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Abstract

Error detection in programming languages has always been important in reducing
bugs and vulnerabilities in programs and tools that help programmers in this task
are crucial for the industry. Several kinds of error may occur in programs that can
cause unexpected behaviours and lead to crashes. Fortunately, some of them can be
detected using type systems and compilers. However, modern compilers may not be
enough anymore: in fact, the range of mistakes that programmers may introduce is
widely spread with the increasing complexity of today’s systems, such as blockchains.
Languages for these environments should consider new classes of errors related to
assets: in fact, in this context arbitrary duplication, creation or loss of assets should
be avoided. These new kinds of error are strictly related to the concept of the state of
objects, which are in blockchains smart contract instances.

In this thesis, we discuss two typestated-oriented programming languages designed for
smart contracts development, Stipula and Obsidian, and compare their expressiveness
and main properties. In this analysis, we notice that Stipula adopts a safer and more
flexible approach than Obsidian in legal contract writing, due to the primitives available
for programmers. These features enable a simpler and more readable implementation
of contracts and enforce a safer approach to development. On the other hand, Stipula
lacks typical functionalities, such as user-defined data and data structures, that other
object-oriented programming languages have: in particular, it does not support a
full-fledged type system that ensures safety properties on asset operation.

Then, an Obsidian implementation for currencies and tokens used in Stipula is
provided and discussed in order to find hints to add in this new language ownership,
which would help in error detection for asset references. Proofs that they are well-typed
are provided: the tools used in these demonstrations give us some hints, especially on
how ownership should work in Stipula statements.

This thesis focused on the search for features and practises to improve the expres-
siveness of typestate-oriented programming languages. Obsidian is a statically-typed
and typestate-oriented with careful attention to safety, security and usability. These
features fall within the main goals of Stipula, a newborn typestate-oriented language
for legal contracts. The insertion of such features in Stipula may be a good way to
improve its safety and users’ experience.
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Sommario

La rilevazione di errori nei linguaggi di programmazione è sempre stata importante
nel ridurre la presenza di bug e vulnerabilità del software e lo sviluppo di strumenti
che aiutino i programmatori in tal senso sono cruciali per le aziende del settore.
Nei programmi è possibile riscontrare diverse tipologie di errori che possono causare
comportamenti inaspettati da parte del software o addirittura al crash. Fortunatamente,
alcuni di questi errori possono essere individuati usando sistemi di tipi e compilatori.
Tuttavia, i moderni compilatori potrebbero non essere più abbastanza: infatti, lo
spettro di possibili errori introdotti dai programmatori si è molto ampliato insieme alla
complessità dei sistemi informatici odierni, come ad esempio le blockchain. I linguaggi
per questi ambienti dovrebbero considerare una nuova categoria di errori correlata agli
asset : infatti, in questi casi la loro duplicazione, creazione o perdita arbitraria dovrebbe
essere evitata. Queste tipologie di errori sono strettamente correlati al concetto di
stato di un oggetto, il quale è un’istanza di uno smart contract.

In questa tesi, vengono discussi due linguaggi di programmazione typestate-oriented
progettati per lo sviluppo di smart contracts, Stipula e Obsidian, vengono messi a
confronto in termini di espressività e proprietà. In questa analisi, si può notare che
Stipula adotta un approccio più safe e flessibile di Obsidian nella scrittura di legal
contracts, grazie alla disponibilità di determinate primitive di linguaggio. Queste
funzionalità permettono una realizzazione più semplice e comprensibile dei contratti
e costringe il programmatore a un approccio più safe nello sviluppo. D’altro canto,
Stipula non possiede altre funzionalità, come tipi user-defined e strutture dati, tipiche
dei linguaggi di programmazione a oggetti: in particolare, non supporta un sistema di
tipi completo e che permetta di assicurare proprietà di safety per gli asset.

Successivamente, viene fornita e discussa una realizzazione in Obsidian delle curren-
cies e dei tokens usati in Stipula allo scopo di trovare un modo di aggiungere in questo
nuovo linguaggio un sistema di ownership, il quale potrebbe aiutare nella rilevazione
di errori per riferimenti ad asset. Vengono, dunque, fornite le dimostrazioni che gli
statement presi in considerazione sono ben tipati : gli strumenti teorici usati nelle
dimostrazioni forniscono effettivamente delle indicazioni su come l’ownership dovrebbe
funzionare in Stipula.

Questa tesi si concentra sulla ricerca di funzionalità e pratiche per migliorare
l’espressività dei linguaggi typestate-oriented. Obsidian è un linguaggio staticamente
tipato e typestate-oriented con una particolare attenzione alla safety, alla security e
all’usabilità. Queste caratteristiche fanno parte anche dei principali obiettivi di Stipula,
un nuovo linguagggio typestate-oriented per i legal contracts. L’inserimento di tali
funzionalità in Stipula potrebbe essere un buon modo per migliorarne le proprietà di
safety e l’esperienza d’uso del programmatore.
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Chapter 1

Introduction

1.1 Context

Error detection in programming languages has always been important in reducing
bugs and vulnerabilities in programs and tools that help programmers in this task are
crucial for the industry. Their study and design are valuable areas of research.

Several kinds of error may occur in programs: expressions with incorrect types (e.g.
2+True), invocation of inexistent functions, invoking functions with the wrong number
of parameters or with the wrong types, division by zero, nonterminating programs,
dereferencing invalid pointers and so on. These errors cause unexpected behaviours
and usually lead to crashes. However, some of these errors can be detected using type
systems and compilers, which are tools that ensure that well-typed programs are free of
certain classes of errors. This detection is done statically, that is without even running
the programs.

However, modern compilers may not be enough anymore: in fact, the range of mis-
takes that programmers may introduce widely spreaded with the increase of complexity
of today’s systems. Nowadays, we live in a world permeated by distributed systems
and programs running on networks in which the state of the objects cannot be known
statically. For example, this happens in blockchains that are distributed ledgers mostly
used to exchange assets such as virtual currency and Non-Fungible Token (NFT)s. For
this reason, languages for blockchains should consider new classes of errors related to
assets: in fact, in this context arbitrary duplication, creation or loss of assets should
be avoided. These new kinds of error are strictly related to the concept of the state of
an object, which is in the blockchain environment an instance of a smart contract.

1.2 Problem

Several applications nowadays use blockchains, which provide a tamper-resistant
mechanism to manage transactions. However, it happened that security vulnerabilities,
such as DAO and Parity bugs, were exploited to steal virtual currency worth millions of
dollars [21, 24, 1]. Since contracts in blockchains are immutable, bugs and vulnerabilities
cannot be fixed easily. For example, due to the DAO hack, Ethereum was forced to
hard fork its network.

Ethereum is implemented in Solidity, which is a statically typed language. Its
type system grants safety to its programs. However, this is not enough: for example,
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the DAO hack could be avoided with a type system using specific asset types and
operations. In particular, the usual typing cannot detect several facts, such as state
changes, arbitrary duplication, creation and loss of assets. These features can be
realised with new approaches to typing, such as Typestate Oriented Programming
(TSOP) and ownership systems.

Typestate Oriented Programming (TSOP) is an extension of the Object Oriented
Programming (OOP) paradigm where classes are also associated with a protocol. Their
definition allows the implementation of type systems that also check the adherence of
the objects to such protocols, which are described in terms of states. For example, a
file has three different states: open, read and closed. When the file is open, the user
can check if the end-of-file is reached or close the file. When it is read, the user is
authorised to keep reading the file, if the end-of-file is not reached, or close it. From
this description, it is easy to understand that the behaviour of a file may define a
protocol. The aim of TSOP is to check the adherence to this protocol, usually at
compile-time.

Ownership is a set of rules that manages how objects in programs are referenced.
Ownership systems can be used for different purposes: for example, Rust uses ownership
to improve memory management [25]. Usually, ownership systems respect these rules:

• the objects in the ownership systems have an owner;

• there can be only one owner;

• if the owner goes out of scope, the object must be dropped.

Consider the following Rust code:
1 let s1 = String ::from("hello");
2 let s2 = s1;
3

4 println !("{} , world!", s1); // ERROR!

We have two references s1 and s2. After line 1, the reference s1 is the owner of the
String object "hello". Then, after the assignment in line 2, s2 becomes the owner
and the first reference is invalidated. Consequently, when s1 is used in line 4, the
compiler will notify an error that warns the programmer that the value of s1 is moved.

This mechanism can be used in smart contracts to check statically the ownership of
assets in order to avoid duplication of assets or multiple uses of the same asset, for
example.

1.3 Typestate Programming
As mentioned above, Typestate Oriented Programming (TSOP) is an extension of
the OOP paradigm where classes come along with protocols. The aim is to ensure
adherence to protocol and safe object behaviour. A typestate, as the word itself
suggests, is a pair composed of a type and a state. Several languages use the syntax
T@S to say that the object is of type T at state S. In OOP, for every class, we can define
functions or methods, but in TSOP it is also required that each method specifies the
state needed for the invocation. For example, if a method m is defined for type T in
state S, then it can be called only on objects with typestate T@S. The interesting part
is that, contrarily to type, the state can change during the execution of the program:
in fact, TSOP languages usually also provide statements that trigger objects to change
state. Then, each method of an object of a certain type defines a starting state and an
ending state, establishing a protocol.
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Consider the above example of the File class. Typically, we define it as follows:

class File {
File(String filename) { ... }
boolean open() { ... }
boolean eof() { ... }
byte read() { ... }
void close() { ... }

}

However, as already said, the File objects in order to be used correctly must follow a
certain protocol: in particular, any file when initialised must be opened; then, if the
opening does not fail, we have to check if the file has already reached the end-of-file or
not. In the first case, we can only close the file; otherwise, we can read the first byte
or close the file. If we read a byte, the file is in the same situation as before: we have
to check if we reached the end-of-file and consequently choose what to do. Otherwise,
we can just close the file. Then, we have five possible states:

1○ an initial state Init;

2○ a state Open that notifies that File has been opened succesfully;

3○ a state Read that specifies that the end-of-file has not been reached and that
authorises further readings;

4○ a state EOF that indicates that the end-of-file has been reached;

5○ the end -state.

We can describe the protocol discussed with an automaton (Figure 1.1), where the states
of the protocol are the states of the automaton and the methods are the transitions.
Sometimes, the transition from one state to another depends also on the result of
the method: for example, the Init state can reach Open if open is successful or end
otherwise. To describe this automaton, we could write a protocol like the following:

FileProtocol {
constructor : @Init ;

open : @Init ==> (true::@Open | false::@End) ;
eof : @Open ==> (false ::@Read | true::@EOF) ;
read : @Read ==> @Open ;
close : @Open ==> @End

| @Read ==> @End
| @Close ==> @End ;

}

The protocol can be used from automated tools to determine the typestates of File
objects at any point in a program or during its execution. We could, for example,
detect if the file is closed before a File variable goes out of scope by checking if the
state end is reached (completion of protocol) or if we are trying to read bytes from a
closed File (protocol adherence).

In general, TSOP adds to OOP more information on when methods should be
called, using states as abstraction. This choice fits programming languages: in fact,
almost any system can be described as a state machine with transitions that change its
behaviour. Consequently, having tools that are aware of states and transitions is very
useful in order to detect bugs or vulnerabilities caused by the misuse of objects. The
main challenge is to develop type systems that embed concepts of automata theory.
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Init

start

Open

EOF

Read

end

open : true open : false

eof : true

eof : false

close

read

close

close

Figure 1.1: Automaton for the protocol of File

1.4 Contributions
In this thesis, there are two main contributions:

• we discuss two Typestate Oriented Programming languages, Stipula and Obsidian,
designed for smart contracts development and compare their expressiveness and
main properties. In this analysis, the advantages of each language are identified:
Stipula adopts a safer and more flexible approach due to primitives, such as caller
guards or time-triggered events, that model intuitively legal contracts (which
is the main purpose of the language). However, we will see that Obsidian has
safety guarantees on assets that Stipula lacks.

• the other contribution is a discussion of the typing of asset operations in Obsidian.
An Obsidian implementation for currencies and tokens (which are the kind of
assets used in Stipula) is provided and discussed in order to find hints to add
ownership in Stipula. This may lead to strengthen safety properties in this new
language.

1.5 Structure of the document
The second chapter describes Stipula starting from the features that the language

offers to the programmers. Then, the type inference system and the properties
guaranteed are discussed.

The third chapter describes Obsidian with its features. The presentation also
includes a brief description of the blockchain platform that the actual implemen-
tation of Obsidian uses (Hyperledger Fabric [12]). Finally, the type system and
its core calculus (Silica) are described along with the properties guaranteed by
them.

The fourth chapter first introduces a method to translate Stipula contracts into
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Obsidian contracts. Then, several examples of this translation are shown and
analysed to compare the conciseness of the two languages and other properties.

The fifth chapter shows the typing of the respective Obsidian implementation of the
Stipula send -statement. For each of them, Silica translation and proofs through
derivation trees are provided.

The sixth chapter draws the conclusions of this thesis and reports related works,
comparing some of them with Obsidian and Stipula. Hence, some insights on
possible future work are provided.





Chapter 2

The Stipula Language

This chapter presents the Stipula language, through an example, that shows the several
features provided. Then, the type system and the properties guaranteed by Stipula are
discussed.

2.1 Introduction
Digital revolution affected most areas of our reality, one of them is law. However,
legal texts are very difficult to translate into a computable representation in a formal
language, since they are expressed in a natural language which is very expressive but
ambiguous. Due to the freedom of form principle, the use of a programming language
to draft contracts is a valid option. The benefits are in terms of speed, low ambiguity
and automatic and transparent enforcement of contractual clauses.

For this reason, Crafa et al. designed Stipula [9], an intermediate domain-specific
language for writing legal contracts. It has few selected and intelligible primitives with
a precise formalisation and semantics. These primitives preserve the main features of
legal contracts:

• the agreement : it is the meeting of the minds of the parties that must accept the
terms of the contract in order to trigger its legal effects;

• the creation of normative positions: permissions, prohibitions, obligations and
powers of a party are examples of position (that may change as the times goes
by);

• the transfer of assets and currency.

Other desirable features are:

• Openness to external conditions, which can trigger contractual effects;

• Subsequent modification;

• Third party adjudication and enforcement : that is, the possibility of settling
disputes over contract terms through some mechanism.

Stipula is designed to possess these features. In particular, the language provides
primitives and patterns that match the various parts of legal contracts: agreement is
directly implemented and corresponds to the constructor of the contract; permissions,
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powers and prohibitions are encoded allowing (or forbidding) parties to invoke certain
functions; obligations are modelled by scheduling time-triggered events; assets transfer
and manipulation is managed through specific primitive operations; openness to external
conditions and third party adjudication and enforcement are instead implemented using
specific coding patterns. The first one is realised using supplementary parties that
have the legal responsibility to fetch data from an external source specified during the
agreement. Third party adjudication and enforcement are handled including a party
that assumes the role of the authority with the respective capabilities.

2.2 The language
In Listing 2.1, we can see a typical Stipula contract: in particular, the contract
BikeRental regulates a bike rental service. Every contract starts with the keyword
stipula followed by the name of the contract. Then, the declarations of fields and
assets needed during the execution of the contract can be found (lines 2-4). Any term
on which the parties agree must appear in the list of fields. At this point, we can
recognise the agreement and the list of functions available. To manage changes in
normative positions over time, Stipula adopts a typestate programming style combined
with caller guards. Typestates are preceded by the character @. The grammar of the
Stipula language can be consulted in Figure 2.1.

2.2.1 Agreement
The agreement (lines 6-8) is the constructor of the contract and consists of the list
of parties involved, the list of the terms on which they must agree and a body where
the agreement is actually executed. In the example, the parties are Lender, Borrower
and Auhtority and the terms are rentingTime and cost. We notice that we can also
neglect some field: for example, the field code is not involved in the agreement. In
fact, this variable will just hold the ID of the bike given to the customer and will not
then be part of the terms of the agreement.

In the body, we can find the primitive that actually executes the agreement on
rentingTime and cost. In particular, in the statement on line 7 the parties on the
left of the colon must agree on the terms on the right. However, the two lists can also
neglect some of the parties: in fact, not all the parties must necessarily agree on all
the terms. When executed, the Stipula runtime will ask each party the value of each
term involved: for each term, if the values given from each party of the statement are
the same, then the agreement succeeds and the contract is constructed; otherwise, an
error will be notified to each party.

Finally, the agreement must specify in which state the contract will start: in the
example, BikeRental starts from the Inactive state.

2.2.2 Functions
Every function must declare the state transition and which party can invoke them: for
example, the function offer (lines 10-13) says that:

• in order to be executed, the contract must be in state Inactive;

• after the execution, it will be in state Payment;

• it can be called only by Lender.
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Listing 2.1: BikeRental contract in Stipula
1 stipula BikeRental {
2 asset wallet
3 field cost , rentingTime , code
4 init Inactive
5

6 agreement (Lender ,Borrower ,Authority)(rentingTime ,cost){
7 Lender , Borrower: rentingTime , cost
8 } ==> @Inactive
9

10 @Inactive Lender : offer(x)[] {
11 x -> code;
12 _
13 } ==> @Payment
14

15 @Payment Borrower : pay()[h] (h == cost) {
16 h -o wallet
17 code -> Borrower;
18 now+rentingTime >>
19 @Using {
20 "EndReached" -> Borrower
21 } ==> @Return
22 } ==> @Using
23

24 @Using Borrower : end()[] {
25 "EndReached" -> Lender;
26 _
27 } ==> @Return
28

29 @Return Lender : rentalOk ()[] {
30 wallet -o Lender;
31 _
32 } ==> @End
33

34 @Using@Return Lender , Borrower : dispute(x)[] {
35 x -> _;
36 _
37 } ==> @Dispute
38

39 @Dispute Authority : verdict(x,y)[] (y>=0 && y<=1) {
40 x -> Lender
41 x -> Borrower
42 (y*wallet) -o wallet , Lender
43 wallet -o Borrower;
44 _
45 } ==> @End
46 } �
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A function can be called in different states or from different parties: for example,
dispute can be called from both Lender and Borrower and in states Using and
Return. In general, functions have the following form:

@S A : f(x)[k] (E) { ... } ==> @S ’

where @S is the list of input states, @S is the output state and A the list of parties that
can invoke the function f.

In functions, we have two different lists of parameters: one for the non-asset
parameters (x) and one for the asset parameters (k). In particular, this second type of
parameter is not simply passed by value, but it is “moved" from the caller: this allows
sending currency and assets from one party to another or to the contract itself.

An other feature available in Stipula is the possibility to write a (optional) precon-
dition guard for the functions: its execution is bounded to the condition expressed.
For example, if the cost agreed for the rental is 10D (“dollars") and Borrower invokes
pay()[8D], then the Stipula runtime will respond with an error.

At the end of each function, events can be defined: in particular, events can be
triggered only if the function in which they are defined is called.

2.2.3 Statements and Prefixes
Stipula does not provide the same statements as typical programming languages: in
fact, the only ones available are conditional statement and prefixes, which are used
to assign values to or move assets between variables or “send" messages and assets to
parties. There are four kinds of prefix :

• assignment: E → x - the value of the expression E is assigned to the non-asset
variable x;

• message sending: E → A - the value of the expression E is sent to the party A;

• asset splitting: E ⊸ h,h’ - the value of the expression E is “moved" from the
variable h to the variable h’;

• asset sending: E ⊸ h,A - the value of the expression E is “moved" from the
variable h and sent to the party A.

Consider the function verdict on lines 39-45: its purpose is to emit the verdict
of the dispute between Lender and Borrower. With the first two statements, the
reasons for the verdict are sent as a message to the parties involved. Then, the currency
contained in wallet is split into two parts: since y ∈ [0, 1], then y*wallet is necessarily
less or equal than the currency in wallet. This amount is sent from wallet itself to
Lender as a refund and the remaining part (which is still kept in wallet) is returned
to Borrower.

2.2.4 Events
In Stipula, events can be defined only inside functions: this choice has been made
because events are reactions to some party behaviour which emerges from the function
called. Consider the event in lines 18-21: the reaction notifies the expiration of the
renting time to Borrower and changes the state of the contract in order to start
the conclusive phases of the contract (the restitution of the bike and the payment
completion).



2.2. THE LANGUAGE 11

To define an event, we need the time in which it will be triggered, the states that
allow its execution, the state reached after the execution and the statements to run.
In particular, an event has the following form:

time >> @S { statements } S

where time is the time of trigger activation, @S is the list of states that allows the
execution of the event and S is its output state. Stipula also provides a special keyword
now that allows us to retrieve the current time of the global system clock.

2.2.5 Expressions
Stipula expressions include values, variables and the keyword now combined with the
operators (which can be unary or binary). There are different types of values:

• real numbers, usually combined with standard arithmetic operators (+,-,*,/);

• boolean values false and true with boolean operators (&&,||,!);

• strings, that are sequence of characters inside pairs of double quotes (i.e., ")
possibly concatenated using the operator ˆ;

• time values that represent the global system clock, written as "2023/1/1:00:30",
eventually combined with + and a positive integer number that represents the
amount of minutes to add: for example, now + 2 is an admissible expression and
accounts a time 2 minutes after the actual system clock;

• asset values and parties identities, but the use of the relative constants is inhibited
since they should be introduced, respectively, only through function parameters
and during the agreement.

Asset expressions are combinations of asset values and asset variables with operators
+, - and *. However, in this case the semantics is different from the typical meaning
of these operators. The semantics changes depending on the kind of asset handled.
Consider the partial function J·Kaℓ : Expr ↪→ AssetV alue that, given an expression,
returns the respective asset value in the memory ℓ. Then, this function is defined as
follows:

• for currencies (+D,−D are semantic operations that respectively sum and subtract
currencies; ∗D is the operations that multiplies currencies with a real number):

JEKaℓ =



E if E is a currency value
ℓ(X) if X is an asset variable storing currencies
JE′Kaℓ +

D JE′′Kaℓ if E = E′ + E′′ and JE′Kaℓ , JE
′′Kaℓ are currencies

JE′Kaℓ −D JE′′Kaℓ if E = E′ − E′′ and JE′Kaℓ , JE
′′Kaℓ are currencies

and JE′Kaℓ ⩾ JE′′Kaℓ
JE′Kaℓ ∗D JE′′Kaℓ if E = E′ ∗ E′′ and JE′Kaℓ is currency

and E′′ is either a real number or a non-asset name

• for tokens:

JEKaℓ =


E if E is a token value
ℓ(X) if X is an asset variable storing tokens
JE′′Kaℓ if E = E′ + E′′ and JE′Kaℓ = 0T

0T if E = E′ − E′′ and JE′Kaℓ = JE′′Kaℓ
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stipula C {
assets h
fields x
agreement (A){

A1 : x1
... //

⋃
i∈1..n Ai ⊆ A,

⋃
i∈1..n xi ⊆ x,

⋂
i∈1..n xi = ∅

An : xn
} => @Q
F

}

Functions F ::= _ | @Q A : f(y)[k](E){S W}==> @Q’ F

Prefixes P ::= E → x | E → A | E ⊸ h,h’ | E ⊸ h,A

Statements S ::= _ | P S | if(E){S} else {S} S

Events W ::= _ | E » @Q {S} ==> @Q’ W

Expressions E ::= v | X | now | E op E | E uop E

V alues v ::= n | false | true | s | t | a

Figure 2.1: Syntax of Stipula

Any expression can also be combined with relational operators.

2.2.6 Assets

Assets are a particular type of data: the crucial point is that they cannot be created
or deleted, but only moved (or sent) from a place to another. For this reason, they
must be managed differently: we already saw the semantics of the expression. Now,
we can focus on the semantics of the send -statements for assets: E ⊸ h,h’ and
E ⊸ h,A. They can be both abbreviated in h ⊸ h’ and h ⊸ A respectively, which
are semantically equivalent to h ⊸ h,h’ and h ⊸ h,A.

When h is a currency variable, then:

• E ⊸ h,h’ determines the value a of E, subtracts it from the amount stored in h
and adds it to the one stored in h’;

• E ⊸ h,A determines the value a of E, subtracts it from the amount stored in h
and sends it to the party A.

If a > JhKaℓ , then there is a run-time error.
The token variables must be managed in a different way, since they can be “empty"

or “full". In particular, the run-time signals an error:

• if we try to replace a token contained in a “full” variable with another one;

• if we try to send a token from an “empty” variable;

• if we try to update a variable from an “empty” one;

• if we try to clear a “full” variable, sending a 0 value.
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Due to these conditions, Stipula avoids losing assets during the execution of send -
statements and asset expressions. Also, as already mentioned, the only way to introduce
assets in a contract is through the function asset parameters. So, the language does
not allow asset minting in contracts.

2.3 Type inference system
The syntax of Stipula does not include types in order to make Stipula contracts similar
to legal contracts, which do not have (obviously) type annotations, and clearer to
unskilled users (like lawyers, for example). However, Stipula has a simple type inference
system, which enables derivation of types of assets, fields and function parameters.

The primitive types must obviously match the values mentioned above. In particular,
they are defined as follows:

Primitive Types T ::= real | bool | string | time | asset

The judgements in the Stipula type system are of the following form:

Γ,∆ ⊢ E : α,Υ for expressions
Γ,∆ ⊢ S : Υ for statements

where:

• α, α′, ... are type terms that can be primitive types or type variables X,Y, Z;

• Γ is the environment that maps fields and non-asset function parameters to type
terms;

• ∆ is the environment that maps asset and asset function parameters to type
terms;

• Υ is the conjunction of constraints collected during the type inference process.

The inference system works by assigning type variables to the names in the contract
and collecting constraints while performing parsing. Then, it finds the correct type
values (if exist) through unification and substitution techniques.

2.4 Properties
Due to its semantics and type system, Stipula presents several issues, like non-
determinism, safety and security. In particular, the management of assets has a
central role in all asset-aware languages. The goal should be to avoid the arbitrary
creation and loss of assets: these problems may occur in different ways. Stipula
guarantees some of the safety and security properties: in particular, the language
comes with a tool that verifies liquidity of contracts.

2.4.1 Non-Determinism
Stipula is a language designed to run in a distributed context: in fact, the parties are
roles for different entities that operate over the same contract. The semantics of the
language admits three sources of non-determinism:
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1○ the order of the execution of the ready events;

2○ the order of the invocations of the permitted functions;

3○ the delay of permitted function calls to a later time.

The feature of non-determinism requires a discussion of the topic of equivalence
between contracts: along with the language, in the paper is also presented an observa-
tional equivalence called Normative Equivalence. This relation allows to distinguish
contracts checking their behaviour: that is, comparing agreements, permission, prohibi-
tions, obligations and assets received from the contract. Using a formal equivalence is
one of the greatest advantages in adopting a programming language to write a contract.

2.4.2 Safety
Stipula manifests mainly six kind of errors: unsafe operations, access to not initialised
fields, references to unknown identifiers, drainage of too much value from an asset,
forging new assets and accumulation tokens. However, the type system developed
addresses some of these problems. In particular, the Safety Theorem proven in the
article shows that, if a contract is well-typed, then the only errors that may cause
runtime errors are unsafe asset operations, accesses to uninitialised fields, and division
by 0. Examples of unsafe asset operations are 123D + 1T or 123D - 1234D: in the
first case, the problem is the use of different types of assets; in the second case, it is a
negative value as a result of an asset expression. The first kind could be faced with
the introduction of different types for currencies and tokens. The second is harder to
manage statically, especially when variables are involved.

2.4.3 Liquidity
An important security property of smart contracts is liquidity, which requires that the
contract assets are always transferred to some party. If a contract is non-liquid, then
assets can be frozen inside the contract forever and, then, destroyed causing loss of
assets.

Silvia Crafa and Cosimo Laneve designed a liquidity analyser for Stipula that
combines automata theory, approximation and fixpoint techniques. This tool prevents
non-liquidity in Stipula contracts [6].



Chapter 3

The Obsidian language

This chapter introduces the Obsidian language and shows several features of the given
Obsidian language. Then, Obsidian type system and guaranteed properties are discussed.

3.1 Introduction

Blockchains nowadays are used for many applications and provide a tamper-resistant
mechanism for transactions. However, there were applications that included security
vulnerabilities, such as DAO and Parity bugs, that were exploited to steal virtual
currency worth millions of dollars [21, 24, 1]. Contracts in blockchains are required to
be immutable, so errors cannot be fixed easily.

Obsidian is a programming language that aims to prevent these bugs as soon
as possible through strong compile-time features. In particular, Obsidian uses a
combination of typestates and linear types [27]: the goal is to ensure the manipulation
of objects according to their states and the safe manipulation of assets to avoid their
loss. The guidelines followed for the design of Obsidian are:

• Strong static safety: due to the severity of bugs in smart contracts, the language
uses a strong static type system to enforce compile-time error detection with an
eye towards loss of assets;

• User-centered design: one of the main goals was also to propose a language as
usable as possible;

• Blockchain-agnosticism: since the research on blockchain is very lively in these
years, a good language should not depend on a single platform, but it should aim
to possess properties commonly owned to many platforms.

In order to facilitate usability, in Obsidian TSOP is integrated in an Object Oriented
(OO) setting. These two paradigms can be easily merged: in fact, OOP manages data
with states that can mutate over time and TSOP allows to specify protocols and to
check statically the adherence to such protocols. Then, smart contracts can be seen as
objects with a specific protocol.

Smart contracts also manipulate assets. Obsidian uses linear types and ownership
and integrates this approach with typestates. In particular, the language forbids the
loss of assets owned by some other entity.

15
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Mode Other possible aliases Typestate Mutation
Owned Unowned Allowed

Unowned Unowned, either Owned or Shared Forbidden
Shared Unowned, Shared Allowed
State Unowned Allowed

Table 3.1: Asset references

Obsidian is presented together with a core calculus, Silica, and an integrated
architecture that supports smart contracts and client programs [4]. In particular, the
first one is used to prove the key properties of Obsidian, such as Asset Retention.

3.2 The language
In Listing 3.1, we can see an example of Obsidian contract [2]. In particular, this
simple program models the behaviour of a vending machine that sells candies in return
for coins. For this reason, the machine has a coin bin and can be in two different states:
Full when it has the candy, Empty otherwise.

Every contract is declared with the keyword contract. Every file written in
Obsidian must provide exactly one main contract. Then, inside the contract we
can define the list of fields, states, constructors and functions available. In Obsidian,
functions are called transactions.

3.2.1 Assets
In Obsidian, assets are particular types of contracts whose instances are guaranteed to
have exactly one owner. Every asset can be referenced with three different modes:

• Owned: the only reference to the object that is allowed to mutate its type state;
in this case, there may be many Unowned aliases but no Owned or Shared ones;

• Unowned: a non-linear reference to the object; in this case, there may be (or not)
an Owned one or many other Shared aliases;

• Shared: one of the references that can mutate the typestate of the object; there
are no Owned aliases and there may be many others Shared or Unowned references.

A contract owns an asset when it is referenced with an Owned reference. In this case,
the contract must also be declared as an asset. For example, in Listing 3.1 the main
contract TinyVendingMachine owns the assets coinBin and inventory (lines 17 and
20). Then, it must also be declared as an asset.

If a contract defines states, then its instances can be referenced using the state: in
this case the reference is an Owned reference that also communicates that the object
is in a specific state. For example, we could refer to a TinyVendingMachine in other
contracts as TinyVendingMachine@Empty or TinyVendingMachine@Full.

Modes and states are separated from the type by the character @. For example, an
asset of type Coin with mode Owned is declared as Coin@Owned.

In Obsidian, there are three ways for a reference to lose ownership:

• assignment: if an Owned reference is assigned to an Unowned reference x of the
same contract, it will become Unowned and x will obtain the ownership of the
object referenced (Listing 3.2).
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Listing 3.1: TinyVendingMachine contract
1 asset contract Candy {
2 }
3

4 asset contract Coin {
5 }
6

7 asset contract Coins {
8 // Currently implemented as a bottomless void for convenience.
9

10 transaction deposit(Coins @ Unowned this , Coin @ Owned >> Unowned c) {
11 disown c;
12 }
13 }
14

15 // This vending machine sells candy in exchange for candy tokens.
16 main asset contract TinyVendingMachine {
17 Coins @ Owned coinBin;
18

19 state Full {
20 Candy @ Owned inventory;
21 }
22 state Empty; // No candy if the machine is empty.
23

24 TinyVendingMachine@Owned () {
25 coinBin = new Coins(); // Start with an empty coin bin.
26 ->Empty;
27 }
28

29 transaction restock(TinyVendingMachine @ Empty >> Full this ,
30 Candy @ Owned >> Unowned c) {
31 ->Full(inventory = c);
32 }
33

34 transaction buy(TinyVendingMachine @ Full >> Empty this ,
35 Coin @ Owned >> Unowned c) returns Candy @ Owned {
36 coinBin.deposit(c);
37 Candy result = inventory;
38 ->Empty;
39 return result;
40 }
41

42 transaction withdrawCoins () returns Coins @ Owned {
43 Coins result = coinBin;
44 coinBin = new Coins();
45 return result;
46 }
47 } �

Listing 3.2: Obsidian assignment

// Suppose that x and y have types Coin@Unowned
// and Coin@Owned respectively
x = y
// At this point , x and y have types Coin@Owned
// and Coin@Unowned respectively �
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• reference passed as parameter: when a reference of contract C is passed
as an argument to a transaction and the parameter is declared as C@Owned
» Unowned, then after the execution of the transaction the reference will have
type C@Unowned. In general, in Obsidian the type C@TST » T ′

ST indicates a
reference of contract C that will change its mode (or state) from TST to T ′

ST .

• disown statement: the last way for a reference x to lose ownership is the
statement disown x: in this case, the programmer explicitly requires the contract
to give up the ownership.

3.2.2 Type Declarations and Static Assertions

In Obsidian, local variables, fields and transaction parameters are required to be
declared with their types. In particular, the last two must also be declared with their
mode. But, during the execution of some transaction, the actual modes may not be
consistent with those declared. This fact may reduce the readability of the code: for this
reason, Obsidian also includes static assertions ([e @ mode]). These are statements
that do not have any effect on the dynamic semantics, but are used as checked
documentation: that is, the type checker verifies if the given mode is valid for a certain
expression. For example, the statement [coin @ Owned] is used to check statically if
the reference coin is owned. For example, consider the transaction withdrawCoins()
in Listing 3.1. After line 43, coinBin will have typestate Coins@Unowned and, after
line 44, will be again Coins@Owned. We could statically check if coinBin is still Owned
after the first statement:

transaction withdrawCoins () returns Coins @ Owned {
Coins result = coinBin;
[coinBin@Owned ]; // Compile -time error!
coinBin = new Coins();
return result;

}

In this case, the Obsidian compiler will notify us of an error on the line of the assertion
warning us that coinBin is not Owned.

3.2.3 State transitions

When defined a state can include a list of fields which are in scope only when the
object is in the that state. This feature raises the issue of initialisation and disposal of
fields when transitioning from one state to another. Considering a state S:

• when the object is in state S, the fields for S must be initialised;

• when the object is not in state S, the fields for that state cannot be in scope.

To maximise flexibility, Obsidian provides two ways to initialise fields before transi-
tioning from a state to the target state. The first one allows us to write initialisations
in the transition:

->S(x = a);

where the field x is initialised to a. The second way allows for initialisations before the
state transition:
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Listing 3.3: Example of private transaction
1 contract C {
2 A@S1 a;
3 private (A@S2 >> S1 a) transaction f() {...}
4 } �

S::x = a;
->S;

When transitioning to a state, the fields that will not be in scope in the target state
must not be owned references to assets. This means that the ownership of these fields
must be transferred or disowned prior to the transition.

Consider the TinyVendingMachine: in the state Full the field inventory is de-
clared. When the machine is restocked, Obsidian requires to initialise inventory and
this is done in line 31. On the other hand, when someone buys the candy from the
machine, inventory gives up ownership to result on line 37 and then the contract
can pass to the state Empty (line 38).

3.2.4 Transactions

Obsidian transactions can be functions that return values of type Tout or procedures,
and they have the following form:

transaction f(Cf@Sf xf ) returns Tout {...} // function
transaction g(Cg@Sg xg) { ... } // procedure

To define the scope of transactions or if they determine the transaction to another
state, Obsidian requires adding the reference to this in the list of parameters (Cf@Sf xf ,
Cg@Sg xg). In particular, the parameter C@S this will appear in the list indicating that
the transaction can be called only for objects in state S. The transition between states
is written using the symbol ». For example, the transaction restock in Listing 3.1 can
be called if the vending machine is Empty and at the end of the transaction it will be
in state Full.

As already mentioned, fields during the execution of transactions may not be
consistent with their declarations. Obviously, the only discrepancy allowed involves
mode. However, they are required to be coherent to declarations at the end of the
transactions. In any case, if the actual types of fields of this do not match the ones
declared, any transaction invocation is forbidden. The only exception to this rule is
represented by private transactions.

Private transactions Obsidian allows the definition of private transactions to
simplify refactoring and encourage modular and readable code scripting. To declare
private transactions, the keyword private is added before the declaration.

As mentioned, before invocation of a private transaction, the fields of the object
could not be consistent with those declared. For this reason, private transactions may
require a declaration of expected types before and after their invocations (Listing 3.3).
In this way, programmers can do refactoring and have the benefits of statically typed
transactions.
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Listing 3.4: Parametric polymorphic list in Obsidian
1 contract List[T@S] {
2 state Empty;
3 state HasNext {
4 List[T@S]@Owned tail;
5 T@S value;
6 }
7 ...
8 } �
3.2.5 Dynamic State checks

Checking states statically may be impossible in some circumstances. For this reason,
Obsidian allows programmers to write dynamic state checks. The syntax of these
statements is the following:

if (x in S) {
...

}

In order to fit this checks with typestates, Obsidian compiler makes some assumptions
on the typestate of the tested variable depending on the mode of the tested variable.
For example, if the statements checks x in Owned, then in the body of if -statement
the compiler will assume that x is Owned. These assumptions are made to guarantee
the most precise and safe type-checking.

3.2.6 Parametric Polymorphism

In Obsidian, class-level inheritance is forbidden. Contracts cannot extend other
contracts and can only implement interfaces. This choice was made due to the
fragile base class problem. However, Obsidian supports parametric polymorphism to
guarantee safety for collections and avoid code duplication. Contracts can have two
type parameters: one for the contract and one for the mode (Listing 3.4).

3.3 System design and implementation

Obsidian is currently implemented with the authorised blockchain platform Hyperledger
Fabric [12] that enables organisations to choose who can access the ledger and which
peers should approve each transaction. Smart contracts in Java are written in Java:
for this reason, the Obsidian compiler translates the sources into Java code ready to
be deployed on Fabric peer nodes.

3.3.1 The ledger

In the ledger the state of smart contracts is stored as key/value pairs. To do so,
serialisation must be provided: Obsidian generates automatically serialisation code
using protocol buffers [17]. To execute a transaction, objects are lazily loaded from
the storage, used and eventually modified. After execution, the modified objects are
serialised and stored again in the ledger.
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Listing 3.5: Client program for TinyVendingMachine

1 import "TinyVendingMachine.obs"
2

3 main contract TinyVendingMachineClient {
4 transaction main(remote TinyVendingMachine@Shared machine) {
5 restock(machine);
6

7 if (machine in Full) {
8 Coin c = new Coin();
9 remote Candy candy = machine.buy(c);

10 eat(candy);
11 }
12 }
13

14 private transaction restock(remote TinyVendingMachine@Shared machine) {
15 if (machine in Empty) {
16 Candy candy = new Candy ();
17 machine.restock(candy);
18 }
19 }
20

21 private transaction eat(remote Candy @ Owned >> Unowned c) {
22 disown c;
23 }
24 } �
3.3.2 Client programs

Usually, blockchain systems use a language for smart contracts and another one for
client programs: for example, Solidity is coupled with JavaScript. The interface for a
contract is specified in Application Binary Interface (ABI) and, if some incompatibility
between JavaScript serialisation code and Solidity deserialisation occurs, then there
may be bugs.

For this reason, Obsidian allows users to also write client programs. In this way,
client programs can reference the same contract implementations as the ones in the
server. This leads to the possibility for the server and clients to use the same serialisation
and deserialisation that are also automatically generated in Obsidian.

Client programs in Obsidian have a main transaction that has as input a remote
reference. This keyword specifies that the object referenced is instantiated in the
blockchain and indicates to the compiler to implement the relative references with
stubs using an RMI-like mechanism. In particular, the main transaction input includes
the remote reference to the smart contract instance. These remote references are
transmitted between clients and blockchains using objects’ unique IDs. In Listing 3.5,
for example the parameter of main contract references an instance of the smart contract
TinyVendingMachine. The client program will ask to execute the unique ID of an
instance of TinyVendingMachine in order to reference it.

As is well known, blockchains allow interleaving of transactions, but this is not
enough to guarantee safety in Obsidian client programs. In the current implementation,
dynamic state checks may not effectively ensure the typestate of remote references.
Consider the following statements, where r is a remote reference:

if (r in S) {
r.t();

}

Since t() is executed remotely, an interleaving transaction could change the state of r
after the check and before the invocation of t.
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3.4 Type system and Silica
To prove Obsidian’s properties, the creators chose to use a core calculus called Silica.
This language uses concepts and even notation from Featherweight Typestate (FT), a
static language for TSOP designed in “Foundations of Typestate-Oriented Programming”
[14]. However, they differ significantly from each other since they focus on different
features. Like FT, Silica is an expression language: that is, sequencing is allowed
only through nested let-bindings. In particular, it uses A-normal form to avoid nested
expressions: for example, the statement

return f(g(1));

is equivalent to the Silica expression:

let x : T = g(1)
in f(x)

The Silica type system is expressed using several kinds of judgement that employ
contexts for typing (∆,∆′,...) and typing bounds (Γ,Γ′,...). The first include local
variables and temporary field types; the second represents a set of generic type variables.

Type splitting T1 ⇛ T2/T3 An other feature borrowed from FT is type splitting,
which is a relation used to specify how ownership of objects must be managed among
aliases. We say that a type T1 is split into T2 and T3 when T1 ⇛ T2/T3. In particular,
the relation is designed so that if one of the types on the right side has ownership,
then it is held by T2.

Consider the Obsidian statement c2 = c1 where c1 : Candy@Owned and c2 :
Candy@Unowned: in Silica this statement is analogous and requires the type of c1 (T1)
splitting in two types (T2 and T3) and using them to update types of the references.
In particular, c1 will have type T3 and c2 type T2. Since T1 = Candy@Owned, then
the ownership must be passed to one of the type on the right side of

Candy@Owned ⇛ T2/T3

. As mentioned, the relation is designed to pass the ownership to T2. Then, Candy@Owned ⇛
Candy@Owned/Candy@Unowned and after the assignment the types of c1 and c2 will
be respectively Candy@Unowned and Candy@Owned: that is, ownership has been
transferred from c1 to c2.

Well-typed expressions Γ;∆ ⊢s e : T ⊣ ∆′ Silica expressions are typed using two
typing contexts: the one on the left of ⊢s is the usual input typing context; the one on
the right of ⊣ is the output typing context. This is needed because in Silica expressions
can change the mode of references. Also, expressions are type-checked considering the
invocation object s (i.e. the this reference).

Well-typed transaction M ok in C For this kind of judgement there are only
two rules applicable: one for the public transactions and one for the private transactions.
The main difference among them is that private transactions may have at the beginning
or at the end fields inconsistent with their declarations.

Well-formed State ST ok These judgements are used to check if fields have
distinct names and if the state is labeled as asset when any field is an asset.
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Well-typed Contract, Interface and Program P ok These judgements check
if contracts, interfaces and programs are well-typed (and well-formed) in any part of
them: in particular, the judgement for contract (CL ok) checks if every transaction
is well-typed and if every other part (states, type variables, ...) is well-formed; the
judgement for interfaces (IFACE ok) controls if the type parameters are well-formed;
the judgement for programs (PG ok) checks if every contract and interface is well-typed.

Subpermission Γ ⊢ T1 <:∗ T2 , Γ ⊢ T1 ≮:∗ T2 Subpermission specifies when an
expression with contract C and mode TST can be used where an expression with
contract C but mode T ′

ST is expected. According to the definition of <:∗, we can
determine that:

State <:∗ Owned <:∗ Shared <:∗ Unowned

Subtyping Γ ⊢ T1 <: T2 Subtyping judgements depends on the subpermission
relation <:∗. Usually, this relation manages the type parameters and then delegates
the check on permission to <:∗.

Then, for any contract C,

C@State <: C@Owned <: C@Shared <: C@Unowned

3.5 Properties
As Stipula, Obsidian addresses the safety and security issues using static typing. The
main efforts in Obsidian were made to guarantee a safe and secure management of
assets: in particular, in avoiding asset loss. Concurrency is mainly handled by the
blockchain platform that ensures to execute transactions sequentially.

3.5.1 Safety
Obsidian has a full-fledged type system. Then, its type system ensures the typical
properties of OO languages. In particular, the Progress Theorem proven for Silica says
that programs may stuck only if they end up at a bad state transition, at a reentrant
invocation or in a nested dynamic state check.

3.5.2 Asset Retention
The main property guaranteed by the Obsidian type system is Asset Retention, which
states that a well-typed expression in an appropriate dynamic context drops Owned
references to assets if such expression is a disown operation. In any other case, assets
cannot be lost “accidentally”. This is a key feature in Obsidian, since it ensures
avoidance of bugs such as the one exploited in the DAO hack.

In particular, this property says that, if the expression e is closed, well-typed
(Γ;∆ ⊢s e : T ⊣ ∆′) and not stuck, then its type is non-disposable (that is, holds
ownership) or e disowns s at some point. Two other key hypotheses for the Asset
Retention theorem are:

• in the input context (∆) exists a reference having non-disposable type, that is,
before the evaluation of expression e there is an asset reference in the context;

• in the output context (∆′) the type of every reference is disposable, that is, after
the evaluation of e every reference is disposable.
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For example, consider the following erroneous lines of code:
transaction willNotCompile () return Candy@Unowned {

Candy c1 = new Candy (); // c1 : Candy@Owned
Candy c2 = c1; // c1 : Candy@Unowned ,

// c2 : Candy@Owned
return c1;

} // ERROR!

This code will cause the compiler to generate a compilation error at the end of
the transaction notifying that the reference c2 still holds ownership when deallocated.
This fact is detected by the type system as follows. Consider the translation in Silica
of the body of willNotCompile:

let c1 = new Candy()

in let c2 = c1

in c1

After the assignment c2 = c1, if we want to type the expression c1, we will need to
prove the judgment

c1 : Candy@Unowned,
c2 : Candy@Owned ⊢s c1 : Candy@Unowned ⊣ c1 : Candy@Unowned,

c2 : Candy@Owned

However, in the output context c2 has type Candy@Owned. This means that after the
evaluation of the expression c1 and, consequently, after the whole expression, there
are references having non-disposable types. Then, the expression does not respect the
conditions for Asset Retention and the type system will find this through the rule
(T-let) (shown in chapter 5) which requires let-variables to have disposable types
after the evaluation of the respective expression after the in.

However, the previous example can easily be “fixed” by disowning c2:
transaction willCompile () return Candy@Owned {

Candy c1 = new Candy (); // c1 : Candy@Owned
Candy c2 = c1; // c1 : Candy@Unowned ,

// c2 : Candy@Owned
disown c2; // c2 : Candy@Unowned
return c1;

}

Then, after the disown expression, the typestate of c1 will be checked with the
judgment:

c1 : Candy@Unowned,
c2 : Candy@Owned ⊢s c1 : Candy@Owned ⊣ c1 : Candy@Unowned,

c2 : Candy@Unowned

This time, every reference after the evaluation of c1 is Unowned and, then, disposable.
In particular, the (T-let) rule will be completely satisfied since the type of all the
local variables is disposable. Since there is a reference in the input context that has
non-disposable type, the expression is closed, well-typed and not stuck, the conditions
for Asset Retention are met: in fact, the transaction contains a disown statement.

The example shown is just a simple case where the Obsidian type system shows its
ability to check how ownership is transferred among references. The rules of the type
system check the disposability of references when ownership is actually transferred or
lost: that is, in rules for assignment (T-assign), introduction/deallocation of local
variables (T-let), field updates (T-fieldUpdate) and state changes (T-→p).



Chapter 4

Comparison between Stipula and
Obsidian

In this chapter, several examples are shown in order to compare the expressiveness of
Stipula and Obsidian. The approach adopted was translating a program from one language
to another to exploit the differences and the obstacles to implement certain features.

4.1 Introduction

In order to compare the Stipula and Obsidian languages, I wrote several examples
using both.

Obsidian examples In Obsidian, the following examples are available:

• CoinEscrow This is an example that shows how a simple Stipula contract can
be translated in an equivalent Obsidian contract. In particular, the contract
manages the sending of currency among parties.

• NftEscrow This is analogous to the previous example, but in this case the asset
managed is a token.

• AssetSend In this example, I implemented a contract that emulates the party
of a contract and two different types of assets: Currency and NFT. The purpose
is to understand the types needed for the ⊸ operator.

• BikeRental This is the implementation of the bike rental contract seen in
the Stipula presentation paper [5]. Here, I found that the Stipula states are
easily translated in their respective Obsidian states, that Stipula has a safer
semantics (due to user identities dynamic checking) and an easy way to perform
time-triggered events. Both versions can be read in their entirety in Appendix A.

• Bet This is the implementation of the betting contract seen in the presentation
paper of Stipula. In particular, the original contract considered two betters
bidding over the result of an agreed event. This example shows conclusions
similar to those found in BikeRental. Available in Appendix A.

25
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• Auction Simplified version of the example available in the Obsidian GitHub
repository [2]: this is the usual auction in which bidders compete to win an
object.

Stipula examples In Stipula, the following examples are available:

• Auction Translation of the auction example in Obsidian. This shows that it
is easy to write a Stipula program that has the same semantics of an Obsidian
program.

• Parametric Insurance This is the translation of the example available in
the Obsidian repository [2]. This example represents the implementation of
a parametric insurance contract involving as parties an insurance service and
farmers: this kind of contracts provides a payout to the farmer when specific
conditions (certified by a trusted provider) are met. In this specific case, they
are related to the moisture of the terrain and the measurements are supplied by
a trusted weather service.
The original example uses user-defined types and dictionaries: neither of them is
available in Stipula, yet. Then I adopted two different strategies:

1○ Focusing all the design on the Policy contract, avoiding aggregated data
types;

2○ Keeping the focus on the InsuranceService contract, but using arrays as
dictionaries.

• ExampleTokenBank Translation in Stipula of another example in the main
Obsidian paper. This is an implementation of a contract that meets the ERC20
standard. The original code is available in the Obsidian repository [2].
Again, the dictionaries are widely used and the guards of user identities in Stipula
in this case may represent a disadvantage.

https://github.com/mcoblenz/Obsidian/blob/master/resources/sample_programs/auction.obs
https://github.com/mcoblenz/Obsidian/blob/master/resources/sample_programs/auction.obs
https://github.com/mcoblenz/Obsidian/tree/master/resources/case_studies/Insurance
https://github.com/mcoblenz/Obsidian/blob/master/resources/demos/ERC20/ERC20.obs
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Listing 4.1: Stipula contract
1 stipula C {
2 asset w
3 field v1 , v2 , v3
4 init S1
5

6 agreement (A,B,C) (v1,v2) {
7 A,B : v1
8 B,C : v2
9 } ==> @S1

10

11 @S1 A : m(x)[h](cond) {
12 ...
13 h -o w
14 ...
15 } ==> @S2
16

17 ...
18 } �
4.2 Translation from Stipula to Obsidian
To translate a contract from Stipula, we need at least to define the following elements:

• the contract itself,

• an interface for each party involved,

• their implementations,

• the main procedures that execute the code instantiated in the blockchain.

Consider the Stipula contract in Listing 4.1. We can notice that there are three
main parts: the declarations of fields and assets, the agreement and the methods. Each
of them corresponds to a part of the respective Obsidian contract (Listing 4.2).

4.2.1 Member and states declarations
The main obstacle in the translation of declarations is the management of asset
ownership. The contract in Listing 4.1 declares the asset w which is a currency asset.
In this case, simply adding the type declaration Currency@Owned is enough, because
the contract always owns some currency: if w is equal to 0, then the contract owns 0
“dollars” (line 6 of Listing 4.2). When the asset is a token, we need to manage when
this token is actually owned or not: we can do this by declaring a member of type
NFT@Owned for each state in which the token must be owned by the contract C (this
approach will be shown in detail in 4.2.6). For the other members, I simply added the
respective type. Then, Obsidian requires us to declare all the states (unlike Stipula).
In the translation in Listing 4.2, this part is contained in lines 6-15.

4.2.2 Agreement
To replicate the same semantics of the agreement in Stipula, we need to check that
each parameter involved is the same for each party: if some of the parties do not agree,
the construction of the contract must be interrupted. For example, the statement at
line 7 of Listing 4.1

A,B : v1
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Listing 4.2: Obsidian translation
1 asset interface A { ... }
2 asset interface B { ... }
3 asset interface D { ... }
4

5 main asset contract C {
6 Currency@Owned w;
7 T1 v1;
8 T2 v2;
9 T3 v3;
10

11 state S1;
12 state S2;
13 ...
14

15 A@Shared partyA;
16 B@Shared partyB;
17 D@Shared partyD;
18

19 C@S1 (A@Shared pa, B@Shared pb, D@Shared pd) {
20 if (pa.v1agreed () != pb.v1agreed ()) {
21 revert("Agreement failed");
22 }
23

24 if (pb.v2agreed () != pd.v2agreed ()) {
25 revert("Agreement failed");
26 }
27

28 v1 = pa.v1agreed ();
29 v2 = pb.v2agreed ();
30 v3 = T3();
31 w = new Currency (0);
32

33 partyA = pa;
34 partyB = pb;
35 partyD = pd;
36

37 ->S1;
38 }
39

40 transaction m(C@S1 >> S2 this ,
41 T1 x,
42 Currency@Owned >> Unowned h,
43 A@Unowned caller) {
44 if (caller.id() != partyA.id()) {
45 revert("Identity check failed");
46 }
47

48 if (!cond) {
49 revert("Precondition not fulfilled");
50 }
51

52 ...
53 w.merge(h);
54 ...
55

56 ->S2;
57 }
58

59 ...
60 } �
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becomes
if (pa.v1agreed () != pb.v1agreed ()) {

revert("Agreement failed");
}

v1 = pa.v1agreed ();

To do this check, we need the references to the parties during construction and then
the parameters pa, pb and pd. The parties are referenced as Party@Shared. The main
reason is that objects representing parties are instances of Party contracts already
deployed on the ledger at the moment of the instantiation of the contract C.

When we are sure that everyone agrees on the respective terms, then we can assign
the fields with their respective values and apply the transition to the initial state. In
Listing 4.2, the lines 21-40 of the Obsidian contract correspond to the agreement.

4.2.3 Methods
The main differences between Stipula methods and Obsidian transactions are the caller
and precondition guards. However, the semantics of these two features can be easily
replicated: firstly, we need to store in the contract the references to the parties (lines
17 - 19 in Listing 4.2) that can be easily obtained during the construction. Secondly,
we have to add the respective checks inside the body of the transaction. Consider the
method at line 11 (Listing 4.1): the guard requires the party A to be the only caller of
m. Then, we will add at the beginning of the method the following lines:

if (caller.id() != partyA.id()) {
revert("Identity check failed");

}

The same approach is adopted for the precondition guard.

4.2.4 Party interfaces
To apply the translations listed until now, the contract must provide interfaces for
each party. Parties need to receive and send assets and share a unique identifier for
approval of the invocations. Then, an interface should provide at least the following
methods:

transaction give(int v) returns Currency@Owned;
transaction receive(Currency@Owned >> Unowned c);
transaction giveToken () returns NFT@Owned;
transaction receiveToken(NFT@Owned >> Unowned t);

transaction id() returns string;

Other methods can be added to the interfaces depending on the expected behaviour:
for example, if in the method m a value message is sent to the party B, then the
respective interface requires this transaction:

transaction sendMessage(string m);

At last, the getters to check the agreements on the terms of the contract must be
added.

4.2.5 Party implementations and main procedures
In order to partecipate in a contract, the parties must implement the respective
interfaces. For example, if the person who has the role A wants to join C, then must
provide a main contract AImpl that implements the interface and must instantiate
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an instance of this contract. After instantiation of every party on the blockchain, the
contract C can be instantiated.

Now, in the blockchain, the contract C and the contracts for each party - AImpl,
BImpl and CImpl - are available. At this point, every party has the interest in running
a main contract with a main procedure to interact with the contract C. An example
may be Listing 4.3, in which the party A may decide to call the transaction m of a
given contract C. In order to execute the main transaction, the party must know its
own unique ID and the one associated to the correct instance of contract C. Then, once
the main transaction is called, it checks if the contract is in the correct state, that is
S1 (line 7). If so, an object of type T1 is created (line 8) and passed as an argument of
the C’s transaction m along with a proper amount of currency (withdrawn from the
party itself) and the reference to the party (line 9).

Listing 4.3: Example of main procedure
1 import "C.obs"
2 import "A.obs"
3

4 main contract MainA {
5 transaction main(remote A@Shared party ,
6 remote C@Shared contr) {
7 if (contr in S1) {
8 T1 x = T1();
9 contr.m(x,A.give (5),A);
10 }
11 }
12 } �
4.2.6 Managing NFT variables
In Stipula, a token variable may be “full" or “empty" depending on the value contained.
This aspect in Obsidian is handled through ownership: a NFT variable typed with
NFT@Owned is “full" and, viceversa, one with NFT@Unowned as type is “empty". Hence,
the ownership of a token must be managed at compile-time, using the appropriate
Obsidian tools available (i.e. the typestates). In general, a contract owns an NFT
variable if in the current state exists a member of type NFT@Owned. Instead, if in the
current state the variable does not occur or it does but with type NFT@Unowned, then
the contract does not own the token.

For example, consider the contract in Listing 4.4 that has only one state I. To
properly manage the ownership of nft, we need two states that correspond respectively
to I when the token is owned and when it is not. In the first, a NFT@Owned nft member
must be declared. However, this approach may lead to an explosion of states: in fact,
if we had two token variables, four states would be required. We can mitigate this
problem avoiding to define states that are surely not reached: for example, if in a
certain state X a token is always “full", then the Obsidian state X_NoToken is surely
not needed. The translation showing these two states can be found in Listing 4.5.
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Listing 4.4: NFTManage
1 stipula NFTManage {
2 asset nft
3 init I
4

5 agreement(A)() {} ==> I
6

7 @I A : getToken ()[t] {
8 t -o nft;
9 } ==> @I

10

11 @I A : leaveToken ()[] {
12 nft -o A;
13 } ==> @I
14 } �

Listing 4.5: Translation of NFTManage
1 main asset contract NFTManage {
2 A@Shared partyA;
3

4 state I_Token {
5 NFT@Owned nft;
6 }
7 state I_NoToken;
8

9 NFTManage@I_NoToken(A@Shared pa) {
10 partyA = pa;
11 ->I_NoToken;
12 }
13

14 transaction getToken(NFTManage@I_NoToken >>I_Token this ,
15 NFT@Owned >>Unowned t,
16 A@Unowned caller) {
17 if (caller.id() != partyA.id()) {
18 revert("Call unauthorized");
19 }
20 ->I_Token(nft = t);
21 }
22

23 transaction leaveToken(NFTManage@I_Token >>I_NoToken this ,
24 A@Unowned caller) {
25 if (caller.id() != partyA.id()) {
26 revert("Call unauthorized");
27 }
28 A.receiveToken(nft);
29 ->NoToken;
30 }
31 } �
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Listing 4.6: CoinEscrow in Stipula
1 stipula CoinEscrow {
2 asset w
3 field amount
4

5 agreement(Sender ,Receiver)(amount){
6 Sender ,Receiver : amount
7 } ==> @S1
8

9 @S1 Sender : put()[h] (h== amount) {
10 h -o w
11 } ==> @S2
12

13 @S2 Receiver : claimCoins ()[] {
14 w -o Receiver
15 } ==> @End
16

17 @S2 Receiver : claimPart(v)[] (v>=0 and v<=1) {
18 w*v -o w,Receiver
19 w -o Sender
20 } ==> @End
21 } �
4.3 Examples

4.3.1 CoinEscrow
This examples shows how a simple Stipula contract is translated using the process
discussed in section 4.2. The contract in Listing 4.6 manages the send of currency from
a sender to a receiver. In particular, the receiver can claim all the money sent or just
a part of them. In the second case, the remaining part of the escrow is returned to the
sender. In particular, the contract follows this flow:

1○ the parties agree on the amount to send or receive;

2○ the sender puts the currency in the contract;

3○ the receiver claims the amount (or a part of it) contained in the contract.

The contract is very simple and can be translated in a straightforward way as shown
in Listing 4.7.

If we compare the two versions of the function put, we will notice that in Stipula
the send -statement is not mandatory. In that case, the token given in input will be
lost. This chance should be avoided: in fact, in the Obsidian version, the variable h
must lose ownership and, without the statement w.merge(h) (line 56), the contract
cannot be compiled. On the other hand, Obsidian cannot analyse the liquidity of a
contract: in the function claimPart, if the statement w -o Sender (line 19) is missing,
the liquidity analyser provided in Stipula will notice the error. However, the analogous
Obsidian transaction could be written without the last statement and the compiler
would not point out any error. A workaround may be declaring the assets for all states
except the state End and make sure to send properly any asset before reaching the
end-state (as shown in Listing 4.8). In detail, the line 16 of Listing 4.7 is replaced with
line 11 in Listing 4.8: the difference between them is that, in the first case, the asset w
is declared for every state of the contract and that, in the second case, the same asset
is declared only for states S1 and S2. Follows that, Listing 4.8, w cannot be owned
by CoinEscrow when it reaches the state End (i.e. the asset cannot be “frozen” in the
contract). However, this expedient is not enough: in fact, we have to make sure that
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Listing 4.7: CoinEscrow in Obsidian
15 main contract CoinEscrow {
16 Currency@Owned w;
17 int amount;
18

19 Sender@Shared sender;
20 Receiver@Shared receiver;
21

22 state S1;
23 state S2;
24 state End;
25

26 CoinEscrow@S1(Sender@Shared s, Receiver@Shared r) {
27 if (s.amountAgreed () != r.amountAgreed ()) {
28 revert("Agreement failed");
29 }
30

31 sender = s;
32 receiver = r;
33

34 amount = s.amountAgreed ();
35 w = new Currency@Owned (0);
36 ->S1;
37 }
38

39 transaction put(CoinEscrow@S1 >> S2 this ,
40 Currency@Owned >> Unowned h,
41 Sender@Unowned caller) {
42 if (caller.id() != sender.id()) {
43 revert("Call unauthorized");
44 }
45

46 if (amount != h.getAmount ()) {
47 revert("put failed: amount incorrect");
48 }
49

50 w.merge(h);
51 ->S2;
52 }
53

54 transaction claimCoins(CoinEscrow@S2 >> @End this ,
55 Receiver@Unowned caller) {
56 if (caller.id() != receiver.id()) {
57 revert("Call unauthorized");
58 }
59

60 receiver.receive(w.split(w.getAmount ()));
61 ->End;
62 }
63

64 transaction claimPart(CoinEscrow@S2 >> @End this ,
65 int v,
66 Receiver@Unowned caller) {
67 if (caller.id() != receiver.id()) {
68 revert("Call unauthorized");
69 }
70

71 if (v < 0 || v > 100) {
72 revert("claimPart failed: v must be a value for the percentage");
73 }
74

75 receiver.receive(w.split((w.getAmount ()*v)/100));
76 sender.receive(w.split(w.getAmount ()));
77 ->End;
78 }
79 } �
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Listing 4.8: Liquidity in Obsidian
1 main contract CoinEscrow {
2 int amount;
3

4 Sender@Shared sender;
5 Receiver@ Shared receiver;
6

7 state S1;
8 state S2;
9 state End;
10

11 Currency@Owned w available in S1,S2;
12

13 CoinEscrow@S1(Sender@Shared s, Receiver@Shared r) { ... }
14

15 transaction put(CoinEscrow@S1 >> S2 this ,
16 Currency@Owned >> Unowned h,
17 Sender@Unowned caller) { ... }
18

19 transaction claimCoins(CoinEscrow@S2 >> @End this ,
20 Receiver@Unowned caller) {
21 if (caller.id() != receiver.id()) {
22 revert("Call unauthorized");
23 }
24

25 receiver.receive(w);
26 ->End;
27 }
28

29 transaction claimPart(CoinEscrow@S2 >> @End this ,
30 int v,
31 Receiver@Unowned caller) {
32 if (caller.id() != receiver.id()) {
33 revert("Call unauthorized");
34 }
35

36 if (v < 0 || v > 100) {
37 revert("claimPart failed: v must be a value for the percentage");
38 }
39

40 receiver.receive(w.split((w.getAmount ()*v)/100));
41 sender.receive(w);
42 ->End;
43 }
44 } �
w is disowned in the transaction that reaches the state End (that is, claimCoins and
claimPart). To do so, we can just replace the expression w.split(w.getAmount())
in lines 60 and 76 of Listing 4.7 with w (lines 25 and 41 of Listing 4.8): recall that
Party::receive disowns the Currency received in input.
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Listing 4.9: NftEscrow in Stipula
1 stipula NftEscrow {
2 asset nft
3

4 agreement(Sender ,Receiver)(){} =>@S1
5

6 @S1 Sender : put()[t] () {
7 t -o nft
8 } ==> @S2
9

10 @S2 Receiver : claimNft ()[] {
11 nft -o Receiver
12 } ==> @End
13 } �
4.3.2 NFTEscrow
This example is analogous to the previous one but with NFT instead of currency.
Consider the Stipula contract in Listing 4.9. This contract deals with the transfer of
tokens from sender to receiver. The contract has a flow similar to that defined for
CoinEscrow:

1○ the parties agree to join the contract;

2○ the sender puts in the contract the NFT;

3○ the receiver claims the token.

This time the sent asset cannot be claimed partially because it is a token.
The contract can also be easily translated following the same process as before in

the Obsidian contract in Listing 4.10.
We can also make the same remark as in the previous example: the send -statement

in the put function in Stipula can be omitted, but not in Obsidian. We can notice that
the states of the Stipula version are not duplicated in the Obsidian version, since in
the original contract in state S1 the variable nft is always “empty" and in state S2
it is always “full". Then, the states S1_Token and S2_NoToken in Obsidian are not
needed. Consequently, we have a single Obsidian state for each Stipula state and we
can assign the same name accordingly.
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Listing 4.10: NFTEscrow in Obsidian
13 main contract NftEscrow {
14

15 Sender@Shared sender;
16 Receiver@Shared receiver;
17

18 state S1;
19 state S2 {
20 NFT@Owned nft;
21 }
22 state End;
23

24 NftEscrow@S1(Sender@Shared s, Receiver@Shared r) {
25 sender = s;
26 receiver = r;
27

28 ->S1;
29 }
30

31 transaction put(NftEscrow@S1 >> S2 this ,
32 NFT@Owned >> Unowned t,
33 Sender@Unowned caller) {
34 if (caller.id() != sender.id()) {
35 revert("Call unauthorized");
36 }
37

38 ->S2(nft = t);
39 }
40

41 transaction claimNft(NftEscrow@S2 >> @End this ,
42 Receiver@Unowned caller) {
43 if (caller.id() != receiver.id()) {
44 revert("Call unauthorized");
45 }
46

47 receiver.receiveToken(nft);
48 ->End;
49 }
50 } �
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Listing 4.11: Implementation of Currency
1 main asset contract Currency {
2 int value;
3

4 Currency@Owned(int v) {
5 value = v;
6 }
7

8 transaction getValue(Currency@Unowned this) returns int {
9 return value;

10 }
11

12 transaction split(Currency@Owned this , int v) returns Currency@Owned {
13 if (v > value) {
14 revert;
15 }
16 value = value - v;
17 Currency result = new Currency(v);
18 return result;
19 }
20

21 transaction merge(Currency@Owned this , Currency@Owned >> Unowned other) {
22 value = value + other.getValue ();
23 disown other;
24 }
25 } �
4.3.3 AssetSend
This example presents a way of implementing a party of a contract using Obsidian.
In particular, we are interested in how parties send or receive assets using Obsidian
typing and how the ownership relates to these operations. Statements of interest are
the following:

• v ⊸ h,A and v ⊸ h,h’ where h and h’ are currencies and A is a party;

• h ⊸ A and h ⊸ h’ where h and h’ are tokens and A is a party.

In order to design parties, we also need to realise types for currencies and tokens.
Currency (Listing 4.11) and NFT (Listing 4.12) are standard implementations of assets
and are very similar to their counterparts in the main Obsidian article [4]. Currency is
a contract that stores in an integer field the total value of that currency. This contract
provides three transaction:

• getValue, which allows to obtain the raw integer value of the currency;

• split, which subtracts a given amount of currency and return it as currency;

• merge, which adds the value stored from another currency to its own (the currency
merged must be disown to avoid asset duplication).

NFT is just a representation of a non-fungible token and it does not expose particular
transactions: in fact, it provides a method to obtain the string that identifies the token
and a method to determine if two tokens are equal or not.

I designed the party as a contract that has a wallet with currency and a list of all
owned NFTs (Listing 4.13). Then, each party must provide the necessary transactions
to send or receive either currency and tokens. Note that the state of each gift in
the “receive" transactions mutates from Owned to Unowned, as ownership needs to be
given up. In general, the statements in the same row of Table 4.1 have the same
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Listing 4.12: Implementation of NFT
1 main asset contract NFT {
2 string ID;
3

4 transaction getID () returns string {
5 return ID;
6 }
7

8 transaction equals(NFT@Unowned other) returns bool {
9 return ID == other.getID();
10 }
11 } �

Stipula Obsidian
v ⊸ h,A A.receive(h.split(v))Currency
v ⊸ h,h’ h’.merge(h.split(v))
h ⊸ A A.receiveToken(h)Token
h ⊸ h’ h’ = h

Table 4.1: Asset send statements

semantics: the only exception is the sending of tokens from one variable to another
(h ⊸ h’ and h’ = h). In Stipula, if a variable referencing a token is updated without
draining the previous NFT value, then a runtime error will occur. In Obsidian, this
error is detected by the type system: in particular, in Stipula “empty" and “full"
token variables correspond, respectively, to Obsidian variables with types NFT@Unowned
and NFT@Owned. Follows that the state of the variable is known (and guaranteed) at
compile-time and the change of state “empty"/“full" (i.e. NFT@Unowned/NFT@Owned)
is completely managed by the ownership system. Since the assignment h’ = h is
well-typed only if h’ has type NFT@Unowned and h has type NFT@Owned, we cannot
assign a new token value to a “full" variable. For this reason, we can avoid checking at
runtime the state of the variable.

The consequence is that the Stipula asset-send operator (⊸) should apply the same
types of respective transaction arguments: that is,

Numeric ⊸ Currency@Owned, Party for currencies given to a party
Numeric ⊸ Currency@Owned, Currency@Owned for merging currencies

NFT@Owned»Unowned ⊸ Party for NFT given to a party
NFT@Owned»Unowned ⊸ NFT@Unowned»Owned for NFT moved between variables

where Numeric is a type that refers to a positive integer.



4.3. EXAMPLES 39

Listing 4.13: Implementation of Party
1 main asset contract Party {
2 Currency@Owned wallet;
3 List[NFT@Owned]@ Owned tokens;
4

5 Party@Owned (int m) {
6 wallet = new Currency(m);
7 tokens = new List[NFT@Owned ]();
8 }
9

10 transaction give(int v) returns Currency@Owned {
11 return wallet.split(v);
12 }
13

14 transaction receive(Currency@Owned >> Unowned gift) {
15 wallet.merge(gift);
16 }
17

18 transaction getAmount () returns int {
19 return wallet.getValue ();
20 }
21

22 transaction receiveToken(NFT@Owned >> Unowned gift) {
23 tokens.push(gift);
24 }
25

26 transaction giveToken(NFT@Unowned t) returns NFT@Owned {
27 return tokens.removeElement(t,new NFTComparator ());
28 }
29

30 transaction getToken(int i) returns NFT@Unowned {
31 return tokens.get(i);
32 }
33 } �
4.3.4 BikeRental

The original example can be consulted in Listing A.11 (Appendix A). The rental
contract manages the interactions between a lender and a borrower and includes a
central authority to handle legal disputes. Usually, a contract of this kind should follow
the following flow:

1○ the parties agree on the terms of the contracts as the renting time and the cost;

2○ the lender offers a bicycle to the borrower;

3○ the borrower pays for the bike;

4○ the borrower gives back the bicycle (and this needs to happen before the expiration
of the renting time).

Once the contract is effective (that is, after payment), the lender or the borrower can
signal irregularities to the authority, providing their reasons. This entity has the power
to decide which party is right and to formulate a verdict.

We can use the BikeRental example to compare the expressiveness of Stipula and
Obsidian. For this purpose, it is better to analyse separately the various parts of the
contracts: declarations, constructors and methods. Another important topic concerns
the contract instantiation: we will see that a time manager is required in order to
emulate the time-triggered events system of Stipula. Hence, we need to handle properly
the instantiation of this additional element.
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Fields and asset declarations As we can see from Listing 4.14 and Listing 4.15, the
Stipula list of declarations is more concise than the Obsidian one due to the following
Obsidian additional requirements:

• explicit type declaration for each field;

• complete list of states (eventually with the respective fields);

• shared references to parties in order to check the identity in transactions: it
is good practise to use interfaces instead of contracts to decouple parties of
a contract from their implementations (in the example Borrower, Lender and
Authority are interfaces);

• reference to a time manager that emulates the event mechanism of Stipula.

The first two may lead to declarations less clear to the beginner or non-technical reader
(such a lawyer), but at the same time may help the programmer to reason efficiently
on the contract and find errors faster.
The last two are required because Obsidian has not the corresponding features: in
particular, Stipula promotes a safer approach providing primitives to check the caller
identity and an additional native feature to manage time-triggered events.

Listing 4.14: Declarations in Stipula
1 stipula BikeRental {
2 asset wallet
3 field cost , rentingTime , code
4 init Inactive �

Listing 4.15: Declarations in Obsidian
74 main asset contract BikeRent {
75 // Fields
76 int cost;
77 int rentingTime;
78

79 // Parties
80 Lender@Shared lender;
81 Borrower@Shared borrower;
82 Authority@Shared authority;
83

84 // Time
85 TimeManager@Shared timeManager;
86

87 state Inactive;
88 state Payment;
89 state Using {
90 int expirationTime;
91 };
92 state Return;
93 state End;
94 state Dispute;
95

96 string code available in Payment ,Using ,Return;
97 Currency@Owned wallet available in Using ,Return ,Dispute; �

Construction/Agreement The agreement is the Stipula method that allows the
contract construction, ensuring that parties agree on the same contract terms. In
Obsidian, in order to obtain the same semantics, this agreement requires an explicit
implementation. For instance, the statement in line 7 in Listing 4.16 can be implemented
in Obsidian checking for each party if the terms agreed (lines 102-107 in Listing 4.17).
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Assignments for parties and the time manager in Stipula are not required since they
are handled natively.

Listing 4.16: Agreement in Stipula
6 agreement (Lender ,Borrower ,Authority)(rentingTime ,cost){
7 Lender , Borrower: rentingTime , cost
8 } ==> @Inactive �

Listing 4.17: Constructor in Obsidian
99 BikeRent@Inactive(

100 Lender@Shared l, Borrower@Shared b, Authority@Shared a,
101 TimeManager@Shared tm){
102 // Fields in the agreement
103 if (l.costAgreed () != b.costAgreed () ||
104 l.rentingTimeAgreed () != b.rentingTimeAgreed ()) {
105 revert("Agreement failed");
106 }
107

108 cost = l.costAgreed ();
109 rentingTime = l.rentingTimeAgreed ();
110

111 // References to parties
112 lender = l;
113 borrower = b;
114 authority = a;
115

116 // Time manager
117 timeManager = tm;
118

119 ->Inactive;
120 } �

Transactions/Methods If the Stipula methods do not have events defined in
their body, they can be easily translated into Obsidian transactions: for example,
the method verdict in Listing 4.18 has the same semantics as the homonymous
transaction in Listing 4.19. In particular, caller guards can be translated into a revert
statement executed when the given identity does not match the one declared during
the construction: in the example, the guard on Authority corresponds to the lines
202-204 in Listing 4.19. Note that the transaction needs a Unowned reference as an
argument to verify the caller’s identity.

Listing 4.18: verdict method in Stipula
39 @Dispute Authority : verdict(x,y)[] (y>=0 && y<=1) {
40 x -> Lender
41 x -> Borrower
42 (y*wallet) -o wallet , Lender
43 wallet -o Borrower;
44 _
45 } ==> @End �
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Listing 4.19: verdict transaction in Obsidian
205 transaction verdict(BikeRent@Dispute >> End this ,
206 Authority@Unowned a, string x, int y) {
207 // Checks
208 if (a.id() != authority.id()) {
209 revert("Error on authority authentication");
210 }
211

212 if (y < 0 || y > 100) {
213 revert("Error on bounds over y");
214 }
215

216 // Body
217 lender.sendMotivations(x);
218 borrower.sendMotivations(x);
219

220 int total = (wallet.getValue ()*y)/100;
221 Currency reimbursement = wallet.split(total);
222

223 lender.receive(reimbursement);
224 borrower.receive(wallet);
225

226 ->End;
227 } �
When the Stipula methods define an event in their body, the translation to their

Obsidian counterparts is not trivial, like in the previous example. Consider the method
pay in Listing 4.20: in order to replicate the same behaviour in Obsidian, we should
add the event to the stack of events.

Listing 4.20: pay method in Stipula
15 @Payment Borrower : pay()[h] (h == cost) {
16 h -o wallet
17 code -> Borrower;
18 now+rentingTime >>
19 @Using {
20 "EndReached" -> Borrower
21 } ==> @Return
22 } ==> @Using �
For this purpose, we need a contract that manages the flow of time (the TimeManager)

and a representation for the events (the EventInterface). As can be seen in List-
ing 4.21, once the TimeManager starts, it cannot be stopped by any party. The
execution of the events is delegated to the tick transaction, which also manages the
passage of time.

Listing 4.21: TimeManager in Obsidian
1 main asset contract TimeManager {
2 Dict[Integer ,List[EventInterface]@Owned ]@Owned registry;
3 int clock;
4

5 state Active;
6 state Inactive;
7

8 transaction register(int t, EventInterface@Owned >> Unowned event) {...}
9 transaction tick(TimeManager@Active this) {...}

10 transaction start(TimeManager@Inactive this) {...}
11 transaction now() returns int {...}
12 } �
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Listing 4.22: EventInterface contract in Obsidian
5 interface EventInterface {
6 transaction action ();
7 } �
To correctly register events in the time manager registry, every contract must provide

an implementation of EventInterface: in the bike rental example, Listing 4.23 shows
the event provided for BikeRent. During the instatiation of the event, two references
are needed:

• a shared BikeRent reference to the contract to apply effects on the contract;

• an unowned Borrower reference to check the caller identity.

Observing action in Event, note also that the main contract (i.e. BikeRent) must
provide the reaction as transaction (Listing 4.24).

Listing 4.23: Event contract in Obsidian
58 contract Event implements EventInterface {
59 BikeRent@Shared rental;
60 Borrower@Unowned caller;
61

62 Event@Owned(BikeRent@Shared r, Borrower@Unowned c) {
63 rental = r;
64 caller = c;
65 }
66

67 transaction action () {
68 if (rental in Using) {
69 rental.reaction(caller);
70 }
71 }
72 } �

Listing 4.24: reaction transaction in Obsidian
153 transaction reaction(BikeRent@Using >> Using | Return this ,
154 Borrower@Unowned b) {
155 if (b.id() != borrower.id()){
156 revert("Not authorized borrower");
157 }
158 borrower.sendMessage("End_Reached");
159 ->Return;
160 } �
At this point, we can replicate the semantics of the pay method by writing the

homonymous transaction as shown in Listing 4.25. However, the instruction in line
148 causes a typing error, since this is an Owned reference and cannot be shared with
other objects. This problem can be solved by calling the register transaction every
time pay is called (as in Listing 4.26).
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Listing 4.25: pay transaction in Obsidian
132 transaction pay(BikeRent@Payment >> Using this ,
133 Borrower@Unowned b,
134 Currency@Owned >> Unowned h) {
135 // Checks
136 if (b.id() != borrower.id()) {
137 revert("Not authorized borrower");
138 }
139

140 if (h.getValue () != cost) {
141 revert("Currency given don ’t match with cost");
142 }
143

144 // Body
145 borrower.sendCode(code);
146

147 // REACTION
148 timeManager.register(timeManager.now(),new Event(this ,b));
149 ->Using(wallet = h, expirationTime = timeManager.now() + rentingTime);
150 } �

Listing 4.26: Call of pay and register in BorrowerMain

1 if (rental in Payment) {
2 rental.pay(borrower ,borrower.give(costAgreed));
3 TimeManager timeManager = rental.getTimeManager ();
4 timeManager.register(
5 timeManager.now() + borrower.rentingTimeAgreed (),
6 new Event(rental ,borrower));
7 } �
However, this is not a satisfying way to manage events: in fact, the programmer may

forget to register the event or (even worse) deliberately avoid doing it. The reaction
triggered may be against the interests of the caller: for instance, in the bike rental
example the borrower after the payment could avoid to trigger the expiration and rent
bikes without a time limit.

Instantiation In general, a contract translated from Stipula to Obsidian requires:

1○ Each party to instantiate the respective contract;

2○ Someone else (ideally a central authority) to instantiate the time manager and
the contract itself.

After this phase, the same actor who instantiated the time manager should run the
main procedure TimeManagerMain.obs (Listing A.24) in order to start the contract
clock. Finally, any procedure executed by any party may occur in any order.
In the BikeRental example, the instantiation of the contracts must follow this specific
ordering (shown in Figure 4.1):

1○ parties implementation - BorrowerImpl, LenderImpl, AuthorityImpl,

2○ TimeManager,

3○ BikeRent.

Then, TimeManagerMain must be executed and, finally, the Main contracts of each
party - BorrowerMain, LenderMain, AuthorityMain - may run in any order.

This ordering can be easily extrapolated from the dependency between contracts
(Figure 4.2). In fact, TimeManager, BorrowerImpl, LenderImpl, AuthorityImpl are
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Figure 4.1: Instantiation of bike rental example contracts

independent of any other contract and BikeRent depends on the previous four. Ideally,
the same actor that instantiates the rental contract should also be responsible for the
time management and therefore of the TimeManager and TimeManagerMain instantia-
tions. In particular, the second must be instantiated just after BikeRent does. Finally,
several main contracts are instantiated since they all depend on BikeRent.
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Figure 4.2: Dependencies in BikeRental
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4.3.5 Bet
The original example can be consulted in Listing A.25 (Appendix A). The contract
manages two betters (Better1 and Better2) that gamble their currency on a given
event. The data about this event are provided by a third party (DataProvider). For
the sake of simplicity, the betters place their bet in turn within an agreed time limit.
Then, the contract should follow this flow:

1○ Betters and DataProvider agree on the event, the data source and the its start
time;

2○ Betters agree on the amount of the bet and the time limits;

3○ Better1 places his bet;

4○ Better2 places his bet;

5○ DataProvider provides the result of the event and the winner is rewarded with
the amount of currency agreed.

However, if the time runs out (according to the agreed time limits), the currency placed
will be returned.

The arguments that we can discuss for this contract are, mostly, the same as the
ones for BikeRental. The main differences between these examples are:

• the presence of an overloaded function place_bet in the Stipula version;

• the contract defines two different events.

So, the Bet examples allow us to understand better how the time-triggered management
may be implemented in Obsidian.

Overloaded function Stipula allows the definition of functions with the same name:
in this particular case (Listing 4.27), the two functions are disambiguated by the state
in which they can be called (Init and First respectively).
Since Obsidian doesn’t allow overloading, the translation (Listing 4.28, Listing 4.29)
provides disambiguation giving different names to different functions. An alternative
way to avoid two different names may be to add dynamic checking on typestates like
in Listing 4.30. However, this approach introduces a less precise precondition and
postcondition on the typestate of this.

Listing 4.27: place_bet transactions in Stipula
12 @Init Better1 : place_bet(x)[h] (h == amount) {
13 h -o wallet1
14 x -> val1;
15 t_before >> @First {
16 wallet1 -o Better1
17 } ==> @Fail
18 } ==> @First
19

20 @First Better2 : place_bet(x)[h] (h == amount) {
21 h -o wallet2
22 x -> val2
23 alea -> DataProvider;
24 t_after >> @Run {
25 wallet1 -o Better1
26 wallet2 -o Better2
27 } ==> @Fail
28 } ==> @Run �
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Listing 4.28: place_bet1 transaction in Obsidian
145 transaction place_bet1(Bet@Init >> First this ,
146 BetterInterface@Shared b1,
147 string x,
148 Currency@Owned >> Unowned h) {
149 if (b1.id() != better1.id()) {
150 revert("Error on better1 authentication");
151 }
152

153 if (h.getValue () != amount) {
154 revert("Bet doesn ’t match the amount agreed");
155 }
156

157 // REACTION 1
158 ->First(val1 = x, wallet1 = h);
159 }
160

161 transaction reaction1 (Bet@First >> First | Fail this ,
162 BetterInterface@Unowned b1) {
163 if (b1.id() != better1.id()) {
164 revert("Error on better1 authentication");
165 }
166

167 better1.receive(wallet1);
168 ->Fail;
169 } �

Listing 4.29: place_bet2 transaction in Obsidian
171 transaction place_bet2(Bet@First >> Run this ,
172 BetterInterface@Shared b2,
173 string x,
174 Currency@Owned >> Unowned h) {
175 if (b2.id() != better2.id()) {
176 revert("Error on better2 authentication");
177 }
178

179 if (h.getValue () != amount) {
180 revert("Bet doesn ’t match the amount agreed");
181 }
182

183 // REACTION 2
184 ->Run(val2 = x, wallet2 = h);
185 }
186

187 transaction reaction2 (Bet@Run >> Run | Fail this ,
188 BetterInterface@Unowned b2) {
189 if (b2.id() != better2.id()) {
190 revert("Error on better2 authentication");
191 }
192

193 better1.receive(wallet1);
194 better2.receive(wallet2);
195 ->Fail;
196 } �
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Listing 4.30: Alternative translation of place_bet
1 transaction place_bet(Bet@(Init|First) >> (First|Run) this ,
2 BetterInterface@Shared b,
3 string x,
4 Currency@Owned >> Unowned h) {
5

6 if (h.getValue () != amount) {
7 revert("Bet doesn ’t match the amount agreed");
8 }
9

10 if (this in Init) {
11 if (b.id() != better1.id()) {
12 revert("Error on better1 authentication");
13 }
14 // REACTION 1
15 ->First(val1 = x, wallet1 = h);
16 } else {
17 if (b.id() != better2.id()) {
18 revert("Error on better2 authentication");
19 }
20 // REACTION 2
21 ->Run(val2 = x, wallet2 = h);
22 }
23 } �

Events In order to emulate the Stipula events semantics, I partially took inspiration
from the formal description given in the article [5] where the events are managed
through a multiset of events. In my implementation, TimeManager handles a multimap
of events that have as keys the respective triggering times. For example,

Ψ =


(0, {W00 ,W01 , ...}),
(1, {W10 ,W11 , ...}),

...
(n, {Wn0

,Wn1
, ...})


If the clock managed by TimeManager reaches the value t, then every event Wtl

must be triggered. This is the purpose of the transaction tick, which also advances
the clock.
In Figure 4.3, the management of the event registered by Better1 is shown.

Listing 4.31: tick transaction of TimeManager
39 transaction tick(TimeManager@Active this) {
40 Integer time = new Integer(clock);
41 Option[List[EventInterface ]] events = registry.remove(time);
42

43 if (events in Some) {
44 performActions(events.unpack ());
45 }
46

47 clock = clock + 1;
48 } �
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Figure 4.3: EventFirst management in Bet example
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4.3.6 Auction
The Auction example used is a simplified version of the one available in the official
repository [2]. In this contract, several bidders compete to obtain an item given from
a seller during an auction. The flow of the contract is the following:

1○ the seller offers an item and the auction starts;

2○ the bidders make their bids: the greatest offer is also the best;

3○ the bidding phase finish;

4○ the auction is closed, the winner is rewarded with the object and the seller
receives the currency from the bid.

It is pretty easy to see that the contract in Listing 4.33 is a straightforward
implementation of the one in Listing 4.32. The main difference is represented by the
necessity to initialise separately the fields maxBidder and token (lines 10 - 14), since
in the agreement send -statements are not allowed. Types such as Seller or Bidder
are not required in Stipula, since they only manage the movement of assets between
parties and Stipula achieves the same effect natively.
If we compare the translation processes Stipula-to-Obsidian and Obsidian-to-Stipula,
we can notice that the first one is harder: this fact occurs because Obsidian does
not provide a native mechanism to implement time-triggered events. The choice
may be desired since time synchronisation is a non-trivial problem and can introduce
vulnerabilities [18]: the main reason is that a timestamp depends on the miner’s local
system. In Stipula, we usually consider a central authority that manages contracts.
Hence, the unique and unambiguous timestamp is the one given by this authority.

https://github.com/mcoblenz/Obsidian/blob/master/resources/sample_programs/auction.obs
https://github.com/mcoblenz/Obsidian/blob/master/resources/sample_programs/auction.obs


52 CHAPTER 4. COMPARISON BETWEEN STIPULA AND OBSIDIAN

Listing 4.32: Auction in Obsidian
82 main contract Auction {
83

84 state Open {
85 Item@Owned item;
86 Bid@Owned bid;
87 }
88 state BiddingDone {
89 Item@Owned it;
90 Bid@Owned finalBid;
91 }
92 state Closed {
93 Seller@SoldItem sellerSatisfied;
94 Bidder@WonItem winner;
95 }
96

97 Seller@Unsold seller available in Open , BiddingDone;
98 Bidder@Bidding maxBidder available in Open , BiddingDone;
99

100 Auction@Owned(Item@Owned >> Unowned i) {
101 Open:: maxBidder = new Bidder("none", 0, 0);
102 Open:: seller = new Seller ();
103 ->Open(item = i, bid = new Bid (0));
104 }
105

106 transaction makeBid(Auction@Open this , Bidder@Bidding >> Unowned bidder)
{

107 if (bidder.getBidAmount () > bid.getAmount ()) {
108 if (maxBidder.getName () != "none") {
109 if (bid in Open) {
110 maxBidder.returnBidMoney(bid);
111 }
112 }
113

114 bid = bidder.createBid ();
115 maxBidder = bidder;
116 }
117 }
118

119 transaction finishBidding(Auction@Open >> BiddingDone this) {
120 -> BiddingDone(it = item , finalBid = bid);
121 }
122

123 transaction giveItem(Auction@BiddingDone >> Closed this) {
124 maxBidder.won(it);
125 seller.receiveBid(finalBid);
126 ->Closed(sellerSatisfied = seller , winner = maxBidder);
127 }
128 } �
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Listing 4.33: Auction in Stipula
1 stipula Auction {
2 asset wallet , item
3 field objectCode , maxBidder
4 init Init
5

6 agreement (Seller , Bidder1 , Bidder2 , Auctioneer)(objectCode) {
7 Seller , Bidder1 , Bidder2 : objectCode
8 } ==> @Init
9

10 @Init Seller : offer(obj)[token] (obj == objectCode) {
11 "none" -> maxBidder
12 token -o item;
13 _
14 } ==> @Open
15

16 @Open Bidder1 : makeBid ()[bid] (bid > wallet && maxBidder != "one") {
17 if (maxBidder == "two") {
18 wallet -o Bidder2
19 }
20 bid -o wallet
21 "one" -> maxBidder;
22 _
23 } ==> @Open
24

25 @Open Bidder2 : makeBid ()[bid] (bid > wallet && maxBidder != "two") {
26 if (maxBidder == "one") {
27 wallet -o Bidder1
28 }
29 bid -o wallet
30 "two" -> maxBidder;
31 _
32 } ==> @Open
33

34 @Open Auctioneer : stopBidding ()[] {
35 "End" -> Bidder1
36 "End" -> Bidder2;
37 _
38 } ==> @BiddingDone
39

40 @BiddingDone Auctioneer : giveItem ()[] {
41 if (maxBidder == "one") {
42 item -o Bidder1
43 wallet -o Seller
44 } else if (maxBidder == "two") {
45 item -o Bidder2
46 wallet -o Seller
47 } else { // maxBidder == "none" and wallet == 0
48 item -o Seller
49 };
50 _
51 } ==> @End
52 } �
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Figure 4.4: Parametric Insurance in Obsidian

4.3.7 Parametric Insurance
The original example is incomplete because it was intended to be used as case study in
the usability studies of typestates. For this reason, I decided to replicate the intended
behaviour described in the article (Figure 4.4). The parametric insurance contract
includes the following parties: an insurer, a farmer and a weather service. If the insurer
provides policy through an insurance service, then this one can be considered a party
who acts in stead of the insurer and offers several policies or a contract itself that
guarantees the access to policies. In general, a policy follows this flow:

1○ the farmer and the insurance service agree on the contract parameter such as
the cost or the parameter involved;

2○ the farmer buys the policy;

3○ the insurance service activates the policy;

4○ the weather service signals the achievement of the condition for the agreed
parameter;

5○ the farmer claims the agreed payout from the insurance service.

If the weather does not signal the achievement of the condition, then the policy expires
and the escrow is returned to the insurance service.

There are two main possible ways to implement parametric insurance:

• focus the design on the policy itself: in the original case study it is considered as
an inert entity, that is, it does not regulate the interactions among insurer and
farmer, but it is just an asset with additional information;

• focus the design on the insurance service, following the original design.

The first way allows for a more flexible approach, since every policy may be
stipulated with different values from any other policy. At the same time, the agreement
is needed every time, even if the insurer agrees only on a (possibly) small set of policy
kinds. In this case, the second design solves the problem more properly.

Policy-focused design If we consider a policy as a handle to manage the relationship
between the insurer and the farmer, the most reasonable approach is to incorporate
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the interactions between the parties in the contract itself (Listing 4.35).
The choice of a particular policy is easily implemented with the agreement (lines 8-15)
that leads the policy in the Offered state. If the farmer buys the policy (lines 17-20),
then the activation from the insurance service is required (lines 22-27): once activated,
we need also to provide the time-triggered event that manages the expiration. At this
point, there are two chances:

• the policy expires and the escrow is returned to the insurance service;

• the weather service provides a moisture value below the agreed threshold. In this
case, the farmer has the right to claim the payout decided during the agreement.

The states Activating and Claimable in Listing 4.35 in the Obsidian version
don’t exist: the policy in that case is just an asset with several states and the other
parties manage the transactions. In my translation, these states are required in order
to estabilish the correct order of asset-send statements and imposed by the caller
guards, since both the farmer and the insurance service must send currency and a
method like Listing 4.34 is not allowed: in fact, the statement in line 3 is illegal.

Listing 4.34: (Fictional) buy method
1 @Offered Farmer : buy()[m] (m == cost) {
2 m -o InsuranceService
3 payout -o InsuranceService , escrow;
4 now + expirationTime >> @Active {
5 escrow -o InsuranceService
6 } ==> @Expired
7 } ==> @Active �
Service-focused design Although the previous approach is a good way to handle
the relationship between parties, it does not allow tracking if the farmer stipulated
several policies. If we are interested in this aspect, we have to consider an insurance
service as a contract where the insurer dictates the terms of a preset number of policy
kinds and the farmer can only choose to agree or not. In this case, the insurance
service follows the following flow:

1○ the insurer proposes the conditions for each kind of policy proposed;

2○ the farmer purchases one or more policies;

3○ the weather service signals if some of the policies met the conditions;

4○ the farmer claims the payout for each claimable policy;

5○ go back to 2○.

If the weather does not signal the achievement of the condition for any of the policies,
then they expire, the escrows are returned to the insurer and the policy is returned to
the insurer.

In the example (Listing 4.36), the insurer offers N kinds of policy available in the
asset policies. This variable is an array of currency assets, where at position k we
can find the number of policies of kind k offered by the insurer. The same reasoning is
applied for the fields payouts, costs, conditions, costs and expTimes. The fields
actives, expirations and claimables are support variables that help the contract
track the state of the policies. Instead, n is used to check if the farmer returned the
expired policy in its possession.
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Listing 4.35: Policy contract in Stipula
1 stipula Policy {
2 asset escrow
3 field cost , expirationTime ,
4 longitude , latitude , radius ,
5 moistureContent , payout
6 init Offered
7

8 agreement (Farmer , InsuranceService , WeatherService)
9 (cost , expirationTime ,
10 longitude , latitude , radius ,
11 moistureContent , payout) {
12 Farmer , InsuranceService : cost , expirationTime ,
13 longitude , latitude , radius ,
14 moistureContent , payout
15 } ==> @Offered
16

17 @Offered Farmer : buy()[m] (m == cost) {
18 m -o InsuranceService; // cost -o m, InsuranceService
19 _
20 } ==> @Activating
21

22 @Activating InsuranceService : activate ()[m] (m == payout) {
23 m -o escrow;
24 now + expirationTime >> @Active {
25 escrow -o InsuranceService
26 } ==> @Expired
27 } ==> @Active
28

29 @Active WeatherService : checkMoist(moist)[] (moist < moistureContent) {
30 ;
31 _
32 } ==> @Claimable
33

34 @Claimable Farmer : claim()[] {
35 escrow -o Farmer;
36 _
37 } ==> @Claimed
38 } �
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To write this contract, I assumed that Stipula provides arrays and allows us to use the
methods’ parameters in the events definitions. If the number of kind of contracts is
known, then it is possible to write a contract without this additional assumptions.
In any case, we can easily notice that, even if this approach enables the tracking of
the number of policies sold, expired or claimed, at the same time it is less natural
for Stipula: in general, this contract is less understandable than the one with the
policy-focused design.
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Listing 4.36: InsuranceService contract in Stipula
1 stipula InsuranceService {
2 asset policies , escrow
3 field payouts ,
4 costs ,
5 conditions ,
6 expTimes ,
7 actives ,
8 expirations ,
9 claimables ,
10 n
11 init Ready
12

13 agreement (Farmer , Insurer , WeatherService)
14 (payouts , conditions , expTimes) {
15 Insurer : payouts , costs , conditions , expTimes
16 } ==> @Ready
17

18 @Ready Insurer : offer(k)[p,e]
19 ((k >= 0 || k < payouts.length) && p > 0 && e == payouts[k]*p) {
20 p -o policies[k]
21 e -o escrow
22 conditions[k] -> WeatherService;
23 _
24 } ==> @Ready
25

26 @Ready Farmer : buy(k)[m]
27 ((k >= 0 && k < policies.length) && policies[k] > 0 && costs[k] == m) {
28 1 -o policies[k], Farmer
29 m -o Insurer
30 actives[k] + 1 -> actives[k]
31

32 now + expTimes[k] >> @Ready@PolicyExpired {
33 if (k < n) {
34 k -> n
35 }
36 expirations[k] + 1 -> expirations[k]
37 actives[k] - 1 -> actives[k]
38 payouts[k] -o escrow , Insurer
39 } ==> @PolicyExpired
40 } ==> @Ready
41

42 @Ready WeatherService : conditionsMet(k)[] {
43 if (actives[k] > 0) {
44 claimables[k] + 1 -> claimables[k]
45 actives[k] - 1 -> actives[k]
46 };
47 _
48 } ==> @Ready
49

50 @Cashing Farmer : claim(k)[p] (p <= claimables[k]) {
51 p -o Insurer
52 (payouts[k] * p) -o escrow , Farmer
53 claimables[k] - 1 -> claimables[k];
54 _
55 } ==> @Ready
56

57 @PolicyExpired Farmer : returnExpiredPolicy(k)[p] (p <= expirations[k]) {
58 p -o Insurer
59 expirations[k] - p -> expirations[k];
60 _
61 } ==> @PolicyExpired
62

63 @PolicyExpired Insurer : checkExpiredReturns ()[] (expirations[n] == 0) {
64 n + 1 -> n;
65 _
66 } ==> @PolicyExpired
67

68 @PolicyExpired Insurer : ready ()[] (n == policies.length) {
69 0 -> n;
70 _
71 } ==> @Ready
72 } �
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Listing 4.37: ERC20 interface for the ExampleTokenBank

asset interface ERC20 {
transaction totalSupply () returns int;
transaction balanceOf(int ownerAddress) returns int;
transaction transfer(int fromAddress , int toAddress , int value) returns

bool;

// Allow ownerAddress to withdraw from your account , multiple times ,
// up to the value amount.
transaction approve(int ownerAddress , int fromAddress , int value) returns

bool;

// Returns the amount of allowance still available.
transaction allowance(int ownerAddress , int fromAddress) returns int;

// Transfers tokens from an allowance that has already been granted.
transaction transferFrom(int senderAddress ,

int fromAddress , int toAddress ,
int value) returns bool;

} �
4.3.8 ExampleTokenBank
The example provided by Obsidian developers is an implementation for a bank that
meets the ERC20 standard [26] represented by the interface in Listing 4.37: in gen-
eral, an ERC20 Token Contract allows one to obtain information about balances
(totalSupply, balanceOf), transfer tokens between balances (transfer, transferFrom)
and manage allowances (approve, allowance). An allowance is a permission to a user
to send from an account a certain amount of currency. For example, consider users
A, B and C, with their respective accounts. If there exists an allowance for user A to
move at most 10 dollars from the account of C, then A can make transfers from the C
account to any other account until the limit of 10 dollars is reached without any limit
on the number of transactions.

The original contract in Obsidian is available in Listings A.43(Appendix A). In this
implementation, the bank does not show any state, since there is no precise flow. In
general, the only requirement for an owner to transfer currency is that he or she has
an appropriate allowance.

If we assume again that arrays are provided and that the sequential address starts
from 0, then the implementation of the ERC20 contract can be realised as shown
in Listing 4.38: the only asset needed is the array of balances. The allowances is a
bidimensional array: the first index is an owner address; the second is the address from
which the owner is allowed to transfer tokens; the respective value is the amount of
tokens that the owner can move from the specified balance.
The “transfer" methods can be easily implemented since Stipula manages assets natively
between operations: note that they require just one line of code. The same happens
for the approve method. Stipula enables also a safer approach thanks to the guards
on preconditions. The main problem is represented that the number of owners must be
fixed and known in the agreement: a new party cannot join the contract subsequently.
Another issue is represented by the presence of multiple transferFrom methods (one
for each owner): this can be solved trading off safety with conciseness avoiding to check
who calls the methods.
At last, totalSupply, balanceOf and allowance cannot be implemented in Stip-
ula since the language does not allow to return values from methods. Hence, the
implementation of Stipula cannot meet the ERC20 standard.
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Listing 4.38: ExampleTokenBank contract in Stipula
1 stipula ExampleTokenBank {
2 asset balances
3 field allowances
4 init Working
5

6 agreement(Owner1 , Owner2 , Bank)(allowances) {
7 Bank : allowances
8 } ==> @Working
9

10 @Working Bank : transfer(fromAddress , toAddress , value)[]
11 (value <= balance[fromAddress ]) {
12 value -o balances[fromAddress],balances[toAddress ];
13 _
14 } ==> @Working
15

16 @Working Bank : approve(ownerAddress , fromAddress , value)[]
17 (( ownerAddress == 0 || ownerAddress == 1)
18 && (fromAddress >= 0 && fromAddress < balances.length)) {
19 value -> allowances[ownerAddress ][ fromAddress ];
20 _
21 } ==> @Working
22

23 @Working Owner1 : transferFrom(fromAddr ,toAddr ,value)[]
24 (( fromAddr >= 0 && fromAddr <= balances.length)
25 && (toAddr >= 0 && toAddr <= balances.length)
26 && allowances [0][ fromAddr] >= value) {
27 value -o balances[fromAddr],balances[toAddr ];
28 _
29 } ==> @Working
30

31 @Working Owner2 : transferFrom(fromAddr ,toAddr ,value)[]
32 (( fromAddr >= 0 && fromAddr <= balances.length)
33 && (toAddr >= 0 && toAddr <= balances.length)
34 && allowances [1][ fromAddr] >= value) {
35 value -o balances[fromAddr],balances[toAddr ];
36 _
37 } ==> @Working
38

39 } �
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4.4 Conclusions

In general, Stipula adopts a safer and more flexible approach in the writing of legal
contracts than Obsidian, thanks to the tools available for the programmer: caller
and precondition guards, time-triggered events, agreements and dedicated asset oper-
ations are necessary elements in legal contracts. Providing these features simplifies
implementation, improves readability and forces developers to write safer programs:
in particular, asset operations promote safety on currency or tokens transfers and
guards encourage the programmer to reason about who calls certain procedures and
the conditions in which they are called.
On the other side, Stipula lacks features necessary for more complex design due to the
inability to write user-defined data types and data structure. Another disadvantage in
Stipula is the absence of a full-fledged type system in order to ensure certain proper-
ties (such as Asset Retention [4]) and even improve the understanding of contracts.
Finally, time-triggered events can introduce vulnerabilities if time is not managed by a
centralised and certified authority.
As general consideration, we can notice that Stipula is more effective when used to
manage interactions between parties. Obsidian is more “general” in this sense because
it allows a larger variety of designs.

4.4.1 Conciseness and readability

Usually a contract in Stipula is more concise than any Obsidian contract with similar
semantics. This fact is a consequence of several features of Stipula:

• Lack of types and states declarations: The absence of declarations makes
the code more concise and readable for the users, in particular if they are not
programmers who have been used to statically typed languages. Although there
are no declarations, we have to recall that Stipula has types (for fields and assets)
and states, but there is not a full list in the “declarative" part of the contract.
This helps in conciseness, but at the same time encourages programmers to think
about states as they write methods. This approach is the opposite of the one
adopted by Obsidian, that forces programmers to write - and design - states
before the methods implementation and, then, encourages a less spontaneous
approach.

• Agreement: A respective procedure in Obsidian would require several code
lines, but in Stipula this task is completed by writing just one line.

• Time-triggered events: As discussed previously, the implementation of a time-
triggered event is a non-trivial task in Obsidian, unlike the way it is provided in
Obsidian. Also, the design that I provided presents problems.

• Dedicated asset-send statement: Instead of developing contracts that model
assets and parties, providing them natively (along with the respective send -
statements) is the most readable and concise approach.

As a consequence, a Stipula contract seems more readable than an Obsidian contract.
It fails only when data structures or user-defined data types are required.
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4.4.2 Safety

Stipula introduces some features that allow safety by design, but at the same time it
lacks a complete type system. In particular, the language enhances safety through:

• Caller and precondition guards: Verifying the caller’s identity and pre-
conditions is surely a safer approach, since it gives additional guarantees while
programming procedures and encourages the programmer to reason about who
calls certain methods and the conditions in which they are called. We can obtain
the same behaviour by adding some checks in the first lines of each method:
however, this approach is error-prone, since the programmer may forgot to write
them.

• Native asset-send statements: The send -statements, as seen in the AssetSend
example, can be obtained by encoding proper contracts for tokens and currency.
In Stipula, since they are directly provided by the language, programmers do not
need to implement their own version, refraining from accidentally introducing
bugs or undesired behaviour. Additionally, this feature allows developers to
develop dedicated tools for static analysis that may improve safety.

• Liquidity analysis: Stipula is provided with a liquidity analiser that checks
if every asset is redeemed by a party involved in the agreement. This property
is not guaranteed by Obsidian typing. However, it can be encoded defining an
end-state without any asset member (as shown in Listing 4.8).

With respect to safety, Stipula has two main problems:

• A weak type system: The language applies type inference and has a weak
type system that mainly manages the safety of operators and updates. Obsidian,
on the other hand, also manages statically the ownership of assets, which enables
further static properties. For example, the Stipula type system cannot detect if
a token gets lost in a method.

Listing 4.39: Loss of assets in methods
1 stipula C {
2 asset NFT
3 ...
4 @S A : method ()[token] {
5 NFT -o B
6 token -o h;
7 _
8 }
9 ...

10 } �
In Listing 4.39, the token in the input is sent to a local variable h that will be
lost after execution of the method. This possibility cannot occur in Obsidian due
to the static analysis of the ownership.

• Possible timestamp vulnerabilities: the introduction of time-triggered events
may introduce timestamp dependences [18]. Timestamp dependences may cause
vulnerabilities: in fact, the timestamp of the single node is easily modifiable.
Consider the pay transaction of the bike rental example (Listing 4.20) and the
event:
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Features Stipula Obsidian
Types declarations No Yes natively
States declarations Incomplete Yes natively

Agreement Yes natively Yes by suitable encoding
Time-triggered events Yes natively Yes by suitable encoding
Asset-send statements Yes natively Yes by suitable encoding

Caller guards Yes natively Yes by suitable encoding
Precondition guards Yes natively Yes by suitable encoding

Ownership No Yes natively
User-defined types No Yes natively
Data structures No Yes by suitable encoding

Type safety Operators, updates Yes natively + Asset retention
Liquidity Yes Yes by suitable encoding

Table 4.2: Comparison of Stipula and Obsidian main features

1 @Using {
2 "EndReached" -> Borrower
3 } ==> @Return �
The borrower may decide to increase the timestamp of its node, then execute
pay. Follows that now evaluates to an inappropriate timestamp: in particular,
now + rentingTime exceeds the actual expiration time and allows the borrower
to rent bikes beyond the agreed renting time. This problem can be solved if there
is a central licenced authority that provides the timestamps.





Chapter 5

Typing for asset send -statements

In this chapter, we introduce the proofs that show well-typedness for the Obsidian statements
that correspond to the send-statements in Stipula. For each statement, the translation in
Silica and the respective proofs are provided. The conclusions include some observations
on how the Stipula type system could be enhanced.

5.1 Introduction
We are interested in the typing of the send -statements in Table 4.1. As mentioned
above, the types found in the examples are:

Numeric ⊸ Currency@Owned, Party for currencies given to a party
Numeric ⊸ Currency@Owned, Currency@Owned for merging currencies

NFT@Owned»Unowned ⊸ Party for NFT given to a party
NFT@Owned»Unowned ⊸ NFT@Unowned»Owned for NFT moved between variables

However, if we want a formal guarantee on the properties proven for Obsidian, proofs
must be provided. In particular, in Stipula, it may be interesting to add the Asset
Retention property. In this way, we will be always sure that assets cannot be lost
during the execution of any contract. The first step to achieve this goal is looking
at the proofs of the equivalent Silica statements and studying how the type system
behaves.

For each statement, we first want to translate the Obsidian statement in Silica and,
secondly, to prove its soundness.

5.2 Most used rules in proofs
In the proofs of this chapter, we will use several rules from the Silica type system: in
particular, the most important to understand are (PublicTransactionOk), (T-→p),
(T-let) and (T-disown).

5.2.1 The PublicTransactionOk rule
The (PublicTransactionOk) rule (Figure 5.1) checks if a public transaction is
well-typed. To do so, the rule must identify the type parameters through params and
find the type variables with V ar. Then, assert that the type bounds context is formed
by the found types and the type parameters of the specific transaction. Finally, the

65
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(PublicTransactionOk)

params(C) = TG V ar(TG) = TV Γ = TG, TM

Γ; this : C⟨TV ⟩@Tthis, x : Cx@Tx ⊢this e : T ⊣ this : C⟨T ⟩@T ′
this, x : Cx@T ′

x

Tm⟨TM ⟩(Cx@Tx ≫ T ′xx)Tthis ≫ T ′
this{return e} ok in C

Figure 5.1: (PublicTransactionOk) rule

(T-let)

Γ;∆ ⊢s e1 : T1 ⊣ ∆′ Γ;∆′, x : T1 ⊢s e2 : T2 ⊣ ∆′′, x : T ′
1 Γ ⊢ disposable(T ′

1)

Γ;∆ ⊢s let x : T1 = e1 in e2 : T2 ⊣ ∆′′

Figure 5.2: (T-let) rule

rule requires the expression to be well-typed with the proper input and output contexts,
which are formed by the this object with its input and output types respectively
and the transaction parameters (along with their declared input and output types
respectively).

5.2.2 The T-let rule
The T-let rule (Figure 5.2) checks typing in let-in expressions. A let-in expression is
well-typed if:

1○ the expression to assign (e1) has the same type as the new variable (x);

2○ the remaining expression (e2) returns a value with the same type as the whole
expression;

3○ x can be thrown away after the evaluation of the whole expression.

If we read carefully the rule, we will notice that the output typing context of the first
hypothesis (∆′) is the input typing context of the second hypothesis: in fact, since
typestate may change after the evaluation of any expression and that statement in
Silica are “concatenated” using let-in expressions, then the typing contexts must be
also concatenated consistently. In particular, the input context of the whole expression
must be the input context for the evaluation of e1. Hence, its output context must be
the input for e2 with the addition of x with the declared type. The output context
of the whole expression is the output context of the second hypothesis, but without
considering x and its type since it will be disposed after the evaluation of e2.

5.2.3 The T-disown rule
The (T-disown) rule (Figure 5.3) checks of disown expressions. In particular, they
are well-typed if the permission for the expression to disown (s′) is a state S or Owned.
The output type of s′ is obtained through type splitting. Since TST is at most Owned
and, as mentioned, the type splitting transfers its ownership to the first type on the
right side of the relation, by definition of type splitting T ′ will be a disposable type.
Then, after the evaluation of the disown expression, s′ will have T ′.
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(T-disown)

TC@TST ⇛ T/T ′ Γ ⊢ TST <:∗ Owned

Γ;∆, s′ : TC@TST ⊢s disowns′ : unit ⊣ ∆′, s′ : T ′

Figure 5.3: (T-disown) rule

(T-→p)

Γ ⊢ TST <:∗ p p ∈ {Owned, Shared} Γ;∆ ⊢s x : T ⊣ ∆′

Γ;∆ ⊢ T <: stateF ields(C⟨TA⟩, S′) unionFields(C⟨TA⟩, TST ) = Tfs fs

fieldTypess(∆;Tfs fs) = T ′
fs

Γ ⊢ disposable(T ′
fs
)

Γ;∆, s : C⟨TA⟩@TST ⊢s s →p S′(x) : unit ⊣ ∆′, s : C⟨TA⟩@S′

Figure 5.4: (T-→p) rule

5.2.4 The T-→p rule
The (T-→p) rule checks of the statements that changes the state of objects are
well-typed. The rule requires several conditions to be verified:

• the permission of the object that is changing state (TST ) is compatible with p,
which is Owned or Shared by grammar;

• the parameters of the state initialisation (x) are well-typed with respect to the
types of the fields in the contract declaration (stateF ields(C⟨TA⟩, S′));

• that types of the fields of the actual state that are inconsistent with their
declarations (T ′

fs
) are disposable.

5.3 Moving a token between variables
Consider the statement that moves a token from a variable to another: h ⊸ h’.
According to its semantics in Stipula, after the statement the memory ℓ will be
modified in this way:

ℓ′ = ℓ[h 7→ a′, h′ 7→ a′′]

where

JhKaℓ = a

Jh− aKaℓ = a′

Jh′ + aKaℓ = a′′

Then, following the semantics shown in subsection 2.2.5,

JhKaℓ = ℓ(h) = a

Jh− aKaℓ = 0T = a′ if JhKaℓ = JaKaℓ
Jh′ + aKaℓ = JaKaℓ = a = a′′ if Jh′Kaℓ = 0T

Since JhKaℓ = ℓ(h) = a = JaKaℓ , we have a′ = 0T in any case. Then, there are two
possible cases:
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h’
h ⊸ h’ “empty” “full”
“empty” “empty”,“empty” Runtime Error

h “full” “empty”,“full” Runtime Error
Table 5.1: Values of (h, h’) after h ⊸ h’

h’
h’ = h Unowned Owned

Unowned Unowned, Unowned Compile-time Error
h Owned Unowned, Owned Compile-time Error

Table 5.2: Types of (h, h’) after the statement h’ = h

• if ℓ(h′) = 0T , then and a′′ = a;

• if ℓ(h′) ̸= 0T , then an error occurs.

This means that if a token value is sent to another token variable, this one must be
“empty”. Then, in Obsidian a token must be sent to an Unowned asset variable. In par-
ticular, Stipula allows us to assign an “empty” value to a token variable with already an
“empty” value. The outcomes of the send -statement are briefly summarised in Table 5.1.
We can note that they are similar to the results of the type-checking (Table 5.2) for
the analogous Obsidian statement: that is, h’ = h which is simply translated into the
Silica statement h’ := h. If we embrace the analogy “empty”/Unowned - “full”/Owned,
h ⊸ h’ and h’ := h have a similar behaviour in absence of errors. When they appear,
then Obsidian is able to detect them before the execution thanks to its type system.

5.3.1 Derivation tree

The proof for the assignment is very simple and is based mainly on rule T-Assign that
requires the type of h’ to be disposable: that is, h’ is not an asset or is not Owned.
Then, the type of h is split and the only way allowed by the type system is to give
ownership to h’. The proof with Unowned mode for both variables is similar.

NFT = contract(NFT@Owned)
Split-Unowned

NFT@Owned ⇛ NFT@Owned/NFT@Unowned

notOwned(NFT@Unowned)

Γ ⊢ disposable(NFT@Unowned)
T-Assign

Γ;∆,
h’ : NFT@Unowned,
h : NFT@Owned

⊢s h’:= h : unit ⊣
∆,

h’ : NFT@Owned,
h : NFT@Unowned

If we try to prove the same statement considering h’ as Owned, then it will be
impossible to proceed due to the disposable requirement:

...

h : NFT@Pi ⇛ NFT@P ′
o/NFT@Po

...

Γ ⊢ disposable(NFT@Owned)
T-Assign

Γ;∆,
h’ : NFT@Owned,

h : NFT@Pi

⊢s h’:= h : unit ⊣
∆,

h’ : NFT@P ′
o,

h : NFT@Po
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5.4 Sending token to a party
Consider the statement sending a token to a party: h ⊸ A. According to its semantics
in Stipula, after the statement the memory ℓ will be modified in this way:

ℓ′ = ℓ[h 7→ a′]

where

JhKaℓ = a

Jh− aKaℓ = a′

ℓ(A) = A

Then, following the semantics shown in subsection 2.2.5,

JhKaℓ = ℓ(h) = a

Jh− aKaℓ = 0T = a′ if JhKaℓ = JaKaℓ

Since JhKaℓ = ℓ(h) = a = JaKaℓ , then a′ = 0T in any case: that is, if the variable h
contains a “full” value, it will be drained and the token will be sent to the party A.
However, Stipula allows sending “empty” values: that is, no token is actually sent to A.
Then, the only case that really makes sense in terms of ownership is the first one.

As shown in Table 4.1, the respective statement is A.receiveToken(h) which just
adds the token to the list owned by the party. In Obsidian, we can send Unowned
references, but sending them is not equivalent to sending 0T in Stipula: in fact, an
Unowned reference is not a zero value. For this reason, I considered only this case
non-viable in Obsidian.

5.4.1 Silica translation
The statement A.receiveToken(h) does not need to be translated. However, to provide
complete proof, we also have to prove the soundness of the body of receiveToken. Due
to its grammar, Silica does not allow us to write expressions such as this.tokens.push(g).
We could achieve the same effect with the expression

let x : List<NFT@Owned>@Owned = this.tokens

in let em0 : unit = x.push(g)

in let em1 : unit = this.tokens := x

in pack

However, in this expression, the invocation of push is not allowed, since this transaction
is public and the typestate of this.tokens is not consistent with the one declared
(List<NFT@Owned>@Owned) when push is called on x.

For this reason, I adapted the implementation of Party (Listing 4.13) in order to
obtain a similar effect (Listing 5.1): in particular, I considered the management for a
single NFT. Then, Party has two possible states depending on whether it owns the
token (Token) or not (NoToken). These two states are sufficient when considering a
single token. In general, if n is the number of tokens that contracts would require,
then 2n states would be needed. In this example, we just want to show how a single
token could be sent to a party.

Then, the body of the new version of receiveToken is represented by the Obsidian
statement ->Token(token = g), which can be easily translated in the Silica expression
this →P Token(g) where P ∈ {Owned, Shared}.
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Listing 5.1: Party adaptation for token send-statement
1 main asset contract Party {
2 state NoToken;
3 state Token {
4 NFT@Owned token;
5 }
6 ...
7

8 transaction receiveToken(Party@NoToken >> Token this , NFT@Owned >>
Unowned g) {

9 ->Token(token = g);
10 }
11 } �
5.4.2 Derivation trees
As mentioned, we have to prove soundness for both the invocation of receiveToken
and its body. The first uses the rule for invocations (T-inv) which checks if the types of
receiver object and the actual parameters of the transaction are subtypes of the ones in
the declarations. The second, instead, relies on the rules for the state change (T-→P ),
subtyping for the arguments passed in initialisation, lookup and type splitting.

Statement

The invocation of receiveToken on a party A (Figure 5.5) requires mainly checking
the types of receiver object (π3) and of the actual parameters (π4). This check is done
by exploiting the subtype and subpermission relations.

π1 π2 π3 π4 π5 π6 π7
T-Inv

Γ;∆,
A : Party@NoToken,

h : NFT@Owned
⊢s A.receiveToken(h) : unit ⊣

∆,
A : Party@Token,
h : NFT@Unowned

<:∗-refl
Γ ⊢ NoToken <:∗ NoToken

π3

<:∗-refl
Γ ⊢ Owned <:∗ Owned

<:-Matching-defs
Γ ⊢ NFT@Owned <:∗ NFT@Owned

π4

Figure 5.5: Proof for receiveToken invocation

Transaction receiveToken

The proof for the transaction is more complicated (Figure 5.6): the first rule used is
PublicTransactionOK which just requires finding the correct type parameters and
proving that the expression this →P Token(g) is well-typed in the proper context.
This fact is proven considering the proper contexts gathered from the transaction
definition (π1): in the input context, the object this and the parameter g have
typestates Party@NoToken and NFT@Owned; in the output context, the parameter g
loses ownership (that is, must have type NFT@Unowned). To achieve this effect, we must
verify that the input type of the actual parameter is consistent with the type of field
that must be initialised (π3). Then, we have to check if the expression g is well-typed
for the same type (π6). When evaluating the type of g, the lookup is triggered and
the type system infers through type splitting that ownership of g is transferred to a
new owner.
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π1 params(C) = ∅ Γ = ∅
PublicTransactionOK

unit receiveToken(NFT@Owned»Unowned g) NoToken»Token
{ return this →p Token(g) } ok in Party

π2 π3 π4 π5 π6 p ∈ {Shared,Owned}
T-→p

this : Party@NoToken,
g : NFT@Owned ⊢this this →p Token(g) : unit ⊣ this : Party@Token,

g : NFT@Unowned

π1

<:∗-refl
⊢ Owned <:∗ Owned

<:-MatchingDefs
⊢ NFT@Owned <: stateF ields(Party,Token) = NFT@Owned

π3

NFT = contract(NFT@Owned)
Split-Unowned

NFT@Owned ⇛ NFT@Owned/NFT@Unowned
T-Lookup

this : Party@NoToken,
g : NFT@Owned ⊢this g : NFT@Owned ⊣ g : NFT@Unowned

π6

Figure 5.6: Proof for receiveToken body

5.5 Sending currency to a variable
The Stipula send -statement between currency variables is similar to the one used for
tokens. However, in this case, we can send values different from those stored in the
input variable. This statement is written as E ⊸ h,h’. The effects on memory are
the same as the ones mentioned for tokens:

ℓ′ = ℓ[h 7→ a′, h′ 7→ a′′]

where

JEKaℓ = a

Jh− aKaℓ = a′

Jh′ + aKaℓ = a′′

The main differences are determined by the semantics of the arithmetic operators:
for example, as shown in subsection 2.2.5, tokens have no multiplication, in contrast to
currencies that can be multiplied by a real number. Also, addition and subtraction
have different meanings. Then, following such semantics,

Jh− aKaℓ = JhKaℓ − JaKaℓ = JhKaℓ − JEKaℓ = a′ if JhKaℓ , JEKaℓ currencies
and JhKaℓ ≥ JEKaℓ

Jh′ + aKaℓ = Jh′Kaℓ + JaKaℓ = Jh′Kaℓ + JEKaℓ = a′′ if Jh′Kaℓ , JEKaℓ currencies

When the disequality JhKaℓ ≥ JEKaℓ is not satisfied, the program is trying to withdraw
from h too much currency and a runtime error will occur. Since the error depends on
the value of E, it cannot be checked easily using types. Also, the semantics requires h
and E to be currencies, which should be checked through the type system. However,
it cannot prevent errors deriving from expressions with different kinds of assets in
them. The respective Obsidian statement for v ⊸ h,h’ is h’.merge(h.split(E)).
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However, in Obsidian I required E to be an integer: in fact, in Stipula the value of the
currency in E is subtracted from h and transferred to h’. The type requirements over E
are needed in Stipula to correctly manage the semantics of the operations. In Obsidian,
this precaution is not needed since there is no specific and formal semantics for asset
expressions in this language. Anyway, this approach does not allow expressions with
tokens and currencies which leads also in Stipula to unchecked errors. As said, v ⊸
h,h’ can be translated to Obsidian as h’.merge(h.split(E)). To prove the typing
for this statement, we also need to provide proofs for split and merge. For simplicity,
we can assume in the proofs that the value of E is represented by an integer variable v.

5.5.1 Silica translation

In general, the following translations are straightforward writings in A normal form for
the statement and the bodies of split and merge transactions: the only difference is
the presence of pack instructions needed to arrange contexts to correctly conclude the
proofs.

Statement

Since h’.merge(h.split(E)) is a composite expression, the result of the invocation
of split must be stored in a proper variable that will be used in the subsequent
invocation of merge:

let x : Currency@Owned = h.split(v)

in h’.merge(x)

Transaction split

The split transaction applies a reversion if the value given in input is greater than
the one stored in this.value: that is, the transaction reverts if someone is trying to
withdraw too much currency. Since Silica does not provide grammar or typing rules
for if -statement with boolean conditions and revert statements, I decided to prove
typing only for the part of the transaction after the if -statement.

transaction split(Currency@Owned this , int v) returns Currency@Owned {
if (v > value) {

revert;
}
value = value - v;
Currency result = new Currency(v);
return result;

}

The statements that actually split the currency contain a subtraction which is not
part of the Silica grammar. In this case, I opted to consider it a proper Silica expression.
Then, the statement this.value := this.value - v is a composite expression and
must be stored in a proper variable (diff). Hence, the translation considered in the
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this.value := this.value + other.getValue()

this.value := this.value + other.getValue()

this.value + other.getValue()

Figure 5.7: Subexpressions of the update in merge

proof is the following:

let diff : int = this.value - v

in let em0 : unit = this.value := diff

in let em1 : unit = pack

in let result : Currency@Owned = new Currency@Owned(v)

in result

Transaction merge

The merge transaction is far simpler than split: there is no reversion and it contains
just two lines: in the first one, the method gets the amount of currency stored in other
and sums it to its own value field. Then, the other currency must be disowned to
avoid duplication of assets.

transaction merge(Currency@Owned this , Currency@Owned >> Unowned other) {
value = value + other.getValue ();
disown other;

}

Even if the transaction is far simpler than split, the first line is composed of
multiple subexpressions: in particular, we have to consider firstly other.getValue(),
then we have to sum it to this.value and, finally, we can update such field.

Then, following the structure represented in Figure 5.7, we can translate the
transaction merge starting from other.getValue() and storing the amount of the
currency contained in other in a proper variable x. Then, we have to add it to
this.value and update this field with the obtained result. Then, we can disown the
other currency. Hence, we can translate the statements in merge as follows:

let x : int = other.getValue()

in let sum : int = this.value + x

in let em0 : unit = this.value := sum

in let em1 : unit = disown other

in pack

5.5.2 Derivation trees
The proofs of the h’.merge(h.split(v)), split and merge use mainly the (T-let)
rule, which requires type consistency between the expression on the right side and
the variable on the left side of the assignment and proceeds to prove the rest of the
expression after the keyword “in”. The three proofs can be performed in any order.
However, I decided to start from the entire statement and, then, proceed with the
other two in order of invocation (split, merge).
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Statement

The derivation tree for the Silica expression obtained from h’.merge(h.split(v))
(Figure 5.8) uses just two kinds of rules: (T-let), which is used to prove that x actually
receives from h.split(v) a value of type Currency@Owned; (T-Inv), which is used
to check the invocations of h.split(v) and h’.merge(x). The proof assumes that h
and h’ have type Currency@Owned and that v is an int.

The (T-let) rule ensures that the type of h.split(v) is Currency@Owned, that
x has the same type and that this variable will lose the ownership after the invocation
of h.merge(x). In π1, the type system ensures that split is called with the correct
input and output types which are computed by funcArg. The same checks are done
for merge in π2. We can see that, in this case, x loses its ownership after the execution
of merge (as expected).

π1 π2 ⊢ disposable(Currency@Unowned)
T-let

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

⊢s
let x : Currency@Owned = h.split(v)
in h’.merge(x) : unit ⊣

∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

<:∗-refl
⊢ Owned <:∗ Owned int <: int

⊢ bound(Currency@Owned) = Currency@Owned ∀f.s.f /∈ ∆1

specializeTransΓ(split, Currency) = Currency@Owned split(int v) Owned»Owned { ... }
Currency@Owned = funcArg(Currency@Owned, Currency@Owned, Currency@Owned)

int = funcArg(int, int, int)
T-Inv

∆1 =

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

⊢s h.split(v) : Currency@Owned ⊣

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int
π1

<:∗-refl
⊢ Owned <:∗ Owned

<:∗-refl
⊢ Owned <:∗ Owned

<:∗-Matching-defs
⊢ Currency@Owned <: Currency@Owned

⊢ bound(Currency@Owned) = Currency@Owned ∀f.s.f /∈ ∆2

specializeTransΓ(merge, Currency) = unit merge(Currency@Owned»Unowned other) Owned»Owned { ... }
Currency@Owned = funcArg(Currency@Owned, Currency@Owned, Currency@Owned)

Currency@Unowned = funcArg(Currency@Owned, Currency@Owned, Currency@Unowned)
T-Inv

∆2 =

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int,
x : Currency@Owned

⊢s h’.merge(x) : unit ⊣

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int,
x : Currency@Unowned

π2

Figure 5.8: Proof for currency send-statement h’.merge(h.split(v))

Transaction split

The proof for split transaction (Figure 5.9) is mainly composed of a relatively long
chain of (T-let) rules that originates from the first one which is (PublicTrans-
actionOK). In particular, this rule set up the contexts for the Silica expression e
that corresponds to the translation mentioned above. For the sake of readability, I
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abbreviated expressions using names as e, e0, e1, and e2:

e =let diff : int = this.value - v in e0

e0 =let em0 : unit = this.value := diff in e1

e1 =let em1 : unit = pack in e2

e2 =let result : Currency@Owned = new Currency@Owned(v) in result

The proof starts considering the transaction

Currency@Owned split(int v) Owned»Owned {return e}

Then, it firstly checks that the expression this.value - v and diff are both of type
int as this.value (π1, π5). Hence, the packing of this is executed: we can easily
notice that in π7 the term this.value : int in the input context disappears in the
output context. Then, the instantiation of a new currency object and its assignment to
the result is proven in π11. In particular, to prove the instantiation we need the rule
(T-new), which requires the actual parameter v of the constructor to be a subtype of
int. Finally, the ownership of currency in result must be given to the variable that
will store the result of the split and this fact is proven in π13.

Transaction merge

Like split, the proof for the transaction merge (Figure 5.10) is a chain of (T-let)
rules that ends with the proof of the disowning of the currency merged to this and the
packing of this. As for split, I decided to give names to subexpressions to improve
the readability of the proof:

e =let x : int = other.getValue() in e0

e0 =let sum : int = this.value + x in e1

e1 =let em0 : unit = this.value := sum in e2

e2 =let em1 : unit = disown other in pack

As for split, the proof sets up the proper contexts with (PublicTransactionOk)
and manages the assignments for the several variables introduced with “let”. Then,
the proof for the disown expression (π12) requires other to be Owned and apply type
splitting to take away from the variable the ownership.
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params(Currency) = ∅ Γ = ∅ π1
PublicTransactionOK

Currency@Owned split(int v) Owned»Owned {return e} ok in Currency

π2 π5 ⊢ disposable(int)
T-let

this : Currency@Owned,
v : int ⊢this

let diff : int
= this.value - v

in e0
: Currency@Owned

⊣ this : Currency@Owned,
v : int

π1

π6 π7 ⊢ disposable(unit)
T-let

this : Currency@Owned,
v : int,

this.value : int,
diff : int

⊢this

let em0 : unit
= this.value := diff

in e1
: Currency@Owned

⊣
this : Currency@Owned,

v : int,
diff : int

π5

π10 π11 ⊢ disposable(unit)
T-let

this : Currency@Owned,
v : int,

this.value : int,
em0 : unit,
diff : int

⊢this
let em1 : unit = pack
in e2

: Currency@Owned ⊣

this : Currency@Owned,
v : int,

em0 : unit,
diff : int

π7

π12 π13 ⊢ disposable(Currency@Unowned)
T-let

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

⊢this

let result : Currency@Owned
= new Currency@Owned(v)

in result
: Currency@Owned

⊣

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

π11

int ⇛ int/int
T-Lookup

∆12 ⊢ v : int ⊣ ∆′
12 ⊢ int <: int def(Currency) = contract Currency { ... }

T-new

∆12 =

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

⊢this
new Currency@Owned(v)

: Currency@Owned ⊣

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

= ∆′
12

π12

Currency = contract(Currency@Owned)
Split-unowned

Currency@Owned ⇛ Currency@Owned/Currency@Unowned
T-Lookup

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int,

result : Currency@Owned

⊢this result : Currency@Owned ⊣

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int,

Currency@Unowned
π13

Figure 5.9: Proof for split transaction
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params(Currency) = ∅ Γ = ∅ π1
PublicTransactionOk

unit merge(Currency@Owned»Unowned other) Owned»Owned
{ return e } ok in Currency

π2 π3 ⊢ disposable(int)
T-let

this : Currency@Owned,
other : Currency@Owned ⊢this

let x : int = other.getValue()
in e0

: unit ⊣ this : Currency@Owned,
other : Currency@Unowned

π1

π4 π5 ⊢ disposable(unit)
T-let

this : Currency@Owned,
other : Currency@Owned,

x : int
⊢this

let sum : int = this.value + x
in e1

: unit ⊣
this : Currency@Owned,

other : Currency@Unowned,
x : int

π3

π8 π9 ⊢ disposable(unit)
T-let

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int

⊢this

let em0 : unit = this.value := sum
in e2
: unit

⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int
π5

π12 π13 ⊢ disposable(unit)
T-let

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int,
this.value : int,

em0 : unit

⊢this
let em1 : unit = disown other
in pack : unit ⊣

this : Currency@Owned,
other : Currency@Unowned,

x : int,
sum : int,
em0 : unit

π9

Currency = contract(Currency)
Split-Unowned

Currency@Owned ⇛
Currency@Owned/Currency@Unowned

<:∗-refl
⊢ Owned <:∗ Owned

T-disown
this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int,
em0 : unit

⊢this disown other : unit ⊣

this : Currency@Owned,
other : Currency@Unowned,

x : int,
this.value : int,

sum : int,
em0 : unit

π12

Figure 5.10: Proof for merge transaction
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5.6 Sending currency to a party
Consider the statement that sends currency from a variable to a party: E ⊸ h,A.
Similarly to what we already noted for h ⊸ A, after the statement the memory ℓ will
be modified in this way:

ℓ′ = ℓ[h 7→ a′]

where

JEKaℓ = a

Jh− aKaℓ = a′

ℓ(A) = A

Then, following the semantics shown in subsection 2.2.5,

Jh− aKaℓ = JhKaℓ − JaKaℓ = JhKaℓ − JEKaℓ = a′ if JhKaℓ , JEKaℓ currencies
and JhKaℓ ≥ JEKaℓ

Considering the semantics above, we can do the same remarks as for E ⊸ h,h’:

• JhKaℓ ≥ JEKaℓ generates a runtime error that can be checked only runtime;

• E in Obsidian must be an integer, but in Stipula it is a currency: the Obsidian
approach avoids expressions with both tokens and assets, which leads to unchecked
runtime errors in Stipula.

The statement E ⊸ h,A corresponds to A.receive(h.split(E)) in Obsidian. Also,
in this case, we need the proofs for split and merge already provided in Figure 5.9
and Figure 5.10. In particular, the second transaction is called in the body of receive,
which will also be proven.

5.6.1 Silica translation
The translation for the whole statement is straightforward and the process is sim-
ilar to the one described for h’.merge(h.split(v)). Then, the translation for
A.receive(h.split(v)) is

let x : Currency@Owned = h.split(v)

in A.receive(x)

The translation for the method body of receive is troubling: as discussed in
subsection 5.4.1, Silica’s grammar does not allow to call transactions having fields
as receivers. In particular, the statement wallet.merge(gift) in receive, which
is equivalent to this.wallet.merge(gift), cannot be translated in Silica without
causing type inconsistencies at the moment of the invocation of merge. Then, I decided
to relax the grammar of Silica to consider expressions like this.wallet similar to
usual variables (e.g. x).

transaction receive(Currency@Owned >> Unowned gift) {
wallet.merge(gift);

}

Then, we could think that the translation is not needed. However, the mere
invocation of merge is not allowed in Silica: in fact, we need to unpack this to use its
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fields. To achieve this requirement, we need to assign this.wallet to a new variable x
and, then, assign the same x to this.wallet: in this way, we will unpack this.wallet
and it will have type Currency@Owned thanks to the second assignment. This is
required since in Obsidian a public transaction as merge can be called only if the fields
are consistent with the type declared in the contract. Hence, the body of receive can
be translated as follows:

let x : Currency@Owned = this.wallet

in let em1 : unit = this.wallet := x

in let em2 : unit = this.wallet.merge(g)

in pack

5.6.2 Derivation trees
The proofs given are based on (T-let) and (T-Inv) rules. However, due to the grammar
relaxations mentioned above, the proof for receive body cannot be completed with
the (T-Inv) rule provided in the Obsidian article [4]. As before, I proved the entire
statement and, then, the other proofs. The ones required for split and merge are
omitted since they are the same as seen previously.

Statement

The proof for A.receive(h.split(v)) (Figure 5.11) is very similar to the one needed
for h’.merge(h.split(v)): it uses the same rules in the same order with similar
intents. The main difference can be found in the initial assumptions for obvious reasons:
this time we need to assume that A has typestate Party@Owned and we don’t need
the variable h.

Transaction receive

The proof for the body of the receive transaction (Figure 5.12) starts with the
rule (PublicTransactionOk) and, then, proceeds with several (T-let) rules that
manage the unpacking of this.wallet. Once that this.wallet : Currency@Owned
is in the input context, then we can apply the T-Inv rule to prove well-typedness of
the invocation of merge on this.wallet. However, this rule requires as hypothesis
that ∀f, this.f /∈ ∆6: that is, it requires this to be packed. But, at the same time,
(T-Inv) requires this.wallet to be in the input context to check the invocation. For
this reason, I replaced

∀f, this.f /∈ ∆

with the following three hypothesis (the overline indicates sequences):

unionFields(D@TST ) = Tf,decl f (5.1)

fieldStatess(∆;Tf,decl f) = Tf (5.2)

Γ ⊢ Tf <: Tf,decl (5.3)

where

- s is the name of the receiver object (e.g. this);

- D is the name of the contract of the object s (e.g. Currency);
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π1 π2 ⊢ disposable(Currency@Unowned)
T-let

Γ;∆,
h : Currency@Owned,
A : Party@Owned,

v : int

⊢s
let x : Currency@Owned = h.split(v)
in A.receive(x) : unit ⊣

∆,
h : Currency@Owned,
A : Party@Owned,

v : int
π3 ⊢ ∀f.s.f /∈ ∆2

specializeTransΓ(receive, Party) = unit receive(Currency@Owned»Unowned g) P»P { ... }
π4 π5 ⊢ ∀f.s.f /∈ ∆2 π6

Currency@Unowned = funcArg(Currency@Owned, Currency@Owned, Currency@Unowned)
T-Inv

∆2 =

h : Currency@Owned,
A : Party@Owned,

v : int,
x : Currency@Owned

⊢s A.receive(x) : unit ⊣

h : Currency@Owned,
A : Party@Owned,

v : int,
x : Currency@Unowned

π2

Owned ∈ { Owned, Shared, Unowned }

Γ ⊢ bound(Owned) = Owned

Γ ⊢ bound(Party@Owned) = Party@Owned
π3

<:∗-refl
⊢ Owned <:∗ Owned

π4

<:∗-refl
⊢ Owned <:∗ Owned

<:∗-Matching-defs
Currency@Owned <: Currency@Owned

π5

Owned ̸= Unowned
funcArg-other

Party@Owned = funcArg(Party@Owned, Party@Owned, Party@Owned)
π6

Figure 5.11: Proof for currency send-statement A.receive(h.split(v))
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- unionFields returns the fields f of D with their type declarations Tf,decl;

- fieldStatess returns actual typestates of fields in Tf,decl f and in context ∆.

Altogether, these hypotheses ensure that the fields in the input context are consistent
with their declarations and, consequently, allow invocations of public transactions as
merge. In particular, (5.1) and (5.2) provide the types and (5.3) checks the consistency
between the actual types of fields and the respective declared types. Then, applying the
correct substitutions in these hypotheses, in π6 of the proof we obtain the hypothesis
colored in blue. As for split and merge, I decided to give names to subexpressions to
improve the readability of the proof:

e =let x : Currency@Owned = this.wallet in e0

e0 =let em1 : unit = this.wallet := x in e1

e1 =let em2 : unit = this.wallet.merge(g) in pack
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5.7 Conclusions
The proofs in this chapter show that the Obsidian implementation of the Stipula
send -statement is well-typed in the Obsidian type system. This fact (and how the
Obsidian type system is designed) give us a good insight into how the insertion of
ownership in Stipula could be done and what benefits could bring to the language.

As already discussed, the provided Obsidian implementation avoids expressions
with assets: this is usually a source of unchecked errors in Stipula, especially when
tokens and currencies both appear in the same expression. The first step to avoid this
mixture of kinds of assets is to distinguish them using different types and to forbid
operations between those types. If we also consider that the draining of token variables
could be managed with ownership and checked statically, expressions between tokens
become almost meaningless. About currencies, a good idea may be to forbid operations
between them, then to allow casting to real and to use only numeric expressions.
This approach is similar to the one I proposed with Obsidian: Currency cannot be
used in arithmetic expressions, but can be “cast” using the transaction getValue
and split allows only int values. This approach, as shown, enables a compile-time
detection of errors for send -statement among token variables and avoids runtime errors
in expressions when different kinds of assets are involved.

In addition, this approach could potentially allow the introduction in Stipula of the
main Obsidian property, Asset Retention. This would enhance the safety of Stipula
programs, especially in addition to the liquidity analyser. In this way, Stipula programs
would be granted to not freeze assets in the contract itself and to not lose them when
introduced or transferred elsewhere.
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params(Party) = ∅ Γ = ∅ π1
PublicTransactionOk

unit receive(Currency@Owned»Unowned g) Owned»Owned { return e }

π2 π3 ⊢ disposable(Currency@Unowned)
T-let

this : Party@Owned,
g : Currency@Owned ⊢this

let x : Currency@Owned = this.wallet
in e0

: unit ⊣ this : Party@Owned,
g : Currency@Unowned

π1

π4 π5 ⊢ disposable(unit)
T-let

this : Party@Owned,
g : Currency@Owned,

this.wallet : Currency@Unowned,
x : Currency@Owned

⊢this

let em1 : unit
= this.wallet := x

in e1
: unit

⊣
this : Party@Owned,
g : Currency@Unowned,
x : Currency@Unowned

π3

π6 π7 ⊢ disposable(unit)
T-let

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Owned,
x : Currency@Unowned,
em1 : unit

⊢this
let em2 : unit = this.wallet.merge(g)
in pack ⊣

this : Party@Owned,
g : Currency@Unowned,
x : Currency@Unowned,

em1 : unit

π5

⊢ bound(Currency@Owned) = Currency@Owned
specializeTransΓ(merge, Currency@Owned) =

= unit merge(Currency@Owned»Unowned g) Owned»Owned { ... }
⊢ Owned <:∗ Owned ⊢ Currency@Owned <: Currency@Owned

unionFields(Party@Owned) =
= Currency@Owned this.wallet, List<NFT@Owned>@Owned this.tokens =

= Tf,decl f

fieldStatesthis(∆6;Tf,decl f) = Currency@Owned
Γ ⊢ Currency@Owned <: Currency@Owned

funcArg(Currency@Owned, Currency@Owned, Currency@Owned) = Currency@Owned
funcArg(Currency@Owned, Currency@Owned, Currency@Unowned) = Currency@Unowned

T-Inv

∆6 =

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Owned,
x : Currency@Unowned,
em1 : unit

⊢this this.wallet.merge(g) : unit ⊣

this : Party@Owned,
g : Currency@Unowned,
this.wallet

: Currency@Owned,
x : Currency@Unowned,
em1 : unit

π6

Figure 5.12: Proof for receive transaction





Chapter 6

Conclusions

In conclusion, this thesis argued the differences between two typestate-oriented lan-
guages: Stipula and Obsidian. The main concept that they share is the centrality of
contracts. Both languages are designed to work in blockchains and provide tools to
manage assets. However, Obsidian and Stipula are not the only languages or tools
available, but other ways to implement the TSOP approach. Here, we are going to
list and briefly compare some of them to Stipula and Obsidian, focusing also on the
solutions suggested in this work.

6.1 Related works
In general, TSOP can be enforced in programming languages in two different ways: by
using external tools for already existing programming languages or by designing and
developing a full-fledged language that supports natively typestate programming.

6.1.1 Mungo
A well-known external tool is Mungo [16], which extends Java with typestate definitions.
Every typestate defines a protocol in the form of a state machine: that is, for each
state, the programmer has to specify a subset of the methods defined in the class
and, for each method, which states it reaches. With Mungo, any Java class can
be enriched using the annotation @Typestate("ProtocolName") (Listing 6.2) where
ProtocolName names the file that contains the definition of the typestate (Listing 6.1).
In the listings provided, we are considering a Java class that models a stack and the
respective protocol. As expected, a stack should provide functions to push or pop
elements and a way to check if the stack is empty or not. For this operations, it may
be reasonable to establish a protocol with three states: Empty, NonEmpty or Unknown.
For example, in the first state, the two methods that should be available to be called
are push and deallocate: they will change the state of the stack respectively to
NonEmpty and end (which is a Mungo keyword used for the end -state). When the
stack is non-empty, we could still push other elements or pop the one in the head.
However, after a pop we cannot know if the stack is empty or not, that is the state
of the stack is Unknown. This lack of knowledge can be solved only with the method
isEmpty, which will take the stack to a known state.

The definition of typestates is used by a type inference algorithm that considers the
sequences of methods called on objects and checks if the inferred typestate is a subtype

85
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Listing 6.1: Example of Mungo protocol
1 typestate StackProtocol {
2 Empty = { void push(int): NonEmpty ,
3 void deallocate (): end }
4 NonEmpty = { void push(int): NonEmpty ,
5 int pop (): Unknown }
6 Unknown = { void push(int): NonEmpty ,
7 Check isEmpty (): <EMPTY: Empty , NONEMPTY: NonEmpty >}
8 } �

Listing 6.2: Example of Java class enriched with Mungo Protocol
1 @Typestate ("StackProtocol")
2 class Stack {
3 private int[] stack;
4 private int head;
5

6 Stack () { stack = new int[MAX]; head = 0; }
7 void push(int d) { stack[head ++] = d; }
8 int pop () { return stack[head --]; }
9 Check isEmpty () {
10 if(head == 0) return Check.EMPTY;
11 return Check.NONEMPTY;
12 }
13 void deallocate () {}
14 } �
of the one declared for the object. With Mungo, any typestate is considered a linear
type: that is, aliasing is not allowed since it may lead to typestate inconsistencies and
any attempt to create aliases is reported as an error at compile-time.

Mungo comes along with StMungo (Scribble-to-Mungo) which uses this typestate
feature to implement specifications written in Scribble protocol language using Mungo
and Java.

6.1.2 Java Typestate Checker

Java Typestate Checker (JATYC) [20, 19] is a new implementation of Mungo
that also prevents null pointer errors, enables state transitions that depend on return
values, ensures protocol completion (that is, that objects reach the end -state), embeds
droppable states and permits enriching Java library or third-party libraries with
protocols. The tool also uses behavioural types and access permissions to provide the
ability to define aliases and share references in a controlled way. Aliases and permission
transfers between them are key features that allow sharing of objects among threads
with the certainty that their use follows the given specification.

6.1.3 Generational approach

A generational approach was suggested by Gerbo and Padovani [15]: in this case,
Objective Join Calculus [13, 8] and automata theory are used to generate code for
concurrent typestate-oriented programs. In particular, the first is a formal model for
concurrent TSOP that supports join patterns: these entities are used to associate
methods with states and synchronise them, which are both considered as messages
that objects can receive.

The presented tool focuses on Java, but the approach is easily portable to other
mainstream languages. With this generational approach, the programmer writes a
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Listing 6.3: Generational approach example
1 @Protocol("*get·(EMPTY·put + FULL)")
2 class Future <A> {
3 @State private void EMPTY();
4 @State private void FULL(A x);
5 @Operation public A get();
6 @Operation public void put(A x);
7 @Reaction private void when_EMPTY_put(A x) { this.FULL(x); }
8 @Reaction private A when_FULL_get(A x) { this.FULL(x); return x; }
9 public Future () { this.EMPTY(); }

10 } �
Java class and specifies through standard Java annotations the join patterns needed to
synchronise methods and states. The specified pattern is a representation of the possible
traces of the object. Using this pattern, the tool builds a matching automaton which
is used to generate boilerplate code. This code already contains the synchronisation
logic and manages the automaton using switch statements. However, contrary to
other approaches, protocol violations are detected at run-time when an illegal state is
reached.

Consider the example in Listing 6.3: in this case, generational approach is used to
implement a future (called also promise in other languages). A Future can receive
four different messages: state messages (@State) EMPTY and FULL; method messages
(@Operation) put and get. We also know how a Future should react in certain states
to certain methods: in fact, not completed (i.e. empty) futures react only to put
messages which complete them; instead, completed (i.e. full) ones react only to get
messages which request the object stored in the future variable. Then, we can write
these reactions and mark them with the annotation @Reaction: the tool provided by
Gerbo and Padovani requires that the reactions are named as when_STATE _OPERATION .
Hence, the two reactions discussed are named as shown in Listing 6.3.

The only cases where the protocol is violated are:

• when we try to put something new in an already complete future;

• when we signal multiple times that Future is full since, once the future is
completed, its state cannot change.

Then, the join pattern for Future must avoid traces where FULL is received before any
put or multiple FULL messages. Follows that the Future protocol can be described
with the pattern

∗get · (EMPTY · put+ FULL)

where ∗ indicates any sequences of the messages (possibly empty), · the shuffle (or
interleaving) of two messages and + the choice among two messages. This pattern
must be annotated with the declaration of the class Future (@Protocol).

At this point, the tool can be used and will directly generate code that checks
runtime if the protocol of the object is followed. If an illegal state is reached, the Java
code will throw an IllegalStateException.

6.1.4 Flint

Unlike the previous approaches, Flint [22, 23, 10, 11] is a statically-typed programming
language designed to write robust smart contracts. Flint is designed to work on the
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Listing 6.4: Flint protection blocks
1 contract Auction (Preparing , InProgress , Terminated) {
2 let bidders : [Address]
3 ...
4 }
5

6 Auction :: (any) {
7 // Protection block without any restriction
8 public init(b : [Address], ...) { // Constructor
9 bidders = b;
10 ...
11 }
12 }
13

14 Auction@InProgress :: (bidders) {
15 // Protection block where the only users authorised are
16 // the users with address in variable bidders when
17 // the auction is in progress
18 @payable
19 public func offer(implicit bid : Wei) { ... }
20 } �
Ethereum Virtual Machine (EVM) and with Ether, the Ethereum cryptocurrency.
Flint focuses on the following main aspects:

• Protection against unauthorised function calls: in smart contracts, some
operations may be sensitive enough to be forbidden to some users. However, most
languages do not require programmers to necessarily provide the authorisation
information: for this reason, developers may forget to check the identity of the
caller when needed. To avoid this possibility, Flint requires its users to explicitly
write who is authorised to call each function using protection blocks. An invocation
may also occur when the state is not consistent with the preconditions of the
function called. This is managed in Flint (starting from the second version of the
language) using protection blocks also for typestates. For example in Listing 6.4,
we can see the definition of a contract Auction. After the declarations (lines
1-4), we can see two protection blocks: the first one (lines 6-12) is used for the
definition of the constructor and no restriction is placed since it is not specified
a state for the block and the caller is marked as any, a Flint keyword which
matches with any adddress; the second protection block (lines 14-20) applies
protections for states and for callers, since the state requested is InProgress
and the set of user addresses that can call the function offer is limited to the
bidders in the declaration.

• Safe operations for assets and Ether: another main feature of Flint is the
provision of safe operations to handle assets. Transfer operations are performed
atomically and ensure that the state of the contract is always consistent. In
particular, assets in Flint cannot be accidentally created, duplicated or destroyed.
Wei, the smallest denomination of Ether, in Flint is implemented as an Asset
with a dedicated type: which means that it cannot incur accidental conversions,
overflows or losses. As shown in Listing 6.5 and in Listing 6.6, Wei can be
implemented in Flint as an Asset, which is defined as a trait with specific
properties and interface.

• Interoperability with Solidity Since Flints works with the EVM, a large
collection of smart contracts are already available in Solidity, so interoperability
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Listing 6.5: Flint implementation of Wei
1 struct Wei : Asset {
2 var rawValue: Int = 0
3

4 // Creates Wei directly from an integer. This is a privileged operation.
5 init(unsafeRawValue: Int) { self.rawValue = unsafeRawValue }
6

7 // Creates Wei by transferring a specific quantity of another Wei.
8 // Causes a fatalError if the quantity of source is smaller than amount.
9 init(source: inout Wei , amount: Int) {

10 if source.getRawValue () < amount { fatalError () }
11 source.rawValue -= amount
12 rawValue = amount
13 }
14

15 // Creates Wei by transferring the entire quantity of another Wei.
16 init(source: inout Wei) { init(&source , source.getRawValue ()) }
17

18 // Returns the quantity of Wei , as an integer.
19 func getRawValue () -> Int { return rawValue }
20 } �

Listing 6.6: Flint definition and implementation of Asset
1 trait Asset {
2 // Create the asset by transferring a given amount of asset ’s contents.
3 init(source: inout Self , amount: Int)
4

5 // Unsafely create the Asset using the given raw value.
6 init(unsafeValue: Int)
7

8 // Return the raw value held by the receiver.
9 func getRawValue () -> Int

10

11 // Transfer a given amount from source into the receiver.
12 mutating func transfer(source: inout Self , amount: Int)
13 }
14

15 // Default implementation of Assets functions
16 extension Asset {
17 // Create the asset by transferring another asset ’s contents.
18 init(from other: inout Self) {
19 self.init(from: &other , amount: other.getRawValue ())
20 }
21

22 // Transfer the value held by another Asset of the same concrete type.
23 mutating func transfer(source: inout Self) {
24 transfer(from: &source , amount: source.getRawValue ())
25 }
26

27 // Transfer a subset of another Asset of the same concrete type.
28 mutating func transfer(source: inout Self , amount: Int) {
29 if amount > source.getRawValue () { fatalError () }
30 source.rawValue -= amount
31 rawValue += amount
32 }
33 } �
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with this large set of features is surely desirable. For this reason, Flint is provided
with an ABI compatible with Solidity. In this way, Solidity contracts can call
functions on Flint smart contracts and vice-versa.

Flint is the most similar approach to Stipula and Obsidian, since all of them are
languages designed for writing smart contracts that embrace TSOP with the goal to
enforce safety and security.

Flint and Stipula share two main features: protection against unauthorised function
calls and asset specific operations. The first is implemented through protection blocks
in Flint and in Stipula with caller guards. The second is realised in Flint with the
Asset trait and the specific asset type Wei which provide transfer functions between
assets and in Stipula with specific send -statements.

Consider the function put of CoinEscrow (Listing 4.6), which is also the only one
callable when the contract is in state S1

@S1 Sender : put()[h] (h== amount) {
h -o w

} ==> @S2

then we could write in Flint the following protection block for a similar CoinEscrow
smart contract:

NftEscrow@S1 :: (sender) {
@payable
public func put(implicit h : Wei) {

if (h == amount) transfer(from: &h)
}

}

The main difference is the place where the precondition is checked: Stipula allows
checking the precondition before the execution of the function, contrarily to Flint
which must do the same control inside the function. Another difference is that Flint
allows using groups of undefined sizes to call functions (consider the protection block
in lines 14-20 of Listing 6.4). However, once array types will be inserted into Stipula,
this feature could be easy to replicate. Concerning asset-specific operations, we can
easily see that the specific operation to send the currency in h to w can be translated
with the help of the transfer action which in Flint is granted to be atomic.

Except for checks on states on function calls, the previous Flint features are not
present in Obsidian. However, these two languages are similar in other aspects:
contrarily to Stipula which provides typing only for primitive types, they are statically
typed and do not support inheritance. At the same time, Flint and Obsidian provide
mechanisms to define interfaces for structs and contracts, respectively. The first allows
users to define traits, similarly to Rust [25], and the second allows to define interfaces.
Traits and interfaces can both be used as parameter types. The main difference in
typing is that Obsidian always checks states statically, but Flint does not: in fact, Flint
performs checks of protection blocks on typestate at compile-time only for internal
function calls (that is, in the same contract). parameterThe other strong similarity
is the use of linear types. However, there is a difference: in Obsidian, misuse of
assets would lead to a compilation error, but in Flint the compiler will provide only a
warning. In Flint’s developers’ opinion, due to their inability to detect whether all the
local variables are used exactly once, producing errors would worsen the programmer
experience.
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6.2 Overall Summary

In this work, we compare two programming languages designed for smart contract
development, Stipula and Obsidian. In our analysis, we identify the downsides and
upsides of each of them. In particular, Stipula adopts a safer and more flexible approach
than Obsidian in legal contract writing, due to the primitives available for programmers,
such as caller and precondition guards, time-triggered events, agreements and dedicated
asset operations. These features enable simpler and more readable implementation
of contracts and enforce a safer approach to development, especially thanks to asset
operations and guards. On the other hand, Stipula lacks typical functionalities, such
as user-defined data and data structures. Also, the language does not support a
full-fledged type system that ensures safety properties on asset operations: the Stipula
type system ensures typical safety properties for primitive types (e.g. real, bool and
so on). However, Crafa and Laneve designed a liquidity analyser for Stipula, which
enables a static analysis on assets that detect when they may remain inside the contract
indefinitely.

When comparing Stipula and Obsidian with the other approaches discussed in the
previous section, these languages definitely diverge from the external tool approach (i.e.
Mungo, JATYC and generational) and show several similarities with Flint, especially
Stipula: consider the guards on callers and typestate, which are fundamental features
for both of these languages. Furthermore, Stipula and Flint chose to manage assets and
currencies (Wei in Flint) natively and to provide specific asset operations. However,
Flint also allows developers to define their own currencies using the Asset trait in the
Standard Library. This approach is more akin to the Obsidian approach, which permits
user-defined assets. Flint also uses linear types in its code analysis (like Obsidian), but
produces only warnings.

The other contribution of this work is the discussion of typing for Stipula send -
statements. Since we provided an implementation in Obsidian, we could discuss the
types involved in these statements. We provided proofs that they are well-typed: the
tools used in these demonstrations give us some hints, especially on how ownership
should work in Stipula statements. In particular, the key aspects identified are the
choice to avoid expressions with different kinds of asset and to disallow arithmetical
operations between currencies and between tokens: the idea is that every expression
should return an integer value. Then, following the proofs given for Silica, it may be
feasible to introduce ownership in this kind of statement and to guarantee a property
similar to Asset Retention.

This thesis focused on the search for features and practises to improve the ex-
pressiveness of TSOP languages. In particular, the choice of Obsidian was justified
by its solid formal foundations, which derive from Featherweight Typestate, and the
usability remarks reported by Obsidian designers [3]. Obsidian is a statically-typed
and typestate-oriented approach with careful attention to safety, security and usability.
These features fall within the main goals of Stipula, a newborn typestate-oriented
language for legal contracts. Then, their implementation in such language may be a
good way to enhance its safety and users’ experience.

6.3 Future work

Further studies should investigate the insertion of new features into Stipula. Firstly,
a great improvement would be granted by the implementation of array types and,
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especially, user-defined data types, which could be challenging to achieve due to
typestates. In particular, problems may occur depending on choices about subtyping
and inheritance: Featherweight Typestate provides both, Obsidian subtyping but not
inheritance, Flint neither of them. In smart contracts, as Coblenz et al. noted [4],
inheritance may bring unexpected behaviour due to fragile base class problem. In
general, subclassing should be avoided in blockchain environments: for example, having
a contract C, such that C <: B <: A <: ..., that inherits behaviour from at least B
and A would lead to unclear and undesired behaviours.

Another work to consider in the future is the implementation of ownership of assets,
as mentioned before. To avoid this mixture of kinds of assets, we could differentiate
them using diverse types and forbid operations between them. Concerning currencies,
we could operate as proposed in our Obsidian implementation: that is, forbidding
operations between them, then casting to real and using only real expressions. As
shown, in this way, it may be possible to detect compile-time errors for send -statement
among token variables and to avoid runtime errors in expressions caused by unsafe
asset arithmetic operations.

However, we cannot forget that Stipula does not declare types in contracts and
parameter lists. Then, to not change drastically the syntax and the approach thought
for Stipula users, we can diversify tokens and currencies in two possible ways:

• Through specific keywords or syntax: for example, the keyword assets in
the declaration could be substituted by two other keywords such as currencies
and tokens. In this case, we should add syntax in the function asset parameter
list to differentiate tokens and currencies. We could separate the list of currencies
and the list of tokens using “;” or using two different pairs of square brackets
(t[] for tokens, c[] for currencies):

@S1 A : m(x) [t1,t2 ; c1,c2]
(cond) {

...
} == > @S2

@S1 A : m(x) t[t1,t2] c[c1,c2]
(cond) {

...
} == > @S2

• Diversifying send-statements: we could use

t ⊸ t’ (6.1)
t ⊸ A only for tokens (6.2)
v ⊸ c,c’ (6.3)
v ⊸ c,A only for currencies (6.4)

and let the type-inference system entail the correct types for the variables: in
fact, since (6.1), (6.2) are used only for tokens, we can easily infer that t and
t’ are tokens. The same holds for (6.3) and (6.4). In this way, we renounce to
some abbreviations, but we gain type-inference for tokens and currencies and,
consequently, precious type safety properties (if the ownership is implemented).
The main downside, however, is the ambiguity of the ⊸ operator, but we could
consider choosing different operators.

The second option proposed is more akin to the Stipula user experience design. Since
the language is designed also for beginners, the introduction of “strange” and unintuitive
syntax is not the best option. Furthermore, the use of ⊸ maintains the same general
meaning for tokens as for currencies: that is, the sending of assets.
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Typestate Oriented Programming Languages are one of the main solutions that
the scientific community is exploring to contrast bugs and issues and to enforce safer
approaches to smart contract development. In this panorama, Stipula sticks out respect
to the other languages and provides features tailored specifically for the main goal
it is designed for (i.e. legal contracts). Our work had the intention to study the
language by comparing its expressiveness and properties with other approaches. The
implementation of the solutions found in this thesis are meant to be completed in
future works.
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Appendix A

Complete Examples

A.1 CoinEscrow

A.1.1 Stipula

Listing A.1: coinescrow.stipula

1 stipula CoinEscrow {
2 asset w
3 field amount
4

5 agreement(Sender ,Receiver)(amount){
6 Sender ,Receiver : amount
7 } ==> @S1
8

9 @S1 Sender : put()[h] (h== amount) {
10 h -o w
11 } ==> @S2
12

13 @S2 Receiver : claimCoins ()[] {
14 w -o Receiver
15 } ==> @End
16

17 @S2 Receiver : claimPart(v)[] (v>=0 and v<=1) {
18 w*v -o w,Receiver
19 w -o Sender
20 } ==> @End
21 } �
A.1.2 Obsidian

Listing A.2: CoinEscrow.obs

1 asset interface Sender {
2 transaction give(int v) returns Currency@Owned;
3 transaction receive(Currency@Owned >> Unowned gift);
4 transaction id() returns string;
5 transaction amountAgreed () returns int;
6 }
7

8 asset interface Receiver {
9 transaction give(int v) returns Currency@Owned;

10 transaction receive(Currency@Owned >> Unowned gift);
11 transaction id() returns string;
12 transaction amountAgreed () returns int;
13 }
14
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15 main contract CoinEscrow {
16 Currency@Owned w;
17 int amount;
18

19 Sender@Shared sender;
20 Receiver@Shared receiver;
21

22 state S1;
23 state S2;
24 state End;
25

26 CoinEscrow@S1(Sender@Shared s, Receiver@Shared r) {
27 if (s.amountAgreed () != r.amountAgreed ()) {
28 revert("Agreement failed");
29 }
30

31 sender = s;
32 receiver = r;
33

34 amount = s.amountAgreed ();
35 w = new Currency@Owned (0);
36 ->S1;
37 }
38

39 transaction put(CoinEscrow@S1 >> S2 this ,
40 Currency@Owned >> Unowned h,
41 Sender@Unowned caller) {
42 if (caller.id() != sender.id()) {
43 revert("Call unauthorized");
44 }
45

46 if (amount != h.getAmount ()) {
47 revert("put failed: amount incorrect");
48 }
49

50 w.merge(h);
51 ->S2;
52 }
53

54 transaction claimCoins(CoinEscrow@S2 >> @End this ,
55 Receiver@Unowned caller) {
56 if (caller.id() != receiver.id()) {
57 revert("Call unauthorized");
58 }
59

60 receiver.receive(w.split(w.getAmount ()));
61 ->End;
62 }
63

64 transaction claimPart(CoinEscrow@S2 >> @End this ,
65 int v,
66 Receiver@Unowned caller) {
67 if (caller.id() != receiver.id()) {
68 revert("Call unauthorized");
69 }
70

71 if (v < 0 || v > 100) {
72 revert("claimPart failed: v must be a value for the percentage");
73 }
74

75 receiver.receive(w.split((w.getAmount ()*v)/100));
76 sender.receive(w.split(w.getAmount ()));
77 ->End;
78 }
79 } �
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A.2 NftEscrow

A.2.1 Stipula

Listing A.3: nftescrow.stipula

1 stipula NftEscrow {
2 asset nft
3

4 agreement(Sender ,Receiver)(){} =>@S1
5

6 @S1 Sender : put()[t] () {
7 t -o nft
8 } ==> @S2
9

10 @S2 Receiver : claimNft ()[] {
11 nft -o Receiver
12 } ==> @End
13 } �
A.2.2 Obsidian

Listing A.4: NFTEscrow.obs

1 asset interface Sender {
2 transaction giveToken () returns NFT@Owned;
3 transaction receiveToken(NFT@Owned >> Unowned gift);
4 transaction id() returns string;
5 }
6

7 asset interface Receiver {
8 transaction giveToken () returns NFT@Owned;
9 transaction receiveToken(NFT@Owned >> Unowned gift);

10 transaction id() returns string;
11 }
12

13 main contract NftEscrow {
14

15 Sender@Shared sender;
16 Receiver@Shared receiver;
17

18 state S1;
19 state S2 {
20 NFT@Owned nft;
21 }
22 state End;
23

24 NftEscrow@S1(Sender@Shared s, Receiver@Shared r) {
25 sender = s;
26 receiver = r;
27

28 ->S1;
29 }
30

31 transaction put(NftEscrow@S1 >> S2 this ,
32 NFT@Owned >> Unowned t,
33 Sender@Unowned caller) {
34 if (caller.id() != sender.id()) {
35 revert("Call unauthorized");
36 }
37

38 ->S2(nft = t);
39 }
40

41 transaction claimNft(NftEscrow@S2 >> @End this ,
42 Receiver@Unowned caller) {
43 if (caller.id() != receiver.id()) {
44 revert("Call unauthorized");
45 }
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46

47 receiver.receiveToken(nft);
48 ->End;
49 }
50 } �
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A.3 AssetSend

Listing A.5: Party.obs

1 import "Currency.obs"
2 import "NFT.obs"
3 import "List.obs"
4

5 main asset contract Party {
6 Currency@Owned wallet;
7 List[NFT@Owned]@ Owned tokens;
8

9 Party@Owned (int m) {
10 wallet = new Currency(m);
11 tokens = new List[NFT@Owned ]();
12 }
13

14 transaction give(int v) returns Currency@Owned {
15 return wallet.split(v);
16 }
17

18 transaction receive(Currency@Owned >> Unowned gift) {
19 wallet.merge(gift);
20 }
21

22 transaction getAmount () returns int {
23 return wallet.getValue ();
24 }
25

26 transaction receiveToken(NFT@Owned >> Unowned gift) {
27 tokens.push(gift);
28 }
29

30 transaction giveToken(NFT@Unowned t) returns NFT@Owned {
31 return tokens.removeElement(t,new NFTComparator ());
32 }
33

34 transaction getToken(int i) returns NFT@Unowned {
35 return tokens.get(i);
36 }
37 } �

Listing A.6: Currency.obs

1 main asset contract Currency {
2 int value;
3

4 Currency@Owned(int v) {
5 value = v;
6 }
7

8 transaction getValue(Currency@Unowned this) returns int {
9 return value;

10 }
11

12 transaction split(Currency@Owned this , int v) returns Currency@Owned {
13 if (v > value) {
14 revert;
15 }
16 value = value - v;
17 Currency result = new Currency(v);
18 return result;
19 }
20

21 transaction merge(Currency@Owned this , Currency@Owned >> Unowned other) {
22 value = value + other.getValue ();
23 disown other;
24 }
25 } �

Listing A.7: NFT.obs
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1 import "Comparator.obs"
2

3 main asset contract NFT {
4 string ID;
5

6 transaction getID () returns string {
7 return ID;
8 }
9

10 transaction equals(NFT@Unowned other) returns bool {
11 return ID == other.getID();
12 }
13 }
14

15 contract NFTComparator implements Comparator[NFT] {
16 transaction equals(NFT@Unowned a, NFT@Unowned b) returns bool {
17 return a.equals(b);
18 }
19 } �

Listing A.8: Comparator.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Comparator.obs

2

3 interface Comparator[KeyType] {
4 transaction equals(KeyType@Unowned a, KeyType@Unowned b) returns bool;
5 } �

Listing A.9: List.obs

1 import "Comparator.obs"
2

3 // Implementation of a list
4 main asset contract List[asset ValueType] {
5 state Empty;
6 state HasNext {
7 ValueType@Owned info;
8 List@Owned tail;
9 };
10

11 List@Empty() {
12 ->Empty;
13 }
14

15 transaction get(List@Owned this , int index) returns ValueType@Unowned {
16 if (this in Empty) {
17 revert("Index out of bounds");
18 }
19

20 [this@HasNext ];
21

22 if (index < 0) {
23 revert("Index out of bounds");
24 }
25

26 if (index == 0) {
27 return info;
28 }
29

30 return tail.get(index - 1);
31 }
32

33 transaction push(List@Owned this , ValueType@Owned >> Unowned element) {
34 if (this in Empty) {
35 ->HasNext(info = element , tail = new List[ValueType ]());
36 return;
37 }
38

39 tail.push(element);
40 }
41
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42 transaction remove(List@Owned this , int index) returns ValueType@Owned {
43 if (this in Empty) {
44 revert("List empty");
45 }
46

47 [this@HasNext ];
48

49 if (index == 0){
50 ValueType res = info;
51 if (tail in HasNext){
52 info = tail.remove (0);
53 } else {
54 [tail@Empty];
55 disown tail;
56 ->Empty;
57 }
58 return res;
59 } else {
60 return tail.remove(index - 1);
61 }
62 }
63

64 transaction removeElement(List@Owned this ,
65 ValueType@Unowned element ,
66 Comparator comparator) returns ValueType@Owned

{
67 if (this in Empty) {
68 revert("List empty");
69 }
70

71 [this@HasNext ];
72

73 if (comparator.equals(info ,element)){
74 ValueType res = info;
75 if (tail in HasNext){
76 info = tail.removeElement(tail.get (0),comparator);
77 } else {
78 [tail@Empty];
79 disown tail;
80 ->Empty;
81 }
82 return res;
83 } else {
84 return tail.removeElement(element ,comparator);
85 }
86 }
87

88 } �
Listing A.10: Main.obs

1 import "Party.obs"
2

3 main contract Main {
4 transaction main(remote Party@Shared alice , remote Party@Shared bob ,

remote Party@Shared charles) {
5 int a = alice.getAmount ();
6 int b = bob.getAmount ();
7

8 // Alice gives to Bob 5 dollars
9 bob.receive(alice.give (5));

10

11 a = alice.getAmount ();
12 b = bob.getAmount ();
13

14 NFT x = new NFT();
15 NFT y = new NFT();
16 NFT z = y;
17

18 [x@Owned ];
19 [y@Unowned ];
20

21 y = x;
22
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23 [x@Unowned ];
24 [y@Owned ];
25 disown y;
26

27 charles.receiveToken(z); // z -o charles
28 }
29 } �
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A.4 BikeRental

A.4.1 Stipula

Listing A.11: bikerent.stipula

1 stipula BikeRental {
2 asset wallet
3 field cost , rentingTime , code
4 init Inactive
5

6 agreement (Lender ,Borrower ,Authority)(rentingTime ,cost){
7 Lender , Borrower: rentingTime , cost
8 } ==> @Inactive
9

10 @Inactive Lender : offer(x)[] {
11 x -> code;
12 _
13 } ==> @Payment
14

15 @Payment Borrower : pay()[h] (h == cost) {
16 h -o wallet
17 code -> Borrower;
18 now+rentingTime >>
19 @Using {
20 "EndReached" -> Borrower
21 } ==> @Return
22 } ==> @Using
23

24 @Using Borrower : end()[] {
25 "EndReached" -> Lender;
26 _
27 } ==> @Return
28

29 @Return Lender : rentalOk ()[] {
30 wallet -o Lender;
31 _
32 } ==> @End
33

34 @Using@Return Lender , Borrower : dispute(x)[] {
35 x -> _;
36 _
37 } ==> @Dispute
38

39 @Dispute Authority : verdict(x,y)[] (y>=0 && y<=1) {
40 x -> Lender
41 x -> Borrower
42 (y*wallet) -o wallet , Lender
43 wallet -o Borrower;
44 _
45 } ==> @End
46 } �
A.4.2 Obsidian

Listing A.12: BikeRent.obs

1 import "Currency.obs"
2 import "TimeManager.obs"
3

4 asset interface Lender {
5 transaction give(int v) returns Currency@Owned;
6

7 transaction receive(Currency@Owned >> Unowned gift);
8

9 transaction getAmount () returns int;
10

11 transaction id() returns string;
12
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13 transaction sendMessage(string m);
14

15 transaction sendReasons(string r);
16

17 transaction sendMotivations(string m);
18

19 transaction rentingTimeAgreed () returns int;
20

21 transaction costAgreed () returns int;
22 }
23

24 asset interface Borrower {
25 transaction give(int v) returns Currency@Owned;
26

27 transaction receive(Currency@Owned >> Unowned gift);
28

29 transaction getAmount () returns int;
30

31 transaction id() returns string;
32

33 transaction sendCode(string c);
34

35 transaction sendMotivations(string m);
36

37 transaction sendMessage(string msg);
38

39 transaction sendReasons(string r);
40

41 transaction rentingTimeAgreed () returns int;
42

43 transaction costAgreed () returns int;
44 }
45

46 asset interface Authority {
47 transaction give(int v) returns Currency@Owned;
48

49 transaction receive(Currency@Owned >> Unowned gift);
50

51 transaction getAmount () returns int;
52

53 transaction id() returns string;
54

55 transaction sendReasons(string r);
56 }
57

58 contract Event implements EventInterface {
59 BikeRent@Shared rental;
60 Borrower@Unowned caller;
61

62 Event@Owned(BikeRent@Shared r, Borrower@Unowned c) {
63 rental = r;
64 caller = c;
65 }
66

67 transaction action () {
68 if (rental in Using) {
69 rental.reaction(caller);
70 }
71 }
72 }
73

74 main asset contract BikeRent {
75 // Fields
76 int cost;
77 int rentingTime;
78

79 // Parties
80 Lender@Shared lender;
81 Borrower@Shared borrower;
82 Authority@Shared authority;
83

84 // Time
85 TimeManager@Shared timeManager;
86
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87 state Inactive;
88 state Payment;
89 state Using {
90 int expirationTime;
91 };
92 state Return;
93 state End;
94 state Dispute;
95

96 string code available in Payment ,Using ,Return;
97 Currency@Owned wallet available in Using ,Return ,Dispute;
98

99 BikeRent@Inactive(
100 Lender@Shared l, Borrower@Shared b, Authority@Shared a,
101 TimeManager@Shared tm){
102 // Fields in the agreement
103 if (l.costAgreed () != b.costAgreed () ||
104 l.rentingTimeAgreed () != b.rentingTimeAgreed ()) {
105 revert("Agreement failed");
106 }
107

108 cost = l.costAgreed ();
109 rentingTime = l.rentingTimeAgreed ();
110

111 // References to parties
112 lender = l;
113 borrower = b;
114 authority = a;
115

116 // Time manager
117 timeManager = tm;
118

119 ->Inactive;
120 }
121

122 transaction offer(BikeRent@Inactive >> Payment this ,
123 Lender@Unowned l, string x) {
124 // Checks
125 if (l.id() != lender.id()) {
126 revert("Not authorized lender");
127 }
128

129 // Body
130 ->Payment(code = x);
131 }
132

133 transaction pay(BikeRent@Payment >> Using this ,
134 Borrower@Unowned b, Currency@Owned >> Unowned h) {
135 // Checks
136 if (b.id() != borrower.id()) {
137 revert("Not authorized borrower");
138 }
139

140 if (h.getValue () != cost) {
141 revert("Currency given don ’t match with cost");
142 }
143

144 // Body
145 borrower.sendCode(code);
146

147 // REACTION
148 // timeManager.register(timeManager.now(),new Event(this ,b));
149 // error caused by ownership
150 ->Using(wallet = h, expirationTime = timeManager.now() + rentingTime)

;
151 }
152

153 transaction reaction(BikeRent@Using >> Using | Return this ,
154 Borrower@Unowned b) {
155 if (b.id() != borrower.id()){
156 revert("Not authorized borrower");
157 }
158 borrower.sendMessage("End_Reached");
159 ->Return;
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160 }
161

162 transaction getExpirationTime(BikeRent@Using this) returns int {
163 return expirationTime;
164 }
165

166 transaction end(BikeRent@Using >> Return this , Borrower@Unowned b) {
167 // Checks
168 if (b.id() != borrower.id()) {
169 revert("Not authorized borrower");
170 }
171

172 // Body
173 lender.sendMessage("End_Reached");
174 ->Return;
175 }
176

177 transaction rentalOk(BikeRent@Return >> End this , Lender@Unowned l) {
178 // Checks
179 if (l.id() != lender.id()) {
180 revert("Not authorized lender");
181 }
182

183 // Body
184 lender.receive(wallet);
185 ->End;
186 }
187

188 transaction dispute(BikeRent@Using | Return >> Dispute this ,
189 string callerID , string x) {
190 // Checks
191 if (callerID != lender.id() || callerID != borrower.id()) {
192 revert("Not authorized caller");
193 }
194

195 // Body
196 lender.sendReasons(x);
197 borrower.sendReasons(x);
198 authority.sendReasons(x);
199

200 ->Dispute;
201 }
202

203 // x is the string of motivations , y is the percentage of the wallet
given

204 // to the lender as reimbursement
205 transaction verdict(BikeRent@Dispute >> End this ,
206 Authority@Unowned a, string x, int y) {
207 // Checks
208 if (a.id() != authority.id()) {
209 revert("Error on authority authentication");
210 }
211

212 if (y < 0 || y > 100) {
213 revert("Error on bounds over y");
214 }
215

216 // Body
217 lender.sendMotivations(x);
218 borrower.sendMotivations(x);
219

220 int total = (wallet.getValue ()*y)/100;
221 Currency reimbursement = wallet.split(total);
222

223 lender.receive(reimbursement);
224 borrower.receive(wallet);
225

226 ->End;
227 }
228

229 transaction getTimeManager () returns TimeManager@Shared {
230 return timeManager;
231 }
232 } �
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Listing A.13: LenderImpl.obs

1 import "BikeRent.obs"
2

3 main asset contract LenderImpl implements Lender {
4 Currency@Owned wallet;
5 string id;
6

7 int rentingTime;
8 int cost;
9

10 string message;
11 string reasons;
12 string motivations;
13

14

15 LenderImpl@Owned (int m, string i, int r, int c) {
16 wallet = new Currency(m);
17 id = i;
18 rentingTime = r;
19 cost = c;
20

21 message = "";
22 reasons = "";
23 motivations = "";
24 }
25

26 transaction give(int v) returns Currency@Owned {
27 return wallet.split(v); //gift is Owned
28 }
29

30 transaction receive(Currency@Owned >> Unowned gift) {
31 wallet.merge(gift);
32 }
33

34 transaction getAmount () returns int {
35 return wallet.getValue ();
36 }
37

38 transaction id() returns string {
39 return id;
40 }
41

42 transaction sendMessage(string m) {
43 message = m;
44 }
45

46 transaction sendReasons(string r) {
47 reasons = r;
48 }
49

50 transaction sendMotivations(string m) {
51 motivations = m;
52 }
53

54 transaction rentingTimeAgreed () returns int {
55 return rentingTime;
56 }
57

58 transaction costAgreed () returns int {
59 return cost;
60 }
61

62 transaction getMotivations () returns string {
63 return motivations;
64 }
65 } �

Listing A.14: BorrowerImpl.obs

1 import "BikeRent.obs"
2

3 main asset contract BorrowerImpl implements Borrower {
4 Currency@Owned wallet;
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5 string id;
6

7 int rentingTime;
8 int cost;
9

10 string code;
11 string reasons;
12 string motivations;
13

14 string message;
15

16 BorrowerImpl@Owned (int m, string i, int r, int c) {
17 wallet = new Currency(m);
18 id = i;
19

20 rentingTime = r;
21 cost = c;
22

23 code = "";
24 reasons = "";
25 motivations = "";
26 message = "";
27 }
28

29 transaction give(int v) returns Currency@Owned {
30 return wallet.split(v); //gift is Owned
31 }
32

33 transaction receive(Currency@Owned >> Unowned gift) {
34 wallet.merge(gift);
35 }
36

37 transaction getAmount () returns int {
38 return wallet.getValue ();
39 }
40

41 transaction id() returns string {
42 return id;
43 }
44

45 transaction sendCode(string c) {
46 code = c;
47 }
48

49 transaction sendMotivations(string m) {
50 motivations = m;
51 }
52

53 transaction sendMessage(string msg) {
54 message = msg;
55 }
56

57 transaction sendReasons(string r) {
58 reasons = r;
59 }
60

61 transaction rentingTimeAgreed () returns int {
62 return rentingTime;
63 }
64

65 transaction costAgreed () returns int {
66 return cost;
67 }
68

69 transaction getCode () returns string {
70 return code;
71 }
72 } �

Listing A.15: AuthorityImpl.obs

1 import "BikeRent.obs"
2

3 main asset contract AuthorityImpl implements Authority {
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4 Currency@Owned wallet;
5 string id;
6

7 string reasons;
8

9 AuthorityImpl@Owned (int m, string i) {
10 wallet = new Currency(m);
11 id = i;
12 reasons = "";
13 }
14

15 transaction give(int v) returns Currency@Owned {
16 return wallet.split(v); //gift is Owned
17 }
18

19 transaction receive(Currency@Owned >> Unowned gift) {
20 wallet.merge(gift);
21 }
22

23 transaction getAmount () returns int {
24 return wallet.getValue ();
25 }
26

27 transaction id() returns string {
28 return id;
29 }
30

31 transaction sendReasons(string r) {
32 reasons = r;
33 }
34

35 transaction getReasons () returns string {
36 return reasons;
37 }
38

39 transaction lenderRightsPercentage () returns int {
40 // compute the percentage of rightfulness of the lender
41 return 50;
42 }
43

44 transaction explainVerdict () returns string {
45 return "Motivations based on the reasons received";
46 }
47 } �

Listing A.16: TimeManager.obs

1 import "Dict.obs"
2 import "List.obs"
3 import "Integer.obs"
4

5 interface EventInterface {
6 transaction action ();
7 }
8

9 main asset contract TimeManager {
10 Dict[Integer ,List[EventInterface]@Owned ]@Owned registry;
11 int clock;
12

13 state Active;
14 state Inactive;
15

16 TimeManager@Inactive () {
17 clock = 0;
18 registry =
19 new Dict[Integer ,List[EventInterface]@Owned](
20 new IntegerComparator ());
21 ->Inactive;
22 }
23

24 transaction register(int t, EventInterface@Owned >> Unowned event) {
25 Integer time = new Integer(t);
26 Option[List[EventInterface ]] eventList = registry.remove(time);
27
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28 if (eventList in None) {
29 List[EventInterface] l = new List[EventInterface ]();
30 l.push(event);
31 registry.insert(time ,l);
32 } else {
33 List[EventInterface] l = eventList.unpack ();
34 l.push(event);
35 registry.insert(time ,l);
36 }
37 }
38

39 transaction tick(TimeManager@Active this) {
40 Integer time = new Integer(clock);
41 Option[List[EventInterface ]] events = registry.remove(time);
42

43 if (events in Some) {
44 performActions(events.unpack ());
45 }
46

47 clock = clock + 1;
48 }
49

50 private transaction performActions(List[EventInterface]@Owned events) {
51

52 if (events in HasNext){
53 EventInterface ev = events.pop();
54 ev.action ();
55 performActions(events);
56 }
57 }
58

59 transaction start(TimeManager@Inactive >> Active this) {
60 ->Active;
61 }
62

63 transaction now() returns int {
64 return clock;
65 }
66 } �

Listing A.17: Dict.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Dict.obs

2

3 import "Comparator.obs"
4

5 contract Option[asset T@s] {
6 state None;
7 asset state Some {
8 T@s val;
9 }
10

11 Option@None() {
12 ->None;
13 }
14

15 Option@Some(T@s >> Unowned v) {
16 ->Some(val = v);
17 }
18

19 transaction unpack(Option[T@s]@Some >> None this) returns T@s {
20 T result = val;
21 ->None;
22 return result;
23 }
24 }
25

26 main asset contract Dict[KeyType , asset ValueType@s where s is Owned] {
27 DictImpl[KeyType , ValueType@s]@( Empty | HasNext) dictImpl;
28

29 Dict@Owned(Comparator@Unowned _comparator) {
30 dictImpl = new DictImpl[KeyType , ValueType@s]( _comparator);
31 }
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32

33 transaction replace(Dict@Unowned this ,
34 KeyType@Unowned _key ,
35 ValueType@s >> Unowned _value)
36 returns Option[ValueType@s]@ Owned {
37 return dictImpl.replace(_key , _value);
38 }
39

40 transaction remove(Dict@Unowned this , KeyType@Unowned _key)
41 returns Option[ValueType@s]@ Owned {
42 return dictImpl.remove(_key);
43 }
44

45 transaction peek(Dict@Unowned this , KeyType@Unowned _key)
46 returns Option[ValueType@Unowned ]@Owned {
47 return dictImpl.peek(_key);
48 }
49

50 transaction insert(Dict@Unowned this ,
51 KeyType@Unowned _key ,
52 ValueType@s >> Unowned _value) {
53 Option[ValueType@s] existingValue = replace(_key , _value);
54 if (existingValue in Some) {
55 revert ("insert operation is only permitted when there is no

existing value for the given key.");
56 }
57 }
58 }
59

60 contract DictImpl[KeyType , asset ValueType@s where s is Owned] {
61 state Empty;
62 asset state HasNext;
63

64 DictImpl[KeyType , ValueType@s]@( Empty | HasNext) next available in
HasNext;

65 KeyType@Unowned key available in HasNext , PrivateHasKeyAndValue;
66 ValueType@s value available in HasNext , PrivateHasKeyAndValue ,
67 PrivateHasValue;
68

69 Comparator[KeyType]@Unowned comparator;
70

71 asset state PrivateHasKeyAndValue;
72 asset state PrivateHasValue;
73

74 DictImpl@Empty(Comparator@Unowned _comparator) {
75 comparator = _comparator;
76 ->Empty;
77 }
78

79 // Puts the given key/value pair into the DictImplionary.
80 // If the key was already in the DictImplionary ,
81 // returns an Option containing the old value.
82 // Otherwise , returns None.
83 transaction replace(DictImpl@(Empty | HasNext) this ,
84 KeyType@Unowned _key ,
85 ValueType@s >> Unowned _value)
86 returns Option[ValueType@s]@ Owned {
87 switch this {
88 case HasNext {
89 if (comparator.equals(key , _key)) {
90 ValueType oldValue = value;
91 value = _value;
92 return new Option[ValueType@s]( oldValue);
93 }
94 else {
95 return next.replace(_key , _value);
96 }
97 }
98 case Empty {
99 ->HasNext(key = _key , value = _value ,

100 next =
101 new DictImpl[KeyType , ValueType@s]( comparator

));
102 return new Option[ValueType@s]();
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103 }
104 }
105 }
106

107

108 // Attempts to remove the key/value pair for the given key ,
109 // returning the value. If the key is not found , returns None.
110 transaction remove(DictImpl@(Empty | HasNext) this , KeyType@Unowned _key)
111 returns Option[ValueType@s]@ Owned {
112 switch this {
113 case HasNext {
114 if (comparator.equals(key , _key)) {
115

116 ValueType oldValue = value;
117 if (next in HasNext) {
118 DictImpl[KeyType , ValueType@s] newNext =
119 next.extractNext

();
120 KeyType newKey = next.extractKey ();
121 ValueType newValue = next.extractValue ();
122 // next is now Empty , so we can discard it implicitly

.
123

124 ->HasNext(next = newNext ,
125 key = newKey ,
126 value = newValue);
127 }
128 else {
129 // next is already Empty. We’re going to be empty too

.
130 ->Empty;
131 }
132

133 return new Option[ValueType@s]( oldValue);
134

135 }
136 else {
137 return next.remove(_key);
138 }
139 }
140 case Empty {
141 return new Option[ValueType@s]();
142 }
143 }
144 }
145

146 private
147 transaction extractNext(DictImpl@HasNext >> PrivateHasKeyAndValue this)
148 returns DictImpl@(HasNext | Empty) {
149 DictImpl[KeyType , ValueType@s] result = next;
150 ->PrivateHasKeyAndValue;
151 return result;
152 }
153

154 private
155 transaction extractKey(
156 DictImpl@PrivateHasKeyAndValue >> PrivateHasValue this)
157 returns KeyType@Unowned {
158 KeyType result = key;
159 ->PrivateHasValue;
160 return result;
161 }
162

163 private
164 transaction extractValue(DictImpl@PrivateHasValue >> Empty this)
165 returns ValueType@s {
166 ValueType result = value;
167 ->Empty;
168 return result;
169 }
170

171 transaction peek(DictImpl@Unowned this ,
172 KeyType@Unowned _key)
173 returns Option[ValueType@Unowned ]@Owned {
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174 switch this {
175 case HasNext {
176 if (comparator.equals(key , _key)) {
177 return new Option[ValueType@Unowned ](value);
178 }
179 else {
180 return next.peek(_key);
181 }
182 }
183 case Empty {
184 return new Option[ValueType@Unowned ]();
185 }
186 // These additional cases are here so that
187 // peek can be called with unowned references.
188 case PrivateHasValue {
189 revert "Do not call peek on inconsistent DictImplionaries.";
190 }
191 case PrivateHasKeyAndValue {
192 revert "Do not call peek on inconsistent DictImplionaries.";
193 }
194 }
195 }
196 } �

Listing A.18: List.obs

1 // Implementation of a FIFO list
2 main asset contract List[ValueType] {
3 state Empty;
4 state HasNext {
5 ValueType@Owned info;
6 List@Owned tail;
7 };
8

9 List@Empty() {
10 ->Empty;
11 }
12

13 transaction get(List@Owned this , int index) returns ValueType@Unowned {
14 if (this in Empty) {
15 revert("Index out of bounds");
16 }
17

18 [this@HasNext ];
19

20 if (index < 0) {
21 revert("Index out of bounds");
22 }
23

24 if (index == 0) {
25 return info;
26 }
27

28 return tail.get(index - 1);
29 }
30

31 transaction push(List@Owned this , ValueType@Owned >> Unowned element) {
32 if (this in Empty) {
33 ->HasNext(info = element , tail = new List[ValueType ]());
34 return;
35 }
36

37 tail.push(element);
38 }
39

40 transaction pop(List@Owned this) returns ValueType@Owned {
41 if (this in Empty) {
42 revert("List empty");
43 }
44

45 [this@HasNext ];
46

47 ValueType res = info;
48 if (tail in HasNext){
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49 info = tail.pop();
50 } else {
51 [tail@Empty];
52 disown tail;
53 ->Empty;
54 }
55 return res;
56 }
57 } �

Listing A.19: Integer.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Integer.obs

2

3 import "Comparator.obs"
4

5 main contract Integer {
6 int value;
7

8 Integer@Owned(int _value) {
9 value = _value;
10 }
11

12 transaction getValue () returns int {
13 return value;
14 }
15 }
16

17

18 contract IntegerComparator implements Comparator[Integer] {
19 transaction equals(Integer@Unowned a, Integer@Unowned b) returns bool {
20 return a.getValue () == b.getValue ();
21 }
22 } �

Listing A.20: Comparator.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Comparator.obs

2

3 interface Comparator[KeyType] {
4 transaction equals(KeyType@Unowned a, KeyType@Unowned b) returns bool;
5 } �

Listing A.21: BorrowerMain.obs

1 import "BikeRent.obs"
2 import "BorrowerImpl.obs"
3

4 main contract BorrowerMain {
5 transaction main(remote BikeRent@Shared rental ,
6 remote BorrowerImpl@Shared borrower) {
7

8 int costAgreed = borrower.costAgreed ();
9

10 if (rental in Payment) {
11 rental.pay(borrower ,borrower.give(costAgreed));
12 TimeManager timeManager = rental.getTimeManager ();
13 timeManager.register(
14 timeManager.now() + borrower.rentingTimeAgreed (),
15 new Event(rental ,borrower));
16 }
17

18 string bikeCode = borrower.getCode ();
19

20 waitUntil(borrower.rentingTimeAgreed ());
21

22 if (rental in Using) {
23 rental.end(borrower);
24 }
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25

26 bool someProblem = true;
27

28 if (someProblem){
29 if (rental in Using) {
30 rental.dispute(borrower.id(),"Some problem occurred");
31 waitStateEnd(rental);
32 }
33

34 if (rental in Return) {
35 rental.dispute(borrower.id(),"Some problem occurred");
36 waitStateEnd(rental);
37 }
38

39 // In borrower.motivations will find the verdict
40 // from the authority
41 }
42

43 }
44

45 private transaction waitStateEnd(BikeRent@Shared br)
46 returns BikeRent@Shared {
47 if (br in End){
48 return br;
49 }
50 return waitStateEnd(br);
51 }
52

53 private transaction waitUntil(int time) {
54 waitUntilRec (0,time);
55 }
56

57 private transaction waitUntilRec(int now , int time) {
58 if (now > time){
59 return;
60 }
61 waitUntilRec(now + 1, time);
62 }
63 } �

Listing A.22: LenderMain.obs

1 import "BikeRent.obs"
2 import "LenderImpl.obs"
3

4 main contract LenderMain {
5 transaction main(remote BikeRent@Shared rental ,
6 remote LenderImpl@Shared lender) {
7 if (rental in Inactive) {
8 rental.offer(lender ,"10");
9 }

10

11 waitUntil(lender.rentingTimeAgreed ());
12

13 if (rental in Return) {
14 rental.rentalOk(lender);
15 }
16

17 bool someProblem = true;
18

19 if (someProblem){
20 if (rental in Using) {
21 rental.dispute(lender.id(),"Some problem occurred");
22 waitStateEnd(rental);
23 }
24

25 if (rental in Return) {
26 rental.dispute(lender.id(),"Some problem occurred");
27 waitStateEnd(rental);
28 }
29

30 // In lender.motivations will find the verdict
31 // from the authority
32 }
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33

34 }
35

36 private
37 transaction waitStateReturn(BikeRent@Shared br) returns BikeRent@Shared {
38 if (br in Return){
39 return br;
40 }
41 return waitStateReturn(br);
42 }
43

44 private
45 transaction waitStateEnd(BikeRent@Shared br) returns BikeRent@Shared {
46 if (br in End){
47 return br;
48 }
49 return waitStateReturn(br);
50 }
51

52 private transaction waitUntil(int time) {
53 waitUntilRec (0,time);
54 }
55

56 private transaction waitUntilRec(int now , int time) {
57 if (now > time){
58 return;
59 }
60 waitUntilRec(now + 1, time);
61 }
62 } �

Listing A.23: AuthorityMain.obs

1 import "BikeRent.obs"
2 import "AuthorityImpl.obs"
3

4 main contract AuthorityMain {
5 transaction main(remote BikeRent@Shared rental ,
6 remote AuthorityImpl@Shared authority) {
7

8 waitStateDispute(rental);
9

10 int lenderRightfulness = authority.lenderRightsPercentage ();
11 string motivations = authority.explainVerdict ();
12

13 if (rental in Dispute) {
14 rental.verdict(authority ,motivations ,lenderRightfulness);
15 }
16 }
17

18 private transaction waitStateDispute(BikeRent@Shared br)
19 returns BikeRent@Shared {
20 if (br in Dispute){
21 return br;
22 }
23 return waitStateDispute(br);
24 }
25

26 private transaction waitUntil(int time) {
27 waitUntilRec (0,time);
28 }
29

30 private transaction waitUntilRec(int now , int time) {
31 if (now > time){
32 return;
33 }
34 waitUntilRec(now + 1, time);
35 }
36 } �

Listing A.24: TimeManagerMain.obs
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1 import "BikeRent.obs"
2

3 main contract TimeManagerMain {
4

5 transaction main(remote BikeRent@Shared rental) {
6

7 TimeManager tm = rental.getTimeManager ();
8 if (tm in Inactive) {
9 tm.start();

10 }
11

12 if (tm in Active){
13 keepTicking(tm);
14 }
15 }
16

17 private transaction keepTicking(TimeManager@Active tm) {
18 tm.tick();
19 keepTicking(tm);
20 }
21 } �
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A.5 Bet

A.5.1 Stipula

Listing A.25: bet.stipula

1 stipula Bet {
2 asset wallet1 , wallet2
3 field val1 , val2 , source , alea , amount , t_before , t_after
4 init Init
5

6 agreement (Better1 , Better2 , DataProvider)
7 (source , alea , amount , t_before , t_after){
8 DataProvider , Better1 , Better2 : source , alea , t_after
9 Better1 , Better2 : amount , t_before
10 } ==> @Init
11

12 @Init Better1 : place_bet(x)[h] (h == amount) {
13 h -o wallet1
14 x -> val1;
15 t_before >> @First {
16 wallet1 -o Better1
17 } ==> @Fail
18 } ==> @First
19

20 @First Better2 : place_bet(x)[h] (h == amount) {
21 h -o wallet2
22 x -> val2
23 alea -> DataProvider;
24 t_after >> @Run {
25 wallet1 -o Better1
26 wallet2 -o Better2
27 } ==> @Fail
28 } ==> @Run
29

30 @Run DataProvider : data(x,y,z)[] (x== source && x==alea) {
31 if (z==val1 && z==val2) {
32 wallet1 -o Better1
33 wallet2 -o Better2
34 } else if (z==val1 && z!=val2) {
35 wallet2 -o Better1
36 wallet1 -o Better1
37 } else if (z!=val1 && z==val2) {
38 wallet1 -o Better2
39 wallet2 -o Better2
40 } else {
41 wallet2 -o DataProvider
42 wallet1 -o DataProvider
43 };
44 _
45 } ==> @End
46 } �
A.5.2 Obsidian

Listing A.26: Bet.obs

1 import "TimeManager.obs"
2 import "Currency.obs"
3

4 asset interface BetterInterface {
5 transaction give(int v) returns Currency@Owned;
6

7 transaction receive(Currency@Owned >> Unowned gift);
8

9 transaction getAmount () returns int;
10 transaction id() returns string;
11

12 transaction getSourceAgreed () returns string;
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13 transaction getAleaAgreed () returns string;
14 transaction getTAfterAgreed () returns int;
15 transaction getTBeforeAgreed () returns int;
16 transaction getAmountAgreed () returns int;
17 }
18

19 asset interface DataProviderInterface {
20 transaction give(int v) returns Currency@Owned;
21

22 transaction receive(Currency@Owned >> Unowned gift);
23

24 transaction getAmount () returns int;
25 transaction id() returns string;
26

27 transaction getSourceAgreed () returns string;
28 transaction getAleaAgreed () returns string;
29 transaction getTAfterAgreed () returns int;
30 }
31

32 contract EventFirst implements EventInterface{
33

34 Bet@Shared bet;
35 BetterInterface@Unowned caller;
36

37 EventFirst@Owned(Bet@Shared b, BetterInterface@Unowned c) {
38 bet = b;
39 caller = c;
40 }
41

42 transaction action () {
43 if (bet in First){
44 bet.reaction1(caller);
45 }
46 }
47 }
48

49 contract EventSecond implements EventInterface{
50

51 Bet@Shared bet;
52 BetterInterface@Unowned caller;
53

54 EventSecond@Owned(Bet@Shared b, BetterInterface@Unowned c) {
55 bet = b;
56 caller = c;
57 }
58

59 transaction action () {
60 if (bet in Run){
61 bet.reaction2(caller);
62 }
63 }
64 }
65

66 main asset contract Bet {
67 // Fields
68 string alea;
69 string source;
70

71 int amount;
72

73 int t_before;
74 int t_after;
75

76 // Parties
77 BetterInterface@Shared better1;
78 BetterInterface@Shared better2;
79 DataProviderInterface@Shared dataProvider;
80

81 // Time Manager
82 TimeManager@Shared timeManager;
83

84 // States
85 state Init;
86 state First;
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87 state Run {
88 Currency@Owned wallet2; // Asset
89 string val2; // Field
90 };
91 state End;
92 state Fail;
93

94 Currency@Owned wallet1 available in First , Run; // Asset
95 string val1 available in First , Run; // Field
96

97 Bet@Init (BetterInterface@Shared b1,
98 BetterInterface@Shared b2,
99 DataProviderInterface@Shared dp ,

100 TimeManager@Shared tm,
101 string s, string a, int am, int t_b , int t_a) {
102

103 if (b1.getSourceAgreed () != b2.getSourceAgreed () ||
104 b2.getSourceAgreed () != dp.getSourceAgreed ())

{
105 revert("Agreement failed on Source");
106 }
107

108 if (b1.getAleaAgreed () != b2.getAleaAgreed () ||
109 b2.getAleaAgreed () != dp.getAleaAgreed ())

{
110 revert("Agreement failed on Alea");
111 }
112

113 if (b1.getTAfterAgreed () != b2.getTAfterAgreed () ||
114 b2.getTAfterAgreed () != dp.getTAfterAgreed ())

{
115 revert("Agreement failed on T_After");
116 }
117

118 if (b1.getTBeforeAgreed () != b2.getTBeforeAgreed ()) {
119 revert("Agreement failed on T_Before");
120 }
121

122 if (b1.getAmountAgreed () != b2.getAmountAgreed ()) {
123 revert("Agreement failed on Amount");
124 }
125

126 better1 = b1;
127 better2 = b2;
128 dataProvider = dp;
129

130 source = b1.getSourceAgreed ();
131 alea = b1.getAleaAgreed ();
132 amount = b1.getAmountAgreed ();
133 t_before = b1.getTBeforeAgreed ();
134 t_after = b1.getTAfterAgreed ();
135

136 timeManager = tm;
137

138 if (timeManager in Inactive) {
139 timeManager.start ();
140 }
141

142 ->Init;
143 }
144

145 transaction place_bet1(Bet@Init >> First this ,
146 BetterInterface@Shared b1,
147 string x,
148 Currency@Owned >> Unowned h) {
149 if (b1.id() != better1.id()) {
150 revert("Error on better1 authentication");
151 }
152

153 if (h.getValue () != amount) {
154 revert("Bet doesn ’t match the amount agreed");
155 }
156

157 // REACTION 1
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158 ->First(val1 = x, wallet1 = h);
159 }
160

161 transaction reaction1 (Bet@First >> First | Fail this ,
162 BetterInterface@Unowned b1) {
163 if (b1.id() != better1.id()) {
164 revert("Error on better1 authentication");
165 }
166

167 better1.receive(wallet1);
168 ->Fail;
169 }
170

171 transaction place_bet2(Bet@First >> Run this ,
172 BetterInterface@Shared b2,
173 string x,
174 Currency@Owned >> Unowned h) {
175 if (b2.id() != better2.id()) {
176 revert("Error on better2 authentication");
177 }
178

179 if (h.getValue () != amount) {
180 revert("Bet doesn ’t match the amount agreed");
181 }
182

183 // REACTION 2
184 ->Run(val2 = x, wallet2 = h);
185 }
186

187 transaction reaction2 (Bet@Run >> Run | Fail this ,
188 BetterInterface@Unowned b2) {
189 if (b2.id() != better2.id()) {
190 revert("Error on better2 authentication");
191 }
192

193 better1.receive(wallet1);
194 better2.receive(wallet2);
195 ->Fail;
196 }
197

198 transaction data(Bet@Run >> End this ,
199 DataProviderInterface@Shared dp ,
200 string x, string y, string z) {
201 if (dp.id() != dataProvider.id()) {
202 revert("Error on data provider authentication");
203 }
204

205 if (x != source || y != alea) {
206 revert("Source or alea not reliable");
207 }
208

209 // Body
210 if (z == val1 && z == val2) {
211 better1.receive(wallet1);
212 better2.receive(wallet2);
213 } else {
214 if ( z== val1 && z != val2) {
215 better1.receive(wallet1);
216 better1.receive(wallet2);
217 } else {
218 if (z != val1 && z == val2) {
219 better2.receive(wallet2);
220 better2.receive(wallet1);
221 } else {
222 dataProvider.receive(wallet1);
223 dataProvider.receive(wallet2);
224 }
225 }
226 }
227 ->End;
228 }
229

230 transaction getTimeManager () returns TimeManager@Shared {
231 return timeManager;
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232 }
233

234 transaction getTBefore () returns int {
235 return t_before;
236 }
237

238 transaction getTAfter () returns int {
239 return t_after;
240 }
241 } �

Listing A.27: Better.obs

1 import "Currency.obs"
2 import "Bet.obs"
3

4 main asset contract Better implements BetterInterface {
5 Currency@Owned wallet;
6 string id;
7

8 string sourceAgreed;
9 string aleaAgreed;
10 int t_beforeAgreed;
11 int t_afterAgreed;
12 int amountAgreed;
13

14 Better@Owned(int m, string i,
15 string s, string al, int tb, int ta , int am) {
16 wallet = new Currency(m);
17 id = i;
18

19 sourceAgreed = s;
20 aleaAgreed = al;
21 t_beforeAgreed = tb;
22 t_afterAgreed = ta;
23 amountAgreed = am;
24 }
25

26 transaction give(int v) returns Currency@Owned {
27 return wallet.split(v); //gift is Owned
28 }
29

30 transaction receive(Currency@Owned >> Unowned gift) {
31 wallet.merge(gift);
32 }
33

34 transaction getAmount () returns int {
35 return wallet.getValue ();
36 }
37

38 transaction id() returns string {
39 return id;
40 }
41

42 transaction getSourceAgreed () returns string {
43 return sourceAgreed;
44 }
45

46 transaction getAleaAgreed () returns string {
47 return aleaAgreed;
48 }
49

50 transaction getTAfterAgreed () returns int {
51 return t_afterAgreed;
52 }
53

54 transaction getTBeforeAgreed () returns int {
55 return t_beforeAgreed;
56 }
57

58 transaction getAmountAgreed () returns int {
59 return amountAgreed;
60 }
61 }
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�
Listing A.28: DataProvider.obs

1 import "Currency.obs"
2 import "Bet.obs"
3

4 main asset contract DataProvider implements DataProviderInterface {
5 Currency@Owned wallet;
6 string id;
7

8 string sourceAgreed;
9 string aleaAgreed;

10 int t_afterAgreed;
11

12 DataProvider@Owned(int m, string i,
13 string s, string a, int t) {
14 wallet = new Currency(m);
15 id = i;
16

17 sourceAgreed = s;
18 aleaAgreed = a;
19 t_afterAgreed = t;
20 }
21

22 transaction give(int v) returns Currency@Owned {
23 return wallet.split(v); //gift is Owned
24 }
25

26 transaction receive(Currency@Owned >> Unowned gift) {
27 wallet.merge(gift);
28 }
29

30 transaction getAmount () returns int {
31 return wallet.getValue ();
32 }
33

34 transaction id() returns string {
35 return id;
36 }
37

38 transaction getSourceAgreed () returns string {
39 return sourceAgreed;
40 }
41

42 transaction getAleaAgreed () returns string {
43 return aleaAgreed;
44 }
45

46 transaction getTAfterAgreed () returns int {
47 return t_afterAgreed;
48 }
49 } �

Listing A.29: TimeManager.obs

1 import "Dict.obs"
2 import "List.obs"
3 import "Integer.obs"
4

5 interface EventInterface {
6 transaction action ();
7 }
8

9 main asset contract TimeManager {
10 Dict[Integer ,List[EventInterface]@Owned ]@Owned registry;
11 int clock;
12

13 state Active;
14 state Inactive;
15

16 TimeManager@Inactive () {
17 clock = 0;
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18 registry =
19 new Dict[Integer ,List[EventInterface]@Owned](
20 new IntegerComparator ());
21 ->Inactive;
22 }
23

24 transaction register(int t, EventInterface@Owned >> Unowned event) {
25 Integer time = new Integer(t);
26 Option[List[EventInterface ]] eventList = registry.remove(time);
27

28 if (eventList in None) {
29 List[EventInterface] l = new List[EventInterface ]();
30 l.push(event);
31 registry.insert(time ,l);
32 } else {
33 List[EventInterface] l = eventList.unpack ();
34 l.push(event);
35 registry.insert(time ,l);
36 }
37 }
38

39 transaction tick(TimeManager@Active this) {
40 Integer time = new Integer(clock);
41 Option[List[EventInterface ]] events = registry.remove(time);
42

43 if (events in Some) {
44 performActions(events.unpack ());
45 }
46

47 clock = clock + 1;
48 }
49

50 private transaction performActions(List[EventInterface]@Owned events) {
51

52 if (events in HasNext){
53 EventInterface ev = events.pop();
54 ev.action ();
55 performActions(events);
56 }
57 }
58

59 transaction start(TimeManager@Inactive >> Active this) {
60 ->Active;
61 }
62

63 transaction now() returns int {
64 return clock;
65 }
66

67 } �
Listing A.30: Dict.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Dict.obs

2

3 import "Comparator.obs"
4

5 contract Option[asset T@s] {
6 state None;
7 asset state Some {
8 T@s val;
9 }
10

11 Option@None() {
12 ->None;
13 }
14

15 Option@Some(T@s >> Unowned v) {
16 ->Some(val = v);
17 }
18

19 transaction unpack(Option[T@s]@Some >> None this) returns T@s {
20 T result = val;
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21 ->None;
22 return result;
23 }
24 }
25

26 main asset contract Dict[KeyType , asset ValueType@s where s is Owned] {
27 DictImpl[KeyType , ValueType@s]@( Empty | HasNext) dictImpl;
28

29 Dict@Owned(Comparator@Unowned _comparator) {
30 dictImpl = new DictImpl[KeyType , ValueType@s]( _comparator);
31 }
32

33 transaction replace(Dict@Unowned this ,
34 KeyType@Unowned _key ,
35 ValueType@s >> Unowned _value)
36 returns Option[ValueType@s]@ Owned {
37 return dictImpl.replace(_key , _value);
38 }
39

40 transaction remove(Dict@Unowned this , KeyType@Unowned _key)
41 returns Option[ValueType@s]@ Owned {
42 return dictImpl.remove(_key);
43 }
44

45 transaction peek(Dict@Unowned this , KeyType@Unowned _key)
46 returns Option[ValueType@Unowned ]@Owned {
47 return dictImpl.peek(_key);
48 }
49

50 transaction insert(Dict@Unowned this ,
51 KeyType@Unowned _key ,
52 ValueType@s >> Unowned _value) {
53 Option[ValueType@s] existingValue = replace(_key , _value);
54 if (existingValue in Some) {
55 revert ("insert operation is only permitted when there is no

existing value for the given key.");
56 }
57 }
58 }
59

60 contract DictImpl[KeyType , asset ValueType@s where s is Owned] {
61 state Empty;
62 asset state HasNext;
63

64 DictImpl[KeyType , ValueType@s]@( Empty | HasNext) next available in
HasNext;

65 KeyType@Unowned key available in HasNext , PrivateHasKeyAndValue;
66 ValueType@s value available in HasNext , PrivateHasKeyAndValue ,
67 PrivateHasValue;
68

69 Comparator[KeyType]@Unowned comparator;
70

71 asset state PrivateHasKeyAndValue;
72 asset state PrivateHasValue;
73

74 DictImpl@Empty(Comparator@Unowned _comparator) {
75 comparator = _comparator;
76 ->Empty;
77 }
78

79 // Puts the given key/value pair into the DictImplionary.
80 // If the key was already in the DictImplionary ,
81 // returns an Option containing the old value.
82 // Otherwise , returns None.
83 transaction replace(DictImpl@(Empty | HasNext) this ,
84 KeyType@Unowned _key ,
85 ValueType@s >> Unowned _value)
86 returns Option[ValueType@s]@ Owned {
87 switch this {
88 case HasNext {
89 if (comparator.equals(key , _key)) {
90 ValueType oldValue = value;
91 value = _value;
92 return new Option[ValueType@s]( oldValue);
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93 }
94 else {
95 return next.replace(_key , _value);
96 }
97 }
98 case Empty {
99 ->HasNext(key = _key ,

100 value = _value ,
101 next =
102 new DictImpl[KeyType , ValueType@s]( comparator

));
103 return new Option[ValueType@s]();
104 }
105 }
106 }
107

108 // Attempts to remove the key/value pair for the given key ,
109 // returning the value. If the key is not found , returns None.
110 transaction remove(DictImpl@(Empty | HasNext) this , KeyType@Unowned _key)
111 returns Option[ValueType@s]@ Owned {
112 switch this {
113 case HasNext {
114 if (comparator.equals(key , _key)) {
115

116 ValueType oldValue = value;
117 if (next in HasNext) {
118 DictImpl[KeyType , ValueType@s] newNext =
119 next.extractNext

();
120 KeyType newKey = next.extractKey ();
121 ValueType newValue = next.extractValue ();
122 // next is now Empty , so we can discard it implicitly

.
123

124 ->HasNext(next = newNext ,
125 key = newKey ,
126 value = newValue);
127 } else {
128 // next is already Empty. We’re going to be empty too

.
129 ->Empty;
130 }
131

132 return new Option[ValueType@s]( oldValue);
133

134 }
135 else {
136 return next.remove(_key);
137 }
138 }
139 case Empty {
140 return new Option[ValueType@s]();
141 }
142 }
143 }
144

145 private
146 transaction extractNext(DictImpl@HasNext >> PrivateHasKeyAndValue this)
147 returns DictImpl@(HasNext | Empty) {
148 DictImpl[KeyType , ValueType@s] result = next;
149 ->PrivateHasKeyAndValue;
150 return result;
151 }
152

153 private
154 transaction extractKey(
155 DictImpl@PrivateHasKeyAndValue >> PrivateHasValue this)
156 returns KeyType@Unowned {
157 KeyType result = key;
158 ->PrivateHasValue;
159 return result;
160 }
161

162 private
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163 transaction extractValue(DictImpl@PrivateHasValue >> Empty this)
164 returns ValueType@s {
165 ValueType result = value;
166 ->Empty;
167 return result;
168 }
169

170 transaction peek(DictImpl@Unowned this , KeyType@Unowned _key)
171 returns Option[ValueType@Unowned ]@Owned {
172 switch this {
173 case HasNext {
174 if (comparator.equals(key , _key)) {
175 return new Option[ValueType@Unowned ](value);
176 } else {
177 return next.peek(_key);
178 }
179 }
180 case Empty {
181 return new Option[ValueType@Unowned ]();
182 }
183 // These additional cases are here so that
184 // peek can be called with unowned references.
185 case PrivateHasValue {
186 revert "Do not call peek on inconsistent DictImplionaries.";
187 }
188 case PrivateHasKeyAndValue {
189 revert "Do not call peek on inconsistent DictImplionaries.";
190 }
191 }
192 }
193 } �

Listing A.31: List.obs

1 // Implementation of a FIFO list
2 main asset contract List[ValueType] {
3 state Empty;
4 state HasNext {
5 ValueType@Owned info;
6 List@Owned tail;
7 };
8

9 List@Empty() {
10 ->Empty;
11 }
12

13 transaction get(List@Owned this , int index) returns ValueType@Unowned {
14 if (this in Empty) {
15 revert("Index out of bounds");
16 }
17

18 [this@HasNext ];
19

20 if (index < 0) {
21 revert("Index out of bounds");
22 }
23

24 if (index == 0) {
25 return info;
26 }
27

28 return tail.get(index - 1);
29 }
30

31 transaction push(List@Owned this , ValueType@Owned >> Unowned element) {
32 if (this in Empty) {
33 ->HasNext(info = element , tail = new List[ValueType ]());
34 return;
35 }
36

37 tail.push(element);
38 }
39

40 transaction pop(List@Owned this) returns ValueType@Owned {
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41 if (this in Empty) {
42 revert("List empty");
43 }
44

45 [this@HasNext ];
46

47 ValueType res = info;
48 if (tail in HasNext){
49 info = tail.pop();
50 } else {
51 [tail@Empty];
52 disown tail;
53 ->Empty;
54 }
55 return res;
56 }
57 } �

Listing A.32: Integer.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Integer.obs

2

3 import "Comparator.obs"
4

5 main contract Integer {
6 int value;
7

8 Integer@Owned(int _value) {
9 value = _value;
10 }
11

12 transaction getValue () returns int {
13 return value;
14 }
15 }
16

17

18 contract IntegerComparator implements Comparator[Integer] {
19 transaction equals(Integer@Unowned a, Integer@Unowned b) returns bool {
20 return a.getValue () == b.getValue ();
21 }
22 } �

Listing A.33: Comparator.obs

1 // Taken from https :// github.com/mcoblenz/Obsidian/tree/master/resources/
demos/ERC20/Comparator.obs

2

3 interface Comparator[KeyType] {
4 transaction equals(KeyType@Unowned a, KeyType@Unowned b) returns bool;
5 } �

Listing A.34: Better1Main.obs

1 import "Better.obs"
2 import "Bet.obs"
3 import "IO.obs"
4 import "TimeManager.obs"
5

6 main contract Better1Main {
7

8 transaction main(remote Bet@Shared bet ,
9 remote Better@Shared better1) {
10 if (bet in Init) {
11 bet.place_bet1(better1 ,"objCode",better1.give (5));
12 TimeManager timeManager = bet.getTimeManager ();
13 timeManager.register(
14 bet.getTBefore (),
15 new EventFirst(bet ,better1));
16 }
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17

18 waitStateEnd(bet);
19 // Here better1.wallet will store also the amount
20 // won with the bet
21 }
22

23 private transaction waitStateEnd(Bet@Shared b) returns Bet@Shared {
24 if (b in End){
25 return b;
26 }
27 return waitStateEnd(b);
28 }
29 } �

Listing A.35: Better2Main.obs

1 import "Better.obs"
2 import "Bet.obs"
3 import "IO.obs"
4 import "TimeManager.obs"
5

6 main contract Better2Main {
7

8 transaction main(remote Bet@Shared betContract ,
9 remote Better@Shared better2) {

10

11 waitStateFirst(betContract);
12

13 if (betContract in First) {
14 betContract.place_bet2(better2 ,"objCode",better2.give (5));
15 TimeManager timeManager = betContract.getTimeManager ();
16 timeManager.register(
17 betContract.getTAfter (),
18 new EventSecond(betContract ,better2));
19 }
20

21 waitStateEnd(betContract);
22 // Here better2.wallet will store also the amount
23 // won with the bet
24 }
25

26 private transaction waitStateFirst(Bet@Shared bet) returns Bet@Shared {
27 if (bet in First){
28 return bet;
29 }
30 return waitStateFirst(bet);
31 }
32

33 private transaction waitStateEnd(Bet@Shared bet) returns Bet@Shared {
34 if (bet in End){
35 return bet;
36 }
37 return waitStateEnd(bet);
38 }
39 } �

Listing A.36: DataProviderMain.obs

1 import "DataProvider.obs"
2 import "Bet.obs"
3 import "IO.obs"
4

5 main contract DataProviderMain {
6

7 transaction main(remote Bet@Shared betContract ,
8 remote DataProvider@Shared dataProvider) {
9

10 waitStateRun(betContract);
11

12 string source = "getSourceSomewhere";
13 string alea = "getAleatoryEventSomewhere";
14 string outcome = "getEventOutcome";
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15

16 if (betContract in Run){
17 betContract.data(dataProvider ,source ,alea ,outcome);
18 }
19 }
20

21 private transaction waitStateRun(Bet@Shared bet) returns Bet@Shared {
22 if (bet in Run){
23 return bet;
24 }
25 return waitStateRun(bet);
26 }
27 } �

Listing A.37: TimeManagerMain.obs

1 import "Bet.obs"
2

3 main contract TimeManagerMain {
4

5 transaction main(remote Bet@Shared betContract) {
6

7 TimeManager tm = betContract.getTimeManager ();
8 if (tm in Inactive) {
9 tm.start();
10 }
11

12 if (tm in Active){
13 keepTicking(tm);
14 }
15

16 }
17

18 private transaction keepTicking(TimeManager@Owned tm) {
19 if (tm in Active){
20 tm.tick();
21 keepTicking(tm);
22 }
23 }
24 } �
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A.6 Auction

A.6.1 Stipula

Listing A.38: auction.stipula

1 stipula Auction {
2 asset wallet , item
3 field objectCode , maxBidder
4 init Init
5

6 agreement (Seller , Bidder1 , Bidder2 , Auctioneer)(objectCode) {
7 Seller , Bidder1 , Bidder2 : objectCode
8 } ==> @Init
9

10 @Init Seller : offer(obj)[token] (obj == objectCode) {
11 "none" -> maxBidder
12 token -o item;
13 _
14 } ==> @Open
15

16 @Open Bidder1 : makeBid ()[bid] (bid > wallet && maxBidder != "one") {
17 if (maxBidder == "two") {
18 wallet -o Bidder2
19 }
20 bid -o wallet
21 "one" -> maxBidder;
22 _
23 } ==> @Open
24

25 @Open Bidder2 : makeBid ()[bid] (bid > wallet && maxBidder != "two") {
26 if (maxBidder == "one") {
27 wallet -o Bidder1
28 }
29 bid -o wallet
30 "two" -> maxBidder;
31 _
32 } ==> @Open
33

34 @Open Auctioneer : stopBidding ()[] {
35 "End" -> Bidder1
36 "End" -> Bidder2;
37 _
38 } ==> @BiddingDone
39

40 @BiddingDone Auctioneer : giveItem ()[] {
41 if (maxBidder == "one") {
42 item -o Bidder1
43 wallet -o Seller
44 } else if (maxBidder == "two") {
45 item -o Bidder2
46 wallet -o Seller
47 } else { // maxBidder == "none" and wallet == 0
48 item -o Seller
49 };
50 _
51 } ==> @End
52 } �
A.6.2 Obsidian

Listing A.39: Auction.obs

1 contract Bidder {
2 string name;
3 int balance;
4

5 state WonItem {
6 Item@Owned item;
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7 }
8 state Bidding {
9 int bidAmount;
10 }
11

12 Bidder@Bidding(string n, int m, int b) {
13 name = n;
14 balance = m;
15 ->Bidding(bidAmount = b);
16 }
17

18 transaction createBid(Bidder@Bidding this) returns Bid@Owned {
19 Bid bid = new Bid(bidAmount);
20 balance = balance - bidAmount;
21 return bid;
22 }
23

24 transaction getBidAmount(Bidder@Bidding this) returns int {
25 return bidAmount;
26 }
27

28 transaction getName(Bidder@Owned this) returns string {
29 return name;
30 }
31

32 transaction won(Bidder@Bidding >> WonItem this , Item@Owned >> Unowned i)
{

33 -> WonItem(item = i);
34 }
35

36 transaction returnBidMoney(Bidder@Owned this , Bid@Owned bid) {
37 balance = balance + bid.getAmount ();
38 }
39

40 transaction updateBidAmount(Bidder@Bidding this , int amount) {
41 bidAmount = amount;
42 }
43 }
44

45 contract Seller {
46 state SoldItem {
47 Bid@Owned bid;
48 }
49 state Unsold {
50 Item@Owned item;
51 }
52

53 Seller@Unsold () {
54 ->Unsold(item = new Item());
55 }
56

57 transaction receiveBid(Seller@Unsold >> SoldItem this ,
58 Bid@Owned >> Unowned b) {
59 -> SoldItem(bid = b);
60 }
61

62 transaction returnItem(Seller@SoldItem >> Unsold this ,
63 Item@Owned >> Unowned i) {
64 ->Unsold(item = i);
65 }
66 }
67

68 contract Item {}
69

70 contract Bid {
71 int amount;
72

73 Bid@Owned(int num) {
74 amount = num;
75 }
76

77 transaction getAmount(Bid@Owned this) returns int {
78 return amount;
79 }
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80 }
81

82 main contract Auction {
83

84 state Open {
85 Item@Owned item;
86 Bid@Owned bid;
87 }
88 state BiddingDone {
89 Item@Owned it;
90 Bid@Owned finalBid;
91 }
92 state Closed {
93 Seller@SoldItem sellerSatisfied;
94 Bidder@WonItem winner;
95 }
96

97 Seller@Unsold seller available in Open , BiddingDone;
98 Bidder@Bidding maxBidder available in Open , BiddingDone;
99

100 Auction@Owned(Item@Owned >> Unowned i) {
101 Open:: maxBidder = new Bidder("none", 0, 0);
102 Open:: seller = new Seller ();
103 ->Open(item = i, bid = new Bid(0));
104 }
105

106 transaction makeBid(Auction@Open this , Bidder@Bidding >> Unowned bidder)
{

107 if (bidder.getBidAmount () > bid.getAmount ()) {
108 if (maxBidder.getName () != "none") {
109 if (bid in Open) {
110 maxBidder.returnBidMoney(bid);
111 }
112 }
113

114 bid = bidder.createBid ();
115 maxBidder = bidder;
116 }
117 }
118

119 transaction finishBidding(Auction@Open >> BiddingDone this) {
120 -> BiddingDone(it = item , finalBid = bid);
121 }
122

123 transaction giveItem(Auction@BiddingDone >> Closed this) {
124 maxBidder.won(it);
125 seller.receiveBid(finalBid);
126 ->Closed(sellerSatisfied = seller , winner = maxBidder);
127 }
128 } �
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A.7 Parametric Insurance

A.7.1 Stipula

Listing A.40: insuranceservice_arrays.stipula

1 stipula InsuranceService {
2 asset policies , escrow
3 field payouts ,
4 costs ,
5 conditions ,
6 expTimes ,
7 actives ,
8 expirations ,
9 claimables ,
10 n
11 init Ready
12

13 agreement (Farmer , Insurer , WeatherService)
14 (payouts , conditions , expTimes) {
15 Insurer : payouts , costs , conditions , expTimes
16 } ==> @Ready
17

18 @Ready Insurer : offer(k)[p,e]
19 ((k >= 0 || k < payouts.length) && p > 0 && e == payouts[k]*p) {
20 p -o policies[k]
21 e -o escrow
22 conditions[k] -> WeatherService;
23 _
24 } ==> @Ready
25

26 @Ready Farmer : buy(k)[m]
27 ((k >= 0 && k < policies.length) && policies[k] > 0 && costs[k] == m) {
28 1 -o policies[k], Farmer
29 m -o Insurer
30 actives[k] + 1 -> actives[k]
31

32 now + expTimes[k] >> @Ready@PolicyExpired {
33 if (k < n) {
34 k -> n
35 }
36 expirations[k] + 1 -> expirations[k]
37 actives[k] - 1 -> actives[k]
38 payouts[k] -o escrow , Insurer
39 } ==> @PolicyExpired
40 } ==> @Ready
41

42 @Ready WeatherService : conditionsMet(k)[] {
43 if (actives[k] > 0) {
44 claimables[k] + 1 -> claimables[k]
45 actives[k] - 1 -> actives[k]
46 };
47 _
48 } ==> @Ready
49

50 @Cashing Farmer : claim(k)[p] (p <= claimables[k]) {
51 p -o Insurer
52 (payouts[k] * p) -o escrow , Farmer
53 claimables[k] - 1 -> claimables[k];
54 _
55 } ==> @Ready
56

57 @PolicyExpired Farmer : returnExpiredPolicy(k)[p] (p <= expirations[k]) {
58 p -o Insurer
59 expirations[k] - p -> expirations[k];
60 _
61 } ==> @PolicyExpired
62

63 @PolicyExpired Insurer : checkExpiredReturns ()[] (expirations[n] == 0) {
64 n + 1 -> n;
65 _
66 } ==> @PolicyExpired
67



A.7. PARAMETRIC INSURANCE 141

68 @PolicyExpired Insurer : ready ()[] (n == policies.length) {
69 0 -> n;
70 _
71 } ==> @Ready
72 } �

Listing A.41: policy.stipula

1 stipula Policy {
2 asset escrow
3 field cost , expirationTime ,
4 longitude , latitude , radius ,
5 moistureContent , payout
6 init Offered
7

8 agreement (Farmer , InsuranceService , WeatherService)
9 (cost , expirationTime ,

10 longitude , latitude , radius ,
11 moistureContent , payout) {
12 Farmer , InsuranceService : cost , expirationTime ,
13 longitude , latitude , radius ,
14 moistureContent , payout
15 } ==> @Offered
16

17 @Offered Farmer : buy()[m] (m == cost) {
18 m -o InsuranceService; // cost -o m, InsuranceService
19 _
20 } ==> @Activating
21

22 @Activating InsuranceService : activate ()[m] (m == payout) {
23 m -o escrow;
24 now + expirationTime >> @Active {
25 escrow -o InsuranceService
26 } ==> @Expired
27 } ==> @Active
28

29 @Active WeatherService : checkMoist(moist)[] (moist < moistureContent) {
30 ;
31 _
32 } ==> @Claimable
33

34 @Claimable Farmer : claim()[] {
35 escrow -o Farmer;
36 _
37 } ==> @Claimed
38 } �
A.7.2 Obsidian
Available in the Obsidian official repository [2].

https://github.com/mcoblenz/Obsidian/tree/master/resources/case_studies/Insurance
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A.8 ExampleTokenBank

A.8.1 Stipula

Listing A.42: exampletokenbank_arrays.stipula

1 stipula ExampleTokenBank {
2 asset balances
3 field allowances
4 init Working
5

6 agreement(Owner1 , Owner2 , Bank)(allowances) {
7 Bank : allowances
8 } ==> @Working
9

10 @Working Bank : transfer(fromAddress , toAddress , value)[]
11 (value <= balance[fromAddress ]) {
12 value -o balances[fromAddress],balances[toAddress ];
13 _
14 } ==> @Working
15

16 @Working Bank : approve(ownerAddress , fromAddress , value)[]
17 (( ownerAddress == 0 || ownerAddress == 1)
18 && (fromAddress >= 0 && fromAddress < balances.length)) {
19 value -> allowances[ownerAddress ][ fromAddress ];
20 _
21 } ==> @Working
22

23 @Working Owner1 : transferFrom(fromAddr ,toAddr ,value)[]
24 (( fromAddr >= 0 && fromAddr <= balances.length)
25 && (toAddr >= 0 && toAddr <= balances.length)
26 && allowances [0][ fromAddr] >= value) {
27 value -o balances[fromAddr],balances[toAddr ];
28 _
29 } ==> @Working
30

31 @Working Owner2 : transferFrom(fromAddr ,toAddr ,value)[]
32 (( fromAddr >= 0 && fromAddr <= balances.length)
33 && (toAddr >= 0 && toAddr <= balances.length)
34 && allowances [1][ fromAddr] >= value) {
35 value -o balances[fromAddr],balances[toAddr ];
36 _
37 } ==> @Working
38

39 } �
A.8.2 Obsidian
Available in the Obsidian official repository [2].

Listing A.43: ERC20.obs

1 import "Dict.obs"
2 import "Integer.obs"
3

4 asset interface ObsidianToken {
5 transaction getValue () returns int;
6 transaction merge(ObsidianToken@Owned >> Unowned other);
7 transaction split(int val) returns ObsidianToken@Owned;
8 }
9

10 asset contract ExampleToken implements ObsidianToken {
11 int value;
12

13 ExampleToken@Owned(int v) {
14 value = v;
15 }
16

17 transaction getValue(ExampleToken@Unowned this) returns int {
18 return value;

https://github.com/mcoblenz/Obsidian/tree/master/resources/demos/ERC20
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19 }
20

21 transaction merge(ObsidianToken@Owned >> Unowned other) {
22 value = value + other.getValue ();
23 disown other;
24 }
25

26 transaction split(ExampleToken@Owned this , int val) returns ExampleToken@
Owned {

27 if (val > value) {
28 revert ("Can ’t split off more than the existing value");
29 }
30 ExampleToken other = new ExampleToken(val);
31 value = value - val;
32 return other;
33 }
34

35 }
36

37 // ERC20 has been slightly adapted for Obsidian , since Obsidian does not have
a built -in authentication mechanism.

38 asset interface ERC20 {
39 transaction totalSupply () returns int;
40 transaction balanceOf(int ownerAddress) returns int;
41 transaction transfer(int fromAddress , int toAddress , int value) returns

bool;
42

43 // - allow ownerAddress to withdraw from your account , multiple times , up
to the value amount.

44 transaction approve(int ownerAddress , int fromAddress , int value) returns
bool;

45

46 // Returns the amount of allowance still available.
47 transaction allowance(int ownerAddress , int fromAddress) returns int;
48

49 // Transfers tokens from an allowance that has already been granted.
50 transaction transferFrom(int senderAddress , int fromAddress , int

toAddress , int value) returns bool;
51 }
52

53 main asset contract ExampleTokenBank implements ERC20 {
54 int totalSupply;
55 Dict[Integer , ExampleToken]@Owned balances;
56

57 // map from fromAddress to (map from spender to amount)
58 Dict[Integer , Dict[Integer , Integer]@Owned ]@ Owned allowed;
59

60 ExampleTokenBank@Owned() {
61 totalSupply = 0;
62 balances = new Dict[Integer , ExampleToken@Owned ](new

IntegerComparator ());
63 allowed = new Dict[Integer , Dict[Integer , Integer]@Owned](new

IntegerComparator ());
64 }
65

66 transaction totalSupply () returns int {
67 return totalSupply;
68 }
69

70 transaction balanceOf(int ownerAddress) returns int {
71 Option[ExampleToken@Unowned] balance = balances.peek(new Integer(

ownerAddress));
72 if (balance in None) {
73 return 0;
74 }
75 else {
76 return balance.unpack ().getValue ();
77 }
78 }
79

80 transaction transfer(int fromAddress , int toAddress , int value) returns
bool {

81 Integer fromIntegerAddress = new Integer(fromAddress);
82 Option[ExampleToken@Owned] fromBalance = balances.remove(
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fromIntegerAddress);
83 if (fromBalance in None) {
84 return false;
85 }
86 else {
87 ExampleToken fromTokens = fromBalance.unpack ();
88 if (value <= fromTokens.getValue ()) {
89 Integer toIntegerAddress = new Integer(toAddress);
90 Option[ExampleToken@Owned] toBalance = balances.remove(

toIntegerAddress);
91 ExampleToken toTokens;
92 if (toBalance in Some) {
93 toTokens = toBalance.unpack ();
94 }
95 else {
96 toTokens = new ExampleToken (0); // 0 value
97 }
98

99 ExampleToken tokensToMove = fromTokens.split(value);
100 toTokens.merge(tokensToMove);
101 balances.insert(toIntegerAddress , toTokens); // OK because we

just removed it.
102 balances.insert(fromIntegerAddress , fromTokens); // OK

because we just removed it.
103

104 return true;
105 }
106 else {
107 // Insufficient funds available.
108 balances.insert(fromIntegerAddress , fromTokens); // // OK

because we just removed it.
109 return false;
110 }
111 }
112 }
113

114 // Records a new allowance. Replaces any previous allowance.
115 transaction approve(int ownerAddress , int fromAddress , int value) returns

bool {
116 Integer ownerAddressInteger = new Integer(ownerAddress);
117 Option[Dict[Integer , Integer]@Owned] ownerAllowancesOption = allowed.

remove(ownerAddressInteger);
118

119 Dict[Integer , Integer] ownerAllowances;
120 if (ownerAllowancesOption in None) {
121 ownerAllowances = new Dict[Integer , Integer@Owned](new

IntegerComparator ());
122 }
123 else {
124 ownerAllowances = ownerAllowancesOption.unpack ();
125 }
126

127 Option[Integer@Owned] oldAllowance = ownerAllowances.replace(new
Integer(fromAddress), new Integer(value));

128 allowed.insert(ownerAddressInteger , ownerAllowances);
129 disown oldAllowance; // Options are assets because they CAN hold

assets , but this one doesn ’t happen to do so.
130 return true;
131 }
132

133 transaction allowance(int ownerAddress , int fromAddress) returns int {
134 Option[Dict[Integer , Integer]@Unowned] ownerAllowancesOption =

allowed.peek(new Integer(ownerAddress));
135 switch (ownerAllowancesOption) {
136 case None {
137 return 0;
138 }
139 case Some {
140 Dict[Integer , Integer@Owned] ownerAllowances =

ownerAllowancesOption.unpack ();
141 Option[Integer@Unowned] spenderAllowance = ownerAllowances.

peek(new Integer(fromAddress));
142 if (spenderAllowance in None) {
143 return 0;
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144 }
145 else {
146 return spenderAllowance.unpack ().getValue ();
147 }
148 }
149 }
150 }
151

152 // senderAddress wants to transfer value tokens from fromAddress to
toAddress.

153 // This requires that an allowance have been set up in advance and that
fromAddress has enough tokens.

154 transaction transferFrom(int senderAddress , int fromAddress , int
toAddress , int value) returns bool

155 {
156 int allowance = allowance(senderAddress , fromAddress);
157 if (allowance >= value) {
158 int newAllowance = allowance - value;
159 bool transferSucceeded = transfer(fromAddress , toAddress , value);
160 if (! transferSucceeded) {
161 // Perhaps not enough tokens were available to transfer.
162 return false;
163 }
164 approve(senderAddress , fromAddress , newAllowance);
165

166 return true;
167 }
168 else {
169 return false;
170 }
171 }
172 } �





Appendix B

Proofs for Silica transactions

B.1 Moving a token between variables
The expression to check is h’ := h where h : NFT@Owned and h’ : NFT@Owned. Then,
we have to prove the judgement for any Γ and ∆

Γ;∆,
h’ : NFT@Unowned,
h : NFT@Owned

⊢s h’:= h : unit ⊣
∆,

h’ : NFT@Owned,
h : NFT@Unowned

Proof

NFT = contract(NFT@Owned)
Split-Unowned

NFT@Owned ⇛ NFT@Owned/NFT@Unowned

notOwned(NFT@Unowned)

Γ ⊢ disposable(NFT@Unowned)
T-Assign

Γ;∆,
h’ : NFT@Unowned,
h : NFT@Owned

⊢s h’:= h : unit ⊣
∆,

h’ : NFT@Owned,
h : NFT@Unowned

B.2 Sending a token to a party
The expression to check is A.receiveToken(h) where A : Party@NoToken and h :
NFT@Owned.

To complete the proof we need also the proof for the transaction receiveToken.

B.2.1 Statement
The expression to check is A.receiveToken(h) where A : Party@NoToken and h :
NFT@Owned. Then, we have to prove the judgement for any Γ and ∆

Γ;∆,
A : Party@NoToken,

h : NFT@Owned
⊢s A.receiveToken(h) : unit ⊣

∆,
A : Party@Token,
h : NFT@Unowned

Proof
π1 π2 π3 π4 π5 π6 π7

T-Inv
Γ;∆,

A : Party@NoToken,
h : NFT@Owned

⊢s A.receiveToken(h) : unit ⊣
∆,

A : Party@Token,
h : NFT@Unowned

147
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Party@NoToken ̸= Unowned
funcArg-other

Party@Token = funcArg(Party@NoToken, Party@NoToken, Party@NoToken)
π1

NFT@Owned ̸= Unowned
funcArg-other

NFT@Unowned = funcArg(NFT@Owned, NFT@Owned, NFT@Unowned)
π2

<:∗-refl
Γ ⊢ NoToken <:∗ NoToken

π3

Γ ⊢ bound∗(NoToken) = NoToken

Γ ⊢ bound(Party@NoToken) = Party@NoToken
π7

<:∗-refl
Γ ⊢ Owned <:∗ Owned

<:-Matching-defs
Γ ⊢ NFT@Owned <:∗ NFT@Owned

π4

s.wallet, s.tokens ∈ ∆, A : Party@NoToken, h : NFT@Owned
π5

tdef(Party, receiveToken) = unit receiveToken(NFT@Owned»Unowned g) S»S {return ...}
params(unit receiveToken(NFT@Owned»Unowned g) NoToken»Token {return ...}) = ∅

params(Party) = ∅

specializeTransΓ(receiveToken, Party) = unit receiveToken(NFT@Owned»Unowned g) S»S {return ...}
π6

B.2.2 Transaction receiveToken

The transaction to check is

unit receiveToken(NFT@Owned»Unowned g) NoToken»Token
{ return this →p Token(g) }

Then, we have to prove the judgement

unit receiveToken(NFT@Owned»Unowned g) NoToken»Token
{ return this →p Token(g) }

ok in Party

Proof
π1 params(C) = ∅ Γ = ∅

PublicTransactionOK
unit receiveToken(NFT@Owned»Unowned g) NoToken»Token

{ return this →p Token(g) } ok in Party

π2 π3 π4 π5 π6 p ∈ {Shared,Owned}
T-→p

this : Party@NoToken,
g : NFT@Owned ⊢this this →p Token(g) : unit ⊣ this : Party@Token,

g : NFT@Unowned
π1

fieldTypesthis(this : Party@NoToken, g : NFT@Owned;∅) =
= fieldTypesthis(this : Party@NoToken;∅) =
= fieldTypesthis(·;∅) = ∅

π2

<:∗-refl
⊢ Owned <:∗ Owned

<:-MatchingDefs
⊢ NFT@Owned <: stateF ields(Party,Token) = NFT@Owned

π3
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stateF ields(Party@NoToken) = ∅

unionFields(Party@NoToken) = ∅
π4

<:∗-S-O
⊢ NoToken <:∗ Owned

p ̸= NoToken,Token
<:∗-O-*

⊢ Owned <:∗ p
<:∗-Trans

⊢ NoToken <:∗ p
π5

NFT = contract(NFT)
Split-Unowned

NFT@Owned ⇛ NFT@Owned/NFT@Unowned
T-Lookup

this : Party@NoToken,
g : NFT@Owned ⊢this g : NFT@Owned ⊣ g : NFT@Unowned

π6

B.3 Sending currency to a variable
The expression to check is

let x : Currency@Owned = h.split(v)

in h’.merge(x)

where h, h’ : Currency@Owned and v : int.
To complete the proof, we also need proof for transactions split and merge.

B.3.1 Statement
The expression to check is

let x : Currency@Owned = h.split(v)

in h’.merge(x)

where h, h’ : Currency@Owned and v : int. Then, we have to prove, for any Γ and ∆,
the judgement

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

⊢s
let x : Currency@Owned = h.split(v)
in h’.merge(x) : unit ⊣

∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

Proof
π1 π2 ⊢ disposable(Currency@Unowned)

T-let
Γ;∆,

h : Currency@Owned,
h’ : Currency@Owned,

v : int

⊢s
let x : Currency@Owned = h.split(v)
in h’.merge(x) : unit ⊣

∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

<:∗-refl
⊢ Owned <:∗ Owned int <: int

⊢ bound(Currency@Owned) = Currency@Owned ∀f.s.f /∈ ∆1

specializeTransΓ(split, Currency) = Currency@Owned split(int v) Owned»Owned { ... }
Currency@Owned = funcArg(Currency@Owned, Currency@Owned, Currency@Owned)

int = funcArg(int, int, int)
T-Inv

∆1 =

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int

⊢s h.split(v) : Currency@Owned ⊣

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int
π1
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<:∗-refl
⊢ Owned <:∗ Owned

<:∗-refl
⊢ Owned <:∗ Owned

<:∗-Matching-defs
⊢ Currency@Owned <: Currency@Owned

⊢ bound(Currency@Owned) = Currency@Owned ∀f.s.f /∈ ∆2

specializeTransΓ(merge, Currency) = unit merge(Currency@Owned»Unowned other) Owned»Owned { ... }
Currency@Owned = funcArg(Currency@Owned, Currency@Owned, Currency@Owned)

Currency@Unowned = funcArg(Currency@Owned, Currency@Owned, Currency@Unowned)
T-Inv

∆2 =

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int,
x : Currency@Owned

⊢s h’.merge(x) : unit ⊣

Γ;∆,
h : Currency@Owned,
h’ : Currency@Owned,

v : int,
x : Currency@Unowned

π2

B.3.2 Transaction split

The transaction to check is

Currency@Owned split(int v) Owned»Owned {return e}

where

e =let diff : int = this.value - v in e0

e0 =let em0 : unit = this.value := diff in e1

e1 =let em1 : unit = pack in e2

e2 =let result : Currency@Owned = new Currency@Owned(v) in result

Then, we have to prove the judgement

Currency@Owned split(int v) Owned»Owned {return e} ok in Currency

Proof
params(Currency) = ∅ Γ = ∅ π1

PublicTransactionOK
Currency@Owned split(int v) Owned»Owned {return e} ok in Currency

π2 π5 ⊢ disposable(int)
T-let

this : Currency@Owned,
v : int ⊢this

let diff : int
= this.value - v

in e0
: Currency@Owned

⊣ this : Currency@Owned,
v : int

π1

π6 π7 ⊢ disposable(unit)
T-let

this : Currency@Owned,
v : int,

this.value : int,
diff : int

⊢this

let em0 : unit
= this.value := diff

in e1
: Currency@Owned

⊣
this : Currency@Owned,

v : int,
diff : int

π5

π10 π11 ⊢ disposable(unit)
T-let

this : Currency@Owned,
v : int,

this.value : int,
em0 : unit,
diff : int

⊢this
let em1 : unit = pack
in e2

: Currency@Owned ⊣

this : Currency@Owned,
v : int,

em0 : unit,
diff : int

π7
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π12 π13 ⊢ disposable(Currency@Unowned)
T-let

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

⊢this

let result : Currency@Owned
= new Currency@Owned(v)

in result
: Currency@Owned

⊣

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

π11

Currency = contract(Currency@Owned)
Split-unowned

Currency@Owned ⇛ Currency@Owned/Currency@Unowned
T-Lookup

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int,

result : Currency@Owned

⊢this result : Currency@Owned ⊣

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int,

Currency@Unowned
π13

int ⇛ int/int
T-Lookup

∆12 ⊢ v : int ⊣ ∆′
12 ⊢ int <: int def(Currency) = contract Currency { ... }

T-new

∆12 =

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

⊢this
new Currency@Owned(v)

: Currency@Owned ⊣

this : Currency@Owned,
v : int,

em0 : unit,
em1 : unit,
diff : int

= ∆′
12

π12

contractF ields(Currency@Owned) ≜
≜ intersectF ields(Currency) = {int value}

⊢ int <: int
≈-Refl

⊢ int ≈ int

T-pack
this : Currency@Owned,

v : int,
this.value : int,

em0 : unit,
diff : int

⊢this pack : unit ⊣

this : Currency@Owned,
v : int,

em0 : unit,
diff : int

π10

π8 π9 ⊢ disposable(int)
T-FieldUpdate

this : Currency@Owned,
v : int,

this.value : int,
diff : int

⊢this
this.value := this.value - v
: unit ⊣

this : Currency@Owned,
v : int,

this.value : int,
diff : int

π6

int ⇛ int/int
T-Lookup

this : Currency@Owned,
v : int,

this.value : int,
diff : int

⊢this diff : int ⊣
this : Currency@Owned,

v : int,
this.value : int

π9

int ⇛ int/int
T-this-field-ctxt

this : Currency@Owned,
v : int,

this.value : int,
diff : int

⊢this this.value : int ⊣

this : Currency@Owned,
v : int,

this.value : int,
diff : int

π8

π3 π4

this : Currency@Owned,
v : int ⊢this this.value - v : int ⊣ this : Currency@Owned,

v : int
π2
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int ⇛ int/int
T-Lookup

this : Currency@Owned,
v : int,

this.value : int
⊢this v : int ⊣

this : Currency@Owned,
v : int,

this.value : int
π4

this.value ∈ ∆3
int value ∈ intersectF ields(Currency) =

= {int value} int ⇛ int/int

T-this-field-def

∆3 =
this : Currency@Owned,

v : int ⊢this this.value : int ⊣
this : Currency@Owned,

v : int,
this.value : int

π3

def(Currency) = contract Currency { S0 int value ... } S0 int value ∈ {S0 int value}

stateF ields(Currency, S0) = {int value}
cdef(Currency) = contract Currency { S0 int value ... }

Unowned ∈ {Shared,Owned,Unowned}

intersectF ields(Currency) = {int value}

B.3.3 Transaction merge

The transaction to check is

unit merge(Currency@Owned»Unowned other) Owned»Owned{ return e }

where

e =let x : int = other.getValue() in e0

e0 =let sum : int = this.value + x in e1

e1 =let em0 : unit = this.value := sum in e2

e2 =let em1 : unit = disown other in pack

Then, we have to prove the judgement

unit merge(Currency@Owned»Unowned other) Owned»Owned
{ return e } ok in Currency

Proof
params(Currency) = ∅ Γ = ∅ π1

PublicTransactionOk
unit merge(Currency@Owned»Unowned other) Owned»Owned

{ return e } ok in Currency

π2 π3 ⊢ disposable(int)
T-let

this : Currency@Owned,
other : Currency@Owned ⊢this

let x : int = other.getValue()
in e0

: unit ⊣ this : Currency@Owned,
other : Currency@Unowned

π1

π4 π5 ⊢ disposable(unit)
T-let

this : Currency@Owned,
other : Currency@Owned,

x : int
⊢this

let sum : int = this.value + x
in e1

: unit ⊣
this : Currency@Owned,

other : Currency@Unowned,
x : int

π3
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π8 π9 ⊢ disposable(unit)
T-let

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int

⊢this

let em0 : unit = this.value := sum
in e2
: unit

⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int
π5

π12 π13 ⊢ disposable(unit)
T-let

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int,
this.value : int,

em0 : unit

⊢this
let em1 : unit = disown other
in pack : unit ⊣

this : Currency@Owned,
other : Currency@Unowned,

x : int,
sum : int,
em0 : unit

π9

contractF ields(Currency) = {int value} ⊢ int <: int
≈-Refl

⊢ int ≈ int
T-pack

this : Currency@Owned,
other : Currency@Unowned,

x : int,
this.value : int,

sum : int,
em0 : unit,
em1 : unit

⊢this pack : unit ⊣

this : Currency@Owned,
other : Currency@Unowned,

x : int,
sum : int,
em0 : unit,
em1 : unit

π13

Currency = contract(Currency)
Split-Unowned

Currency@Owned ⇛
Currency@Owned/Currency@Unowned

<:∗-refl
⊢ Owned <:∗ Owned

T-disown
this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int,
em0 : unit

⊢this disown other : unit ⊣

this : Currency@Owned,
other : Currency@Unowned,

x : int,
this.value : int,

sum : int,
em0 : unit

π12

π10 π11 ⊢ disposable(int)
T-fieldUpdate

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int

⊢this this.value := sum : unit ⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int
π8

int ⇛ int/int
T-Lookup

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int

⊢this sum : int ⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int,

sum : int
π11

this.value /∈ Dom(∆5) int value ∈ intersectF ields(Currency) int ⇛ int/int
T-this-field-def

∆5 =
this : Currency@Owned,
other : Currency@Owned,

x : int
⊢this this.value : int ⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int

π10
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π6 π7

this : Currency@Owned,
other : Currency@Owned,

x : int
⊢this this.value + x : int ⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int

π4

int ⇛ int/int
T-Lookup

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int

⊢this x : int ⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int

π7

this.value ∈ ∆ int value ∈ intersectF ields(Currency) int ⇛ int/int
T-this-field-def

this : Currency@Owned,
other : Currency@Owned,

x : int
⊢this this.value : int ⊣

this : Currency@Owned,
other : Currency@Owned,

x : int,
this.value : int

π6

<:∗-refl
⊢ Owned <:∗ Owned

specializeTransΓ(getValue, Currency) = int getValue() S»S { return this.value }∀S
⊢ bound(Currency@Owned) = Currency@Owned ∀f.this.f /∈ ∆3

Currency@Owned = funcArg(Currency@Owned, Currency@Owned, Currency@Owned)
T-Inv

∆3 =
this : Currency@Owned,
other : Currency@Owned, ⊢this other.getValue() : int ⊣ this : Currency@Owned,

other : Currency@Owned
π2

B.4 Sending currency to a party

The expression to check is

let x : Currency@Owned = h.split(v)

in A.receive(x)

where A : Party@Owned, h : Currency@Owned and v : int.
To complete the proof we need also the proof for transactions split, merge and

receive. The first two proof are available in the previous section of this appendix.

B.4.1 Statement

The expression to check is

let x : Currency@Owned = h.split(v)

in A.receive(x)

where A : Party@Owned, h : Currency@Owned and v : int. Then, we have to prove
the judgement for any Γ and ∆

Γ;∆,
h : Currency@Owned,
A : Party@Owned,

v : int

⊢s
let x : Currency@Owned = h.split(v)
in A.receive(x) : unit ⊣

∆,
h : Currency@Owned,
A : Party@Owned,

v : int
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Proof
π1 π2 ⊢ disposable(Currency@Unowned)

T-let
Γ;∆,

h : Currency@Owned,
A : Party@Owned,

v : int

⊢s
let x : Currency@Owned = h.split(v)
in A.receive(x) : unit ⊣

∆,
h : Currency@Owned,
A : Party@Owned,

v : int

<:∗-refl
⊢ Owned <:∗ Owned int <: int

⊢ bound(Currency@Owned) = Currency@Owned ∀f.s.f /∈ ∆1

specializeTransΓ(split, Currency) = Currency@Owned split(int v) Owned»Owned { ... }
Currency@Owned = funcArg(Currency@Owned, Currency@Owned, Currency@Owned)

int = funcArg(int, int, int)
T-Inv

∆1 =

Γ;∆,
h : Currency@Owned,
A : Party@Owned,

v : int

⊢s h.split(v) : Currency@Owned ⊣

∆,
h : Currency@Owned,
A : Party@Owned,

v : int
π1

π3 ⊢ ∀f.s.f /∈ ∆2

specializeTransΓ(receive, Party) = unit receive(Currency@Owned»Unowned g) P»P { ... }
π4 π5 ⊢ ∀f.s.f /∈ ∆2

π6

Currency@Unowned = funcArg(Currency@Owned, Currency@Owned, Currency@Unowned)
T-Inv

∆2 =

h : Currency@Owned,
A : Party@Owned,

v : int,
x : Currency@Owned

⊢s A.receive(x) : unit ⊣

h : Currency@Owned,
A : Party@Owned,

v : int,
x : Currency@Unowned

π2

P ̸= Unowned
funcArg-other

Party@Owned = funcArg(Party@Owned, Party@Owned, Party@Owned)
π6

<:∗-refl
⊢ Owned <:∗ Owned

<:∗-Matching-defs
Currency@Owned <: Currency@Owned

π5

Owned ∈ { Owned, Shared, Unowned }

Γ ⊢ bound(Owned) = Owned

Γ ⊢ bound(Party@Owned) = Party@Owned
π3

<:∗-refl
⊢ Owned <:∗ Owned

π4

B.4.2 Transaction receive

The transaction to check is

unit receive(Currency@Owned»Unowned g) Owned»Owned { return e }

where

e =let x : Currency@Owned = this.wallet in e0

e0 =let em1 : unit = this.wallet := x in e1

e1 =let em2 : unit = this.wallet.merge(g) in pack

Then, we have to prove the judgement

unit receive(Currency@Owned»Unowned g) Owned»Owned
{ return e } ok in Currency
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Proof

params(Party) = ∅ Γ = ∅ π1
PublicTransactionOk

unit receive(Currency@Owned»Unowned g) Owned»Owned { return e }

π2 π3 ⊢ disposable(Currency@Unowned)
T-let

this : Party@Owned,
g : Currency@Owned ⊢this

let x : Currency@Owned = this.wallet
in e0

: unit ⊣ this : Party@Owned,
g : Currency@Unowned

π1

π4 π5 ⊢ disposable(unit)
T-let

this : Party@Owned,
g : Currency@Owned,

this.wallet : Currency@Unowned,
x : Currency@Owned

⊢this

let em1 : unit
= this.wallet := x

in e1
: unit

⊣
this : Party@Owned,
g : Currency@Unowned,
x : Currency@Unowned

π3

π6 π7 ⊢ disposable(unit)
T-let

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Owned,
x : Currency@Unowned,
em1 : unit

⊢this
let em2 : unit = this.wallet.merge(g)
in pack ⊣

this : Party@Owned,
g : Currency@Unowned,
x : Currency@Unowned,

em1 : unit

π5

this.wallet ∈ Dom(∆7)
contractF ields(Party) = Currency@Owned wallet

⊢ Currency@Owned <: Currency@Owned
⊢ Currency@Owned ≈ Currency@Owned

T-pack

∆7 =

this : Party@Owned,
g : Currency@Unowned,

this.wallet : Currency@Unowned,
x : Currency@Owned,

em1 : unit,
em2 : unit

⊢this pack : unit ⊣

this : Party@Owned,
g : Currency@Unowned,
x : Currency@Unowned,

em1 : unit,
em2 : unit

π7

⊢ bound(Currency@Owned) = Currency@Owned
specializeTransΓ(merge, Currency@Owned) =

= unit merge(Currency@Owned»Unowned g) Owned»Owned { ... }
⊢ Owned <:∗ Owned ⊢ Currency@Owned <: Currency@Owned

unionFields(Party@Owned) =
= Currency@Owned this.wallet, List<NFT@Owned>@Owned this.tokens =

= Tf,decl f

fieldStatesthis(∆6;Tf,decl f) = Currency@Owned
Γ ⊢ Currency@Owned <: Currency@Owned

funcArg(Currency@Owned, Currency@Owned, Currency@Owned) = Currency@Owned
funcArg(Currency@Owned, Currency@Owned, Currency@Unowned) = Currency@Unowned

T-Inv

∆6 =

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Owned,
x : Currency@Unowned,
em1 : unit

⊢this
this.wallet.merge(g)
: unit ⊣

this : Party@Owned,
g : Currency@Unowned,
this.wallet

: Currency@Owned,
x : Currency@Unowned,
em1 : unit

π6
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π8 π9 ⊢ disposable(Currency@Unowned)
T-fieldUpdate

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Unowned,
x : Currency@Owned

⊢this this.wallet := x ⊣

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Owned,
x : Currency@Unowned

π4

Currency@Owned ⇛ Currency@Owned/Currency@Unowned
T-Lookup

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Unowned,
x : Currency@Owned

⊢this x : Currency@Owned ⊣

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Unowned,
x : Currency@Owned

π9

Currency@Unowned ⇛ Currency@Unowned/Currency@Unowned
T-this-field-ctxt

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Unowned,
x : Currency@Owned

⊢this
this.wallet
: Currency@Unowned ⊣

this : Party@Owned,
g : Currency@Owned,
this.wallet

: Currency@Unowned,
x : Currency@Owned

π8

this.wallet ∈ dom(∆2)
Currency@Owned wallet ∈ intersectF ields(Party@Owned)
Currency@Owned ⇛ Currency@Owned/Currency@Unowned

T-this-field-def

∆2 =
this : Party@Owned,
g : Currency@Owned ⊢this

this.wallet
: Currency@Owned ⊣

this : Party@Owned,
g : Currency@Owned,
this.wallet :

Currency@Unowned
π2




	Abstract
	Sommario
	Acknowledgments
	Riconoscimenti
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Typestate Programming
	1.4 Contributions
	1.5 Structure of the document

	2 The Stipula Language
	2.1 Introduction
	2.2 The language
	2.2.1 Agreement
	2.2.2 Functions
	2.2.3 Statements and Prefixes
	2.2.4 Events
	2.2.5 Expressions
	2.2.6 Assets

	2.3 Type inference system
	2.4 Properties
	2.4.1 Non-Determinism
	2.4.2 Safety
	2.4.3 Liquidity


	3 The Obsidian language
	3.1 Introduction
	3.2 The language
	3.2.1 Assets
	3.2.2 Type Declarations and Static Assertions
	3.2.3 State transitions
	3.2.4 Transactions
	3.2.5 Dynamic State checks
	3.2.6 Parametric Polymorphism

	3.3 System design and implementation
	3.3.1 The ledger
	3.3.2 Client programs

	3.4 Type system and Silica
	3.5 Properties
	3.5.1 Safety
	3.5.2 Asset Retention


	4 Comparison between Stipula and Obsidian
	4.1 Introduction
	4.2 Translation from Stipula to Obsidian
	4.2.1 Member and states declarations
	4.2.2 Agreement
	4.2.3 Methods
	4.2.4 Party interfaces
	4.2.5 Party implementations and main procedures
	4.2.6 Managing NFT variables

	4.3 Examples
	4.3.1 CoinEscrow
	4.3.2 NFTEscrow
	4.3.3 AssetSend
	4.3.4 BikeRental
	4.3.5 Bet
	4.3.6 Auction
	4.3.7 Parametric Insurance
	4.3.8 ExampleTokenBank

	4.4 Conclusions
	4.4.1 Conciseness and readability
	4.4.2 Safety


	5 Typing for asset send-statements
	5.1 Introduction
	5.2 Most used rules in proofs
	5.2.1 The PublicTransactionOk rule
	5.2.2 The T-let rule
	5.2.3 The T-disown rule
	5.2.4 The T-p rule

	5.3 Moving a token between variables
	5.3.1 Derivation tree

	5.4 Sending token to a party
	5.4.1 Silica translation
	5.4.2 Derivation trees

	5.5 Sending currency to a variable
	5.5.1 Silica translation
	5.5.2 Derivation trees

	5.6 Sending currency to a party
	5.6.1 Silica translation
	5.6.2 Derivation trees

	5.7 Conclusions

	6 Conclusions
	6.1 Related works
	6.1.1 Mungo
	6.1.2 Java Typestate Checker
	6.1.3 Generational approach
	6.1.4 Flint

	6.2 Overall Summary
	6.3 Future work

	Acronyms
	A Complete Examples
	A.1 CoinEscrow
	A.1.1 Stipula
	A.1.2 Obsidian

	A.2 NftEscrow
	A.2.1 Stipula
	A.2.2 Obsidian

	A.3 AssetSend
	A.4 BikeRental
	A.4.1 Stipula
	A.4.2 Obsidian

	A.5 Bet
	A.5.1 Stipula
	A.5.2 Obsidian

	A.6 Auction
	A.6.1 Stipula
	A.6.2 Obsidian

	A.7 Parametric Insurance
	A.7.1 Stipula
	A.7.2 Obsidian

	A.8 ExampleTokenBank
	A.8.1 Stipula
	A.8.2 Obsidian


	B Proofs for Silica transactions
	B.1 Moving a token between variables
	B.2 Sending a token to a party
	B.2.1 Statement
	B.2.2 Transaction receiveToken

	B.3 Sending currency to a variable
	B.3.1 Statement
	B.3.2 Transaction split
	B.3.3 Transaction merge

	B.4 Sending currency to a party
	B.4.1 Statement
	B.4.2 Transaction receive



