, separating the first octet of states from the remaining high-energy states. As explained
in Chapter 2.2, this circumstance makes it possible to apply an effective Hamiltonian model,
neglecting the high-energy states and considering only the first octet, thus considerably reducing
the computation time and facilitating the interpretation of the results obtained.
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Figure 5.8: 3Dy energy spectrum as a function of an external magnetic field for different values of the
Heisenberg coupling J . Enlargements of the initial region of low fields in the inset plots.

In this case, the anisotropy value will no longer contribute to the energy values, but only to the
selection of the octet ground states and its separation from the other states. The Hamiltonian
will therefore consist of only two contributions: the Heisenberg coupling and the Zeeman terms.

Heisenberg coupling J

In the case of zero magnetic field, the energy term given by the Heisenberg coupling will tend,
in the case of the antiferromagnetic interactions under consideration, to maximise the angles
between the spin pairs in order to reduce the energy of the system. Thus, in the low exchange
coupling approximation, a ground state formed by the

∣∣+15
2 , +15

2 , +15
2

〉
and

∣∣−15
2 , −15

2 , −15
2

〉
con-

figurations can be expected, while the other 6 spin configurations, with mixed signs, will be at
higher energy levels in a degenerate state.

In figure 5.9, one can see what is described by observing the behaviour of the energy as a function
of the modulus of the J term.

As done above, it is possible to calculate the slope in the straight lines in the graph 5.9 using
the Heisenberg Hamiltonian term, thus simply calculating the scalar product between the spin
vectors ±15

2 and separated from each other by angles of 120 and 240°. The results are shown in
table 5.4.
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Figure 5.9: 3Dy energy spectrum as a function of an external magnetic field for different values of the
Heisenberg coupling J. Enlargements of the initial region of low fields in the inset plots.

In addition, it is possible to calculate the energy splitting introduced by the J term for J =
−0.05 K simply by calculating the difference between the eigenvalues of two states with different
energy. One can obtain the value:

∆E(J = −0.05 K) = 5.625 K (5.3)

Spin state Slope (KT−1)∣∣+15
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〉
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2

〉

Table 5.4: Spin ground states of the 3Dy system as a function of an increasing Heisenberg coupling within
the effective model.

Heisenberg coupling and magnetic field

Now including a strong anisotropy term and an external magnetic field, it is possible to plot the
energy eigenvalues by applying B along the three Cartesian axes, as done in figure 5.10.

The trends are similar to those seen in figures 5.5, 5.6 and 5.7 for anisotropy value ofD = −10 K,
in the three directions of the field, but now a further contribution, given by the coupling between
the spins, leads to a splitting of the

∣∣+15
2 , +15

2 , +15
2

〉
and

∣∣−15
2 , −15

2 , −15
2

〉
states, degenerates, with

respect to the other energy states, opening a gap of the same value as shown in the equation
5.3.
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Figure 5.10: First 8 eigenvalues as a function of the intensity of the magnetic field oriented in three
directions along the three axes, showing the degeneracy of each state.

So for sufficiently low field values, spin
∣∣±15

2 ,±15
2 ,±15

2

〉
configurations will be found in the lower

energy levels. However, the situation is changed by increasing the value of the magnetic field,
leading to a level crossing and thus a variation of the lower energy states. Taking the case in
which B is directed along x as an example, state

∣∣±15
2 ,±15

2 ,±15
2

〉
will be in the ground state

up to values of B approximately equal to 0.4 T , and then prefer state
∣∣−15

2 , +15
2 , +15

2

〉
, in which

the spins will tend to point more in the direction of the magnetic field itself, as far as allowed
by the anisotropy (see last row of table 5.3).

A similar behaviour can be observed if the field is directed along the y axis, following the same
arguments as above. If, on the other hand, B is perpendicular to the plane of the ions, i.e.
in the z direction, it will have no effect on the energy eigenvalues, which will be constant as
B varies and divided by the Heisenberg term into two energy levels with degeneracy 2 and 6.
Note, however, the difference between the right-hand graph in figure 5.10, and the graph for
D = −10 K in figure 5.7. In the first case there is a splitting due to the J term, as just described,
while in the second case the 8 eigenvalues are degenerate in the ground state, and the gap visible
in the graph relates to the difference in energy between the degenerate low-energy octet and the
excited states, separated by an energy value proportional to the constant D.

General B field on xy plane

For the sake of completeness, we also present the results obtained by applying a magnetic field
in the xy plane, containing the three dysprosium ions, but with different orientations to those
discussed above, i.e. along the x and y axes. Calling ϕB the azimuthal coordinate of the magnetic
field in the plane, the energy spectra obtained for some different angles are shown in the figure
5.11. The angles chosen range from 0 to 180°, since for higher values, the magnetic field lies
along the same directions but with opposite sign, so the same energy patterns are found, where
however the different lines refer to spin states with opposite sign. In addition, as anticipated
in figure 5.1, the C3 symmetry of the molecule makes it possible to study the eigenvalues for
angles of B between 0 and 60°, then finding the same energy pattern for higher rotations.

Given again the symmetry of the molecule, the spin arrangement in states
∣∣±15

2 ,±15
2 ,±15

2

〉

leads to a zero total magnetic moment, so interaction with the magnetic field will not produce
any Zeeman term. This happens regardless of the direction of the field, thus resulting in two
horizontal energy lines with degeneracy 2. Mathematically, this can be shown by explicitly
calculating the Zeeman term as the sum of the scalar products between magnetic field and spin
vectors. For spin orientations of 0°, 120° and 240° and for a magnetic field of modulus B and
azimuthal coordinate φB, and neglecting the constants, one can write:
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Figure 5.11: Eigenvalues of the 3Dy molecule applying a magnetic field of different intensities for different
azimuthal directions in the xy plane.

∑
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Where the result is zero for S1 = S2 = S3 and regardless of the choice of φB.

5.4 Tilting polar and azimuthal angles

Having understood how to interpret the spectrum of the eigenvalues by including the different
terms of the Hamiltonian, it is possible to take a step further by moving slightly away from the
ideal configuration and observe the behaviour of the system for a more general first case. In
particular, as seen in chapter 4, the experimental data of the 3Dy molecule can be described
by a model in which the spin vectors remain separated from each other by 120° along the phi

component, while being tilted with respect to the ions´ plane by the same angle theta ̸= 90◦.

To approach the experimental case, therefore, one can plot the set of eigenvalues as done so far
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by considering different umbrella angles for the spin inclinations. The results for a field along
the x and y components are shown in figure 5.12.

Figure 5.12: First 8 eigenvalues as a function of the intensity of the magnetic field oriented along x and
y for different theta angles configurations.

In both directions of the magnetic field, it can be seen that the structure of the eigenvalues
corresponding to states with mixed signs (inclined lines) is similar to the one obtained in the
case of the ideal configuration. There is then a slight decrease in the slopes of the lines as
theta angle decreases, due to the reduction of the cosine between the (fixed) magnetic field
vector and the spin vectors. The most noteworthy variation, however, is related to the states∣∣±15

2 ,±15
2 ,±15

2

〉
, whose energy level, given by the horizontal line in the graph, increases in

energy as the theta angle decreases, crossing the other rows of eigenvalues from bottom to top.

As one may recall, the splitting between states
∣∣±15

2 ,±15
2 ,±15

2

〉
and the other mixed-sign states

is related to the Heisenberg coupling term, given by the relation −
∑

i,j Ji,jSi · Sj . From the
graphs, it is clear how this term decreases as theta decreases until it reaches a value of about
55◦, where it is zero, and then increases again as theta decreases. This phenomenon, depending
on the coupling term, is linked to the value of the scalar product between the spin vectors,
and thus in particular to the angle formed between them. With this in mind, it is possible to
analytically calculate the value of theta for which state

∣∣±15
2 ,±15

2 ,±15
2

〉
starts to be at a higher

energy than the other states of the octet. To do this we can consider two spin vectors, which
can be written in Cartesian coordinates as a function of theta and phi angles as:

s1 = s1



cos(φ1)sin(θ1)
sin(φ1)sin(θ1)

cos(θ1)


 s2 = s2



cos(φ2)sin(θ2)
sin(φ2)sin(θ2)

cos(θ2)


 (5.4)

and so, taking the scalar product between the two vectors, choosing (θ1, ϕ1) = (θ, 0) and
(θ2, ϕ2) = (θ, 120) and neglecting the modulus of the vectors, one can find:

s1 · s2 =
(
sin(θ) 0 cos(θ)

)
·



−1

2sin(θ)√
3
2 sin(θ)
cos(θ)


 = cos2(θ)− 1

2
sin2(θ) (5.5)
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which assumes a null value for θ = 54.7356◦. This value is well known in the literature, and
usually referred as magic angle.

By multiplying the function obtained by the appropriate constants, its behaviour can be graphed,
as done in the left figure of 5.13. The figure on the right shows the energies of the eigenvalues of
the six states in the absence of a magnetic field; the difference in energy between the two states
can then be compared with the function derived above, and with the graph on the left of the
same figure.

Figure 5.13: Energy splitting between the doublet ground state and the other six states (on the left)
and energy eigenvalues (on the right) as a function of the theta angle of tilting of the spin vectors with
respect to the ions´plane.

In the graphs just shown, it can be seen that for angles above 54.7° there is a crossing and
exchange of the eigenvalues between the doublet and the remaining 6 energy levels, leading the∣∣±15

2 ,±15
2 ,±15

2

〉
configurations to higher energy. A similar behaviour is also found in the energy

eigenvalues when applying a magnetic field along the z direction, and, in figure 5.14, it can be
verified how the energy lines of states

∣∣±15
2 ,±15

2 ,±15
2

〉
translate vertically, overlapping with the

eigenvalues of the other octet states.

But the vertical application of the magnetic field leads to another interesting phenomenon. In
fact, in the ideal configuration, the field would be perfectly perpendicular to the spin vectors,
making no contribution to the Hamiltonian; but in this case, with umbrella angles slightly
different from 90°, there is a non-zero interaction with the magnetic field, which will therefore
give some Zeeman contribution. In particular then, the lowest-energy state will be split into two
different states, just as the highest-energy line will go from degeneracy 6 to two split states of
degeneracy 3.

The splitting of the lowest-energy state into the two states
∣∣+15

2 ,+
15
2 ,+

15
2

〉
and

∣∣−15
2 ,−15

2 ,−15
2

〉

thus has an important consequence; in fact in the degenerate case it would be feasible to derive
from the result of a possible transition within the energy in the octet only information about
the alignment of the spins and thus about the presence or absence of toroidicity. But with
the introduction of a magnetic field, and thus splitting between the energy lines, it would
hypothetically be possible to derive also the direction of a potential toroidal moment, thus
knowing whether the vortex configuration of the spins is directed clockwise or counterclockwise
with respect to a given chosen reference.
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Figure 5.14: First 8 eigenvalues as a function of the intensity of the magnetic field oriented along z for
different theta angles configurations.

5.5 Ferromagnetic coupling

The crossing and the exchange of eigenvalues between the doublet and the sextet suggests the
possibility of inverting the sign of the Heisenberg coupling from an antiferromagnetic system (J =
−0.05 K) to a ferromagnetic one (J = +0.05 K), resulting in the same energy configurations
for pairs of angles that are ’symmetrical’ with respect to the value at which splitting is null, i.e.
54.7°.

In order to further investigate this property, the low lying energy states are shown in figures
5.15, 5.16 and 5.17 by applying a magnetic field in the x, y and z direction, respectively.
For each direction we consider 6 different cases: ferromagnetic coupling with J = +0.05 K
or antiferromagnetic coupling with J = −0.05 K, and polar angles theta equal to theta ≃
37.0777◦, 54.73◦, 80◦. These were chosen to have zero energy difference between doublet and
sextet (for theta = 54.73◦), and to have the same non-zero difference at B = 0 for the other
cases; angles theta = 37.0777◦ and theta = 80◦ thus lead to the same separation between doublet
and sextet at B = 0 in the ferromagnetic and antiferromagnetic cases.

The first thing that can be easily observed is how for theta = 54.73◦ the ferromagnetic and
antiferromagnetic configurations are perfectly superimposable, a sign that the system in this
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Figure 5.15: Comparison of the energy spectra for different umbrella theta angles using a ferromagnetic
and a antiferromagnetic coupling. Magnetic field applied on the x direction.

configuration has no preference in arranging the spins in a parallel or antiparallel manner.

On the other hand, for each magnetic field analyzed, the angles theta ≃ 37.08◦ and 80◦ lead
to two similar but not perfectly superimposable energy trends. In fact, in the case of the
absence of a magnetic field, the splitting between the energy levels is identical in construction,
but by increasing the value of B in a certain direction, the effect of the Heisenberg coupling,
ferromagnetic or antiferromagnetic, leads to a slight difference in the splitting of the energy
levels, a sign that the two configurations are not perfectly substitutable. This can also be
seen by simulating the susceptibility and magnetization curves for such magnetic angles and
couplings, which do not turn out to provide the same values.

Nevertheless, the sign of the Heisenberg coupling will have no influence on the value of the
groundstate’s toroidal moment (for a chosen theta configuration), thus allowing considerable
toroidicity even in the ferromagnetic case. More details will be provided in Chapter 6.
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Figure 5.16: Comparison of the energy spectra for different umbrella theta angles using a ferromagnetic
and a antiferromagnetic coupling. Magnetic field applied on the y direction.

Figure 5.17: Comparison of the energy spectra for different umbrella theta angles using a ferromagnetic
and a antiferromagnetic coupling. Magnetic field applied on the z direction.
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Chapter 6

Toroidicity: quantitative description

6.1 Ideal configuration and choice of the coordinate frame

In the previous chapters, we explored the properties of the 3Dy molecule in an ideal configura-
tion. The ions are arranged at the vertices of an equilateral triangle and the axes of anisotropy
are rotated by an angle of 120° to each other in the ions´plane, so as to fully respect a C3

symmetry. Of these properties, only the orientation of the anisotropy axes had an influence on
the energy spectrum, as the used Hamiltonian model has no dependence on the position of the
ions, considering only spin interactions. Conversely, the position vectors of the ions appear in
the definition of the toroidal moment, and thus a variation of the toroidal moment vector is
expected for different reference systems or ion configurations. It was therefore decided to start
the analysis with the ideal configuration, arranging the triangle of ions in such a way that its
axis coincides with the z axis of the reference system, and thus the origin coincides with the
centre of the triangle. In addition, for convenience, one of the ions is placed along the y axis,
at zero x coordinate, while the other two are positioned at the other vertices of the equilateral
triangle. The geometrical scheme can be seen in figure 6.1.

Spin Coord. (Å) phi

S1 (0, -2.5, 0) 0°
S2 (2.16507, 1.25, 0) 120°
S3 (-2.16507, 1.25, 0) 140°

Table 6.1: Scheme of Dy ions positioning within the choice of the coordinate frame and representation of
the anisotropy axes.

From this configuration, it is then possible to calculate the toroidal moment using the equation
seen in section 2.4. Particular attention is paid, as usual, to the ground state, where the spins, in
the high anisotropy approximation, are aligned with the anisotropy axes. In the previous chapter
(chap. 5), in fact, it was seen how a semiclassical description of the system, considering the spins
as vectors of modulus 15/2 directed along the anisotropy axes, allows a sufficiently accurate
interpretation of the energy levels. Another confirmation of the goodness of this simplification
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can also be found in the calculation of the toroidal moment, comparing the result of the quantum
computation obtained by simulation, with its analytical counterpart obtained by semiclassical
calculation.

Thus, for the ideal configuration with anisotropy axes having the same polar angle theta, the
semiclassical analytical calculation of the toroidal moment for the ground state

∣∣+15
2 ,+

15
2 ,+

15
2

〉

returns:

t =




0
0

7.5 · g · 15
2 sin(theta)


 (6.1)

Which is thus a vector directed vertically, parallel to the z axis, and with a direction consistent
with the orientation of the spin vectors. For theta = 90◦, then, the z component will have
value +37.5 µBÅ (−37.5 µBÅ) for anticlockwise (clockwise) winding of the spins, looking at
the coordinate frame having the feet on the origin of the reference system and the head along
positive z.

Moreover, it follows from the definition that the toroidal moment is given by the sum of the three
contributions relative to each of the three ions. And these contributions are equal in intensity,
given the particular symmetrical configuration. Moving from the doublet

∣∣±15
2 ,±15

2 ,±15
2

〉
to

a state of the sextet, however, the flipping of one of the spins leads to a sign change in the
contribution to the toroidal moment, perfectly cancelling out the equal contribution of one of
the other two ions. It is therefore expected that the toroidal moment magnitude of the sextet
will be 1/3 of its value in the doublet, maintaining the same direction, namely a z component
of ±12.5 µBÅ.

In this respect, one can then proceed to a quantum calculation by simulation, the results of
which are shown in figure 6.1. The first line shows the two states that make up the doublet
and maximise the toroidal moment, while the next two lines present the states of the sextet.
The anisotropy axes, represented with an orange dotted line, are fixed and given as input to
the simulation program, while the red arrows represent the average values of the spin vector
operators.

It is clear that even in this case, the semiclassical model provides an effective explanation of the
physics of the system, being able to neglect quantum interactions that appear not to contribute
up to the 5th decimal place of the calculated quantities. In addition, the spin directions also
overlap almost perfectly with the anisotropy axes, lending credence to the hypothesis made in
the previous chapter.

Coordinate frame

In the semi-classical approach, it is therefore easy to obtain some results to understand the
behaviour of the toroidal moment in specific cases. As emphasised above, the dependence of
the toroidal moment on the coordinates of the ions necessitates a conscious choice of reference
system. In particular, considering the ions arranged in the vertices of an equilateral triangle,
their positions can be described by generic vectors:

r1 = (0,−a, d) r2 = (b, c, d) r2 = (−b, c, d) (6.2)

On the one hand, it is clear that a rotation of the system around the z axis does not produce
any change in the value of the toroidal moment, since both position vectors and anisotropy axes
follow the same transformation. However a translation of the system only leads to a change in
the position vectors with a consequent change in the toroidal moment. Mathematically, one can
then add a translation vector to each of the position vectors, obtaining the final coordinates:

r1 = (0+δx,−a+δy, d+δz) r2 = (b+δx, c+δy, d+δz) r2 = (−b+δx, c+δy, d+δz) (6.3)



6.1. IDEAL CONFIGURATION AND CHOICE OF THE COORDINATE FRAME 63

Figure 6.1: 3Dy low lying states toroidal moments for the ideal configuration. The anisotropy axes
(dashed orange lines) are fixed and given as input to the simulation, while the red spin arrows are the
result of the average spin operator in the considered state.
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and from these follow the (positive) values of toroidal moment1:

t|+,+,+⟩ ∝ (0, 0, a+
√
3b+ c)

t|−,+,+⟩ ∝ (0,−2d− 2∆z,−a+
√
3b+ c+ 2∆y)

t|+,−,+⟩ ∝ (
√
3d+

√
3∆z, d+∆z, a−

√
3∆x−∆y)

t|+,+,−⟩ ∝ (−
√
3d−

√
3∆z, d+∆z, a+

√
3∆x−∆y)

As can be seen for doublet configurations, the toroidal moment is independent of the choice
of reference system, hence of any translations, due to the particular symmetry of the system.
However, by introducing an element of asymmetry, such as a flipping of a spin (or a variation
of polar theta angles, discussed later) the toroidal moment can take on three different values
that have dependence on the choice of reference system. The choice of the latter must therefore
be considered, and it is reasonable to position the origin at the central point of the triangle in
order to guarantee the rotational symmetry of the system.

6.2 Tilting polar theta angles

In section 5.4 we have shown the behaviour of the energy spectrum in the 8 low lying states by
changing the tilting of the anisotropy axes (and consequently in the semiclassical model also the
orientation of the spins) by varying each of the polar angles theta, in which was also called the
”umbrella configuration”.

The sextet and the doublet reduce then their energetic distance as the angle of theta decreases,
until they overlap for theta = 54.7◦, and then reverse their position at lower angles. Given the
dependence of the toroidal moment on the spin vectors, a similar peculiar behaviour can be
expected in this case as well.

Let us therefore consider the triangle of ions positioned in the ideal configuration (whose coor-
dinates can be thought of as those expressed in equation 6.2 with d = 0). Let us then proceed
to tilt the anisotropy axes (spin) by an angle theta with respect to the z axis. Proceeding an-
alytically, the semiclassical calculation of the toroidal moment in this particular configuration
gives the result:

t|+,+,+⟩ ∝ ((2c− a) cos(theta), 0, (a+
√
3b+ c) sin(theta)

t|−,+,+⟩ ∝ ((2c+ a) cos(theta), 0, (−a+
√
3b+ c) sin(theta)

t|+,−,+⟩ ∝ (−a cos(theta), 2b cos(theta), a sin(theta)
t|+,+,−⟩ ∝ (−a cos(theta),−2b cos(theta), a sin(theta)

The first thing that can be noticed is the subdivision of the toroidal moments of the sextet into
three different vectors. They have the same modulus, but are directed in different directions,
separated by 120◦ from each other, and they assume the same coordinates again for theta = 90◦.
The toroidal moment of the doublet, on the other hand, remains unchanged in the direction,
which always turns out to be parallel to the z axis (since in the particular triangular configuration
assumed the term (2c− a) is null). The modulus of the vector, on the other hand, decreases as
theta decreases, following a sinusoidal function, and completely annihilates when the spins are
perpendicular to the ions´ plane.

1Clarification on the notation: we are now focusing on the semiclassically describable case in which the spins
are oriented along the axes of anisotropy. We therefore adopt the same notation used in the study of energy
eigenvalues, in which each spin can take on the values ±15/2 (along its own axis of anisotropy). Therefore, the
states of the doublet will be written as

∣
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2

〉

and
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15

2
,− 15

2
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2

〉

, depending on whether the spins
are arranged anticlockwise or clockwise. In the states of the sextet, on the other hand, we have a flipping of one of
the spins, hence a change of one of the signs in the notation. In order not to make the writing more cumbersome,
sometimes the value 15/2 is omitted, and only the sign for the orientation of the spins are shown



6.3. FERROMAGNETIC COUPLING 65

As theta decreases, therefore, the modulus of the toroidal moment of the doublet decreases,
while that of the sextet increases. Consequently for a given angle, there will be three possible
toroidal moments of equal intensity. In the coordinates shown above, equating the moduli of
the vectors, we can obtain that this angle is equal to:

θ̃ ≃ 35.2644◦ ≃ 90◦ − 54.7356◦

The system has so three different toroidal moments of equal intensity when the theta angle is
complementary to the analogous theta = 54.7◦ in which the energy spacing between the sextet
and doublet is zero.

In figure 6.2, some significant configurations are shown in a similar manner as before, showing
the four different toroidal moment vectors for the four different spin states. For simplicity of
representation only 4 of the 8 possible vectors are represented, while the other 4 will be aligned
but in the opposite direction to those shown.

As can be seen, the toroidal moments of the sextet are ”flattened” from parallel to the z axis
for theta = 90◦ to coplanar to the ion triangle for theta = 0◦, and gradually increasing their
modulus. The trend of this variation is summarised in figure 6.3, in which the coordinates of
the toroidal moments of the sextet are plotted for different thetas (each point corresponds to a
different value of theta) and in which the dimensions of the points in the graph are proportional
to the modulus of the vectors.

The values of the moduli of the two vectors (sextet and doublet) are then plotted in the figure
6.4 by varying the value of theta; this curve is described, as mentioned above, by a sinusoidal
function. We then highlight the angle for which all four toroidal moments assume the same
intensity.

6.3 Ferromagnetic coupling

The toroidal moment is a geometric property that depends only on the position of the ions
and the orientation of the spins (along the axes of anisotropy in the semiclassical view). There
is so no dependence on the other parameters that make up the Hamiltonian, in particular a
small external magnetic field and the Heisenberg coupling. In principle, therefore, both an
antiferromagnetic coupling (as assumed so far) and a ferromagnetic coupling can lead to the
same values of toroidal moment, as long as the approximation of strong anisotropy is valid and
the model can be described in a semiclassical way. As explained in chapter 5, however, the
choice of a ferromagnetic coupling leads to an inversion of the doublet and sextet of eigenvalues,
thus having the eigenvalue with degeneracy 6 in the lowest energy state. The latter energy,
however, corresponds to a maximum toroidal moment that is lower than that of the |+,+,+⟩ or
|−,−,−⟩ states, so that in the case of ferromagnetic coupling, greater experimental difficulties
would arise in the attempt to maximise the toroidal moment.

For the same reason of dependence only on the coordinates and on the spin orientations, even
the presence of a small external magnetic field does not influence the toroidal properties of the
molecule. In fact, an external magnetic field has been seen to remove the degeneracy of the
energy levels, subdividing them in a ”radial pattern” and thus assigning each spin configuration
a different energy value.

But we have seen how different spin configurations lead to different toroidal moments, especially
in the case of varying polar theta angles. So in the absence of a magnetic field the states are
all degenerate, so it is equally probable to be in one or another spin configuration and therefore
to have one or another value of toroidal moment. The presence of a magnetic field, however,
with values of theta not equal to 90◦, divides the energy levels and therefore different will be
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Figure 6.2: 3Dy low lying states toroidal moments for the ideal configuration tilting the ”umbrella” polar
theta angles of different values. The orientation of the spins along the anisotropy axes is purely indicative
for ease of visualisation and refers to the case of one of the groundstate doublet states.

the probabilities of obtaining the different toroidal moments, where this probability can be
interpreted as related to the Boltzmann factor. Qualitatively one can think of this phenomenon
in a semiclassical manner noticing that the presence of the magnetic field will tend to align the
greatest number of spins accordingly to its direction, but consistently with the strong anisotropy.
Thus at low energies one will find configurations in which a greater number of spins ”follow”
the magnetic field, while at high energies the other configurations will remain.

6.4 High lying energy levels

The 3Dy molecule has 4096 different energy states, but so far we have focused on the low lying
ones consisting of the first 8 energy levels. In these levels, in fact, the strong anisotropy allows
the system to be analysed by considering spins of value ±15/2 oriented according to the angles
of anisotropy, leading, precisely, to these 8 different configurations. However, going to higher
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Figure 6.3: Coordinates of the three toroidal moment vectors of the sextet changing the theta angle from
90° to 0°. The size of the dots is proportional to the modulus of the vectors. (Values obtained by quantum
simulation)

Figure 6.4: Modulus of the toroidal moment vectors of the doublet and of the sextet, with crossing
between the two curves for the angle θ̃ ≃ 35.2644◦. (Values obtained by quantum simulation)

energy levels, spin projections on the anisotropy axis other than ±15/2 are also admitted, and
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thus mixed states that can only be described quantistically appear. It becomes clear, however,
how the symmetry of the system is reduced due to the different possible spin orientations, so
one can expect the toroidal moment to be reduced in modulus.

This is confirmed by the calculations shown in figure 6.5, in which the value of the toroidal
moment of all the spin configurations related to the 4096 energy levels of the 3Dy molecule has
been reported. The ideal configuration in the absence of external magnetic fields was used for
the calculation.

Figure 6.5: Modulus of the toroidal moment vectors for all the states of the 3Dy molecule as a function
of the relative energy of the state.

As can be seen, the maximum values of the toroidal moment occur in the state at lower energies,
while as the energy levels rise, there is a decrease in toroidicity, providing more ”freedom of
movement” for the spin.

6.5 Toroidicity of Al2Dy3

We have so far explored the properties of the toroidal moment by evaluating its dependence
on various parameters. We can therefore now calculate its value for the molecule presented in
chapter 3, i.e. the Al2Dy3. From the magnetization and susceptibility fits, we could only obtain
the value of the parameter theta, but no information was obtained for the phi angles of the
anisotropy axes. We can therefore assess the toroidal moment only by assuming some values for
the phi angles, which are chosen as examples as those that maximise the toroidal moment, i.e.
0◦, 120◦ and 240◦ in the usual frame of reference.

Figure 6.6 then shows the toroidal moment vectors for the doublet configuration (left) and for the
sextet (right). As before, only one toroidal moment vector is represented, and its symmetrical
is omitted for ease of visualisation.

The impossibility of determining phi angles from experimental data on magnetization and sus-
ceptibility therefore only allows us to analyse hypothetical cases, and we have no precise infor-
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Figure 6.6: Toroidal moment vectors for the Al2Dy3, considering the theta angle found through the fit
and in the hypothesis of ideal phi angles. On the left is shown the toroidal moment of the doublet, while
on the right the ones of the sextet.

mation on the molecule being studied. In the case of different phi angles, in fact, the toroidal
moment may decrease in magnitude, even to zero.

Different experimental techniques are therefore needed to obtain the full direction of the anisotropy
axes, and thus also of the phi angles. The possibility of applying neutron scattering experiments
will be investigated, and this will be shown in the following chapter.
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Chapter 7

Inelastic Neutron scattering and
toroidal moment

As discussed earlier, we would like to experimentally verify the orientation of the anisotropy axes
of the three Dy ions, and, in particular, the values of the azimuthal angles phi, which cannot be
obtained from the powder magnetization or susceptibility curves. The experiment considered is
an inelastic neutron scattering, which has a dependence on the spatial coordinates of the ions,
as can be seen in the exponential term of equation 2.5.3.

In the following, we will therefore show the results obtained by considering the Al2Dy3 molecule,
first with a powder sample and then moving, out of necessity, to a single crystal sample.

7.1 INS on powder sample

8 low lying states: no transitions

We now want to simulate a neutron scattering experiment on a powder sample at T = 0 K. By
focusing on the 8 lowest energy states, we can verify the complete absence of transitions between
any pair of states. This can be explained by resuming the arguments shown in section 5.2.

In a high anisotropy approximation, one can visualise the 8 low lying states as clockwise or
counterclockwise spin configurations (doublet) and with the flipping of one of the spins (sextet),
see figure 7.1. To have a transition between any two of these states requires a complete flipping
of at least one of the spins, i.e. going from +15/2 to −15/2 (or vice versa). There would then
be a change in the magnetic quantum number equal to ∆M = 15, well above the limit imposed
by the neutron scattering selection rules shown in equation 2.54, where ∆M = 0,±1.

So no information can be obtained by limiting oneself to the lowest energy levels.

For the sake of completeness, it should be pointed out that it was also possible to observe peaks
of non-zero intensity among the 8 low lying states by significantly increasing the value of the
anisotropy term E. In this way, however, the anisotropy contribution can no longer be thought
of as axial, but three-dimensional components begin to appear. Consequently, it is no longer
possible to describe the spin with only a ±15/2 value, but linear combinations of several states
will be required, including the ±13/2 state with which a transition is possible. In any case,
the intensities of the peaks obtained are extremely low, 107 times lower than those obtainable
between the ground state and one of the high-energy states (see next paragraph). However, once
again no useful information can be derived from such small peaks.
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Figure 7.1: 3Dy spin configuration examples, one for the doublet state and one for the sextet state.

High lying states: no information on phi

Since no intensity peaks are visible within the 8 low lying states, one can extend the energy
range and check for peaks of higher energy levels.

Considering a temperature T = 0 K, we can obtain two transitions from the ground state to
the first and second of the high lying states. The observed transitions are highlighted in the
spectrum of figure 7.2, on the left; while the same figure on the right shows the intensity peaks
as a function of energy in the abscissa.

Figure 7.2: 3Dy Energy levels with the two observed transitions, on the left. Powder sample INS peaks
of the observed transitions for two configurations of phi angles, for T = 0 K.

The same figure on the right actually shows the peaks for two different configurations of the
molecule, in which the phi angles are varied. In particular, the configurations with the highest
toroidicity and the one with zero toroidicity have been chosen.
It can be seen, however, that the intensity peaks are perfectly superimposable, an indication
that no useful information on the phi angles, which we are interested in for the determination
of the toroidal moment, can be derived from the INS powder sample.

But the powder sample analysed is a mixture of all possible orientations, so, in order to obtain
information on the phi angles, it might be the case to perform an experiment in which orienta-
tions play a more important role. In the next section, we will therefore look more closely at the



7.2. INS ON SINGLE CRYSTAL 73

inelastic neutron scattering on a single crystal sample.

7.2 INS on Single crystal

Let us now consider the inelastic neutron scattering on a crystalline sample. We will first derive
a relation to calculate the intensity of the peaks, and then implement and test it in the owIns

program. Finally, we will apply the new code to the Al2Dy3 molecule, in particular to the two
intensity peaks seen in the powder sample.

7.2.1 Derivation of the intensity equation and implementation in owMag

In chapter 2, we examined and derived the relationship describing the intensity of scattering
with a neutron as a function of the scattering vector Q and the m and n states between which
the transition occurs. We also mentioned the possibility of integrating the relation in the dΩ
parameter space to obtain the peak intensity for a powder sample.

However, we now need a similar relation to calculate the intensity in the case of a crystalline
sample, which can be implemented in the owIns code. We can therefore rework equation 2.5.3
as follows:
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We have therefore neglected the second order of the form factors F by considering only the term

F 0 which no longer depends on the directions α, β = x, y, z. The matrix elements ⟨n|
(
Ŝ†
i gi

)
α
|m⟩

have been defined asMi,α, and applying the Kronecker delta gives the result shown in the second
last row. Finally, the complex exponential is expressed as the sum of cosine and imaginary sine,
giving the final result.

As said previously in chapter 2, in general the result of this relation is a complex number, but
in which the imaginary part should give a null value.

In this fashion, the relationship can be encoded in the owIns program, as an additional option to
the usual calculation of neutron scattering intensity for powder samples. All terms in the relation
are already calculated in the code, which also allows operations between complex numbers.
Having completed the implementation, the next step is therefore to test the new functionality
of the program, which is shown in the next section.

7.2.2 Validation of the coded formula

Testing the program, Cr3+ dimer

To test the program, it is possible to study a simplified case with respect to the 3Dy3+ molecule,
so that the data obtained from the simulations can be compared with theoretical models. We
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can consider, for instance a single crystal dimer made of two Cr3+ ions of total angular moment
S = 5

2 positioned along the x axes with coordinates (-2,0,0) and (2,0,0). The lower spin value
with respect to Dy3+ reduces the dimension of the Hilbert space, decreasing the computation
time of the simulations.

We can set in a strong exchange interaction condition, choosing a big ferromagnetic exchange
coupling J = 100 K and a lower Ising-type anisotropy value D = −5 K, with the anisotropy
axes along the z axes (theta = 0◦, phi = 0◦). The chosen configuration has been summarised
and depicted in fig. 7.3.

Figure 7.3: CrIII dimer configuration, antiferromagnetic Heisenberg coupling and Ising anisotropy parallel
to the z axes.

Given the simple structure of the molecule in question, it is easy to predict the energy spectrum
and, consequently, the possible peaks visible through neutron scattering. As pointed out above,
the two Cr ions have a total angular momentum S = 5

2 , which, following the rules of summation
of angular moments, leads to a total angular momentum and its z projection given by:

S = S1 + S2 = |s1 − s2| , ..., |s1 + s2| = 0, 1, 2, 3, 4, 5

m = S, S − 1, ...,−S

Including only the exchange term, setting D = 0 K, there will therefore be 5 degenerate energy
levels, one for each total spin value. These levels will be further splitted by introducing the
anisotropy term, which lifts the degeneracy; the energy scheme is shown in figure 7.4.

The presence of two magnetic ions therefore leads to two intensity peaks in the neutron scattering
interactions at zero temperature, and these must satisfy the selection rules shown in equation
2.54. For a powder sample the INS peaks are plotted in figure 7.5, in which the relative energy
values of the transitions obtained by means of neutron scattering were entered next to the peaks.

Given that the powder sample is produced by the random orientation of the molecules in the
studied material, one can expect to find similar energy peaks for a single crystal sample as well.
We can then proceed to simulate a neutron scattering experiment on a crystalline Cr3+ dimer
using the new code, in which the Qx, Qy and Qz components of the scattering vector must be
specified in addition to the usual parameters. In this case we investigate the scattering vector in
the range Qx ×Qy = [−5; 5]× [−5; 5] Å−1 × Å−1, setting for now Qz = 0 Å−1. The results are
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Figure 7.4: Cr3+ dimer energy levels with their degeneracy. The levels on the left (calculated considering
only the exchange coupling term) are splitted adding the anisotropy term, obtaining the ones in the right.
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Figure 7.5: INS intensity peaks for Cr3+ dimer in powder sample at T=0 K.
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Figure 7.6: INS intensity peaks for Cr3+ dimer in single crystal sample at T=0 K.

shown in picture 7.6, in which the intensity of the scattered neutrons is plotted as a function of
Qx and Qy for both energy peaks discussed above.

To check the reliability of the obtained results, it is possible to carry out similar simulations by
excluding the presence of the form factor F (set equal to 1) in the formula of the INS. Retracing
in fact what has been done in [22], it is possible to show that for a ferromagnetic cluster the INS
formula for the intensity of a transition from the ground state to an excited state k is given by:

I0,k = Fk(Q)
1

4
(2− κ2x − κ2y) (7.1)

where κα = Qα/Q and the interference factor Fk(Q) can be written as;

Fk(Q) =
∑

i,j

FiFjcos(QRi,j)ck(i)ck(j) (7.2)

where Fα is the form factor of the ion, while ck can be seen as the classical amplitude of deflection
of the spin from the polarization direction; so for the isotropic cluster under study it must hold∑

i ck(i) = 0. Moreover, as a consequence of the normalization condition of the eigenvectors, it
is possible to obtain that c2 = s, total spin of each ion (s = 5/2).

These conditions thus lead to two different possibilities:

− For the ∆S = 0 selection rule it holds c(1) = c(2) = s, so:

Fk(Q) = F 2 [s+ s+ scos(QR1,2) + scos(QR2,1)] = 2F 2s (1 + cos(QR1,2))

− For the ∆S = 1 selection rule it holds c(1) = −s and c(2) = s, so:

Fk(Q) = F 2 [s+ s− scos(QR1,2)− cos(QR2,1)] = 2F 2s (1− cos(QR1,2))

Putting all the results together and substituting s = 5/2, we obtain the two relations that
describe the intensity peaks for the two transitions of the Cr3+ dimer:

I0,k =
5

2
F 2(1 + cos(QR)(Q)(2− κ2x − κ2y)

I0,k =
5

2
F 2(1− cos(QR)(Q)(2− κ2x − κ2y)

(7.3)
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The form factor F is a value that depends on the ion species and makes it possible to modulate
the intensity of scattering by considering magnetic interactions. To simplify the comparison
between theoretical expectations and simulation results, it is convenient to disregard the form
factor and set it to 1 in both cases, taking for granted the goodness of its calculation by means
of code functions that have already been extensively tested. The same plots of figure 7.6 are
then re-proposed in fig. 7.7 by setting F = 1 and placing the simulated values side by side with
those obtained through equations 7.3.

Figure 7.7: INS intensity peaks for Cr3+ dimer in single crystal sample at T=0 K setting the form factor
F to 1. On the right the theoretical expectations are compared with the simulation results in the center,
while on the left the full intensity plot is shown for completeness.

It is therefore easy to see that the two graphs obtained are perfectly superimposable, thus
providing an initial confirmation of the good functionality of the code used.

In this section, we have analysed a particular case of a ferromagnetic dimer with anisotropy along
the z-axis, finding a very good match between simulations and theoretical calculations; however,
the particular configuration does not provide any information on the general functionality of the
code, which can be further explored by considering rotations in the space of the dimer and the
anisotropy. This will be therefore discussed in the next section.

Spatial rotations

In the previous tests, a particular symmetry of the dimer was adopted, placing the two ions along
the x axis, mirrored with respect to the origin of the reference system, and with anisotropy axes
along the z axis. As can be expected, however, the choice of reference system should not affect
the simulation results, thus leading to the same intensity pattern suitably rotated with respect to
the chosen representation. Figure 7.8 therefore shows the intensity patterns for the two energy
transitions of Cr3+, starting from the configuration described above and rotating the reference
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system (or similarly the dimer) around the z axis by 45°, 90° and 135°, always keeping fixed the
orientation of the anisotropy axes parallel to the z axis.

It is thus verified how rotations of the molecule in space do not affect the pattern of the neutron
scattering, leaving its intensity and structure unchanged, and maintaining the robustness of the
used formula.

Different representations are instead expected by changing the direction of the anisotropy axes,
which, for example, can be positioned in the x-y plane on which the Cr ions lie. We have
therefore decided to analyse the two x̂ and ŷ directions, initially placing the anisotropy axes
along x̂ and with the dimer axis first along x̂ and then along ŷ. Similarly it is done with the
anisotropy axes along ŷ. The results are shown in figure 7.9.

The same patterns are then obtained for the same orientations of the anisotropy axes with
respect to the dimer axis, thus with the same configuration unless considering rotations in
space. Whereas by changing the relational orientation of the anisotropy axes, a different pattern
occurs, as expected.

Literature comparison

Given the success of the simple simulations carried out previously, it was decided to apply
the code to a more complex molecule already studied in the literature. In [22], for example,
a molecule consisting of 7 Mn ions was considered, and simulations of single crystal neutron
scattering were carried out using Mathematica software.

The magnetic structure of the molecule consists of four Mn2+ ions and three Mn3+ ions, ar-
ranged hexagonally with a central ion at the origin of the reference system and with a mutual
distance of a = 3.31 Å. The ions interact with each other via ferromagnetic and antiferromag-
netic Heisemberg couplings, while possible anisotropy terms are neglected. The values of the
interaction constants are: Ja = Jb = 5.8K, J1 = −2.0K and J2 = 2.45K, and the structure of
the molecule is shown in figure 7.10.

Analysing the molecule via single crystal INS, focusing on the x-y plane where the ions are
positioned, four intensity peaks are detected, and they correspond to energies equal to those
obtained in the article, i.e. equal to 0.3, 1.16, 3.44, and 4.84meV .

Therefore, for each scattering peak, it is possible to obtain an intensity map in the reciprocal
Qx − Qy space, and thus compare the patterns obtained. The graphs in the article (top row)
are then shown in figure 7.11 and compared with the corresponding graphs calculated using
ow ins (bottom row), trying to reproduce a similar plot range and colour scale. The latter was
normalised for each plot in order to evaluate the same intensity range.

As can be seen, disregarding the non-identical graphical choices, the different plots show over-
lapping patterns, reconstructing the result of the INS congruently with what was done in the
article. Therefore, from the result obtained and the preceding ones, we can rely on the code
working well, which can thus be applied to the molecule under investigation.

7.2.3 Single Crystal INS on Al2Dy3 molecule

We can now use the recently implemented code to simulate an experiment with the Al2Dy3
molecule. The two peaks seen in figure 7.2, for a powder sample, are also found in the single
crystal case. But now we no longer plot the intensity as a function of energy, but focus on the
two energy values that have peaks and graph the intensity of the transition as a function of the
scattering vector Q. In particular, since the ions are positioned in the x − y plane, we choose
to display the x and y components of the scattering vector. The result, initially obtained in the
ideal configuration (theta = 90◦, phi1 = 0◦, phi2 = 120◦, phi3 = 240◦,) is shown in figure 7.12.
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Figure 7.8: INS intensity peaks for Cr3+ dimer in single crystal sample at T=0 K with anisotropy along
z-axis and rotating the positions of the ions in the x-y plane.
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It is not straightforward to derive information from the intensity pattern shown, and it is even
more complicated to directly derive details on the phi angles. We therefore focus on verifying
any variation in the intensity pattern for different configurations of phi angles, in particular the
same configurations that led to the same peaks in the powder sample analysis.

We then show different graphs for both peaks, changing the ideal configuration of the anisotropy
axes by adding the same ∆ϕ value to each of the phi angles of the three Dy ions. The re-
sult is shown in the figure 7.13 where the left column shows the patterns for the first peak
(120.669 meV ) and the right column those for the second peak (120.693 meV ). Centrally, the
geometric pattern of the anisotropy axes of the molecule is shown.
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Figure 7.9: INS intensity peaks for Cr3+ dimer in single crystal sample at T=0 K with anisotropy along
the x-axes (on top) and along the y-axes (in the bottom) and rotating the positions of the ions in the x-y
plane.
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Figure 7.10: Mn7 molecule scheme with ball-and-stick representation (a), interaction coupling between
the ions (b) and relative positions of the ions (c). [22]

Figure 7.11: Comparison between the article Qx − Qy plane intensity plots (top row), with the one
obtained via ow ins.
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Figure 7.12: Single Crystal INS simulation on Al2Dy3 in the ideal configuration focusing on the two
intensity peaks highlighted in figure 7.2.
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Figure 7.13: Single Crystal INS simulation on Al2Dy3 with theta = 90◦ and adding a same quantity ∆ϕ
to each of the three phi angles, for the two peaks highlighted in figure 7.2.



Conclusions

In this thesis work, the magnetic properties of a molecule, Al2Dy3, were analyzed, with the aim
of obtaining information on its possible toroidicity, a quantity described by the toroidal moment
t̂ = gµB

2

∑
i=1,2,3 ri × Ŝi. The molecule has been modelled as three triangularly positioned Dy

ions, since they are the only atoms to have magnetic properties.

Thus, starting with powder magnetization and susceptibility data, a set of parameters that
well describes the experimental data was obtained. In particular, apart from some magnetic
corrections on the mass and diamagnetic correction, we have seen how the anisotropy axes are
inclined with theta ≃ 21◦. Thus those axes are almost perpendicular to the plane in which the
three Dy ions lie. However, no information could be obtained on the phi angles.

The energy levels of the molecule and its toroidal moment have then been explored by varying the
parameters on which the Hamiltonian depends. It was possible to associate a toroidal moment
to each of the 8 states (doublet + sextet) forming the low-energy states. These 8 states are well
separated from the rest of high-energy states due to the large value of anisotropy considered. In
the hypothesis of an ideal arrangement of the anisotropy axes, the Al2Dy3 molecule considered
would thus show 8 different possibilities of toroidal moment, in which the magnitude of the one
in the sextet is larger by a factor of 2 than the magnitude of the one in the doublet.

Finally, an inelastic neutron scattering experiment with the Al2Dy3 molecule has been simulated,
showing that intensity peaks between the 8 lowest energy states are not possible. Instead, two
peaks were found considering the two immediately following energy levels. But again, even
from these intensity peaks, simulated for a powder sample, it is not possible to obtain sufficient
information on the orientation of the anisotropy axes and thus on the toroidicity.

Therefore, a new code was implemented to simulate the inelastic neutron scattering on a single
crystal. From these simulations, two different intensity patterns (one for each transition peak)
were obtained as a function of the coordinates of the scattering vector Q on the ions plane.
By progressively varying the configuration of the anisotropy axes from a perfectly toroidal to a
non-toroidal behaviour, a variation in this pattern is observed, giving hope for the observation
of azimuthal angles phi by single crystal experiment.

The results obtained with the single crystal INS are still preliminary, and confirmation and
more study are needed. In particular, if the successful single-crystal patterns were confirmed, it
would be possible to proceed with experimental measurements at the Institut Laue-Langevin in
Grenoble, where there is a neutron source.
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[1] Schlenker M. Du Trémolet de Lacheisserie E. Gignoux D., ed. Magnetism: Fundamentals.
Springer, 2005.

[2] Caneschi A. et al. “Alternating current susceptibility, high field magnetization, and mil-
limeter band EPR evidence for a ground S = 10 state in [Mn12O12 (Ch3COO) 16(H2O)4]
.2CH3COOH .4H2O.” In: American Chemical Society 113 (1991).

[3] Chibotaru L. F. et al. “The origin of nonmagnetic Kramers doublets in the ground state
of dysprosium triangles: evidence for a toroidal magnetic moment.” In: Angew Chem Int

Ed Engl. 47 (2008).
[4] Ungur L. et al. “Single-molecule toroics in Ising-type lanthanide molecular clusters”. In:

Chem Soc Rev 43 (2014).
[5] Affronte M. et al. “Single molecule magnets for quantum computation”. In: Journal of

Physics D: Applied Physics 40 (2007).
[6] Atzori M. and Sessoli R. “The Second Quantum Revolution: Role and Challenges of Molec-

ular Chemistry”. In: American Chemical Society 141 (2019).
[7] Gaita-Ariño A. et al. “Molecular spins for quantum computation”. In: Nature Chemistry

11 (2019).
[8] Godfrin C. et al. “Operating Quantum States in Single Magnetic Molecules: Implementa-

tion of Grover’s Quantum Algorithm”. In: Physical Review Letters 119 (2017).
[9] Luzon J. et al. “Spin Chirality in a Molecular Dysprosium Triangle: The Archetype of the

Noncollinear Ising Model”. In: Phisical Review Letters (2008).
[10] Stevens K. W. H. “Proceedings of the Physical Society. Section A Matrix Elements and

Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions”. In:
Proceedings of the Physical Society 65 (1952).

[11] Villain J. Gatteschi D. Sessoli R. Molecular Nanomagnets. Oxford University Press, 2006.
[12] del Barco E. et al. “Magnetic Quantum Tunneling in the Single-Molecule Magnet Mn12-

Acetate”. In: Journal of Low Temperature Physics 140 (2005).
[13] Odom B. et al. “NewMeasurement of the Electron Magnetic Moment Using a One-Electron

Quantum Cyclotron”. In: Phisical Review Letters (2006).
[14] Tanner B.K. Introduction to the Physics of Electrons in Solids. Cambridge University

Press, 1995.
[15] Press W. H. et al. Numerical Recipes: The Art of Scientific Computing. Cambridge Uni-

versity Press, 2007.
[16] Ding L. “Field-tunable toroidal moment in chiral-lattice magnet”. In: Nature communica-

tions (2021).
[17] Furrer A., ed. Neutron Scattering in Novel Materials. World Scientific, 2000.
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[23] Furrend A. Böni P. and Schefer J. “Principles of Neutron Scattering”. In: Neutron Scat-

tering in Novel Materials. Ed. by Albert Furrer editor. World Scientific, 2000, pp. 1–21.


