

UNIVERSITA' DEGLI STUDI DI PADOVA

FACOLTA' DI INGEGNERIA

Dipartimento di tecnica e gestione degli impianti industriali

TESI DI LAUREA IN INGEGNERIA MECCATRONICA

(ex. 509/99)

IL PROCESSO PRODUTTIVO AZIENDALE: ANALISI DELLE POTENZIALITA' DI STADIO

Relatore: Mauro Gamberi

Laureando: Luca Bittante

Matricola 579828:IMC

ANNO ACCADEMICO 2012-2013

"Ogni cosa ha un suo scopo, comprese le macchine. Gli orologi ti dicono l'ora e i treni ti portano nei posti. Fanno quello che devono fare. Per questo quando vedo un meccanismo rotto sono triste, perché non può fare più quello che deve. Forse vale anche per le persone, se perdi il tuo scopo è come se ti fossi rotto...

... Mi piace immaginare che il mondo sia un unico grande meccanismo.

Sai, le macchine non hanno pezzi in più. Hanno esattamente il numero e il tipo di pezzi che servono. Così io penso che se il mondo è una grande macchina, io devo essere qui per qualche motivo. E anche tu!"

dal film "Hugo Cabret" del 2011 di Martin Scorsese, tratto dal romanzo "La straordinaria invenzione di Hugo Cabret" di Brian Selznick del 2007

INDICE

INTRODUZIONE	7
CAPITOLO 1 - ANALISI DEGLI IMPIANTI DI PRODUZIONE	<u>9</u>
1. Introduzione allo studio degli impianti	<u>c</u>
1.1. Lo studio di fattibilità	10
1.2.Analisi della potenzialita' degli stadi	
1.3.Analisi della potenzialità degli stadi con polmoni	
1.4.I parametri K ₁ , K ₂ , K ₃ , K ₄ nel dettaglio	
1.4.1.Percentuale di scarto: K ₁	
1.4.2.Disponibilità della macchina K ₂	14
1.4.3.Disponibilità dell'operatore K ₃	15
1.4.4.Coefficiente di utilizzo dell'impianto: K ₄	15
1.5.Il coefficiente (tasso) di utilizzo della linea	16
1.6.Modelli di aggregazione	
1.6.1.Blocco in serie	17
1.6.2.Blocco in parallelo ridondante	
1.6.3.blocco in parallelo sequenziale	18
CAPITOLO 2 – L'AZIENDA E IL PROCESSO PRODUTTIVO	19
2.Un po' di storia	19
2.1.ll processo produttivo	20
2.2.Divisione in stadi del processo produttivo	23
2.3.DIAGRAMMA PRODUTTIVO	25
2.4.DIAGRAMMA PRODUTTIVO SEMPLIFICATO	27
CAPITOLO 3 – RACCOLTA DATI E ANALISI DEI PARAMETRI	
3.1.Parametri k $_1$	29
3.2.Parametri k $_2$	29
3.2.1.Calcolo disponibilita' dei sottoblocchi	
3.3.Parametri k ₃	31
3.3.1.Reparto piallatura	31
3.3.2.Reparto produzione pannelli	31
3.3.3.Reparto sballatura e finitura pannelli	31
3.4.1.Tabella 1	
3.4.2.Tabella 2	
3.4.3.Tabella 3 - calcolo del K ₁	
34.5.Tabella 5 - calcolo dei K ₂	
CAPITOLO 4 – ANALISI DELLE POTENZIALITÀ DI STADIO	
4.1.Scale di equivalenza	
4.1.1.Tabella 6 – Scale di equivalenza	
4.2. Analisi delle potenzialita' di saturazione	
4.2.1-Tabella 7 – Potenzialità di saturazione della sformatrice	
4.2.2-Tabella 8 – Potenzialità di saturazione dello scaricatore e della reggiatrice	
4.3.Analisi delle potenzialità delle stazioni senza accumuli	
	41
4.4.Analisi delle potenzialità delle stazioni con accumuli ideali	41
4.4.Analisi delle potenzialità delle stazioni con accumuli ideali	

CAPITOLO 5 – ANALISI DELL'EFFICIENZA DELLA LINEA	47
5.CALCOLO DEI PARAMETRI K₄ E DEL TASSO DI UTILIZZO DELLA LINEA	47
5.1.Tabella 9 - ANALISI DELL'IMPIANTO DI PRODUZIONE	50
5.2.Grafico delle potenzialità	53
5.3.Grafico degli utilizzi	55
CAPITOLO 6	57
CONCLUSIONI FINALI	57
CAPITOLO 7	59
BIBLIOGRAGIA	59

Introduzione

Questa tesi nasce come una rielaborazione di alcune delle attività svolte durante e dopo il tirocinio effettuato presso l'azienda CELENIT SPA di Onara di Tombolo. L'attività di tirocinio era inizialmente centralizzata sulla stesura di un piano di manutenzione preventivo allargandosi in seguito a numerose attività, tra le più importanti lo studio delle potenzialità degli stadi nell'impianto produttivo. Sono effettuate analisi sul campo delle velocità e degli scarti delle macchine, stime della loro disponibilità in base ai tempi di fermo e dei consumi di materie prime sulla base a dati storici di produzione. Dopo un'opportuna elaborazione si ricavano indici e parametri legati all'impianto necessari per analizzare la potenzialità e l'efficienza degli stadi del processo di produzione.

CAPITOLO 1 - Analisi degli impianti di produzione

1. Introduzione allo studio degli impianti

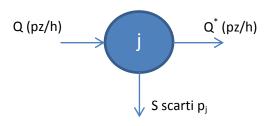
Per impianto industriale si intende un complesso di capitali, macchine, mezzi e addetti atti a sfruttare le risorse materiali ed energetiche per trasformarle in prodotti finiti a maggior valore aggiunto attraverso trasformazioni chimico fisiche o processi di fabbricazione e/o montaggio. La progettazione, l'esercizio e la gestione degli impianti industriali fa parte della professione dell'ingegnere.

Ogni impianto industriale si suddivide in:

- impianti tecnologici: sono costituiti dalle macchine che trasformano il materiale da lavorare: al fine di rendere efficiente l'impianto è necessario prestare attenzione alla scelta del sistema di produzione adatto durante la fase di progettazione dell'impianto stesso.
- impianti di servizio: sono costituiti da tutte quelle strutture che pur non producendo direttamente valore aggiunto al prodotto tuttavia creano quella condizione al contorno necessaria per garantire un corretto funzionamento degli impianti tecnologici (impianto elettrico, impianto idraulico, impianto per il vapore, impianto dell'aria compressa, impianto chimico) e un'adeguata operatività degli addetti (riscaldamento, ventilazione e condizionamento, Illuminotecnica, impianto antincendio, impianto di sicurezza, impianto trattamenti anti-inquinamento).

(fonte: it.wikipedia.org/wiki/Impianto_industriale; Renato Wegner, Franco Caron - Studio di Fattibilità, layout e simulazione - 1997 - Milano - CUSL; Alberto Portioli Staudacher, Alessandro Pozzetti - Progettazione degli impianti industriali - 2003 - Milano - Hoepli)

1.1. Lo studio di fattibilità


La progettazione degli impianti industriali si articola nelle seguenti parti:

- adozione dei criteri di scelta dell'impianto (studio di fattibilità). La scelta di una nuova unità operativa si compone delle seguenti fasi:
 - a. scelta (tramite ricerca di mercato) e studio del prodotto P (product design);
 - b. scelta del ciclo produttivo C e definizione qualitativa del diagramma di lavorazione (process design);
 - c. definizione dei servizi S (impianti ausiliari) necessari al funzionamento dell'impianto di produzione;
 - d. scelta della potenzialità produttiva Q ottimale, sulla base del confronto tra i costi previsti di produzione ed i prezzi di vendita, e valutazione della redditività economica dell'investimento impiantistico in oggetto.
- progettazione completa dell'impianto (progetto esecutivo).
- realizzazione del progetto.
- (L. Rosa, Impianti Industriali Meccanici. Lo Studio di Fattibilità pp.2.1-2.2)

Nell'analisi della potenzialità di un impianto lo studio di fattibilità è già stato fatto in passato come pure il progetto esecutivo e la sua realizzazione. Quello che ci interessa è fare uno studio su quali siano le potenzialità effettive di ogni singolo stadio ricavando l'efficienza e l'utilizzo dell'impianto in se, individuando gli stadi più delicati (colli di bottiglia) su cui eventualmente intervenire per migliorare il processo produttivo e aumentare la produttività dell'impianto. La procedura in questo caso è dunque inversa: partendo da un impianto già fisicamente presente lo si divide in stadi (o stazioni) e si crea un diagramma di lavorazione che metta in evidenza i vari processi produttivi e gli accumuli interni alla linea necessari per arrivare al prodotto finale. In seguito si effettuano delle analisi sul campo per ricavare, per ogni stadio, le velocità di lavorazione del prodotto (da cui si calcolano le potenzialità di saturazione di ogni stadio) e i tempi di disponibilità delle macchine e degli operatori nel turno.

1.2. Analisi della potenzialita' degli stadi

In generale, con riferimento ad una macchina o stazione operativa j, impegnata in una fase del ciclo tecnologico, si ha che il rendimento di produzione nell'esecuzione di quella fase è:

$$\frac{Q^*}{\rho} = \eta < 1$$
 con $\eta = k_1 * k_2 * k_3 * k_4$ (1)

essendo:

Q la potenzialità della macchina,

Q* la potenzialità effettiva della stessa,

K₁ il coefficiente di scarto, che tiene conto degli scarti imputabili alla macchina,

K₂ il coefficiente che tiene conto dell'inaffidabilità della macchina ed è pari alla sua disponibilità,

K₃ il rendimento dell'operatore, che tiene conto dei tempi nei quali non è operativo per mancanza di motivazioni, condizioni di lavoro sfavorevoli, scarso addestramento, ecc.

K₄ PT/UT, rapporto tra il tempo di produzione PT ed il tempo di disponibilità UT, che tiene conto dell'effettivo utilizzo della macchina, cioè del fatto che l'organizzazione del lavoro e del processo produttivo (specie se intermittente) non è mai perfetta, con conseguente presenza di tempi morti nei cambi di produzione, ritardi nel flusso dei materiali e delle informazioni, errori di scheduling, ecc.

Pertanto, in generale la potenzialità produttiva della linea, della stazione o della macchina da dimensionare è:

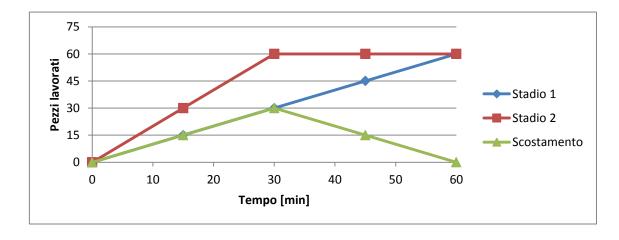
$$Q = \frac{Q^*}{\eta} = \frac{Q^*}{k_1 * k_2 * k_3 * k_4} \tag{2}$$

(L. Rosa, Impianti Industriali Meccanici. Lo Studio di Fattibilità pp.2.66-2.68)

1.3. Analisi della potenzialità degli stadi con polmoni

Questo genere di linee produttive porta inevitabilmente ad avere stazioni a monte sempre più veloci per poter produrre tutti i pezzi lavorati da quelle a valle nel tempo in cui quest'ultime sono tutte disponibili assieme. In più le macchine a monte devono produrre anche gli scarti delle macchine a valle. Per poter ovviare a questo problema si inseriscono degli accumuli (detti anche polmoni) tra una stazione e l'altra: gli accumuli permettono alla macchina i di immagazzinare prodotti semilavorati mentre la stazione successiva (i+1) è ferma in modo che, quando anche la i-esima stazione si fermerà la stazione successiva avrà a disposizione sufficienti pezzi da lavorare per il tempo in cui la stazione i è ferma.

I polmoni vanno messi sempre dove possibile perché rappresentato un vantaggio produttivo ma vanno anche minimizzati nella loro dimensione perché rappresentano un costo fermo. In generale la dimensione dell'accumulo è pari al massimo scostamento tra i pezzi prodotti dalla stazione **i** e i pezzi assorbiti dalla stazione **i**+1 successiva nel tempo. Vediamo un esempio. Essendo:


MTBF: Minimum Time Before Failure (Tempo minimo prima della rottura di una stazione)

MTTR: Minimum Time To Repair (tempo minimo per la riparazione a seguito della rottura)

A_i=K_{2i}=Disponibilità della stazione

Si hanno due stazioni, la prima con potenzialità $Q_1 = 60$ pz/h, disponibilità $A_1 = 1$, MTBF=60, MTTR=0 e la seconda con $Q_2 = 120$ pz/h, disponibilità $A_2 = 0.5$, MTBF=30, MTTR=30.

Disegnando l'andamento nel tempo dei pezzi lavorati, se le stazioni potessero funzionare sempre, si avrebbe:

Quindi il massimo scostamento (nonché dimensione dell'accumulo) è di 30 pezzi e si può in genere stimare con un discreto errore a mezzo della seguente formula:

$$dim = \max[MTTR_i * Q_{(i+1)SAT}; MTTR_{i+1} * Q_{iSAT}]$$
(3)

♦♦ la formula è stata da me ricavata in base alle costatazioni fatte in vari esempi-esercizi per stimare in fretta le grandezze dei polmoni, valida solo per stime ma senza alcuno valore scientifico e assolutamente non adatta ad essere usata nello studio di fattibilità degli impianti.

Nell'esempio si avrebbe:

$$dim = 30' * 60^{pz}/_h = 30pz$$

Nell'analisi della potenzialità degli stadi in una linea con gli accumuli tra uno stadio e l'altro le stazioni a monte non devono lavorare più in fretta a causa delle fermate delle stazioni a valle in quanto i polmoni rendono indipendenti gli stadi tra loro e le stazioni e monte devono lavorare in più solo gli scarti delle stazioni successive.

In una linea con gli accumuli la (2) si modifica in

$$Q_{i} = \frac{Q_{u}^{*}/\prod_{i=1}^{N} K_{1_{i}}}{\eta_{i}} = \frac{Q_{u}^{*}/\prod_{i=1}^{N} K_{1_{i}}}{(k_{1}*k_{2}*k_{3}*k_{4})_{i}}$$
(4)

essendo

Q_u potenzialià finale dell'impianto

Q_i potenzialià della stazione in analisi

 $\prod_{i=1}^{N} K_{1_i}$ gli scarti prodotti dalle stazioni sucessive

1.4.I parametri K₁, K₂, K₃, K₄ nel dettaglio

Per distinguere le cause di non produttività dell'impianto si utilizzano, come già detto, 4 parametri: percentuale di scarto K1, disponibilità della macchina K2, disponibilità dell'operatore K3 e utilizzo della macchina K₄.

1.4.1.Percentuale di scarto: K_1

Se la macchina deve produrre 100 pezzi all'ora e ha una percentuale di scarto del 5%, la macchina deve lavorare almeno 105 pezzi all'ora per riuscire a produrne 100 di buoni. Il parametro che indica quanto una macchina è buona a produrre pezzi senza generare scarti è il parametro K_1 e si calcola così:

$$K_1 = (1 - P_{SC}) (5)$$

$$con Pcs = \frac{n.pezzi \, scartati}{n.pezzi \, lavorati} (6)$$

1.4.2.Disponibilità della macchina K₂

Difficilmente ci troveremo di fronte ad una macchina che può lavorare per 24 ore al giorno senza avere prima o dopo una rottura o un'inceppo. Il parametro che misura la durata delle fermate della macchina si dice disponibilità A (o K_2). E'chiaro che se una macchina deve produrre 900 pezzi all'ora e ha una disponibilità media del 90% (6 minuti di fermo ogni ora) dovrà in realtà lavorare 1000 pezzi/ora perché dovrà fare tutto nel tempo disponibile in quanto sappiamo che sarà fuori funzione per un certo periodo.

Possiamo calcolare K₂ a mezzo della formula:

$$K_2 = \frac{\sum UT_i}{\sum UT_i + \sum DT_i} = \frac{Tempo\ in\ cui\ la\ macchina\ \grave{e}\ disponibile}{Tempo\ totale\ di\ produzione} \tag{7}$$

Con
$$UTi = Up Time$$

$$DTi = Down Time$$

1.4.3.Disponibilità dell'operatore K3

Se l'operatore è lento o non avvia la macchina nei tempi giusti le macchine impiegano più tempo a lavorare il prodotto. Di solito K_3 = 80%-90% ma può scendere fino al 50% nel terzo turno di lavoro. Nello studio degli impianti questo parametro è importante a tal punto che esiste una materia dedicata allo studio dei metodi per incentivare il lavoratore: si chiama ergonomia.

Il metodo usato in questo studio per calcolare il parametro K_3 è:

$$K_3 = \frac{\sum UT_i}{\sum UT_i + \sum DT_i} = \frac{Tempo\ in\ cui\ il\ macchinista\ \grave{e}\ disponibile}{Tempo\ totale\ di\ produzione} \tag{8}$$

1.4.4. Coefficiente di utilizzo dell'impianto: K_4

Detto anche *tasso di utilizzazione delle macchine* (L. Rosa, Impianti Industriali Meccanici. Lo Studio di Fattibilità p.2.70), in uno studio di fattibilità si tiene conto che un impianto non è utilizzabile al 100% a causa di molteplici motivi, quali i tempi di riattrezzaggio e di set up, i tempi di avviamento della macchina oppure a causa di mancanza di informazioni ecc (vedi paragrafo 1.2). Quando un impianto è utilizzato bene K_4 =80%. Per calcolare tale parametro si usa questa formula:

$$K_4 = \frac{P_T}{U_T} = \frac{Tempo\ in\ cui\ l'impianto\ produce}{Tempo\ in\ cui\ l'impianto\ è\ disponibile} \tag{9}$$

Nell'analisi di potenzialità di un impianto al parametro K_4 viene dato un valore fittizio pari a 1 per i calcoli. Conoscendo le potenzialità effettive Q_i e le potenzialità di saturazione Q_{SATi} di ogni stadio, a mezzo della seguente formula si esprime l'efficienza dello stadio

$$K_4 = \frac{Q_i}{Q_{SATi}} = \frac{\text{Ciò che l'impianto produce}}{\text{Ciò che l'impianto potrebbe produrre}}$$
(10)

L'analisi dei K₄ ricavati di ogni stadio ci consente di misurare quanto ogni stadio sia sfruttato e ci da una relazione diretta dell'efficienza dell'impianto. Una volta ricavati tutti i parametri K₄ di ogni stadio si passa, se necessario, alla valutazione degli stadi su cui sarebbe bene intervenire nel caso si voglia aumentare la produttività dell'impianto in analisi (colli di bottiglia).

1.5.Il coefficiente (tasso) di utilizzo della linea

(L. Rosa, Impianti Industriali Meccanici. Lo Studio di Fattibilità pp.2.70-2.71)

Se il ciclo di produzione comprende N fasi tecnologiche successive, che vengono compiute in N stazioni operative, ognuna delle quali completa l'i-esima trasformazione:

- n_i' numero macchine teoricamente necessarie a svolgere l'attività
- n_i macchine uguali presenti nella stazione (arrotondamento all'intero successivo di n_i'),
- t_i tempo di ciclo unitario della macchine in [min./pz]
- q_i volume di produzione richiesto per il prodotti i,

il tasso di utilizzazione della stazione i-esima è:

$$u_i = \frac{n_i'}{n_i} = \frac{q_i t_i}{60 * n_i} \tag{11}$$

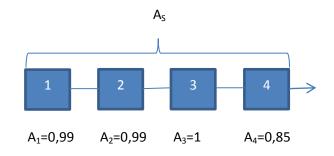
Essendo $u \le 1$, deve essere:

$$q_i \le \frac{60*n_i}{t_i} \tag{12}$$

e, quando vale il segno di uguaglianza, $q_i = q_{iSAT}$, quidi la stazione è satura, nonche:

$$u_i = \frac{n_i'}{n_i} = \frac{q_i t_i}{60 * n_i} = q_i * \frac{t_i}{60 * n_i} = \frac{q_i}{q_{iSAT}} = K_{4_i}$$

Ne deriva che il tasso di utilizzazione della linea vale:

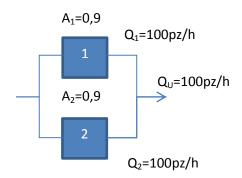

$$U = \frac{\sum_{1}^{N} u_{i} n_{i}}{\sum_{1}^{N} n_{i}} = \frac{\sum_{1}^{N} \frac{q * t_{i}}{60 * n_{i}}}{\sum_{1}^{N} n_{i}} = \frac{q * \sum_{1}^{N} t_{i}}{60 * \sum_{1}^{N} n_{i}}$$
(13)

1.6.Modelli di aggregazione

Per lo studio della disponibilità di blocchi di stazioni produttive esistono dei modelli che ci permettono di conoscere la disponibilità complessiva del blocco partendo dalle disponibilità delle varie macchine che lo compongono.

1.6.1.Blocco in serie

L'esempio tipico di un blocco in serie è la linea produttiva senza polmoni: le stazioni che ne partecipano devono funzionare tutte per poter far si che vada tutta la linea.


$$A_{S} = A_{1} * A_{2} * A_{3} * A_{4} = \prod A_{i}$$
 (14)

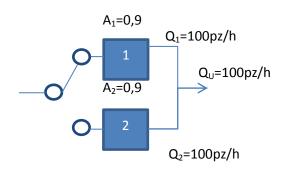
(Nell'esempio: $A_S = 0.8433$)

In un sistema serie la disponibilità complessiva è fortemente influenzata dal componente più debole.

1.6.2.Blocco in parallelo ridondante

Due stazioni fanno lo stesso servizio e lavorano insieme per produrre quello che una da sola potrebbe produrre. Se una si rompe l'altra può produrre tutto da sola.

$$A=A_1=A_2$$


$$A_S = 1 - (1 - A)^2 \tag{15}$$

(Nell'esempio: $A_S = 0.99$)

Il parallelo ridondante è utile nei casi in cui le macchine hanno una bassa disponibilità permettendo così di aumentare notevolmente la disponibilità complessiva.

1.6.3.blocco in parallelo sequenziale

La seconda stazione entra in funzione solo se la prima si rompe. Per calcolare la disponibilità complessiva dello stadio si usa l'approccio binomiale:

$$P_{n,\alpha} = \binom{n}{\alpha} p^{\alpha} (1-p)^{n-\alpha} = \frac{n!}{\alpha!(n-\alpha)!} p^{\alpha} (1-p)^{n-\alpha}$$
 (16)

Da la probabilità che, a fronte di n prove, si abbiano α risultati positivi. Quindi n = numero delle macchine, α = numero delle macchine in funzione.

Si calcola la probabilità dei possibili stati del sistema e si raggruppa il tutto in tabella:

ST	STATI P _i (Probabilità		Q _i /Q _U	$P_{i^*}Q_i/Q_U$
ON	OFF	accadimento stato)		
2	0	$P_{22} = 0.9025$	100%	0,9025
1	1	$P_{21} = 0.095$	100%	0,095
0	2	$P_{20} = 0.025$	0%	0
				$\sum = 0,9975$

(nell'esempio della tabella la disponibilità di ogni macchina è 0,95 e la disponibilità complessiva del blocco è 0,9975).

Questo approccio risolve anche i casi in qui le macchine hanno potenzialità diverse oppure si spartiscono la Q_U producendo ognuna la metà (due macchine), un terzo (tre macchine) e via dicendo. In questo caso basti cambiare la percentuale della terza colonna in base alla potenzialità disponibile in ogni stato.

CAPITOLO 2 – L'azienda e il processo produttivo

2.Un po' di storia...

Celenit S.p.A. è un'azienda leader nella produzione di pannelli isolanti termici ed acustici in lana di legno di abete rosso, proveniente da foreste certificate sostenibili e certificate PEFC, mineralizzata e legata con cemento Portland. L'azienda vanta un'esperienza di oltre 45 anni sui mercati nazionali ed internazionali, investendo da sempre nella ricerca delle migliori soluzioni per il benessere abitativo.

L'azienda opera con Sistema Qualità secondo le norme **UNI EN ISO 9001:2008** (certificato n°1351 rilasciato da Certiquality).

I pannelli prodotti nel proprio stabilimento sono conformi alla normativa europea UNI EN 13168 e quindi sono marcati CE. L'azienda risponde poi alle seguenti certificazioni:

- PEFC certifica la provenienza del legno da foreste gestite in maniera sostenibile
- ANAB ICEA prodotti certificati per BIOEDILIZIA
- TUV certifica l'utilizzo di materie prime riciclate nel processo produttivo,

(fonte: www.celenit.com - www.celenit.com/certificati.asp)

2.1.Il processo produttivo

L'azienda dispone di una produzione in linea continua. In una prima fase un operatore carica in un polmone la materia prima legnosa (tronchi di lunghezza da 4 a 6 metri e diametro medio di 160mm). Una macchina automatica estrae un tronco alla volta dal polmone della materia prima trasportandolo all'interno dello stabilimento produttivo a mezzo di una doppia catena. I tronchi vengono portati alle 2 seghe (DX e SX) che provvedono a tagliarli in pezzi di lunghezza variabile da 48 a 52 cm (ottimizzata in base alla lunghezza iniziale del tronco per ottenere il minore scarto possibile). I pezzi troppo corti non possono essere lavorati dalle stazioni successive così vengono scartati per poter essere poi lavorati da delle piallatrici manuali. Due linee di trasporto (una per ogni sega) portano i pezzi sotto un metal detector che avverte e scarta il tronco in caso di presenza di chiodi o altri pezzi metallici. In seguito i tronchi tagliati vengono immagazzinati in 2 polmoni detti BOX(costituiti da 4 linee da 27 tronchi ciascuna per un totale di 216pz). I box possono scambiare tra loro i tronchetti nel caso una delle due seghe sia ferma quindi un solo box può alimentare entrambe le macchine successive. Dopo ogni BOX vi è una macchina piallatrice rotante detta CVS (2 macchine nel totale). Ogni CVS afferra con 2 pinze un tronco alla volta e lo depezza in tronchetti da 24 a 26 cm. Le pinze portano poi i 2 tronchetti su di un disco rotante di diametro 1,5m e dei pressoi premono i tronchetti sul disco che pialla i tronchetti producendo una soffice lana di legno lunga 25 cm, spessa 0,2mm e, a seconda delle lame installate, di spessore 1, 2, 3 mm. I residui di tronchetto non lavorabili e i trucioli prodotti dalle macchine vengono macinati per la produzione di segatura.

Un tubo di aspirazione preleva la lana di legno prodotta dalle 2 CVS e lo trasporta alla macchina centrale. Qui la lana di legno viene immagazzinata su di un polmone verticale. Dei rulli pentagonali fanno cadere la lana in una vasca di soluzione (96% acqua necessaria per la reazione del cemento, 2% formiato di calcio necessario ai fini di prevenire le muffe, 2% di cloruro di calcio utile come accelerante nella reazione del cemento). La lana di legno immersa nella vasca viene prelevata da una coppia di catene e portata ad un piccolo accumulo sotto del quale vi sono altri due rulli pentagonali che fanno cadere su di un nastro di pesatura la lana bagnata, dopodiché dei rulli di lancio la gettano su di nastro trasportatore che la porta in un mescolatore.

A pari passo un sistema di coclee preleva dai SILOS il cemento bianco, il cemento grigio (leganti) e il riempitivo (in genere carbonato di calcio derivante dagli scarti della lavorazione del marmo) nelle giuste proporzioni, un piccolo mescolatore ne mescola una tonnellata alla volta e la manda nel polmone del cemento. D'ora in poi chiameremo LEGANTE questo mix di cementi

e riempitivi; la proporzione delle materia prime nel legante cambia con il cambiare del pannello prodotto.

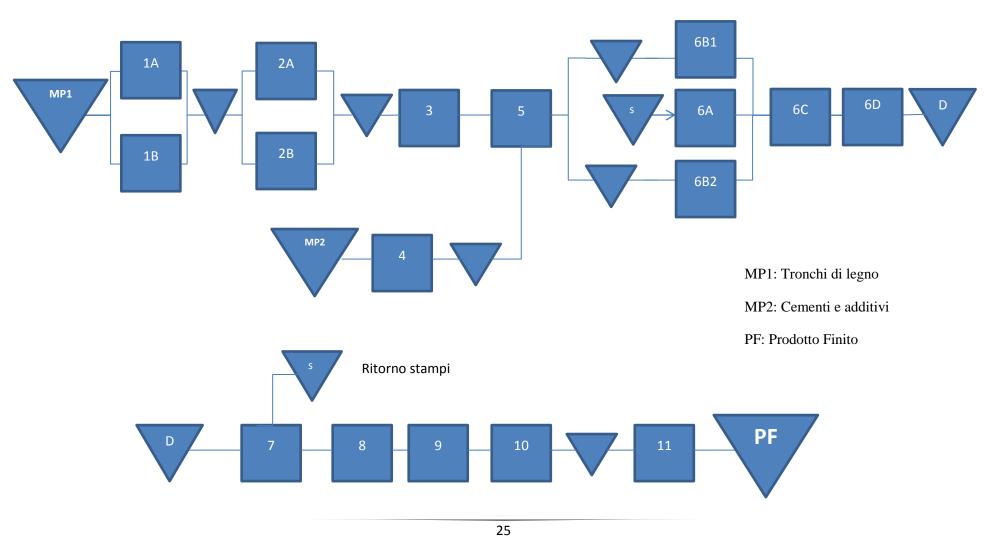
Lana di legno bagnata e legante vengono così mandati nel mescolatore producendo la miscela. Questa viene prelevata da una coppia di catene a rastrelli e portata ad un nastro detto nastro alternato che, a seconda del suo verso di rotazione, va a riempire 2 differenti polmoni. Ogni uno di questi polmoni è collegato ad una diversa macchina di distribuzione e immagazzina la miscela. Un sistema di rulli pentagonali, rulli di lancio e rulli di distribuzione prelevano la miscela dai polmoni, la mandano ad un nastro di pesatura così da avere un controllo efficace sulla miscela gettata e infine la distribuiscono su degli stampi. Le 2 macchine che fanno l'operazione appena descritta si dicono EDM (Eltomation Distributing Machine) 1 e 2, generalmente lavorano assieme ma in caso di necessità (pulizia/manutenzione o avaria) il lavoro può essere eseguito da una sola delle 2. La miscela viene sparsa sugli stampi in linea. Una sega trasversale assicura una netta separazione della miscela tra uno stampo e l'altro e infine una pressa accatasta gli stampi uno sopra all'altro creando cataste di 2 metri di altezza ciascuna. Le cataste vengono immagazzinate da un carrellista in un deposito per la maturazione sotto a dei blocchi di cemento che mantengono pressati i pannelli.

La miscela è lasciata maturare negli stampi per un minimo di 24 e un massimo di 96 ore. In questo tempo il cemento inizia la sua prima fase di presa fissando le fibre di legno tra loro. Una maturazione superiore oltre ad essere dannosa in termini economici per la produttività e l'aumento dei costi di giacenza porterebbe all'aumento eccessivo della temperatura negli stampi e alla successiva "biscottatura" delle fibre di legno con il rischio quindi di rovinare l'intera produzione.

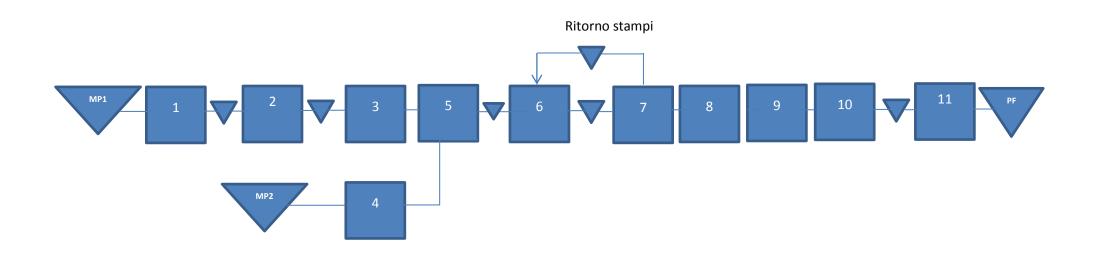
A maturazione avvenuta il carrellista preleva le cataste e le appoggia sulla guida a rulli di una macchina sformatrice (gergalmente detta sballatrice). Un meccanismo ad ascensore eleva la catasta e spinge ogni stampo su un poggiastampo che a sua volta lo fa cadere a faccia in giù su di uno scassero. Grazie all'energia cinetica acquisita nella caduta dal pannello e allo fermarsi istantaneo dello stampo sullo scassero il pannello riesce a separarsi dallo stampo e a cadere su una coppia di catene che lo mandano avanti sulla linea mentre lo stampo ribaltato viene prelevato per essere depositato in un magazzino della capacità di 25 stampi in attesa di essere raddrizzato e rimesso in linea di produzione (questa operazione si dice sformatura). Qui evince il primo vincolo funzionale del processo: si deve produrre lo stesso spessore che si sta sformando a meno che non si sformino stampi vuoti (caso in cui i pannelli sono già stati ssformati dagli stampi al di fuori del turno produttivo).

Il pannello così sformato passa per una sbarbatrice che elimina gli eventuali filamenti di lana di legno oltre il bordo del pannello. Qui l'operatore può decidere di scartare il pannello nel caso in cui non rispetti le specifiche qualitative necessarie. Un ribaltatore gira i pannelli a faccia in su per per poi inviarli ad un essiccatoio. L'essiccatoio, anch'esso in linea all'impianto, accoglie 680 pannelli e non ha nessuna flessibilità quindi un pannello entra ed uno ne esce. I pannelli restano nell'essiccatoio per 1-2 ore a una temperatura di 60°C. L'essicazione serve a ridurre parte dell'acqua presente nel pannello al fine di produrre un pannello più leggero e di conseguenza permettendo di caricare maggiormente i camion.

I pannelli essiccati e che non devono subire una successiva finitura vengono squadrati, ovvero tagliati ai 4 lati, per ottenere un bordo netto. Successivamente uno scaricatore a pinze ne afferra due alla volta e li appoggia su una rulliera o su di un bancale di servizio, a seconda della destinazione. Vengono così formate cataste di 110 cm di altezza, ogni catasta viene portata alla reggiatrice che infila sotto alla catasta dei martiri e lega il pacco con una reggia. I pacchi con il bancale non vengono ne squadrati ne legati in quanto sono destinati alla finitura. Il pacco legato viene trasportato su di un banco a rulli che funge da polmone per il prodotto finito: su di essa si possono infatti depositare fino a 5 pacchi completi di pannelli. I pacchi vengono infine prelevati da un carrellista e successivamente depositati a magazzino o in una zona di accumulo per la finitura (pacco su bancale).


2.2.Divisione in stadi del processo produttivo

Possiamo dividere l'impianto produttivo in 11 stadi, ogniuno corrispondente ad una o ad un gruppo di macchine con in comune la tipologia di lavorazione. Nell'ordine troviamo:


STADIO	TIPO DI LAVORAZIONE	NOME MACCHINA
1A	Depezzamento dei tronchi (materia prima) in	Sega Pribo SX
1B	tronchetti da 48 a 52 cm	Sega Pribo DX
2A	Piallatura dei tronchetti per ottenere Lana di	Piallatrice a disco rotante CVS1
2B	Legno	Piallatrice a disco rotante CVS2
3	Bagnatura della Lana di Legno nella soluzione	Vasca bagnante
4	Miscelatura di vari cementi e riempitivi	Miscelatore
5	Mescolazione della Lana di Legno con i leganti	Mescolatore
6A	Rimessa in linea degli stampi	Ribaltatore stampi
6B1, 6B2	Spargimento della miscela sugli stampi	2 macchine EDM1, EDM2 (Eltomation Distributing Machine)
6C	Separazione della miscela negli stampi	Sega trasversale
6D	Incatastamento degli stampi contenenti miscela	Pressa
7	Sformatura dei pannelli dagli stampi	Sformatrice
8	Essiccazione dei pannelli	Essiccatoio
9	Taglio 4 lati dei pannelli	Squadratrici (o CELASCHI)
10	Pallettizazione dei pannelli in pacchi	Scaricatore
11	Reggiatura dei pacchi	Reggiatrice

Gli stadi 1 e 2 raggruppano due macchine con la stessa funzione e che lavorano in parallelo;
Lo stadio 6 raggruppa 5 macchine 2 delle quali effettuano la stessa lavorazione in parallelo
(EDM1, EDM2) mentre le altre 3 sono strettamente legate alla lavorazione della macchina
spargitrice: il ribaltatore stampi mette in linea lo stampo su cui il pannello viene formato, sega
trasversale e pressa separano e incatastano i pannelli lavorando in sincronia con la velocità di
avanzamento della linea stampi.

2.3.DIAGRAMMA PRODUTTIVO

2.4.DIAGRAMMA PRODUTTIVO SEMPLIFICATO

MP1: Tronchi di legno

MP2: Cementi e additivi

PF: Prodotto Finito

CAPITOLO 3 – Raccolta dati e analisi dei parametri

3. Analisi dei parametri

Per la rilevazione della percentuale di scarto si parte dai registri di produzione delle macchine

nei quali vengono registrati di partita in partita consumi di legno, cemento, quantità di lastre

prodotte, tempo impiegato, tronchi scartati, pannelli prodotti, pannelli scartati, inceppi delle

macchine e fermate di produzione, prendendo in analisi un certo periodo di produzione (nel

nostro caso 24gg lavorativi)

3.1.Parametri k₁

Raccolti tutti i dati relativi allo scarto delle macchine si mettono in una tabella (tabella 1 e 2)

che raccolga pezzi lavorati e pezzi scartati dalla macchina per ogni giorno in analisi. Finita la

raccolta si fa la somma di ogni colonna e si trovano i totali degli scarti di ogni macchina. Si

procede poi a calcolare la percentuale di scarto e il parametro K₁ a mezzo delle (5),(6). Si

ottiene, infine, la tabella 3.

3.2.Parametri k₂

Continuando la raccolta dati si registrano i tempi di fermo di ogni macro categoria (zona

piallatura legno, zona produzione pannelli, zona sballatura e finitura pannelli) registrando nelle

colonne successive quale o quali stazioni hanno causato quel fermo (tabella 4). Una volta

registrate tutte le fermate si crea un algoritmo a scelta multipla che scinda ogni tempo di fermo e

lo raggruppi a seconda della causa (fermo sballatrice, fermo squadratrice, fermo CVS1 ecc..) e

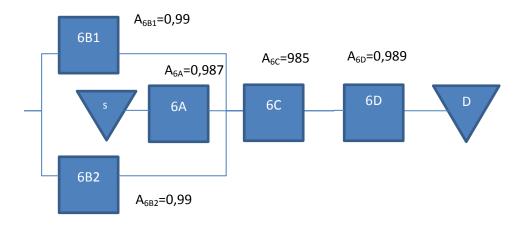
che totalizzi ogni categoria così da ottenere il totale delle fermate nel periodo d'analisi per ogni

stadio. Conoscendo così l'Uptime e i Downtime specifici è ora possibile calcolare i parametri

K₂ di ogni stadio a mezzo della (7). I risultati sono riportati in tabella 5. Dalla tabella si ricavano

poi

Ore di produzione = 257,17h


 $DT_{TOT} + UT_{TOT} = 255,33h$

 $T_{(AVVIO-RIATREZZAGGI)} = 1.8h$

29

3.2.1.Calcolo disponibilita' dei sottoblocchi

Nel blocco 6 si ha un sistema serie misto a un sistema parallelo ridondante:

Semplifico 6A, 6C e 6D in un unico blocco 6_{ACD} con disponibilità data dalla (14):

$$A_S = A_{6A} * A_{6C} * A_{6D} = 0,9515$$

La disponibilità del parallelo 6_{B1} , 6_{B2} si calcola con la (15):

$$A_{6B} = 1 - (1 - A_{6Bi})^2 = 0.9999$$

Possiamo calcolare la disponibilità complessiva dello stadio 6:

$$A_6 = A_{6A} * A_{6C} * A_{6D} * (1 - (1 - A_{6Bi})^2) = 0,961$$

Nei blocchi 1 e 2 conosco gia i tempi complessivi di fermo dell'intero blocco quindi posso trovare le disponibilità complessive della stazione usando la (7). Si ottiene

$$A_1 = 0.979;$$

$$A_2 = 0,940;$$

3.3.Parametri k₃

Per il calcolo della disponibilità dell'operatore mi sono basato sui tempi medi di lavoro degli operatori e ho applicato poi la (8).

3.3.1.Reparto piallatura

Ore totali del turno: 8h

Pausa pranzo nel turno: 30 min. Nel 50% dei casi la pausa viene coperta da un sostituto quindi

le macchine non restano senza macchinista. DT₁= 15 min/_{turno}

Pause caffè/bagno: 6 minuti ogni 2 ore= DT₂ 24 minuti/_{turno}

Ritardi vari= DT₃ 2 minuti/_{turno}

Ottengo

 $K_{3PIALLATURA} = 0.91$

3.3.2.Reparto produzione pannelli

Ore totali del turno: 8h

Pausa pranzo nel turno: 30 min. L'operatore fa la pausa a bordo macchina nel 90% dei casi. La

macchina resta scoperta in media per DT1=5min/turno

Pause caffè/bagno: 6 minuti ogni 2 ore= DT₂ 24 minuti/_{turno}

Ritardi vari= DT₃ 1 minuti/_{turno}

Ottengo

K_{3MACCHINA CENTRALE} =0,94

3.3.3.Reparto sballatura e finitura pannelli

Ore totali del turno: 8h

Pausa pranzo nel turno: 30 min. Un altro operatore lo sostituisce nel 90% dei casi. La macchina

resta scoperta in media per DT1=5min/turno

Pause caffè/bagno: 4,5 minuti ogni 2 ore= DT₂ 18 minuti/_{turno}

Ritardi vari= DT₃ 2 minuti/_{turno}

Ottengo

K_{3MACCHINA CENTRALE} =0,95

Si riportano in seguito le tabelle usate per il calcolo dei parametri precedentemente citati.

3.4.1.Tabella 1

GIORNO	TRONCHETTI LAVORATI DA CVS1	TRONCHETTI SCARTATI DA CVS1	MANCANZA TRONCHI pribo1	TRONCHETTI LAVORATI DA CVS2	TRONCHETTI SCARTATI DA CVS2	MANCANZA TRONCHI pribo2	TRONCHETTI PRODOTTI DA PRIBO	PEZZI SCARTATI DA PRIBO
21/12/12	907	6	00h:01m	846	3	00h:01m	1762	63
20/12/12	1771	27	00h:14m	1894	7	00h:06m	3699	133
19/12/12	1804	17	00h:09m	2006	18	00h:02m	3845	138
18/12/12	1847	223	00h:03m	1913	10	00h:00m	3993	144
13/12/12	1596	15	00h:12m	1795	6	00h:02m	3412	123
13/12/12	1550	13	JOIN 12111	1733	· ·	COMOZIN	3112	123
12/12/12	1799	19	00h:16m	2024	15	00h:04m	3857	139
11/12/12	1845	17	00h:05m	1795	6	00h:02m	3663	132
10/12/12	1495	8		1495	8		3006	108
06/12/12	1685	9	00h:25m	1617	13	00h:25m	3324	120
05/12/12	2367	14	00h:32m	2573	8	00h:02m	4962	178
04/12/12	1897	8	00h:11m	2086	6	00h:10m	3997	144
03/12/12	1843	10	00h:12m	1875	4	00h:05m	3732	134
30/11/12	1835	13		1036,0	5	00h:01m	2889	104
29/11/12	1835	13		903	1		2752	99
28/11/12	1835	13	00h:02m	278	2		2128	77
27/11/12	1033	13	0011.02111	270			2120	- 77
26/11/12	1770	16	00h:04m	1670	6	00h:02m	3462	124
23/11/12	1809	5	00h:04m	1872	3		3689	133
22/11/12	1335	4		1358	1		2698	97
21/11/12	957	7	00h:05m	831,0	1	00h:03m	1796	65
20/11/12	1344	3		1289	2		2638	95
19/11/12	2151	21	00h:03m	2101	4	00h:06m	4277	154
16/11/12	1824,0	8	00h:42m	2179	4	00h:38m	4015	144
15/11/12	1522	13	00h:08m	1963	7	00h:08m	3505	126
GIORNO	TRONCHETTI LAVORATI DA CVS1	TRONCHETTI SCARTATI DA CVS1	MANCANZA TRONCHI pribo1	TRONCHETTI LAVORATI DA CVS2	TRONCHETTI SCARTATI DA CVS2	MANCANZA TRONCHI pribo2	TRONCHETTI PRODOTTI DA PRIBO	PEZZI SCARTATI DA PRIBO
TOTALI:	39.073 pz	489 pz	03h:29m	37.399 pz	140 pz	01h:58m	77.101 pz	2.773 pz

3.4.2.Tabella 2

GIORNO	TOTALE PANNELLI SBALLATI DA SFORMATRICE	TOTALE PANNELLI SCARTATI DA SFORMATRICE	SCARTI SFORMATRICE DOVUTI ALLA MACCHINA CENTRALE EDM_1-2	SCARTI SFORMATRICE DOVUTI A MISCELATORE E BILANCE	SCARTI SFORMATRICE DOVUTI A MESCOLATORE	SCARTI SFORMATRICE DOVUTI A SEGA_TRASV	SCARTI SFORMATRICE DOVUTI A PRESSA	TOTALE PZ SCARTATI DA ESSICCATOIO		LATRE PRODOTTE SENZA SCARTI
21/12/12	4650	408	10							4242
20/12/12	5193	347	77						6	4840
19/12/12	4822	62	24			2				4760
18/12/12	4836	166	15				5			4670
13/12/12	4668	228	70				3			4440
15/12/12			. •				-			
12/12/12	5505	158	38		4					5347
11/12/12	3957	200	16			2			3	3754
10/12/12	3957	203	16			8				3754
06/12/12	4657	102	92			12				4555
05/12/12	4885	56	31			10			4	4825
04/12/12	4684	136	33	48		18	4			4548
0 ., 12, 12	1001	250	- 55				•			10.10
03/12/12	3052	66	33		5	19				2986
30/11/12	3245	179	19				60			3066
29/11/12	2701	32	28				3			2669
-, ,	-						-			
28/11/12	3456	17	2				3			3439
27/11/12	2645	36	9			6				2609
26/11/12	4174	86	20			37				4088
23/11/12	3699	145	46			12				3554
22/11/12	3327	62	18		3	5	25			3265
21/11/12	2333	25	7			3	14			2308
20/44/45	2577	20	40			2	-			2547
20/11/12	2577	30	19			2	5			2547
19/11/12	4707	122	24			7	4			4585
16/11/12	3829	95	14			2				3734
15/11/12	4077	33	26			13	3			4044
GIORNO	TOTALE PANNELLI SBALLATI DA SFORMATRICE	TOTALE PANNELLI SCARTATI DA SFORMATRICE	SCARTI SFORMATRICE DOVUTI ALLA MACCHINA CENTRALE EDM_1-2	SCARTI SFORMATRICE DOVUTI A MISCELATORE E BILANCE	SCARTI SFORMATRICE DOVUTI A MESCOLATORE	SCARTI SFORMATRICE DOVUTI A SEGA_TRASV	SCARTI SFORMATRICE DOVUTI A PRESSA	TOTALE PZ SCARTATI DA ESSICCATOIO		LATRE PRODOTTE SENZA SCARTI
TOTALI:	95.636 lastre	2.994 lastre	687 lastre	48 lastre	12 lastre	158 lastre	129 lastre	0 lastre	13 lastre	92.629 lastre

	PEZZI LAVORATI	PEZZI SCARTATI	%SCARTI	K1
PRIBO SX	39.937 pz	1.386 pz	3,5%	0,965
PRIBO DX	39.938 pz	1.387 pz	3,5%	0,965
CVS1	39.562 pz	489 pz	1,2%	0,988
CVS2	37.539 pz	140 pz	0,4%	0,996
silo LB	1.445.321 pz	0 pz	0,0%	1,000
Miscelatore	903.326 pz	0 pz	0,0%	1,000
Mescoltore	2.348.646 pz	0 pz	0,0%	1,000
EDM1	1.878.917 pz	0 pz	0,0%	1,000
DEM2	1.878.917 pz	0 pz	0,0%	1,000
Sega trasv	96.836 pz	0 pz	0,0%	1,000
Pressa	96.836 pz	0 pz	0,0%	1,000
Ribaltatore2	96.836 pz	0 pz	0,0%	1,000
Sformatrice	95.636 pz	2.994 pz	3,1%	0,969
Esseccatoio	92.642 pz	0 pz	0,0%	1,000
Squadratrici	92.642 pz	13 pz	0,0%	1,000
Scaricatore	92.629 pz	0 pz	0,0%	1,000
Reggiatrice	92.629 pz	0 pz	0,0%	1,000

GIORNO	ORE LAVORATE	ORE PRODUZIONE	TEMPO AVVIAMENTO MACCHINE	TEMPO FERMATA PRESSA	TEMPO MANCANZA LANA DI LEGNO	CAUSA 1_CVS1 2_CVS2 3_CVS1+CVS2 4_PRIBO1 5_PRIBO2 6_PRIBO1+2	TEMPO MANCANZA STAMPI	CAUSA 1_SBALLATRICE 2_ESSICCATOIO 3_SQUADRATRICI 4_SCARICATORE 5_REGGIATRICE	TEMPO FERMATA MACCHINA CENTRALE	CAUSA 1_SILO_L.B. 2_MISCELATORE 3_MESCOLATORE 4_EDM1 5_EDM2 6_SEGA_TRASV. 7_RIBALTATORE2	TOTALE LASTRE PRODOTTE
21/12/12	07h:30m	05h:43m	00h:00m	00h:00m	00h:17m	3	01h:18m	1	00h:12m	4	3300
20/12/12	11h:53m	09h:17m	00h:00m	00h:00m	00h:30m	3	01h:00m	1	00h:36m	5	5152
19/12/12	12h:32m	09h:39m		00h:05m	00h:57m	3	00h:30m 01h:40m	3	00h:11m	4	5326
18/12/12	12h:30m	09h:16m		0011.03111	01h:03m	3	01h:00m	3	00h:11m	5	4845
,							00h:30m	5	01h:00m	7	
							00h:31m	1			
13/12/12	13h:03m	08h:15m		00h:04m	00h:58m	1	01h:15m	3	00h:00m	4	4521
							00h:30m	1			
							00h:30m	5			
12/12/12	12h:00m	09h:14m		00h:11m	01h:10m	3	01h:31m 00h:24m	1	00h:01m	5	4700
12/12/12	1211.00111	0911.14111		0011.11111	0111.10111	3	00h:15m	2	0011.01111	3	4700
							00h:15m	3			
							00h:15m	4			
							00h:15m	5			
11/12/12	12h:00m	08h:16m			00h:51m	3	02h:10m	1	00h:03m	4	4264
							00h:40m	4			
10/12/12	12h:00m	09h:11m		00h:05m	00h:45m	3	01h:35m 00h:20m	5	00h:04m	5	4415
06/12/12	11h:10m	09h:00m		00h:00m	00h:51m	3	00h:39m	1	01h:10m	7	4682
,							00h:30m	5			
05/12/12	11h:18m	10h:15m		00h:08m	00h:08m	1	00h:47m	1	00h:00m	4	5434
04/12/12	12h:20m	08h:37m		00h:25m	00h:45m	5	01h:04m	1	01h:14m	5	4686
03/12/12	11h:50m	08h:45m		00h:26m	00h:15m 00h:46m	3	01h:00m	1	00h:53m	2	4715
03/12/12	1111.50111	0011.45111		0011.20111	0011.40111	3	00h:45m	2	0011.55111	2	4/13
30/11/12	08h:08m	05h:20m		00h:03m	00h:40m	2	01h:01m	1	01h:04m	4	2853
29/11/12	08h:00m	06h:00m	00h:30m	00h:02m	00h:33m	3	00h:22m	1	00h:11m	5	2437
20/44/42	00100	0Cl- 4E	001-45	001-00	001-45	2	00h:22m	2			2420
28/11/12 27/11/12	08h:00m 08h:00m	06h:15m 06h:11m	00h:15m	00h:06m 00h:01m	00h:45m 00h:40m	3	00h:39m 01h:08m	1		0	3430 3030
26/11/12	08h:20m	06h:55m		00h:04m	00h:33m	3	00h:36m	1	00h:12m	3	3422
23/11/12	08h:00m	06h:48m			00h:17m	1	00h:54m	1	00h:01m	2	3700
22/11/12	08h:15m	05h:51m		00h:05m	00h:31m	3	01h:15m	1	00h:03m	3	3072
21/11/12	08h:15m	03h:50m	00h:15m	00h:05m	00h:32m	2	00h:30m 00h:30m	4 1	00h:03m	5	1940
21/11/12	0011.15111	USII.SUIII	0011.15111	0011.05111	0011.32111		03h:00m	3	OUII.USIII	3	1540
20/11/12	08h:00m	05h:03m	00h:30m	00h:24m	00h:46m	3	00h:04m	1	00h:13m	2	2590
							01h:00m	3			
19/11/12	12h:00m	09h:34m	00h:20m	00h:09m	00h:16m	3	00h:52m	1	01h:31m	6	5201
16/11/12	16h:06m	08h:44m	<u> </u>	00h:02m	00h:20m 01h:40m	6	00h:50m	1	00h:20m 04h:20m	3	4360
10/11/12	1011.00111	0011.44111		0011.02111	0111.40111		00h:30m	3	O-11.20111	,	4500
15/11/12	16h:00m	09h:22m	00h:00m	00h:00m	00h:55m	2	00h:50m	1	03h:43m	0	4761
	101						01h:00m	4	00h:31m	7	
GIORNO	TOTALE ORE LAVORATE	TOT ORE PRODUZIONE (UPTIME INTERO IMPIANTO)	TOTALE TEMPO AVVIAMENTO MACCHINE	TOTALE TEMPO FERMATA PRESSA	TOTALE TEMPO MANCANZA LANA DI LEGNO	CAUSA 1_CVS1 2_CVS2 3_CVS1+CVS2 4_PRIBO1 5_PRIBO2 6_PRIBO1+2	TOTALE TEMPO MANCANZA STAMPI	CAUSA 1_SBALLATRICE 2_ESSICCATOIO 3_SQUADRATRICI 4_SCARICATORE 5_REGGIATRICE	TOTALE TEMPO FERMATA MACCHINA CENTRALE	CAUSA 1_SILO_L.B. 2_MISCELATORE 3_MESCOLATORE 4_EDM1 5_EDM2 6_SEGA_TRASV. 7_RIBALTATORE2	TOTALE LASTRE PRODOTTE NEL PERIODO IN ANALISI
TOTALI:			00g 01h 50m	00g 03h 51m	00g 17h 44m		01g 12h 32m		00g 17h 15m		96.836 lastre
(IN ORE)	257,2 h	185,4 h	1,8 h	3,9 h	17,7 h		36,5 h	*************	17,3 h	**************	201030 lastre

	TOTALE TEMPI DI FERMO DELLE MACCHINE									
PRODUZIONI	E LANA DI L.	FORMATURA PANNELLI		DESTAMPAGGIO E FINITURA PANN.						
STADIO	15h:19m	silo LB	00h:53m	sballatrice	23h:10m					
CVS	1311.19111	Miscelatore	01h:40m	esseccatoio	01h:22m					
STADIO	051 00	Mescoltore	05h:08m	squadratrici	07h:30m					
PRIBO	05h:28m	EDM1	02h:03m	scaricatore	02h:25m					
		DEM2	02h:52m	reggiatrice	02h:05m					
		Sega trasv	02h:49m							
		Pressa	03h:51m							
		Ribaltatore2	03h:20m							

3.4.4.Tabella 4 – Calcolo delle fermate delle macchine

3..4.5.Tabella 5 - calcolo dei K_2

# STADIO	NOME STADIO - MACCHINA	DOWNTIME	disponibilità macchina K2	K2 STADIO	
1	SEGA PRIBO1	05h:28m	/	0,991	
	SEGA PRIBO2	0311.20111	/	0,331	
2	PIALLATRICE CVS1	15h:19m	/	0,940	
2	PIALLATRICE CVS2	1311.13111	/	0,540	
3	VASCA BAGNANTE	00h:53m	0,997	0,997	
4	MESCELATORE CEMENTI	01h:40m	0,994	0,994	
5	MESCOLARORE	05h:08m	0,980	0,980	
6B1	EDM1 DISTRIBUTING	02h:03m	0,992		
6B2	EDM2 DISTRIBUTING	02h:52m	0,989		
6C	SEGA TRASVERSALE	02h:49m	0,989	0,961	
6D	PRESSA INCATASTATRICE	03h:51m	0,985		
6A	RIBALTATORE STAMPI	03h:20m	0,987		
7	SFORMATRICE	23h:10m	0,910	0,910	
8	ESSICCATOIO	01h:22m	0,995	0,995	
9	SQUADRATRICI	07h:30m	0,971	0,971	
10	SCARICATORE	02h:25m	0,991	0,991	
11	REGGIATRICE	02h:05m	0,992	0,992	

CAPITOLO 4 – Analisi delle potenzialità di stadio

4.1.Scale di equivalenza

L'impianto accetta in ingresso tronchi di legno e li depezza (tronchetti/ora) trasformandoli in lana di legno (t/h). Lega la lana con il cemento (t/h) per poi gettarli (t/h) sulla linea stampi (lastre/h) e produrre alla fine lastre. Per uniformare le unita di misura ho trovato, in base al totale dei consumi di materie prime, delle scale di equivalenza per esprimere un consumo (t/h o pz/h) nell'equivalente di lastre/h. La scala è riportata nella tabella 6:

4.1.1.Tabella 6 – Scale di equivalenza

Scale di equivalenza:							
1 tronchetto 50cm = 1,25 lastre	1,251	lastre/tronchetto 50cm					
1 lastra = 14,925 kg LL bagnata	14,925	kg LL/lastra					
1 lastra = 9,328 kg miscela di cemento	9,328	kg cem/lastra					
1 tronchetto = 18,9 kg LL bagnata	18,9	kg LL per tronchetto					

4.2. Analisi delle potenzialita' di saturazione

In seguito alla raccolta dati, alcune potenzialità di saturazione erano note dai dati di targa delle macchine, per altre è stato invece necessario il calcolo a mezzo della (12) usata con il segno di (=).

Stadio 1 – Pribo, seghe tronchi

Da un'analisi del lavoro di una macchina abbiamo misurato che in un tempo di lavoro di 205 secondi la macchina taglia 29 tronchetti, quindi t_i=7,1 sec./tronchetto ed n_i=2. Lo stadio quindi produce complessivamente

$$Q_{SAT1} = 1018 \frac{tronchetti}{h} = 1273 \frac{lastre}{h}$$

Stadio 2 - Piallatrici CVS

Da un'analisi dei contatori di fine giornata delle macchine si rileva che le macchine lavorano in media il 30,5% del tempo totale di produzione. Conoscendo il totale delle ore di produzione

(257,17h) e i tronchetti lavorati dalle 2 macchine nel periodo in analisi (77.101 pezzi) si ottiene facilmente che

$$t_i = \frac{257,17 * 60 * 0,305}{77101/2}$$

$$Q_{SAT2} = 980 \, tronchetti/_h = 1226 \, lastre/_h$$

Stadio 3 - Vasca bagnante (ricavato da manuale)

$$Q_{SAT3} = 10^{t}/_{h} = 670^{lastre}/_{h}$$

Stadio 4 - Miscelatore cementi (ricavato da manuale)

$$Q_{SAT4} = 6^{t}/_{h} = 643^{lastre}/_{h}$$

Stadio 5 - Mescolatore (ricavato da manuale)

$$Q_{SAT5} = 16^{t}/_{h} = 660^{lastre}/_{h}$$

Stadio 6B – EDM 1-2 (ricavato da manuale)

$$Q_{SAT6B} = 20^{t}/h = 825^{lastre}/h$$

Stadio 6A,C,D – Linea stampi (ricavato da manuale)

$$Q_{SAT6ACD} = 20 \, m/_{min} = 576 \, lastre/_h$$

Per il calcolo dell'equivalenza abbiamo considerato i 2 tipi di pannello prodotti (lastre Z con l=2m e lastre K con l=2,4m). da uno storico di produzione si ricava che si producono annualmente il 23,7% di lastre K e il 76,3% di lastre Z. Con la linea a 20 m/min avremmo con la produzione di lastre corte Qsat = 600 lastre/h mentre con le lastre lunghe Qsat = 500 lastre ore. Con una media pesata si ottiene:

$$Q_{SATlinea} = 500 * 0.237 + 600 * 0.763 = 576 \, lastre/h$$

Stadio7 - Sformatrice

Da un'analisi del lavoro di una macchina si misurano i tempi di separazione dei pannelli dallo stampo per uno spessore suddividendo tali tempi in "tempo carico catasta" e "tempo separazione di un pannello". Si constata che il tempo di carico t_c della catasta è 21 secondi mentre il tempo di separazione dei pannelli t_s è di 6 secondi per pannello di spessore da 15mm a

40mm e 7 secondi per pannelli da 50mm a 100mm. Detto N il numero di pannelli sulla catasta si calcola la potenzialità di saturazione a mezzo della seguente formula

$$Q_{SAT} = 60 * \frac{N}{t_i + t_s[\min]} \left[lastre/h \right]$$

Si calcola infine la media pesata delle varie Qsat ottenute in base alle percentuali di produzione annua di ogni spessore.

A seguito di un calcolo otteniamo la tabella 7 in cui si riportano le potenzialità di saturazione della sformatrice in base allo spessore e la media pesata sul volume produttivo:

4.2.1-Tabella 7 – Potenzialità di saturazione della sformatrice

SPESSORE	N STAMPI PER CATASTA	TEMPO A STAMPO	TEMPO CARICO CATASTA	TEMPO PER OGNI CATASTA	Qsat	% PRODUZ IONE
15	32	00:00:06	00:00:21	00:03:33	543 lastre/h	7,1%
20	39	00:00:06	00:00:21	00:04:15	551 lastre/h	29,0%
25	34	00:00:06	00:00:21	00:03:45	544 lastre/h	20,6%
30	37	00:00:06	00:00:21	00:04:03	548 lastre/h	17,4%
35	29	00:00:06	00:00:21	00:03:15	535 lastre/h	7,1%
40	26	00:00:06	00:00:21	00:02:57	529 lastre/h	7,4%
50	22	00:00:07	00:00:21	00:02:55	453 lastre/h	9,1%
75	16	00:00:07	00:00:21	00:02:13	433 lastre/h	2,0%
100	12	00:00:07	00:00:21	00:01:45	411 lastre/h	0,3%
		·		QSAT MEDIA PESATA=	534 lastre/h	

Stadio 8 – Essiccatoio (ricavato da manuale)

$$Q_{SAT8} = 580 \; lastre/h$$

Stadio 9 – Squadratrici

Dopo una rilevazione in macchina si vede che in 1m 11s la macchina squadra, senza microinterruzioni da parte degli altri stadi adiacenti, 12 pannelli. Quindi t_i =5,9 secondi, n_i =1 e

$$Q_{SAT9} = 608 \frac{lastre}{h}$$

Stadio 10-11 – Scaricatore e reggiatrice

Dopo una rilevazione sull'impianto dei tempi impiegati dalle macchine per pallettizzare le lastre di differente spessore e a legare il pacco completato si sono ottenuti i dati di cui alla tabella 8 e, con lo stesso procedimento di cui allo stadio 7, si sono ottenute, sempre a mezzo della 12, le potenzialità di saturazione dello stadio a seconda degli spessori e, per finire, la Qsat media

4.2.2-Tabella 8 – Potenzialità di saturazione dello scaricatore e della reggiatrice

S [mm]	Tempo nec [mm:ss]	Tempo Reggiatrice	Lastre per pacco	Q SATURAZIONE SCARICATORE	Q SATURAZIONE REGGIATRICE	% PROD
15	13 m:33 s	03:00	130	575 lastre/h	2600 lastre/h	7,1%
20	10 m:52 s	03:00	110	608 lastre/h	2200 lastre/h	29%
25	09 m:09 s	03:00	88	577 lastre/h	1760 lastre/h	20,6%
30	07 m:57 s	03:00	72	544 lastre/h	1440 lastre/h	17,4%
35	07 m:03 s	03:00	64	544 lastre/h	1280 lastre/h	7,1%
40	06 m:22 s	03:00	56	528 lastre/h	1120 lastre/h	7,4%
50	05 m:21 s	03:00	44	493 lastre/h	880 lastre/h	9,1%
75	03 m:55 s	03:00	40	459 lastre/h	600 lastre/h	2%
100	03 m:08 s	03:00	22	421 lastre/h	440 lastre/h	0,3%
			Qsat Medie:	564 lastre/h	1703 lastre/h	

4.3. Analisi delle potenzialità delle stazioni senza accumuli

Dal totale delle lastre buone prodotte e delle ore di produzione possiamo calcolare la potenzialità effettiva in uscita dall'impianto:

$$Q_u = \frac{92629 \ lastre}{257,17 \ h} = 360 \ lastre/h$$

Utilizzando ripetitivamente la (2) otteniamo le potenzialità di ogni stadio nel caso non vi fossero polmoni tra le stazioni:

$$\begin{split} Q_{11}' &= \frac{Q_u}{(k_1*k_2*k_3*k_4)_{11}} = \frac{360}{(1*0.99*0.95*1)_{11}} = 382 \; lastre/h \\ Q_{10}' &= \frac{Q_{11}}{(k_1*k_2*k_3*k_4)_{10}} = \frac{382}{(1*0.99*0.95*1)_{10}} = 406 \; lastre/h \\ Q_{9}' &= \frac{406}{0.9999*0.97*0.95*1} = 440 \; lastre/h \\ Q_{8}' &= \frac{440}{1*0.99*0.95*1} = 466 \; lastre/h \\ Q_{7}' &= \frac{466}{0.97*0.91*0.95*1} = 556 \; lastre/h > Q_{7SAT} = 534 \; lastre/h \\ Q_{6}' &= \frac{556}{1*0.96*0.95*1} = 609 \; lastre/h > Q_{6SAT} = 576 \; lastre/h \\ Q_{5}' &= \frac{609}{1*0.98*0.95*1} = 655 \; lastre/h \cong Q_{5SAT} = 660 \; lastre/h \\ Q_{4}' &= \frac{655}{1*0.99*0.95*1} = 694 \; lastre/h \gg Q_{4SAT} = 643 \; lastre/h \\ Q_{3}' &= \frac{655}{1*0.99*0.95*1} = 691 \; lastre/h > Q_{7SAT} = 670 \; lastre/h \\ Q_{2}' &= \frac{691}{0.99*0.94*0.91*1} = 815 \; lastre/h \\ Q_{1}' &= \frac{815}{0.97*0.98*0.91*1} = 947 \; lastre/h \end{aligned}$$

4.4. Analisi delle potenzialità delle stazioni con accumuli ideali

Utilizzando la (4) otteniamo le potenzialità degli stadi se tra una stazione e l'altra vi fosse un accumulo sufficiente ad alimentare le macchine quando una di esse si ferma. Se le macchine hanno sempre a disposizione pezzi da lavorare e aree disponibili dove immagazzinare i pezzi, ogni macchina dovrà produrre solo i pezzi richiesti (Q_u) e gli scarti delle sucessive, senza dover correre per recuperare le fermate delle altre stazioni.

$$Q_{11}'' = \frac{Q_u}{(k_1*k_2*k_3*k_4)_{11}} = \frac{360}{(1*0.99*0.95*1)_{11}} = 382 \ lastre/h$$

$$Q_{10}'' = \frac{Q_u/(1)}{(k_1*k_2*k_3*k_4)_{10}} = \frac{382}{(1*0.99*0.95*1)_{10}} = 383 \ lastre/h$$

$$Q_{9}'' = \frac{Q_u/(1*1)}{0.999*0.97*0.95*1} = 390 \ lastre/h$$

$$Q_{8}'' = \frac{Q_u/(1*1*0.9999)}{1*0.999*0.95*1} = 381 \ lastre/h$$

$$Q_{7}'' = \frac{Q_u/(1*1*0.9999*1)}{0.97*0.91*0.95*1} = 430 \ lastre/h$$

$$Q_{6}'' = \frac{Q_u/(1*1*0.9999*1*0.97)}{1*0.96*0.95*1} = 407 \ lastre/h$$

$$Q_{5}'' = \frac{Q_u/(1*1*0.9999*1*0.97*1)}{1*0.98*0.95*1} = 399 \ lastre/h (= 13.9 \ lastre/h)$$

$$Q_{4}'' = \frac{Q_u/(1*1*0.9999*1*0.97*1*1)}{1*0.99*0.95*1} = 394 \ lastre/h (= 3.7 \ lastre/h)$$

$$Q_{3}'' = \frac{Q_u/(1*1*0.9999*1*0.97*1*1*1)}{1*1*0.9999*1*0.97*1*1*1} = 393 \ lastre/h (= 9 \ lastre/h)$$

$$Q_{2}'' = \frac{Q_u/(1*1*0.9999*1*0.97*1*1*1*1)}{0.99*0.94*0.91*1} = 438 \ lastre/h (= 560 \ lastre/h)$$

$$Q_{1}'' = \frac{Q_u/(1*1*0.9999*1*0.97*1*1*1*1*1)}{0.99*0.94*0.91*1} = 439 \ lastre/h (= 510 \ lastre/h)$$

4.5 Analisi delle dimensioni degli accumuli presenti in linea

Nella linea, tra uno stadio e l'altro, vi sono installati vari polmoni di cui si riportano in seguito le taglie:

Stadi 11-10: un piccolo polmone permette di accogliere un pallet appena formato dallo stadio 10. Considerando che il tempo medio impiegato dallo stadio 10 per creare un pallet è di 9 minuti e che i due stadi hanno entrambi un MTTR di 10 minuti possiamo dire che le due stazioni hanno un polmone efficiente. Per il calcolo della potenzialità Q₁₀ si userà la (4) quindi

$$Q_{10} = Q_{10}^{"} = 383 \frac{lastre}{h}$$

Stadi 9-10: tra gli stadi non vi è polmone alcuno. Per cui per lo studio della potenzialità Q_9 si userà la (2), quindi

$$Q_9 = \frac{383}{0.9999 * 0.97 * 0.95 * 1} = 415 \ lastre/h$$

Stadi 8-9: tra gli stadi non vi è polmone alcuno. Per cui per lo studio della potenzialità Q_8 si userà la (2), quindi

$$Q_8 = \frac{451}{1*0.99*0.95*1} = 439 \; lastre/h$$

Stadi 7-8: tra gli stadi non vi è polmone alcuno. Per cui per lo studio della potenzialità Q_7 si userà la (2), quindi

$$Q_7 = \frac{439}{0.97 * 0.91 * 0.95 * 1} = 525 \ lastre/h$$

Stadi 6-7: La stazione 7 viene alimentata con stampi contenenti pannelli prelevati dal deposito cataste. Tra gli stadi vi è un polmone di 25 pezzi per il ritorno stampi alla stazione 6. Questo polmone, considerata la stazione 6 funzionante alla Q_{6SAT} = 534 lastre/h, dura appena 3 minuti. Con un DT medio dello stadio 7 di 43 min a turno si calcola che il polmone è grande il 7% del necessario. Possiamo allora stimare la potenzialità reale Q_6 come una media pesata tra il 7% di Q_6 ' con polmoni e il 93% di Q_6 ' senza polmoni, ottenendo

$$Q_6 = 0.07 * \frac{Q_u/(1*1*0.9999*1*0.97)}{1*0.96*0.95*1} + 0.93 * \frac{525}{1*0.96*0.95*1} = 563 \ lastre/h$$

Stadi 5-6: Calcolando il volume del polmone della miscela e delle lastre K e Z per ogni spessore e considerando che la miscela deve essere pressata nello stampo, possiamo ottenere il numero massimo delle lastre ottenibili con il polmone pieno e, di conseguenza, il tempo di svuotamento considerando che la stazione 6 vada alla Q_{6SAT}. Il tutto è riportato in tabella 8:

4.5.1. Tabella 8 – Svuotamento polmone miscela

S [mm]	VOLUME DI 1 LASTRA Z [m³]	VOLUME DI 1 LASTRA K [m³]	VOLUME MISCELA SU POLMONE [m³]	MAX LASTRE Z	MAX LASTRE K	TEMPO SVUOT. POLMONE LASTRE Z	TEMPO SVUOT. POLMONE LASTRE K	% PROD
15	0,019278	0,023058	0,91	24	20	2,8 min	2,0 min	7,1%
20	0,025704	0,030744	0,91	18	15	2,1 min	1,5 min	29,0%
25	0,03213	0,03843	0,91	14	12	1,7 min	1,2 min	20,6%
30	0,038556	0,046116	0,91	12	10	1,4 min	1,0 min	17,4%
35	0,044982	0,053802	0,91	10	8	1,2 min	0,8 min	7,1%
40	0,051408	0,061488	0,91	9	7	1,1 min	0,7 min	7,4%
50	0,06426	0,07686	0,91	7	6	0,8 min	0,6 min	9,1%
75	0,09639	0,11529	0,91	5	4	0,6 min	0,4 min	2,0%
100	0,12852	0,15372	0,91	4	3	0,4 min	0,3 min	0,3%
		_				4 7:	4.2	

Tempo_svuotamento_medio_spessore: 1,7 min 1,2 min

Tempo svuotamento medio:

1,5 min

Abbiamo quindi che il tempo medio di svuotamento del polmone è di 1,5 minuti.

Lo stadio 5 ha un DT di 10 minuti per ogni turno di produzione dunque il polmone copre il 15% del down time. Rifacendoci al ragionamento fatto per gli stadi 6-7 otteniamo

$$Q_5 = 0.15 * \frac{Q_u/(1*1*0.9999*1*0.97*1)}{1*0.98*0.95*1} + 0.85 * \frac{563}{1*0.98*0.95*1} = 574 \, lastre/h$$

Stadio 4-5: Valutando che il miscelatore ha un DT di 10 minuti ogni 8 ore di produzione e una $Q_{4SAT} = 6$ t/h il polmone dovrebbe essere grande $Q_{4SAT}*DT$, quindi 1 tonnellata. Il polmone tra miscelatore e mescolatore è esattamente di 1 tonnellata, quindi per il calcolo della potenzialità Q_4 usiamo la (4), dunque:

$$Q_4 = Q_4'' = 394 \frac{lastre}{h}$$

Stadio 3-5: Tra i due stadi non vi è polmone. Per calcolare la potenzialità dello stadio 3 si usa la (2):

$$Q_3 = \frac{574}{1*1*0.95*1} = 606 \; lastre/h (= 9.05 \; t/h)$$

Stadio 2-3: Tra i due stadi vi è un polmone che puo contenere lana di legno asciutta. La durata media del polmone quando è pieno è di 2 minuti. Considerando che le CVS hanno un DT di 30 minuti ogni 8 ore di produzione il polmone copre solo il 6,7% del DT da parte dello stadio 2. Possiamo così calcolare la potenzialità dello stadio 2:

$$Q_{2} = 0.067 * \frac{Q_{u}}{1*1*0.9999*1*0.97*1*1*1*1} + 0.933 * \frac{574}{0.99*0.94*0.91*1}$$

$$= 695 \frac{lastre}{h} (= 560 \frac{tronchetti}{h})$$

Stadio 1-2: ogni polmone (box1, box2) può contenere fino a 108 tronchetti ciascuno, per un totale di 216 tronchetti. Ciò assicura, alla Q_{SAT} dello stadio 2, una copertura di 13,2 minuti. Considerando che il MTTR dello stadio 1 è di 30 minuti, il polmone copre il 44% del downtime dello stadio. Possiamo infine calcolare Q_1 :

$$Q_{1} = 0.44 * \frac{Q_{u}/(1 * 1 * 0.9999 * 1 * 0.97 * 1 * 1 * 1 * 1 * 0.999)}{0.97 * 0.98 * 0.91 * 1} + 0.56 * \frac{695}{0.97 * 0.98 * 0.91 * 1}$$
$$= 638 \frac{lastre}{h} (= 510 \frac{tronchetti}{h})$$

CAPITOLO 5 – Analisi dell'efficienza della linea

5.Calcolo dei parametri k4 e del tasso di utilizzo della linea

Conoscendo ora le potenzialità effettive di ogni stadio possiamo proseguire con lo studio dell'efficienza dell'impianto e quindi calcolare, a mezzo della (10) i parametri K_4 di ogni stazione. Otteniamo:

$$K_{4_1} = 0.501$$

$$K_{4_2} = 0,571$$

$$K_{4_3} = 0.905$$

$$K_{4_4} = 0,611$$

$$K_{45} = 0.870$$

$$K_{4_6} = 0.977$$

$$K_{4_7} = 0.982$$

$$K_{4_8} = 0.757$$

$$K_{4_9} = 0,683$$

$$K_{4_{10}} = 0.399$$

$$K_{4_{11}} = 0,579$$

Per finire, a mezzo della (13) si calcola il coefficiente di utilizzo della linea:

$$\boldsymbol{U_L} = \frac{\sum_1^N u_i n_i}{\sum_1^N n_i} =$$

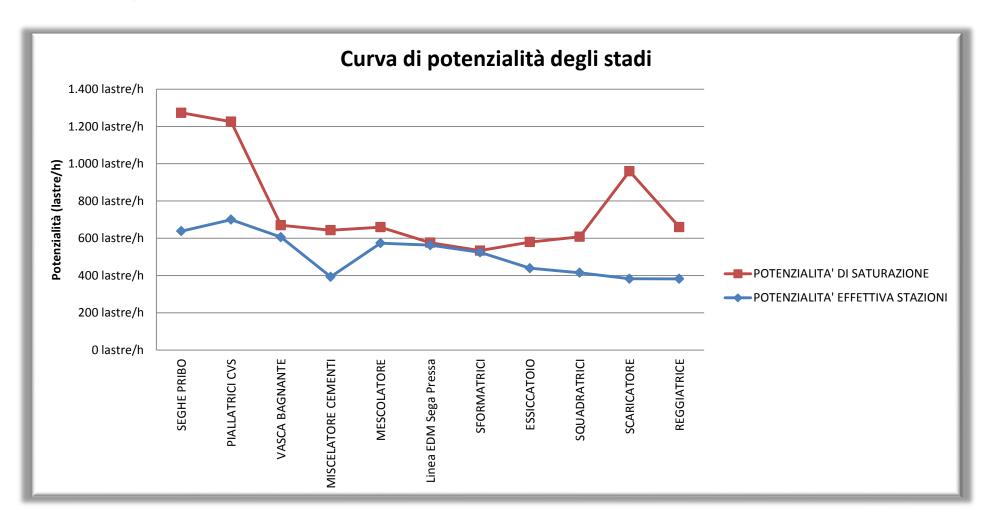
$$=\frac{2*K_{4_1}+2*K_{4_2}+1*K_{4_3}+1*K_{4_4}+1*K_{4_5}+1*K_{4_6}+1*K_{4_7}+1*K_{4_8}+1*K_{4_9}+1*K_{4_{10}}+1*K_{4_{11}}+}{13}=$$

$$= 0,6852$$

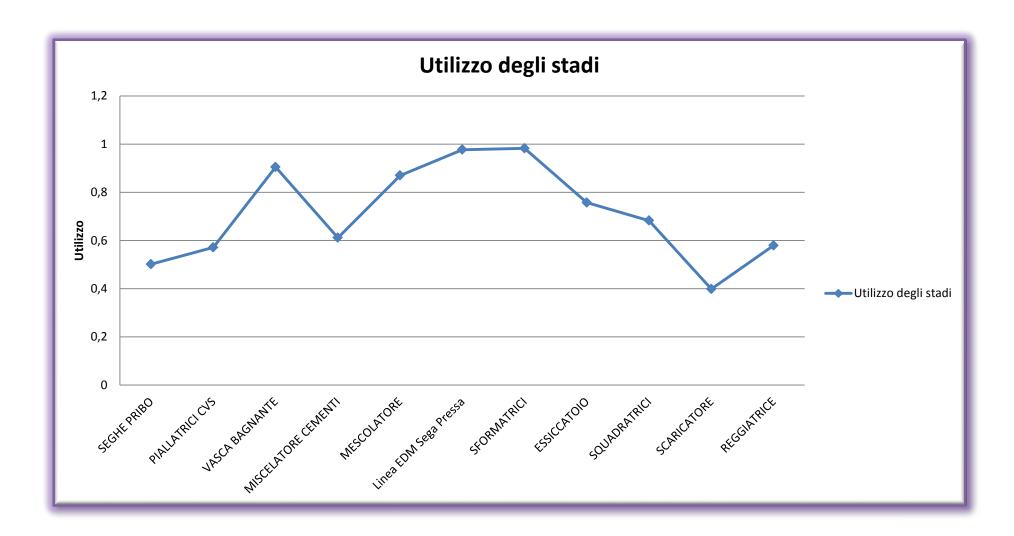
Si riportano nelle pagine seguenti una tabella di raccolta dati con tutti parametri e le potenzialità calcolati fin'ora e il grafico delle curve di potenzialità degli stadi di saturazione, reali e senza polmoni.

5.1.Tabella 9 - ANALISI DELL'IMPIANTO DI PRODUZIONE

Producion TIME: 257,17 h
Ore avviamento 1,83 h


(UP + DOWN) TIME: 255,33 h

(continua a pagina seguente)


# STADIO	NOME STADIO - MACCHINA	DOWNTIME	PEZZI LAVORATI	PEZZI SCARTATI	% SCARTI	K1	K2	Кз
1	SEGA PRIBO1	05h:28m	39.937	1.386	3,470%	0,965	0,979	0,910
1	SEGA PRIBO2	0311.28111	39.938	1.387	3,473%	0,905	0,373	0,910
2	PIALLATRICE CVS1	15h:19m	39.562	489	1,236%	0,992	0,940	0,910
2	PIALLATRICE CVS2	1311.19111	37.539	140	0,373%	0,992	0,540	0,910
3	VASCA BAGNANTE	00h:53m	1.445.321 kg	0	0,000%	1,000	0,997	0,950
4	MISCELATORE CEMENTI	01h:40m	903.326 kg	0	0,000%	1,000	0,994	0,950
5	MESCOLARORE	05h:08m	2.348.646 kg	0	0,000%	1,000	0,980	0,950
6B1	EDM1 DISTRIBUTING	02h:03m	1 070 017 kg	0	0.000%			
6B2	EDM2 DISTRIBUTING	02h:52m	1.878.917 kg	0	0,000%			
6C	LINEA DIDALTATORE	02h:49m				1,000	0,961	0,950
6D	LINEA RIBALTATORE - SEGA TRASV - PRESSA	03h:51m	96.836 lastre	0	0,000%			
6A	SLUA INASV - FILISSA	03h:20m						
7	SFORMATRICE	23h:10m	95.636	2.994	3,131%	0,969	0,910	0,950
8	ESSICCATOIO	01h:22m	92.642		0,000%	1,000	0,995	0,950
9	SQUADRATRICI	07h:30m	92.642	13	0,014%	0,9999	0,971	0,950
10	SCARICATORE	02h:25m	92.629	0	0,000%	1,000	0,991	0,950
11	REGGIATRICE	02h:05m	92.629	0	0,000%	1,000	0,992	0,950

# STADIO	QSAT POTENZIALITA' DI SATURAZIONE	QSAT POTENZIALITA' DI SATURAZIONE convertite in lastre/h	Qx POTENZIALITA' DEGLI STADI con polmoni reali	Qx POTENZIALITA' DEGLI STADI con polmoni reali convertite in lastre/h	Qx' SENZA POLMONI adattato a lastre/h	Qx" con POLMONI IDEALI adattato a lastre/h	K4 CON POLMONI REALI	K4 CASO SENZA POLMONI
1	1018 pz/h	1.273 lastre/h	510 pz/h	638 lastre/h	947 lastre/h	439 lastre/h	0,501	0,74
2	980 pz/h	1.226 lastre/h	560 pz/h	700 lastre/h	815 lastre/h	438 lastre/h	0,571	0,66
3	10,00 t/h	670 lastre/h	9,05 t/h	606 lastre/h	691 lastre/h	393 lastre/h	0,905	1,03
4	6,00 t/h	643 lastre/h	3,67 t/h	393 lastre/h	694 lastre/h	394 lastre/h	0,611	1,08
5	16,00 t/h	660 lastre/h	13,92 t/h	574 lastre/h	655 lastre/h	399 lastre/h	0,870	0,992
6B1 6B2	20,00 t/h	825 lastre/h						
6C 6D	20 m/min	576 lastre/h	563	lastre/h	609 lastre/h 407 la	407 lastre/h	tre/h 0,977	1,06
6A								
7	534 lastre,	/h	525	lastre/h	556 lastre/h	430 lastre/h	0,982	1,04
8	580 lastre,	/h	439	lastre/h	466 lastre/h	381 lastre/h	0,757	0,80
9	608 lastre,	/h	415	lastre/h	440 lastre/h	390 lastre/h	0,683	0,72
10	960 lastre,	/h	383 lastre/h		406 lastre/h	383 lastre/h	0,399	0,42
11	660 lastre,	/h	382	lastre/h	382 lastre/h	382 lastre/h	0,579	0,58
			Qu=	360 lastre/h		U _{L=}	0,6852	

5.2.Grafico delle potenzialità

5.3.Grafico degli utilizzi

CAPITOLO 6

Conclusioni finali

Come visto il tasso di utilizzo della linea produttiva è 0,68, indicando che la linea ha uno discreto tasso di utilizzo. Per migliorare l'efficienza dell'impianto bisogna intervenire nei colli di bottiglia, evidenziati dal grafico delle potenzialità. Nel nostro caso si dovrebbe migliorare l'efficienza dello stadio 7 (sformatrice pannelli da stampi) migliorandone il più possibile le prestazioni e mettendo dei grandi polmoni prima e dopo lo stadio. Tra gli stadi 6 e 7 vi è un polmone ma, come visto nel paragrafo 4.4, è insufficiente a coprire le fermate dello stadio 7 (che alimenta di stampi vuoti lo stadio 6). Per una copertura ideale servirebbe invece un polmone di 534 lastre (21 volte più grande di quello attualmente esistente). Nel mettere un grande polmone dopo lo stadio 7 una soluzione efficace potrebbe essere quella di rendere più flessibile l'essiccatoio: questo è infatti capace di contenere 680 lastre nella loro fase di essiccazione ma non vi è la possibilità di scaricare pannelli da questo stadio se non se ne fanno parallelamente entrare la stessa quantità. Uno studio di fattibilità si potrebbe fare, se tale azione non andasse a modificare il processo tecnologico di asciugatura dei pannelli, su quanto inciderebbe sui costi e sull'aumento della potenzialità dell'impianto se vi fosse la possibilità di usare lo stadio 8 come fosse lui stesso un polmone, immagazzinando pannelli e essiccandoli quando forniti dallo stadio 7 e scaricandoli allo stadio 9 quando da esso richiesto, permettendo così di svincolare gli stadi 8-9-10-11 dalle stazioni a monte.

Un'altra considerazione è altresì da fare per l'accumulo tra lo stadio 2 e lo stadio 3 che, come già visto, copre appena il 7% delle fermate da parte dello stadio 2. Un polmone ottimale dovrebbe quindi essere 14 volte più grande di quello attuale ma già con un polmone 4 volte più grande riusciremmo a coprire la maggior parte delle micro fermate da parte dello stadio 2 e, quindi, migliorare di netto la potenzialità dell'impianto.

CAPITOLO 7

Bibliogragia

- L. Rosa, Impianti Industriali Meccanici. Lo Studio di Fattibilità (http://www.dim.unipd.it/rosa/vol_1.pdf);
- Renato Wegner, Franco Caron Studio di Fattibilità, layout e simulazione 1997 -Milano - CUSL;
- Alberto Portioli Staudacher, Alessandro Pozzetti Progettazione degli impianti industriali 2003 Milano Hoepli);
- "Hugo Cabret" di Martin Scorsese, è un film del 2011 in 3D diretto da Martin Scorsese tratto dal romanzo "La straordinaria invenzione di Hugo Cabret" di Brian Selznick del 2007.
- www.celenit.com;
- it.wikipedia.org/wiki/Impianto_industriale;