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Introduction

In this thesis we discuss a variation of the FC-property and its impact on
the structure of a profinite group. The starting point is this outcome by P.
Shumyatsky [12, Theorem 1.5]: if for each element of a profinite group there
are finitely many commutators of a given length starting with such element,
then the corresponding term of the lower central series of the group is finite.
In particular, the group is finite-by-nilpotent.

The property asked for each element of the group in the previous state-
ment can be seen as a generalization of the finite conjugacy class property.
An element of a group G with a finite conjugacy class is called an FC-
element. More generally, an element g ∈ G is called an FCk-element if the
cardinality |g|k of the set

Xk(g) = {[g, x1, . . . , xk] | x1, . . . , xk ∈ G}

is finite. Note that |g|1 coincides with the cardinality of the conjugacy class
of g, so an element g is an FC-element if and only if |g|1 is finite. Thus, an
FC-element is an FC1-element and viceversa. For this reason, we say that
the FCk-property does generalize the finite conjugacy class property.

Using the definitions above, we can rewrite the above result in the fol-
lowing way: if G is a profinite group in which |g|k is finite for all g ∈ G,
then γk+1(G) is finite.

It is remarkable to mention that this result is somehow linked to the
question of conciseness of group words in a certain group class. If ω =
ω(x1, . . . , xk) is a group word, id est an element of the free group on x1, . . . , xk,
our interest lies in the set of all ω-values in a group G and the verbal sub-
group generated by it, which are denoted as

Gω = {ω(x1, . . . , xk) | x1, . . . , xk ∈ G} and ω(G) = ⟨Gω⟩

respectively. In case of topological groups ω(G) is used to denote the closed
subgroup generated by all the ω-values in G.

Let ω be a group word and C a class of groups. We say that ω is concise in
C, if for every G ∈ C the condition that Gω is finite implies that ω(G) is also
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vi CHAPTER 0. INTRODUCTION

finite. Recall that if G is a profinite group, its subgroups with cardinality
less than the continuum are actually finite. Then the following question
arises in a natural way: is it true that for each profinite group G in C, if Gω

has order less than 2ℵ0 then ω(G) is still finite? Whenever this is the case,
the word ω is called strongly concise in the class of profinite groups C.

However, as some of you have possibly noticed, the problem studied
in [12] does not actually deal with group words. In fact, the expression
[g, x1, . . . , xk] contains a “constant term” which depends on the choice of
some element in the group, so it is not a proper group word by definition.
That is why we introduce the notion of a generalized group word. Whereas a
word in a specific group G can be seen as a map ω : Gk → G that represents
an element of the free group on x1, . . . , xk, a generalized word in a group
can be defined as a map ω : Gk → G such that

(x1, . . . , xk) 7→
s∏

j=1

αj(xij )
εj ,

with i1, . . . , is ∈ {1, . . . , k}, α1, . . . , αs ∈ Aut(G) and ε1, . . . , εs ∈ {±1}. So
given g ∈ G, we can write [g, x1] = x−1

1 xg1 as a generalized group word and
the same holds for the long commutator [g, x1, . . . , xk]. In this way, we can
see Xk(g) as the set of values of a generalized word.

In this thesis we will prove that in a profinite group G, if the set of the
values of the generalized group word [g, x1 . . . , xk] takes less than the cardi-
nality of the continuum of values for some g ∈ G, then this set is actually
finite. This allows to generalize [12, Theorem 1.5] in the following way: if G
is a profinite group in which |g|k is less than the cardinality of the continuum
for all g ∈ G, then γk+1(G) is finite. A similar result holds even if we do not
have a uniform bound on the length of the commutators. Namely, we prove
that: if G is a profinite group in which for each element g ∈ G there exists
some natural number kg such that |g|kg is less than the continuum, then G
is finite-by-nilpotent.

The thesis starts by recalling some fundamental and handy tools in group
theory that will be useful later. In addition, the remaining part of Chap-
ter 1 is devoted to describe the FC and BFC-properties. In particular,
we do prove B. H. Neumman’s theorem. Having [12] as the main guide-
line, in Chapter 2 the FCk-property is described, which generalizes as we
know the FC-property. Moreover, we will go through some crucial outcomes
and proofs that are given in [12]. Finally, in Chapter 3, with the help of
some techniques that are used in conciseness and strong conciseness related
questions, we will prove our main, above mentioned, results.



Notation

N the set of natural numbers {1, 2, 3, . . .}
⊆o, ⊆c open/closed subset
≤o, ≤c open/closed subgroup
⊴o, ⊴c open/closed normal subgroup

(a, b, c, . . .) -bounded upper-bounded by some algebraic expression depending
on the parameters a, b, c, . . .

fg composition of maps g◦f where f : X → Y and g : Y → Z
are maps between sets

f(X) image of the set X under the map f : X → Y
XN space of sequences with elements from the set X

and subscripts in N
ℵ0 countable infinity, cardinality of the natural numbers
2X cardinality of the set of functions from a set X to {0, 1},

cardinality of the power set of X
2ℵ0 cardinality of the continuum
|X| cardinality of the set X

|G : H| index of the subgroup H in the group G
CG(x) centralizer of the element x in the group G
CG(X) centralizer of the set X in the group G
Z(G) center of the group G
Tor(G) subset formed by the torsion elements of the group G

xg element x conjugated by g that is the element g−1xg of
a group

xG conjugacy class of the element x in the group G
XG subset of the conjugates of the elements of the subset X

in the group G
nclG(X) normal closure of the subset X in the group G i.e. the

subgroup ⟨XG⟩
coreG(H) normal core of H in the group G i.e. the subgroup⋂

g∈GHg

[x, y] commutator word x−1xy = x−1y−1xy = (y−1)xy where
x and y belong to a group

vii



viii CHAPTER 0. NOTATION

[x1, . . . , xk] element of a group G inductively defined as
[[x1, . . . , xk−1], xk] with x1, . . . , xk ∈ G

[H,K] subgroup of a group G defined as ⟨[h, k] | h ∈ H, k ∈ K⟩
where H and K are subgroups of G

[H1, . . . ,Hk] subgroup of a group G inductively defined as
[[H1, . . . ,Hk−1], Hk] where H1, . . . ,Hk ≤ G

[x,k y] commutator word [x, y, . . . , y] with k ocurrences of y
[H,k L] subgroup of a group G defined as [H,L, . . . , L] where L

is repeated k times and H and L are subgroups of G
G′ commutator/derived subgroup [G,G] of the group G

γk(G) k-th term of the lower central series of G
Zk(G) k-th term of the upper central series of G
X × Y cartasian product between sets X and Y

X1 × . . .×Xk cartasian product among sets X1, . . . , Xk

Xk cartesian product of the set X with itself k times∏
i∈I Xi cartesian product of the family of sets {Xi}i∈I

x = y (mod N) the element xy−1 of the group G belongs to the normal
subgroup N of G

max{X} maximum element of the totally ordered set X



Chapter 1

Preliminary results

1.1 Main definitions and results

We start by recalling some definitions and outcomes that we will use through-
out this thesis. Firstly, we introduce the notion of a profinite group, and
in order to do so we know there are several approaches we can make. The
simplest one would be the one concerning only topological properties.

Definition 1.1.1. A topological group is said to be profinite if it is to-
tally disconnected (consequently Hausdorff) and compact. More generally,
a topological space is said to be a profinite space if it is totally disconnected,
Hausdorff and compact.

Nonetheless, there is also another constructive definition for a profinite
group which uses inverse limits.

Definition 1.1.2. A profinite group is a topological group that is isomorphic
to the inverse limit of an inverse system of discrete finite groups.

Whenever a subgroup of a profinite group is considered, we will assume
it is a closed subgroup, unless otherwise stated. Similarly, maps between
topological spaces will always be continuous.

Definition 1.1.3. Let P1 and P2 be group properties. A group G is said
to be P1-by-P2 if there exists a normal subgroup N of G such that N is P1

and the quotient G/N is P2. In particular, G is finite-by-nilpotent if there
exists a finite normal subgroup N of G such that G/N is nilpotent.

It will be of great importance to recall the next property.

Proposition 1.1.4. Let G be a compact topological group. Then, open
subgroups of G have finite index in G. In particular, open subgroups of
profinite groups have finite index.

1



2 Chapter 1. Preliminary results

The topology of a profinite group is easily described using cosets of the
group.

Theorem 1.1.5. Let G be a profinite group. Then, any open subset of G
is a union of cosets of open normal subgroups of G. In other words, the set

{gN | g ∈ G, N ⊴o G}

is a basis for the profinite group G.

Next we will recall that profinite groups satisfy a really strong property,
which is indeed the main motivation to questions such as the one we make
in this work.

Proposition 1.1.6. A profinite group is either finite or uncountable.

Proof. By contradiction, we assume G = {gn}n∈N is an infinite profinite
countable group. Then the subset G\{g1} is open because G is in particular
Hausdorff, and since a basis for the topology in a profinite space is given
by the clopen subsets, there exists some non-empty clopen U1 ⊆ G \ {g1}.
Observe that any non-empty clopen is infinite since it contains some coset
gN with g ∈ G and N⊴oG, which is already infinite because open subgroups
have finite index and we are assuming that the group is infinite. Therefore,
the subset U1 \ {g2} is non-empty and also open since we can see it as
the intersection of the open subsets U1 and G \ {g2}. Using this recursive
argument, we construct a descending chain of non-empty clopen subsets
{Un}n∈N with empty intersection. By compactness there exists some n ∈ N
such that Un = ∅ which leads us to a contradiction.

The following theorems are well-known results in group theory that will
be really useful later.

Theorem 1.1.7. (Schur’s theorem) Let G be a group. If the center of G
has finite index in G, say n, then the derivated subgroup of G has n-bounded
finite order.

Theorem 1.1.8. (Dietzmann’s theorem) Let G be a group and X ⊆ G a
finite torsion subset that is closed under conjugation. Then, the subgroup
generated by X is finite. What is more, if X has cardinality n and m is the
maximum order that an element in G achieves, then ⟨X⟩ has (n,m)-bounded
order.

Theorem 1.1.9. (Baire category theorem) Let G be a profinite group and
{Cn}n∈N a family of countably many closed subsets of G. If the given family
of closed subsets covers the whole group G, then there exists some n ∈ N
such that Cn has non-empty interior.

We continue by recalling a definition that is needed in the next lemma.
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Definition 1.1.10. A continuous map φ : X → Y between topological
spaces is called nowhere locally constant if for any non-empty open subset
U ⊆ X, the map φ restricted to U is not constant.

This last lemma will be essential in the following chapter.

Lemma 1.1.11. [4, Proposition 2.1] Let φ : X → Y be a continuous map
between non-empty profinite spaces that is nowhere locally constant. Then
the image of φ has cardinality at least the continuum.

Proof. Let U be a non-empty clopen subset of X. Then there exist a finite
discrete space ZU and a continuous map θU : Y → ZU such that the compo-
sition φθU is not constant on U . Choose now two distinct non-empty fibers
U1 and U2 of the map φθU restricted to U . By construction, U1 and U2 are
non-empty clopen subsets of X contained in U and the intersection between
φ(U1) and φ(U2) is clearly empty.

We consider a non-empty clopen subset A ⊆ X such as A = X. Then using
the construction above, for each sequence i = (i1, i2, . . .) in {1, 2} we can
consider the descending chain of non-empty clopen subsets of X

Ai1 ⊇ (Ai1)i2 ⊇ ((Ai1)i2)i3 ⊇ . . .

and define the subset

Ai =
⋂
n∈N

(· · · ((Ai1)i2)i3 · · · )in ⊆ X

which is closed. By compactness, each Ai is non-empty and we can choose
ai ∈ Ai for every sequence i ∈ {1, 2}N. Note that the image under φ of ai
and aj is distinct whenever i ̸= j. This implies that the subset

B = {ai | i ∈ {1, 2}N} ⊆ X

is mapped injectively into Y under φ and therefore the image of φ has cardi-
nality at least the cardinality of φ(B) that is exactly 2ℵ0 , the continuum.

The previous lemma is also useful to enhance Proposition 1.1.6, where it
was shown that a profinite group is either finite or uncountable. Indeed, an
infinite profinite group is not only uncountable but actually its cardinality
is at least the continuum. If G is an infinite profinite group it is sufficient
to consider the nowhere locally constant continuous map id: G → G to
conclude that G has cardinality at least 2ℵ0 .

Corollary 1.1.12. A profinite group is either finite or has cardinality at
least the continuum.
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1.2 FC-groups

In the following sections we introduce two new interesting classes of groups,
namely the FC and BFC classes of groups. These kind of groups are groups
with restrictions in the cardinality of their conjugacy classes as we next see.
Most of the content we give is well-known in group theory and can be found
for instance in [9].

Definition 1.2.1. An element of a group g ∈ G is called an FC-element
if g has finitely many conjugates in G, in other words if the index of the
centralizer of g in G is finite.

Definition 1.2.2. The set of FC-elements of a group G, called FC-center
of G, will be denoted as FC(G). In case the FC-center of G covers the
whole group, meaning that every conjugacy class of the group is finite, we
will call G an FC-group.

Remark 1.2.3. Note that the FC-center of a group can be seen as the
generalization of the notion of the center of a group. Indeed, an element
lies in the center if and only if its conjugacy class is formed uniquely by
the element, so clearly the class is finite and the element belongs to the
FC-center.

Examples 1.2.4. (i) Finite groups are comprehensibly FC-groups.

(ii) All abelian groups are FC-groups.

(iii) Since the center of a group is contained trivially in the centralizer of
any element in the group, groups whose center has finite index belong
to the class of FC-groups.

(iv) The class of FC-groups is closed with respect to forming subgroups,
images and direct products.

Note that we will be using the next fact repeatedly in several proofs.

Proposition 1.2.5. Let G be a group and H and K subgroups of G of finite
index. Then, the index of the subgroup H ∩K in G is finite and

|G : H ∩K| ≤ |G : H| · |G : K|.

More generally, if H1, . . . ,Hk are subgroups of finite index in G, then the
index of the subgroup ∩k

i=1Hi in G is finite and∣∣∣∣∣G :

k⋂
i=1

Hi

∣∣∣∣∣ ≤
k∏

i=1

|G : Hi|.

The set of FC-elements of a group is not just a subset of the group as
we next see.
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Proposition 1.2.6. For any group G, the subset FC(G) is a characteristic
subgroup of G.

Proof. To begin with, it is clear FC(G) is non-empty because it contains the
identity element. Let g1 and g2 be two elements of G whose centralizers have
finite index in G. From Proposition 1.2.5 the subgroup CG(g1)∩CG(g2) has
finite index in G and since CG(g1) ∩ CG(g2) is contained in CG(g1g

−1
2 ), we

deduce that CG(g1g
−1
2 ) has finite index in G too, so g1g

−1
2 ∈ FC(G). Then,

FC(G) is a subgroup of G. On the other hand, if g ∈ G and α ∈ Aut(G)
then CG(α(g)) = α(CG(g)). In fact, for x ∈ G we have

xα(g) = α(g)x ⇐⇒ α−1(x)g = gα−1(x) ⇐⇒ α−1(x) ∈ CG(g).

Since automorphisms of G preserve the indeces of their subgroups, the index
of α(CG(g)) in G is finite and therefore so is the index of CG(α(g)) in G,
i.e. α(g) ∈ FC(G).

Whenever a group is an FC-group, the group over its center has desirable
properties.

Proposition 1.2.7. If G is an FC-group, then G/Z(G) is residually finite
and torsion.

Proof. Recall that a group is residually finite if it is isomorphic to a sub-
group of the direct product of a family of finite groups. For this reason, we
construct a homomorphism

φ : G/Z(G) →
∏
g∈G

G/ coreG(CG(g))

xZ(G) 7→ (x coreG(CG(g)))g∈G

that is easily checked to be well-defined because Z(G) ⊆ coreG(CG(g))
for all g ∈ G. Moreover, if xZ(G) and yZ(G) are distinct elements in
G/Z(G), we have that xy−1 /∈ Z(G) thus there exists some g ∈ G such that
xy−1g ̸= gxy−1 so xy−1 /∈ CG(g). In particular, xy−1 /∈ coreG(CG(g)) nei-
ther therefore x coreG(CG(g)) ̸= y coreG(CG(g)). Then, φ is injective. By
assumption G is an FC-group which ensures that each G/ coreG(CG(g)) is
finite, thus G/Z(G) is residually finite.

It remains to check that G/Z(G) is torsion, i.e. that each element gZ(G) ∈
G/Z(G) has finite order. Let x ∈ G and choose a transversal T of CG(x)
in G. Since G is an FC-group, T is a finite subset. We define H as the
subgroup obtained by intersecting the centralizers of the elements of T in
G. As the intersection is finite and G is an FC-group by Proposition 1.2.5,
H has finite index in G. What is more, we can consider the G-action in
the finite set of left cosets of H given by left multiplication, so we get that
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G/ coreG(H) is isomorphic to some subgroup of the symmetric group of or-
der the index of H in G. Hence the normal core of H in G has finite index
as well. Consequently, there exists some m ∈ N such that xm ∈ coreG(H).
Observe now that G = ⟨T,CG(x)⟩ and xm ∈ CG(t) for all t ∈ T , implying
that xm ∈ Z(G), so xZ(G) has finite order in G/Z(G).

In the case of torsion groups, it is possible to characterize FC-groups as
the locally finite normal groups.

Definition 1.2.8. A group is said to be locally finite and normal if every
finite subset is contained in a finite normal subgroup.

Proposition 1.2.9. A torsion group is an FC-group if and only if it is
locally finite and normal.

Proof. Assume G is a torsion FC-group. Let F ⊆ G be a finite subset. We
can then consider the subset

E = {xg | x ∈ F and g ∈ G}

which is by construction closed under conjugation, it is finite because G is
an FC-group and it does trivially contain F . By Dietzmann’s theorem E is
contained in a finite normal subgroup of G, so is E. This proves that G is
locally finite and normal.

Now let us suppose G is locally finite and normal. If g ∈ G, then there exists
some finite normal subgroup N of G containing the element g. Since N is
normal it contains all the conjugates of g and therefore the conjugacy class
of g is finite. So G is an FC-group.

Remark 1.2.10. Note that a locally finite and normal group is torsion
and hence FC from Proposition 1.2.9. Indeed, any element of such a group
belongs to a finite subgroup so it necessarily has finite order.

Example 1.2.11. As a consequence of Remark 1.2.10, the direct product
of a family of finite groups is an FC-group.

The class of FC-groups is rather interesting and enforces the derived
subgroup to be torsion as we shall see.

Proposition 1.2.12. If G is an FC-group, then G′ is torsion. Besides, the
elements of finite order of G form a fully-invariant subgroup of G containing
G′.

Proof. First of all, the group G/Z(G) is an epimorphic image of an FC-
group so it is also an FC-group. Moreover, by Proposition 1.2.7 this quotient
is torsion too so we can use Proposition 1.2.9 and deduce G/Z(G) is a locally



1.2. FC-GROUPS 7

finite and normal group. Let F be the family of finitely generated subgroups
of G. Then it is straightforward that

G′ =
⋃
H∈F

H ′

holds. For this reason, to verify that G′ is torsion it is enough to check that
H ′ is torsion for every H ∈ F . Let us fix H = ⟨x1, . . . , xn⟩ ∈ F and set
Z = Z(G). Then HZ is a subgroup of G, because Z is normal in G, and
the subgroup HZ/Z of G/Z is clearly generated by the cosets x1Z, . . . , xnZ.
At this point, using that G over the center is locally finite and normal, we
deduce that {x1Z, . . . , xnZ} is contained in a finite normal subgroup, which
must also contain the smallest subgroup containing the subset, i.e. it con-
tains the subgroup HZ/Z = ⟨x1Z, . . . , xnZ⟩. Then |H : H∩Z| = |HZ : Z| is
finite. In particular, we know that H ∩Z ⊆ Z(H) thus the index |H : Z(H)|
is finite as well and by Schur’s theorem the derived subgroup H ′ is finite
and therefore torsion as claimed.

Let x and y be two torsion elements of G whose orders are n and m respec-
tively. Then xy−1G′ has order dividing nm in the abelianization G/G′, so
there exists some natural number l ∈ N such that (xy−1)l ∈ G′ and thus
xy−1 is also torsion. Thus Tor(G) is a subgroup. Then, Tor(G) is a fully-
invariant subgroup of G, since the order of the image of an element under a
homomorphism divides the order of the corresponding element.

We are now able to characterize the class of FC-groups.

Proposition 1.2.13. A group is an FC-group if and only if it is isomorphic
to some subgroup of a direct product of a torsion-free abelian group and a
locally finite and normal group.

Proof. Suppose G is an FC-group. In the one hand, from Proposition 1.2.12
we know that G′ ≤ Tor(G)⊴G, then G/Tor(G) is trivially torsion-free and
abelian. On the other hand, by Zorn’s Lemma there exists some maximal
torsion-free subgroup M of the center of G and we claim that G/M is a
locally finite and normal group. Firstly, Z(G)/M is clearly torsion, as well
as the quotient group G/Z(G) due to Proposition 1.2.7. This implies that
G/M is torsion. Note that G/M is an FC-group and Proposition 1.2.9
ensures us that it is locally finite and normal. Finally, we can construct
the homomorphism from G to the direct product G/Tor(G) × G/M that
maps an element x to (xTor(G), xM) and check it is an embedding. In
fact, if x and y are elements of G, their images are equal if and only if
xy−1 ∈ Tor(G)∩M . However, this last intersection is trivial because one is
torsion while the other is torsion-free, implying that the homomorphism is
injective.

Conversely, assume G is a subgroup of G1 × G2 where G1 is a torsion-free
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abelian group and G2 is a locally finite and normal group. G1 is abelian
so it is also an FC-group. In addition, by Remark 1.2.10 we know G2 is
an FC-group too. The result follows because FC-groups are closed under
forming direct products and subgroups.

Although we have been able to characterize an FC-group, it is not com-
pletely satisfactory because subgroups of direct products are difficult to
handle. Next we will see that there is a specific kind of FC-group that
admits a precise description.

1.3 BFC-groups and the BFC-theorem

Definition 1.3.1. A group is called a BFC-group if the size of the conjugacy
classes of the group is bounded, i.e. if there exists a natural number d ∈ N
such that the conjugacy class of any element has at most d elements.

Theorem 1.3.2. (B. H. Neumaan’s theorem) A group is a BFC-group if
and only if its derived subgroup is finite.

Proof. Let us assume G is a BFC-group, meaning that

d = max{|xG| | x ∈ G} < ∞.

Then there exists some element a ∈ G with |aG| = |G : CG(a)| = d. Let
T = {t1, . . . , td} be a transversal of CG(a) in G. In this case we can explictly
write which is the conjugacy class of a in G because if 1 ≤ i, j ≤ d then

ati ̸= atj ⇐⇒ tit
−1
j /∈ CG(a) ⇐⇒ tiCG(a) ̸= tjCG(a),

so aG = {at1 , . . . , atd}. The group G is BFC thus in particular the cen-
tralizer of each t ∈ T in G has finite index and therefore C = ∩d

i=1CG(ti)
has finite index in G. Let S = {s1, . . . , sk} be a transversal of C in G
and define the normal subgroup N = nclG(⟨a, s1, . . . , sk⟩). Again N is tri-
vially an FC-group and it is generated by the conjugates of finitely many
elements, so it is finitely generated. Moreover, applying Proposition 1.2.7,
we get that the FC-group N/Z(N) is torsion, so by Proposition 1.2.9 the
quotient N/Z(N) is locally finite and normal. It is clear N/Z(N) is finitely
generated, then it must be finite, so by Schur’s theorem N ′ is finite. Since
Proposition 1.2.12 ensures that N ′ ≤ Tor(N) ≤ N , we can consider the
subgroup Tor(N)/N ′ of the finitely generated abelian group N/N ′, there-
fore Tor(N)/N ′ is abelian, torsion and finitely generated. The Structure
Theorem for Finitely Generated Abelian groups implies Tor(N)/N ′ is finite
and as a consequence |Tor(N)| = |Tor(N) : N ′||N ′| < ∞. In the one hand,
we claim that C ′ ⊆ N holds. If x ∈ C, then (xa)ti = xtiati = xati for all
i ∈ {1, . . . , d} and we can enlist without repetitions

(xa)G = {xat1 , . . . , xatd}.
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Therefore if y ∈ G, there exists some i ∈ {1, . . . , d} such that (xa)y =
xati , or equivalenty xy = xatiay

−1
. This implies that [x, y] = x−1xy =

x−1xatiay
−1

= atiay
−1 ∈ N so that C ′ ⊆ N . On the other hand, we prove

that G′ ⊆ NC ′ holds too. In order to do so, note that G = NC is satisfied
thus if x1, x2 ∈ G,

[x1, x2] = [n1c1, n2c2] = [n1, n2c2]
c1 [c1, n2c2]

= [n1, c2]
c1 [n1, n2]

c2c1 [c1, c2][c1, n2]
c2

for some n1, n2 ∈ N and c1, c2 ∈ C. As the subgroup N is normal in G,
the commutator [x1, x2] belongs to NC ′ and consequently G′ ⊆ NC ′. But
as we have seen C ′ ⊆ N so NC ′ ⊆ N and we have G′ ⊆ N . We know
by Proposition 1.2.12 that G′ is torsion then it is contained in the finite
subgroup Tor(N), which implies that G′ itself is also finite.

Let now G be a group whose derived subgroup G′ is finite and denote by d
its order. If x is an element of G, then

|xG| = |{x−1xg | g ∈ G}| = |{[x, g] | g ∈ G}| ≤ |G′| = d < ∞

so G is a BFC-group.

It is clear by definition that a BFC-group is an FC-group, but is there
any chance that the converse also holds? The answer lies beneath.

Example 1.3.3. Let A be a finite non-abelian simple group and x ∈ A a
non-trivial element of A. Let G be the direct product of infinitely countably
many copies of A. Elements in G are tuples with infinitely countably many
entries and only finitely many of them with a non-trivial element of A. For
this reason, each element can only have finitely many conjugates so G is
an FC-group. However, we can find elements whose conjugacy classes have
order as large as we desire. Indeed, if we denote the infinite tuple with the
element x in the first n entries and the trivial element in the rest of the
coordinates by

xn = (x, . . . , x, 1, . . .) ∈ G,

it is straightforward that |xG
n | = |xA|n with |xA| ≥ 2. Therefore there is no

bound for the size of the conjugacy classes of G, meaning that G is not a
BFC-group.

Nonetheless, in our case of interest, id est when considering a profinite
group, an FC-group is automatically a BFC-group.

Proposition 1.3.4. [11, Lemma 2.6] A profinite FC-group is necessarily a
BFC-group. So its derived subgroup is finite.
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Proof. For each n ∈ N we define the subset ∆n = {x ∈ G | |xG| ≤ n},
which is closed by Lemma 2.4.8 when k = 1 as we shall see in the following
chapter. Since G is an FC-group, all conjugacy classes have finite order so
the union of all ∆n where n ranges over N, is the entire group G. By Baire
category theorem we deduce that there exists some n ∈ N such that ∆n has
non-empty interior. Equivalently, there exist some element g ∈ G and open
normal subgroup H of G such that the coset gH is contained in ∆n, i.e. the
conjugacy class of any element of the form gh with h ∈ H has cardinality
less or equal than n. In particular, g and its inverse g−1 have conjugacy
classes with cardinality less or equal than n. Then,

|hG| = |(g−1gh)G| ≤ |(g−1)G| · |(gh)G| ≤ n · n = n2,

for all h ∈ H. We have found a bound for the cardinality of the conjugacy
classes of the elements of H, in other words H is a BFC-group. Let T be a
(finite) transversal of H in G and m the maximum order of the conjugacy
classes of the elements in T , which is clearly finite. As any element of G can
be written as a product th with t ∈ T and h ∈ H we have that

|xG| = |(th)G| ≤ |tG| · |hG| ≤ m · n2 < ∞

for all x ∈ G. Therefore G is a BFC-group.



Chapter 2

A variation of the
BFC-theorem

In the following chapters k, n and l will denote positive integers unless other-
wise stated.

Following the research paper [12], we will see some of the tools used to
prove that a profinite FCk-group is finite-by-nilpotent.

2.1 FCk-property

Definition 2.1.1. Let G be a group. Then the following elements of G
inductively defined as

γ1(x1) = x1,

γ2(x1, x2) = [x1, x2] = x−1
1 x−1

2 x1x2,

γk(x1, . . . , xk) = [x1, . . . , xk] = [γk−1(x1, . . . , xk−1), xk] for k ≥ 2

with x1, . . . , xk ∈ G are called γk-values of G. Moreover, the set of γk+1-
values of G starting with the fixed element g is denoted as

Xk(g) = {[g, x1, . . . , xk] | x1, . . . , xk ∈ G},

and its cardinal is denoted as |g|k.

Definition 2.1.2. Let G be a group. We define the k-th FC-center of G
to be the set

FCk(G) = {g ∈ G | |g|k < ∞}.

Definition 2.1.3. A group G is said to be an FCk-group if it is equal to
its k-th FC-center.

11
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2.2 Probabilistic results and Engel theory

Definition 2.2.1. Let G be a finite group and K a subgroup of G. The
commuting probability of K in G, denoted as Pr(K,G), is defined as the
probability that a random element of K commutes with a random element
of G, namely

Pr(K,G) =
|{(x, y) ∈ K ×G | xy = yx}|

|K||G|
.

Proposition 2.2.2. Let G be a finite group and K a subgroup of G. If
|xG| ≤ n for every x ∈ K, then Pr(K,G) is greater or equal than 1/n.

Proof. It is inmediate that

Pr(K,G) =
1

|K|
∑
x∈K

|CG(x)|
|G|

=
1

|K|
∑
x∈K

1

|xG|
≥ 1

|K|
∑
x∈K

1

n
=

1

n

so we are done.

The following theorem states that under the assumption that the com-
muting probability of a subgroup K of a finite group G is positive, then G
has “large” subgroups (with bounded index) that “almost” commute with
G (commutator subgroups with bounded order).

Theorem 2.2.3. [5] Let G be a finite group and K a subgroup of G. If
Pr(K,G) ≥ ϵ > 0, then there exist a normal subgroup T of G and a sub-
group B of K such that the indeces |G : T | and |K : B| and the order of the
commutator subgroup [T,B] are ϵ-bounded.

Definition 2.2.4. An element x of a group G is called (left) l-Engel if
[y,l x] = 1 for every y ∈ G. The group G is said to be l-Engel if so are the
elements of G.

Lemma 2.2.5. [12, Lemma 2.4] Let G be a metabelian group and suppose
a and b are l-Engel elements of G. Then, any element that belongs to the
subgroup generated by the elements a and b is (2l + 1)-Engel.

2.3 BFCk-groups are finite-by-nilpotent

The main result of [12] is the following.

Theorem 2.3.1. [12, Theorem 1.1] Let G be a group such that |x|k ≤ n for
all x ∈ G. Then, γk+1(G) has finite (k, n)-bounded order.

The proof of Theorem 2.3.1 is rather complicated. For this reason, in
this section we will only show the main steps towards its proof, which are
given in Theorem 2.3.3. But prior to stateting that result, we need to give
this lemma whose proof is quite straightforward.
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Lemma 2.3.2. [12, Lemma 2.2] Let G be a group. Then

(i) |γk(G)| ≤ n if and only if |γk(H)| ≤ n for any finitely generated
subgroup H of G.

(ii) In case G is residually finite, |γk(G)| ≤ n if and only if |γk(Q)| ≤ n
for any finite quotient Q of G.

Theorem 2.3.3. [12, Theorem 3.1] Let G be a group in which the cardinality
of the conjugacy classes of the γk-values is bounded by n. Then, G has a
nilpotent subgroup of (k, n)-bounded index and (k, n)-bounded class.

Proof. If k = 1, by B. H. Neumann’s theorem it follows that G has a class-
two nilpotent normal subgroup of n-bounded index. If k = 2, as a conse-
quence of the main result of [6], G has a class-four nilpotent normal subgroup
of n-bounded index. We will assume that k ≥ 3 then.

It was shown in [3] that in this situation the derived group γk(G)′ has n-
bounded order. For this reason, we can assume γk(G)′ is trivial so we work
under the hypothesis that γk(G) is abelian, and consequently G is abelian-
by-nilpotent. By the first statement of Lemma 2.3.2, we can assume that
our group G is finitely generated. Moreover, Hall’s classical theorem [8]
proves that finitely generated abelian-by-nilpotent groups are residually fi-
nite. Now we can apply the second statement of Lemma 2.3.2 so it suffices
to check the result for finite quotients of finitely generated subgroups of G.
Without loss of generalization we can therefore suppose that G is finite and
also that γk(G) is abelian.

In order to give some taste of the techniques used in this kind of proofs, we
will only prove the core case in which G is a metabelian p-group. The rest
of the cases are reductions to this base case. Then there exists a maximal
abelian normal subgroup N of G that contains G′. Set G = G × . . . × G
where there are k − 1 ocurrences of G. For each g = (g1, . . . , gk−1) ∈ G
we define Ng = [N, g1, . . . , gk−1] = {[x, g1, . . . , gk−1] | x ∈ N}. We fix
g = (g1, . . . , gk−1) ∈ G and prove that Ng is a subgroup of G. Clearly, Ng is
non-empty for any g ∈ G. Since N is normal in G, we have that [N,G] ⊆ N .
Thus, any element of the form [n1, g] with n1 ∈ N and g ∈ G commutes
with any element of N due to its abelianity. If n1, n2 ∈ N , then

[n1n2, g1, . . . , gk−1] = [[n1, g1]
n2 [n2, g1], g2, . . . , gk−1]

= [[n1, g1][n2, g1], g2, . . . , gk−1]

= [[n1, g1, g2]
[n2,g1][n2, g1, g2], g3, . . . , gk−1]

= [[n1, g1, g2][n2, g1, g2], g3, . . . , gk−1].

By repeating this argument inductively we prove that

[n1n2, g1, . . . , gk−1] = [n1, g1, . . . , gk−1][n2, g1, . . . , gk−1] (2.1)
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holds so the operation between elements from Ng lies in Ng. Furthermore,
equality (2.1) yields

[n1, g1, . . . , gk−1]
−1 = [n−1

1 , g1, . . . , gk−1],

which implies that the inverse of an element of Ng belongs to Ng. Hence,
Ng ≤ G. What is more, Ng is also normal in G. Indeed, if x ∈ N and g ∈ G
then

[x, g1]
g = [xg, gg1 ] = [xg, h1g1] = [xg, g1][x

g, h1]
g1

where h1 = [g, g−1
1 ] ∈ G′ ≤ N . But note that N is normal in G so xg ∈

N and by abelianity of N we get that [xg, h1] = 1. Using an inductive
argument, we easily prove that

[x, g1, . . . , gk−1]
g = [xg, g1, . . . , gk−1] ∈ Ng,

meaning that Ng⊴G as claimed. Plainly, elements from Ng are by definition
γk-values, which implies by assumption that |xG| ≤ n for all x ∈ Ng. In
this situation, Proposition 2.2.2 states that Pr(Ng, G) ≥ 1/n > 0 and thus
there exist a normal subgroup Tg of G and a subgroup Bg of Ng such that
the indeces |G : Tg| and |Ng : Bg| and the order of the commutator subgroup
[Tg, Bg] are n-bounded, due to Theorem 2.2.3. Normality of Tg in G implies
that [Tg, Bg] is contained in Tg. What is more, the subgroup [Tg, Bg] is
normal in Tg since

[b, t1]
t2 = [b, t2]

−1[b, t1t2] ∈ [Bg, Tg] = [Tg, Bg]

for all b ∈ Bg and t1, t2 ∈ Tg. Denote as d the index of Tg in G that is
n-bounded. Then, G can be written as the (disjoint) union of some right
cosets Ty1, . . . , T yd for some y1, . . . , yd ∈ G so that Hg = nclG([Tg, Bg]) is

⟨[Tg, Bg]
Ty1 , . . . , [Tg, Bg]

Tyd⟩ = ⟨[Tg, Bg]
y1 , . . . , [Tg, Bg]

yd⟩ =
d∏

i=1

[Tg, Bg]
yi

because [Tg, Bg] and each [Tg, Bg]
yi are normal in T . It is clear now that

the order of the normal closure of [Tg, Bg] in G

|Hg| ≤
d∏

i=1

|[Tg, Bg]
yi | ≤ |[Tg, Bg]|d

has n-bounded order. It is convenient to emphasize that the bounds coming
from Theorem 2.2.3 do not depend on the choice of g ∈ G.

It is well-known that finite p-groups are nilpotent, so is G. Thus, there exists
an n-bounded number e such that Hg is contained in Ze(G) for all g ∈ G.
Indeed, nilpotency implies that any normal subgroup of G has non-empty
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intersection with the center of G, so in particular |Hg ∩Z(G)| ≥ 2. For this
reason, ∣∣∣∣HgZ(G)

Z(G)

∣∣∣∣ = |Hg|
|Hg ∩ Z(G)|

≤ |Hg|
2

holds. Using inductively the same argument with the normal subgroup
HgZi−1(G)/Zi−1(G) of the nilpotent group G/Zi−1(G) we get that∣∣∣∣HgZi(G)

Zi(G)

∣∣∣∣ = ∣∣∣∣HgZi(G)/Zi−1(G)

Zi(G)/Zi−1(G)

∣∣∣∣ ≤ |Hg|
2i

for all i < log2 |Hg|. Then, there exists an n-bounded number e such that
HgZe(G)/Ze(G) is trivial and thus the claim is proved. As the bounds do not
depend on the choice of g ∈ G, we can choose the n-bounded number e such
that Hg is contained in Ze(G) for all g ∈ G. Pass to the quotient G/Ze(G)
so we can assume [Tg, Bg] = 1 for all g ∈ G. Since the index |Ng : Bg| is n-
bounded, there exist n-boundedly many elements x1, . . . , xs ∈ Ng such that
Ng = ⟨x1, . . . , xs, Bg⟩. For each g ∈ G we define Cg = CG(Ng) and note that
Cg can be also written as CG(x1)∩. . .∩CG(xs)∩CG(Bg). By assumption each
[Tg, Bg] is trivial so elements of Tg commute with elements of Bg, which im-
plies that Tg is contained in CG(Bg) for all g ∈ G. Recall Tg has n-bounded
index and that the conjugacy classes of the elements x1, . . . , xs ∈ Ng have
order less or equal than n, in other words, each CG(xi) has index less or
equal than n. Therefore, the subgroup CG(x1) ∩ . . . ∩ CG(xs) ∩ Tg has n-
bounded index by Proposition 1.2.5, so it has Cg too. Moreover, normality
of Ng in G implies normality of Cg in G.

For each g ∈ G and i ≥ 1 we define the subgroups Ni,g = [N,i g] =
[N, g, . . . , g] and Ci,g = CG(Ni,g). Note that these subgroups are a special
case of Ng and Cg, whenever we consider a constant tuple g = (g, . . . , g) ∈
G, so the previous statements are still true for them. At this point observe
that we have two chains

N1,g ≥ N2,g ≥ . . . and C1,g ≤ C2,g ≤ . . .

for each g ∈ G. If i ≥ 1 let us denote βi = maxg∈G{|G : Ci,g|}. It is clear
by construction that βi ≤ βj whenever i ≥ j. In particular, βk−1 is the
maximum index of the subgroups Ck−1,g with g ∈ G, which are as we have
proved n-bounded, thus βk−1 is n-bounded as well. Observe that

βk−1 ≥ βk ≥ . . . ≥ βi ≥ . . .

is a decreasing sequence of positive integers numbers so it can have at most
βk−1 − 1 jumps, meaning that βi ̸= βi+1 for at most βk−1 − 1 values of
i ≥ k − 1. With this setup it is possible to find some number u ≥ k − 1
such that βu = β2u. In fact, we can proceed as follows: if βk−1 = β2(k−1) we
do have the number u = k − 1. Otherwise, βk−1 ̸= β2(k−1) and we compare
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β2(k−1) with β22(k−1). If they are equal we set u = 2(k−1) and if that is not
the case, we continue with this process. As there can be at most βk−1 − 1
jumps we are sure that this process terminates at some point and the number
u is found before 2βk−1(k − 1). Then, there exists a (k, n)-bounded number
u such that k − 1 ≤ u and βu = β2u. Let g ∈ G be an element such that
C2u,g has index β2u in G. As Cu,g ⊆ C2u,g holds, maximality of the index
βu implies that Cu,g and C2u,g need to be equal. It is trivial then that
Cu,g = Ci,g for i ∈ {u, u + 1, . . . , 2u}. We claim that whenever h ∈ Cu,g,
then

Ni,g = [Nu,g,i−u g] = [Nu,g,i−u gh] (2.2)

holds for i ∈ {u, u + 1, . . . , 2u}. While the first equality is straightforward
by definition, we prove the second one by induction on i. The base case is
trivial so we assume it is true for i and prove it for i+ 1. In the one hand,
the induction hypothesis yields to

Ni+1,g = [Nu,g,i+1−u g] = [[Nu,g,i−u g], g] = [[Nu,g,i−u gh], g].

On the other hand, we note that Nu,g is a normal subgroup of G (using the
analogous proof for Ng in G) and therefore for any x ∈ Nu,g we have that

[[x,i−u gh], g] = [x,i−u gh]
−1[x,i−u gh]

g = [x,i−u gh]
−1[x,i−u gh]

gh

because h commutes with any element of Nu,g by election. This concludes
the proof of (2.2). In particular, it is true that

N2u,g = [Nu,g,u gh]

holds. This last equality and the fact that Nu,g is contained in N imply that
the subgroup C2u,g contains Cu,gh, meaning that Cu,gh ≤ C2u,g = Cu,g. By
definition βu is the largest index of a subgroup of the type Cu,x with x ∈ G,
therefore Cu,g = Cu,gh for all h ∈ Cu,g.

The aim at this point is to prove that the subgroup D = Cu,g is the sub-
group of G we are looking for, i.e. that D is a nilpotent subgroup of G
of (k, n)-bounded index and class. As Nu,g is normal in G, we have that
D = CG(Nu,g) is normal in G too. Thus, D is a normal subgroup of G
whose index is βu, which is n-bounded because βu ≤ βk−1. It remains to
prove D is nilpotent of (k, n)-bounded class.

Set G = G/Z(D). Observe that D centralizes Nu,gh for any h ∈ D, so Z(D)
contains Nu,gh for all h ∈ D. If y ∈ G and h ∈ D, then [y, gh] ∈ G′ ≤ N so
that [y,u+k gh] belongs to the subgroup [N,u+k−1 gh]. Nonetheless, the ele-
ments in [N,u+k−1 gh] = [[N,u gh],k−1 gh] are trivial modulo Z(D), meaning
that ghZ(D) is (u+ k)-Engel in G. By Lemma 2.2.5, the element hZ(D) =
(gZ(D))−1ghZ(D) is l-Engel in G for l = 2u+2k+1 and any h ∈ D. There-
fore, for any choice of y ∈ G and h ∈ D we conclude that [y,l h] ∈ Z(D) so
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that [y,l+1 h] = 1, and thus D is m-Engel for m = l + 1 = 2u+ 2k + 2. For
g ∈ G we denote as D the image of D in G/Cg, more explicitly the quotient
DCg/Cg. Clearly, D acts on Ng by the action given by gCg · x = xg where

g ∈ G and x ∈ Ng. Consider the semidirect product G̃ = Ng ⋊ D with

respect to the above group action. Plainly, Ng is a normal subgroup of G̃
whose index

|G̃ : Ng| = |NgD : Ng| = |D : Ng ∩D| = |D| ≤ |G : Cg|

is n-bounded. Besides, G̃ is also metabelian because it has the abelian
normal subgroup Ng and the quotient G̃/Ng

∼= D is abelian. In fact, D is a
subgroup of G/Cg which is abelian due to the facts that G′ ≤ N ≤ Cg and

G/Cg
∼= (G/G′)/(Cg/G

′). By construction, any element of G̃ is a product
between an element of Ng and another one of D, which implies that for any

x ∈ G̃ there exist a ∈ Ng and b ∈ D such that x ∈ ⟨a, b⟩. In the one hand,

all elements of Ng are m-Engel in G̃ since its abelianity and normality in G̃
imply that

[x, a, a] = [[x, a], a] = 1

holds for any x ∈ G̃ and a ∈ Ng. On the other hand, D is m-Engel in G
so [x,m y] is trivial for any x ∈ Ng and y ∈ D. Observe that the element
[x,m y] is a finite product of the form

∏
i

(xεi)y
αi

for some εi ∈ {±1} and αi ∈ Z, so by the way the action in G̃ is defined, the
element [x,m yCg] is just represented by [x,m y]. Therefore, D is m-Engel as

well in G̃ and by Lemma 2.2.5 G̃ itself is (2m+ 1)-Engel. Now we are in a
position where we know that G̃ is nilpotent of (k, n)-bounded class, say c.
In particular,

[x, y1Cg, . . . , ycCg] = 1 for all x ∈ Ng and y1, . . . , yc ∈ D.

But as before, [x, y1Cg, . . . , ycCg] is represented by [x, y1, . . . , yc], meaning
that Ng ≤ Zc(D) for each g ∈ G. In particular, since G′ ≤ N it is true
that [G′, g1, . . . , gk−1] ≤ Zc(D) for any choice of g1, . . . , gk−1 ∈ G and con-
sequently γk+1(G) ≤ Zc(D). Thus, the quotient D/Zc(D) is nilpotent of
class at most k so that it is possible to glue the upper central series of D up
to Zc(D) with the series of subgroups that correspond to the upper central
series of D/Zc(D) in D. It is clear the obtained series is central in D so the
subgroup D is nilpotent of class at most k+ c, which is (k, n)-bounded.
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2.4 The set FCk(G)

Observe that although the following lemma is taken from [12], the third
bound is different. In fact, there is no clear indication that the bound given
in [12] is correct.

Lemma 2.4.1. [12, Lemma 2.5] Let G be a group and a an element of G
such that |a|k ≤ n. Then,

(i) |G : CG(b)| ≤ n for any b ∈ Xk−1(a),

(ii) |G : CG(d)| ≤ n2 for any d ∈ Xk(a) and

(iii) |G : CG(Xk(a))| ≤ n2n and |Xk(a)
G| ≤ n3.

Proof. (i) By assumption the set Xk(a) = {x−1xy | x ∈ Xk−1(a), y ∈ G}
has at most n elements thus

|G : CG(b)| = |bG| = |b|1 ≤ |Xk(a)| ≤ n

for any b ∈ Xk−1(a).

(ii) It is clear by definition that an element d ∈ Xk(a) is the product of
the inverse of an element in Xk−1(a) and a conjugate of such element
so

|G : CG(d)| = |dG| ≤ |(b−1)G| · |(bg)G| = |bG| · |bG| ≤ n · n = n2

where b ∈ Xk−1(a) and g ∈ G.

(iii) By the previous item we know that elements in Xk(a) have at most
n2 conjugates so

|G : CG(Xk(a))| ≤
∏

x∈Xk(a)

|G : CG(x)| ≤ (n2)n = n2n

and also

|Xk(a)
G| ≤

∑
x∈Xk(a)

|xG| ≤ n · n2 = n3.

The next lemma is a particular case of Lemma 3.1.2, which we will see
in Chapter 3.

Lemma 2.4.2. Let G be a group and a, b, g1, . . . , gk ∈ G. Then, there exist
elements a0 ∈ aG and u1, . . . , uk, v1, . . . , vk ∈ G such that

[ab, g1, . . . , gk] = [a0, u1, . . . , uk][b, v1, . . . , vk].
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Proof. We proceed by induction on k. The base case k = 1 is satisfied since
[ab, g1] = [a, g1]

b[b, g1] = [ab, gb1][b, g1]. We assume the statement is true for
k − 1. Then,

[ab, g1, . . . , gk] = [[ab, g1, . . . , gk−1], gk]

= [[a0, u1, . . . , uk−1][b, v1, . . . , vk−1], gk]

for some a0 ∈ aG and u1, . . . , uk−1, v1, . . . , vk−1 ∈ G and using the well-
known identity again

[ab, g1, . . . , gk] = [a0, u1, . . . , uk−1, gk]
[b,g1,...,gk−1][b, g1, . . . , gk−1, gk]

we get the result.

Lemma 2.4.3. [12, Lemma 5.1] Let G be a group and a, b ∈ FCk(G). Then,
|a−1|k = |a|k and |ab|k ≤ |a|3k|b|k.

Proof. If x, y ∈ G, then

[y−1, x] = yx−1y−1xyy−1 = y(y−1x−1yx)−1y−1 = ([y, x]−1)y
−1
. (2.3)

We claim that for any x1, . . . , xk ∈ G there exist elements t1, . . . , tk ∈ G
such that

[a−1, x1, . . . , xk] = [a, t1, . . . , tk]
−1. (2.4)

The base case k = 1 is trivially true due to (2.3). Assume it is true for the
case equal k. Let x1, . . . , xk+1 ∈ G. Using the induction hypothesis

[a−1, x1, . . . , xk, xk+1] = [[a−1, x1, . . . , xk], xk+1] = [[a, t1, . . . , tk]
−1, xk+1]

for some t1, . . . , tk ∈ G and we can apply again (2.3) to get that

[a−1, x1, . . . , xk, xk+1] = [[a, t1, . . . , tk], x
[a,t1,...,tk]

−1

k+1 ]−1

so we let tk+1 = x
[a,t1,...,tk]

−1

k+1 and we are done. From statement (2.4) we
deduce that the containment Xk(a

−1) ⊆ Xk(a)
−1 holds so |Xk(a

−1)| ≤
|Xk(a)

−1|. But if we apply this last inequality to the element a−1 we also get
that |Xk(a)| ≤ |Xk(a

−1)−1| = |Xk(a
−1)| holds, so the equality |a−1|k = |a|k

is proved.

By Lemma 2.4.2 if g1, . . . , gk ∈ G, then

[ab, g1, . . . , gk] = [a0, u1, . . . , uk][b, v1, . . . , vk]

for some a0 ∈ aG and u1, . . . , uk, v1, . . . , vk ∈ G. As a consequence of Lemma
2.4.1, the factor [a1, u1, . . . , uk] above can take at most |a|3k values, while by
hypothesis [b, v1, . . . , vk] can take at most |b|k values.
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Lemma 2.4.4. [12, Lemma 5.2] Let G be a group and S a generating set
of G. Then

γk+1(G) = ⟨Xk(g)
G | g ∈ S⟩.

Proof. Containment ⊇ follows from the definition of γk+1(G) and its nor-
mality.

LetN = ⟨Xk(g)
G | g ∈ S⟩. Note thatN is clearly normal and [g, x1, . . . , xk] =

1 (mod N) for any g ∈ S and x1, . . . , xk ∈ G. Consequently, gN belongs to
Zk(G/N) for all g ∈ S, so G/N = Zk(G/N) and therefore G/N is nilpotent
of class at most k. Then, γk+1(G) ⊆ N .

Lemma 2.4.5. [12, Lemma 5.3] Let G be a finitely generated group, namely
by the elements a1, . . . , ar ∈ G, and N an abelian normal subgroup of G. If
|ai|k ≤ n for all i ∈ {1, . . . , r}, then [N,k G] has finite (k, n, r)-bounded
order.

Proof. We start by working on the case k = 1. In this case G is generated
by r elements whose centralizers have index at most n, since |g|1 = |gG| =
|G : CG(g)| for any g ∈ G. Observe that the equality Z(G) =

⋂r
i=1CG(ai)

and assumptions of the lemma imply that

|G : Z(G)| ≤
r∏

i=1

|G : CG(ai)| ≤ nr.

Schur’s theorem ensures G′ has finite (n, r)-bounded order so [N,G] ⊆
[G,G] = G′ is finite. Assume now k ≥ 2. We set A = {a1, . . . , ar} and we de-
note the cartesian product of k copies of A as A. For each b = (b1, . . . , bk) ∈
A we define the set Nb = [N, b1, . . . , bk] = {[x, b1, . . . , bk] | x ∈ N}. As in
the proof of Theorem 2.3.3, each Nb is a subgroup of G. Since N is an
abelian normal subgroup of G, then [n1, b] = n−1

1 nb
1 = nb

1n
−1
1 = [b, n−1

1 ] is
true for any n1 ∈ N and b ∈ A, which implies that

Nb = [b1, N, b2, . . . , bk] = {[b1, x, b2, . . . , bk] | x ∈ N} ⊆ Xk(b1) (2.5)

has order at most n. We consider the cartesian productN0 =
∏

b∈A nclG(Nb).
Note here thatNb is contained inN and thatN is normal inG so nclG(Nb) is
also contained in N . Since N is abelian, nclG(Nb) commutes with nclG(Nc)
for all b, c ∈ A, so N0 is a subgroup of N . Moreover, nclG(Nb) is equal to∏

g∈G
Ng

b = ⟨xg11 · · ·xgss | s ≥ 0, x1, . . . , xs ∈ Nb, g1, . . . , gs ∈ G⟩,

which means that nclG(Nb) is an abelian subgroup generated by at most
n3 elements due to Lemma 2.4.1. If x ∈ Nb, then x has order at most n
because Nb is a finite group of order less or equal than n, thus any gene-
rator of nclG(Nb) has order at most n too. For this reason, it follows that
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the order of nclG(Nb) is at most nn3
and consequently the order of N0 is

no more than (nn3
)r

k
= nn3rk , i.e. N0 has (k, n, r)-bounded order. Since

A generates G and by the way N0 has been constructed, any element of
the form [g, x1, . . . , xk] with g ∈ N and x1, . . . , xk ∈ G is trivial modulo
N0. Therefore, [N,k G] is contained in N0 and [N,k G] has (k, n, r)-bounded
order.

Theorem 2.4.6. [12, Theorem 1.4] Let G be a finitely generated group,
namely by the elements a1, . . . , ar ∈ G. If |ai|k ≤ n for all i ∈ {1, . . . , r},
then γk+1(G) has finite (k, n, r)-bounded order.

Proof. By Lemma 2.4.4 we know N = γk+1(G) = ⟨Xk(ai)
G | i ∈ {1, . . . , r}⟩

holds so it follows that CG(N) = ∩r
i=1CG(Xk(ai)

G). By Lemma 2.4.1 the
size of the conjugates of the sets Xk(ai) with i ∈ {1, . . . , r} is finite and
bounded by n3 and also

|G : CG(Xk(ai)
G)| ≤

∏
x∈Xk(a)G

|G : CG(x)| ≤ (n2)n
3
= n2n3

so consequently

|G : CG(N)| ≤
r∏

i=1

|G : CG(Xk(ai)
G)| ≤ (n2n3

)r = n2rn3
.

Then CG(N) has finite (k, n, r)-bounded index in G. Obviously, we can
write the center of N as the intersection between N and the centralizer
of N in G, so by the third isomorphism theorem the index |N : Z(N)| =
|N : N ∩ CG(N)| = |NCG(N) : CG(N)| ≤ |G : CG(N)| is (k, n, r)-bounded
and Schur’s theorem implies N ′ has finite (k, n, r)-bounded order. It fo-
llows we can work modulo N ′ and assume N is abelian, so we are under
the assumptions of Lemma 2.4.5 and conclude [N,k G] has finite (k, n, r)-
bounded order. In the same way, we pass to the quotient G/[N,k G] and
without loss of generalization assume [N,k G] = 1. Recalling the definition
of N , we note 1 = [N,k G] = γ2k+1(G) so G is nilpotent of class at most
2k. By induction on the nilpotency class of G, it is possible to prove that
NZ(G)/Z(G) has finite (k, n, r)-bounded order. Indeed if G has class at
most k, the subgroup N is trivial and the statement is obvious. Otherwise
if the class of G is l > k, the class of the quotient G/Z(G) is l − 1 so by
induction hypothesis γk+1(G/Z(G)) = NZ(G)/Z(G) has (k, n, r)-bounded
order. As it is proved in [7], in this situation γk+2(G) has finite (k, n, r)-
bounded order and therefore we can factor it out. Then the assumption
1 = γk+2(G) = [N,G] implies we can assume that N is contained in the
center of G. It is straightforward then that N is generated by the bounded
finite set ∪r

i=1Xk(ai). Dietzmann’s theorem shows it suffices to prove that
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∪r
i=1Xk(ai) is torsion in order to conclude that N has finite (k, n, r)-bounded

order. Let a ∈ {a1, . . . , ar} and g1, . . . , gk ∈ G. Our claim is that

[a, g1, . . . , gk]
i = [a, g1, . . . , g

i
k] ∈ Xk(a)

holds for any i ≥ 1, which shows that Xk(a) is closed under taking powers
of its elements and therefore any element of Xk(a) has order at most n.
Arguing by induction on i, the base case is trivial so we assume it is true for
i− 1 and we try to prove for i. Using the identity [x, yz] = [x, z][x, y][x, y, z]
for any x, y, z ∈ G we have

[a, g1 . . . , g
i
k] = [a, g1, . . . , gk][a, g1, . . . , g

i−1
k ][a, g1, . . . , g

i−1
k , gk],

but since γk+2(G) is trivial the last term above vanishes and the induction
hypothesis proves the claim.

Theorem 2.4.7. [12, Theorem 1.3] Let G be a group. Then, the set FCk(G)
is a subgroup of G and γk+1(FCk(G)) is locally finite and normal.

Proof. Let T = FCk(G). It follows directly from Lemma 2.4.3 that T is a
subgroup of G. In order to prove that γk+1(T ) is locally normal, we need to
find a finite normal subgroup N of γk+1(T ) for each finite subset E contained
in γk+1(T ) such thatN contains E. Choose a finite subset E ⊆ γk+1(T ). It is
evident there exist elements a1, . . . , ar ∈ T such that E ⊆ γk+1(⟨a1, . . . , ar⟩)
by finiteness of E. If we set A = ⟨a1, . . . , ar⟩, Theorem 2.4.6 shows γk+1(A)
is finite and Lemma 2.4.4 gives a useful description of γk+1(A), namely

γk+1(A) = ⟨Xk(ai)
A | i ∈ {1, . . . , r}⟩.

By Lemma 2.4.1 the subgroup γk+1(A) is generated by elements whose cen-
tralizers have finite index in G and therefore they have finitely many conju-
gates in G. Consider the normal closure of γk+1(A) in G that can be written
as

N = nclG(γk+1(A)) = ⟨Xk(ai)
G | i ∈ {1, . . . , r}⟩.

Observe that the set ∪r
i=1Xk(ai)

G is finite, closed under conjugation and
torsion because the elements in ∪r

i=1Xk(ai) are contained in the finite sub-
group γk+1(A). By Dietzmann’s theorem, N is finite so E is contained in a
finite normal subgroup of G.

Lemma 2.4.8. Let G be a profinite group. Then the subset

∆n = {x ∈ G | |x|k ≤ n}

is closed.
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Proof. Firstly, we fix some l ∈ N and define the subset

Y = {(x1, . . . , xl) ∈ Gl | xi = 1 for some 1 ≤ i ≤ l} ⊆ Gl.

If πi denotes the i-th canonical projection map from Gl to G, we can
write Y as the union of all the kernels of the projection maps π1, . . . , πl,
which implies that Y is closed. On the other hand, for any tuple y =
(y11, . . . , y1k, . . . , y(n+1)1, . . . , y(n+1)k) ∈ Gk(n+1) we consider the continuous

map φy : G → Gl with l =
(
n+1
2

)
such that x ∈ G is mapped to the vector

([x, y11, . . . , y1k][x, y21, . . . , y2k]
−1, . . . ,

[x, yn1, . . . , ynk][x, y(n+1)1, . . . , y(n+1)k]
−1).

Note that this map is continuous since it does only use the continuous group
operations. Our claim now is that

∆n =
⋂

y∈Gk(n+1)

φ−1
y (Y )

holds. Observe first that if we pick an element x ∈ ∆n, there are at
most n different γk+1-values starting with the element x, so if we con-
sider any vector y ∈ Gk(n+1) we have that φy(x) must be in Y . There-
fore, x lies in the intersection of all φ−1

y (Y ) with y ∈ Gk(n+1). For the
other inclusion, take some element x in the intersection above. By con-
tradiction, if |x|k ≥ n + 1 we could consider n + 1 different commuta-
tors [x, y11, . . . , y1k], . . . , [x, y(n+1)1, . . . , y(n+1)k] with y11, . . . , y(n+1)k ∈ G,

so that for y = (y11, . . . , y(n+1)k) ∈ Gk(n+1) we would have φy(x) /∈ Y which
is a contradiction. Thus, ∆n is an intersection of preimages of a closed
subset under a continuous map, hence it is closed as desired.

It could be natural to think that the FCk-center of a profinite group is
also closed, but this is not true in general, not even for the FC-center.

Example 2.4.9. Let {Sn}n∈N be a family of non-abelian finite simple groups
and consider its cartesian product G =

∏
n∈N Sn. Plainly, an element of G

lies in the FC-center of G if and only if it has finitely many non-trivial
entries, which is the same as saying that the FC-center of G equals the
direct product of the family {Sn}n∈N. In addition, if FC(G) was closed,
for any x /∈ FC(G) it would exist an element g ∈ G and an open normal
subgroup N of G such that x ∈ gN and gN ∩FC(G) = ∅. Since each group
Sn is simple, the only option for N is either the trivial subgroup or G itself.
However, the trivial subgroup has not finite index because G is an infinite
group so it is not open, and the whole group has not empty intersection with
FC(G). Thus, FC(G) is not closed in this case.
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2.5 Profinite FCk-groups are finite-by-nilpotent

Theorem 2.5.1. [12, Theorem 1.5] Let G be a profinite group. If G is an
FCk-group, then γk+1(G) is finite.

Proof. From Lemma 2.4.8 we have an ascending chain of closed subsets

∆1 ⊆ ∆2 ⊆ ∆3 ⊆ . . . ⊆ ∆n ⊆ . . .

whose union is the entire group G. With this setting, we can invoke Baire
category theorem so that there exists some n ∈ N such that ∆n has non-
empty interior. By definition of the profinite topology, there exist some
element g ∈ G and an open normal subgroup N of G such that gN is
contained in ∆n. Moreover, it is clear that any element of N can be written
as a product x−1y where x, y ∈ gN . Thus, Lemma 2.4.3 shows that |z|k ≤ n4

for any z ∈ N . Let T = {t1, . . . , tr} be a transversal of N in G, and denote
as m the maximum of |t1|k, . . . , |tr|k, which is finite because G is an FCk-
group. As any element x of G is a product of an element of T and an
element of N , we can apply Lemma 2.4.3 again and get that |x|k ≤ m3n4,
so by Theorem 2.3.1 γk+1(G) has finite order.

It is a straightforward observation that the converse of the theorem holds
as well. Actually, a more general statement holds.

Proposition 2.5.2. Let G be a finite-by-nilpotent group. Then, there exists
some k ∈ N such that |g|k is finite for all g ∈ G.

Proof. By assumption there exists a finite normal subgroup N of G such
that the quotient G/N is nilpotent, say of nilpotency class k. Thus, we have
that [g, g1, . . . , gk] ∈ N for all g, g1, . . . , gk ∈ G so finiteness of N implies
that |g|k is finite for all g ∈ G.



Chapter 3

From finite to less than the
continuum

3.1 Set of values of the generalized word [g, x1, . . . , xk]

We introduce useful notation that we will be using in this chapter.

Notation 3.1.1. Let G be a group, g ∈ G, A1, . . . , Ak, B1, . . . , Bk ⊆ G and
I ⊆ {1, . . . , k}. Let (ai)i∈I ∈ GI and (bi)i∈Ī ∈ GĪ where Ī = {1, . . . , n} \ I
and GI stands for the cartesian product of |I| copies of G. We will use the
following notation:

Xk(A1, . . . , Ak) = {[a1, . . . , ak] | a1 ∈ A1, . . . , ak ∈ Ak}.

Xk(g,A1, . . . , Ak) = {[g, a1, . . . , ak] | a1 ∈ A1, . . . , ak ∈ Ak}.

ωk,I(ai; bi) = [x1, . . . , xk], xi = ai if i ∈ I and xi = bi otherwise.

ωk,I(g, ai; bi) = [g, x1, . . . , xk], xi = ai if i ∈ I and xi = bi otherwise.

Xk,I(Ai;Bi) = {ωk,I(ai; bi) | ai ∈ Ai if i ∈ I, bi ∈ Bi if i ∈ Ī}.

Xk,I(g,Ai;Bi) = {ωk,I(g, ai; bi) | ai ∈ Ai if i ∈ I, bi ∈ Bi if i ∈ Ī}.

In some cases, whenever the length of the commutators is clear due to the
context, we will drop the subscript k.

We adjust the statement and proof of [1, Lemma 2.4] to give the following
lemma.

Lemma 3.1.2. Let G be a group, H a normal subgroup of G, g1, . . . , gk ∈ G,
h ∈ H and some fixed s ∈ {1, . . . , k}. Then there exist some elements
b1, . . . , bk ∈ H such that

[g1, . . . , gs−1, gsh, gs+1, . . . , gk] = [gb11 , . . . , gbkk ][g1, . . . , gs−1, h, gs+1, . . . , gk].

25
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Proof. We proceed by induction on the length k of the commutator. The
base case is clear since it suffices to consider the value b1 = 1. Assume
it is true for the commutator length n − 1. We will cover two possible
cases. If s ̸= k, then by induction hypothesis there exist some elements
a1, . . . , ak−1 ∈ H such that [g1, . . . , gs−1, gsh, gs+1, . . . , gk] is equal to

[[gb11 , . . . , g
bk−1

k−1 ][g1, . . . , gs−1, h, gs+1, . . . , gk−1], gk]

and therefore we can rewrite it as

[gb11 , . . . , g
bk−1

k−1 , gk]
[g1,...,gs−1,h,gs+1,...,gk−1][g1, . . . , gs−1, h, gs+1, . . . , gk].

It is enough to note that since h belongs to the normal subgroup H then
[g1, . . . , gs−1, h, gs+1, . . . , gk−1] lies in H too. Now if s = k, then

[g1, . . . , gk−1, gkh] = [g1, . . . , gk−1, h][g1, . . . , gk−1, gk]
h

= [g1, . . . , gk−1, gk]
h[g1,...,gk−1,h]

−1
[g1, . . . , gk−1, h]

so that again h[g1, . . . , gk−1, h]
−1 ∈ H and the result is proved.

Using [2, Lemma 2.5] as a reference, we can prove the next lemma.

Lemma 3.1.3. Let G be a group, A1, . . . , Ak and H normal subgroups of
G, V a subgroup of G, g ∈ G and ai ∈ Ai for i ∈ {1, . . . , k}. Assume that

Xk(a1(H ∩A1), . . . , ak(H ∩Ak)) ⊆ gV

holds. Then, for any proper subset I of {1, . . . , k} we have that

Xk,I(ai(H ∩Ai);H ∩Ai) ⊆ V.

Proof. The proof is done by induction on k − |I|, so we start by assuming
that I = {1, . . . , k} \ {j} for some index j ∈ {1, . . . , k}. In order to shorten
the notation, we will write Hi instead of H ∩Ai when i ∈ {1, . . . , k}. Let us
consider the elements g1, . . . , gk where gi ∈ aiHi when i ̸= j and gj ∈ Hj .
By Lemma 3.1.2, there exist elements b1, . . . , bk ∈ Hj such that

ωk,I(gi; aigi) = ωk,I(g
bi
i ; a

bi
i )[g1, . . . , gk]. (3.1)

Observe that the element ωk,I(gi; aigi) is by construction in the subset

Xk(a1H1, . . . , akHk), but so is the element ωk,I(g
bi
i ; a

bi
i ). In fact, for i ̸= j

there exists some hi ∈ Hi such that

gbii = (aihi)
bi = ai[ai, bi]h

bi
i ∈ aiHi,

and on the other hand

a
bj
j = aj [aj , bj ] ∈ ajHj .
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Since Xk(a1H1, . . . , akHk) ⊆ gV holds by assumption, equality (3.1) gives

[g1, . . . , gk] = ωk,I(g
bi
i ; a

bi
i )

−1ωk,I(gi; aigi) ∈ (gV )−1(gV ) = V

as we wanted. Now assume that k − |I| ≥ 2 and let I∗ = I ∪ {j} for
some index j ∈ {1, . . . , k} \ I. Consider the elements g1, . . . , gk where
gi ∈ aiHi when i ∈ I and gi ∈ Hi otherwise. Evidently, the element
[g1, . . . , gj−1, ajgj , gj+1, . . . , gk] belongs to the subset Xk,I∗(aiHi;Hi) by con-
struction. It is possible again to use Lemma 3.1.2 so that there are some
elements b1, . . . , bk ∈ Hj such that

ω{1,...,k}\{j}(gi; aigi) = ω{1,...,k}\{j}(g
bi
i ; a

bi
i )[g1, . . . , gk]. (3.2)

Note that the element ω{1,...,k}\{j}(g
bi
i ; a

bi
i ) lies in Xk,I∗(aiHi;Hi) since if

i ∈ I there exists some hi ∈ Hi such that

gbii = (aihi)
bi = ai[ai, bi]h

bi
i ∈ aiHi,

if i /∈ I∗ we have that gbii ∈ Hi and finally

a
bj
j = aj [aj , bj ] ∈ ajHj .

By the induction hypothesis we have that Xk,I∗(aiHi;Hi) is contained in
the subgroup V , so from equality (3.2) we conclude that [g1, . . . , gk] ∈ V
and the proof is complete.

It is necessary to prove the following lemmas in order to prove our desired
theorem afterwards.

Lemma 3.1.4. Let G be a group. If H is a normal subgroup of G, V a
subgroup of G and x, g, g1, . . . , gk ∈ G such that

Xk(g, g1H, . . . , gkH) ⊆ xV,

then
Xk,I(g, giH;H) ⊆ V for all I ⊆ {1, . . . , k}

and in particular,
Xk(g,H, . . . ,H) ⊆ V.

Proof. This lemma is a consequence of Lemma 3.1.3 when considering A1 =
1 and Ai = G for all i ∈ {2, . . . , k + 1}.

Lemma 3.1.5. Let G be a group and I ⊆ {1, . . . , k}. If A1, . . . , Ak and H
are normal subgroups of G and g ∈ G such that

Xk,J(g,Ai;Ai ∩H) = 1 for all J ⊊ I,

then for any (gi)i∈I ∈
∏

i∈I Ai and (hi)
k
i=1 ∈

∏k
i=1(Ai ∩H) we obtain that

ωI(g, gihi;hi) = ωI(g, gi;hi).
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Proof. Let s ∈ I, (gi)i∈I ∈
∏

i∈I Ai and (hi)
k
i=1 ∈

∏k
i=1(Ai∩H). By Lemma

3.1.2 there exist some elements b0, . . . , bk ∈ As such that

ωI(g, gihi;hi) = [g, c1, . . . , gshs, . . . , ck]

= [g, c1, . . . , h
g−1
s

s gs, . . . , ck]

= [gb0 , cb11 , . . . , hg
−1
s bs

s , . . . , cbkk ][g, c1, . . . , gs, . . . , ck]

= [g, c
b1b

−1
0

1 , . . . , h
g−1
s bsb

−1
0

s , . . . , c
bkb

−1
0

k ]b0 [g, c1, . . . , gs, . . . , ck],

where ci ∈ G denotes the corresponding element in the position i ∈ {1, . . . , k}
of the commutator. Note that in the first commutator of the last equality, in
a position i ∈ I \{s} we have an element of Ai conjugated by some element,
which gives back an element of Ai by normality of Ai in G. In a position
i /∈ I we have an element of Ai again by normality of Ai, but it also belongs
to H due to its normality. Finally, in the chosen position s ∈ I we have
an element of As ∩H conjugated by another element so similarly it lies in
As∩H. This means that the commutator is in Xk,I\{s}(g,Ai;Ai∩H) which
by assumption is trivial so

ωI(g, gihi;hi) = [g, c1, . . . , gs, . . . , ck].

Repeating the argument for each i ∈ I we manage to remove every hi when-
ever i ∈ I and we are done.

Lemma 3.1.6. Let G be a profinite group. Let H be an open normal sub-
group of G and V a normal subgroup of G such that there exist

(i) an element g ∈ G such that |g|k < 2ℵ0 and

(ii) a subset I ⊆ {1, . . . , k} such that Xk,J(g,G;H) ⊆ V for all J ⊊ I.

Then for any fixed g = (gi)i∈I ∈ GI there exists an open normal subgroup
Ug of H such that

Xk,I(g, gi;Ug) ⊆ V.

Proof. We consider any g = (gi)i∈I ∈ GI and define the continuous map

φg : H
k → G

(hi)
k
i=1 7→ ωI(g, gihi;hi).

By Lemma 1.1.11, this map must be locally constant since

|φg(H
k)| = |Xk,I(g, gH;H)| ≤ |g|k < 2ℵ0 ,

meaning that there exists some non-empty open Ũ ⊆ Hk in which φg is
constant. In addition, H is open in G thus H is a profinite group endowed
with the profinite topology inherited from G so Hk inherits the profinite
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topology coming from Gk. Therefore the non-empty open Ũ of Hk contains
a basic open which is of the form b1U1×. . .×bkUk for some b1, . . . , bk ∈ G and
U1, . . . , Uk⊴oG. In particular, φg is constant in the basic open b1U×. . .×bkU
where U = ∩k

i=1Ui ⊴o G, meaning that

Xk,I(g, gibiU ; biU) ⊆ ωI(g, gibi; bi) · 1.

But we are now able to use Lemma 3.1.4 with the trivial subgroup, the
normal subgroup U in G and the elements ωI(g, gibi; bi), g and gibi when
i ∈ I and bi otherwise, which implies that XI(g, gibiU ;U) = 1. On the other
hand, we can rewrite the second condition stated in the hypothesis of the
lemma modulo the normal subgroup V so we have

Xk,J(g,G;H) = 1 (mod V ) for all J ⊊ I.

Therefore, using Lemma 3.1.5 in the quotient group G/V with the normal
subgroups Ai = G/V for i ∈ {1, . . . , k} and HV/V , we get

ωI(g, xihi;hi) = ωI(g, xi;hi) (mod V ) for all xi ∈ G, hi ∈ HV,

for i ∈ {1, . . . , k}. Specifically, since biU ⊆ H for i ∈ {1, . . . , k},

1 = XI(g, gibiU ;U) = XI(g, gi;U) (mod V )

and therefore

Xk,I(g, gi;Ug) ⊆ V

with Ug = U as claimed.

At this point, we are ready to prove this theorem.

Theorem 3.1.7. Let G be a profinite group and g ∈ G an element such
that |g|k < 2ℵ0. Then |g|k is actually finite.

Proof. We start by constructing a continuous map

φg : G
k → G

(gi)
k
i=1 7→ [g, g1, . . . , gk],

which is locally constant by Lemma 1.1.11 because |φ(Gk)| = |g|k < 2ℵ0 .
Arguing as in the proof above, there exist some H ⊴o G and g1, . . . , gk ∈ G
such that φg is constant on g1H × . . .× gkH, which means that

[g, g1h1, . . . , gkhk] = [g, g1, . . . , gk] for all h1, . . . , hk ∈ H.

Thus, applying Lemma 3.1.4 we have that Xk(g,H, . . . ,H) = 1. We claim
the following: for any subset I ⊊ {1, . . . , k} there exists some open normal
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subgroup UI ⊴o G such that Xk,I(g,G;UI) = 1. If this is the case, we can
consider the open normal subgroup

W =
⋂

I⊊{1,...,k}

UI

and we will have

Xk,I(g,G;W ) = 1 for all I ⊊ {1, . . . , k}.

Then all the conditions asked in Lemma 3.1.5 are satisfied so

[g, g1w1, . . . , gkwk] = [g, g1, . . . , gk]

holds for any (gi)
k
i=1 ∈ Gk and (wi)

k
i=1 ∈ W k. In particular, if T is a left

transversal of W in G, which is finite because open subgroups have finite
index in profinite groups, then

Xk(g) = {[g, g1, . . . , gk] | g1, . . . , gk ∈ G}
= {[g, t1w1, . . . , tkwk] | t1, . . . , tk ∈ T, w1, . . . , wk ∈ W}
= {[g, t1, . . . , tk] | t1, . . . , tk ∈ T}

is finite. So it suffices to prove the claim.

By induction on the cardinal of the subset I, we need to prove that there
exists UI ⊴o G such that Xk,I(g,G;UI) = 1. In case I = ∅, we have already
seen that Xk(g,H, . . . ,H) = 1 so it suffices to take UI = H. Let us assume
now that the subset I is non-empty. Using the induction hypothesis, for
each J ⊊ I there exists some UJ ⊴o G such that Xk,J(g,G;UJ) = 1. Then
we can consider

U =
⋂
J⊊I

UJ

which is again an open normal subgroup of G such that

Xk,J(g,G;U) = 1 for all J ⊊ I. (3.3)

Let R be a (finite) left transversal of U in G. If we pick any r = (ri)i∈I ∈ RI ,
we can apply Lemma 3.1.6 so there exists some open normal subgroup Ur

of U where Xk,I(g, ri;Ur) = 1. Observe that Ur is also open in G so there
exist some xr ∈ G and Nr⊴oG such that xrNr ⊆ Ur. In particular, xr ∈ Ur

hence Nr ⊆ Ur. We now set

UI =
⋂

r∈RI

Nr ⊴o G
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and check that it is exactly what we needed. It is clear by construction that
XI(g, ri;UI) = 1 for any r = (ri)i∈I ∈ RI . From (3.3) using Lemma 3.1.5
we can deduce that

ωI(g, riui;ui) = ωI(g, ri;ui)

for any choice of (ri)i∈I ∈ RI and (ui)
k
i=1 ∈ Uk, and therefore

XI(g, riU ;UI) = XI(g, ri;UI) = 1

holds for any (ri)i∈I ∈ RI . So we are done since all the left cosets riU with
ri ∈ R cover the whole group G, hence XI(g,G;UI) = 1.

3.2 Profinite (generalized) FCk-groups

Overall we can put everything together and get one of our main results.

Theorem 3.2.1. Let G be a profinite group such that |g|k < 2ℵ0 for all
g ∈ G. Then, γk+1(G) is finite.

Proof. From Theorem 3.1.7 it follows that |g|k is finite for all g ∈ G so by
Theorem 2.5.1 we conclude that γk+1(G) has finite order.

In order to analyze the case where there is no uniform bound on the
length of the commutators, we need a couple of results on the FCk(G)
subset.

Proposition 3.2.2. Let G be a group. Then, FCk(G) is contained in
FCk+1(G).

Proof. Let g be an element of FCk(G). Then |g|k is finite, i.e. there are only
finitely many elements of G that can be written as commutators of length
k + 1 starting with the fixed element g. Note that

[g, g1, . . . , gk+1] = [g, g1, . . . , gk]
−1[g, g1, . . . , gk]

gk+1 (3.4)

holds for any g1, . . . , gk+1 ∈ G. In the one hand, since the set Xk(g) is
finite by hypothesis, the set Xk(g)

−1 is finite as well. On the other hand,
from Lemma 2.4.1 it follows that an element of the form [g, g1, . . . , gk] with
g1, . . . , gk ∈ G has finitely many conjugates. Therefore equality (3.4) implies
there are only finitely many elements in Xk+1(g).

Corollary 3.2.3. Let G be a group. Then, FCk1(G) is contained in FCk2(G)
whenever k1 and k2 are positive integers such that k1 ≤ k2.

Proof. Assume k1 ≤ k2. By Proposition 3.2.2 we can inductively form the
chain

FCk1(G) ⊆ FCk1+1(G) ⊆ . . . ⊆ FCk2(G),

and thus FCk1(G) ⊆ FCk2(G).
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Theorem 3.2.4. Let G be a profinite group. Assume that for each element
g ∈ G there exists a natural number kg ∈ N such that |g|kg < 2ℵ0. Then, G
is finite-by-nilpotent.

Proof. For natural numbers k and n we can define the set

∆k,n = {x ∈ G | |x|k ≤ n},

which is closed by Proposition 2.4.8. Moreover, using Theorem 3.1.7 we in
fact notice that for each g ∈ G there exists some kg ∈ N such that |g|kg
is not only less than the continuum but finite. Thus, the entire G can be
covered with the closed subsets ∆k,n where k and n range among the natural
numbers. Under these circumstances Baire category theorem ensures there
exist natural numbers k and n such that the interior of ∆k,n is non-empty.
Therefore, there exist an element g ∈ G and an open normal subgroup
H ⊴o G such that the left coset gH is contained in ∆k,n, which means that
|gh|k ≤ n for all h ∈ H. In particular, |g|k ≤ n. Furthermore, if h ∈ H
Lemma 2.4.3 yields the following bound:

|h|k = |g−1gh|k ≤ |g−1|3k|gh|k = |g|3k|gh|k ≤ n3 · n = n4,

which actually proves that H is contained in FCk(G). Let T = {t1, . . . , tr}
be a (finite) transversal of H in G. Then there exist some natural numbers
ks ∈ N with s ∈ {1, . . . , r} such that |ts|ks is finite for s ∈ {1, . . . , r}. We set
q = max{k, k1, . . . , kr} and apply Corollary 3.2.3 to deduce that t1, . . . , tr
and the elements of H are contained in FCq(G). Since G = ⟨t1, . . . , tr, H⟩,
we deduce that G ⊆ FCq(G) so it is clear that these elements generate the
whole group so G = FCq(G). This means that |x|q is finite for all x ∈ G, so
by Theorem 3.2.1 the group G is finite-by-nilpotent.
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