
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria dell'Informazione
Corso di Laurea in Ingegneria dell'Informazione

USER INTERFACES IN iOS AND
WINDOWS PHONE: A COMPARISON

RELATORE:
Prof. Carlo Fantozzi

TESI DI LAUREA DI:
Silvia Gandin

Anno Accademico 2012/2013

Index
1. INTRODUCTION

1.1. ..AIM OF THE ESSAY 5

1.2. ...THE EVOLUTION OF iOS 7

1.3.THE EVOLUTION OF MICROSOFT MOBILE OSes 11

1.4. ...PATENT WAR 15

2. A FUNCTIONAL COMPARISON

2.1. ...iOS 17

2.2. ..WINDOWS PHONE 19

2.3. ..FURTHER DIFFERENCES 23

3. A TECHNICAL COMPARISON

3.1. ..ADDING CONTROLS AND HANDLING EVENTS 25

3.1.1. ..Windows Phone 25

..3.1.2. iOS 29

3.2. ..SPACE MANAGEMENT 35

3.2.1. ..Windows Phone 35

LAYOUT

SCREEN SIZES

3.2.2. ..iOS 41

LAYOUT

SCREEN SIZES

3.3. ...ORIENTATION MANAGEMENT 47

3.3.1. ..Windows Phone 47

3.3.2. ..iOS 51

3.4.CHARACTERISTIC ELEMENTS OF WINDOWS PHONE 57

3.4.1. ...Application Bar 57

3.4.2. ..Panorama Control 60

3.5. ..CONCLUSIONS 63

1. INTRODUCTION

1.1. AIM OF THE ESSAY

The announcement of Windows Phone 8 in November 2012 launched a challenge
to the well-set duo Android/iOS, the leading powers in mobile operating systems.
Windows Phone user interface has surely impressed the competitors, for its fresh
and dynamic look. The question is if there is something more than this new
design, because it is certainly not enough to worry the two world leaders that set
the rules of the mobile market. It was clear that Windows Phone 7 was not as
mature as iOS or Android - multitasking was very limited, the apps were not
there, and so on - but the last version, codenamed Apollo, promises great
improvements.
This term paper contains a comparison between iOS and Windows Phone,
regarding especially the user interface, that rules the interaction between the user
itself and the device.
Chapter 1 deals with a brief description of the evolution of the two platforms
from their first appearance to the present.
In Chapter 2, the user interface principles and guidelines are put into
comparison, with a deeper analysis on the Windows Phone ones.
Chapter 3 carries out a technical examination of the management of various user
interface problems, like different screen resolutions, orientation changes, and so
on. Some Windows Phone main elements are described in detail.

5

6

1.2. THE EVOLUTION OF iOS

The iPhone was shown to the world by Apple's CEO Steve Jobs on January 10,
2007. Since then, the world of mobile computing has known a revolutionary
change, and it was Apple which set the rules for all the other competitors.
Despite many similarities - like running on the same Unix core, this new OS and
Mac OS X were clearly different, as the former was created to work specifically on
mobile devices. Although it is now referred to as iOS, when it was first introduced
it was called "iPhone OS", and changed its name only with its fourth major
release, in June 2010.
The original iPhone represented a real revolution, although it was not above
competitors considering only the standard set of features. The then established
systems Windows Mobile, Palm OS, Symbian, and BlackBerry presented in fact a
wide range of features that iPhone did not have. The Apple's device did not
support 3G, multitasking, MMS, and 3rd party apps; users could not copy or
paste text, attach arbitrary files to emails, or customize the home screen, and it
hid the filesystem, closing the access to hackers and developers.
Despite the fact that it lacked all these features, the revolution of iOS was that it
greatly focused on the user experience. Among the various characteristics in iOS
1.0, two of them were particularly innovative for the mobile world: the user
interface, and Mobile Safari Web Browser.
Before the introduction of the iPhone, smartphone screens were not touch, or
used a resistive technology which often frustrated users, forcing them to use a
stylus for more accuracy and slowing down the gestures. The iPhone changed
everything with its capacitive fast and smooth touchscreen, together with a
simple but powerful user interaction model. For the first time, a device presented
only five physical buttons, making touch the primary interaction model.

The iPhone touchscreen

The speed and directness in iOS 1.0 was something new which contributed to
attract people's interest all over the world.
Those new gestures were implemented perfectly in the Safari web browser. Steve
Jobs was right when he announced that it was well above any competition.

7

Although it had received a lot of criticism for not supporting the Flash plugin, it
was the first mobile web browser to offer an experience almost identical to that
of a full desktop browser. Unlike other mobile web browsers, Safari presented the
web fully, without the formatting problems that were common at the time.
After this revolutionary start, Apple continued meeting success by updating iOS
and presenting new devices, adding gradually what users desired and much
more.
With iOS 2 in July 2008, Apple introduced the App Store for third-party apps,
together with the iOS SDK, letting developers build applications in such a simple
and clean way that has no equal to the other platforms. The market started a
huge spread, giving users so many functional, well-designed, and advanced apps,
that still nowadays it is unrivaled.
However, the introduction of the App Store was followed by some criticism, not
ended even today. The reason is that Apple has not completely opened up iOS,
both by hiding the file system to users, and by enforcing a strict policy for
publishing apps. After it is developed, an app must be sent to Apple for approval,
with lots of limitations in terms of modifying system settings.
IOS 3 and the iPhone 3GS were released in June 2009. Like the 3GS, iOS 3 did not
have major new features, as Apple focused on adding a huge list of little
improvements to the operating system.
A further big step on Apple's race towards success was the iPad, launched in April
2010.

iPhone 4 and iPad

The first iPad met with an extraordinary success. Competitors were urged to start
developing tablets, because the iPad set new needs on people, becoming one of
the most desired devices.
By bringing iOS to the iPad, Apple did not just expand the iPhone UI, but it
designed different views to adapt to the larger screen. For example, when a list of

8

items is presented, the list is shown on a left-hand sidebar, while the selected
item is displayed on the right.

iPad UI

IOS 4 came alongside the iPhone 4, bringing FaceTime video chat, which takes
advantage of the new spectacular Retina Display, and finally multitasking.

Multitasking

Further steps were made with iOS 5 in October 2011, introducing a lot of new
features. The most innovative was Siri, the first virtual assistant on a mobile
phone, that gives users nearly the illusion of interacting with a living being. Siri
has been developed further after iOS 5, becoming more and more usable and
capable to adapt to plenty of circumstances. Users can make reservations for
dinner, check local movie listings, get sports scores, post updates to Facebook
and Twitter, among plenty of other actions.

Siri virtual assistant

9

Not less important was iCloud, the new Apple cloud service. It was certainly not
the first one, but its simplicity and usefulness was appreciated by users, forcing
competitors to find similar solutions. Another great addition was Notification
Center, that groups all notifications from apps together, and iMessage, Apple's
own system for sending free short messages.
Finally, Apple released iOS 6 on June 11th, 2012. This is the latest update so far,
and although it has not upset critics, there are few new interesting features,
together with lots of little improvements. Maps are completely revamped,
breaking the long-last relationship with Google. A notable addition is a turn-by-
turn navigation function with spoken directions. The new app has some other
promising features, but the huge quantity of errors shows that it is not yet ready
for the market, causing hard criticism from users.

iOS 6 new Maps

Apart from this major change, iOS 6 is not much different from iOS 5, showing
that Apple is more concerned about refining its OS than about taking risks and
pushing forward.

10

1.3. THE EVOLUTION OF MICROSOFT MOBILE OSes

Microsoft's history regarding mobile operating systems started with Pocket PC in
2000, but this OS was used for smartphones only in 2002. One year later
Windows Mobile came out, lasted for nearly 7 years through various updates. It is
based on the Windows CE kernel and designed to have features and appearance
somewhat similar to desktop versions of Windows.

Windows Mobile 2003 for Pocket PC

Windows Phone is supplied with a suite of basic applications developed with the
Microsoft Windows API, like Office, Internet Explorer, Windows Media Player and
Outlook.
Third parties can develop software for Windows Mobile with fewer restrictions
than those imposed by Apple. Software applications were purchasable from
Windows Marketplace for Mobile. Most early devices came with a stylus, which
can be used to enter commands by tapping on the screen. The primary touch
input technology behind most devices was resistive touchscreen, but some
devices featured also slide-out keyboards.

There were three main versions of Windows Mobile:
• Windows Mobile Professional for smartphones with touchscreens;
• Windows Mobile Standard for mobile phones without touchscreens;
• Windows Mobile Classic for personal digital assistants or Pocket PCs.

HTC was the main producer of Windows Mobile devices, and built almost 80% of
the 50 million sold from Windows Mobile launch until February 2009.
The last version of Windows Mobile is the 6.5, presented in February 2009.

11

http://en.wikipedia.org/wiki/Kernel_(computing)
http://en.wikipedia.org/wiki/Kernel_(computing)

Windows Mobile 6.5

Windows Mobile 6.5 was not in the plans of Microsoft, and its chief executive,
Steve Ballmer, described it as "not the full release [Microsoft] wanted".
In fact Microsoft began working on a major update codenamed "Photon" from
2004, but works proceeded slowly, causing the cancellation of the project. Only
in 2008 did Microsoft manage to restart the development of a completely new
mobile operating system. Several delays urged Microsoft to release firstly
Windows Mobile 6.5, that was followed only by three minor updates, made to
satisfy consumers during the transition period. In fact works fully shifted from
Windows Mobile to its successor Windows Phone, causing the new OS's lack of
support for Windows Mobile applications and devices designed for the older OS.
The new operating system was first known as Windows Phone 7 Series, and was
announced at Mobile World Congress in Barcelona on February 15, 2010. After
some criticism for the long name, it was officially shortened to just Windows
Phone 7.

Windows Phone 7 Start Screen

12

Unlike its predecessor, Windows Phone is primarily aimed at the consumer market
rather than the enterprise one. This implies to a totally new user interface,
commonly referred to as Metro, with its famous Live Tiles.
Windows Phone 7 sets rigid rules on hardware requirements, so as to provide a
consistent user experience. The most important requirements are the presence of
a capacitive 4-point multi-touch screen with WVGA (480x800) resolution, 512 MB
of RAM (lowered later), six dedicated hardware buttons (back, Start, search, 2-
stage camera, power/sleep and volume buttons), and the basic sensors, such as
the accelerometer, the ambient light sensor, the proximity sensor and the one for
Assisted GPS.
However, Windows Phone 7 was not at the same level as iOS or Android, missing
some must-have features. Windows Phone 7.5 (May 2011), codenamed Mango,
tried to fill the gap by adding a mobile version of Internet Explorer 9,
multitasking for third-party apps, tethering connection, Twitter integration and
much more. The last update for the "7.x series" is 7.8, released in January 2013,
and brings some graphical add-ons introduced with Windows Phone 8.
Although it is an interesting OS with some innovative aspects like the user
interface, Windows Phone 7 has not met great success, managing to capture only
about 3% of the smartphone market share. One reason may be that the hardware
is decent but not superlative, as it is the same of many existing Android devices.
Others believe that Microsoft has adopted a weak marketing strategy, not
exciting people at all.
Trying to learn from its mistakes, Microsoft studied the next step well. During the
works for the new OS, the company did not let much information pass to the
world outside, creating a fair sense of expectation.
On June 20, 2012, Microsoft unveiled Windows Phone 8, and released it to
consumers on October 29.

Windows Phone 8 Start Screen

13

Like in the past with Windows Mobile, Windows Phone 7.x devices cannot be
updated to the new operating system, and new applications compiled specifically
for Windows Phone 8 are not available for them.
Windows Phone 8 brings lots of innovations, becoming a more mature operating
system that can compete with the two dominant corporations, Apple and Google.
First of all, it now runs on the Windows NT kernel, the same as Windows 8,
allowing applications to be easily ported between the two platforms. It also
supports devices with larger screens and multi-core processors, near-field
communication (NFC), removable storage, has backwards compatibility with
Windows Phone 7 apps, a redesigned home screen, and more.

14

1.4. PATENT WAR

In these years Apple has undoubtedly set the standards, forcing competitors to
keep up and not lose ground. Many companies like RIM have lost the match, and
only Android manages to fight well against iOS.
This battle has soon grown a legal one, becoming the so called "patent war". In
fact Apple has patented many features of its devices, from the design to the
gestures. Google has mainly copied some of them, adding things that users
complain the iPhone misses, like a more open and liberal operating system,
widgets, customization and so on. However, it is clear to everyone that there are
many devices so similar to the iPhone that you can almost call them "clones", not
only for the design, but also for the user interface.

Similarities between iPhone 3GS and a Samsung smartphone

Finally, in August 2012, a US jury declared that Samsung, the main manufacturer
of Android's smartphones, had intentionally copied Apple, and had to pay $1.05
billion in damages. The patent war has not ended there, trials continue all over
the world, but this defeat has shown that it is time to open new roads, to explore
different solutions. Lots of people continue to express criticism about the
limitations set by Apple's patents, complaining that they would block
competition. Others say that this will lead instead to great innovations, forcing
companies to imagine other ways for doing and showing things, maybe finding
better ones.
So the patent war would not kill competition: it would only make competition
better, pushing companies to innovate, like it is already happening. And the
patent war will not allow Apple to rest on its past success: instead it will force it
to maintain its power with further innovations.
An example of how good this can be is Microsoft. Microsoft realized that it was
worthless to clone the iPhone, and that it needed to do something new. So, it has
developed Windows Phone, trying to change the way users do things, but at the
same time to create an intuitive and easy-to-use interface.

15

16

2. A FUNCTIONAL COMPARISON

2.1. iOS

In the iOS Human Interface Guidelines [Bibliography, (7)], Apple dedicates a lot of
attention to describe how the user experience should be. The key point is the
Multi-Touch screen, the innovative feature that set the success of the first
iPhone. In fact, it determined a new way of seeing a device: the display became a
sort of window through whom users physically interact with the content.
Removing any intermediary medium such as a mouse, direct manipulation of
objects on screen gives people a hight sense of control over them. For example,
to turn a page in iBook app the user has to do it almost literally, "taking" the
border of the page and moving it onto the other side.
Gestures are the most direct method for interacting with the device, and people
have become used to the standard set of them provided by Apple. Because they
are consistently present in the built-in apps, users expect to use them in all the
other apps. Tap, swipe, and pinch-to-zoom are so familiar that there is no need
of instructions on how to do basic operations.

Standard iOS gestures

This is definitely an element that marks iOS user interface even nowadays,
making it simple and intuitive to all kind of users. For the same reason, Apple
suggests developers to create clear and easy-to-use apps, avoiding too much
instructions on screen and using consistency. Consistency is a fundamental
principle in Apple's outlook, and states that developers' apps should behave as
closer as possible to the apps provided by the platform vendor. To achieve this,
Apple suggests using the standard set of controls, views and gestures. An app
should be consistent also within itself, so as not to confuse the user. Therefore
consistency contributes to maintaning the user experience as simple as possible,
uniforming paradigms and actions.

17

Another way to interact with the device in addition to gestures is voice. Vocal
input has become a real competitor to touch input with the introduction of Siri. It,
or better she, as Apple calls this feature, is like a real personal assistant, and
executes lots of actions following the user's voice commands. This creates a bond
between the user and the device, that is seen less and less like a machine, and
more and more like an always-available companion.

18

2.2. WINDOWS PHONE

The most notable difference between Windows Phone and iOS is the user
interface. Microsoft has worked a lot on it, trying to impress people with
something completely new. The key word is undoubtedly "live": everything is up-
to-date, vital, in a continuos flux of information. The so-called Start Screen is
made of Live Tiles, colored squares of various dimensions that replace the regular
and symmetric icons of iOS home screen, called Springboard.
Microsoft user interface is known as Metro UI, although it has recently changed
its name to Modern UI, due to legal issues. The principle of the Metro UI takes
inspiration from the Swiss Movement of the 1960s, which meant to "communicate
to people through design, while being different yet direct". It is also partly
inspired by the clear and effective signs commonly found in public transport
systems.

Metro design manifest

The Metro design was used for the first time in Windows XP Media Center product
in 2005. Microsoft tried to create an interface based more on typography and less
on chrome and buttons. Microsoft also progressively started to redesign the Xbox
360 interface into a more Metro-like design.

Xbox 360 Dashboard

19

But the real forerunner of Windows Phone were definitely Zune devices. In 2006
the Zune 30 device was released and belonged to the early generation of music
players. Next generations that followed up, especially Zune HD, increasingly
featured Metro interface, designating it as Microsoft official design language.

Zune HD interface

Both the new operating systems, Windows Phone 8 and Windows 8, fully deploy
Metro design, and especially for the last one it is a great change. Its new Start
Screen resembles the home screen of Windows Phone. For the first time the
classic desktop is not the primary user interface any more, although it is available
through a tile.

Windows 8 Start Screen

Microsoft wished its new products to stand out from the other mobile platforms,
which all followed a general template of having pages of icons and perhaps some
widgets. Microsoft wanted a simple but iconic UI. By deleting all superfluous
elements, the interface becomes more clear and polished, unique. Instead of
being just the way to reach content, the interface shows it directly.
The key design principle of Metro is therefore better focused on the data of
applications, counting on typography more than on graphics, "content before
chrome". The results are large texts that catch the eye, in a modified version of
the Segoe font, which was inspired by Helvetica and the Swiss Movement.

20

For example, font is used in different sizes and weights to convey structured
information. Not all data are the same, and through typography their importance
is shown clearly. For this reason bullet points are unnecessary, and therefore not
used in Metro.
Consequently, Metro design has to follow a strict organization. Missing almost
every graphical layout element, the content grid is made up of only the content
itself. So, the designer has to select carefully the elements on which to build the
content path, in a hierarchy based on importance.
If wrong elements are chosen, the content will not be easily reachable by the
user. Differences with iOS, or worse with Android, are evident in this screenshots.

Mail app in iOS, Windows Phone 8 and Android

The key element of Windows Phone interface is the Live Tile, which embodies all
these principles. It is a visual shortcut for an app or its content that users can set
in the Start view, in a procedure called "pinning". A Live Tile is something more
than an icon, because it can show information in real time - from emails to
photos to weather to travel progress - without having to click on applications. For
instance, weather forecasts can be shown dynamically on a dedicated tile.

A weather Live Tile

Live Tiles are a new alternative to iOS static icons and Android big intrusive
widgets. Comparing to iOS, they perfectly show the new principles under the user
interface: liveliness and motion. While the only change in iOS icons are small
counter badges, Live Tiles bring plenty of information, without the need of any
direct user interaction.

21

22

2.3. FURTHER DIFFERENCES

The launch of Windows Phone 8 should concern Apple, because users begin to
get tired of the same static Springboard. Although it works well, is simple and
polished following Apple design principles, it has remained almost unchanged
since the launch of the first iPhone.

Springboard evolution in all iPhone models

The Springboard exhibits pages of icons, seen by swiping horizontally, and a
fixed dock at the bottom of the screen, with four main icons. Users can change
their positioning, and group apps into folders, but here the customization ends.
The difference with the continuos-changing and customizable Live Tiles is
evident.
Besides the contrast between the static nature and vitality of the two user
interfaces, another important difference is that Metro is “authentically digital”, in
contrast to Apple's skeuomorphic view. Skeuomorphism, as applied in digital
interfaces, aims at designing elements looking like real-world objects. An
exaustive example is provided by Apple, that designed its iBook, Calendar, Notes
and Reminders apps to look like their physical counterparts.

Contacts app on iPad

23

Other metaphors in iOS are the sliding on-off switcher, that resembles the real
object, or the spinning picker wheel for selecting the date.
But there are lots of other examples in many digital applications. The shutter
clicking sound that camera apps make when taking a photo is totally fake, there's
no real mechanical movement that makes it. And the little bar under the F and J
keys, on the iPad keyboard, doesn't help blind users like in the real keyboard,
because of course the touchscreen lacks protrusions.
Apple says that "the more true to life your application looks and behaves, the
easier it is for people to understand how it works and the more they enjoy using
it" [Bibliography, (7)]. However, when users meet digital elements looking like
objects they are used to in real life, they might become confused if they act
differently than expected.
Microsoft believes in something which is totally against skeuomorphism. Metro
principles do not try to represent real things on a screen, but convey the concept
in a way which is appropriate to the digital environment. Therefore, a list of
contacts does not look like a real address book, but instead like one designed
specifically for a phone or a computer.
These different approaches reflect the controversy about this design principle.
For Apple, skeuomorphism improves usability and familiarity; others, like
Microsoft, claim that it is unnecessary and ineffective.

24

3. A TECHNICAL COMPARISON
3.1. ADDING CONTROLS AND HANDLING EVENTS

When starting to create an app, the UI must be set up with controls objects such
as buttons, text boxes and sliders. The typical process is to add the control, then
to set properties such as dimensions or color, and finally to assign actions to the
control event handlers. While Windows Phone uses Visual Studio as its integrated
development environment (IDE), iOS has Xcode and its visual editor Interface
Building. Both IDEs help developers to design their apps, reducing the amount of
code needed. For example when a new project is set up, choosing one of the
various templates, Interface Building shows the Storyboard file and the main View
Controller is instantiated. The same happens with Visual Studio, where a new
project comes with the main files already present, like App.xaml and
MainPage.xaml.

3.1.1. Windows Phone

There are three ways for adding and managing a control to an app UI:
• Using the Toolbox in Visual Studio.
• Using the XAML view.
• Writing code programmatically.

Visual Studio 2012

25

Visual Studio presents many instruments for developing the UI, like the Toolbox,
Design view, XAML view, and the Properties window.
The Visual Studio Toolbox shows a list of all the controls that can be added to the
UI.

Visual Studio Toolbox

When a control is double-clicked in the Toolbox, or dragged to the Design view,
it is also added to the XAML view.
This is an example that shows how to add a Button in XAML and in code:

XAML
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Button Height="72" Width="160" Content="Click Me"/>
</Grid>

C#
Button myButton = new Button();
myButton.Width = 160;
myButton.Height = 72;
myButton.Content = "Click Me";
// Attach it to the Grid named ContentPanel as a child
ContentPanel.Children.Add(myButton);

Every control is referenced by a unique name, that can be changed in the Visual
Studio Properties window or in XAML. In the Properties window, the name can be
set in the Name text box.

Properties window

In the XAML view, the Name field must be edited.

26

To change the other control properties, like the appearance or the content, a
similar sequence of steps is needed. For example, to set the foreground color for
a TextBox, the Properties window can be used.

The Foreground property can be changed also in the XAML view.

Finally, it can be set directly in code.

Changing properties such as width, height and margin can be done simply by
dragging the control in Design view.

Design view

XAML
<TextBox x:Name="MyTB" HorizontalAlignment="Left" Height="72"
Margin="10,10,0,0" Text="TextBox" VerticalAlignment="Top" Width="460"

C#
SolidColorBrush scb = new SolidColorBrush(Colors.Red);

MyTB.Foreground = scb;

27

User interaction with controls generates events. For example, when the user
clicks nearly every control, a Click event is raised, and it can be managed with a
method called an event handler. An event handler can be created in all the three
ways mentioned above.
The Events tab of the Properties window lists all the events available for the
selected control. To create an event handler for a specific user action, the event
name must be set.

This will create the event handler in the code editor, and the developer can then
choose there what to do. The following code edits the Text property of a
TextBlock named MyBlock to "You entered text!" when text in the TextBox
MyTB is changed. In fact this change raises the TextChanged	 event, handled by
the MyTB_TextChanged method.

To create an event handler in XAML, the event name and the event handler have
to be specified. The following XAML shows the same event and event handler
seen before.

XAML
<TextBox x:Name="MyTB" TextChanged="MyTB_TextChanged"
HorizontalAlignment="Left" Height="72" Margin="10,10,0,0" Text="TextBox"
VerticalAlignment="Top" Width="460" Foreground="Red"/>

The third way to do that is by code, as shown in the following line.

C#
MyTB.TextChanged +=new TextChangedEventHandler(MyTB_TextChanged);

C#
private void MyTB_TextChanged(object sender, TextChangedEventArgs e)
{ MyBlock.Text = "You entered text!"; }

28

3.1.2. iOS

Adding and managing a control can be done in a declarative way, or in a
programmatic one. Interface Builder has an Object Library toolbar, that lists all
the available controllers, like the Table View and Tab Bar ones, controls, such
as labels and text fields, and other objects.

Xcode

Adding a control, for example a button, to the view can be done by dragging it
simply from this list, or by code.

Every control has a list of properties, and editing them in code requires specific
methods. For example, to set a title to the previously created button the following
line of code must be added.

The list of properties can be also edited easily in the Attributes Inspector.

UIButton *btn = [UIButton buttonWithType:UIButtonTypeRoundedRect];
//The parameters of CGRectMake are x-y coordinates, width and height.
 btn.frame = CGRectMake(117,252,86,44);
//Add the button to the view.
 [self.view addSubview:btn];

[btn setTitle:@"Click me" forState:UIControlStateNormal];

29

Attributes Inspector

Changing properties such as width, height and margins can be done simply by
dragging the control in the view, by creating a new Frame in code, or by editing
them in the Size Inspector.

Size Inspector

IOS development follows some key methodologies, called design patterns. The
Target-Action one defines how the view and controls created in Interface Builder
interact with the code written in the view controllers classes. There are two main
keywords: IBAction and IBOutlet. An IBAction represents a method in the
view controller that is called when the user interacts with a specific object of the
view. An IBOutlet represents a handler to a view object that allows
modifications to the control properties in the view controller.

30

In the following example, when the user taps the button a "change the label text"
message (the action) is sent to the view controller (the target). In the view
controller the IBAction method buttonPressed edits the title property of the
label, through an IBOutlet. This application function can be implemented in the
following steps.

1. In a new project created with the Single View Application template, add a
button and a label.

2. Set the titles of the button and the label to "Click me" and "You have not
pressed the button yet" respectively.

3. In the ViewController.h file declare the IBOutlet and the IBAction.

#import <UIKit/UIKit.h>

@interface ViewController: UIViewController

@property (strong, nonatomic) IBOutlet UILabel *label;
-(IBAction)buttonPressed:(id)sender;

@end

4. In the ViewController.m file implement the buttonPressed method.

#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController

-(void)buttonPressed:(id)sender
{
 _label.text = @"You have pressed the button";
}

- (void)viewDidLoad
{
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

@end

5. Return to the MainStoryboard.storyboard file, hold down the Control key on
the keyboard and draw a line from the View Controller icon to the label
object.

31

Connecting the IBOutlet to the Label control

6. In the black list of the available IBOutlet, choose "label".

7. Select the button and display all the events that can be triggered in the
Connections Inspector. Draw a line from the Touch Up Inside event to the
View Controller icon, and choose the buttonPressed method.

Connecting the event to the IBAction

32

8. Now the connections are established, and when the user click the button, the
label changes its text.

Connecting an action to a control can be done also programmatically. In the
previous example, it is required to add an IBOutlet for the button, and to write
the following code in the viewDidLoad method of the ViewController.m file.

- (void)viewDidLoad
{
 [super viewDidLoad];
 // "button" is the name of the IBOutlet declared in ViewController.h
 [_button addTarget:self
 action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchUpInside];
}

33

34

3.2. SPACE MANAGEMENT

The main asset of current smartphones is undoubtedly their screen. It represents
the primary interaction medium between the user and the device, and therefore
particular care must be paid on how content looks on it.
The term "layout" refers to the process of positioning and resizing objects on the
app interface, which is fundamental to give the app a polished and ordinate view.
Both Windows Phone and iOS try to help developers with simple yet powerful
tools, called respectively "dynamic" and "Auto" layout. They are particularly
important for managing different screen sizes and orientation changing.

3.2.1. Windows Phone

LAYOUT
Windows Phone provides two types of layout, an absolute and a dynamic one.
In the absolute layout, the x/y coordinates of the controls are explicitly set. The
container supporting this layout is the Canvas, and objects are positioned by
using the Canvas.Left and Canvas.Top properties. They represent
respectively the distance from the left and the top margin of the Canvas area.
This layout is not usually recommended because it does not adapt to different
screen resolutions, or orientation changes.
The dynamic layout, instead, takes care of these problems, positioning controls
in relation with their parents, and with one another. Therefore, objects rearrange
their position and dimensions automatically when a change occurs.
Instead of explicit dimensions, it is recommended to set the Height and Width
properties to auto, or to *. These are special values for automatic and
proportional sizing. Auto sizing allows controls to fit their content, even if it
changes. Star sizing distributes the space available using weighted proportions.
For example, if the values * and 3* are assigned to two rows of a grid layout in
the height property, the second row will be three times taller than the first one.
Another suggestion is to set the MinWidth and MinHeight properties for
controls containing text, so that the text is always readable.
The two containers supporting dynamic layout are the StackPanel and the
Grid.
In a StackPanel layout, the child elements are arranged into a single line, that
can be oriented horizontally or vertically. By default the Orientation property
is vertical.
This is a simple example of how the StackPanel works:
XAML
<StackPanel Margin="20">
 <Rectangle Fill="Red" Width="50" Height="50" Margin="5"/>
 <Rectangle Fill="Blue" Width="50" Height="50" Margin="5"/>
 <Rectangle Fill="Green" Width="50" Height="50" Margin="5"/>
 <Rectangle Fill="Purple" Width="50" Height="50" Margin="5"/>
</StackPanel>

35

Example of a StackPanel

The Grid is the default layout panel, and it is the most flexible one. As its name
suggests, it organizes the area in rows and columns. Their number and size can
be specified, and controls can be placed in the resulting cells.
The following is an example of a grid with three rows and two columns:

The first two rows will size to fit their content, while the third one will fill up the
available space. The second column is two times the first one.
To place a control in a specific cell, its position has to be specified:

XAML
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="auto"/>
 <RowDefinition Height="auto"/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
</Grid>

XAML
<Grid>
 <!--Row and column definitions-->
 <Button Content="1st row 2nd column" Grid.Row="0" Grid.Column="1"/>
</Grid>

36

SCREEN SIZES
While Windows Phone 7.x supported only the WVGA resolution (480 x 800 pixels),
Windows Phone 8 adds also WXGA (768 x 1280) and 720p (720 x 1280). The two
first resolutions have the same aspect ratio, 15:9, while the aspect ratio of the
third is 16:9.

Windows Phone 8 supported resolutions

This means that with the new OS the developer has to take care of adapting apps
to different resolutions. In fact, what seems perfectly disposed with a particular
aspect ratio, may appear completely different with the other one.
The best solution is to use a dynamic layout instead of an absolute one, deleting
margins and coordinates that change on different resolutions, and positioning
controls with the auto and star sizing. This lets objects stretch and fit
automatically on the screen while maintaining their relative positions. It is
important that controls do not shrink under 8 mm, because they will become
hard to press for users: to avoid this, developers can use the MinHeight and
MinWidth properties seen before.
However, in some cases it is necessary to load different images (like
backgrounds) for each resolution. The following example shows how to detect
the screen size and then load the correct file at run time:
1. In the project file, add the images for WVGA, WXGA and 720p resolutions. In

this example, the files are MyImage.screen-wvga.png,
MyImage.screen-wxga.png, and MyImage.screen-720p.png.

2. Set the Copy to Output Directory property of the images to copy always.

3. Add a class named ResolutionHelper.cs to the project, and then write the
following code into the new class.

37

C#
public enum Resolutions { WVGA, WXGA, HD720p };

public static class ResolutionHelper
{
 private static bool IsWvga
 { get { return App.Current.Host.Content.ScaleFactor == 100; } }
 private static bool IsWxga
 { get { return App.Current.Host.Content.ScaleFactor == 160; } }
 private static bool Is720p
 { get { return App.Current.Host.Content.ScaleFactor == 150; } }
 public static Resolutions CurrentResolution
 {
 get
 {
 if (IsWvga) return Resolutions.WVGA;
 else if (IsWxga) return Resolutions.WXGA;
 else if (Is720p) return Resolutions.HD720p;
 else throw new InvalidOperationException("Unknown resolution");
 }
 }
}

4. Add a class named MultiResImageChooser.cs that contains the following
code. This class uses the ResolutionHelper.cs class already created to
determine the resolution of the device. Then, it returns a new BitmapImage
created from the URI of the image that corresponds to the detected resolution.

using System.Windows.Media.Imaging;

public class MultiResImageChooserUri
{
 public Uri BestResolutionImage
 {
 get
 {
 switch (ResolutionHelper.CurrentResolution)
 {
 case Resolutions.HD720p:
 return new Uri("Assets/MyImage.screen-720p.jpg",
UriKind.Relative);
 case Resolutions.WXGA:
 return new Uri("Assets/MyImage.screen-wxga.jpg",
UriKind.Relative);
 case Resolutions.WVGA:
 return new Uri("Assets/MyImage.screen-wvga.jpg",
UriKind.Relative);
 default:
 throw new InvalidOperationException("Unknown resolution");
 }
 }
 }
}

38

5. In MainPage.xaml, add an Image element and bind its Source property to the
URI returned by the MultiResImageChooser.cs class.

XAML
<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Image Source="{Binding BestResolutionImage,
 Source={StaticResource MultiResImageChooser}}"/>
</Grid>

6. In the <Application> element of App.xaml, add the following xmlns
namespace mapping.

XAML

xmlns:h="clr-namespace:MultiResSnippet"

7. In App.xaml, add the following application resource.

For splash screens it is advisable to use a single image file named
SplashScreenImage.jpg that is 768 × 1280 pixels in size (WXGA). It is the
best solution since it has the same aspect ratio as WVGA with higher quality, and
in 720p resolution it only stretches a bit. If more precision is needed, the
developer must add images with the following file names in the root folder of the
app project:

• SplashScreenImage.Screen-WVGA.jpg
• SplashScreenImage.Screen-WXGA.jpg
• SplashScreenImage.Screen-720p.jpg

The WXGA resolution is suggested also for Tiles and Assets such as graphics,
video, audio and icons.

XAML
<!--Application Resources-->
<Application.Resources>
 <h:MultiResImageChooser x:Key="MultiResImageChooser"/>
</Application.Resources>

39

40

3.2.2. iOS

LAYOUT
With iOS 6, Apple has made an important change in the way developers design
the user interface of their apps, specifically regarding layout. The new feature is
called Auto Layout, and replaces the old system of Auto Sizing, informally known
as "springs and struts" model. This deprecated method consisted of rules that
relate controls to their superviews. "Springs" stand for the height and width of the
object, that can grow or lower depending on the superview. "Struts" stand for the
fixed or flexible margins, that determine the distance from the edges.

The old Auto Sizing system

However, Auto Sizing had strong limits, and a considerable amount of coding was
often necessary for complex layouts.
Auto Layout, instead, creates relationships not only between the elements and
the view, but also among the objects themselves. This is permitted by the use of
constraints, that are real objects of the NSLayoutConstraint class, and
therefore have attributes that can be changed. A costraint specifies a geometric
relationship between two objects, for example declaring that they must have the
same width, or that there must be a 20-point horizontal padding between them.
Auto Layout considers all the constraints that have been set and calculates the
best layout that follows all of them. This is called "designing by intent", because
the developer describes only what they want, in a descriptive way, without the
need to specify how it should be accomplished, by explicit coordinates.
Auto Layout is primarily aimed at managing different screen sizes and orientation
changes correctly, but it is helpful also for internationalization. In fact, it has
always been a hard work to deal with other languages, some of them having long
words, and labels and buttons have to fit them correctly. With iOS 6, it is much
easier, because many controls have an "intrinsic content size". This means that
they calculate their size automatically, based on their content. For example, a
label arranges its width in relation with the text it contains.
By default, Auto Layout is already active, and to turn it off it must be unchecked.

41

Although constraints can be created by code, the recommended approach is to
use Interface Building. Simply dragging an object on the view makes constraints
visible as blue I-beam, that connect it to the edges or to other objects. Then,
constraints can be edited by selecting them, and changing their properties in the
Size Inspector.

Size Inspector

The following example shows how to deal with constraints, and the usefulness of
the intrinsic content size. A control is positioned in the center of the view, and
another one on top of the screen, aligning the left edges. If the "Size to fit
content" costraint is set, when the first control expands the second one will
follow it in a dynamic way.

1. Create a new project in Xcode based on the Single View Application template.
2. Position a Text Field in the center of the view, following the guide lines.

This creates three constraints, visible in the Size inspector.

The visual editor with the guide lines, and the created constraints in the Size Inspector

3. Write something in the Text Field, and select "Size to Fit Content" on the
Editor menu, deleting the Width constraint.

42

The Editor menu, with the Size to Fit Content constraint

4. Put a Label at the top of the view, and select both the Text Field and the
new control.

5. Select "Align" and "Left edges" on the Editor menu, or simply click the Align
button at the bottom of the canvas area.

Aligning the left edges of the Label and the Text Field

6. Now, if a longer text is written in the Text Field, the "Size to fit content"
costraint adapts the control width to show the entire text, and the Label will
move to maintain the "Aligning left edges" costraint.

43

The Label moves left to maintain the Aligning constraint

7. All the constraints are visible also on the Document Outline panel.

Document Outline panel

44

SCREEN SIZES
Until the introduction of the iPhone 5, all its predecessors shared a 3.5-inch
touchscreen, with a 3:2 aspect ratio; the only difference was the resolution: since
the introduction of the Retina display with the iPhone 4, it is 640 x 960 pixels,
exactly two times the old one. The new iPhone 5 has a 4-inch screen, with an
aspect ratio of 16:9 and a 1136 × 640 resolution.
Dealing with different resolutions is simplified by Apple's distinction between
pixels and points. Excluding the latest iPhone, the screens of the other models
can be divided into standard-resolution, and high-resolution. Using points
instead of pixels makes development almost device-independent, letting
developers specify the position and size of controls in a relative way. The
conversion from points to pixels is then handled by the system frameworks, that
use a scale factor of 1.0 for standard-resolution and one of 2.0 for the high-
resolution.
The UIKit framework, for example, takes care of rendering text and standard
controls, like buttons, sliders, table views and so on, correctly. The developer is
only required to provide two images, one for each resolution, and UIKit
automatically chooses the correct one.
The naming convention states the following rules:

• Standard: <ImageName>.<filename_extension>
• High-resolution: <ImageName>@2x.<filename_extension>

It is very important that the <ImageName> is the same, because it is needed to
refer to an image in code. For example, with the following code the UIImage
class will search for the high-resolution file if it is supported by the device.

There is a method to detect the screen size, in points:

For an iPhone 5 the result is 568, while for all the other models it is 480.
This method is useful for loading different images with different resolutions, but
generally Auto Layout does the hard work. In fact to support the iPhone 5, it is
enough to add a launch image called "Default-568h@2x.png", with a
resolution of 1136 x 640. Then, if Auto Sizing or Auto Layout are set correctly,
the app will work well on all resolutions.

Objective-C

UIImage *image = [UIImage imageNamed:@"button.png"];

[[UIScreen mainScreen] bounds].size.height

45

46

3.3. ORIENTATION MANAGEMENT

When the user turns to device, the accelerometer detects the change and the
system sends a notification to the app. If the notification is correctly handled, the
app will turn its interface together with the screen. There are different techniques
to rearrange the content when a change occurs, and it is important to find the
right one for the best result, depending on the case. A great help is given by the
automatic layouts (dynamic and Auto) that both OSes have. The next paragraphs
explain these different techniques and when to use them.

3.3.1. Windows Phone

Windows Phone supports three screen orientations: Portrait, Landscape Left and
Landscape Right. The default orientation is Portrait, and to add landscape
support the SupportedOrientations property must be set to
PortraitOrLandscape in the MainPage.xaml. There is no option to specify
left-only or right-only landscape orientation, so both must be implemented.
In these two landscape orientations, the Status Bar and the Application Bar
remain on the side of the screen that has the Power and the Start button,
respectively. Thus, the Status Bar changes its position on the left of the screen
when the orientation is Landscape Left, and on the right when it is Landscape
Right.
To manage all orientations it is necessary to use a dynamic layout. This lets the
app adapt its content and guarantees the best user interaction. Two suggested
techniques are the scrolling technique and the grid layout one.
The scrolling technique is used when the app content does not fit on the screen
when the orientation switches to landscape. It consists in a StackPanel control
that is placed within a ScrollViewer control. The StackPanel orders the
elements one after another and the ScrollViewer control enables scrolling
through the StackPanel.
To use the scrolling technique, some important steps must be followed:

• Change the SupportedOrientations property of the page to
PortraitOrLandscape.

• Replace the default Grid in the Content Panel section with a
ScrollViewer and a StackPanel.

The following example shows how to use this technique.

47

The output shows that the portrait orientation does not require scrolling, while
the landscape one does.

The scrolling techinque

The grid layout technique, as its name suggests, uses a Grid to position UI
elements. When the orientation changes, controls are programmatically
repositioned into different cells of the Grid.

Using the grid layout technique requires the following steps:

• Change the SupportedOrientations property of the page to
PortraitOrLandscape.

• Use a Grid for the content panel (as set by default).
• Create an OrientationChanged event handler and add code to reposition

elements in the Grid.

XAML
<ScrollViewer x:Name="ContentGrid" Grid.Row="1"
VerticalScrollBarVisibility="Auto">
 <!--You must apply a background to the StackPanel control or you will
be unable to pan the contents.-->
 <StackPanel Background="Transparent">
 <Button Content="This is a Button"/>
 <Rectangle Width="100" Height="100" Margin="12,0"
HorizontalAlignment="Left" Fill="{StaticResource PhoneAccentBrush}"/>
 <Rectangle Width="100" Height="100" HorizontalAlignment="Center"
 Fill="{StaticResource PhoneAccentBrush}"/>
 <Rectangle Width="100" Height="100" Margin="12,0"
HorizontalAlignment="Right" Fill="{StaticResource PhoneAccentBrush}"/>
 <CheckBox Content="A CheckBox"/>
 </StackPanel>
</ScrollViewer>

48

http://msdn.microsoft.com/en-us/library/windowsphone/develop/system.windows.controls.grid(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/system.windows.controls.grid(v=vs.105).aspx

The following example creates a 2 x 2 Grid to position an image and a collection
of buttons.
XAML
<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>
 <Image x:Name="Image" Grid.Row="0" Grid.Column="0" Stretch="Fill"
Source="img.jpg" HorizontalAlignment="Center" Height="300" Width="500"/>
 <StackPanel x:Name="buttonList" Grid.Row="1" Grid.Column="0"
HorizontalAlignment="Center">
 <Button Content="Action1"/>
 <Button Content="Action2"/>
 <Button Content="Action3"/>
 <Button Content="Action4"/>
 </StackPanel>
</Grid>

The output shows how the position of the buttons changes according to the
orientation.

The grid layout techinque

49

50

3.3.2. iOS

IOS can support four orientations: portrait, upside down, landscape left and
landscape right. By default, the upside down orientation is not selected, and its
use is deprecated.
When an orientation change occurs, the system sends a
UIDeviceOrientationDidChangeNotification that UIKit framework
collects, and the interface is changed automatically if the new orientation is
supported.
With iOS 6 autorotation techniques are changed, and there are two new important
methods: "shouldAutorotate" and "supportedInterfaceOrientations".
The following example shows how to use them.

- (BOOL) shouldAutorotate
{
 //Returns whether the view controller’s contents should auto rotate
 return YES;
}

- (NSUInteger)supportedInterfaceOrientations
{
 //Returns all of the interface orientations that the view controller
supports.
 return UIInterfaceOrientationMaskAllButUpsideDown;
}

If the first method returns "NO", the second one is not even called, and no
rotation occurs.
Auto Layout is a powerful instrument for managing orientation changes.
Positioning controls in a relative way lets automatic rearrangement takes place
when switching to a new orientation. With the right constraints, layout can adapt
to the device rotation correctly, stretching or shrinking objects if needed.
There are basically two suggested techniques to avoid hard-coded repositioning
of elements, when Auto Layout is not sufficient: using a ScrollView, or creating
an alternative interface.
The ScrollView technique is used when the content does not fit in the
Landscape mode. To avoid this problem, the ScrollView lets the user scroll
vertically the page and see all the content.
The following example shows how to use this technique.

51

1. In Interface Builder, add a ScrollView over the standard View.

The ScrollView in the visual editor

2. Starting from the top, add a Button, three ImageViews, and a Switch. Set
the Background of the ScrollView to the Scroll View Textured color, and
those of the ImageViews to red.

The view with the various controls

52

3. Without any more work, Auto Layout arranges the layout in the Landscape
mode properly. Simply scroll the view to see all the content.

The view in the Landscape mode

The second technique is used when the layout of the landscape mode is quite
different from the portrait one. Another method is to modify the position of
controls programmatically, but it requires a lot of hard-coding and it is
suggested only for little changes to the layout.
To create an alternative interface two view controllers are needed, one for a
portrait-only orientation, and the other for a landscape-only orientation. The
primary view controller must be registered for the
UIDeviceOrientationDidChangeNotification, and takes care of
presenting or dismissing the other view controller when an orientation change
occurs. To achieve this a particular connection is used, called "Segue", which
represents a transition from one view to another.

The following example shows how to use this technique.

1. Create a new project in Xcode based on the Single View Application template.

2. Add another View Controller. Select the Landscape orientation in the
Attributes Inspector for the new View Controller, and the Portrait
orientation for the first one.

3. Select the primary View Controller, press "ctrl" and drag a line to the
second View Controller. This will create a Segue connection.

53

The Segue connection

4. Set the Segue Identifier as "DisplayAlternateView".

The Segue Indentifier

5. Write the following code in the primary ViewController.m file.

BOOL isShowingLandscapeView;

@implementation ViewController

//Other setup methods.

- (void)awakeFromNib
{
 isShowingLandscapeView = NO;
 [[UIDevice currentDevice]
beginGeneratingDeviceOrientationNotifications];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(orientationChanged:)
 name:UIDeviceOrientationDidChangeNotification
 object:nil];
}

54

- (void)orientationChanged:(NSNotification *)notification
{
 UIDeviceOrientation deviceOrientation = [UIDevice
currentDevice].orientation;
 if (UIDeviceOrientationIsLandscape(deviceOrientation) && !
isShowingLandscapeView)
 {
 [self performSegueWithIdentifier:@"DisplayAlternateView"
sender:self];
 isShowingLandscapeView = YES;
 }
 else if (UIDeviceOrientationIsPortrait(deviceOrientation) &&
isShowingLandscapeView)
 {
 [self dismissViewControllerAnimated:NO completion:nil];
 isShowingLandscapeView = NO;
 }
}

@end

6. Add an ImageView and four buttons for each View, with a different layout.
Running the app in the Simulator shows that when an orientation change
occurs, the alternate landscape view is presented or dismissed.

The portrait view and the landscape one

55

56

3.4. CHARACTERISTIC ELEMENTS OF WINDOWS PHONE

3.4.1. Application Bar

The Application Bar is a Windows Phone feature that gives users quick access to
frequently used actions. Using the default Windows Phone App Bar in the
development of an app provides consistency in the user experience.
The Application Bar consists in a row of icons and an ellipsis at the bottom of the
screen. Clicking the ellipsis shows the buttons labels and a menu item list if
available. The App Bar automatically adapts to orientation changes: when the
device turns to landscape, the App Bar is shown vertically on the side of the
screen, minimizing the waste of space.
There are three different visualizations: the mini size, the default size, and the
extended size, which appears after clicking the ellipsis. The following images
show each of them, without the appearance of the menu item list.

Mini App Bar

Default App Bar

Extended App Bar

If the icon buttons are not enough, the developer can add a small list that is
shown when the ellipsis is clicked.

Menu items

This list displays one or more text-based menu items, representing actions less
important than the icon buttons ones, or more difficult to explain in a visual way.
By default, the text of the menu items is set to lower case, and they are not
organized in a hierarchical way: each of the items is independent from the others.

57

XAML is the suggested way to create an Application Bar, because sample XAML
code is already available in the page templates.

XAML
<!--Sample code showing usage of ApplicationBar-->
<!--<phone:PhoneApplicationPage.ApplicationBar>
 …
</phone:PhoneApplicationPage.ApplicationBar>-->

The developer is required to uncomment the sample code and to add the
necessary buttons and items. The following example shows the XAML code for an
App Bar with 2 icon buttons and 2 menu items:

XAML
<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">
 <shell:ApplicationBarIconButton IconUri="/Images/btn1.png"
Text="Button1"/>
 <shell:ApplicationBarIconButton IconUri="/Images/btn2.png"
Text="Button2"/>
 <shell:ApplicationBar.MenuItems>
 <shell:ApplicationBarMenuItem Text="MenuItem 1"/>
 <shell:ApplicationBarMenuItem Text="MenuItem 2"/>
 </shell:ApplicationBar.MenuItems>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Then the developer can set the Application Bar properties, remove or add more
icon buttons, set the icon images and the buttons or menu items texts.
The icon buttons and menu items obviously support click events that must be
handled by the code as seen in section 3.1. The following example shows that
when the user click the Save icon button, the Save_Click method, implemented
in C#, is called.
XAML
<shell:ApplicationBarIconButton Click="Save_Click" IconUri="/Images/
save.png" Text="Save"/>

The Application Bar can be created also by using only C# code. The following are
the main steps to take for customizing one.

1. Open the code-behind file for your page in the editor.
2. Initialize the App Bar object adding the following statement after the call to

InitializeComponent.

C#
using Microsoft.Phone.Shell;
public MainPage()
{
 InitializeComponent();
 ApplicationBar = new ApplicationBar();
}

58

3. Set the default mode and other properties.

C#
ApplicationBar.Mode = ApplicationBarMode.Default;
ApplicationBar.Opacity = 1.0;
ApplicationBar.IsVisible = true;
ApplicationBar.IsMenuEnabled = true;

4. Create the desired number of icon buttons, set the icon images and button
text, and then add them to the Application Bar. Do the same for optional
menu items.

C#
ApplicationBarIconButton button1 = new ApplicationBarIconButton();
button1.IconUri = new Uri("/Images/YourImage.png", UriKind.Relative);
button1.Text = "button 1";
ApplicationBar.Buttons.Add(button1);

ApplicationBarMenuItem menuItem1 = new ApplicationBarMenuItem();
menuItem1.Text = "menu item 1";
ApplicationBar.MenuItems.Add(menuItem1);

5. For each icon button and menu item, identify the event to call when the user
clicks, creating a new EventHandler.

C#
button1.Click += new EventHandler(button1_Click);
menuItem1.Click += new EventHandler(menuItem1_Click);

6. Finally, specify what to do when the user clicks.

C#
private void button1_Click(object sender, EventArgs e)
{ //Do work for your application here. }

private void menuItem1_Click(object sender, EventArgs e)
{ //Do work for your application here. }

59

3.4.2. Panorama Control

A panoramic app is characterized by an horizontal expansion, beyond the screen
borders, and it is a peculiarity of Windows Phone interface.

Panoramic app

It is managed via a Panorama control, that constitutes the base for the app and
shows the background image and the title, and multiple PanoramaItem
controls, that represent the various sections and host the contents. Other
elements that can be present or not are the titles of the sections ("items").
Navigation through the sections is possible with horizontal scrolling, and
gestures are implemented by default, like for other hosted controls such as lists.

There are two main ways for creating a panorama experience: starting directly
from the template named Windows Phone Panorama App, or adding a Windows
Phone Panorama Page to an existing project.

The following example will show how to implement the second solution.

1. After opening an existing project, right-click it in Solution Explorer, and add
a new item called Windows Phone Panorama Page, with the default name
PanoramaPage1.xaml.

2. This page can be launched from the MainPage by an hyperlink, or can be set
as the first page when the app starts.

3. By default the following code is already present in the PanoramaPage1.xaml,
which creates a single Panorama control and two PanoramaItem controls.

60

XAML
<!--LayoutRoot contains the root grid where all other page content is
placed-->
<Grid x:Name="LayoutRoot">
 <controls:Panorama Title="my application">
 <!--Panorama item one-->
 <controls:PanoramaItem Header="item1">
 <Grid/>
 </controls:PanoramaItem>
 <!--Panorama item two-->
 <controls:PanoramaItem Header="item2">
 <Grid/>
 </controls:PanoramaItem>
 </controls:Panorama>
</Grid>

4. Set the background image by adding the following code before the
PanoramaItems.

XAML
<!--Assigns a background image to the Panorama control-->
<controls:Panorama.Background>
 <ImageBrush ImageSource="backgroundImage.jpg"/>
</controls:Panorama.Background>

5. It is possible to customize the various parts of the app, changing section
orientation and titles, adding controls and so on. The following code adds two
TextBlock controls in the first PanoramaItem.

XAML
<!--Panorama item one-->
<controls:PanoramaItem Header="item1">
 <Grid>
 <!--This code places the two TextBlock controls in a StackPanel-->
 <StackPanel>
 <TextBlock Text="This is a text added to the first panorama item"
 Style="{StaticResource PhoneTextLargeStyle}"
 TextWrapping="Wrap"/>
 <TextBlock Text=" "/>
 <TextBlock Text="You can put any content you want here..."
 Style="{StaticResource PhoneTextLargeStyle}"
 TextWrapping="Wrap"/>
 </StackPanel>
 </Grid>
</controls:PanoramaItem>

6. For the second PanoramaItem, change the orientation and assign a border
and a background.

XAML
<!--Panorama item two-->
<controls:PanoramaItem Header="item2" Orientation="Horizontal">
 <!--Assigns a border and a background for the content section-->
 <Grid>

61

 <Border BorderBrush="{StaticResource PhoneForegroundBrush}"
 BorderThickness="{StaticResource PhoneBorderThickness}"
 Background="#80808080">
 <TextBlock Text="This content is very wide and can be panned
 horizontally."
 Style="{StaticResource PhoneTextExtraLargeStyle}"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" >
 </TextBlock>
 </Border>
 </Grid>
</controls:PanoramaItem>

7. The following code shows how to add a third PanoramaItem which contains
a ListBox control. As seen before, scrolling the list is already supported by
default.

XAML
<!--This assembly permits to add multiple lines of text to the ListBox->
xmlns:sys="clr-namespace:System;assembly=mscorlib"

<!--Panorama item three-->
<controls:PanoramaItem Header="item3">
 <!--This code adds a series of string text values.-->
 <Grid>
 <ListBox FontSize="{StaticResource PhoneFontSizeLarge}">
 <sys:String>This</sys:String>
 <sys:String>item</sys:String>
 <sys:String>has</sys:String>
 <!--......... -->
 <sys:String>back</sys:String>
 <sys:String>again.</sys:String>
 </ListBox>
 </Grid>
</controls:PanoramaItem>

Running the simulator, the resulting app should resemble this illustration:

The result of the Panorama example

62

3.5. CONCLUSIONS

Both iOS and Windows Phone have a powerful IDE that supports developers in
their work. Xcode and Visual Studio have lots of similarities, offering the standard
set of development tools, but they present also some important differences.
When creating a new project, in Visual Studio it is required to select a
programming language, between C#, C++ and Visual Basic, while Objective-C is
the only choice for iOS. Differently from other programming languages,
Objective-C separates the interface and the implementation of a class in two files,
suffixed .h and .m.
As seen before, both IDEs have a design editor that helps to create the UI, giving
an immediate visual result. The important difference is that Visual Studio shows
explicitly the layout and binding information in a declarative and easy-to-
understand language. Its name is XAML (Extensible Application Markup
Language), and it describes everything that is displayed in the visual editor.
Therefore, developers have another way for editing the UI, not only selecting and
dragging controls with the mouse, but also operating directly in XAML. XAML
permits to set properties and even to initialize objects, although its main utility is
to make finer modifications to what is already created in the visual editor. If not
using XAML, both Visual Studio and Xcode present a Properties pane that
supports several modifications on objects. Also associating event code to controls
is similar, although in Visual Studio it is a little easier, requiring fewer steps.
Placing objects on a view requires to follow some layout rules. Although it is still
possible to use absolute layouts, which use explicit declaration of x-y
coordinates, they have become deprecated as dynamic ones have been
introduced. They can afford automatic changes, for example when the orientation
turns or when they have to adapt to different screen resolutions. In Visual Studio
developers can use the star and auto sizing, which uses proportions to distribute
the space among controls. Xcode presents an even more complex tool, Auto
layout, that creates many relationships between the object and the view, and
among the objects themselves. It is an instrument that is as intuitive to use for
simple layouts as powerful for complex ones.
As regards screen orientation, iOS and Windows Phone present a common
technique that lets users scroll the view to see the hidden content when turning
to landscape. When the orientation change requires a completely different layout,
Windows Phone suggests using a grid layout and moving controls in different
positions. This is a simple technique, but not as powerful as iOS one. In fact in
Xcode developers can design two different interfaces, for the portrait orientation
and for the landscape one, and each of them is shown alternatively.
Analyzing these few aspects for creating a user interface, Visual Studio and Xcode
do not appear so different, with many similarities that make it difficult to choose
the best IDE. Visual Studio relies more on the opportunities given by XAML, while
Xcode focuses less on code, helped by its clean and polished visual editor.

63

64

Bibliography

(1) "iOS: A visual history" by Dieter Bohn, December 13, 2011 -
http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad

(2) "iOS 6 Review" by Dan Seifert, September 21, 2012 -
http://www.theverge.com/2012/9/21/3363060/ios-6-review

(3) "Windows Mobile" - http://en.wikipedia.org/wiki/Windows_Mobile

(4) "Windows Phone, 7 - 8" - http://en.wikipedia.org/wiki/Windows_Phone

(5) "Windows Phone 8 review" by Verge Staff, October 29, 2012 -
http://www.theverge.com/2012/10/29/3570494/windows-phone-8-review

(6) "Apple Winning the Patent Wars Is Great for Innovation" by Jesus Diaz,
August 27, 2012 -
http://gizmodo.com/5938193/apple-winning-the-patent-wars-is-great-for-innovation

(7) "iOS Human Interface Guidelines" -
http://developer.apple.com/library/ios/#DOCUMENTATION/UserExperience/Conceptual/
MobileHIG/Introduction/Introduction.html

(8) "Windows Phone Design Principles" -
http://dev.windowsphone.com/en-us/design/principles

(9) "Mobile OS comparison: Windows Phone 8 vs iOS 6.0 vs Android 4.1" by
Victor H., June 20, 2012 -
http://www.phonearena.com/news/Mobile-OS-comparison-Windows-Phone-8-vs-iOS-6.0-
vs-Android-4.1_id31473

(10) "Microsoft Windows Phone 8 guide: Are these improvements to a great
OS enough?" by Matthew Miller, October 29, 2012 -
http://www.zdnet.com/microsoft-windows-phone-8-guide-are-these-improvements-to-a-
great-os-enough-7000006486/

(11) "Windows Phone 8 vs iOS 6 vs Android 4.0 ICS – Home Screens
Compared & Contrasted" by Oliver Haslam, June 23, 2012 -
http://www.redmondpie.com/windows-phone-8-vs-ios-6-vs-android-4.0-ics-home-
screens-compared-and-contrasted/

(12) "Why it's OK for the iPhone to have the same UI, and why it isn't for
Windows Phone" by Ray S., September 11, 2012 -
http://www.phonearena.com/news/Why-its-OK-for-the-iPhone-to-have-the-same-UI-and-
why-it-isnt-for-Windows-Phone_id34307

(13) "Overview and review of Windows Phone 8" by Daniel Rubino, October
29, 2012 - http://www.wpcentral.com/overview-and-review-windows-phone-8

(14) "A Walkthrough the History of the Metro UI" by Jason Lefevers, July 11,
2011 -
http://www.windowsphonemetro.com/2011/07/11/a-walkthrough-the-history-of-the-
metro-ui/

(15) "Introduction To Designing For Windows Phone 7 And Metro" by Daniela
Panful, December 20, 2011 -
http://uxdesign.smashingmagazine.com/2011/12/20/introduction-designing-windows-
phone-7-metro/

65

http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad
http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad
http://www.redmondpie.com/author/oliver.haslam/
http://www.redmondpie.com/author/oliver.haslam/
http://uxdesign.smashingmagazine.com/2011/12/20/introduction-designing-windows-phone-7-metro/
http://uxdesign.smashingmagazine.com/2011/12/20/introduction-designing-windows-phone-7-metro/
http://uxdesign.smashingmagazine.com/author/daniela-panfili/?rel=author
http://uxdesign.smashingmagazine.com/author/daniela-panfili/?rel=author

(16) "Emulating Microsoft’s Metro Design Language" by Connor Turnbull,
August 22, 2012 -
http://webdesign.tutsplus.com/articles/typography-articles/emulating-microsofts-metro-
design-language/

(17) "Is Realistic UI Design Realistic?" by Aaron Weyenberg, October 18, 2010
- http://aaronweyenberg.com/699/is-realistic-ui-design-realistic

(18) "Skeuomorphism in Interface Design" by Shaun Cronin, July 13, 2012 -
http://webdesign.tutsplus.com/articles/design-theory/skeuomorphism-in-interface-
design/

(19) "The origins of Metro UI" by Michael H., April 24, 2012 -
http://www.phonearena.com/news/The-origins-of-Metro-UI_id29442

(20) "User Interface for Windows Phone" -
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff967556(v=vs.
105).aspx

(21) "iOS Developer Library" - https://developer.apple.com/library/ios/navigation/

(22) "iPhone iOS 6 Development Essentials" by Neil Smith, 2012 -
http://www.techotopia.com/index.php/IPhone_iOS_6_Development_Essentials

(23) "Beginning Auto Layout in iOS 6" by Ray Wenderlich, September 19,
2012 - http://www.raywenderlich.com/20881/beginning-auto-layout-part-1-of-2

66

67

68

