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Introduction

The Standard Model (SM) of particle physics is the most advanced theoretical
framework, describing three fundamental forces of nature (strong, weak and elec-
tromagnetic) and all the elementary particles. Despite its remarkable and success-
ful agreement with modern experiments, it leaves some phenomena unexplained
and many inconsistencies suggest its failure of being a complete theory of fun-
damental interactions: it does not fully explain indeed the generation of baryon
asymmetry, the inclusion of the gravitational interaction (well explained by Gen-
eral Relativity), the generation of neutrino masses recently observed and the dark
matter (DM) abundance, among many other problems. At some high energy scale
the theory needs to be extended and new physics beyond the Standard Model
(BSM) should give the correct explanation of nature. In seeking a unified model
that solves the problems presented, we will focus in this work on an hypothetical
elementary particle known as axion, postulated in 1977 to dynamically solve the
strong CP problem, that is the absence of CP violation in the strong interactions,
within the framework of quantum chromodynamics (QCD). While the solution of
this problem, discussed in detail in the first chapter, was a marvellous achievement
(at least theoretically), already at the earliest days of the introduction of the QCD
axion people realised that it also provides an incredibly promising DM candidate.
The axion was later identified as the pseudo Goldstone boson of a new global axial
symmetry, whose spontaneous breaking scale fa defines the mass of the particle and
the strength of the couplings with the other SM particles. In order to respect the
observations and the limits set by various experiments axions should be very light
and therefore very weakly coupled as well, and they were consequently dubbed
invisible axions. As matter of fact, experimental constraints, also discussed in the
work, force us to consider very high scales fa � 107 GeV, corresponding to small
masses ma � 1 eV. The particles that we would like to solve our problems are
therefore very elusive or very hard to detect, and we need to find possible smart
ways to do it, also indirectly and via some theoretical predictions.

Our main goal is to calculate how many axions, if they exist, were thermally
produced in the hot plasma of the early Universe. Such a population would not
explain in reality the DM abundance, as modern cosmology requires a cold popu-
lation of particles for the explanation of dark matter, nevertheless, the hot axions
would give a contribution instead to the so-called dark radiation of the Universe,
parameterised by the neutrino species and the quantity ∆Neff, that we will prop-
erly introduce. We want to extend the works [26, 27] considering production of
axions via model dependent couplings with heavy fermions with also corrections
coming from the interaction with Electroweak (EW) particles, such as the Higgs
boson. We want to discuss what are the possible values of fa for every produc-
tion process to thermalise and give detectable values of ∆Neff. The forecasted
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sensitivity of future CMB-S4 experiments that measures this observable quantity
is reaching an astonishing value ∆Neff ∼ 0.01, comparable to the contributions
coming from hot axions. We are also going to briefly review the observational and
experimental point of views in axion physics, as we want to establish the current
exclusion bands in the parametric space of the axion decay constant and the status
of the experiments. We want to assess whether a certain value of fa could give de-
tectable values of hot axions, but at the same time could fit in the axion cold dark
matter models, also discussed in detail in the introductory chapters, and respect
observations coming from astrophysics, cosmology and experiments in general.

The work is organised as follows: in the first chapter we explain in detail the
strong CP problem and how our best solution is to consider the QCD axion. We
also discuss its properties, such as mass and couplings, and the invisible models
DFSZ and KSVZ. The second chapter focuses on the cosmological aspects of axions,
as we discuss the thermal population and the more complicated cold production
mechanisms: the misalignment contribution and topological defects. In chapter 3
and 4 our calculations are rigorously presented: we start from defining the starting
lagrangian, we compute the various cross sections, and we then we calculated the
axion abundance and the contribution ∆Neff. In the last chapter we take into
account all the population and constraints and we define the acceptable windows
of values in the fa parameter space for the invisible models.

vi



Chapter 1

The QCD Axion

1.1 The U(1)A problem

Let us consider the QCD lagrangian in the low energy limit

L = −1

4
Gµν
a G

a
µν + q̄(i /D −mq)q +O(heavy quarks)

where

q =

ud
s

 , mq =

mu 0 0
0 md 0
0 0 ms

 ,

and Ga
µν is the gluon field strength of the non-abelian SU(3) gauge group. If we

consider massless the light quarks, i.e. mu = md = ms = 0, the lagrangian exhibits
the global symmetry U(Nf )L × U(Nf )R, with Nf = 3 in this case. The symmetry
therefore consists of 3× 3 unitary matrices in flavour space and can be written as

U(3)L × U(3)R = U(1)V × U(1)A × SU(3)L × SU(3)R. (1.1)

In the first part U(1)V is the symmetry associated to baryon number of light quarks
q and related to the vector current qγµq, while U(1)A is the axial symmetry broken
by anomalies that will be of crucial importance in our discussion. In the second
part we find SU(3)L × SU(3)R, the so-called chiral symmetry which transforms
left-handed and right-handed quarks as

qL,R → ΩL,RqL,R, ΩL,R = exp(−iαaL,Rta),

where ta are the generators of SU(3). The chiral symmetry is broken by the quark
condensates 〈q̄q〉 (basically because in general the rotation has αaL 6= αaR, but in
the case where they are equal the subgroup SU(3)V is unbroken), meaning that
at the energy of the QCD phase transition, around the so-called ΛQCD scale, we
have the spontaneous symmetry breaking

SU(3)L × SU(3)R → SU(3)V=L+R.

It is easy to check that the condensate is invariant under SU(3)V and the 8 pseudo-
Goldstone bosons∗ arising in the symmetry breaking mechanism are the pseu-
doscalar mesons π±,π0,K±,K0,K̄0 and η. In the two flavour case (mu = md = 0)

∗They are not Goldstone bosons because of the light quarks masses aren’t really zero.
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Chapter 1. The QCD Axion

the symmetry breaking is related to SU(2)V and the three pseudo-Goldstone
bosons are just the pions π±, π0. The dynamical degrees of freedom in low en-
ergy theory, called chiral perturbation theory (CHPT), are therefore the pseudo
Nambu-Goldstone bosons (mesons), meaning that we can forget about the con-
fined quarks. The most general, chirally invariant, effective Lagrangian density
describing the dynamics of the mesons and with the minimal number of deriva-
tives is [12, 14]

Lχ =
f 2

4
tr∂µΣ∂µΣ†, (1.2)

with

Σ = exp

(
2iπ(x)

f

)
, π(x) =

1√
2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 ,

for the SU(3) case and where f ≈ 93 MeV is a free parameter, associated to the
pion decay constant [12]. The SU(3) matrix π is nothing but the meson matrix

π(x) =
1

2

8∑
a=1

λaπa, (1.3)

with λa the Gell-Mann matrices and πa are linear combinations of the physical
bosons, the latter being in the mass eigenstates. It is important to notice how π0

and η get mixed because of the two diagonal generators π8 = λ8/2 and π3 = λ3/2,
and the presence of the multiplicative constant f 2/4 is for the generation of the
standard kinetic form (provided the expansion of the exponential Σ = 1 + 2iπ/f +
. . . ) resulting in

Lχ =
1

2
∂µπa∂

µπa + Lint.

However, up until now, we have discussed an exact chiral symmetry without con-
sidering the quark masses: the latter are really small but different from zero,
leading to an additional explicit breaking of the chiral symmetry. In the low en-
ergy limit we can see this breaking because mesons (pions, kaons and η) acquire
mass, explaining why we can call them pseudo-particles. Let us see the spectrum
in detail: the QCD quark mass term is

Lm = −q̄LmqqR + h.c. (1.4)

and explicitly breaks the SU(3)L×SU(3R) symmetry. We can avoid this technical
problem if mq is an external field that transform under the chiral symmetry as [14]

mq → ΩLmqΩ
†
R,

but this would change the lagrangian into

Lχ = µ
f 2

2
tr(Σ†mq +m†qΣ), (1.5)

where µ is a free parameter that has to be matched by experiments and is related
to the chiral quark condensate. Expanding now in small fluctuations around Σ = 1
we find the mass spectrum of the bosons πa [14]

Lm = −2µtr(mqπ
2), (1.6)

2



1.1. The U(1)A problem

where π is the 3 × 3 matrix written in (1.3). The computation of the trace gives
us the masses of charged pions and kaons

m2
π± = µ(mu +md), m2

K± = µ(mu +ms), m2
K0,K̄0 = µ(md +ms),

and the π0 − η system is represented by its mixing matrix(
mu +md

mu−md√
3

mu−md√
3

1
3
(mu +md + 4ms)

)
,

leading to the masses

m2
π0 = µ(mu +md), m2

η =
µ

3
(mu +md + 4ms). (1.7)

Now we remember that in the initial symmetry (1.1) we also had U(1)V and U(1)A;
while the U(1)V is trivially verified (mesons have vanishing net baryon number),
the anomalous symmetry is more important. It transforms quarks in the following
way:

q → eiαγ5/2q, q̄ → q̄eiαγ5/2, (1.8)

and the Noether current associated to this transformation is the pseudo-vector

jµ5 = q̄γµγ5q. (1.9)

More importantly, having a diagonal generator π9 = 1/2, there will be another
meson, called η′, mixing with both π0 and η. Recall that in the SU(2) case, where
we consider only the up and down quark, the π8 generator is absent and so it is
the η meson, but still in this simple case the π0 would unavoidably mix with the
η′ meson, due to the presence of the U(1)A symmetry. Consequently in the more
complete SU(3) case there is a mixing between the π0, the η and the η′, and the
presence of the latter can be seen in the matrix π that becomes

π =
1√
2


1√
2
π0 + 1√

6
η +

√
2
3
η′ π+ K+

π− − 1√
2
π0 + 1√

6
η +

√
2
3
η′ K0

K− K̄0 − 2√
6
η +

√
2
3
η′

 . (1.10)

Without writing down a mixing matrix for the π0 − η − η′ system, we simply
compute from (1.6) the mass of the additonal η′ meson

m2
η′ =

4

3
µ(mu +md +md). (1.11)

The masses from (1.7) point out the fact that mη > mπ because in the η meson
we have the contribution coming from the strange quark, heavier than the both
the up and down quarks. However, experimentally we find that† the mass of the
η′ meson vastly exceeds the pion mass

m2
η′ � m2

π,

while from eq. (1.11) we should expect them to be roughly of the same order of
magnitude. This points to an inconsistency historically dubbed by Weinberg [8]
the U(1)A problem. This issue seems to be solved considering the anomaly itself
and the non trivial topological structure of the QCD vacuum; it was first proposed
by ’t Hoof in 1986 [7].

†The measured values are mπ0
' 135 MeV, mη ' 548 MeV and mη′ ' 958 MeV [15,16].
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Chapter 1. The QCD Axion

1.1.1 Instantons solve the problem

The divergence of the axial current (1.9) associated with the U(1)A symmetry gets
a contribution from quantum corrections, coming from the triangle loop diagram
which connects it with two gluons [22] (the quarks are in the loop), explicitly

∂µj
µ
5 = −2imq q̄γ5q +

Nfαs
8π

Ga
µνG̃

µν
a ,

where G̃µν = 1/2εµνρσGρσ. The second term is called anomaly because even for
mq → 0, called chiral limit, it doesn’t vanish. However the pseudoscalar density
entering in the anomaly is a total derivative:

Ga
µνG̃

µν
a = ∂µK

µ, Kµ = εµναβAaν

(
F a
αβ −

gs
3
fabcA

a
αA

b
β

)
,

where fabc are the structure constants of SU(3). ’t Hooft realized that being SU(3)
its gauge group, QCD has a non-abelian structure and there are topologically
non-trivial field configurations, called instantons, that actually contribute to this
operator. Thus, we would make a mistake neglecting the quantum corrections,
and the latter explain the large mass of η′ compared to the one of the pions and
other mesons in general. Let us see how instantons lift mη′ adding a term to the
effective potential of mesons.

The classical vacuum corresponds to configurations with zero field strength, but it
does not imply that the potential has to be constant, it just limits the fields to be
in the so-called pure gauge, a particular orbit in configuration’s space, composed
by all the gauge transformations of the zero-field configuration:

|0〉 ↔ Aµ = 0, A′µ = U∂µU
†, (1.12)

where a particular choice of U can be written as [4] U = exp(−itanaF (|~x|)), ta
being the generators of the gauge group and F a spherically symmetric function.
The correct boundary condition is the one where Aµ is a pure gauge field at spatial
infinity, i.e. either Aµ = 0 or a gauge transformation of 0. We use the matrix
notation Aµ = Aaµt

a and it is also useful to work in the temporal gauge A0 = 0.
|0〉 is a trivial configuration and does not correspond to the true vacuum of the
theory, in addition we know that we can relate the |0〉 configuration to a generic
|n〉 configuration by performing gauge transformations

. . . |−1〉 → |0〉 → |1〉 . . . ,

meaning that there is an infinite set of classical n-vacua, that characterise the
real vacuum, enumerated by an integer n called the Chern-Simons number or
topological charge [21]:

n =
1

16π2

∫
d3xεijktr[AiAjAk]. (1.13)

The anomalous part of the action can be written in terms of n as

δS =

∫
d4xGG̃ =

∫
d4x∂µK

µ =

∫
dt∂0n = ∆n,

4



1.1. The U(1)A problem

where in the third step we exploited the temporal gauge, where only K0 6= 0:

K0 ∼ εijktrAiAjAk.

The real QCD vacuum (or in general for SU(N) theories) is called θ-vacuum and
is a linear combination of the n-vacua described above

|θ〉 =
∑
n

einθ |n〉 .

It is clearly gauge invariant‡ and the θ parameter characterize the vacuum itself.
The meaning of this parameter can be understood with an analogy of a peri-
odic potential in quantum mechanics, where we have a degeneracy in the ground
state. In the finite barrier case the instantons are the configurations that allow a
transition between two neighbouring vacua. If H is the Hamiltonian of the sys-
tem this tunnelling possibility results in a non-zero overlap between two states
〈n± 1|H|n〉 = −∆ that obviously depends on the barriers height. Computing the
energy eigenvalues we find an additional term due to the instantons [3]:

H |θ〉 = (E0 − 2∆ cos θ) |θ〉

and we know that ∆ can be derived from the Euclidean action of the theory§

SE = − 1

2g2

∫
d4xTr[GµνG

µν ], , (1.14)

and it can be proven [4] that the self-duality and anti self-duality equations

Gµν = G̃µν , n > 0 (1.15)

Gµν = −G̃µν , n < 0 (1.16)

satisfy the general Yang-Mills equations, coming from the action (1.14). Now, the
minimum of the action over fields with a fixed topological charge n is a solution of
the Yang–Mills equations and the instanton is the solution with n = 1¶ [4] shows
a lower bound on the Euclidean action for fixed n

S ≥ 8π2

g2
s

|n|, (1.17)

meaning that the instanton action is the latter with n = 1. It is clear that the
instanton configuration is not heavily suppressed only when gs grows sufficiently
below the the QCD scale, where perturbation theory fails. Our gauge filed, in the
pure gauge definition (1.12) and with our ansatz on U (spherical symmetry) can
be written as

A′µ = UAinstµ U † + U∂µU
†, (1.18)

where Ainstµ is the instanton configuration. Therefore the overlap ∆ in the tun-
nelling amplitude must be proportional to action (1.17)

∆ = ke−8π2/g2s , (1.19)
‡Calling G the gauge transformation we know that G |n〉 = |n+ 1〉, so G |θ〉 =∑

n e
inθ |n+ 1〉 = e−iθ

∑
n′ ein

′θ |n′〉 = e−iθ |θ〉 and the phase is irrelevant.
§It is useful to define the gauge field as Aµ = −igtaAaµ and the Euclidean metric is implied.
¶The anti-instanton corresponds to the solution with n = −1.
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Chapter 1. The QCD Axion

giving
E(θ) = −2ke−8π2/g2s cos θ. (1.20)

Moreover, computing vacuum expectation values of an operatorX on the θ-vacuum
means solving the path integral

〈θ|X|θ〉 =
∑
m,n

〈m|Xei(m−n)θ|n〉 =

∫
DAµDψDψ̄X exp

[
i

∫
LQCDd

4x+ i(m− n)θ

]
,

but given the complexity of |θ〉 we can avoid this technical problem by performing
the integral in the easier θ = 0 configuration, but changing the lagrangian:

〈θ|X|θ〉|LQCD
= 〈θ = 0|X|θ = 0〉|L ′QCD

,

where
L ′

QCD = LQCD +
αs
8π
GµνG̃

µνθQCD.

This is a useful result, as we can acknowledge L ′
QCD as the new QCD lagrangian

that takes into account the complex structure of its vacuum. We finally have an
additional term takes place in the η′ sector of the meson potential

δVeff = 2ke−8π2/g2s cos θ ' Λ4 cos θ, (1.21)

explaining why the η′ mass is much bigger than the other mesons’ and solving the
U(1)A problem

m2
η′ ∼

Λ4

f 2
� m2

π.

1.2 Strong CP problem

The resolution of the U(1)A problem effectively adds an extra term to the QCD
lagrangian because of the complicated vacuum structure

Lθ =
αs
8π
GµνG̃

µνθ, (1.22)

calling θ ≡ θQCD. In addition, if we consider the weak interactions that the quark
possess, we should also include the term

Lm = −q̄iRMijqjL + h.c., Mij = (mqe
iθY )ij, (1.23)

where mq are the bare quark masses given by the interaction with the Higgs field.
It is important to notice how both terms (1.22) and (1.23) are CP (T) violating;
the GG̃ term violates parity and the time reversal symmetry but shows charge
conjugation invariance, explicitly

Ga
µνG̃

µν
a = ~Ea · ~Ba

T−→ − ~Ea · ~Ba, ( ~Ea
T−→ − ~Ea, ~Ba

T−→ ~Ba),

where Ea
i = Ga

0i and Ba
i = Ga

ij are the chromoelectric and chromomagnetic fields,
respectively. The quark mass term is instead related to the CP violating phase of
the weak sector within the Standard Model framework. It is convenient to use a
physical basis, that can be reached by performing a chiral transformation, as in

6



1.3. U(1)PQ and the QCD axion

(1.8), which changes θ by ArgDetM . In other words the physical contribution to
the lagrangian multiplying the anomalous GG̃ term would be the combination

θ̄ = θ + ArgDetM = θ +NfθY , (1.24)

where Nf is the number of active quarks we are considering in the theory, and we
should consider the lagrangian (1.22) with the substitution θ → θ̄. The presence
of the θ̄-term is crucial since it would give rise to an electric dipole moment (EDM)
dn for the neutron [10,17]

LEDM = −dn
2

(ψ̄niγ5σ
µνψn)Fµν , dn ' eθ̄

mq

m2
N

.

Experimentally we have a strong constraint on this quantity (and that is why we
can say that strong interactions don’t violate CP):

|dn| < 2.9× 10−26 e cm (90% C.L.), |θ̄| . 10−10.

The experimental bound on dn is converted therefore into a strong constraint
on the value of θ̄, that clearly represents a fine tuning issue, the famous Strong
CP problem. There are two compelling possible solutions: the first one is to
consider a spontaneously broken CP symmetry [10], setting θ = 0 at classical level.
However, if CP is spontaneously broken θ gets induced back at the loop-level and
for values θ < 10−9 we would need a vanishing θ also at 1-loop. But the real
problem with this scenario is that experimental data in excellent agreement with
the CKM Model, where CP is explicitly, not spontaneously broken. The second
viable solution is via introducing a new chiral symmetry, and it is believed to be
a natural solution, because this additional symmetry would rotate θ away, solving
the apparent inconsistency with experiments. Moreover, as physicists, we believe
that small numbers are hinting at some dynamical processes, usually related to
symmetries, enlightening new physics.

1.3 U(1)PQ and the QCD axion

In 1977 Peccei and Quinn introduced a new U(1) global symmetry [9], later known
as U(1)PQ, promoting the CP violating θ̄ parameter to a spacetime dependent
dynamical field, the axion φ. The Peccei-Quinn symmetry is spontaneously broken,
meaning that the axion is a Goldstone boson and exhibits the shift symmetry

φ→ φ+ αfa, (1.25)

where α is a constant and fa, called the axion decay constant, is the order parameter
associated to the breaking of U(1)PQ. The SM is augmented by an additional
degree of freedom (the axion is a real scalar) and the lagrangian becomes

L = LSM −
1

2
∂µφ∂

µφ+

(
θ̄ +

Nφ

fa

)
αs
8π
GµνG̃

µν + Lint,

where the last piece encodes the interaction terms that must satisfy the shift sym-
metry (1.25) and N is a constant known as colour anomaly coefficient (1.44). The
GG̃ is explicitly violating the PQ symmetry via the anomaly and around ΛQCD,

7



Chapter 1. The QCD Axion

where QCD non-perturbative effects (instantons) will become relevant, the axion
acquires a mass. The anomalous part of the effective potential (1.21) becomes

δVeff = Λ4 cos

(
θ̄ +

Nφ

fa

)
, (1.26)

and the minimum of the potential is given by the condition ∂φVeff = 0, solved by

〈φ〉 = −faθ̄
N
.

In this way at the minimum the θ̄-term is cancelled out, if we write the lagrangian
in terms of φphys = φ− 〈φ〉, and this provides the requested dynamical solution of
the strong CP problem. Around the ΛQCD scale the axion is mixing with π0 and
the η′ meson (and the η meson in the Nf = 3 case) in the following way

η′(x) = π9(x) + βφ(x),

π0(x) = π3(x) + αφ(x),

a(x) = φ(x)− απ3(x),

where (see 1.3.1)

β =
f

2fa
, α =

md −mu

2(mu +md)

f

fa
.

Clearly η′(x), π0(x) and a(x) are the mass eigenstates, namely the states of physical
particles. However, usually people use the word axion for both φ and a, but here
we will refer to a as the physical mass eigenstate, after the mixing. The mass of
the axion can be found expanding Veff in the minimum.

1.3.1 Zero temperature mass

The analytical expression of the effective potential and the mass at T = 0 can
be computed with chiral perturbation theory. In the simple SU(2) QCD case the
three Goldstones are π± and π0 and we recall the chiral lagrangian for the pions
(1.5)

Lχ = µ
f 2

2
tr(Σ†mq +m†qΣ), (1.27)

where now the π matrix is simply

π(x) =
1

2

(
π0

√
2π+

√
2π− −π0

)
,

and τa are the three SU(2) generators. Let us match the lagrangian (1.27) with the
axion dependent part of the lagrangian, written without loss of generality as [19]

La =
1

2
(∂µa)2 +

a

fa

αs
8π
GµνG̃

µν +
1

4
ag0

aγγFµνF̃
µν + c0

q

∂µa

2fa
q̄γµγ5q. (1.28)

Fµν is the photon field strength, with the coupling

g0
aγγ =

αem
2πfa

E

N
,

8



1.3. U(1)PQ and the QCD axion

with E and N the electromagnetic and colour anomaly, respectively. These anoma-
lies and the current jµa,0 = c0

q q̄γ
µγ5q are model dependent, see for instance section

1.4. Both the FF̃ term and the derivative coupling with matter are respecting
the shift symmetry (1.25) that we used to eliminate the θ̄-term, therefore the only
explicit violation comes from the pure QCD sector, i.e. the coupling with the
gluons. The latter can be conveniently absorbed into the light quarks by a field
redefinition

q → e−i
a(x)
fa

Qaγ5q, Tr(Qa) = 1, (1.29)

where q = (u, d)T in the simple Nf = 2 case. The lagrangian (1.28) becomes

La =
1

2
(∂µa)2 +

1

4
agaγγFµνF̃

µν +
∂µa

2fa
jµa − (q̄LMaqR + h.c.), (1.30)

where now

gaγγ =
αem
2πfa

[
E

N
− 6tr(QaQ

2)

]
, jµa = jµa,0−q̄γµγ5Qaq, Ma = ei

a
2fa

Qamqe
i a
2fa

Qa ,

and Q = diag(2/3,−1/3) represents the electrical charge of the quarks. Now,
coming back to the lagrangian (1.27) and looking at the neutral (diagonal) sector
we obtain a potential similar to (1.21) [19]:

Veff (a) = −f 2Λ

[
mu cos

(
π0

f
− a

2fa

)
+md

(
π0

f
+

a

2fa

)]
(1.31)

= −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
cos

(
π0

f
− ϕa

)
, (1.32)

with
tanϕa =

mu −md

mu +md

tan

(
a

2fa

)
,

but we know that on the vacuum π0 acquires a VEV proportional to ϕa, so the last
cosine is trivially equal to 1. Expanding to quadratic order we get the well-known
formula for the axion mass in the Nf = 2 case:

m2
a =

mumd

(mu +md)2

m2
πf

2
π

f 2
a

. (1.33)

It is important make a comment regarding the expression of the effective axion
potential: when we introduced the instantons we ended up with the single cosine
potential (1.21), however, as pointed out in [19], the potential (1.32) calculated
with chiral perturbation theory is nowhere close to the potential suggested by the
instanton calculation (see fig. 1.1). This is essentially because the latter relies on
the semiclassical approximation.

With chiral PT is also possible to determine the relevant coupling with photons‖

gaγγ =
αem
2πfa

[
E

N
− 2

3

4md +mu

md +mu

]
=

αem
2πfa

[
E

N
− 1.92

]
, (1.34)

where the only model dependent part is the factor E/N , see section 1.4.

‖The coupling gaγγ is not important for the solution of the strong CP problem but is relevant
for axion detection. Almost all the detection techniques, including haloscopes and helioscopes
[17], rely on the axion-photon effective coupling.

9



Chapter 1. The QCD Axion

Figure 1.1: Comparison between the instanton potential (dashed line) and the
effective potential computed with chiral perturbation theory (continuous line) [19].

1.3.2 Finite temperature

The axion mass we computed is valid in principle for T = 0, but effectively the
zero temperature value is valid only for T . ΛQCD, i.e. after the QCD phase
transition has occurred. A power law dependence on the temperature can be found
analytically if we recall the instantons and we consider the running of the coupling
constant αs. At high temperatures large gauge configurations are exponentially
suppressed because of Debye screening, where at leading order the perturbative
Debye mass is

m2
D =

(
Nc

3
+
Nf

6

)
g2
sT

2. (1.35)

The axion potential has a dependence on T [18, 19]

V (φ, T ) = −f 2
am

2
a(T ) cos

(
φ

fa

)
, (1.36)

f 2
am

2
a(T ) = 2

∫
dρ n(ρ, 0)e

− 2π2

g2s
m2
Dρ

2

, (1.37)

where n(ρ, 0) ∝ e−8π2/g2s is the zero temperature instanton density and ρ is the
instanton size appearing in the solution Ainstµ . If we fix Nc = 3 and Nf to the
number of active flavours at a given temperature, then the integral can be solved
within the saddle point approximation, and the functional dependence on T of
(1.37) is a power law T−α, where α ≈ 7 + Nf/3 is only fixed by the QCD β
function β(αs) ' b0α

2
s. However, even tough it shows a power-law dependence,

the calculation is not really reliable because it is based on the dilute instanton gas
approximation that works at finite temperature perturbative QCD [19].

Therefore we need direct computations from non-perturbative methods such as
lattice QCD, where recent calculations show a power-law dependence on T for the
axion mass,at high temperatures (T > 1 GeV) [23]

m2
a(T ) = αa

Λ3
QCDmu

f 2
a

(
T

ΛQCD

)−n
. (1.38)

10



1.4. Invisible axion models

Figure 1.2: Numerical simulations of the axion temperature mass around the GeV
scale. The IILM [24] is represented by the green continuous line.

The fit from the so called interacting instanton liquid model (IILM) [24] gives
n = 6.68 and αa = 1.68 × 10−7. As we can see in fig. 1.2 the zero temperature
mass value is reached for T . 200 MeV, after the QCD phase transition, and is
usually written in the literature [25]

ma ' 5.7× 10−3 eV
(

109 GeV
fa

)
. (1.39)

For high values of temperature our knowledge of axion properties gets worse be-
cause there are no lattice results available. Our power-law behaviour (1.38) just
shows that for T � 1 GeV the value of the mass is indeed irrelevant, as we know
that near the scale of PQ breaking fa (we will see in the next chapter what ranges
of fa we should consider) the axion is a massless degree of freedom.

1.4 Invisible axion models

In the last section we computed in the low energy limit the axion potential and
mass, but up until now we only discussed the effective theory for energies below
the spontaneous symmetry breaking of the PQ symmetry. The φGG̃ operator is
5-dimensional and therefore non-renormalizable, meaning that for high energies
(E > fa) the model needs a so-called UV completion, in order to describe the
correct physics. Let us mention the proposed models that extend the SM:

� PQWW: the Peccei-Quinn-Weinberg-Wilczek axion, which introduces one
additional complex scalar field only, tied to the EW Higgs sector.

� DSFZ: the Dine-Fischler-Srednicki-Zhitnitsky axion, which introduces an ad-
ditional Higgs field as well as the PQ field.

� KVSZ: the Kim-Shifman-Vainshtein-Zakharov axion, which introduces heavy
quarks as well as the PQ field.

The PQWW was historically the first QCD axion model, introducing a single ad-
ditional complex scalar field, ϕ, to the standard model as a second Higgs doublet.

11



Chapter 1. The QCD Axion

Just like the Higgs it features a symmetry breaking potential

V (ϕ) = λ

(
|ϕ|2 − f 2

a

2

)2

, (1.40)

that takes the VEV 〈ϕ〉 = fa/
√

2 at the electroweak scale. This means that
after electroweak symmetry breaking (EWSB) we are left with two additional EM
neutral scalars, which are the heavy radial part ρ(x) and the angular field φ(x)

ϕ = ρ(x)ei
φ(x)
fa , (1.41)

and φ is indeed the axion field, as the Goldstone boson of the spontaneously broken
U(1)PQ. In this model the axion couples to the SM via the chiral rotations (as
we have seen in 1.3.1), the chiral anomaly induces couplings to the gauge bosons
Ga
µν , Fµν and all the couplings are suppressed by fa. Nevertheless the PQWW model

is excluded by experiments because fa (set at the EW scale) is relatively small
and therefore couplings too large. In the KSVZ and DFSZ models ϕ is introduced
independently of the energy scale and fa is a free parameter with a lower bound,
in order to avoid couplings excluded by whichever type of experiment. This is why
the KSVZ and DFSZ models are called invisible models.

The DFSZ model

The DFSZ model is similar to the PQWW, but the field ϕ is introduced as a
standard model singlet and couples to it via the Higgs sector, that contains two
Higgs doublets Hu, Hd like in the PQWW model [23],

LH = λHϕ
2HuHd.

Consequently in oder to be PQ invariant the model assigns PQ charge +1 to ϕ
and -1 to both the Higgs doublets. The latter also couple to SM fermions via the
Yukawa coupling

LY = yuq̄LHuuR + . . . ,

meaning that the SM fermions have to be charged under U(1)PQ as well, leading
to a large colour anomaly coefficient N = 6. In addition in the DSFZ model there
are tree-level couplings between the axion and standard model fermions, via the
chiral term in mass matrix, as opposed to KSVZ, where there are 1-loop couplings
via new heavy quarks. The DSFZ model is very important in our work when we
consider (see chapter 3) thermal axion production by scattering and annihilation
of heavy SM quarks (mostly t, b) with the tree-level coupling φq̄q

Lφq̄q =
∂µφ

2fa

∑
q

cq q̄fγ
µγ5q. (1.42)

In the derivative basis of the lagrangian (3.1) the coefficient cq is the PQ charge
of the quark (or fermion in general) considered.

The KSVZ model

The KSVZ is instead the simplest invisible axion model, its lagrangian is

LKSV Z = LSM + Q̄i /DQ+ ∂µϕ
∗∂µϕ− V (ϕ∗ϕ)− (yQ̄LϕQR + h.c.), (1.43)

12



1.4. Invisible axion models

where ϕ is also a SM singlet, but in this model we are introducing a new heavy
quark doublet Q that is a weak singlet, colour charged and PQ-charged. These
new quarks induce the anomaly through the loop diagram of the GG̃ term, see fig.
1.3.

a

g

g

�! a

g

g

a

�

�

a

q

q̄

a

l

l̄

1

Figure 1.3: Feynman diagram of the anomalous axion coupling with gluons. In
the KSVZ model the new heavy quarks Q are running in the loop.

The lagrangian is U(1)PQ symmetric, i.e. invariant under the transformations

Q→ eiQPQγ5/2Q, ϕ→ e−iQPQϕ,

where QPQ is the PQ charge. At low energies, after PQ symmetry breaking by the
VEV of ϕ, the Q fields obtain a large mass due to the last term in the lagrangian
(1.43), mQ ∼ yfa. It is then possible to integrate them out, meaning that for
much lower energies (E � mQ) the coupling of the axion is directly to gluons.
The latter is proportional to ∼ N/fa, and the colour anomaly N is defined as

Nδab = 2TrTaTbQPQ, (1.44)

where Ta, Tb are the SU(3) generators. The coupling with the photons (1.34) is
the same replacing the gluons with two photons ( → ), and the
EM anomaly is therefore

E = 2TrQ2
EMQPQ.

We can then see how for example the KSVZ and DFSZ models differ: the E/N
term in the gaγγ expression is equal to 0 for the KSVZ and 8/3 for the DFSZ.
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Chapter 2

Axion Cosmology

Let us review the general picture for axion particles given in the previous chapter,
focusing now on the cosmology of the very early Universe. Two important physi-
cal processes determine the behaviour of axions: spontaneous symmetry breaking
occurs at some high scale fa, establishing the axion as a Goldstone boson and
non-perturbative effects, QCD instantons, becomes relevant at some temperature
TNP � fa, providing an effective potential for the axion. The axion field φ (before
mixing with pions), related to the angular degree of freedom of a complex scalar,
shows a shift symmetry φ → φ + const and is massless to all orders in perturba-
tion theory. The scale of non-perturbative physics is called Λ and the potential
induced must respect a residual shift symmetry φ → φ + 2πnfa/NDW , for some
integer n. In other words the explicit breaking by NP physics can be written as
U(1)PQ → Z(NDW ), where NDW is and integer called domain-wall number. A
particularly simple, but not unique, choice for the potential is [23]

V (φ) = Λ4(t)

[
1− cos

(
NDWφ

fa

)]
, (2.1)

where we can write Λ4(t) = f 2
am

2
a(t), and the time-dependence on the mass is

accounted because of the increasing NP effects when decreasing the temperature
of the Universe∗. The relic density of axions can be written as ρa = Ωaρc with

ρc =
3H2

0

8πG
,

and is given by the sum of the relic axion populations that can arise in the early
Universe. These are:

� Hot thermal axions.

� Cold axions from vacuum realignment (pre- and post-inflationary scenarios).

� Cold axions from decay of topological defects (strings, domain-walls).

In the next chapters we are going to discuss in detail the production of thermal
axions at the electroweak scale, where the axion is essentially massless and the
only scale of interest is fa. Hot axions are generically dubbed Dark Radiation
(DR). The effective potential instead becomes relevant when we will describe the
axion field evolution for cold populations. The latter are widely interpreted, as we
shall see, as a promising Dark Matter (DM) candidate.

∗In the first chapter we saw the temperature dependence of the axion mass (1.38), but as we
know time and temperature are inversely proportional and related by the Friedmann equations.
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Chapter 2. Axion Cosmology

2.1 Thermal Axions

Thermal production is by far the easiest way to produce a relic population: the
contact with SM particles in the thermal bath of early stages creates and annihi-
lates axions by processes

x1 + x2 ↔ x3 + φ, x1 → x2 + φ (2.2)

where x1, x2 and x3 are generic SM particles. The number density of thermal
axions solves the Boltzmann equation [1, 27]

dnφ
dt

+ 3Hnφ =

(∑
S

Γ̄S +
∑
D

Γ̄D

)
(neqφ − nφ), (2.3)

where H(t) is the Hubble expansion rate and we can compute the axion density
at thermal equilibrium as

neqφ =
1

(2π)3

∫ ∞
0

4πp2dp

exp(p/T )− 1
=
ζ(3)

π2
T 3, (2.4)

with the T dependence typical of radiation and ζ(3) = 1.202 . . . , the Riemann
zeta function of argument 3. Both scattering and decay processes affect the axion
number density: for a the processes in (2.2) the scattering and decay rate can be
respectively written as [27]

Γ̄S =
neq1 n

eq
2

neqφ
〈σSvrel〉 , (2.5)

Γ̄D =
neq1
neqφ

ΓD
K1(m1/T )

K2(m1/T )
, (2.6)

where vrel is the Moeller velocity, K1 and K2 the modified Bessel functions of
the second kind and 〈σsvrel〉 is thermally averaged cross section. In the present
work we will focus only on scattering processes. Based on the QCD axion and
the coupling φGG̃ the simplest (model independent) scattering processes that can
thermalize the axion are the following (the detailed treatment can be found in
section 2.1.1):

φ+ q(q̄)↔ g + q(q̄), φ+ g ↔ q + q̄, φ+ g ↔ g + g, (2.7)

and where first computed in [28]. Their corresponding tree-level diagrams are
depicted in figure 2.1. A rough estimate of the cross section and production rate
are given by

σ ∼ α3
s

8π2f 2
a

, Γ ∝ T 3

f 2
a

(2.8)

since we know that the QCD vertex gq̄q has a
√
αs contribution and the φgg vertex

goes as ∼ αs/fa. At temperatures T > 1 TeV both the quarks and the gluons are
relativistic, thus their equilibrium number density can be written as [32]

nq = nq̄ = 27
ζ(3)

π2
T 3, ng = 16

ζ(3)

π2
T 3.
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1

Figure 2.1: Feynman diagrams of the processes (2.7) with the axion coupling to
gluons. Axions are depicted with red dashed lines, gluons with blue lines and
quarks and antiquarks with black lines.

The Hubble parameter in the radiation era is

H2 =
1

3M2
pl

(
Nb(T ) +

7

8
Nf (T )

)
π2

30
T 4, (2.9)

Mpl =
√

}c/(8πG) being the reduced Planck mass and Nb,f (T ) the relativistic
degrees of freedom of bosons and fermions respectively. The latter depend on the
temperature, as heavy particles get progressively Boltzmann suppressed because
of the decreasing of temperature. Above the TeV scale all the SM d.o.f are present,

N full
SM =

7

8

6 · 3 · 2 · 2︸ ︷︷ ︸
qi

+ 3 · 2 · 2︸ ︷︷ ︸
e,µ,τ

+ 3 · 2︸︷︷︸
νi

+ 8 · 2︸︷︷︸
Gαµ

+ 3 · 2︸︷︷︸
Wα
µ

+ 2︸︷︷︸
Bµ

+ 4︸︷︷︸
Φ

= 106.75

and assuming only an additional one due to the axion field φ we obtainN = 107.75.
From the condition Γ ∼ H we can say (setting αs ' 0.03 [28]) that the processes of
Fig. 2.1 maintain axions in thermal equilibrium with the plasma till the decoupling
temperature

TD ' 2 · 1011 GeV
(

fa
1012 GeV

)2

, (2.10)

where in the computation effects of running of the coupling constant αs(µ) are
taken into account [29]. It is important to stress the fact that for temperatures
T & Nfa the PQ symmetry is restored and the calculation is not valid. It also
suggests [28, 32] that for values

fa . 2N · 1012 GeV (2.11)

thermalization is reached and a hot population of axions is created. Nevertheless an
inflationary period with reheating temperature TR < TD may wipe out the axions,
consequently it is also important to search for processes that may re-establish a
thermal axion population later. We stress the fact that the role of TR is of great
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Chapter 2. Axion Cosmology

importance with respect to fa and TD, both for thermal axions and cold axions,
that we will see later on.

As pointed out in [30] the axion gluon coupling is a loop level effect, proportional
to αs, and suppressed compared to the tree-level couplings (1.42) of the DSFZ
model. Therefore if we allow the existence of axion couplings to matter we can
obtain axion production rates much bigger that the one in (2.8), calculated in
detail in [28]. This is why in chapter 3 we will focus on axion interactions with
heavy fermions of the standard model at the EW scale and we will point out if a
thermal population of such kind can be detected in future CMB experiments, see
section 2.1.2.

2.1.1 Model independent thermalization

A relic density of thermally produced axions can be computed by solving the
Boltzmann equation (2.3) for nφ. Leaving the detailed computations of cross
sections and thermal averages in the next chapters we can solve the equation
with these quantities as parameters that depend on the process that we want to
consider and within the model independent coupling φgg there are two cases of
axion production that can be also found on the literature: the large fa in the very
early Universe where the axion interact with massless quarks and gluons and the
small fa case where the axion mostly interact with pions in the hadronic plasma.

Early Universe: large fa

First of all, it is important to define comoving variables that will allow us to rewrite
eq. (2.3) into a much simpler equation. The dimensionless comoving axion number
and entropy density are defined as

Yφ =
nφ
s
, s =

2π2

45
g∗sT

3,

and we rewrite the equilibrium number density of axions

neqφ =
ζ(3)

π2
T 3.

We will refer to x as a convenient time variable based on the process considered:
it can be written for example as

x(1) =
fa
T
, x(2) =

mi

T
.

The first case is useful for the processes described in figure 2.1, where the axion
production starts after the PQ breaking around fa, while the second case will be
useful in the scattering with heavy fermions at lower scales, where mi is the mass
of the heaviest particle considered in the scattering. In this section we want to give
a precise estimate of axions produced only with the ggφ coupling, setting therefore
x = x(1). In this way the Boltzmann equation becomes

sHx
dYφ
dx

=

(
1− 1

3

d ln g∗s
d lnx

)
γa

(
1− Yφ

Y eq
φ

)
, (2.12)
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2.1. Thermal Axions

where now γa = neqφ Γ̄S. In the simple case where we neglect the temperature
dependence on g∗ and g∗s and focusing only on scattering processes the equation
we want to solve becomes

sHx
dYφ
dx

= γa

(
1− Yφ

Y eq
φ

)
, (2.13)

and the comoving equilibrium abundance and the scattering rate (2.8) [28] are

Y eq
φ =

neqφ
s
' 0.277

g∗D
, Γ̄S ≡ Γ ' 7.1× 10−6T

3

f 2
a

where g∗D is the value of g∗s at T = TD. Using now the variable y = Yφ/Y
eq
φ we

can rewrite Boltzmann equation (2.13) in the following way

x2 dy

dx
= k(1− y), k = x

Γ

H
, (2.14)

and since H ∝ T 2, k is a constant. The solution of the ordinary differential
equation can be easily found

y(x) = 1− Aek/x, (2.15)

where A is the integration constant. At x = k (when Γ = H) axions decouple, if we
are assuming they only interact with the φgg coupling, and their number density
stays constant in a comoving volume. This instant is associated to the decoupling
temperature TD written in eq. (2.10); the latter, together with TR and the scale
fa define the thermal history of the Universe that affects the relic abundance of
axions. As a matter of fact, looking at figure 2.2 we have six different regions
(I-VI) in the fa − TR plane.

Figure 2.2: Different regions defined by TR, TD and fa. Only for regions I and VI
thermalization is achieved [41].

For case I we have TR > fa > TD and the solution (2.38) can completely written

y(x) = 1− ek(1/x−1), (2.16)

and as initial condition we set y(1) = 0, as axions are not produced for T ≥ fa.
Requiring that the deviation from the thermal spectrum at the time of decoupling
is less than 5% [28] we find

YD
Yeq

= y(x = k) = 1− e1−k > 0.95, ↔ k > 4,
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Chapter 2. Axion Cosmology

meaning that axions enter into thermal equilibrium before they decouple from the
plasma; in other words we obtain the same condition on fa found in (2.11), with
N = 1,

fa . 1012 GeV.

The other case where thermalization is reached is the region VI of figure 2.2, where
fa > TR > TD and the PQ symmetry is broken before inflation, as opposed to case
I. In the case of cold axions, that we shall discuss later, the distinction between the
cases T ≶ fa is of great importance. In case VI instead we have to be careful and
change the initial conditions: we set y(x) = 0 for T > TR (if thermal axions were
produced during inflation, they would be suppressed by the driving expansion),
leading to the solution

y(x) = 1− ek(1/x−1/xR),

where xR = fa/TR. In the cases II, III, IV and V thermalization is never reached.

Figure 2.3: The axion relic density from thermal processes for different values of
TR and the one from the misalignment mechanism (see section 2.2.1) for θi =
1, 0.1, 0.01. The density parameters for thermal relic axions, photons, and cold
dark matter are indicated, respectively, by Ωeq

a h
2, Ωγh

2 and ΩCDMh
2 [29].

For case I and VI we can compute today’s relic abundance, since it is determined
by Yeq and does not depend on the initial conditions

nφ(t0) = Yeqs0 =
0.277

g∗(TD)
s0 ' 7.8 cm−3

(
100

g∗(TD)

)
, (2.17)

and we can compute the relic density parameter from thermal processes [29]

Ωth
a h

2 '

√
〈pφ,0〉+m2

φnφ(t0)h2

ρc
' 10−9

(
100

g∗(TD)

)(
1012 GeV

fa

)
, (2.18)

where 〈pφ,0〉 is the present average momentum of axions. Figure 2.3 graphically ex-
plains what is written in eq. (2.18): even for the small values of fa (108 GeV) model
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2.1. Thermal Axions

Figure 2.4: Axion number density calculated by the thermalization of the process
ππ ↔ πa. It is only relevant in the window fa . 107 GeV [37]

.

independent axion production is too small to explain dark matter. Moreover, for
typical values of fa compatible with cold dark matter axions (region 1010−12 GeV),
the population is way smaller than the one of photons or neutrinos.

Hadronic plasma: small fa

At low energies, below ΛQCD, instantons become important and hadrons replace
quarks. As mentioned in the first chapter the axion mixes with the neutral pions
and we expect among the axion couplings with hadrons that the one of particular
relevance is responsible for the processes ππ ↔ πa, where a is now the mass
eigenstate axion†. Its coupling can be read recalling lagrangian of CHPT (1.2)
and exploiting once again the filed redefinition (1.29). Consequently the interaction
between axion and pions can be written as [39]

Laπ = Caπ
∂µa

fafπ
(π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µπ0), (2.19)

and at T ∼ mπ the cross section is roughly σπ ∼ 1/f 2
a . Hence the thermal

equilibrium condition (Γ & H) is satisfied by

nπσπ
H
∼ mπMpl

f 2
a

& 1,

and numerically by [35]
fa . 5× 108 GeV. (2.20)

This axion population is DR, or Hot dark matter (HDM), and its number density
can be compared (same order of magnitude) to the one of neutrinos, as seen in fig.
2.4. This hot population cannot account for the dark matter in the Universe, not

†We don’t include nucleons because of their scarcity with respect to pions [37].

21



Chapter 2. Axion Cosmology

only because of the cosmological constraints of large scale structures, but because
the relic density of this thermalization process [35]

Ωth.
a '

ma

130 eV
,

if matched to the DM relic density would imply an axion lifetime shorter than
the age of the Universe‡. However, the constraint (2.20) is in contradiction with
astrophysical and cosmological bounds (see for example [17,38]) that suggest

fa > 6× 108 GeV. (2.21)

The problem is that the latter is obtained by looking at interactions that are mostly
model dependent, meaning that in principle we could have for example a model
where the axion coupling to photons is arbitrary small [37]. In the last chapter we
will discuss with more details the astro/cosmo exclusion bounds.

Nevertheless in the development of our work we will consider the fa range that
respects the observational constraint (2.21), neglecting the axion production in hot
hadronic gas.

2.1.2 Dark radiation and Neff

Let us now show how this can affect some important cosmological observables.
The axion energy density from thermal production is directly connected to the
effective number of neutrinos Neff, that quantifies the energy density of radiation
via the following expression

ρr =
∑
i=γ,ν,φ

ρi =

[
1 +

7

8

(
Tν
Tγ

)4

Neff

]
ργ. (2.22)

The contribution of ρν and ρφ can be called dark radiation and is encoded on the
value Neff. The latter has a precise value without considering any physics beyond
the SM, N (SM)

eff = 3.046§, namely considering only neutrinos. However the presence
of axions can result in a deviation of this quantity

∆Neff = Neff −N (SM)
eff =

8

7

(
1

4

)4/3
ρφ
ργ
, (2.23)

where we used the relation Tν/Tγ = (4/11)1/3 due to neutrino decoupling around
the temperatures of e+e− annihilation [1]. Now we notice that the ratio ρφ/ργ is
proportional to Y 4/3

φ and we can write the thermal axion contribution as

∆Neff ' 12.15 (g∗sYφ)4/3. (2.24)

The value of g∗ and g∗s and their temperature dependences are of great importance,
and are depicted in fig. 2.5. In expression (2.24) we can write for instance the late
Universe value of g∗s

g∗s(T . 0.5MeV) = 2 +
7

8
× 2× 3× 4

11
=

43

11
' 3.909,

‡The axion lifetime is calculated based on the decay width of the process a→ γγ, see [35].
§The SM value is not exactly equal to 3 because the neutrino decoupling is not instantaneous.
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2.1. Thermal Axions

Figure 2.5: The evolution of g∗ and g∗s as a function of temperature. They are
with the continuous red line and green dashed line, respectively [31].

and in this way it simply becomes [27]

∆Neff ' 74.82 (Yφ)4/3. (2.25)

It is also useful to give a semi-analytical solution to eq. (2.13) that we can plug
into the expression of ∆Neff, within the approximation where g∗ and g∗s are con-
stant. We refer to the time variable x = x(2) = mi/T , where mi is the heavy
fermion considered in the scattering/annihilation process (for example we will set
in Chapter 3 mi = mt, where t is the top quark) and we have the following x
dependences

H = H(mj)x
−2, s = s(mj)x

−3, γS = γS(mj)x
−4e−x.

Using Yφ = 0 for x→ 0 then we can analytically solve (2.13):

Yφ = Y eq
φ [1− e−(1−e−x)r], (2.26)

defining r = (Γ̄S/H)T=mi . The result that we want to obtain is the asymptotic
value at small temperatures (x→∞), where the term e−x becomes irrelevant

Yφ = Y eq
φ (1− e−r), (2.27)

and only depends on r, i.e. the scattering rate. Plugging in the expression of Yφ
into (2.24) we obtain the contribution to Neff

∆Neff '
4

7

(
43

4g∗s

)4/3

[1− e−r]4/3. (2.28)

In other words, for large values of r = (Γ̄S/H)T=mj the axions reach thermal
equilibrium and their contribution to Neff depends only on the value of g∗s at
decoupling. For small values of r instead, valid for the large fa case when axions
do not thermalize, we can expand the exponential and obtain

∆Neff '
4

7

(
43

4g∗s

)4/3 [
Γ̄S
H

]4/3

T=mi

∝
(
ci
fa

)8/3

. (2.29)
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Chapter 2. Axion Cosmology

However, due to the complicate temperature dependence of both g∗ and g∗s, it
would be better to solve Boltzmann equation (2.13) numerically. Neff can be
indirectly measured by CMB experiments, and the future CMB-S4 experiment
as enough forecasted sensitivity to probe some of the models of thermal axion
production [26, 42]. For example, assuming only the additional existence of the
axion above the EW scale, the predicted change in Neff due to axions would be

∆Neff =
4

7

(
43

4g∗s(TD)

)4/3

' 0.027. (2.30)

2.2 Axion field evolution

The thermal axions discussed in the last section are quantum fluctuations about
the average background axion field, but before turning into the discussion of cold
populations of axions we should examine the time evolution of the axion field φ
in an expanding Universe. We emphasize again that φ is the field before mixing
with pions and has random initial conditions. The dynamics of the axion field
evolution relies on the scale of PQ breaking fa, as we have to consider two different
cases, if we accept the inflationary scenario and we know that the size of the
causal horizon is hugely modified during cosmological inflation. In the first case,
called pre-inflationary scenario, the PQ symmetry is spontaneously broken before
inflation, in other words the reheating temperature is smaller than the breaking
scale, TR < fa. In this simple case the axion field can be considered spatially
homogeneous and the evolution of this zero momentum mode is easy to compute.
The second case is called post-inflationary scenario, where the PQ symmetry is
broken during or after inflation. The axion field has in this case non zero modes
(in addition to the zero mode of the first case) and also carries topological defects
like cosmic strings and domain walls.

We then recall the dynamics, i.e. the equations of motion in the FRW metric that
minimize the following action

S =

∫
d4x
√−g

[
1

2
∂µφ∂

µφ− V (φ)

]
, (2.31)

where the determinant of the metric is
√−g = R3(t), R(t) being the scale factor,

and the potential V (φ) is the one written in (2.1). The equations of motion are

φ̈− (∇φ)2

R2
+ 3Hφ̇+

dV

dφ
= 0, (2.32)

where H = Ṙ/R and the dot represents the usual time derivative. In the first case
(that we will refer as zero mode), with the PQ phase transition occurring before
inflation the axion field only depends on time and eq. (2.32) changes into

φ̈+ 3Hφ̇+ V ′(φ) = 0, (2.33)

where at leading order in the potential (and setting NDW = 1) the last term of
the equation is V ′(φ) ≈ m2

aφ. Now we have the equation of a dumped harmonic
oscillator, because of the H friction term due to the expansion of the Universe and
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2.2. Axion field evolution

we can split the solution into two different regimes. In the frozen regime, where
the friction is stronger than the force, i.e. ma � H, the equation becomes

φ̈+ 3Hφ̇ = 0,

and φ = const. is the solution and the initial value of the axion field that freezes
due to a strong friction term. Then there is the fast oscillation regime, where
the potential term (or the mass equivalently) becomes relevant and is stronger
than the friction. The equation is therefore the full damped harmonic oscillator
(2.33), and the zero mode energy density and pressure of the axion field are (taking
V (φ) = m2

φφ
2/2):

ρφ =
1

2
φ̇2 +

1

2
m2
φφ

2, Pφ =
1

2
φ̇2 − 1

2
m2
φφ

2. (2.34)

They describe a coherent state of axions at rest with number density nφ = ρφ/mφ,
where the number of zero momentum axions per co-moving volume is conserved.
Consequently, this can give rise to a cold population of axions, via the so-called
misalignment mechanism (see 2.2.1), that can account for the dark matter relic
abundance.

In the more general non-zero mode post-inflationary scenario instead the axion
field φ depends on all the spacetime coordinates and now the solution of eq. (2.32)
is a linear superposition of modes

φ(x) =

∫
d3k φ(k, t)eik·x, (2.35)

where φ(k, t) , in a radiation dominated Universe where R ∝
√
t, satisfies(

∂2
t +

3

2t
∂t +

k2

R2
+m2

φ

)
φ(k, t) = 0. (2.36)

The wavelength of the modes is stretched because of Hubble expansion and in-
creases with the scale factor, λ(t) = 2π/kR(t), and in a period of inflation when
the growth of R(t) is exponential it is important to distinguish between modes
with wavelength outside (λ(t) > t) or inside (λ(t) < t) the horizon, i.e. whether
they are in causal connection or not.

A cold population of particles is what we expect due to structure formation [1]
if we want to explain the dark matter in the Universe. The production of such
population can be achieved via non-thermal productions such as the misalignment
mechanism, both for zero and non-zero modes, and topological defects in the case
of post-inflationary scenario. In the pre-inflationary scenario instead only the zero
momentum mode contributes.

2.2.1 Misalignment mechanism

The misalignment mechanism is the simplest way to produce cold axions and gives
a very reasonable explanation to CDM. The mechanism involves the relaxation of
the θ̄ angle towards the minimum of the potential, the CP conserving value. Today
we believe that θ̄ = 0, or at least a value compatible with zero with great precision,
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Chapter 2. Axion Cosmology

as we pointed out in the first chapter. However, at temperatures around fa the
axion is essentially massless and therefore the initial value θ̄i is not expected to
be zero, but random value instead; technically we can say that the axion field is
initially misaligned with the minimum of its potential. In addition, as mentioned
above, the misalignment mechanism has to be distinguished between pre- and
post-inflationary scenarios.

Zero mode

The pre-inflationary scenario is the easiest case to solve, as the universe was made
homogeneous by inflation after the PQ phase transition and the initial value of
the axion field was casual and the same everywhere in the Universe: φi = faθ̄i. If
we now look back at eq. (2.33),

φ̈+ 3Hφ̇+m2
φφ = 0, (2.37)

the first two terms are proportional to t−2 and this means that the axion mass
ma(T ) is only relevant when it becomes of order t−1, or equivalently when it is
comparable to H. There is a critical time t1 where this happens [32]

mφ(t1)t1 = 1,

and the temperature T1 corresponds to the time t1. We find

T 2
1

Mp

≈
(
mπfπ
fa

)(
ΛQCD

Tosc

)n/2
, T1 ≈ 1.18

(
1012GeV

fa

)0.185

GeV,

meaning that for reasonable values of the axion decay constant fa the axion field
starts oscillating a T1 ∼ few GeV. For t > t1 the solution of (2.33), for a radiation
dominated Universe, can be written as [23]

φ(t) = R−3/2(t/ti)
1/2[C1Jn(mφt) + C2Yn(mφt)], (2.38)

where n = (3p− 1)/2 (p = 1/2 in this case), Jn and Yn are Bessel functions of the
first and second kind and ti is the initial time. C1 and C2 are dimensionful and
determined by initial conditions and the solution is depicted in fig. 2.6. However,
when both matter and radiation are important, eq. (2.37) has to be solved with
approximations or numerically. A useful valid approximation in this case is the
WKB method, that gives the solution [23]

φ(t) = A(t) cos

(∫ t

ω(t′)dt′
)
, ω2(t) =

3

2t
∂t +m2

φ, (2.39)

where the most important role is played by the amplitude A(t). Within the ap-
proximation we find A2(t)mφ(t) ∝ R−3/2, where R(t) is the scale factor. If we now
recall the expression of the axion energy density (2.34) we can make use of the
virial theorem that simplifies the expression

ρφ = 〈φ̇2〉 = 〈m2
φφ

2〉 , (2.40)

where the brackets mean the average value in the oscillations. Taking now the
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2.2. Axion field evolution

Figure 2.6: Time evolution of the axion field. The dotted line represents the time t1
where the axion mass is comparable with the Hubble parameter (we assumed that
around t1 the axion mass already reached its constant zero temperature value).

time derivative of the energy density we find the differential equation

ρ̇φ =

(
ṁφ

mφ

− 3H

)
ρφ,

solved by

ρφ = const.
mφ(T )

R3
. (2.41)

This means that when the axion field settles down to its zero temperature value the
evolution of the energy density scales with ∝ R−3 and reflects how a coherent pop-
ulation of axions, with number density nφ = mφA2/2, behaves like non-relativistic
(NR) matter. With this mechanism we achieved a cold population of light bosons,
that will condensate and could explain dark matter structures, such as clusters; it
is important to stress how we can have a NR population without a dependence on
axion mass, that can therefore be very small. Another key feature of this mech-
anism is that, looking at eq.(2.41), the energy density does not scale as R−3, if
the mass changes with the temperature; however nφ = ρφ/mφ does it, meaning
that the number of axions per comoving volume is conserved. The energy density
today (t0) can be therefore written as

ρpreφ (t0) = ρφ(t1)
mφ

mφ(t1)

(
R(t1)

R(t0)

)3

, ρφ(t1) = m2
φ(t1)f 2

a θ̄
2
i , (2.42)

ρφ(t1) is the energy density value at the beginning of oscillations. The result
depends on the fundamental parameters fa and in this case (pre-inflationary) a
crucial role is played by the initial misalignment angle θ̄i:

Ωpre
a ≈ 0.27

(
0.72

h2

)(
fa

1011 GeV

)1.18

θ̄2
i . (2.43)

Because of the presence of θ̄i the right DM relic abundance can be obtained by
a wide range of fa values, as opposed to the case of post-inflationary model. In
the latter scenario there is also a contribution of the zero momentum mode, but
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Chapter 2. Axion Cosmology

in this case we have different random values of θ̄i around different causal patches
in the Universe, because of inflation. Being the average of θ̄2

i over different regions
of order one, the energy density can be written as

ρpostφ (t0) ∼ f 2
amφmφ(t1)

(
R1

R0

)3

. (2.44)

Non-zero modes

In the more complicated case where the PQ breaking occurs after inflation non-zero
modes and topological defects appear. In this section we will compute the relic
density of non-zero modes within the misalignment mechanism without considering
topological defects (they will be discussed in section 2.2.2). As we have already
seen, in this case the axion field is spatially varying and the equation we want to
solve is (2.36), where we neglect the axion mass term till t ∼ t1. For modes outside
the horizon, λ(t)� t, the general solution is

φ(k, t) = φ0(k) + φ1(k)t−1/2,

meaning that the axion field is "frozen by causality". For modes in causal connec-
tion instead (λ(t)� t) the solution is

φ(k, t) =
cost
R(t)

cos

(∫ t

ω(t′)dt′
)
, (2.45)

where now ω2(t) ' k2/R2. Let us now call dnφ/dω(ω, t) the axion number density
in physical and frequency space of wavelengths λ = 2π/ω, with ω > t−1. The
number and energy density of axions read [32]

nφ(t) =

∫
t−1

dω
dnφ
dω

(ω, t), ρφ(t) =

∫
t−1

dω
dnφ
dω

(ω, t)ω, (2.46)

and during radiation domination we can write [32]

dnφ
dω

(ω, t) ∼ N2f 2
a

2t2ω2
,

where we remember N = vφ/fa is the colour anomaly. Integrating over w > t−1

the number density at the beginning of oscillations can be written as

nφ(t1) ∼ N2f 2
a

t1
∼ N2f 2

amφ(t1),

and today energy density due higher momentum modes is

ρpost,nφ (t0) ∼ mφmφ(t1)N2f 2
a

(
R1

R0

)3

. (2.47)

This result is exactly the same of the zero momentum mode in the post scenario
(2.44), with the only difference in the N2 factor. In the post inflationary scenario
we have to sum the contributions of zero and higher momentum modes in the
misalignment mechanism but also topological defects like strings and domain walls.
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2.2. Axion field evolution

2.2.2 Topological defects

Depending on the nature of symmetry breakdown, topological defects of various
type are believed to have formed in the early Universe during cosmological phase
transitions:

� Magnetic monopoles, cube-like defects that form when a spherical symmetry
is broken and are predicted to have magnetic charge.

� Cosmic strings, one-dimensional lines that form due to the breaking of an
axial symmetry.

� Domain walls, two-dimensional membranes that arise in a discrete symmetry
breaking.

In the case of axions, cosmic strings are relevant in the breaking of U(1)PQ, where
a phase transition at T ∼ fa is occurring. Domain walls are also relevant, but
during the QCD phase transition, where the instanton potential (2.1) shows a
discrete symmetry. We will follow the cosmological evolution of the Peccei-Quinn
field ϕ with lagrangian density

L = −1

2
|∂µϕ|2 − Veff (ϕ, T ),

where ϕ is a complex scalar field, previously introduced in the invisible axion
models, while Veff (ϕ, T ) is the effective potential of the field that takes into account
effects of finite temperature. As a matter of fact, for high temperatures (T & fa)
we have a symmetry restoration and ϕ is in thermal equilibrium and the potential
can be written as

Veff (ϕ, T ) = λ

(
|ϕ|2 − f 2

a

2

)2

+
λ

6
|ϕ|2T 2, (2.48)

without considering other possible interactions for simplicity. The PQ transition
occurs at T ∼ Tc ≡

√
6fa, and after that ϕ gets a VEV and U(1)PQ is broken.

When the temperature of the universe becomes comparable to the QCD scale Λ
we should add to (2.48) the following potential

V (φ) = Λ4(t)

[
1− cos

(
NDWφ

fa

)]
, ϕ = ρ(x) exp

(
i
φ(x)

fa

)
.

Cosmic strings

Cosmic strings are extended objects which arise in field theories when a symmetry
G is broken, G→ H, and the quotient space G/H has nontrivial π1 homotopy [5].
The simplest case is when a complex scalar field has a U(1) symmetry and its
potential (1.40) leads to SSB. In this case the vacuum manifold is a circle S1 and
its first homotopy group is π1(S1) = Z. In the post-inflationary scenario the field
initially makes the choice of symmetry breaking direction in a casual independent
way at widely separated points in space, leading to string type defects, like in the
Kibble mechanism [1]. Even tough it will be destroyed around the QCD scale by
non-perturbative effects, a network of axionic cosmic strings could play a dominant
role in the early Universe, establishing a populations of cold axions.
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Chapter 2. Axion Cosmology

Figure 2.7: A numerical simulation of a cosmic string network. It consists of
infinite strings and finite string loops [1].

If we want to take into account the possibility of a production of axions by string
decay is important to introduce the energy per unit length of a string

µs = πNf 2
a ln(faL), (2.49)

where L is the characteristic distance between strings. For infinitely long strings
this quantity is logarithmically divergent as opposed to the local case, where there
is the gauge field contribution. We expect that the axionic string network will
rapidly approach a scaling solution [32], where

ρs = ξ
µs
t2
, (2.50)

where ξ ∼ O(1) is called the scaling parameter. Usually a cosmic string network
is made up by long pieces of infinite strings (i.e. that stretch across the horizon)
and small finite loops, see fig. 2.7, and the system is sustainable as strings are
constantly cutting themselves into loops that dissipate energy into gravitational
waves. However in the case of axionic strings the dissipation is mainly achieved by
radiation coming from axion decay, leading to a population of axions and main-
taining the scaling solution. This production of action takes place in the time
interval between tc and t1, where tc is the instant that corresponds to Tc =

√
6fa,

and if we assume a massless axion in this time interval the evolution of energy
densities is described by the differential equations [50]

dρs
dt

= −2Hρs −
dρs
dt

∣∣∣∣
emiss.

, (2.51)

dρφ
dt

= −4Hρφ +
dρs
dt

∣∣∣∣
emiss.

. (2.52)

Inserting (2.49) and (2.50) we obtain

dρs
dt

∣∣∣∣
emiss.

=
ξπNf 2

a

t3

[
ln(faL)− 1

]
, (2.53)
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and defining the comoving energy of axions radiated from strings

Eφ(t) = R4(t)ρφ(t),

its time derivative reads
dEφ
dt

= R4(t)
dρs
dt

∣∣∣∣
emiss.

.

Therefore the comoving number of axions produced by string decay can be written
as [50]

Nφ(t > t1) =

∫ t1

tc

dt′
1

R(t′) 〈ωφ(t′)〉
dEφ
dt′

(2.54)

=

∫ t1

tc

dt′
R3(t′)

〈ωφ(t′)〉
ξπNf 2

a

t′3

[
ln(fat

′)− 1

]
, (2.55)

where 〈ωφ(t)〉 is the mean energy of radiated axions. In order to compute Nφ we
should specify ωφ, or in other words we have to interpret the spectrum of radiated
axions. Here is where the discussion begins: according to [33] (scenario A) the
wavelength of radiated axions is given by the size of the horizon, hence

〈ωφ(t)〉(A) ∼ 2π

t
.

Integrating, the axion number density today is in this case

n
(A)
φ (t0) '

(
R1

R0

)3
N2f 2

aξ

t1
ln(fat1); (2.56)

it is easy to see how this expression is greater than the one of misalignment mech-
anism by a factor of ln(fat1) ∼ O(102). However, according to [32, 34] instead
(scenario B), the radiated axions have a 1/k spectrum, meaning that

〈ωφ(t)〉(B) ∼ 2π

t
ln(fat),

leading to

n
(B)
φ (t0) '

(
R1

R0

)3
N2f 2

aξ

t1
, (2.57)

which is exactly the expression of the misalignment production. Even tough the
scenario A and B differ by a the logarithmic factor we acknowledge the fact that
either way we have to consider axionic string decay, as their energetic contribution
is at least of the same order of magnitude than the coherent oscillation of the field
itself. The energy density today reads in general

ρφ(t0) & mφmφ(t1)ξN2f 2
a

(
R1

R0

)3

. (2.58)

Domain walls

The existence of the QCD potential explicitly breaks the original U(1)PQ symmetry
down to its discrete subgroup Z(NDW ), namely the axion at T . ΛQCD possesses
the shift symmetry φ → φ + 2πnfa/NDW , creating defects called domain walls.
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Because of the large hierarchy fa � ΛQCD the formation of domain walls occur
much later than the formation of cosmic strings. Domain walls arise as topological
defects because the discrete group is also spontaneously broken, leading to a NDW

degeneracy in the vacuum configuration. The domain wall is in fact the minimum
energy field configuration which interpolates between neighbouring vacua (they
are equidistant to each other), as in the Kibble mechanism [1]. When the axion

Figure 2.8: A domain wall network formed in a numerical simulation of a spon-
taneously broken Z2 symmetry. The contour lines indicate the domain walls that
separate the regions of different vacua [1].

mass becomes important at t1, each axion string becomes the edge of the NDW do-
main walls and the latter represent a cosmological disaster in the post-inflationary
scenario, unless NDW = 1¶. Let us see how. In the case where NDW ≥ 2 there two
or more degenerate vacua and their values in regions outside each other’s casual
horizon are independent. This means that there is at least on the order of one
domain wall per causal horizon, whose size is t. Hence the energy density stored
in domain walls can be written as

ρw(t) = Aσw
t
,

where A ∼ O(1) and σw is the energy wall density per unit surface [32]

σ ' 9f 2
amφ ' 5.5× 1010 GeV3

(
fa

1012 GeV

)
.

This expression would lead to an energy density today that exceeds by many
orders of magnitude the critical energy density ρc, in complete disagreement with
cosmological observations. This is generally known as the domain wall problem
and there are three possible approaches towards the solution: the first two consist
in postulating the pre-inflationary scenario or NDW = 1, while the last one is
introducing a small explicit breaking of the Z(NDW ) symmetry [32]. While solving
the domain wall problem is important for obvious cosmological consistencies, we
will focus only on the axion production due to wall decay. The case of interest
is NDW = 1, since according to [41] for NDW > 1 the predominant decay of the

¶We note that there are domain walls even when NDW = 1, where both sides of the domain
wall are in the same and only vacuum.
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2.2. Axion field evolution

axion walls is trough gravitational radiation. The energy of the string-wall system
at t > t1 is

ρsw(t) =

[
A1

σw(t1)

t1
+ ξ1

µs(t1)

t21

](
R(t1)

R(t)

)3

, (2.59)

where A1 and ξ1 are the scaling parameters defined at t1. It can be shown by sim-
ulations [50] that the axion contribution from wall decay is subdominant relative
to those from string decay and the misalignment mechanism.

2.2.3 Axion cold dark matter

In this final section we try to give an estimation of the cosmological relic density of
axions and compare it to the observed dark matter abundance. It depends on two
important parameters thoroughly discussed, namely fa and NDW , and we have
also seen along the chapter that it is important to distinguish whether the PQ
symmetry breaking occurs before or after inflation.

Figure 2.9: Exclusion bands, discussed in detail in the last chapter and possible
windows for the axion decay constant and the axion mass [25].

Pre-inflationary scenario

In this simple case the axion energy density is dominated by the coherent oscilla-
tion of the axion field, namely the misalignment mechanism. The population of
topological defects is wiped away beyond the horizon scale, and there is no domain
wall problem. The relic density can be simply written as

Ωpre
a h2 ∼ 0.15

(
fa

1011 GeV

)1.18

θ̄2
i . (2.60)
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Chapter 2. Axion Cosmology

This means that if we believe axion are dark matter, in order to match the right
relic abundance the axion decay constant fa is constraint to be in a very high range

fa & 1010 GeV, (2.61)

and possibly lying in the so-called anthropic window, where for tuned values θ̄i → 0,
we could have an arbitrarily high PQ scale, fa � 1012 GeV.

Post-inflationary scenario

In the more complicated post-inflationary scenario higher momentum modes in
the misalignment production and topological defects are taken into account, hence
the relic density is the sum of all the possible productions

Ωpost
a h2 = Ωpost

a,mish
2 + Ωpost

a,stringsh
2 + Ωpost

a,wallsh
2.

We have found previously the energy density of the zero momentum mode in the
misalignment (2.44)

ρpost,0φ (t0) = f 2
amφmφ(t1) 〈θ̄2

i 〉
(
R1

R0

)3

,

where 〈θ̄2
i 〉 is the the order one average over the possible misalignment angles of

different causal regions, that we discussed previously. We can compute it, following
the argument of [1], doing a root mean square average of a uniform distribution of
initial values over the possible angles, using the harmonic approximation

〈θ̄2
i 〉 =

1

2π

∫ π

−π
dθiθ

2
i =

π2

3
. (2.62)

Similarly, the energy densities for higher momentum modes and string decay read

ρpost,nφ (t0) ∼ N2
DWρ

post,0
φ (t0), ρpost,sφ (t0) & ξN2

DWρ
post,0
φ (t0).

The final relic abundance for the post inflationary scenario can be written numer-
ically as (using string production of [50]):

Ωpost
a h2 ∼ 0.7

(
fa

1011 GeV

)1.18

. (2.63)

As we can see in figure 2.9 the axion decay constant is constrained to be (for
NDW = 1) in the range 109 − 1011 GeV.
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Chapter 3

Production of Hot Axions

3.1 The effective lagrangian

In this chapter we are going to write in detail the lagrangians for the axion thermal
production. The aim is to compute the cross sections of interesting processes in
order to quantify the thermal abundance of axions in the early Universe. The
QCD axion model of interest is the DFSZ, since it does not require extra fermionic
fields, but only the SM content; the generic full effective lagrangian reads

L = LSM +
1

2
(∂µφ)2 +

φ

fa

∑
X

αX
8π

CXXtrXµνX̃
µν +

∂µφ

2fa

∑
ψ

cψψ̄γ
µγ5ψ, (3.1)

where LSM is written and discussed in full detail in the appendix A. Let us make
some comments about what we have written above. First of all, the axion field is φ,
i.e. the one before the mixing with mesons; as a matter of fact, we will only consider
processes that thermalize axions way above the QCD phase transitions, where the
axion mass and potential are negligible. Secondly, in agreement the lagrangian
(1.28), written in the first chapter, we are expressing the axion interactions with
matter in the so-called derivative basis, where we have an explicit dependence on
the derivative ∂µφ. The sum is intended over all the fermions, namely all the
quarks (not confined above 1 GeV) and all the leptons. The other interaction are
with gauge bosonsXµ: for temperatures above the EW scale the sum contains Ga

µν ,
W i
µν and Bµν , while after the phase transition it refers to Ga

µν and Fµν , namely the
gluon and the photon. The coupling constants CXX and cψ are dimensionless (they
belong to 5-dim. operators, but the suppression scale is fa) and for convention we
can set Cgg = 1; also, according to what we found Cγγ = E/N − 1.92 ' 0.75 and
cψ are the PQ charges in the DFSZ model.

It is also important to notice that the derivative basis is expressed with Dirac
fermions ψ, but in principle we could write, using the notation of [30], the simpler
coupling

L ⊃ ∂µφ

2fa

∑
χ

cχχ̄γ
µχ, (3.2)

where χ = {Q,U,D,L,E} are Weyl left-handed spinors representing the SM
fermions. According to the relation (A.6) of Appendix A the relation between
the coupling constants is

cψ = −cχ.
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Chapter 3. Production of Hot Axions

Nevertheless we will only use in this work Dirac spinors ψ = {qL, uR, dR, lL, eR}.
As pointed out in [30] if we consider the coupling of axions with fermions it is
convenient to exploit the PQ symmetry in the phase redefinition of SM matter
fields

ψ → exp

(
icψγ5φ

2fa

)
ψ. (3.3)

In this way, at first order in φ in the exponential, the derivative coupling disappears
from the lagrangian (3.1). However the transformation (3.3) introduces an axion
phase in the Yukawa couplings of LSM : recalling eq. (A.5) of the appendix we
obtain the transformation

yψ → yψ exp

(
icψγ5φ

fa

)
(3.4)

in the Yukawa lagrangian. Again, at first order in φ, a new interaction is generated

Lint = i
cψyψ
fa

φ

(
v + h√

2

)
ψ̄γ5ψ, (3.5)

and when at the EW scale the Higgs field gets VEV v the interaction is clearly
proportional to the fermion mass

mψ = vyψ/
√

2. (3.6)

We will use the vertex in the Yukawa basis (see table 3.1), as the computation of
cross sections is vastly simplified; also, we will check the equivalence of the two
basis in the calculations. At linear order in h, the excitation of the Higgs field,
a new interaction is depicted in table 3.1, in the four-legs vertex with the Higgs
particle; the only difference with the axion-fermion vertex is the presence of v in
the denominator.

φ

ψ

ψ̄

φψ

ψ̄ h

Derivative basis cψγ
µγ5/2fa

Yukawa basis icψmψγ5/fa icψmψγ5/vfa

Table 3.1: Axion-fermion vertex in the two basis, and axion-Higgs-fermion vertex
in the Yukawa basis.

As a matter of fact in the four-legs coupling we can insert the expression of the
mass (3.6) and express it with only the Yukawa constant yψ:

L (4)

ψ̄ψφh
= i

cψyψ√
2fa

φhψ̄γ5ψ, (3.7)

that can also be seen from the general interacting lagrangian (3.5).
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3.2. Thermal axion production

3.2 Thermal axion production

As pointed out in [27] scattering and decay processes can give a contribution to
Neff possibly detectable by future CMB experiments (CMB-S4 [42]). However we
want consider in this work similar processes using also particles at the Electroweak
scale (∼ 102 GeV): heavy quarks, EW bosons and Higgs boson. For the sake of
simplicity we can consider only one generation of quarks and we focus in the case
q = {t, b}, the heaviest quarks of the SM∗. The processes we will consider are
annihilation and scattering producing thermal axions φ and can be generalised as
the following:

ψ(p1) + ψ̄(p2)↔ X(p3) + φ(k), ψ(p1) +X(p2)↔ ψ(p3) + φ(k), (3.8)

ψ ≡ q = {t, b}, X = {g, γ, Z,W±, h}.
We will use and express the results in terms of the Mandelstam variables, see
below. In the annihilation processes we have three topologically different diagrams:
the s-channel, t-channel and u-channel. However, as pointed out in the previous
chapters and in the lagrangian (3.1), in the s-channel the coupling comes from the
anomalous 5-dimensional operator

L ⊃ φ

fa

αs
8π
CggtrGµνG̃

µν , (3.9)

whereas the t and u channels are represented by the recently introduced Yukawa
coupling

L ⊃ i
cψmψ

fa
φψ̄γ5ψ. (3.10)

As we said earlier we want to focus also on model dependent couplings, meaning
that we don’t want to only consider the axion-gluon coupling, but also the other
operators (3.10) and XµνX̃

µν . The strength of the latter is proportional to αX/fa,
that is a suppression due to the αX of the SM, in comparison with the masses of the
fermions in the Yukawa couplings. But this is only true for temperatures around
the fermion masses and more importantly below the EW scale, where the SM
fermions have masses thanks to Higgs mechanism. As a matter of fact, accordingly
to [30], we could consider all the possible couplings, and therefore included also
the axion couplings with matter, and compute their production rates for very high
temperatures, even much above the TeV scale. While the latter computation has
already been made, we focus on what we can understand from it. First of all the
axion coupling with matter, that can be written as† [30]

L ⊃ icψyψ
φ

fa
χiHχj, (3.11)

is quantified in this case by the Yukawa of the SM fermions, and we then acknowl-
edge that the only interesting process comes with the top Yukawa coupling yt,
orders of magnitude bigger than the others. But more importantly, if we are to
compute the cosmological axion yield and the possibles CMB signatures through

∗Eventually we will also consider other heavy fermions like the τ and µ leptons, see in the
following sections.

†In the notation of [30] the matter fields are Weyl fermions χ, and that is why we previously
introduced them. Also, H is the SU(2)L invariant Higgs field.
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Chapter 3. Production of Hot Axions

the observable ∆Neff, [30] found out that even considering the strongest effect on
the axion production rate, that comes from yt process (3.11), the computation
implies that axions decouple at temperature above the EW scale. This means that
all the SM particles are still relativistic, and once they gradually become non-
relativistic they will annihilate heating only photons and neutrinos. The limit on
∆Neff is the same that we found in (2.30)

∆Neff = 0.0264
Yφ
Y eq
φ

. (3.12)

Therefore we want to extend the work in [30] by using all the possible axion cou-
plings using only the operator (3.10) and for temperatures around, but also below
the EW scale. We will consider only the t and u contribution in the annihilation,
neglecting the s-channel. For the scattering the contributions come only from the
s and u channels. The diagrams are depicted in figure 3.1.

(s)

Xq̄

�q

p2

p1

p3

k

(t)

�q̄

Xq

p1 p3

p2 k

(u)

Xq̄

�q

p1 k

p2 p3

(s)

�X

qq

p2

p1

k

p3

(u)

qX

�q

p1 k

p2 p3

1

Figure 3.1: Feynman diagrams for the generic processes (3.8). In the first row s, t
and u channels of the annihilation, in the second row the s and u diagrams of the
scattering.

It is relevant to discuss an important property of the diagrams we are considering
that will crucially simplify the amount of the computations. Indeed, if we look at
the diagrams, we notice that passing from the annihilation to the scattering we
would need a replacement in the momenta:

p1 → p1, p2 → −p3, p3 → −p2, k → k, (3.13)

meaning that the square amplitude of the processes will satisfy a crossing symme-
try. If we look at the definition of the Mandelstam variables,

s = (p1 + p2)2 = (p3 + k)2,

t = (p1 − p3)2 = (p2 − k)2,

u = (p1 − k)2 = (p2 − p3)2,

and accordingly to the notation of the momenta in the diagrams of 3.1, the crossing
symmetry is reflected in the replacements

s→ t, t→ s, u→ u.
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3.2. Thermal axion production

We are going to exploit this feature by only computing explicitly the squared
amplitude |Mann|2 for the annihilation process and then for the scattering

|Msca|2 = |Mann|2(s→ t, t→ s).

List of processes

After having discussed the general properties of the diagrams let us look in detail
the processes we will consider in this work. Table 3.2 refers to every annihilation
and scattering process following a temperature increasing order: we basically know
that the production rate will be peaked around the fermion mass and we can list
the processes by the mass hierarchy of the SM fermions. As it can be seen from
table 3.2 the first processes consider the µ and τ leptons as the SM fermions,
this is because in order to have a complete and full description of thermal axion
production within the SM we also have to consider the QED sector and their
heaviest particles, originally discussed in [27]. However most of the other processes
have production rates that become interesting at temperatures around the EW
scale and will be our major focus. Process 19 and 20 are the only exceptions
as they rely on beyond the SM physics, that is the UV completed KSVZ model
described in section 1.4. In the latter the production rate is peaked at very high
temperatures, in principle arbitrarily higher than the EW scale; as a lower bound,
for example from colliders like the LHC at CERN, we should consider energies
bigger than a few TeV, see in detail section 3.4

Process Couplings Temperature [GeV]

1 µ+µ− → γφ e ∼ mµ = 0.105
2 µ±γ → µ±φ e "
3 τ+τ− → γφ e ∼ mτ = 1.777
4 τ±γ → τ±φ e "
5 bb̄→ gφ gs ∼ mb = 4.180
6 b(b̄)g → b(b̄)φ gs "
7 bb̄→ γφ e "
8 b(b̄)γ → b(b̄)φ e "
9 tt̄→ gφ gs ∼ mt = 173.4
10 t(t̄)g → t(t̄)φ gs "
11 tt̄→ γφ e "
12 t(t̄)γ → t(t̄)φ e "
13 tb̄→ W+φ gW ∼ 200 (EW scale)
14 tW+ → b̄φ gW "
15 bb̄→ Zφ gW "
16 tt̄→ Zφ gW "
17 tt̄→ hφ yt "
18 t(t̄)h→ t(t̄)φ yt "
19 Q?Q̄? → gφ gs & 1000
20 Q?(Q̄?)g → Q?(Q̄?)φ gs & 1000

Table 3.2: Thermal axion production processes at different scales.
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Chapter 3. Production of Hot Axions

3.3 Cross Sections

3.3.1 Gluons

The easiest interactions that we can compute are the ones considering massless
bosons, gluons and photons. The case of the gluons is more interesting because
of the presence of αs, in contrast with αem. Nevertheless we will also discuss
the processes involving photons, as the computation of the squared amplitude is
exactly the same.

A)

�q̄

gq

B)

gq̄

�q

C)

�g

qq

D)

qg

�q

1

Figure 3.2: Feynman diagrams involving gluons. The quarks are both t and b.

In figure 3.4 are depicted the 4 diagrams (A,B for annihilation and C,D for
scattering). We therefore consider first the annihilation processes

tt̄→ gφ, bb̄→ gφ,

with matrix element
Mqq̄→gφ =MA +MB, (3.14)

where

MA =
icqmqgs
fa

ε∗µ(p3, λ)v̄(p2)γ5
/p1
− /p3

+mq

t−m2
q

γµu(p1)taij, (3.15)

MB =
icqmqgs
fa

ε∗µ(p3, λ)v̄(p2)γµ
/p1
− /k +mq

u−m2
q

γ5u(p1)taij. (3.16)

We notice how the computation is proportional to the quark mass mq and the
charge cq (remember we are in the DSFZ model), meaning that in the massless
quark limit the cross section vanishes. The other quantities entering in the prefac-
tor are the coupling constant gs =

√
4παs, that in general will have a temperature

dependence, and the fundamental PQ scale fa. taij is the color factor, coming from
the QCD vertex and λ is taking into account the helicity of the gluons, that will
be summed in the expression of the averaged squared amplitude:

|M̄qq̄→gφ|2 = Πi

∑
s

|Mqq̄→gφ|2,

where s are the spins of the final state particles, while the prefactor Πi is just an
average over the initial state polarizations. Using the sums∑

s

us(p)ūs(p) = /p+m,
∑
s

vs(p)v̄s(p) = /p−m,
∑
λ

εµ(k)ε∗ν(k) = −gµν ,
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3.3. Cross Sections

and the trace computations we obtain

|M̄qq̄→gφ|2 =

(
cqmqgs
fa

)2

|taij|2
s2

(s+ t−m2
q)(m

2
q − t)

. (3.17)

For the computation of the cross section we make use of the expression of appendix
B, where the phase-space integration can be done in the CM (center of mass)
frame. In the latter is possible to express the Mandelstam variable t in terms of
the scattering angle θ [27]

t|ann = m2
q −

s

2
(1− L(s) cos θ) , L(s) =

√
1− 4m2

q

s
,

leading to the result

σqq̄→gφ(s) =
1

32π
√
sL(s)

∫ 1

−1

d cos θ|M̄qq̄→gφ|2 (3.18)

=

(
cqmqgs
fa

)2

|taij|2
tanh−1(L(s))

4π(s− 4m2
q)
. (3.19)

For the scattering processes involving the t and b quarks (diagrams C and D of
figure 3.4) we can write

MC =
icqmqgs
fa

εµ(p2, λ)ū(p3)γ5
/p1
− /p2

+mq

s−m2
q

γµu(p1)taij, (3.20)

MD =
icqmqgs
fa

εµ(p2, λ)ū(p3)γµ
/p1
− /k +mq

u−m2
q

γ5u(p1)taij. (3.21)

As we anticipated earlier it is easy to see thatMC andMD differ fromMA and
MB by the replacement (3.13), respectively. Therefore the squared amplitude is
just

|M̄qγ→qφ|2 =

(
cqmqgs
fa

)2

|taij|2
t2

(s+ t−m2
q)(m

2
q − s)

. (3.22)

The cross section can be then computed using the relation [27]

t|sca = −s
2

(
1− m2

q

s

)2

(1− cos θ), (3.23)

giving

σqg→qφ(s) =
1

32π
√
s

∫ 1

−1

d cos θ|M̄qg→qφ|2 (3.24)

=

(
cqmqgs
fa

)2

|taij|2
2s2 log(s/m2

q)− 3s2 + 4m2
qs−m4

q

32πs2(s−m2
q)

. (3.25)

It is important to notice how after the integration in cos θ the only dependence of
the cross section relies on the Mandelstam variable s, meaning that the expressions
(3.19) and (3.25) are Lorentz invariant. It is left to compute the color factors |taij|2
for the two cases.
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Color factors

The specification of a quark state in QCD requires not only the Dirac spinor us(p)
(momentum and spin), but also the color ci, a three-column vector that can be
red, blue or green:

|r〉 =

1
0
0

 , |b〉 =

0
1
0

 , |g〉 =

0
0
1

 .

For the annihilation case we have a quark-antiquark interaction and the color
factor in the matrix element reads (for both t and u channels):

taij = c†i t
acj ≡

1

2
〈i|λa|j〉 =

1

2

∑
a

(λa)cicj ,

and it depends on the color state of the interacting quarks. A typical octet state
is rb̄ (but any of the others would lead to the same result) meaning that the
incoming quark is red, the incoming antiquark is antiblue and the outgoing gluon
is red-antiblue because of color conservation. In this case we identify |i〉 ≡ |r〉,
|j〉 ≡ |b〉 and then write

ta,αij =
1

2

(
1 0 0

)
λa

0
1
0

 =
1

2
(1− i).

Therefore the color factor in the squared amplitude and in the cross section for
the generic qq̄ is just

|ta,αij |2 =
1

4
|1− i|2 =

1

2
. (3.26)

The configuration we chose was a red-antiblue gluon, but we should include all the
different configurations of gluons in oder to take into account the color structure;
therefore the full color factor in the cross sections will just be the sum over the
gluons

|taij|2 =
8∑

α=1

|ta,αij |2 =
1

2
× 8 = 4. (3.27)

In the case of the scattering processes we notice that the matrix element is exactly
the same in the color space (where the kets |r〉 , |b〉 , |g〉 live), and the color factor
is therefore the same.

It is easy now to generalize the computations to the same identical processes
but replacing gluons with photons, as depicted in figure 3.3. The computations is
exactly the same as the gluon and photon polarization are the same, being massless.
The only difference comes from the coupling constant, as we have the replacement
gs → Qqe, where Qq is the electric charge of the considered quark and e the electric
charge of leptons. Moreover the color factor is obviously disappearing. The change
in the coupling constant is crucial if we want to determine for which values of
fa the process reaches thermalization. The electromagnetic coupling e is indeed
much weaker than gs at the GeV scale, meaning that the process of scattering and
annihilation considering heavy quarks and photons are irrelevant compared to the
ones with gluons. Anyway in the case of photons we could consider the heavy
leptons µ, τ of the QED sector and calculate the same process of annihilation and
scattering, and this is what we are going to do in next section.
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Figure 3.3: Feynman diagrams involving photons. The quarks are both t and b,
the leptons can µ and τ .

3.3.2 Photons

As we commented earlier it is interesting to look at the processes with leptons.
We first consider the annihilation processes

`+`− → γφ,

where ` = {µ, τ} depicted in diagrams E) and F ) in figure 3.3 and with matrix
elements

M`+`−→γφ =ME +MF , (3.28)

ME =
ic`m`e

fa
ε∗µ(p3, λ)v̄(p2)γ5

/p1
− /p3

+m`

t−m2
`

γµu(p1), (3.29)

MF =
ic`m`e

fa
ε∗µ(p3, λ)v̄(p2)γµ

/p1
− /k +m`

u−m2
`

γ5u(p1). (3.30)

The coupling constant is now the electrical charge e =
√

4παem, that shows a
running due to renormalization. Altough it is the only coupling that grows in
strength as the temperature increases, below the EW scale is weaker than both gs
and gW . We notice that the trace calculation is exactly the same as the quark-
gluon process, and also the cross section will be the same: we are just considering
leptons instead of quarks, but the only things that changes besides the coupling
(and the absence of the colour factor of course) is the fermion mass. We can then
write

|M̄qq̄→γφ|2 =

(
c`m`e

fa

)2
s2

(s+ t−m2
`)(m

2
` − t)

, (3.31)

and the cross sections, following the exactly same steps and integration as in the
case of gluons, turns out to be

σ`+`−→γφ(s) =

(
c`m`e

fa

)2
tanh−1(L(s))

4π(s− 4m2
`)
. (3.32)
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Now for the scattering process

`±γ → `±φ,

we write the matrix elements for the diagrams G) and H) of figure 3.3:

MG =
ic`m`e

fa
εµ(p2, λ)ū(p3)γ5

/p1
− /p2

+m`

s−m2
`

γµu(p1), (3.33)

MH =
ic`m`e

fa
εµ(p2, λ)ū(p3)γµ

/p1
− /k +m`

u−m2
`

γ5u(p1), (3.34)

and analogously we write down the squared amplitude

|M̄`±γ→`±φ|2 =

(
c`m`e

fa

)2
t2

(s+ t−m2
`)(m

2
` − s)

, (3.35)

and the cross section

σ`±γ→`±φ(s) =

(
c`m`e

fa

)2
2s2 log(s/m2

`)− 3s2 + 4m2
`s−m4

`

32πs2(s−m2
`)

(3.36)

We can then summarize the cross sections for the processes with gluons and pho-
tons, both for quarks and leptons:

σqq̄→gφ(s) = 4

(
cqmqgs
fa

)2

F1(s;m = mq), (3.37)

σqg→qφ(s) = 4

(
cqmqgs
fa

)2

F2(s;m = mq), (3.38)

σtt̄→γφ(s) =
4

9

(
ctmte

fa

)2

F1(s;m = mt), (3.39)

σtγ→tφ(s) =
4

9

(
ctmte

fa

)2

F2(s;m = mt), (3.40)

σbb̄→γφ(s) =
1

9

(
cbmbe

fa

)2

F1(s;m = mb), (3.41)

σbγ→bφ(s) =
1

9

(
cbmbe

fa

)2

F2(s;m = mb), (3.42)

σ`+`−→γφ(s) =

(
c`m`e

fa

)2

F1(s;m ≡ m`), (3.43)

σ`±γ→`±φ(s) =

(
c`m`e

fa

)2

F2(s;m ≡ m`), (3.44)

where

F1(s) =
tanh−1(L(s))

4π(s− 4m2)
, F2(s) =

2s2 log(s/m2)− 3s2 + 4m2s−m4

32πs2(s−m2)
,
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3.3.3 EW gauge bosons

W± processes

Now let us focus on the electroweak processes withW± and Z bosons. As described
in appendix A the coupling of fermions with the W boson is flavour changing
because of the charged current, therefore the processes we are interested in are:

tb̄→ W+φ, bt̄→ W−φ, tW+ → b̄φ, bW− → t̄φ (3.45)

A)

�b̄

W+t

B)

W+b̄

�t

C)

�t̄

W�b

D)

W�t̄

�b

E)

�W�

t̄b

F )

t̄W�

�b

G)

�W+

b̄t

H)

b̄W+

�t

1

Figure 3.4: Feynman diagrams of annihilation and scattering involvingW± bosons.

For all the four processes considered there is one leading diagram and one sub-
dominant one. The latter comes from the bb̄φ coupling proportional to mb that
is considerably lower than the temperatures we want to consider (T & 100 GeV).
Therefore diagrams A,D, F and G give only a correction to the squared amplitude.

The first annihilation case tb̄ → W+φ is depicted in diagrams A,B, with matrix
elements

MA =
icbmbgW

2
√

2fa
ε∗µ(p3, λ)v̄(p2)γ5

/p1
− /p3

+mb

t−m2
b

γµ(1− γ5)u(p1), (3.46)

MB =
ictmtgW

2
√

2fa
ε∗µ(p3, λ)v̄(p2)γµ(1− γ5)

/p1
− /k +mt

u−m2
t

γ5u(p1), (3.47)

where we have used the SM coupling of fermions with the W± bosons and setting
Vij = 1 in the case of one generation. gW replaces gs as coupling constant and
in addition the sum over the spins of the polarization tensors changes due to the
presence of the mass ∑

λ

εµ(k)ε∗ν(k) = −gµν +
kµkν
M2

W

, (3.48)
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complicating the computation of the squared amplitude. The latter can be written
as

|M̄|2 =
1

4
|M2

A +M2
B + 2M∗

AMB| ∼
1

4
|M2

B|, (3.49)

because of the presence of the bottom quark mass. In other words, without con-
sidering the factors coming from the traces we could write

|M̄|2 ∝ 1

4

(
ctmtgW

2
√

2fa

)2

1 +

(
cbmb

ctmt

)
+

(
cbmb

ctmt

)2

︸ ︷︷ ︸
corrections

 , (3.50)

where mb/mt ∼ 10−2 and m2
b/m

2
t ∼ 10−4. The computation of the trace gives

|M̄|2tb̄→W+φ =
c2
tm

2
tg

2
W

8f 2
a

[
2t−m2

t + s(2m2
t +M2

W − t− s)/4M2
W

m2
t +M2

W − t− s

]
. (3.51)

Like in the case of gluons and photons the computation of the cross section is given
by integrating on the angular variable θ, that is

σ(s) =
1

32πI

∫ 1

−1

|M̄|2
(

1− M2
W

s

)
d cos θ, (3.52)

where we are neglecting the bottom mass‡. The prefactor I can be written

I =
sL(s)

2
, L(s) =

√
1− 2m2

t

s
+
m4
t

s2
, (3.53)

and in the expression of the squared amplitude we have to express the t variable
according to the following

t|ann = m2
t +m2

Z −
s

2
(1− L(s) cos θ).

For the computation of the cross section we had to separate all the terms of
the squared amplitude and integrate them one by one before summing all the
contributions, using the software Mathematica; the cross section reads

σtb̄→W+φ(s) =
c2
tm

2
tg

2
W (M2

W − s)
512πf 2

aL
2(s)M2

W s
3
F3(s), (3.54)

where the expression of F3(s) can be found in (B.5) of the appendix B.

Exploiting now the crossing symmetry we can then write the squared amplitude
for the scattering process tW+ → b̄φ:

|M̄|2tW+→b̄φ =
c2
tm

2
tg

2
W

8f 2
a

[
2s−m2

t + t(2m2
t +M2

W − t− s)/4M2
W

m2
t +M2

W − t− s

]
. (3.55)

Analogously we integrate analytically the angular variable, obtaining

σtW+→b̄φ(s) =
c2
tm

2
tg

2
W

1024πf 2
aL

2(s)M2
W s

3
F4(s), (3.56)

‡It is reasonable, since involving the W± bosons and the top quark, both way more massive
than the b quark, we are expecting that the process dominates for temperatures & 100 GeV.
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where now

L(s) =

√
1− m2

t +M2
W

s
+

(m2
t −M2

W )2

s2
,

and the explicit expression of F4(s) is in appendix B. We see how the two cross
sections (3.54) and (3.56) have the same prefactor, being proportional to m2

t/f
2
a .

We can also notice the presence of theW mass in the denominator that is reflected
in the shape of the rate: based on dimensional analysis we can expect such a rate
with the following dependences around the EW scale, where mt are relevant

Γ = n 〈σv〉 ∼ T 3 m2
t

M2
Wf

2
a

∼ T 3, Γ/H ∼ T, T ∼ TEW . (3.57)

Z processes

For the Z boson instead we have the diagrams depicted in figure (3.5):

A)

�q̄

Zq

B)

Zq̄

�q

C)

�Z

qq

D)

qZ

�q

1

Figure 3.5: Feynman diagrams of annihilation and scattering involving the Z
boson.

The annihilation process qq̄ → Zφ is depicted in diagrams A,B, with matrix
elements

MA =
icqmqgW

2 cos θWfa
ε∗µ(p3, λ)v̄(p2)γ5

(/p1
− /p3

+mq)

t−m2
q

γµ(c
(q)
V − c

(q)
A γ5)u(p1), (3.58)

MB =
icqmqgW

2 cos θWfa
ε∗µ(p3, λ)v̄(p2)γµ(c

(q)
V − c

(q)
A γ5)

(/p1
− /k +mq)

u−m2
q

γ5u(p1), (3.59)

where we have now in the coupling the presence of the Weinberg angle θW §, and
the presence of the factors c(q)

V and c(q)
A , defined in appendix A as

c
(q)
V = T3L,q − 2Qf sin2 θW , c

(q)
A = T3L,q.

The values for the considered quarks can be easily calculated:

c
(q)
V c

(q)
A

q = t −1/2− 4/3 sin2 θW −1/2
q = b 1/2 + 2/3 sin2 θW 1/2

Therefore we can write the squared amplitude in the following way:

|M̄|2qq̄→Zφ = −1

4

(
cqmqgW

2 cos θWfa

)2(
−gµν +

p3µp3ν

M2
Z

)
Dµν , (3.60)

§Experimentally we have the numerical result sin2 θW ≈ 0.23 [].
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where Dµα is the trace of γ functions

Dµν = tr

[
(/p1

+mq)

(
γν? (/p1

− /p3
+mq)γ5

t−m2
q

+
γ5(/p1

− /k +mq)γ
ν
?

u−m2
q

)
×

(/p2
−mq)

(
γ5(/p1

− /p3
+mq)γ

µ
?

t−m2
q

+
γµ? (/p1

− /k +mq)γ5

u−m2
q

)]
,

with the definition
γµ? = γµ(c

(q)
V − c

(q)
A γ5).

The result of the squared amplitude comes from a long and tedious computation
and the result can be found in (B.2) of appendix (B). In the computation of the
cross section we isolated all the terms in the squared amplitude, integrated them
one by one and then summed them, all this with Mathematica. The result can be
written as

σqq̄→Zφ(s) =

(
ctmtgW
fa

)2
F5(s)

4πM2
ZL

2s4(L2 − 1)(M2
Z − S)2

, (3.61)

where

L(s) =

√
1− 4m2

q

s
.

We also calculated, using the crossing symmetry the squared amplitude and the
cross section of the scattering process

tZ → tφ,

however, being also a long and mechanical calculation, we leave the cross section
for this process with the couplings dependence and a the function F6(s), that we
are not reporting for the sake of simplicity. We can finally summarize the cross
sections for the processes with the EW gauge bosons, where thermalization can
occur around the EW scale:

σtb̄→W+φ(s) =

(
ctmtgW
fa

)2
(M2

W − s)F3(s)

512πL2(s)M2
W s

3
(3.62)

,

σtW+→b̄φ(s) =

(
ctmtgW
fa

)2
F4(s)

1024πL2(s)M2
W s

3
, (3.63)

σtt̄→Zφ(s) =

(
ctmtgW
fa

)2
F5(s)

4πM2
ZL

2s4(L2 − 1)(M2
Z − S)2

, (3.64)

σbb̄→Zφ(s) =

(
cbmbgW
fa

)2
F5(s)

4πM2
ZL

2s4(L2 − 1)(M2
Z − S)2

, (3.65)

σtZ→tφ(s) =

(
ctmtgW
fa

)2

F6(s), (3.66)

σbZ→bφ(s) =

(
cbmbgW
fa

)2

F6(s), (3.67)
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A)

�q̄

hq

B)

hq̄

�q

C)

�q

q̄ h

1

Figure 3.6: Feynman diagrams of the annihilation process involving the Higgs
boson particle.

3.3.4 Higgs boson

Involving the Higgs particle we are looking at the two processes

tt̄→ hφ, t(t̄)h→ t(t̄)φ,

and we start by computing the cross section for the annihilation process. The
matrix elements reads

Mtt̄→hφ =MA +MB +MC ,

where
MA =

ictm
2
t

vEWfa
v̄(p2)γ5

/p1
− /p3

+mt

t−m2
t

u(p1), (3.68)

MB =
ictm

2
t

vEWfa
v̄(p2)

/p1
− /k +mt

u−m2
u

γ5u(p1), (3.69)

MC =
ictyt√

2fa
v̄(p2)γ5u(p1) (3.70)

However we have to take into account the fact the fact that around T ' TEW ' 250
GeV, the Higgs mechanism provides the Electroweak phase transition, meaning
that for higher temperatures all the fermions and bosons of the SM are massless.
If we look at the couplings where the axion is present, above the EWPT only the
C diagram is present, because it involves the yt coupling constant, and not directly
the top quark mass. We also have to specify that above the phase transition the
Higgs scalar particle h has to be replaced by the SU(2)L invariant Higgs field H,
that contains 4 degrees of freedom (it is a complex doublet). The latter case, as
we discussed previously, has already been discussed in [30], while the case below
the EWPT, with the physical and massive scalar h is the focus of our work. The
trace calculation in the for the annihilation matrix element gives

|Mtt̄→hφ|2 =

(
ctmtyt
fa

)2
(8m4

t − 4m2
tm

2
h − 2m2s+m4

h −m2
hs+ s2)

(m2
t − t) (m2

t − u)
, (3.71)

where¶

yt =
m
√

2

vEW
, u = 2m2

t +M2
Z − t− s,

¶We used the numerical values mh = 125 GeV, and vEW = 246 GeV.

49



Chapter 3. Production of Hot Axions

based on the relations of Mandelstam variables. The integration of the cross section
now follows the same steps we did before, and in the case of annihilation it reads

σtt̄→hφ(s) =
c2
tm

2
ty

2
tF7(s)

16πf 2
aL(s)2s3

, (3.72)

where

L(s) =

√
1− 4m2

t

s
,

and the function F7(s) can be found in appendix B.
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Figure 3.7: Feynman diagrams of the scattering process involving the Higgs boson
particle.

For the more interesting case of the scattering th→ tφ, depicted in figure 3.7, we
write the matrix elements

Mth→tφ =MD +ME +MF ,

where
MD =

ictm
2
t

vEWfa
ū(p3)γ5

/p1
− /p2

+mt

s−m2
t

u(p1), (3.73)

ME
ictm

2
t

vEWfa
ū(p3)

/p1
− /k +mt

u−m2
u

γ5u(p1), (3.74)

MF =
ictyt√

2fa
ū(p3)γ5u(p1), (3.75)

that leads to

|Mth→tφ|2 =

(
ctmtyt
fa

)2
(8m4

t − 4m2
tm

2
h − 2m2t+m4

h −m2
ht+ t2)

(m2
t − t) (m2

t − u)
, (3.76)

also achievable with the crossing symmetry. In the cross section the factor L(s)
changes into

L(s) =

√
1− m2

t +m2
h

s
+

(m2
t −m2

h)
2

s2
,

leading to the result

σth→tφ(s) =
c2
tm

2
ty

2
tF8(s)

64πf 2
aL(s)2(m2

t − s)s3
, (3.77)

As before, the expression of F8(s) can be found in appendix B. In addition the
results can be generalised to the bottom quark case, with the replacements ct → cb
and mt → mb.
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3.3.5 Hierarchy of the processes

Within the SM, we considered all the possible axion thermal production processes,
using the axion coupling with fermions

Lφψ̄ψ =
icψmψ

fa
φψ̄γ5ψ, (3.78)

meaning that all the cross sections, as we have seen in the calculations, are propor-
tional to m2

ψ/f
2
a . It is clear now, being yt the biggest by orders of magnitude, that

the highest production rate based on these assumptions is the one involving the
top quark, and this is why we decided to consider heavy quarks in the first place.
Nevertheless, concerning the CMB signatures, we obtained the relation‖ (2.28)

∆Neff '
4

7

(
43

4g∗s

)4/3

[1− e−Γ/H ]4/3, (3.79)

and this means that if axions reach thermal equilibrium (Γ/H > 1) then the value
∆Neff only depends on the value of g∗s evaluated at the decoupling temperature.
Consequently, for production processes involving lighter fermions, like the bottom
quark or the heaviest lepton τ , we could obtain larger contributions on Neff that
we could observe. Still, the best way to thermalize axions is using the top-axion
coupling (operator (3.78) with ψ = t) and exploiting a SM coupling in the matrix
element: now the hierarchy of the cross sections relies on the strength of the
coupling we are using in the non-axionic vertex. Based on this argument the cross
sections can be generically written as

σ ' m2
tαX
f 2
a

, αX =
g2
X

4π
, (3.80)

including αt = y2
t /(4π). The numerical values can be roughly written as

αs ' 10−1, αW ' 10−2, αt ' 10−1,

neglecting αem, that is smaller than the weak coupling. Our best choice would be
gluons and the strong coupling αs, the latter being the biggest, followed by the top
Yukawa coupling in the Higgs process. The weak coupling and the electromagnetic
coupling are expected to give smaller cross sections, even tough in the case of αem
we could obtain large values of ∆Neff, for relatively small (fa . 107 GeV) axion
decay constants, due to the difficulty in reaching thermalization. Considering the
scattering processes∗∗ of the top-axion coupling we write the expected hierarchy
for the rates and therefore in the thermalization:

1) tg → tφ, σ ∼ αsm
2
t

2) th→ tφ, σ ∼ y2
ym

2
t

3) tZ → tφ, σ ∼ αWm
2
t .

The first process is also dominant due to the colour factor, basically because we
have 8 different types of gluons. We expect that is order will also be respected
in the CMB signatures (see section 4.3), as the first process should cover de-
tectable regions for higher values of fa. At lower temperature, processes with
lighter fermions will be dominant, but the coupling will at the same time be pro-
portional to a smaller mass.

‖Γ is thermally averaged production rate, see section 4.1 for the details.
∗∗Due to the thermal average in section 4.1 the scattering rate is dominant with respect to

the annihilation rate.
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3.4 New heavy quarks

Up to now we considered processes with SM particles, but we also want to extend
our work by considering new degrees of freedom within theories beyond the SM.
In the first chapter we discussed the invisible axion models (1.4), and we used the
PQ charges cψ in our calculation, accordingly with the DFSZ model. Hence in the
latter, as we already discussed, there was no need of introducing new particles,
as the charges of the new axial symmetry are carried by the SM fermions. In
the KSVZ model the PQ charges are carried by new heavy quarks,†† that can be
integrated out at the EW energy scale. As a lower bound we take

mQ? > 1 TeV,

and we consider the processes, depicted in figure 3.8,

Q?Q̄? → gφ, Q?g → Q?φ,

A)

�Q̄?

gQ?

B)

gQ̄?

�Q?

C)

�g

Q?Q?

D)

Q?g

�Q?

1

Figure 3.8: Feynman diagrams of the scattering and annihilation processes with
heavy quarks.

The matrix elements read

MQ?Q̄?→gφ =MA +MB, (3.81)

MQ?g→Q?φ =MC +MD, (3.82)

where

MA =
icQ?mQ?gs

fa
ε∗µ(p3, λ)v̄(p2)γ5

/p1
− /p3

+mQ?

t−m2
Q?

γµu(p1)taij, (3.83)

MB =
icQ?mQ?gs

fa
ε∗µ(p3, λ)v̄(p2)γµ

/p1
− /k +mQ?

u−m2
Q?

γ5u(p1)taij, (3.84)

MC =
icQ?mQ?gs

fa
εµ(p2, λ)ū(p3)γ5

/p1
− /p2

+mQ?

s−m2
Q?

γµu(p1)taij, (3.85)

MD =
icQ?mQ?gs

fa
εµ(p2, λ)ū(p3)γµ

/p1
− /k +mQ?

u−m2
Q?

γ5u(p1)taij. (3.86)

We are assuming that the new heavy quarks couple to the QCD sector like SM
quarks, therefore in the Q̄?Q?g vertex we have to consider the strong coupling

††We call them quarks because are charged under the SU(3)C gauge group, therefore they
have colour.
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constant gs. The trace computation is now very easy, as we can treat the new
quarks as SM quarks, and the squared amplitude is exactly the same (including the
color factor) as the one we previously calculated, with the replacement mq → mQ? .
Therefore the result on the cross sections for both the annihilation and scattering
are, respectively

σQ?Q̄?→gφ(s) =

(
cQ?mQ?gs

fa

)2

|taij|2
tanh−1

(√
1− 4m2

Q?

s

)
4π(s− 4m2

Q?)
, (3.87)

σQ?g→Q?φ(s) =

(
cQ?mQ?gs

fa

)2

|taij|2
2s2 log(s/m2

Q?)− 3s2 + 4m2
Q?s−m4

Q?

32πs2(s−m2
Q?)

. (3.88)

Based on the cross sections we are expecting a very high production rate

Γ ∼ m2
Q?αs

f 2
a

T,

but also a high decoupling temperature. Thus we are not going to obtain values
∆Neff > 0.027, but the latter could be achieved for high values of fa.
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Chapter 4

Numerical results

In the following chapter we are going to present the numerical computations based
on the cross sections we calculated. We finally want to describe for which range
of values of fa, or more precisely of fa/cψ, the value ∆Neff can be measured by
the next CMB surveys. We will first discuss the production rate Γ, defined in
(2.5), that will be our model dependent input for the solution of the Boltzmann
equation, later depicted for every process. The final graphs will show the values
of ∆Neff in the parametric axis of the axion decay constant, again for each process
studied.

4.1 Production rates

In this section we will present the ratio Γ/H for different values of the temperature
and for every process considered, but before presenting our graphical results we
discuss how we thermally averaged the cross sections for the computation of the
rate Γ.

Thermally averaged rates

Now that we have the expressions for the cross sections we can calculate the
annihilation and scattering rates Γi = ni 〈σv〉, defined also as [26]

Γi =
1

neqφ

∫
d3pa

(2π)32Ea

d3pb
(2π)32Eb

fa(Ea)fb(Eb)(4σiEaEb), (4.1)

where a, b label the incoming states. However within the Boltzmann approxima-
tions, that is fa = exp(−Ea/T ), we can write a general Lorentz invariant expression
for the thermal average [27]

〈σx1x2→x3φv〉 =

∫∞
s∗
dsλ(s,mx1 ,mx2)s

−1/2σx1x2→x3φ(s)K1(
√
s/T )

8K2(mx1/T )K2(mx2/T )m2
x1
m2
x2
T

, (4.2)

where
λ(x, y, z) = [x− (y + z)2][x− (y − z)2], (4.3)

s∗ = (mx1 +mx2)
2, (4.4)
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the lower integration extremum is present for obvious kinematic reasons. In addi-
tion for the cases where we have a massless particle in the initial state, like in the
scattering with gluons and photons, (4.2) can be written (setting mx2 = 0) as

〈σx1x2→x3φv〉 =

∫∞
m2
x1

dsλ(s,mx1 , 0)s−1/2σx1x2→x3φ(s)K1(
√
s/T )

16K2(mx1/T )m2
x1
T 3

. (4.5)

In the expression of the rate we have then to multiply by the equilibrium densities

Γ =
neq1 n

eq
2

neqφ
〈σv〉 , (4.6)

where in the last relation we have to consider the internal degrees of freedom g
of the particles and the statistics of fermions. The expression of neqφ is always the
one we found in (2.4), since the axion is massless at the temperatures we consider,
while the expression of neq1 and neq2 changes. In general for massive particles we
can write its full expression

neqf =
3g

4

m2TK2[m/T ]

2π2
, (4.7)

where g are internal degrees of freedom and the factor 3/4 comes from the statistics
of fermions. As it can be seen from figure 4.1, the expression we wrote perfectly
match the solutions in the classical and relativistic limits, in their respective ranges
of validity:

neqf,T�1 =
ζ(3)T 3

π2
, neqf,T�1 =

(
mT

2π

)3/2

e−m/T . (4.8)
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Figure 4.1

It is useful to compare the rate Γ with the Hubble parameterH in order to quantify
for which valus of the axion decay constant fa the processes reach thermalization
and the axions achieve thermal equilibrium in the primordial plasma. The ratios
Γ/H ∗ are plotted for different parametric values of fa.

∗In the expression of H we used the numerical values g∗ = 106.75 and Mpl = 2.4×1018 GeV.
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Massless bosons

Here we present the results for the processes involving massless bosons: gluons
and photons, both for the quarks and the leptons.
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Figure 4.2: Log-Log graph for the comparison of both the scattering and annihi-
lation for the bottom and top processes with gluons.
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Figure 4.3: Log-Log graph for the comparison of both the scattering and annihila-
tion for the bottom and top processes with gluons and the µ and τ processes with
photons.
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EW bosons
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Figure 4.4: Log-Log graph of the scattering processes at the EW scale involving
the Z,W+ and h bosons. In addition we also plotted the process with gluons in
order to compare them.
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Figure 4.5: Log-Log graph of the annihilation processes at the EW scale involving
the Z,W+ and h bosons. In addition we also plotted the process with gluons in
order to compare them.
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KSVZ model
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Figure 4.6: Scattering (red) and annihilation (blue) production rates with heavy
quarks in the KSVZ model. We here plotted for the values mQ? = 1 TeV and
mQ? = 5 TeV. The scattering curves are evaluated at fa/cQ? = 2 · 109 GeV, while
the annihilation at fa/cQ? = 106 GeV.
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Figure 4.7: Scattering rates with new heavy quarks, for different values of the
quark mass.
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4.2 Axion thermal abundance

Once we numerally we computed the rates Γi we can determine the axion abun-
dance that every process will produce in the scatterings and annihilations. We
need to solve Boltzmann equation 2.12

sHx
dYφ
dx

=

(
1− 1

3

d ln g∗s
d lnx

)
γa

(
1− Yφ

Y eq
φ

)
, (4.9)

but the latter can be also written as

x
dYφ
dx

=
0.277

g∗s

Γ

H

(
1− 1

3

x

g∗s

dg∗s
dx

)(
1− g∗sYφ

0.277

)
, (4.10)

as we recalled the relation Y eq
φ = neqφ /s ≡ 0.277/g∗s. Now we can numerically solve

the differential equations using the software Mathematica, by putting as input the
Γ/H ratio of the process computed and providing the function g∗s that has a non-
trivial dependence on the temperature. The curve in the following plots will refer
to the use of g∗s taken from two different works, and the bands between the curves
can be used as an uncertainty in the number of relativistic degrees of freedom. The
upper line, labelled g

(1)
∗ is taken from [45], while the lower g(2)

∗ from [46]. When
not specified it is implied g(1)

∗ . For the sake of brevity we leave all the plots of the
abundances for every process studied and we leave the leading top-gluon processes
as a numerical example, in figure 4.8.

4.2.1 Top-Axion

Up to now we considered single processes of axion production, in order to un-
derstand for what values of fa the axion can reach thermal equilibrium. It is
important therefore to combine the results that we found into something that can
be related to a real thermal production mechanism. As a matter of fact, if we look
at our main lagrangian (3.1), we shouldn’t consider single scattering processes, but
operators that appear in the lagrangian.

As we already discussed in section 3.3.5 the top-axion coupling is our best shot for
thermalization, the operator reads

Lt̄tφ =
ictmt

fa
φt̄γ5t, (4.11)

and every process that contains this interaction should be considered in the ther-
malization and therefore in the Boltzmann equation. In the latter we should
therefore put the total axion-top rate Γtφ:

x
dYφ
dx

=
Γtφ
H
f(Yφ, g∗s, x), (4.12)

Γtφ = Γtg→tφ + Γth→tφ + ΓtZ→tφ + ΓtW+→b̄φ + Γtb̄→W+φ, (4.13)

neglecting the subdominants annihilation processes, due to thermal average in
cross sections. In the computation of the axion abundance the rate in (4.13)
is taking into account the presence of the additional model dependent (DFSZ)
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4.2. Axion thermal abundance

coupling that we considered in our work. In figure 4.9 it is depicted the axion
abundance with the total top-axion rate at different values of fa/ct. In section
4.4 we also plotted the comparison with the abundances of the leading process
tg → tφ and the scattering th→ tφ.

4.2.2 Subdominant couplings

In a totally analogous way we recall the bottom-axion coupling that we consider
in our lagrangian

Lb̄bφ =
icbmb

fa
φb̄γ5b, (4.14)

and we solve Boltzmann equation with the total rate

Γbφ = Γbg→tφ + Γbh→tφ + ΓbZ→tφ, (4.15)

neglecting all the annihilations and the processes with the W bosons, as we have
calculated their cross sections in the massless bottom limit. The yield from this
coupling is much less effective, due to small ratio m2

b/m
2
t , and that is why we leave

the plots with the bottom quark in appendix C. The other process we are left to
consider are the ones with the leptons

Lµφ =
icµmµ

fa
φµ̄γ5µ, Lτφ =

icτmτ

fa
φτ̄γ5τ, (4.16)

that are even more suppressed because of the lepton masses and the electromag-
netic coupling constant αem.
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Figure 4.8: Numerical solutions of the scattering (red) and annihilation (blue)
processes with top quarks and gluons. The black dotted line represents thermal
equilibrium.
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Figure 4.9: Numerical axion abundance using the top-axion coupling and the total
rate 4.13. The black dotted line represents thermal equilibrium.

4.2.3 Q?-Axion

In the KSVZ model we have the additional coupling

LQ̄?Q?φ =
icQ?mQ?

fa
φQ̄?γ5Q

?, (4.17)

and we have the annihilation and scattering calculated in section 3.4. Of course,
as in the other cases, the scattering is the dominant process, and the abundance
obtained with the latter is depicted in figure 4.14 for different values of fa/cQ? or
for the value mQ? = 1 TeV. In this case we can see that thermalization can be
reached for values of fa/cQ? ∼ 109 GeV.
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Figure 4.10: Numerical solutions of the scattering (red) and annihilation (blue)
processes with top quarks and gluons. The black dotted line represents thermal
equilibrium.
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4.3 CMB signatures

Once we computed the abundance for every single process and later on for the
operators considered in the lagrangian we can calculate the dark radiation con-
tribution, namely the deviation ∆Neff from the predicted N

(SM)
eff = 3.046 as we

discussed in the first chapters. First of all, we want to check the large fa approxi-
mation that we found in (2.29)

∆Neff ∼ f−8/3
a , (4.18)

and it is verified in the plots by comparing the signatures of a single process with
a gray dotted line. Nevertheless, as we computed the full numerical Boltzmann
equation, we can exploit the relation (2.25)

∆Neff ' 74.82(Yφ)4/3, (4.19)

with Yφ the solution of the Boltzmann equation. We therefore plot the dark radi-
ation contribution of thermal axions for different values of fa/ci, where i indicate
the fermion in the process. Our goal is to infer if there are reasonable values of fa
(i.e. not excluded by experiments and observational data) that can at the same
time being possibly detected by the future experiment CMB-S4. The previous
experiment Planck 2015 had a sensitivity up to ∆Neff ' 0.19, which is a huge
number compared to our expected results. On the other hand, as listed in table
4.1, the new experiment CMB-S4, that is expected to run within a few years,
can remarkably reach down to our target sensitivity ∆Neff ∼ 0.01 [17, 44], while
for values below this threshold we will refer to futuristic sensitivity of even next
generation CMB probes.

Figure 4.11: Value of ∆Neff versus the decoupling temperature and the sensitivity
of CMB probes [17].

Figure 4.11 also shows the sensitivity bands, in the graph where the dark radi-
ation is plotted for different decoupling temperatures, provided that the axion
production reaches thermal equilibrium and the contribution only depends on g∗s

∆Neff ∼ g−4/3
∗s , for Γ/H � 1, (4.20)
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Chapter 4. Numerical results

Experiment σ(Neff)

Planck 2015 0.30
0.19

CMB-S4 0.048
0.013

Table 4.1: Sensitivity in the CMB experiments [44].

For single processes the decoupling temperature is in direct correspondence with
the fermion mass, as the production rates are peaked around it, and therefore for
production closer and closer to the EWPT we expect to reach asymptotically the
value ∆Neff = 0.027 predicted above the EW scale, as figure 4.11 shows. As we
commented earlier, production with leptons, especially the scattering µ±γ → µ±φ
can produce high deviation in the dark radiation observable Neff, but at the price
of a small, i.e. excluded, axion decay constant, based on the Astrophysical bounds
(details in section 5.1). This means that we want to focus on processes with
top-axion coupling, depicted in figure 4.12.

4.3.1 Single process

In the following graphs we will show the single process plots in the plane (fa/ci −
∆Neff) for the scattering at the EW scale (and therefore with the top-axion cou-
pling) and the KSVZ model. We also plotted in orange the CMB-S4 sensitivity
band (up to 1 σ) and in red the futuristic band. The leading tg → tφ scattering
falls in the CMB-S4 sensitivity for values fa/ct . 109 GeV, for the W processes
the possible values are fa/ct . 7 · 108 GeV, for the Higgs scattering fa/ct . 4 · 108

GeV and the Z scattering fa/ct . 4 · 108 GeV. The other DFSZ single process
contributions are plotted in appendix C.
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Figure 4.12: Dark radiation signatures from thermal production at different fa/ct
for the scattering process with the top-axion coupling at the EW scale.
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In the KSVZ model the decoupling temperature is just above the EW scale, and
all the curves are asymptotically reaching this values for low fa scales. In figure
4.13 we simulated the contribution for masses mQ? = 1, 5, 10 and 100 TeV, and the
maximum sensitivity of CMB-S4 can be reached for values fa/ct . 4 · 109 GeV in
the first case and fa/ct . 4 · 108 GeV for the more massive mQ? = 100 TeV case.
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Figure 4.13: Dark radiation signatures from thermal production at different fa
scales and values of mQ? for the scattering process in the KSVZ model.

4.4 Final Results

We here present our final results.
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Figure 4.14: Relic comoving abunandance of the top-axion processes combined, in
comparison to single processes, for the value fa/ct = 108 GeV.
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Figure 4.14 shows the final relic abundance computed for all the processes with
the top-axion coupling, compared to the leading scattering tg → tφ and the Higgs
scattering. The correction due to EW bosons slightly uplifts the abundance Y tot

φ

(purple dotted line), and this will also change the predicted dark radiation contri-
bution. In figure 4.15 we plot indeed the values of ∆Neff for reasonable values of
fa/c in the case of leading top-axion coupling for the DFSZ model and the hadronic
KSVZ for Q? masses up to 5 TeV. It is reasonable to assume that new physics would
arise at the TeV scale, as we recently started to probe this energy region at the
LHC. Our results for the non-hadronic model with the top-axion coupling show a
detectable region in the near future in the range

fa/ct . 1.5× 109 GeV, (4.21)

while for the hadronic model the minimum value of ∆Neff is reached in the region

3× 109 GeV . fa/cQ? . 1.5× 1010 GeV. (4.22)
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DFSZ
Top-Axion

KSVZ

Figure 4.15: Our prediction of dark radiation contribution, for the DFSZ model
using the top-axion coupling and the KSVZ model for Q? masses up to 5 TeV.

The top-axion coupling for low values fa . 108 GeV gives more promising contri-
butions ∆Neff ∼ 0.032, while in the KSVZ the decoupling temperature is slightly
above the EW phase transition, meaning that even for very low values of fa the
maximum contribution is the value obtained in [30] ∆Neff = 0.027. The presence
of the EW bosons in our discussion will open to larger window in the fa param-
eter space of possible detectable thermal productions. Nevertheless the variation
from the leading scattering with the gluons is expected to be less than 10%, in
agreement with our ∆Neff final results.

Extending our work to the bottom-axion coupling and higher Q? masses (up to
500 TeV) the range of observable values are

fa/cb . 2× 108 GeV (4.23)

66



4.4. Final Results

for the former and
fa/cQ? . 6× 1010 GeV (4.24)

for the latter, as they are both depicted in figure 4.16.
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Figure 4.16: Our prediction for the DFSZ the top-axion and bottom-axion cou-
plings and the KSVZ model for Q? masses up to 500 TeV.
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Chapter 5

Future prospects

In this final chapter we are going to briefly review the observational and experi-
mental point of views in axion physics. We want to establish the current exclusion
bands in the parametric space of the axion decay constant and the status of the
experiments. We finally want to discuss what are the possible values of fa that
could give rise to detectable populations of both hot and cold axions.

5.1 Astrophysical bounds

Astrophysical bounds refer to what we can learn about low-mass and weakly in-
teracting particles, such as axions, from the observed properties of stars. Indeed,
a hot and dense stellar plasma will emit axion particles, that subsequently escape
from the stellar interior directly, without further interactions due to weakness of
the coupling, providing a local energy sink for the stellar medium. Astronomical
observables can therefore set powerful limits on the properties axions, and also
other particles. A natural starting point would be considering the best-known
star: our Sun, that is powered by nuclear fusion and the burning of hydrogen. The
solar energy loss has to take into account the observed νe flux, coming from the
fusion reactions, but also the possibility of producing new particles, axions in our
case. This particular type of production is called Primakoff effect and is based
on the axion-photon coupling gφγ: a photon is converted into an axion thanks to
the electromagnetic field (virtual photon) of the charged particles in the Sun, see
figure 5.1. But if we want to compute the energy-loss rate from stellar plasmas we
should specify all the interactions with the medium constituents [38]. For example
in the case of the DFSZ model the interaction with a fermion ψ of mass mψ is
generically

Lint =
cψ
2fa

∂µφψ̄γ
µγ5ψ or Lint =

icψmψ

fa
φψ̄γ5ψ, (5.1)

and cψ is model dependent coefficient of order unity (the PQ charge in the DFSZ).
We can define the quantity gφψ, that will play the role of the Yukawa and therefore
a coupling constant, and the "axionic fine structure constant" αφψ:

gφψ =
cψmψ

fa
, αφψ =

g2
φψ

4π
. (5.2)
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��

⇥

1

Figure 5.1: Feynman diagram of the Primakoff production, the photon with the
× symbol is virtual and coming from a nucleus.

In the KSVZ model instead, no tree-level couplings to quarks and leptons arise,
but axions still couple to couple to nucleons (cφp, cφn) due to their mixing with
the neutral pion, as explained in the first chapter. We can therefore divide the
observational bounds using the coupling with two photons gφγ, for both DFSZ and
KSVZ models and the coupling with electrons gφe, only for DFSZ.

5.1.1 Photons

The lagrangian of the interaction between photons and axions can be written as

Lint =
1

4
gφγφF̃µνF

µν = −gφγφE ·B, (5.3)

where we recall
gφγ =

α

2πfa
cφγ =

α

2πfa

(
E

N
− 1.92

)
, (5.4)

and we explicitly write it in table 5.1∗ for our models.

Model NDW E/N cφγ
DFSZ 6,3 8/3 0.75
KSVZ 6,3 0 -1.92

Table 5.1: Axion-photon couplings for the invisible models.

According to [38] the most important limit on the axion-photon coupling is com-
ing from the helium-burning lifetime of HB (horizontal branch) stars in globular
clusters

gφγ . 0.6× 10−10 GeV−1, (5.5)
that for the axion decay constant becomes from relation (5.4)

fa/cφγ & 2× 107 GeV. (5.6)

For example in the DFSZ model, where cφγ ≈ 0.75 the bound can be written as

fa & 1.5× 107 GeV. (5.7)

5.1.2 Electrons and Nucleons

Axions that couple to electrons can be produced by Compton scatterings e−+γ →
e−+φ and electron Bremsstrahlung and the most restrictive limit comes from the
delay of helium ignition in low-mass red-giants in globular clusters [38]

gφe . 2.5× 10−13, fa/cφe & 6.7× 108 GeV. (5.8)
∗The DFSZ we put on the table is usually called in the literature as type I [17].
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The coupling to nucleons creates axion emission from nuclear transitions in low
mass stars, however it has a better constraint considering the supernovae SN1987A
neutrino pulse duration measured on Earth [17]

gφp < 0.9× 10−9. (5.9)

Finally the coupling with neutrons gφn shows an experimental bound due to neu-
tron stars (NS) cooling probes

gφn < 0.8× 10−9. (5.10)

Coupling Bound fa (DFSZ) fa (KSVZ) Observable
gφγ 0.6× 1010 GeV−1 1.5× 107 GeV 4× 107 GeV HB/RG in 39 GCs
gφe 2.5× 10−13 6.7× 109 GeV × WD cooling+GCs
gφp 0.9× 10−9 6× 108 GeV 5× 108 GeV SN1987A
gφn 0.8× 10−9 2× 107 GeV 2× 107 GeV NS cooling

Table 5.2: Numerical bounds on axion couplings taken from the complete review
[17]. Notes: RG means red giants stars, GC global clusters, WD white dwarfs
stars.

Table 5.2 gives a summary of the current observational astrophysical bounds on fa,
based on some of the axion couplings. The bounds for the two different invisible
models are calculated using the values of the order 1 cψ couplings, also taken from
the review [17]. In the case of the gφe coupling, there is no tree-level coupling in the
hadronic KSVZ model, while the other couplings can set limits for both models.
We also depicted in figure 5.2 the current situation of exclusion, in comparison
with the two DM scenarios. The strongest limit is set by the same gφe coupling,
but as we said is only valid for the DFSZ model.
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Figure 5.2: Exclusion bounds from Astrophysics observations in the fa parameter
space, based on the values of table 5.2, compared with the dark matter models.
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5.2 Search for axions

We will discuss in this section the current experiments searching for all type of
axions: produced in the stars, in laboratories and the cold axion population that
could account for dark matter. Before discussing the experiments and their exclu-
sion bands we briefly discuss how the axion couplings enter classical dynamics and
axions can be detected.

5.2.1 Effects of the axion couplings

Due to the existence of new axion couplings with SM particles the equation of
motion for the axion field φ(x) can be written

(�+m2
a)φ = gφγE ·B−

∑
ψ

(gφψj
5
ψ), j5

ψ = 〈iψ̄γ5ψ〉 , (5.11)

where we have used F̃µνF
µν = −4E · B. The couplings will affect not only the

dynamics of the axion field, but also classical electrodynamics: for instance the
presence of the gφγ coupling changes Maxwell’s equations and thereofore wave
equation for the photon gauge field Aµ = (A0,A)

�A = gφγB∂tφ. (5.12)

The propagation of photons is affected by the presence of the axions and viceversa
and equations (5.11) and (5.12) reflect the nature of the system as an oscillation
between two physical states: in a background magnetic field neither photons nor
axions freely propagates because (E · B)φ quantum mechanically mixes them,
along the polarization of the B-field. Let’s look at one example, we consider a
wave that propagates along the z-direction with frequency ω and we split the
photon polarization into parallel and transverse to the magnetic field. The system
of equations (5.11) and (5.12) reads−ω2 − ∂2

z +

0 0 0
0 0 igφγBω
0 −igφγBω m2

a

A⊥A‖
φ

 = 0, (5.13)

where the off-diagonal part represents the mixing. This means that a purely EM
wave polarized along a transverse B-field must be interpreted as a superposition
of a photon-like (kγ) and an ALP-like wave (ka) and since the waves have different
wavenumbers, they necessarily become out of phase after some distance. Therefore,
like in the neutrino case, we have an oscillation pattern:

P(φ↔ γ)(L) = g2
φγB

2

[
sin(qL/2)

q

]2

, q ∝ kγ − kφ. (5.14)

This formula is the most important result that every experiment has to take into
account if it is to detect physical axions, via the gφγ coupling of course. The
oscillation probability is proportional to the coupling squared and the external
field squared; moreover it features the typical pattern of oscillation phenomena,
meaning that a coherence effect can be exploited as long as qL � 1, obtaining
P ∝ L2, where L is the length of the magnetic field region. It is important
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to notice that for symmetry reasons the probability of an axion turning into a
photon is exactly the same of the reversed process. The gφγ coupling is used in
most of the experiments: direct detection of solar axions and dark matter axions,
but also laboratory searches (LSW, Light-Shining-Through-Walls [17]).

The coupling gφψ can be used instead for the detection of axion fields sourced by
a macroscopic object by NMR techniques: fermions into an axion field will behave
as magnetic dipoles into an effective magnetic field

Bφ = − gφψ
mψγψ

∇φ, (5.15)

with γψ the gyromagnetic ratio. This interaction is used for the search of dark
matter axions, that can be described as a "wind" passing trough our planet. If we
parametrise the axion DM field as a non-relativistic field

φ ∼ φ0 cos(ωt− k · x), (5.16)

then the Bφ-field at a given point is

Bφ ∼ −
gφψ
mψγψ

mavφ0 sin(ωt), (5.17)

but due to local DM constraints† [17], the magnitude of the magnetic field only
depends on the ratio gφγ/mψγψ and can be detected with NMR techniques.

5.2.2 Outline of the experiments

We want to briefly review the current status of experimental searches, especially
for low values of fa if we consider the DFSZ model. The most relevant approach
for the detection of solar axions is the so-called axion helioscope: we are expecting
a flux of axions in the keV range (most of the energy will be kinetic) coming
from the Sun because of Primakoff conversion. Up to now the most restrictive
experimental limit is given by the CAST experiment at CERN, that features a
dipole magnet pointing to the Sun and trying to convert solar axions. In other
words the apparatus is trying to detected a flux made of X-rays, as the axions will
be converted into photons thanks to the magnetic field. The coherence condition
relies on the dimension of the detector and the strength of the magnet, if we look
back at the conversion probability (5.14). In the case of the CAST experiment the
coherence is satisfied for the values

ma . 10−2 eV, fa & 6× 108 GeV. (5.18)

However, given that we are exploiting the gφγ coupling, we should check the sen-
sitivity of the experiments regarding this quantity: as a matter of fact, the CAST
bound on the coupling, for masses (5.18) is [17]

gφγ < 0.66× 10−10 GeV−1, (5.19)

and it is much higher (see figure 5.3) than the coupling values describing promising
axion models, such as QCD models DFSZ and KSVZ. In other words, the fact that
the CAST experiment didn’t detect solar axions is reasonable, at least according
to QCD axion models.

†The product maφ0 is fixed [17] and v can be observed.
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Figure 5.3: Exclusion bands for wide-bands experiments, such as helioscopes, in
the mass-coupling plane. The KSVZ model of the QCD axion is also highlighted.

The proposed next generation axion helioscope, dubbed the International AXion
Observatory (IAXO), promises to be the most sensitive detector for solar axions
ever built [52], and the sensitivity to the axion-photon coupling is expected to
surpass the best current limits set by CAST by at least a factor 10, as seen in
figure 5.3. Moreover, IAXO is expected to supersede astrophysical limits on gφe of
table 5.2, opening the possibility to probe an interesting set of non-hadronic axion
models, like the DFSZ. However, due to loss of coherence the limit on fa of IAXO
will be the same of CAST

fa & 6× 108 GeV. (5.20)

The latter is very close (see figure 4.15) to our predictions in the thermal production
using the DFSZ top-axion coupling. If we consider instead the hadronic KSVZ
model, figure 4.15 suggests an arbitrarily higher range on fa, as we can theoretically
accept new heavy quark massesmQ? > 1 TeV. The maximum value will be ∆Neff '
0.027, but we could obtain observable values in the near future, in the range (4.22)
up to mQ? = 100 TeV and in the range

fa/cQ? . 6× 1010 GeV, (5.21)

for values up to mQ? = 500 TeV. Therefore we need to check the experimental
status of experiments for high values of fa as well. The latter are aimed to detect
CDM axions, mostly in the post-inflationary scenario, where plausible values of
are between 1010 GeV and 1012 GeV. The most relevant experiment in CDM axion
detection is ADMX [17], using the famous haloscope technique, first proposed by
Sikivie in 1983 [56]. However, even if reaches the sensitivity of the QCD axion
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Figure 5.4: Exclusion bands for narrow-bands experiments, or haloscopes, in the
mass-coupling plane. The light-green bands are describing sensitivies of upcoming
experiments. The KSVZ model of the QCD axion is also highlighted.

models in the coupling gφγ, it covers a very narrow band in the fa parameter
space, focusing on very high values fa ' 1012 GeV. Consequently, as we will see
in detail in the last section, the post inflationary scenario is untouched by current
experiments [54]. The recent proposal of the MADMAX experiment presents a
new concept [54,55] to cover this region of interest, and it is capable of discovering
∼ 100 µeV mass axions. In other words, as we can see from figure 5.4, MADMAX
will cover the range of interest for the KSVZ model

1.5× 1010 GeV . fa . 1.5× 1011 GeV. (5.22)

For DFSZ models we also have to check the experiments using the gφψ couplings.
The QUAX proposal relies on the axion-electron coupling and can detect DM
axions using NMR techniques and the relation (5.17). It will cover the small
region

2× 1010 GeV . fa . 3.5× 1011 GeV. (5.23)

It is however important to make a comment: within the DFSZ model we developed
our calculations of thermal production using only axion coupling to heavy fermions,
that belong to the third generation. As it turns out, only the top-axion coupling
can give detectable contributions to dark radiation (∆Neff) for reasonable values
of fa. Nevertheless the bounds from astrophysics and the QUAX experiment both
use the DFSZ coupling to electrons, which are fermions of the first generation. In
principle these kind of limitations are not valid for the coupling gφt = ctmt/fa, and
this why we actually started computing before looking at exclusion bounds. It is
also true that we want to compare our thermal production results with the ones of
CDM discussed in the second chapter, as both population of axions are expected
to exist. In the following last section we therefore summarize the observational and
experimental bounds, the computations of thermal axions and the CDM scenarios
both for the DFSZ and the KSVZ models.
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5.3 Possible windows of fa

In this final section we summarize and discuss all the computations and consid-
erations that we exposed in the work. We want to combine all the informations
on the fa parameter in order to find a window where all the following conditions
have to be satisfied: an observable contribution to dark radiation given by thermal
production of hot axions and an agreement with the CDM models and observa-
tions/experiments. In detail:

� Thermal production: our main focus is to discuss quantitatively the pos-
sible processes of thermal axion production that could be detectable through
the ∆Neff contribution, at least in the near future (CMB-S4). We extended
the work of [26, 27] including corrections from EW bosons Z,W± and h for
the coupling gφt in the DFSZ model. In addition we discussed the KSVZ
model, introducing new and massive (TeV) heavy quarks, for the production
of thermal axions above the EW phase transition. The top-axion coupling
certainly gives slightly higher contributions to Neff than the limit (2.30), as
its total rate decouples at temperatures around mt; the possible observable
values, including the EW correction of ≈ 6%, lie in the range fa/ct . 2×109

GeV, where we typically assume an order one PQ charge ct. The contribu-
tion instead in the KSVZ is exactly the one calculated in [30] (2.30), but the
range of possible scales that can reach it is bigger. For cQ? ∼ O(1) we find
fa . 1.5 · 1010 GeV.

� Axion cold dark matter: we want to include the theoretical calculations
that expect a cold population of axions that can account for the observed and
dominating dark matter. The post-inflationary scenario seems more reason-
able for different reasons but all its effects are hard to compute with enough
precision, especially topological defects. Our best guess, based on simula-
tions [41,50], approximately give the possible window fa ∈ [109; 1011] GeV, as
for higher values we have too much dark matter. In the pre-inflationary sce-
nario the windows is extended arbitrarily because of the fine-tuning scenario
θ̄i → 0, giving only a lower bound fa & 109 GeV.

� Astrophysical bounds: we have to consider possible exclusions due to
astrophysical observations. The best limit is given by the gφp coupling for
the KSVZ model and by gφe for the DFSZ model. However the latter coupling
uses a first generation fermion, and in principle the top-axion and bottom-
axion couplings used in this work should not be affected by this bound. The
numerical values are in table 5.2.

� Experimental exclusions: the search of axions is developing really fast in
the last years and will be even more present in the near future. The current
experiments for wide range of fa (helioscopes) didn’t yet probe the plausible
QCD axion models, but will try to do it the next years. The most relevant
experiment that probed the QCD axion band is ADMX, but the haloscope
technique focuses or very specific and high values of fa. We would have to
wait for new generation experiments, such as MADMAX, in order to cover
the still very large and untouched window of possibles values of fa.

Finally, the possible windows that are in agreement with these arguments, are for
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the DFSZ and KSVZ model, respectively:

6× 108 GeV . fDFSZ
a . 2× 109 GeV, (5.24)

5× 108 GeV . fKSVZ
a . 2× 1010 GeV. (5.25)

All the contributions and numerical values discussed are qualitatively presented in
figures 5.5 and 5.6.

� � � � �� �� �� ��

Figure 5.5: Summary of possible windows of fa in the DFSZ model using the
top-axion coupling.

� � � � �� �� �� ��

Figure 5.6: Summary of possible windows of fa in the KSVZ model using the
top-axion coupling.
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Appendix A

Standard Model physics

A.0.1 Lagrangian and couplings

In this appendix we report with full detail the SM lagrangian, with a particular
emphasis on the couplings relevant for our work. It also helps the reader follow the
notation and the conventions. The entire lagrangian is invariant under the gauge
symmetry SU(3)C × SU(2)L × U(1)Y can be written in a compact form in only
one line:

LSM = LSSB + Lgauge + LY ukawa,

let us describe the terms.

SSB: the first term is the Higgs sector responsible for the spontaneous symmetry
breaking of the electroweak interactions SU(2)L×U(1)Y → U(1)em. Its lagrangian
reads

LSSB = (DµΦ)†(DµΦ)− V (Φ†Φ). (A.1)

Here Φ = (ϕ+, ϕ0)T is a complex doublet field (it therefore has 4 degrees of free-
dom) and is invariant under both the transformations of SU(2)L and U(1)Ym
respectively:

Φ→ e−igαaτa/2Φ, Φ→ e−ig
′Y αΦ,

where τa are the Pauli matrices, Y is the hypercharge of the field and α, αa are
real parameters that depends on spacetime. It interacts with electroweak gauge
bosons via the covariant derivative

DµΦ =

(
∂µ +

ig

2
Wµ +

ig′

2
Bµ

)
Φ, Wµ = W a

µ τa.

From the first term of eq. (A.1) we can extract the mass spectrum of the gauge
bosons and the interactions between the Higgs bosons h and the the EW bosons,
using a particular choice of the vacuum and exploiting the unitary gauge. The
interactions can be written in the lagrangian

L h
int =

(mW

v

)2

[2vhW+W− + h2W+W−] +
1

2

(mZ

v

)2

[2vhZZ + h2ZZ].

The potential needed for the Higgs mechanism can be written as

V (Φ†Φ) = λ(Φ†Φ− v2)2,
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where v2 = −µ2/λ. In order to have SSB the quadratic parameter µ2 has to be
negative.

GAUGE: the gauge sector includes the pure gauge theory and the matter content,
namely vector gauge bosons and fermions.

Lgauge = −1

4
Ga
µνG

µν
a −

1

4
W i
µνW

µν
i −

1

4
BµνB

µν + i
∑
f

Ψ̄f /DΨf .

The contracted index a represents a trace in colour space where SU(3) is the gauge
symmetry, Ga

µν is the gluon field strength and represents the gluons. The index i
is for the gauge group SU(2)L and the W i

µν and Bµν are the electroweak massless
bosons. After SSB three of them becomes the W±, Z bosons and one of them the
still massless photon. The last term is the represented by the the matter terms
and their interactions with gauge bosons via the covariant derivative /D = Dµγ

µ,
where γµ are the Dirac gamma matrices. The sum runs over the fermionic matter
fields

Ψf ∈ {qL, lL, uR, dR, eR}, qL = (uL, dL)T , lL = (νL, eL)T ,

and every fermion can be split in right handed an left handed (+1/2 or -1/2
helicity respectively) (the difference between Dirac and the Weyl spinors is later
explained). Let us look up these terms explicitly.

Fermion-boson interaction

We are considering here the interactions of fermions, namely quarks, electrons and
neutrinos with the gauge boson in the electroweak sector. We are considering
the one flavour case, but the real case with Nf = 3 is easily derived. In the
lagrangian term Ψ̄f /DΨf we can neglect the kinetic term (Ψ̄f /∂Ψf ) and consider
only the interaction, therefore

Lint =
1

2
L̄(g /W aτa + g′YL /B)L+

1

2
ēR(g′YeR /B)eR,

+ Q̄(g /W aτa + g′YQ /B)Q+
1

2
ūR(g′YuR /B)uR

+
1

2
d̄R(g′YdR /B)dR, (A.2)

where the hypercharges are YL = −1/2, YeR = −1, YeR = 2/3 and YeR = −1/3 by
construction. Now we remember that we can define the physical bosons as

W± =
W1 ∓W2√

2
,

(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W3µ

Bµ

)
,

therefore we divide the interaction lagrangian into an off-diagonal charged current
interaction (CC) and the diagonal neutral current interaction (NC). In the CC the
electric charge is conserved because the W± bosons are charged

L CC
int =

g√
2

(ν̄L /W
+
eL + ēL /W

−
νL) +

g√
2

(ūL /W
+
dL + d̄L /W

−
uL) (A.3)

=
g

2
√

2

[
W+
µ (ν̄γµ(1− γ5)e+ ūγµ(1− γ5)d) + h.c.

]
. (A.4)
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This lagrangian describes the interactions of fermions with the W± bosons, but
for the quarks in the Nf = 3 case we have to modify the interaction because of
the quark mixing. This means that passing from the interaction basis to the mass
basis we have to take into account of the appropriate mixing angle Vij of the CKM
matrix. We can draw the following diagram with the interactions

l(qi)

l(qj)

W± =
−ig
2
√

2
γµ(1− γ5)(Vij).

In the NC interactions we have also to recall the relation T3+Y = Q, where T3 is the
third component of the isospin operator and Q is the electric charge. Expanding
the lagrangian (A.2), we have to impose the condition g sin θW + g′ cos θWYL = 0
because neutrinos have zero electric charge and g sin θW = e = g′ cos θW , where
e is the electric charge of the proton, for consistency with the electromagnetic
interaction. We then obtain

L NC
int = −eQf

∑
f=e,u,d

ψ̄f /Aψf −
g

2 cos θW

∑
f

ψ̄f /Z(cV − cAγ5)ψf ,

where cV = T3L,f − 2Qf sin2 θW and cA = T3L,f . The first line represents the
electromagnetic interactions of electrons (muons, tauons) and all the quarks with
photons (Aµ field), in the vertex we have to consider the electric charge of the
fermion Qf , in units of e. The second part is neutral weak interaction mediated
by the Z bosons.

f

f

Z =
−ig

2 cos θW
γµ(cV − cAγ5).

The remaining interaction is the one between quarks and gluons and it has the
same structure of the electromagnetic interaction, with the addition of the colour
structure. In the quark-gluon vertex we have to add the generator of the SU(3)
group (the Gell-Mann matrices λa), therefore the interaction can be written as
−igsγµ(λa)

αβ/2, where now α and β are the colour indices.

YUKAWA: the Yukawa lagrangian is the source of the fermion masses and their
interaction with the Higgs field. It can be written as

LY ukawa = −(L̄iY ij
e ΦejR + Q̄iY ij

d ΦdjR + Q̄iY ij
u Φ̃ujR) + h.c.,

where Φ̃ = iτ2Φ∗ = (ϕ0∗,−ϕ−)T and the indices i, j live in flavour space if we are
considering the three generations. Ye, Yd, Yu are Nf × Nf complex matrices, but
we can diagonalize them with a biunitary transformation. In this way is possible
to write the in the unitary gauge fermion masses and the interactions. We find

me,j = (Ye)
jj
diag

v√
2
, mu,j = (Yu)

jj
diag

v√
2
, md,j = (Yd)

jj
diag

v√
2
,
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and the interactions
LY = yψhψ̄ψ. (A.5)

Dirac and Weyl spinors

Given a Dirac field Ψ(x) that satisfies the Dirac equation, see [2], we can split it
into left-handed and a right-handed part

Ψ = ΨL + ΨR =

(
ΨL

ΨR

)
,

where
ΨL = PLΨ =

1

2
(1− γ5)Ψ, ΨR = PRΨ =

1

2
(1 + γ5)Ψ

are Weyl spinors. PL and PR are called projectors and satisfy the relations: P 2
L,R =

PL,R, PLPR = PRPL = 0. This is the definition of handedness, or chirality, which
involves the presence of the γ5 matrix. A general solution of the Dirac equation
is not an irreducible representation of the Lorentz group, a Weyl fermion is. If we
take two independent left-handed Weyl fields χ(x) and χ̃(x), their combination

Ψ(x) = χ1(x) + χ̃c(x), χ̃c(x) = Cχ̃(x)

form a Dirac spinor, meaning that Dirac spinor field Ψ and its conjugate Ψ̄ are
equivalent to two left-handed Weyl spinors χ and χ̃ (or equivalently their right-
handed conjugates χ† and χ̃†). The operator C is the charge conjugation [2]. Now
we are going to show how an axial current current (e.g. for anomalous U(1)A) of
Dirac spinors is defined

jµ5 = Ψ̄γµγ5Ψ =
1

2
Ψ̄γµ(1 + γ5)Ψ− 1

2
Ψ̄γµ(1− γ5)Ψ

= Ψ̄Rγ
µΨR − Ψ̄Lγ

µΨL = jµR − jµL,

where Ψ is a Dirac spinor, ΨL,ΨR are left-handed and right handed Weyl spinors,
respectively. To sum the axial current (with γ5) of Dirac spinors is the difference
of the vector currents of Weyl fields

jµ5,Dirac = jµR,Weyl − jµL,Weyl. (A.6)

A.0.2 Running of the coupling constants

Within the SM framework it is known that the coupling constants assume different
values as the energy scale µ2 changes. In order to take into account this effect when
computing the rate or solving the Boltzmann equations at different temperatures
we have to solve the Renormalization Group Equation (RGE) for the couplings
and consider them as functions. The RGE are differential equations that can
schematically written as

dαi
d log µ2

= β(αi), (A.7)

where αi = g2
i /(4π), also in the case of the Yukawa coupling we can define αt =

y2
t /(4π). We show in this section the known results for the RGE equations up to
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2 loop order in the β(αi) functions for the SM couplings, g1, g2, g3 and up to 1
loop order for the yt coupling, in M̄S scheme [36]. The couplings g1 is related to
the electrical charge via the relation

e =

√
5

3
g1 cos θW , (A.8)

while g2 = g and g3 = gs. We explicitly write the four differential equations [36]

dg2
1

d log µ2
=

g4
1

(4π)2

(
41

10

)
+

g4
1

(4π)4

(
44g2

3

5
+

27g2
2

10
+

199g2
1

50
− 17y2

t

10

)
, (A.9)

dg2
2

d log µ2
=

g4
2

(4π)2

(
−19

6

)
+

g4
2

(4π)4

(
12g2

3 +
35g2

2

6
+

9g2
1

10
− 3y2

t

2

)
, (A.10)

dg2
3

d log µ2
=

g4
3

(4π)2
(−7) +

g4
3

(4π)4

(
−26g2

3 +
9g2

2

2
+

11g2
1

10
− 2y2

t

)
, (A.11)

dy2
t

d log µ2
=

y4
t

(4π)2

(
9y2

t

2
− 8g2

3 −
9g2

2

4
− 17g2

1

20

)
. (A.12)

For the numerical solution, done with Mathematica, we used as conditions the
values of the couplings at T = mt [36]:

g1(mt) = 0.3583, (A.13)

g2(mt) = 0.6478, (A.14)

g3(mt) = 1.1666, (A.15)

yt(mt) = 0.9402. (A.16)

We finally show a graph with the couplings we used in the computation (e, g, gs, yt),
using the relation (A.8).

���� ���� � �� ���
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Figure A.1: Running of the coupling constants in the GeV range.

85



Appendix A. Standard Model physics

86



Appendix B

Computation of cross sections

Cross section of qq̄ → φg

The matrix element is the sum of the of the u-channel and t-channel diagrams

Mqq̄→φg =M(t)
qq̄→φg +M(u)

qq̄→φg,

written explicitly in the Yukawa basis

iM(t)
qq̄→φg =

icqmqgs
fa

ε∗µ(p3, λ)v̄(p2)c†iγ5

i(/p1
− /p3

+mq)

t−m2
q

(iγµta)u(p1)cj

iM(u)
qq̄→φg =

icqmqgs
fa

ε∗µ(p3, λ)v̄(p2)c†i (iγ
µta)

i(/p1
− /k +mq)

u−m2
q

γ5u(p1)cj,

where ck is the colour of the quark qk and ta the SU(3) generators. The colour
factor can be factorized independently of the Lorentz structure and written as
taij = c†i t

acj. Also, gs is the strong coupling constant and λ is the helicity of
the gluon. The squared amplitude is obtained by squaring the sum, giving four
contributions, and averaged over the initial polarizations

|M̄|2 =
1

4

(
cqmqgs
fa

)2

|taij|2gµαJ µα,

J µα = tr

[
(/p1

+mq)

(
γα(/p1

− /p3
+mq)γ5

t−m2
q

+
γ5(/p1

− /k +mq)γ
α

u−m2
q

)
×

(/p2
−mq)

(
γ5(/p1

− /p3
+mq)γ

µ

t−m2
q

+
γµ(/p1

− /k +mq)γ5

u−m2
q

)]
.

Because of the symmetry of the system the mixed terms are equal, leaving us with
the contracted squared amplitude

|M̄|2 =
1

4

(
cqmqgs
fa

)2

|taij|2
[
T 2

A2
+
U2

B2
+

2UT

AB

]
,

where A = t−m2
q and B = u−m2

q. We are left we compute T 2, U2 and the mixed
term TU .
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T 2 = tr
[
(/p1

+mq)γµ(/p1
− /p3

+mq)γ5(/p2
−mq)γ5(/p1

− /p3
+mq)γ

µ

]
= tr

[
/p1
γµ(/p1

− /p3
)γ5/p2

γ5(/p1
− /p3

)γµ
]

+m2
qtr
[
γµγ5/p2

γ5(/p1
− /p3

)γµ
]
−

m2
qtr
[
γµ(/p1

− /p3
)γ5γ5(/p1

− /p3
)γµ
]

+m2
qtr
[
γµ(/p1

− /p3
)γ5/p2

γ5γ
µ

]
−

m2
qtr
[
/p1
γµγ5γ5(/p1

− /p3
)γµ
]

+m2
qtr
[
/p1
γµγ5/p2

γ5γ
µ

]
−

m2
qtr
[
/p1
γµ(/p1

− /p3
)γ5γ5γ

µ

]
−m4

qtr
[
γµγ5γ5γ

µ

]
= 2tr

[
/p1

(/p1
− /p3

)/p2
(/p1
− /p3

)

]
− 8m2

q p2 · (p1 − p3)tr
[
14

]
− 4tm2

qtr[14]+

4m2
qtr
[
/p1

(/p1
− /p3

)

]
+ 2m2

qtr
[
/p1/p2

]
− 4m4

qtr[14]

= 4

[
(s− 2m2

q)(m
2
q − t) + (m2

q + t)(−m2
q − t+ 2m2

q)

]
= 4(u−m2

q)(t−m2
q)

U2 = tr
[
(/p1

+mq)γ5(/p1
− /k +mq)γµ(/p2

−mq)γ
µ(/p1
− /k +mq)γ5

]
= T 2(s→ s, t→ u, u→ t) = 4(t−m2

q)(u−m2
q)

UT = tr
[
(/p1

+mq)γ5(/p1
− /k +mq)γµ(/p2

−mq)γ5(/p1
− /p3

+mq)γ
µ

]
= tr

[
/p1
γ5(/p1

− /k)γµ/p2
γ5(/p1

− /p3
)γµ
]

+m2
qtr
[
γ5γµ/p2

γ5(/p1
− /p3

)γµ
]
−

m2
qtr
[
γ5(/p1

− /k)γµγ5(/p1
− /p3

)γµ
]

+m2
qtr
[
γ5(/p1

− /k)γµ/p2
γ5γ

µ

]
−

m2
qtr
[
/p1
γ5γµγ5(/p1

− /p3
)γµ
]

+m2
qtr
[
/p1
γ5γµ/p2

γ5γ
µ

]
−

m2
qtr
[
/p1
γ5(/p1

− /k)γµγ5γ
µ

]
−m4

qtr
[
γ5γµγ5γ

µ

]
= −4p2 · (p1 − p3)tr

[
/p1

(/p1
− /k)

]
+ 4m2

q p2 · (p1 − p3)tr[14]+

2m2
qtr
[
(/p1
− /k)(/p1

− /p3
)

]
− 2m2

qtr
[
/p1/p2

]
+ 2m2

qtr
[
(/p1
− /k)/p2

]
−

2m2
qtr
[
/p1

(/p1
− /p3

)

]
− 4m2

qtr
[
/p1

(/p1
− /k)

]
+ 4m4

qtr[14]

= 4

[
(m2

q + t)(m2
q + u)− 3m2

q(m
2
q + t)− 3m2

q(m
2
q + u)−m2

q(s− 2m2
q) + 6m4

q

]
= 4

[
m2
q(2t+ s−m2

q)− t(t+ s)

]
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Therefore the sum of the three contributions is

T 2

A2
+
U2

B2
+

2UT

AB
= 4

[
u−m2

q

t−m2
q

+
t−m2

q

u−m2
q

+ 2
m2
q(2t+ s−m2

q)− t(t+ s)

(t−m2
q)(u−m2

q)

]
=

4s2

(s+ t−m2
q)(m

2
q − t)

,

and the total squared amplitude reads

|M̄|2qq̄→φg =

(
cqmqgs
fa

)2

|taij|2
s2

(s+ t−m2
q)(m

2
q − t)

. (B.1)

Cross section of qq̄ → Zφ

The full expression of the trace computation lead to the squared amplitude (we
used mq ≡ m and MZ ≡M for simplicity)

|M̄|2qq̄→Zφ = −1

4

(
cqmqgW

2 cos θWfa

)2 [
4(c2

V + c2
A)

(
2m6 − 3m4M2 −m4t−m4u+

M2(m2 − t)(m2 − u)

+3m2M2t+ 3m2M2u− 2m2tu−M2t2 −M2tu−M2u2 + t2u+ tu2

M2(m2 − t)(m2 − u)

)
− 4(c2

V − c2
A)

(
2m8 + 3m6M2 −m6t− 3m6u− 7m4M2t+

M2(m2 − t)(m2 − u)2

−2m4M2u−m4tu+m4u2 + 4m2M2t2 + 2m2M2tu+

M2(m2 − t)(m2 − u)2

+3m2M2u2 +m2t2u+ 3m2tu2 − 3M2tu2 − t2u2 − tu3

M2(m2 − t)(m2 − u)2

)]
. (B.2)

The computation of the cross section has to be done with the software Mathemat-
ica. The result is too long to be put here and for the sake of brevity we don’t write
it.

List of functions in the cross sections

The functions F5(s) and F6(s) involving the Z boson are not present.

F1(s) =
tanh−1(L(s))

4π(s− 4m2
q)
, (B.3)

F2(s) =
2s2 log(s/m2

q)− 3s2 + 4m2
qs−m4

q

32πs2(s−m2
q)

, (B.4)

F3(s) = 2 tanh−1(L(s))
[
m2
t

(
4M2

W + s
)

+ 8M2
W

(
M2

W − s
)]

+

+ L(s)s
(
8M2

W − s
)
, (B.5)
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Appendix B. Computation of cross sections

F4(s) = m2
t

(
−2s− 8πM2

W

)
+ 8m2

tM
2
W log

(
s

m2
t +M2

W

− 1

)
+

+ 2
(
m4
t +m2

t

(
M2

W − s
)

+ 8M2
W s
)

log

(
m2
t +M2

W

m2
t +M2

W − s

)
− s2 (B.6)

F7(s) =
(
8m4

t − 2m2
t

(
2m2

h + s
)

+m4
h −m2

hs+ s2
)
×

× log

(
(L+ 1) (Ls− 2m2

h + s)

(L− 1) ((L− 1)s+ 2m2
h)

)
(B.7)

F8(s) =
(
m2
h − s

) [
2Ls

(
2m2

t − 2m2
h + 3s

)
− 2

(
2m2

h − s
) (

2m2
t − 2m2

h + 3s
)
×

× tanh−1

(
Ls

2m2
t − s

)
+
(
32m4

t + 4m2
t

(
s− 6m2

h

)
+ 4m4

h − 2m2
hs+ s2

)
×

× log

(−Ls− 2m2
t + s

Ls− 2m2
t + s

)]
(B.8)
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Appendix C

Numerics and plots

We here leave the additional graphs of production rates, abundance and ∆Neff, for
single production process and for both annihilation and scattering.
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(a) tt̄→ gφ process.

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

(b) t(t̄)g → t(t̄)φ process.
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(c) bb̄→ gφ process.
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(d) b(b̄)g → b(b̄)φ process.
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(d) bb̄→ Zφ process.
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(a) Top-gluon processes.
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(b) Bottom-gluon process.
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(a) Muon-photon processes.
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(b) Tau-photon processes.
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(b) bb̄→ Zφ process.
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(a) Top-Z annihilation.
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(d) Bottom-h annihilation.
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