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Abstract
Interest in LNG as a marine fuel for the shipping sector is rapidly growing due to economic

advantages over oil alternatives and stricter environmental regulations for shipboard NOx and

SOx emissions.

LNG production is an energy intensive process, as high compression power is required to

reach the cryogenic temperature levels needed for natural gas liquefaction. In light of this, the

present thesis focuses on the thermodynamic modelling and optimisation of a specific lique-

faction concept, the expander-based configuration. Models are realised using the simulation

software Aspen Plus considering the Danish grid natural gas composition.

Thirteen alternatives are investigated, highlighting the drivers for efficiency improvements.

Inter-cooled multi-stage compression should be implemented and the temperature difference

between Hot and Cold Composite Curves at the cold box should be reduced. This can be

achieved by (1) adding a pre-cooling stage, (2) realising a dual-expansion cycle or (3) designing

a dual-refrigerant configuration.

Thermodynamic optimisation is performed by means of a genetic algorithm. The Figure of

Merit for the expander-based concept is found to range between 17 % and 33 %. Unit energy

consumption can be reduced from 2568 kJ per kg of produced LNG to 1336 kJ/kg.

The optimisation procedure emphasises the existing trade-off between power consumption

and heat transfer area. This represents the rationale for further investigations of such systems.

A simplified economic analysis and comparison of different liquefaction concepts is presented

in the second part of this study. Cascade and Mixed-Refrigerant systems are included in the

assessment and are compared with the most favourable expander-based configurations. Two

plant sizes are considered, corresponding to a feed flow rate of 0.8 kg/s (small scale) and 5.5

kg/s (large scale). Results show that expander-based cycles are not competitive with the other

liquefaction alternatives, regardless of the plant size.

Focus is put on the influence that cost correlations have on economic outcomes. The simul-

taneous minimisation of the investment associated to the compressor and heat exchange

network pinpoints that the trade-off between operation and investment costs does not occur,

as turbo-machinery is the most capital intensive equipment.
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Sommario

L’interesse nel Gas Naturale Liquefatto (LNG) come combustibile per la propulsione marina

è in rapida crescita. L’utilizzo del gas naturale presenta vantaggi economici ed ambientali

rispetto ai combustibili derivati dal petrolio. In particolare la performance ambientale del gas

naturale come combustibile risulta un fattore chiave alla luce dei diminuiti limiti di emissione

per il trasporto navale come stabilito dall’Organizzazione Marittima Internazionale.

Il processo di liquefazione del gas naturale è energeticamente dispendioso a causa dell’elevata

potenza di compressione necessaria per raggiungere le condizioni criogeniche (-162◦C a pres-

sione ambiente). Di conseguenza l’applicazione dei metodi termodinamici è di fondamentale

importanza per la riduzione del consumo energetico degli impianti di liquefazione. Questa

tesi si focalizza sull’analisi e ottimizzazione termodinamica di una specifica alternativa di

impianto per la liquefazione del gas naturale, quella ad espansione del refrigerante per mezzo

di un turbo-espansore. La modellazione è realizzata utilizzando il software Aspen Plus e

considerando la composizione del gas naturale presente nella rete danese.

L’analisi termodinamica è basata sullo sviluppo di tredici modelli di ciclo e permette di iden-

tificare quali siano gli accorgimenti da adottare per incrementare l’efficienza del processo

di liquefazione. Due sono le principali direzioni: l’implementazione di compressioni multi-

stadio inter-refrigerate e la riduzione della differenza di temperature negli scambiatori di

calore criogenici. Quest’ultima può essere ottenuta mediante (1) l’aggiunta di un ciclo di

pre-cooling, (2) il design del processo di espansione a due stadi o (3) la realizzazione di un

ciclo a doppio refrigerante.

Successivamente i tredici cicli sono ottimizzati utilizzando un algoritmo genetico. La Figura di

Merito, ovvero il rendimento exergetico del ciclo di liquefazione, risulta variare tra 17 % e 33 %.

Rispetto alla configurazione base il consumo unitario di energia può essere ridotto del 48 %,

da 2568 kJ per kg di LNG prodotto a 1336 kJ/kg.

Il processo di ottimizzazione termodinamica permette di evidenziare il trade-off tra potenza

di compressione e area di scambio termico. Questo rappresenta il fondamento per l’analisi

economica dei sistemi di liquefazione. Tale analisi comprende i rimanenti concetti di impianto

per la liquefazione del gas naturale, cioè i sistemi a cascata e i sistemi a miscela di refrigerante.

Il confronto è condotto per due differenti scale d’impianto: piccola scala (portata di gas natu-

rale in ingresso uguale a 0.8 kg/s) e larga scala (portata di gas naturale in ingresso uguale a 5.5

kg/s). I risultati dell’analisi mostrano come le configurazioni a turbo-espansore non riescano

xiii
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ad essere competitive con le alternative a cascata e a miscela di refrigerante, a causa della

minor efficienza.

Un’analisi di sensitività è proposta per investigare l’influenza che le correlazioni di costo

impiegate hanno sulla performance economica. L’impiego delle correlazioni di costo proposte

da Turton et al. fa sì che le turbo-macchine risultino i componenti più costosi, di conseguenza

l’ottimo economico tende a coincidere con l’ottimo termodinamico. Tale risultato non è tut-

tavia confermato impiegando differenti correlazioni di costo. Di conseguenza un processo di

validazione dei dati di costo è richiesto per rendere i risultati dell’analisi economica realistici.
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1 Introduction

1.1 Framework

Presently one of society’s major concerns deals with the anthropogenic emissions of Green-

house Gases (GHG), which increase since the pre-industrial era is strictly correlated to the

observed atmospheric warming [1]. Besides having a global impact, air pollution is also

affecting the environment and human health on a regional and local scale. For instance

pollutants like NOx and SOx are responsible for the acidification and eutrophication of natural

ecosystems and freshwater and for the formation and transport of ground-level ozone [2].

Shipping contributes about 3 % of the global air pollution. Despite its marginal contribution,

attention is growing as ship pollution is concentrated in relatively small areas, with the Baltic

Sea being among the most critical ones [3]. Additionally, it is estimated that nearly 70 % of

ship emissions are deposited within 400 km of land, significantly contributing to air quality

degradation in coastal areas [4].

In 2012 annual shipboard NOx emission was about 19 million tons, while SOx emission was

about 10.2 million tons, being 15 % and 13 % of the global NOx and SOx emissions, respectively

[5]. Emission of Particulate Matter (PM) amounted to 1.4 million tons, representing 1-7 % of

ambient PM10, 1-14 % of PM2.5 and 11 % of PM1 [4]. Due to the increasing traffic volumes,

NOx and SOx ship emissions are forecast to exceed European Union’s land-based emissions [6].

The regulatory authority for the shipping sector is the International Marine Organization

(IMO). The main goal of this institution is "to ensure that ship operators cannot address their

financial issues by simply cutting corners and compromising on safety, security and environ-

mental performance" [7].

The IMO defined ship pollution rules in the International Convention on the Prevention of

Pollution from Ships, known as MARPOL 73/78. MARPOL entered into force in 1983 and as

the 31st of December 2005 136 countries, representing 98 % of the world’s shipping capacity,

are parties to the Convention.

1



Chapter 1. Introduction

MARPOL’s Annex VI [8] sets limits on NOx and SOx emissions from ship exhausts and prohibits

intentional emissions of ozone-depleting substances. Additionally it acknowledges protected

areas called Emission Control Areas (ECA’s) in which limits are stricter. Annex VI implies

subsequent steps for the reduction of NOx emissions and for the restriction of fuel sulphur

content. These stages are summarised in Tables 1.1 and 1.2. More specifically, after the 1st of

January 2015 the allowed sulphur content in ECA zones is 0.1 % of the fuel mass. Furthermore

the Convention aims at reducing stepwise NOx emissions through a three-tier program to 80

% by 2016.

Table 1.1: Global and ECA limits for fuel sulphur content [8]

Date Global limit Date ECA limit
[% mass] [% mass]

Prior to 1/1/2010 4.5% Prior to 1/7/2010 1.5%
After 1/1/2012 3.5% After 1/7/2010 1.0%
After 1/1/2020 0.5% After 1/1/2015 0.1%

Table 1.2: NOx emission reduction program [8]

Tier Date NOx limit [g/kWh]
n < 130 130 ≤ n ≤ 2000 n > 2000

Tier I 2000 17 45 x n−0.2 9.8
Tier II 2011 14.4 44 x n−0.2 7.7
Tier III 2016* 3.4 9 x n−0.2 1.96

*Only for NOx ECA’s (Tier II applies outside ECA’s).
n = engine speed [rpm]

As depicted in Figure 1.1 the Baltic Sea and the North Sea including internal Danish waters are

designated as ECA zones, together with the English Channel, Canadian and US coastal waters

[9].

As a matter of fact the new regulation on fuel sulphur content and on shipboard emissions

affects the overall competitiveness of short sea shipping as well as that of industries relying

on cost-efficient transportation. Therefore ship owners must consider new fuels and/or

technologies in order to obtain competitiveness in the short sea shipping sector.

Presently there are three compliance strategies: switch to Marine Gas Oil (MGO) or to Marine

Diesel Oil (MDO), continue to use high sulphur-content fuel oil (Heavy Fuel Oil - HFO) but

install scrubbers to wash the sulphur from the exhaust gas, or consider the use of Liquefied

Natural Gas (LNG) as a marine fuel [10].

2



1.1. Framework

Figure 1.1: Emission Control Areas as defined by the IMO [9]

The use of LNG in the transportation sector falls within the European Union support strategy

for alternative fuel markets in order to reduce the EU’s dependency on oil imports, to improve

the security of Europe’s energy supply and to strengthen the competitiveness of European

industry [11]. Besides there are additional drivers which can favour the introduction of LNG

in the maritime transportation sector [12]. Natural Gas (NG) is cheaper than low-sulphur fuel

oil and this situation is expected to last in the future given the difference in proved reserve

availability for crude oil and natural gas [13]. Moreover LNG has been widely used as fuel in

LNG carriers, leading to the development of market-ready reciprocating internal combustion

marine engines capable of natural gas and/or dual-fuel operation. Finally, LNG is the cleanest

among the marine fuels which are currently employed in the shipping sector. This outcome is

emphasised in the comparative Life Cycle Assessment (LCA) study on marine fuels proposed

by the Chalmers University of Technology [14] and summarized in Tables 1.3 and 1.4. The

study considers the complete life cycle of each fuel. Fuels are utilised in a Roll-on/Roll-off

(Ro-Ro) vessel and the functional unit of the study is one ton cargo transported for 1 km at

normal cruise speed.

Table 1.3: Specific fuel consumption and GHG emission coefficient for marine propulsion
using HFO, MGO and LNG [14]

Unit HFO MGO LNG

Specific fuel consumption g/kWh* 4 3.7 3.3
GHG emissions g CO2-eq./ton km 203 213 183

*grams per kWh of engine work
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Table 1.4: Emission coefficients for HFO, MGO and LNG [14]

Unit HFO MGO LNG

CO2 emissions g/MJ 188 179 118
NOx emissions g/MJ 3.9 3.7 0.4
PM10 emissions g/MJ 0.25 0.08 0.02

Conversely the main challenge related to LNG introduction is the required effective infrastruc-

ture, which is on one side connected with the need for major investments and on the other

side characterised by an initially poor utilization of the capacity due to limited demand. The

lack of an existing bunkering infrastructure represents an important barrier, as highlighted by

the European Commission [15].

Secondly, producing LNG is a very energy intensive process. Required liquefaction tempera-

tures are around -160◦C and this translates into large operating costs for liquefaction facilities,

given the need for high compression power.

1.2 Problem statement

It is believed that an in-depth thermodynamic analysis is necessary in order to understand

the main sources of irreversibilities in liquefaction systems and to enhance their performance,

thus contributing to the reduction of power consumption. At the same time such analysis

cannot overlook economic considerations, which are decisive for the viability of LNG projects.

1.2.1 Objectives

This M.Sc. project aims at contributing to the understanding of technical and economic

aspects of natural gas liquefaction facilities. Focus is put on one particular alternative, that

is the expander-based concept. Other liquefaction alternatives, namely cascade and Mixed-

Refrigerant systems, are the main focus of the Master Thesis Modelling and Optimisation of

Cascade and Mixed-Refrigerant Cycles for Natural Gas Liquefaction by Nicola Lonardi. This

and the present work are developed independently. However they complement each other in

the attempt to give a thorough overview about challenges and peculiarities of such systems.

Moreover some of the results presented by Lonardi are used in this project for further analyses.

Expander-based systems are generally penalised by higher power consumption with respect

to other liquefaction concepts. Therefore the first objective of this work is to identify the major

sources of irreversibilities in expander-based configurations and to understand which design

improvements can be adopted in order to reduce the power consumption. This is addressed

by means of thermodynamic modelling with the simulation software Aspen Plus.
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The second objective is to quantify the efficiency improvements that can be achieved. Ther-

modynamic optimisation by means of genetic algorithm is applied to answer this second

research question.

Finally economic considerations are included. In general terms efficiency improvements come

at the expense of heat transfer area and design simplicity, which in turns result into higher

capital expenditures. The third objective of this project is therefore to further investigate

the interplay between thermodynamic and economic performance for the three liquefaction

concepts and to identify which one is the most favourable, both for small-scale and large-scale

applications.

1.2.2 Approach

This thesis is exclusively a modelling work and no considerations on experimental aspects of

LNG production facilities are included. Thermodynamic modelling of expander-based config-

urations is the point of departure, as the developed models are the basis for all the subsequent

analyses, i.e. thermodynamic optimisation and economic performance determination. A

literature review is conducted in order to highlight strengths and weaknesses of natural gas

liquefaction concepts, particularly of expander-based systems. Moreover relevant inputs for

the modelling stage are obtained.

Thermodynamic optimisation is performed using a genetic algorithm. Single-Objective Op-

timisations allow to address the objective of quantifying the performance improvements

for different expander-based configurations. Moreover Multi-Objective Optimisations are

performed to investigate the trade-off between power consumption and required heat transfer

area.

Economic analysis is based on a Discounted Cash Flow approach and aims at identifying the

most economically viable liquefaction alternatives for small-scale and large-scale applications.

Some input data come from the companies Kosan Crisplant A/S, partner in the project, and

SWEP. However most of the analysis is built on information and cost correlations found in

the literature. For this reason a crucial aspect is the reliability of economic data, which is

extensively discussed and which would require a careful stage of data validation for the results

to be fully robust.
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1.3 Thesis outline

The present thesis consists of 9 Chapters.

Chapter 1 introduces the project along with the framework, main objectives, adopted ap-

proach and overall outline of the report.

Chapter 2 sets the relevant background for the thesis, including information about natu-

ral gas and LNG properties, technical and thermodynamic features of liquefaction systems,

and simulation of natural gas liquefaction cycles.

Chapter 3 outlines the general methodology applied throughout this project and introduces

the used tools to the reader.

Chapter 4 presents the developed models for thirteen expander-based configurations. It

describes the modelling assumptions and highlights how the expander-based configuration

works and the design improvements that can be performed. Understanding the behaviour

of expander-based cycles is the basis for setting sensible variation ranges for the decision

variables in the optimisation problem.

Chapter 5 includes and discusses the results from the thermodynamic optimisation of the

models described in Chapter 4. Exergy analysis is performed on thermodynamic optimal

cycles to highlight the distribution of exergy losses and destructions among the different com-

ponents. Multi-Objective Optimisations are presented with the aim of showing the trade-off

between power consumption and heat transfer area. A statistical analysis is carried out on the

optimal points constituting the Pareto frontiers, which outcome allows to understand some

design implications.

Chapter 6 focuses on the economic analysis of the investigated expander-based configu-

rations. Depending on the size the most convenient alternatives are identified. Sensitivity

analyses on natural gas feed, LNG and electricity prices are presented.

Chapter 7 shows the economic comparison of the three different liquefaction concepts, both

for small-scale and large-scale applications. Cascade and Mixed-Refrigerant systems mod-

elled by Lonardi are included in the comparison. Influence of natural gas composition on the

economic outcome is included in the assessment.

Chapter 8 summarises the main assumptions and limitations of this work.

Chapter 9 concludes the thesis, summarising the main findings and pinpointing possible

future developments.
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2 Background

This Chapter introduces the background information related to fundamental

natural gas properties, natural gas liquefaction process and developed LNG

production configurations. It represents the point of departure for this thesis

project, as it highlights the challenges and the opportunities for the development

of efficient LNG production processes. In light of this it gives an overview of the

context in which the present work is collocated.

2.1 Natural gas fundamentals

Among fossil fuels natural gas is the cleanest and the most efficient. Gas-fired electricity

generation is characterised by lower capital investment, lower CO2 emissions and higher

thermal efficiency relatively to other fossil fuels, such as oil and coal. Gas-fired generation

allows a greater flexibility in meeting peak demand, which can complement renewable energy

sources and overcome the related intermittence problems, leading to a higher renewable share

in the electricity mix [16].

Although the primary use of natural gas is as a fuel, it is also a source of hydrocarbons for the

petrochemical industry and a major source of elemental sulphur [17].

2.1.1 Natural gas resources

Gas resources are classified in conventional and unconventional [18]. The range of conven-

tional and unconventional hydrocarbons is depicted in Figure 2.1.

Conventional gas is typically "free" gas trapped in multiple porous zones in natural rock forma-

tions, i.e. carbonates, sandstones and siltstones. Conventional gas occurs in deep reservoirs

and can be associated with crude oil. In this case natural gas is defined as associated gas.

Conversely it is defined as non-associated gas if no crude oil is contained in the reservoir.
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Figure 2.1: Hydrocarbon range [18]

According to the International Energy Agency (IEA) [19], global total resources of conventional

natural gas could amount to 463 trillion cubic metres (tcm), representing more than a century

of production at current levels. Proven reserves1 amounted to 216 tcm at the end of 2014, guar-

anteeing more than 60 years of production at current levels. These are mainly concentrated in

a small number of countries and regions such as North America, Russia, Iran and Qatar.

Unconventional gas reservoirs include tight gas, shale gas, coal bed methane and gas hydrates.

Compared to conventional gas deposits they are generally lower in resource concentration

and more dispersed over larger areas. Unconventional gas is usually found in impermeable

rocks which cannot become a trap and form a conventional gas deposit, therefore hydraulic

fracturing is commonly required for gas recovery. IEA estimates that the unconventional

potentially recoverable gas resources could amount to 327 tcm, 20 % of which located in North

America [19].

An overview of the regional and global status of conventional gas proven reserves and of

potentially recoverable resources is given in Figure 2.2.

Natural gas represents the fastest increasing fossil energy resource demanded in the world.

Global annual demand in 2014 was estimated at 3500 billion cubic metres (bcm) and the

IEA Medium Term Gas Market Report predicts an average annual growth rate in natural gas

demand of 2 % from 2014 to 2020, confirming the trend observed in the decade up to 2014

(annual average growth rate of 2.3 %) [20].

1Reserve refers to the amount of known or proven gas resources which recovery is economically viable using
available technologies. On the contrary resource defines the amount of gas which is either proven but not
economically viable or based on geological research but not yet proven. Reserves are not included in the resources,
while total resources are the sum of the two [19].
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Figure 2.2: Cumulative production and proven reserves of conventional natural gas by region,
together with potentially recoverable volumes [19]

2.1.2 Natural gas composition

Natural gas is a mixture of hydrocarbons and non-hydrocarbon components and exists in

gaseous form under atmospheric conditions. It is mainly constituted by methane (CH4), which

accounts for 87 - 96 % by volume [21], but can also include significant quantities of ethane

(C2H6), propane (C3H8), butane (C4H10), pentane (C5H12) as well as traces of hexane (C6H14)

and heavier hydrocarbons. Many natural gases are also characterised by the presence of

nitrogen (N2), carbon dioxide (CO2), hydrogen sulphide (H2S) and other sulphur components

as carbonyl sulphide (COS) and carbon disulphide (CS2) [17].

Natural gases are commonly classified as either lean or rich according to their liquid content.

The liquid content of a natural gas mixture is given by the presence of ethane and heavier

hydrocarbons (C2+) and is usually measured in gallons of liquid recoverable per 1000 standard

cubic feet, the so-called GPM. If ethane is not regarded as a valuable liquid, the GPM can be

based on the presence of propane and heavier hydrocarbons (C3+). Lean natural gases have a

liquid content lower than 2.5 GPM, while very rich natural gases have a liquid content higher

than 5 GPM [22].
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2.1.3 Natural gas phase behaviour

Natural gas phase behaviour is a plot of pressure versus temperature determining whether

a natural gas stream at a given temperature and pressure consists of a single phase or two

phases, gaseous and liquid [23].

For a mixture like natural gas there are two degrees of freedom in the two-phase region. There-

fore in a pressure-temperature plot the bubble points and the dew points differ, leading to

the definition of a phase envelope composed by the bubble point and the dew point curves,

which meet at the critical point (Figure 2.3).

Two points of interest can be additionally identified: the cricondenbar and the criconden-

therm. The cricondenbar is the pressure above which the two phases cannot exist together

independently from the temperature. On the other hand the cricondentherm defines the tem-

perature level above which the two phases cannot exist together irrespective of the pressure.

Natural gas phase behaviour is a function of the composition of the gas mixture. In particular

it is strongly influenced by the presence of C6+ hydrocarbons, which leads to the increase of

the phase envelope.

Figure 2.3: Pressure-temperature phase behaviour for a multi-component mixture [23]
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2.1.4 Natural gas properties

Mokhatab et al. [17] and Bahadori [23] provide a comprehensive overview of natural gas

properties. The most relevant ones will be introduced and described in this Section.

Natural gas is a colourless and odourless gas. The boiling point of natural gas at atmospheric

pressure is -162◦C. When mixed with air, natural gas burns when present in concentrations

between 5 % and 15 % by volume. The stoichiometric air-fuel ratio is approximately 17.22 on a

mass basis.

Natural gas is lighter than air. Its density at Standard Temperature and Pressure (STP)3 ranges

between 0.7 and 0.9 kg/m3. Natural gas molecular weight varies between 17 and 20 kg/kmol

depending on its composition.

Gas compressibility factor

Natural gas is a real gas, hence its behaviour generally differs from the one of an ideal gas. The

ideal gas model is a satisfactory tool when dealing with gases at pressure that do not exceed 1

atm, with associated errors of 2 % - 3 %. For higher pressures the use of the ideal gas model

becomes unacceptable.

The ratio of the real gas volume to the ideal gas volume is defined as gas compressibility factor

Z . The gas compressibility factor is unitary for ideal gases and it represents a measure of the

deviation of the real gas from perfect behaviour. Knowing Z , calculation of pressure-volume-

temperature relationships can be performed employing the real gas Equation of State (EOS)

written as:

PV = nZ RT (2.1)

where V is the volume, n is the number of moles of gas and R is the universal gas constant.

2As reported by Wei et al. [21] this value refers to the stoichiometric air-fuel ratio of methane. However, being
methane the most abundant component in the natural gas mixture, physical and chemical properties of natural
gas are very similar to those of methane.

3STP conditions refer to 0◦C and 1 atm. On the contrary Normal Temperature and Pressure (NTP) conditions
refer to 20◦C and 1 atm.
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Higher and Lower Heating Value

From the thermodynamic theory, the heat of reaction is the associated enthalpy change when

both products and reactants are in specified conditions of 15◦C and 1 atm [22].

The heating value of a fuel is the amount of heat released by its combustion. According to the

reference status of the products two different heating values can be defined:

• Higher Heating Value (HHV) if the reaction products are returned to the reference

temperature of 15◦C, which implies that the latent heat of vaporization of water in the

reaction products4 is considered, as H2O leaves in the liquid phase. The Higher Heating

Value coincides with the heat of reaction for a combustion process changed in sign [24];

• Lower Heating Value (LHV) if the temperature of the combustion products is 150◦C,

which assumes that the latent heat of vaporization of water is not recovered, as H2O

leaves as vapour [25].

Therefore the difference between the two values is given by the latent heat of vaporization of

the produced water and by the sensible heat which is released when the products are brought

from 150◦C to the reference temperature of 15◦C.

LHV and HHV for natural gas are approximately 47 MJ/kg and 52 MJ/kg, respectively [25].

4When fuels containing hydrogen are burnt, water is produced.
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2.2 Liquefied Natural Gas

With the increasing demand for natural gas, LNG is expected to play an important role. In 2035

LNG is expected to have a share of 15 % in global natural gas consumption, with an annual

growth rate in LNG trade of 1.9 % [26].

LNG is an eco-friendly fuel [27]. The combustion of LNG for transportation and power gener-

ation allows to significantly reduce GHG emissions (70 % compared to coal and oil, mainly

because of its lower carbon-to-hydrogen ratio [21]). The reduction of Particulate Matter, SOx

and NOx is even more significant. PM and SOx emissions can be almost eliminated, while

nitrogen oxides emissions can be reduced by 80 % with respect to the combustion of other

substitute fossil fuels.

Considering the entire life cycle of LNG a possible drawback is given by methane leakages

that can occur during the phases of production, transportation and storage of natural gas [12].

These can negatively affect the environmental performance of gas systems, since methane has

a Global Warming Potential (GWP) of 25 (100-year time horizon) [28]. Dealing with marine

propulsion Bengtsson et al. [14] show that LNG presents a higher GWP than crude oil-based

alternatives if more than 2.5 % of the LNG used leaks during the life cycle. Besides, LNG

is assessed to perform better than HFO and MGO for all the considered impact categories,

namely acidification potential, eutrophication potential, photo-oxidant formation potential

and emission of particles.

The same authors show in [29] that the transition towards liquefied biogas as a marine fuel

does not necessarily imply a decrease in the environmental impact. The use of liquefied biogas

allows to significantly decrease the global warming impact from shipping, but at expense of

greater environmental impact in terms of acidification, eutrophication and primary energy

use.

LNG is produced by cooling natural gas down to temperatures between -159◦C and -162◦C

through a process known as liquefaction [30]. LNG main component is methane, which is

present in concentrations between 87 % and 99 % on a molar basis. Its composition includes

C2+ hydrocarbons, nitrogen and traces of sulphur and CO2 [31].

At -162◦C and atmospheric pressure LNG is a clear, odourless, non-toxic and non-corrosive

liquid, which density is approximately 0.4 - 0.5 kg/L. Therefore, if spilled on water, LNG floats

on top and vaporises quickly, eliminating the need for clean-up in the case of spilling on water

or land. In gaseous form, LNG burns mixed with air in concentrations between 5 % and 15 %

by volume, know as flammability interval.

The major advantage of natural gas liquefaction is the reduction of volume by a factor of 600

at standard conditions [26] and the related increase of fuel energy density, with 1 ton of LNG

carrying the energy equivalent of around 1500 cubic metres of natural gas [31]. Shipping LNG

is therefore an economic way to transport large quantities of natural gas over long distances,

overcoming the barriers which characterise natural gas transportation through pipelines and

increasing energy security of supply through the exploitation of remote gas fields.
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An example is the Norwegian LNG base-load plant located in Hammerfest called Snøhvit

[32]. It is the first European LNG production facility, with a yearly train capacity of 4.3 million

tonnes and with market outlets to the US and Spain [33].

2.2.1 Natural gas feed pretreatment

Before the liquefaction stage natural gas feed has to undergo a series of pretreatment processes

in order to eliminate all the impurities, including carbon dioxide, sulphur compounds, mer-

cury, heavier hydrocarbons and water ([30], [34]). The block flow diagram of the pretreatment

section is represented in Figure 2.4.

Mercury has to be removed because its presence could lead to the failure of downstream plant

equipment made in aluminium, such as brazed-aluminium heat exchangers.

As to the acid gas content, CO2 has to be removed from the feed gas to less than 50 ppmv to

prevent freezing and blockage in the downstream liquefaction unit. H2S is a toxic compound

and is extremely corrosive in presence of water. Typical specification for hydrogen sulphide

removal is 4 ppmv.

The presence of water is undesired as it reduces the heating value of natural gas and causes

freezing problems in the liquefaction facility.

Fractionation unit is needed when dealing with rich natural gas feeds. It allows to reduce

the content of heavy hydrocarbons (C5+), which would otherwise freeze, sending dry (i.e.

methane-rich) natural gas to the liquefaction facility.

If present in high concentrations in the natural gas, nitrogen has to be removed to meet LNG

specifications, usually below 1 % on a molar basis [35]. As nitrogen condensates at even lower

temperature than methane (-196◦C), its rejection can take place at the end of the liquefaction

process through flashing.

Figure 2.4: Gas to Liquefied Natural Gas block flow diagram [30]
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2.2.2 Natural gas liquefaction

Natural gas liquefaction is an energy intensive process, as high compression power is required

to reach the cryogenic temperatures needed to produce LNG. As an example, in the case

of Snøhvit Project by Statoil, the specific compressor consumption is 230 kWh per tonne

of LNG produced [36], corresponding to approximately 2 % of the gas energy content. It is

therefore essential to optimise the employed refrigeration process in order to reduce the power

consumption, thus the operating costs for the facility [37].

The cooling curve of natural gas is characterized by three zones, namely pre-cooling, liquefac-

tion and sub-cooling zone. Being natural gas a zeotropic mixture, it condensates at gliding

temperature, i.e. the liquefaction zone presents a slope in the temperature-heat plot. This is

highlighted in Figure 2.7.

From the thermodynamic theory a heat transfer across a finite temperature difference causes

irreversibilities that lead to the increase of power consumption. These irreversibilities grow

with the magnitude of the temperature difference and with the decreasing temperature level

below ambient conditions [38]. Therefore the most efficient liquefaction process is the one in

which the refrigerant can duplicate the shape of the natural gas cooling curve.

The downside is that a smaller temperature difference between the process gas and the refrig-

erant leads to a larger requirement in terms of heat exchange area, impacting the investment

costs for the liquefaction facility [37]. Finn et al. [39] show that the liquefaction process can

account up to 50 % of the total capital cost of the LNG project.

Consequently LNG process design is a trade-off between efficiency optimisation, i.e. reduction

of operating costs, and the decrease of capital costs through the reduction of the required heat

exchange area. The optimal trade-off depends on the size and function of the liquefaction

plant. Four categories can be identified, namely base-load, peak-shaving, small-scale and

offshore plants ([30], [39]).

• Base-load plants: these are large plants directly linked to a specific gas field exploitation.

The production capacity is typically larger than 3 Million Tonnes Per Annum (MTPA).

• Peak-shaving plants: these are small plants connected to a gas network. LNG is stored

as a buffer in periods of low gas demand and is vaporised when demand is high. The liq-

uefaction capacity is small (e.g. 200 tonnes per day), while the storage and vaporisation

capacity is large (e.g. 6000 tonnes per day).

• Small-scale plants: unlike peak-shaving plants, small-scale plants are connected to a

gas grid for the continuous production of LNG on a smaller scale. Liquefaction capacities

are usually up to 0.5 MTPA.

• Offshore plants: these are floating facilities capable of processing, liquefying and storing

natural gas. LNG Floating Production, Storage and Offloading (LNG FPSO) can be

applied to liquefy associated gas instead of flaring it or to exploit several small offshore

fields.
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Liquefaction processes can be classified into three main groups: cascade, Mixed-Refrigerant

(MR) and expander- or turbine-based processes [30].

Cascade process

The cascade solution aims at reducing the temperature difference between natural gas cooling

curve and refrigerant warming curve by using a series of refrigerants, usually three, in separate

loops. In each of the loops the refrigerant vaporises at constant temperature, being a pure

substance [37]. This determines the typical ladder shape of the refrigerant warming curve

(Figure 2.7).

An example of a cascade process is sketched in Figure 2.5. The pre-cooling cycle uses propane

as refrigerant, while ethylene (or ethane) is used for the condensation phase and methane

is employed for the sub-cooling zone. Each circuit normally has multi-stage expansion and

compression in order to operate at three different evaporation temperature levels [39]. After

the expansion each refrigerant is responsible for the cooling of both natural gas and all

refrigerant streams.

Figure 2.5: Example of a cascade process [37]

Cascade configurations require less power than any other liquefaction cycle. This is mainly due

to the lower refrigerant mass flow rate which is employed compared to other cycles. Moreover

it guarantees flexible operation as each refrigerant loop can be operated and controlled

separately. Compared to MR processes the temperature difference between the Composite

Curves is larger, therefore cascade cycle requires less heat exchange area.
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The main disadvantage of cascade cycles is the relatively high investment cost due to the

number of refrigeration circuits, each one requiring its own compressor and refrigerant storage.

Therefore economies of scale impose that cascade solutions are particularly suitable for very

high liquefaction capacities, for which the reduction in power consumption and heat exchange

surface area can balance the high capital cost of having multiple equipments.

Mixed-Refrigerant process

Mixed-Refrigerant process achieves the cooling of natural gas through the use of a carefully

selected mixture of nitrogen and hydrocarbons, which evaporates over a suitable temperature

range reproducing natural gas cooling curve. As an example the simplest Mixed-Refrigerant

process is sketched in Figure 2.6, known as PRICO cycle. PRICO cycle is a Single MR (SMR)

process. Dual MR (DMR) process uses two independent MR loops, with the heavier hydrocar-

bon mixture being responsible for the pre-cooling phase [37].

Compared to cascade cycles the smaller temperature difference between the CC’s leads to

nearly irreversible operation, increased thermodynamic efficiency, reduced power consump-

tion, thus the need for smaller machinery. However MR process usually has lower efficiency

than the cascade cycle, mainly due to the higher refrigerant volume flow and its associated

irreversibilities [39].

Figure 2.6: Process flowsheet of the Single Mixed-Refrigerant PRICO cycle [40]

The main advantages of MR cycles are the reduced number of equipments and their ability to

adjust the composition of the refrigerant mixture if natural gas composition varies. Neverthe-

less this translates into longer start-up time, which can represent an important drawback for

those applications requiring frequent start-up and shut-down [37].
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Figure 2.7 reports the refrigerant warming profile for the case of propane pre-cooled Mixed-

Refrigerant (C3-MR) process. As stated by Finn et al. [39] for larger MR plants it is cost-effective

to implement a pre-cooling cycle using propane. As a consequence, the refrigerant mixture is

composed solely of components lighter than propane, i.e. methane and ethane.

Due to its lower thermal efficiency, SMR process is normally suitable for small- and medium-

scale applications in which simplicity and low investment cost are decisive factors for the

economy of the liquefaction plant.

Figure 2.7: Cooling curve for natural gas (continuous thick line) and refrigerant warming
curves in the case of cascade process (continuous line) and of propane pre-cooled Mixed-
Refrigerant process (dotted line) [37]
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Expander-based process

The expander-based process works by compressing and expanding a fluid to generate the

required cooling effect. Figure 2.8 shows the sketch of the simplest expander-based cycle.

Refrigerant is usually nitrogen or methane. The use of nitrogen allows the sub-cooling of

natural gas to temperature levels which are low enough to eliminate the flashing. The CC’s

are usually characterised by a large temperature difference, typically at the warm end of the

natural gas cooling curve [37].

Figure 2.8: Flowsheet example for the expander-based process [40]

As reported by Finn et al. [39], the expansion-based cycle presents some advantages over

cascade and MR processes. It has a simple design and enables quick start-up and shut-

down, making it suitable for peak-shaving applications. The refrigerant is always in the

gaseous phase throughout the expansion cycle, hence problems associated with vapour-liquid

distribution in heat exchangers are avoided. Since two-phase distributors are not necessary,

the cold box is more compact compared to MR processes. Moreover, given the relatively wide

temperature difference with which heat exchangers operate, the process tolerates changes

in natural gas composition without requiring major changes on the refrigerant side. Finally

expander-based cycle is inherently safe as no hydrocarbon storage is required. Its features of

simplicity, compactness and safety makes this liquefaction concept attractive also for offshore

applications.

The major drawback of expander-based processes is the low efficiency which results in higher

power consumption compared to cascade and MR cycles. This is the reason why expander-

based liquefaction is not competitive for larger onshore applications, in which simplicity

cannot compensate for the higher degree of operating costs.
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As a consequence it is essential to decrease the power consumption associated with the

expansion-based configuration in order to improve its competitiveness. Several studies can

be found in the literature aiming at enhancing the efficiency of expander-based systems.

According to He et al. [41] it is beneficial to add a natural gas pre-cooling cycle using R410A

or propane. As a result, unit energy consumption can be reduced by 23 % and 20 %, respec-

tively. Moreover the use of carbon dioxide for the pre-cooling loop is assessed in [42] and is

considered valuable as it allows a reduction of the energy consumption while employing a

safe, non-toxic, more environmentally friendly and non-combustible refrigerant. Besides the

pre-cooling option, Khan et al. [43] show the thermodynamic superiority of a dual expander

over a single expander process. Adding a second expansion stage on the refrigerant side

improves the efficiency of the expansion-based cycle as it allows to reduce the gap between

Hot and Cold Composite Curves.

To sum up, Tables 2.1 and 2.2 are proposed by Finn et al. [39] and give an overview of the

features of the different liquefaction processes in terms of power consumption relative to the

cascade cycle and of design criteria.

Table 2.1: Comparison of liquefaction cycle efficiency [39]

Cycle Approximate power consumption
relative to cascade cycle

Cascade 1.00
Single-stage MR 1.25
MR with propane pre-cooling 1.15
Multi-stage MR 1.05
Single expander 2.00
Single expander with propane pre-cooling 1.70
Double expander 1.70

Table 2.2: Liquefaction cycle evaluation [39]

Criteria Cascade MR Expander

Efficiency High Moderate/High Low
Complexity High Moderate Low
Heat exchange area Low High Low
Flexibility High Moderate High
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2.2. Liquefied Natural Gas

2.2.3 Simulation of natural gas liquefaction cycles

Liquefaction of natural gas is a complex and dynamic thermal process and accuracy in the

simulation of LNG configurations is essential for the optimisation of such systems, in order to

reach the expected thermodynamic and economic efficiency.

Compression, expansion, throttling and heat transfer processes determine a change in the

thermal and physical properties of natural gas and refrigerants. The property method is a ther-

modynamic model which aim is to predict these changes as well as mixture phase equilibria.

Equations of State are the most well-known thermodynamic models. They relate the absolute

pressure to the temperature and the molar volume. They can also be formulated as a function

of the compressibility factor Z .

Different types of EOS exist ([33],[44]). Cubic Equations of State are applicable over wide

ranges of temperature and pressure and are computationally efficient. The term cubic refers

to the fact that the volume term is of the first, second and third order. These Equations of State

do not consider molecule associative effects, which makes them unsuitable when predicting

phase equilibria of natural gas mixtures containing polar components. Examples are Peng-

Robinson (PR) EOS and Soave-Redlich-Kwong (SRK) EOS.

A second category comprises the Equations of State of the virial family. They include Benedict-

Webb-Rubin-Starling (BWRS) EOS and Lee-Kesler-Plöcker (LKP) EOS. These Equations of State

are expressed as a power series of the molar volume in which the virial coefficients account

for the interactions between molecules and are usually derived empirically.

Molecular-based Equations of State are derived from perturbation theories to predict molecu-

lar interactions in terms of repulsion and associative effects, such as hydrogen bonding. The

most widely used EOS within this group is the Perturbated Chain with Statistical Association

Fluid Theory (PC-SAFT).

The last category includes empirical multi-parameter Equations of State. The reference EOS

for natural gas mixtures is the one developed by the Groupe Européen de Recherches Gazières

(GERG) in its 2008 version [45].

Peng-Robinson cubic EOS is the most common property method used in the literature [38]. It

can be expressed in terms of compressibility factor Z as shown in Equation 2.2 [42].

Z 3 − (1−B)Z 2 + (A−3B 2 −2B)Z − (AB −B 2 −B 3) = 0 (2.2)

A and B are the dimensionless attractive and repulsive parameters and are determined accord-

ing to Equations 2.3 and 2.4, in which a and b are constants related to the gas composition.

A = aP

(RT )2 (2.3)

B = bP

RT
(2.4)
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Chapter 2. Background

The equivalent formulation of Peng-Robinson EOS as a pressure-temperature-volume relation

is given in Equation 2.5 [42].

P = RT

V −b
− a

V (V +b)−b(V −b)
(2.5)

Yuan et al. [44] show the percentage deviations of experimental and calculated results com-

paring PR, SRK and LKP Equations of State. They conclude that PR equation is more accurate

for the prediction of enthalpy, isobaric specific heat capacity and vapour-liquid equilibrium.

On the contrary it performs poorly when evaluating gas density and dew point.

As highlighted in [33] and [44], GERG-2008 property package is the new reference EOS for nat-

ural gas mixtures consisting of up to 21 specific compounds. GERG-2008 is the most accurate

property method when predicting all the thermodynamic properties and phase equilibria

of natural gas mixtures over a wide interval of temperatures and pressures, as the predicted

values fall within the range of experimental uncertainties. For instance densities are predicted

with a deviation in the range of ±(0.06−0.4) %, while the uncertainty in the description of

isobaric heat capacity at saturated liquid conditions falls within the range of ±1 %.

Additionally Dauber et al. [33] compare the measured data of cooling load and power con-

sumption for the liquefaction plant Snøhvit with Aspen simulation results. The use of GERG-

2008 property method leads to deviations significantly lower than 1 % (-0.12 % and -0.65 %,

respectively).

The downside of using GERG-2008 model is given by the greater computational requirements.

Nevertheless this property method should be used in the field of gas liquefaction modelling

and optimisation given its greater accuracy.
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3 Methods

This Chapter presents the general methodology on which the thesis is built. It in-

troduces to the reader the tools used in the study. Moreover, following the thesis

outline, it describes how the steps of thermodynamic analysis, thermodynamic

optimisation and economic analysis are performed.

3.1 Modelling tool

Aspen Plus [46] is the tool which is employed to model and analyse the LNG production

configurations under investigation.

Aspen Plus is a commercial software specifically designed for the simulation of oil and gas

processes as well as manufacturing facilities of petrochemical, biochemical and polymer

industry. It presents a user-friendly interface in which the user can build the process flowsheet

by simply dragging the built-in component models and properly linking them using material

streams, which are displayed as arrows. Inputs to the model are the individual component

specifications and stream composition and physical properties in terms of mass flow, tem-

perature, pressure and vapour fraction. As to the stream composition, the main advantage

of Aspen Plus is the possibility to access a library with a wide range of pre-defined chemical

compounds.

The software works with a sequential approach, which means that a model is solved following

the direction of the material streams and by using as input to a component the calculated

output from the previous one.

In the modelling process two flowsheet options are extensively used, namely the transfer and

the design specification.

• Transfer: this option allows to transfer input information across the flowsheet. Changes

in transferred inputs are applied by the software to the streams or blocks where the

information is sent to. The possibility of implementing transfers allows to break the

cycle loop in the Aspen Plus flowsheet in order to have more computationally efficient

simulations.
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Chapter 3. Methods

• Design specification: this option allows to obtain a desired value for a flowsheet variable

by varying the value of a specific input. The range of allowable variation has to be

specified together with a tolerance on the result. Design specifications are typically

used for the achievement of Minimum Internal Temperature Approach (MITA) in heat

exchangers.

Additionally Aspen Plus gives the possibility to run sensitivity analyses. This model analysis

tool requires the definition of the flowsheet variables which have to be returned while varying

a specified input within a given interval.

3.1.1 Property methods

Among the different property methods which are comprised in Aspen Plus simulation software,

Peng-Robinson cubic EOS is selected, being computational efficient and the most common

property method used in the literature [38]. Therefore a consistent benchmark on simulation

results can be used.

As pointed out in Chapter 2 Peng-Robinson property method is not the most accurate, being

e.g. inferior to GERG-2008. Despite its superiority, GERG-2008 is not chosen as property

method for Aspen Plus simulations. The reason for this choice lies on the heavier computa-

tional burden and the instability encountered when using this property package. The influence

of the chosen property method on the simulation results is assessed and is shown in Appendix

A, where the simplest expander-based configuration for natural gas liquefaction is tested using

different Equations of State.

3.2 Thermodynamic analysis

The process of natural gas liquefaction requires a refrigeration cycle that removes energy from

the natural gas stream in terms of sensible and latent heat. The system works as a closed

refrigeration cycle with a net power input and heat rejection to the ambient. The thermal

load is distributed over the temperature range of NG flow from ambient to cryogenic LNG

temperature.

For a liquefaction system like the one depicted in Figure 3.1 the first law of thermodynamics

dictates the following balance:

ṁNG(hG −hL) = Q̇0 − (Ẇcomp −Ẇexp) (3.1)

where ṁNG and h are natural gas mass flow rate and specific enthalpy, respectively. Q̇0 is the

heat flow which is rejected to the ambient, while Ẇcomp −Ẇexp is the net power input to the

cycle, i.e. the compressor power minus the expander recoverable power. The expander term

Ẇexp is applicable only to those configurations which present a device which can produce

work, e.g. a turbo-expander. The term Ẇcomp−Ẇexp is considered the power input to the cycle

regardless of the compressor-expander system design.
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3.2. Thermodynamic analysis

Figure 3.1: Energy and mass flows in a cryogenic refrigeration cycle for NG liquefaction [47]

Alternative to the work-producing expansion is the Joule-Thomson expansion [47]. The

expansion process is in this case a throttling process through a flow resistance such as a valve.

From the thermodynamic viewpoint this is modelled as isenthalpic, therefore the term Ẇexp

in Equation 3.1 is zero.

3.2.1 Turbo-machinery modelling

Compression and work-producing expansion can be modelled through either the isentropic

efficiency or the polytropic efficiency [48]. The use of polytropic efficiency is particularly

indicated when dealing with compression and expansion processes with varying pressure

ratios, for which the isentropic efficiency would not be constant.

In the present study it is chosen to model compression processes with the polytropic efficiency

and expansion processes with the isentropic efficiency. The first choice originates from the

need to fairly compare different LNG production configurations operating with different

pressure ratios. As to the second choice, turbo-expanders can be modelled in Aspen Plus using

the isentropic efficiency model only.

A value of 82 % is chosen for the compressor polytropic efficiency. This is in accordance

with what was found in the literature. For example in [49] it is stated that current efficiency

of centrifugal compressors for liquefaction systems exceeds 80 %, while Finn claims that

compressor polytropic efficiency approaching 85 % can be expected [50]. As to the turbo-

expander, a value of 85 % is selected for the isentropic efficiency. Again this value is within

the current achievable range, with the highest isentropic efficiency approaching 87 - 90 %

([43],[50]).

No mechanical losses are considered, i.e. the mechanical efficiency of turbo-machinery is set

equal to 1.
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3.2.2 Liquefaction cycle performance evaluation

In order to evaluate the performance of a liquefaction cycle three different indicators can be

introduced.

A first possibility is the specific or unit power consumption w , that is the amount of power

consumed per unit of produced liquefied gas as in Equation 3.2:

w = Ẇcomp −Ẇexp

ṁLNG
(3.2)

A second possibility is to define the Coefficient of Performance (COP) of the liquefaction cycle,

being the ratio of natural gas cooling load to the net power input:

COP =
∣∣Q̇C

∣∣
Ẇcomp −Ẇexp

= ṁNG (hG −hL)

Ẇcomp −Ẇexp
(3.3)

From a thermodynamic viewpoint both specific power consumption and COP are unsatisfac-

tory as they do not consider the second law of thermodynamics. The rigorous performance

index is the Figure of Merit (FOM) of the liquefaction cycle, being a dimensionless parameter

defined by the combined first and second laws of thermodynamics [47].

From the second law the entropy balance of the liquefaction system can be written as in

Equation 3.4:

ṁNG(sG − sL)+ Ṡgen = Q̇0

T0
(3.4)

where s is the specific entropy of the NG stream and T0 is the reference temperature of the

ambient where Q̇0 is rejected, expressed in Kelvin. Ṡgen is the entropy generation rate, which

is zero in a reversible system, positive otherwise.

Isolating Q̇0 in Equation 3.1 and substituting in Equation 3.4 yields the following expression

for the net power input:

Ẇcomp −Ẇexp = ṁNG [(hL −hG)−T0 (sL − sG)]+T0Ṡgen (3.5)

From Equation 3.5 it can be inferred that the minimum amount of power input is the one that

characterises an ideal reversible system, for which the entropy generation term is equal to zero.

The FOM, also called exergetic efficiency ε, is therefore defined as the ratio of the minimum

power input to the actual power input for the liquefaction system:

ε= Ẇmin

Ẇcomp −Ẇexp
= (hL −hG)−T0 (sL − sG)(

Ẇcomp −Ẇexp
)

/ṁNG
(3.6)

28



3.2. Thermodynamic analysis

3.2.3 Exergy analysis

Exergy can be defined as the the amount of useful energy that can be extracted from a process

stream when brought to equilibrium with the surrounding ambient through a reversible

process [51]. It is a thermodynamic state function which depends solely on the stream enthalpy

and entropy. Unlike energy, exergy is not conserved because of system irreversibility.

In the case of flowsheet operations in steady state conditions kinetic and potential exergy

can be ignored. Similarly chemical exergy can be disregarded when analysing processes in

which no chemical reactions are involved, like in the present study where the stream chemical

composition is constant1. Under these hypotheses the exergy of a stream at temperature T

and pressure P is defined as shown in Equation 3.7, being the so-called physical exergy:

Ė = ṁe = ṁ
[(

h(T,P ) −h0
)−T0

(
s(T,P ) − s0

)]
(3.7)

In the present work reference ambient temperature T0 is set equal to 20◦C (293.15 K), while

reference ambient pressure is set equal to the atmospheric pressure.

When a stream is taken from one state to another through a reversible process, the reference

terms in Equation 3.7 cancel out and the exergy difference is therefore given as following:

∆Ė1−2 = ṁ∆e1−2 = ṁ
[
(h −T0s)state 2 − (h −T0s)state 1

]
(3.8)

In light of this the nominator in the definition of the exergetic efficiency ε in Equation 3.6

represents the specific exergy difference between the NG stream at inlet conditions and the

LNG stream at cryogenic conditions. Moreover the term T0Ṡgen in Equation 3.5 represents

the exergy destruction rate, that is the amount of exergy which is lost because of process

irreversibility. Equation 3.5 can therefore be reformulated as following:

ĖF = ĖP + ĖD (3.9)

Equation 3.9 can be regarded as a general exergy balance stating that the difference between

the exergy fuel or input and the exergy product is what is lost due to thermodynamic irre-

versibility.

In the present study the exergy destruction rate is calculated for all the process components by

applying an entropy balance as the one presented in Equation 3.4 and subsequently multiply-

ing the entropy generation term by the reference ambient temperature T0 expressed in Kelvin.

In order to visualise how the different components contribute to the total exergy destruction,

individual exergy destructions are divided by the exergy input to the cycle, that is the net

power consumption, Ẇcomp −Ẇexp
2.

1It must be underlined that in a liquefaction process a change in natural gas chemical composition could take
place after the flashing and separation of the liquid and gaseous phases. Therefore chemical exergy should be
considered. Nevertheless in the present study the boundaries for the exergy analysis are placed before the flashing.
Under these conditions, the chemical composition of natural gas is constant.

2In this thesis report there is no distinction between mechanical power and mechanical work, as all the
thermodynamic models are built for a unitary mass flow of feed natural gas.
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Following the definition given by Kotas [52] the individual component rational efficiency

defect δ is therefore defined as described in Equation 3.10.

δi =
ĖD,i

ĖF
= T0Ṡgen,i

Ẇcomp −Ẇexp
(3.10)

The sum of individual efficiency defects δi and the cycle FOM is unitary:

ε+∑
δi = 1 (3.11)

3.3 Thermodynamic optimisation

Optimisation is the mathematical process of finding the optimal value of an objective func-

tion (either the maximum or the minimum) by manipulating the decision variables within a

feasible region defined through constraints.

Optimisation algorithms can be classified in deterministic and stochastic or non-deterministic

[38]. Due to the high degree of non-linearity and non-continuity of thermodynamic systems,

the use of stochastic algorithms is preferable as it decreases the possibility of finding a local

optimum instead of the global one [53].

In the presents study a Genetic Algorithm (GA) is used for the optimisation process. Genetic

Algorithms were developed by John Holland in the 1960s as means of importing the mecha-

nisms of natural adaptation into numerical optimisation [54]. By analogy a solution represents

an individual in a population and a new generation of individuals is used in the following

iteration [55]. The new generation solution shares some of the features of the parent solutions

and through the constraint definition only apt generations are conserved by the algorithm.

The first set of the individual solution is generated randomly to cover the solution domain.

The optimiser which is employed in the present study is constituted by a set of Matlab [56]

scripts and is provided by Postdoc Tuong-Van Nguyen. Matlab is used as interface between the

optimiser and Aspen Plus and the optimisation procedure can be summarised as following:

1. all the relevant inputs are defined in Matlab and sent to Aspen Plus;

2. Aspen Plus model is run and the results are sent to Matlab;

3. the objective function is evaluated and a new generation of inputs is created accordingly.

The parameter which defines the magnitude of the randomly-generated initial solutions is

the initial population size in the Matlab code. The number of iterations is defined by the

evaluation parameter, that is the number of generations which are developed by the algorithm.

The higher the number of points and mutations is, the more accurate the results can be

expected. The drawback is the heavier computational effort. Therefore algorithm parameters

were decided depending on the complexity of the investigated model seeking for a compromise

between accuracy and computational burden.
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3.3. Thermodynamic optimisation

The constraint definition is handled by transforming the problem into an unconstrained one

but subjected to penalty functions. The role of the penalty functions is to deliberately assign

a value to the objective function such that the algorithm disregards the solution whenever

this implies the violation of thermodynamic limits (e.g. heat exchange feasibility) or technical

limits (e.g. presence of liquid droplets at the compressor inlet).

In this thesis report two optimisation problems are addressed, namely Single-Objective Opti-

misation (SOO) and Multi-Objective Optimisation (MOO).

A SOO deals with the finding of the objective function’s optimal value, therefore the solution

is unique. The goal of the Single-Objective Optimisations which are performed within this

project is the minimisation of net power input to the analysed liquefaction cycles. This is

equivalent to the maximisation of the cycle COP and FOM, as it can be inferred from the

relations presented in Section 3.2.2, once natural gas properties are kept constant.

A MOO consists of an optimisation problem in which several objective functions should be

optimised simultaneously. With respect to the present study two objectives are considered,

namely the minimisation of net power consumption and the minimisation of heat transfer

area. The two objectives are conflicting as a lowered power consumption can be achieved

when decreasing the temperature difference at the heat exchangers, thus resulting in an in-

crease of the heat exchange area. Therefore there is no unique solution but there exists a

potentially infinite set of Pareto-optimal solutions. A solution is called Pareto-optimal if "any

better-off for one objective results in a worse-off for the other one" [55]. The set of solutions can

be visualised in the form of a Pareto-optimal frontier (as in Figure 3.2).
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Figure 3.2: Example of Pareto-optimal frontier [55]
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3.4 Economic analysis

Discounted Cash Flow (DCF) analysis is applied in order to evaluate the economy of LNG

production configurations [57]. By using this method the time value of money is taken into

account through the discounting of future cash flows which therefore have a lower value than

present ones.

The adopted approach for the Discounted Cash Flow analysis falls within the private economic

perspective. A discount rate of 8 % is assumed. It reflects the cost of capital and it includes

inflation and industry-specific risks.

For a natural gas liquefaction facility the main economic elements are the following:

• Total Capital Investment (TCI), that is the initial investment comprising the cost of

equipment and the ancillary cost for plant installation. It is assumed to occur at once

before the plant can be operated (year 0);

• Operation and Maintenance cost (O&M) including electricity cost, feed natural gas

cost, refrigerant cost and maintenance cost. It is considered as a negative cash flow

occurring at the end of every year of operation;

• Revenue from LNG sales. It is handled as a positive cash flow occurring at the end of

every year of operation.

For the sake of simplicity tax calculation and financial considerations are disregarded.

3.4.1 Economic performance indicators

The economic performance indicators used to compare different LNG production configura-

tions are three, namely Unitary Profit (UP), Net Present Value (NPV) and the Adjusted Pay-Back

Time (APBT).

1. Unitary Profit is defined as the profit per mass unit of produced LNG. It is calculated

on an yearly basis as the ratio of the annual profit to the yearly LNG production.

The analysis on a yearly basis is possible since all the annual cash flows are the same, i.e.

no changes in plant operation are considered which could modify the power require-

ment and LNG production rate.

The initial investment is annualised using the so-called PMT factor defined as following:

PMT = i

1− (1+ i )−LT
(3.12)

The annualised investment cost is then calculated as the TCI times the PMT factor. This

is summed to the yearly O&M cost to give the total annual cost. Yearly profit is finally

computed as the yearly revenue minus the total annual cost.

Discount rate i is 8 %, while a lifetime (LT) of 40 years is assumed for LNG production

plants according to the Danish Maritime Authority [10].
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2. Net Present Value is calculated as the sum of the Discounted Cash Flows over the LNG

project lifetime minus the initial investment.

NPV =−TCI+
LT∑

n=1

CFn

(1+ i )n (3.13)

A project yielding a negative NPV should be rejected as economically infeasible. When

comparing different projects with positive NPV, the one with the highest NPV should be

preferred.

3. Adjusted Pay-Back Time is calculated considering the Cumulative Discounted Cash

Flow (CDCF), meaning that the Discounted Cash Flows should be summed from the

beginning of the project until the respective year. As soon as this cumulative sum

becomes zero, the investment is earned back.

APBT is calculated as following:

APBT = nCDCF− − CDCF−

CDCF+−CDCF− (3.14)

where nCDCF− is the last year characterised by a negative Cumulative Discounted Cash

Flow, CDCF− is the last negative Cumulative Discounted Cash Flow and CDCF+ is the

first positive.

It should be noted that calculating the Adjusted Pay-Back Time as in Equation 3.14

introduces an approximation since the Cumulative Discounted Cash Flows are not

linear. This is anyhow accepted as it allows to take into consideration the time value of

money also when giving an estimation of the time required to return from the initial

investment.
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4 Thermodynamic modelling of
expander-based LNG configurations

The first phase of this thesis project deals with the development of thermo-

dynamic models for the investigated expander-based configurations. Ther-

modynamic modelling represents the basis for all the subsequent steps and

analyses, e.g. thermodynamic optimisation and economic evaluation. This

Chapter presents the developed models and gives an overview of their features

with the aim to show how the system performance can be improved.

4.1 Introduction

In the attempt to make expander-based liquefaction cycles more efficient several configura-

tions have been developed and extensively analysed in the literature. For the purpose of this

thesis report they can be grouped into four main categories as following.

• Single-expander configurations ([26], [43], [58], [59]): nitrogen expansion process

takes place in one single stage, whereas the compression process can be designed in one

single stage or realising an inter-cooled multi-stage compression with the possibility of

coupling a booster compressor with the expander. These configurations represent the

simplest expander-based alternatives and are the least efficient given the wide range

between the temperature profiles of natural gas and refrigerant.

• Pre-cooling configurations ([41], [42]): with respect to the single-expander cycle layout

a pre-cooling step is added. Different refrigerants can be employed, e.g. R410A, propane

(R290) and CO2 (R744). Substantial reductions in unit energy consumption are achieved

in the literature, reaching 20 % - 23 %. He et al. identify R410A as the most effective

pre-cooling refrigerant.

• Dual-expander configurations ([43], [58], [60]): the expansion process takes place in

two stages. Expanders can be arranged in several designs, e.g. being in parallel with a

different or the same pressure ratio or being connected in series.

35



Chapter 4. Thermodynamic modelling of expander-based LNG configurations

• Dual-refrigerant configurations ([58], [61], [62]): two single-expander cycles are im-

plemented employing different refrigerants, i.e. nitrogen and methane, with the latter

being claimed to be more efficient than the former for the pre-cooling and liquefaction

phases. Furthermore natural gas itself can be used as refrigerant. The so-called Niche

technology by Statoil [63] is based on this concept.

The developed models are presented and analysed according to this categorisation. The aim

of the modelling stage is to thoroughly understand the behaviour of expander-based cycles, to

quantify the main thermodynamic parameters and to investigate how the thermodynamic

efficiency can be improved. In the perspective of the optimisation problem, this Chapter

provides the bases for setting a sensible research space.

4.2 Methodology and relevant assumptions

The modelling process is performed using Aspen Plus simulation software. The adopted

approach comprises the three following elements:

1. axial thermal equilibrium is assumed for all the heat exchange devices, i.e. hot streams

are assumed to have the same temperature along the heat exchange process. As a

consequence outlet hot streams have the same temperature;

2. the Minimum Internal Temperature Approach (MITA) is required to be 3 K for all the

heat exchangers;

3. refrigerant always has to be in the gaseous phase, i.e. refrigerant vapour fraction always

has to be unitary or "above" (super-heated vapour conditions).

All heat exchange processes are modelled as isobaric, i.e. pressure drops are neglected. Heat

losses and gains are disregarded, as well as longitudinal heat conduction. Heat exchange

process is simulated in Aspen through a discretisation of the heat exchangers into zones in

which properties are assumed constant, according to a lumped approach per zone [64].

Natural gas enters the liquefaction cycle at 20◦C and at 33 bar and is cooled down to -150◦C.

Its pressure is later reduced to 1.7 bar through a throttling valve. Subsequently an adiabatic

flash allows to separate the LNG from off-gas. All the models are developed for a mass flow

rate of 1 kg/s on natural gas side.

Natural gas feed composition is suggested by Kosan Crisplant A/S and is reported in Table 4.1

in terms of molar fractions. It corresponds to the Danish grid natural gas composition after

CO2 removal.

Table 4.1: Base case for natural gas molar composition as suggested by Kosan Crisplant A/S

CH4 C2H6 C3H8 n-C4H10 i-C4H10 n-C5H12 i-C5H12 N2

0.903 0.060 0.024 0.006 0.004 0.000 0.000 0.003
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4.2.1 Model inputs and decision variables

In the design process a series of decision variables has to be set. For an expander-based lique-

faction cycle the usual decision variables comprise the cycle pressure levels, the refrigerant’s

(or refrigerants’) flow rate and the intermediate temperature levels.

Temperature approaches at the heat exchangers are achieved using Aspen Plus design specifi-

cations. In an iterative process the specified model variable is changed within a given interval

until the 3 K-approach is obtained. This modelling procedure makes the involved variable a

model output.

For each of the presented models, inputs will be stated as well as the decision variables gov-

erning the temperature approaches. Input values are generally set according to the relevant

literature mentioned above.

4.2.2 UA-value calculation

The UA-values of two-stream and Multiple-Stream Heat Exchangers are directly given as

output from Aspen Plus simulation. The same applies for the Logarithmic Mean Temperature

Difference (LMTD), obtained as the ratio of exchanger heat duty to the UA-value. LMTD is

an average based on the discretisation of the heat exchange device into zones, as mentioned

above.

Conversely for coolers, i.e. for those heat exchange blocks with one single heat transfer stream,

the UA-value has to be post-computed given specific assumptions on the secondary side fluid.

In the present work it is assumed that cooling water is employed as secondary side fluid for

all the coolers. Given the fact that the refrigerant temperature at cooler outlets is always set

equal to 20◦C, water is set to enter the coolers at 10◦C. It is also assumed that water outlet

temperature is 40◦C. Therefore the Logarithmic Mean Temperature Difference is calculated as

following:

LMTD =
(
T in

ref −40
)− (

T out
ref −10

)
ln

(
T in

ref−40

T out
ref −10

) (4.1)

If the refrigerant temperature at the cooler inlet is lower or equal than 50◦C, a LMTD of 10 K is

applied.

The cooler UA-value is finally calculated as the ratio between heat load and LMTD.

U A =
∣∣Q̇∣∣

LMTD
(4.2)
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4.3 Natural gas liquefaction process

Figure 4.1 illustrates the Pressure-Temperature phase envelope for the considered natural gas

feed composition together with the overall liquefaction process, divided in isobaric cooling

and isenthalpic expansion through the throttling valve.

Figure 4.1: P-T diagram of the natural gas liquefaction process together with the natural gas
phase envelope obtained from Aspen Plus using Peng-Robinson EOS

As aforementioned natural gas exits the cold box at -150◦C and at 33 bar. After the flashing a

two-phase mixture is generated characterised by a mass vapour fraction of 3.9 %. After the

separation process LNG mass flow rate results 0.964 kg/s, hence the liquefaction rate is 96.4 %.

LNG composition is reported in Table 4.2 in terms of molar fractions.

Natural gas total cooling load results equal to 793.3 kJ per kg of NG feed, of which the latent

fraction amounts to 436.9 kJ/kg. Dew point is at -32.8◦C, while bubble point is at -89.1◦C.

Table 4.2: Molar composition of the output Liquefied Natural Gas

CH4 C2H6 C3H8 n-C4H10 i-C4H10 n-C5H12 i-C5H12 N2

0.900 0.063 0.025 0.006 0.004 0.000 0.000 0.002
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4.4 Single-expander configurations

4.4.1 Single compression stage

The single-expander configuration with one compression stage is sketched in Figure 4.2.

Refrigerant consists of pure nitrogen and enters the cold box at 20◦C and 120 bar (state point

7). The cooling effect is generated through the expansion process of the refrigerant stream.

Expander discharge pressure is fixed at 10 bar. Cold nitrogen (state point 9) cools down the

natural gas feed at the two-stream Heat Exchanger (HEX 2) and the natural gas feed and the

hot nitrogen stream in the Multiple-Stream Heat Exchanger (MHEX 1).

Figure 4.2: Process flowsheet of the single-expander configuration with one compression stage

The temperature approach at the Multiple-Stream Heat Exchanger is controlled by the refrig-

erant mass flow rate, whereas the approach at the two-stream Heat Exchanger is controlled by

the expander inlet temperature.

Figure 4.3 shows refrigerant thermodynamic state points in a Temperature-Entropy diagram1

together with the values of temperature, pressure and specific enthalpy listed on the right.

Results show that the necessary N2 flow rate is equal to 7.48 kg/s. Correspondingly com-

pression and expansion power are 3130 kW and 635 kW, respectively. Total heat duty results

equal to 1402 kW (769 kW at the MHEX and 633 kW at the two-stream HEX). The UA-value is

59.9 kW/K for the MHEX and 29.2 kW/K for the HEX. The calculated UA-value for the cooler

amounts to 3.3 kW/K giving an overall heat network conductance of 91.4 kW/K.

Table 4.3 summarises the simulation results and reports the performance indicators of the

liquefaction cycle, namely COP, unit energy consumption and Figure of Merit. Moreover Figure

4.4 depicts the Composite Curves for the liquefaction cycle. Exchanged heat flow is reported

on the x axis as a percentage of the total.

1The software EES [65] is used to draw refrigerants’ cycles. For the sake of consistency and only for graphical
representations the listed specific enthalpies are the ones given by EES. They differ from the values given by Aspen
Plus due to differences in thermodynamic references. Values of heat, power and exergy flows are always calculated
using Aspen Plus specific enthalpies and entropies. The reader should be aware that small deviations in ∆h and ∆s
(lower than 1 %) are encountered when comparing the values provided by the two tools.
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T P h

[◦C] [bar] [kJ/kg]

7 20.0 120 280.4

8 -41.5 120 199.6

9 -153.0 10 111.1

10 -78.9 10 196.3

11 17.0 10 298.8

12 407.5 120 717.7

Figure 4.3: Representation of the T-s refrigerant cycle. Values of temperature, pressure and
specific enthalpy are listed on the right

Table 4.3: Main results and performance indicators for the single-expander cycle with one
compression stage

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

2495 91.4 0.318 2588 17.04

Figure 4.4: Hot and Cold Composite Curves for the single-expansion cycle with one compres-
sion stage

The temperature profiles show that the pinch point is activated at the cold box ends. More

specifically the 3 K-approach is found at the cold end of the HEX and at the hot end of the

MHEX. N2 temperature at the expander inlet is -41.5◦C. For the first heat exchange section

(feed NG from 20◦C to -41.5◦C) LMTD is 13.1 K, while for the second section LMTD is 21.7 K.
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4.4.2 Two compression stages

The single-expansion cycle design can be improved by adding a second compression stage

in the refrigerant loop leading to an inter-cooled two-stage compression. Two possibilities

are investigated. In the first, Low-Pressure (LP) compressor is not mechanically coupled with

the expander, therefore its discharge pressure is a model variable. Conversely the second

alternative considers the mechanical coupling between LP compressor and the expander, thus

the intermediate pressure level is constrained. Mechanical coupling is advantageous as no

driving equipment for the Low-Pressure compressor is needed.

The first two-stage compression cycle design is sketched in Figure 4.5. The same condi-

tions are applied on the refrigerant side in terms of high and low pressure level and of cold box

inlet temperature. Approaches at the MHEX and at the HEX are controlled by the same model

variables as for the previous case.

Figure 4.5: Process flowsheet of the single-expander configuration with two compression
stages without mechanical coupling between LP compressor and expander

When no mechanical coupling is implemented, an optimal value for the intermediate pressure

level can be found given the trade-off between Low-Pressure and High-Pressure (HP) compres-

sor power consumption. This trade-off is highlighted in Figure 4.6. The optimal intermediate

pressure level results equal to 35.7 bar and is therefore implemented in the model. This value

is close to the geometric mean of high and low pressure levels, which is a frequently applied

approximation for the optimum intermediate pressure in two-stage compression systems

[66]. As a result Figure 4.7 shows the refrigerant thermodynamic state points in a Temperature-

Entropy diagram together with the corresponding values of temperature, pressure and specific

enthalpy.

Compression power consumption is 1260 kW for the LP compressor and 1210 kW for the HP

compressor. Expander power production is 635 kW. With respect to the single-expansion cycle

with one compression stage no differences are found in the heat exchange process. On the

contrary heat rejected at the coolers is significantly lower than in the single-compression case

(2628 kW against 3288 kW) due to the lower refrigerant temperature at compressor outlets.

Calculated UA-values are 26.3 kW/K for the first cooler and 28.1 kW/K for the second. Total

heat network conductance results equal to 142.5 kW/K.
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Figure 4.6: Trade-off between Low-Pressure and High-Pressure compressor power consump-
tion

T P h

[◦C] [bar] [kJ/kg]

7 20.0 120 280.4

8 -41.5 120 199.6

9 -153.0 10 111.1

10 -78.9 10 196.3

11 17.0 10 298.8

12 178.6 35.7 467.4

13 20.0 35.7 296.3

14 173.9 120 458.4

Figure 4.7: Representation of the T-s refrigerant cycle. Values of temperature, pressure and
specific enthalpy are listed on the right. The dotted line in the T-s diagram refers to the
refrigerant cycle in the single-compression case and shows how the net work input to the cycle
is reduced by introducing an inter-cooled two-stage compression process

The two-stage compression cycle shows a better performance compared to the single-expander

configuration with one compression stage. Net power consumption is 1835 kW. Correspond-

ingly the cycle FOM is 23.17 %. This significant improvement is due to the inter-cooled

two-stage compression which allows to reduce the new work input to the cycle, bringing

the adiabatic compression closer to an isothermal one. This effect can be spotted in the T-s

diagram of Figure 4.7 by comparing the present cycle with the single-compression one (black

dotted line).
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The second two-stage compression alternative is characterised by the mechanical coupling

between the expander and LP compressor. This is depicted in Figure 4.8. The intermediate

pressure level is no more a model variable but is instead calculated through a design speci-

fication imposing that the absolute values of expander and LP compressor power coincide.

Figure 4.8: Process flowsheet of the single-expander configuration with two compression
stages with mechanical coupling of LP compressor and expander

The intermediate pressure level results equal to 20.4 bar. Correspondingly the T-s transforma-

tions on nitrogen side are depicted in Figure 4.9.

T P h

[◦C] [bar] [kJ/kg]

7 20.0 120 280.4

8 -41.5 120 199.6

9 -153.0 10 111.1

10 -78.9 10 196.3

11 17.0 10 298.8

12 99.0 20.4 383.9

13 20.0 20.4 299.6

14 268.4 120 563.2

Figure 4.9: Representation of the T-s refrigerant cycle. Values of temperature, pressure and
specific enthalpy are listed on the right. The dotted lines refer to the one-stage compression
cycle (black) and two-stage compression cycle without mechanical coupling (red)

Given the lower intermediate pressure level compared to the previous case, heat rejected at

the first cooler is lower (633 kW against 1286 kW), while heat rejected at the second cooler is

higher (2131 kW compared to 1342 kW). The total heat rejection increases being 2764 kW. The

first cooler UA-value results 22.9 kW/K while the UA-value for the second cooler is 30.5 kW/K.
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Once again the design of the compression process does not affect the liquefaction part of

the cycle. The temperature profiles are unaltered as well as the refrigerant mass flow rate,

UA-values and LMTD’s at the cold box.

Table 4.4 reports the comparison between the two-stage compression cycles. It can be seen

that net power consumption for the case with mechanical coupling is slightly higher compared

to the case with no mechanical coupling. This is expected as the constraint on Low-Pressure

compressor power forces the intermediate pressure level to be sub-optimal.

Table 4.4: Main results and performance indicators for the single-expander cycle with two
compression stages in the cases of no mechanical coupling and with mechanical coupling

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

No mechanical coupling 1835 142.5 0.432 1904 23.17
With mechanical coupling 1970 141.5 0.403 2043 21.59

4.4.3 Sensitivity analyses

A series of sensitivity analyses is performed on the single-expander configuration with one

compression stage to assess how input parameters affect the system performance. Investigated

inputs are NG feed temperature, pressure and composition and turbo-machinery efficiency.

The main outcomes are summarised in this Section. The interested reader can find the detailed

results as well as the specific approaches in Appendix B.

• Natural gas feed temperature: net power consumption is found to be decreasing as the

feed temperature decreases. Moreover results show that the temperature approach can

be achieved at both ends of the cold box for feed temperatures below 24◦C. Above this

threshold there has to be a simultaneous change in nitrogen flow rate and cold box inlet

temperature.

• Natural gas feed pressure: net power consumption decreases as the feed pressure

increases. Conversely Figure of Merit and liquefaction rate are negatively affected, the

former due to a larger mean temperature difference at the cold box.

• Natural gas feed composition: cooling load and net power consumption are found to

increase as the methane fraction in the natural gas mixture increases. The minimum

cooling load and power consumption are recorded for a mixture rich in nitrogen. Never-

theless unit energy consumption is large due to the considerably lower liquefaction rate,

as most of the nitrogen content is flashed.

• Turbo-machinery efficiency: results show that it is more beneficial to improve the

expander as the performance of the expansion process does not affect solely the amount

of recoverable work, but also compressor power consumption through the influence on

the required refrigerant flow rate.
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4.5 Pre-cooling configurations

The single-expander cycle with pre-cooling is depicted in Figure 4.10. With respect to the

single-expander case a pre-cooling cycle is added before the cold box. This additional cycle is

a standard single-stage refrigerating cycle with the aim of pre-cooling nitrogen and the natural

gas feed.

Figure 4.10: Process flowsheet of the single-expander configuration with pre-cooling cycle

For the pre-cooling cycle four different refrigerants are considered, namely R410A, propane

and CO2, the latter both in a sub-critical and in a super-critical cycle. R410A has to be defined

in Aspen Plus as a mixture composed for half by CH2F2 and for the other half by CHF2CF3 on

a molar basis.

In all these cases refrigerant stream enters the throttling valve at 20◦C and the refrigerant high

pressure level is set so that no sub-cooling is present, i.e. the vapour fraction at condenser

outlet is 0. This design choice results in the following high pressure levels to be implemented

in the Aspen models:

• R410A: 13.98 bar

• Propane: 8.37 bar

• CO2: 57.35 bar

For the super-critical CO2 case a high pressure level of 80 bar is assumed.

Pre-cooling temperature, i.e. the nitrogen and NG feed temperature at evaporator outlet, is set

equal to -20◦C. As to the nitrogen loop, high pressure level is 120 bar while expander discharge

pressure is 10 bar.

Concerning the total UA-value calculation, the condenser (or gas cooler in the super-critical

CO2 case) is treated as a cooler having water as secondary-side heat exchange fluid.

The following design specifications are applied in order to achieve the 3 K-MITA in all the heat

exchangers:
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• evaporator: the cold-end approach is governed by the refrigerant low pressure, i.e. by

the outlet pressure of the throttling valve, whereas the hot-end approach is governed

by the refrigerant mass flow rate. This condition implicitly defines the super-heating

temperature difference at the evaporator;

• MHEX 1: as for the previously presented models the approach is achieved by varying

nitrogen mass flow rate;

• HEX 2: again the approach is imposed by varying nitrogen temperature at the expander

inlet.

Once the pre-cooling temperature is fixed, no difference is recorded in the nitrogen cycle

when varying the type of refrigerant used in the pre-cooling phase. In particular nitrogen mass

flow rate results 6.05 kg/s and its temperature at the expander inlet is -41.5◦C. Compression

power is 2185 kW while expander power is 515 kW. The cold box heat duty amounts to 878 kW,

of which 245 kW at the Multiple-Stream Heat Exchanger.

As a consequence the overall liquefaction cycle performance depends on the performance

of the pre-cooling cycle. Table 4.5 reports the comparison between the different pre-cooling

cycles in terms of refrigerant mass flow rate, low pressure level, power consumption and

COP2. Furthermore Table 4.6 reports the value of net power consumption and heat network

conductance for the four liquefaction cycles and the corresponding performance indicators.

Table 4.5: Comparison of pre-cooling cycles in terms of refrigerant mass flow rate, low pressure
level, evaporator cooling load, power consumption and COP

ṁref Plow Q̇ev ẆPC COPPC

[kg/s] [bar] [kW] [kW] [-]

R410A 2.3 3.5 409 112 3.65
Propane 1.1 1.1 409 104 3.91
Sub-critical CO2 1.9 17.6 409 157 2.60
Super-critical CO2 1.8 17.6 409 197 2.07

Table 4.6: Comparison of liquefaction cycles in terms of net power consumption, total heat
network conductance, COP, unit energy consumption and Figure of Merit

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

R410A 1783 153.2 0.445 1849 23.85
Propane 1775 156.1 0.447 1841 23.96
Sub-critical CO2 1828 146.7 0.434 1896 23.26
Super-critical CO2 1868 144.2 0.425 1938 22.76

2COPPC is defined as the ratio of the evaporator cooling effect to the pre-cooling cycle power consumption.
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Propane pre-cooling results to be the most effective alternative with a COP of 3.91. Corre-

spondingly the Figure of Merit of the liquefaction cycle reaches almost 24 %. Detailed results

in terms of refrigerants’ thermodynamic state points (Figures 4.11 and 4.12) and Composite

Curves (Figure 4.13) are presented below only for this case.

T P h

[◦C] [bar] [kJ/kg]

15 20.0 8.37 252

16 -23.0 2.19 252

17 17.0 2.19 613.6

18 76.1 8.37 706.7

Figure 4.11: Representation of the propane pre-cooling cycle in the log P-h diagram. Values of
temperature, pressure and specific enthalpy are listed on the right

T P h

[◦C] [bar] [kJ/kg]

8 20.0 120 280.4

9 -20.0 120 229.2

10 -41.5 120 199.6

11 -153.0 10 111.1

12 -60.6 10 216.1

13 -23.0 10 256.4

14 317.5 120 617.6

Figure 4.12: Representation of the nitrogen cycle in the T-s diagram. Values of temperature,
pressure and specific enthalpy are listed on the right

Figure 4.13 depicts the effect of adding a pre-cooling stage on the shape of the Composite

Curves. The type of refrigerant which is used in the pre-cooling cycle influences solely the

Cold Composite Curve in the evaporator through the value of mass flow to achieve the pinch

point at the evaporator hot end.
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Figure 4.13: Hot and Cold Composite Curves for the single-expansion cycle with propane
pre-cooling

In the propane case, the evaporator UA-value is 31.3 kW/K (average LMTD of 13 K) while

the UA-values for the MHEX and the HEX are 29.1 kW/K and 45 kW/K, respectively (average

LMTD’s of 8.4 K and 14.1 K, respectively).

4.5.1 Sensitivity analyses

The influence of two model inputs are investigated, that are the pre-cooling temperature and

the presence of sub-cooling in the condenser (this only for the sub-critical alternatives).

Sensitivity on pre-cooling temperature

The effect of pre-cooling temperature is assessed implementing the same design specifications

at the heat exchangers as the ones previously presented. The base case for the pre-cooling

temperature is -20◦C and it is changed to 0◦C and to -40◦C. Results are presented only for the

propane case. However, changes in the pre-cooling temperature affect the thermodynamic

cycle in the same way regardless of the working fluid used for the pre-cooling phase.

When pre-cooling temperature is varied, the propane cycle changes in terms of refrigerant

flow rate and low pressure to respect the approaches at the evaporator. The effect on the low

pressure level of the pre-cooling cycle is visible in the log P-h diagram of Figure 4.14.

Table 4.7 reports the values of propane and nitrogen mass flow rate, together with the low

pressure level in the pre-cooling cycle, pre-cooling compressor power consumption and net

power consumption for the whole liquefaction cycle. Moreover Table 4.8 presents the values

for the pre-cooling cycle COP and the nitrogen cycle COP3, together with the overall COP and

FOM.

3COPN2 is calculated as the ratio of natural gas cooling load at the MHEX and at the HEX to the net power
consumption of the nitrogen cycle.
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Figure 4.14: Log P-h diagram of the propane pre-cooling cycles when varying pre-cooling
temperature

Table 4.7: Values of nitrogen and propane mass flow rate, low pressure level and power
consumption for the pre-cooling cycle and net power consumption for the whole liquefaction
cycle when varying pre-cooling temperature

TPC ṁN2 ṁref Plow ẆPC Ẇnet

[◦C] [kg/s] [kg/s] [bar] [kW] [kW]

0 6.8 0.6 4.32 25.8 2090
-20 6.1 1.1 2.19 104.3 1775
-40 5.4 1.6 0.98 254.7 1596

Table 4.8: COP of pre-cooling and nitrogen cycles together with COP and FOM for the whole
liquefaction cycle when varying pre-cooling temperature

TPC COPPC COPN2 COP FOM
[◦C] [-] [-] [-] [%]

0 8.49 0.36 0.38 20.35
-20 3.91 0.42 0.45 23.96
-40 2.28 0.48 0.50 26.64

From Table 4.7 it can be observed that nitrogen mass flow rate increases as pre-cooling

temperature increases, due to the higher cooling load which has to be provided by the nitrogen

cycle. Correspondingly propane mass flow rate in the pre-cooling cycle decreases. This is the

results of two contributions: on one side the decrease of the evaporator load, on the other the

increase of evaporator inlet quality connected with the higher low pressure level.
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Propane low pressure is found to be increasing as the pre-cooling temperature increases. It

has to be remarked that this pressure is the propane saturation pressure at a temperature

which is set to be 3 K lower than the pre-cooling temperature, i.e. -3◦C, -23◦C and -43◦C.

As seen from Table 4.8 it is beneficial to decrease the pre-cooling temperature as much as

-40◦C, in other words it is beneficial that the pre-cooling cycle provides a larger share of

the total cooling load. The reason for this can be spotted by comparing the Coefficients of

Performance of propane and nitrogen cycles, with the former being more efficient than the

latter. It could also be argued that a pre-cooling temperature as low as -40◦C may not be

desirable for a propane pre-cooled system as the saturation pressure of propane at -43◦C is

below atmospheric level (0.98 bar as in Table 4.7).

In conclusion Figure 4.15 depicts the Composite Curves for a pre-cooling temperature of 0◦C

(on the left) and -40◦C (on the right). When the pre-cooling temperature is -40◦C, the approach

at the two-stream HEX is no more found at the cold end but is internal.

Figure 4.15: Composite Curves in the case of 0◦C (on the left) and -40◦C (on the right) pre-
cooling temperature

Sensitivity on condenser sub-cooling

The effect of introducing sub-cooling in the condenser is investigated. Again the propane

pre-cooling cycle is considered, however results are valid for the three sub-critical alternatives.

A sub-cooling temperature difference of 5 K is applied. Pre-cooling temperature is kept fixed

at -20◦C.

The refrigerant is required to enter the throttling valve at 20◦C, therefore the high pressure

level has to increase in order to implement a 5 K-sub-cooling after the condenser compared to

the situation with no sub-cooling. In the case of propane the high pressure has to be increased

to 9.53 bar.

Due to the higher pressure ratio in the pre-cooling cycle, the compression power is expected

to increase. On the other hand, the presence of sub-cooling causes the evaporator inlet quality

to decrease, hence a reduction in refrigerant mass flow rate occurs, which could positively

compensate the increase in power consumption.
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Results show that propane mass flow rate does not decrease enough to compensate the

increased power consumption. Mass flow rate results only 0.01 % lower than the one with no

sub-cooling. This can be spotted in Figure 4.16 in which the only visible difference between

the two cycles regards the high pressure level. This is due to the fact that isotherms in the

sub-cooled liquid region are almost vertical.

Figure 4.16: Log P-h diagram of the pre-cooling cycle with no sub-cooling (continuous line)
and with a sub-cooling of 5 K (dotted line)

On the contrary power consumption in the pre-cooling cycle passes from 104 to 115 kW.

Correspondingly the system FOM decreases passing from 23.96 % to 23.81 %. As expected, no

changes are recorded in the nitrogen cycle.

In conclusion sub-cooling is found to negatively affect the performance of the liquefaction

cycle, although the decrease in FOM is marginal. This originates from the design choice of

fixing the refrigerant temperature at the throttling valve inlet.
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4.6 Dual-expander configurations

Dual-expander configurations are presented adopting the nomenclature used by Chang et al.

[60].

4.6.1 Dual-turbine cycle with different pressure ratio

The dual-turbine cycle with different pressure ratio is sketched in Figure 4.17. After the first

Multi-Stream Heat Exchanger, the refrigerant stream is split into two separate circuits. A

fraction of the refrigerant is sent to the High-Pressure (HP) expander, which is the one having

the smaller pressure ratio. This first expansion is needed to provide the cooling effect for the

first two MHEX’s. The remaining refrigerant fraction is sent to the Low-Pressure (LP) expander

which discharge pressure is lower and therefore provides the cooling effect needed for the

completion of NG feed liquefaction and sub-cooling.

Before the two refrigerant fractions are mixed together the pressure is equalised through

a Low-Pressure compressor which discharge pressure has to be equal to the HP expander

discharge pressure.

Figure 4.17: Process flowsheet of the dual-turbine configuration with different pressure ratio

Refrigerant is constituted by pure nitrogen and enters the cold box at 20◦C and at 120 bar.

Refrigerant mass flow rate is set equal to 12.5 kg/s. 40 % of it is sent in the low-pressure circuit.

The other input to the model is the NG temperature after the second MHEX (point 3) which is

set equal to -70◦C following the assumption adopted by Chang et al. [60].

The remaining model inputs are computed in order to achieve the 3 K-MITA at the three heat

exchangers:

• first MHEX: the approach is achieved by varying the cold-end outlet temperature, i.e.

temperatures of points 2 and 9 (they are the same given the required thermal equilibrium

along the horizontal axis for all the heat exchangers);

• second MHEX: the approach is governed by the HP expander discharge pressure;

• two-stream HEX: the approach is achieved acting on the LP expander discharge pres-

sure.
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As a result the outlet temperature at the cold end of the first MHEX is -20.7◦C, HP and LP

expander discharge pressures are 49.5 bar and 16.9 bar, respectively. Thermodynamic state

points of the refrigerant cycle are reported in the T-s diagram of Figure 4.18.

T P h

[◦C] [bar] [kJ/kg]

8 20.0 120.0 280.4

9 -20.7 120.0 228.3

10 -73.0 49.5 182.8

11 -36.3 49.5 228.5

12 17.0 49.5 290

13 -70.0 120.0 155.6

14 -154.6 16.9 96.28

15 -73.0 16.9 199.3

16 -36.3 16.9 239.8

17 17.0 16.9 297.2

18 148.6 49.5 434.4

19 20.0 49.5 293.4

20 18.2 49.5 291.3

21 123.5 120.0 401.7

Figure 4.18: Representation of the T-s refrigerant cycle for the dual-turbine cycle with different
pressure ratio. Values of temperature, pressure and specific enthalpy are listed on the right

Given the implemented design specifications the minimum refrigerant split fraction is 36 %. If

nitrogen mass flow rate in the low-pressure circuit is too little, LP expander pressure ratio has

to increase and this leads to the the formation of liquid nitrogen at the LP expander outlet.

On the contrary, maximum split fraction is found to be 63 %. Higher split fractions lead to a

crossover of the temperature profiles at the second MHEX due to the increased heat exchanger

duty.

Total compression power is 2063 kW, while expansion power amounts to 616 kW. The total

heat duty of the cold box is 1813 kW (755 kW at the first MHEX, 550 kW at the second MHEX

and 508 kW at the two-stream HEX). Additionally 710 kW are rejected at the first cooler, while

the duty of the second cooler results 1531 kW. The UA-value of the cold box amounts to 234.8

kW/K, while the total heat network conductance results equal to 303.1 kW/K.

Table 4.9 summarises the results from the simulation of the dual-expander cycle with differ-

ent expander pressure ratio. Furthermore Figure 4.19 depicts the Composite Curves for the

cold box highlighting the share of the total exchanged heat flow for each of the three heat

exchangers. It can be noted that the approach at the first MHEX is at the hot end, while the

3 K-approach for the second MHEX is found at the cold end. This is also the pinch point for

the final two-stream HEX. Average LMTD’s are 7.6 K for the first MHEX, 6.3 K for the second

MHEX and 10.5 K for the two-stream HEX.
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Table 4.9: Main results and performance indicators for the dual-turbine cycle with different
pressure ratio

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

1447 303.1 0.548 1501 29.38

Figure 4.19: Hot and Cold Composite Curves for the dual-turbine cycle with different pressure
ratio

4.6.2 Dual-turbine cycle with the same pressure ratio

Figure 4.20 sketches the design of the dual-turbine cycle with the same pressure ratio.

Figure 4.20: Process flowsheet of the dual-turbine configuration with the same expansion
pressure ratio

Compared to the previous dual-turbine alternative the two expanders have the same pressure

ratio. This is the reason why, after the expansion processes, the mixing of the two refrigerant

streams occurs between the second MHEX and the two-stream HEX (i.e. between points 13
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and 14). Consequently only one compression stage is needed.

Once again the employed refrigerant is pure nitrogen entering the cold box at 20◦C and at 120

bar.

From a modelling viewpoint the constraint on the expander pressure ratio eliminates one

degree of freedom in terms of variables which can be manipulated in order to find a solu-

tion giving 3 K-MITA’s at all heat exchange devices. A design which fulfils the mentioned

requirement is found imposing the following specifications:

• first MHEX: the approach is achieved by varying the total mass flow rate of the refriger-

ant;

• second MHEX: the approach is governed by the refrigerant split fraction;

• two-stream HEX: the approach is achieved acting on the discharge pressure of the two

expanders.

Therefore the two intermediate temperature levels have to be fixed as inputs. The first inter-

mediate temperature (temperature at points 2 and 9) is set equal to -20◦C while the second

intermediate temperature (temperature at points 3 and 11) is set equal to -90◦C.

Results from Aspen Plus simulation indicates that the necessary nitrogen mass flow rate

is 10 kg/s, of which 28.6 % is the fraction sent to the second expander to produce the cooling

effect at the two-stream HEX. Finally low pressure level is 24.4 bar. Nitrogen cycle is reported

in the Temperature-Entropy diagram of Figure 4.214.

T P h

[◦C] [bar] [kJ/kg]

8 20.0 120.0 280.4

9 -20.0 120.0 229.2

10 -106.2 24.4 155.7

11 -90.0 120.0 119.2

12 -153.0 24.4 78.27

13 -103.2 24.4 159.4

14 -105.4 24.4 156.7

15 -38.4 24.4 234.8

16 17.0 24.4 295.5

17 231.4 120.0 522.2

Figure 4.21: Representation of the T-s refrigerant cycle for the dual-turbine cycle with the same
expansion pressure ratio. Values of temperature, pressure and specific enthalpy are listed on
the right

4Nitrogen quality in 12 is 1.
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Compression power results 2267 kW. Expansion power is 514 kW and 107 kW, respectively for

the first and the second expander. The total heat duty of the cold box amounts to 1622 kW,

with the second MHEX having the largest share (786 kW), followed by the first MHEX (612 kW)

and the two-stream HEX (224 kW). Cooler heat duty is 2439 kW. The cold box UA-value results

224.2 kW/K, while the calculated UA-value for the cooler is 39.7 kW/K.

Table 4.10 reports the values of net power consumption and heat network conductance for

the considered configuration together with the cycle performance indicators. Temperature

profiles at the cold box are shown in Figure 4.22.

Table 4.10: Main results and performance indicators for the dual-turbine cycle with the same
pressure ratio

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

1646 263.9 0.482 1707 25.84

Figure 4.22: Hot and Cold Composite Curves for the dual-turbine cycle with the same pressure
ratio

For the first MHEX and for the two-stream HEX approaches are external. Conversely the pinch

point is internal for the second MHEX. Average LMTD’s are 8.4 K for the first MHEX, 6 K for the

second MHEX and 11.3 K for the two-stream HEX.

Two observations have to be made when looking at the Composite Curves of Figure 4.22.

Firstly the Cold Composite Curve is not continuous when passing from the second MHEX to

the two-stream HEX. This is caused by the mixing process between nitrogen streams in state

10 and 13. Secondly, the shape of the Cold Composite Curve in the two-stream HEX is not

linear. Although nitrogen is always in gaseous form, a non-negligible variation of the isobaric

specific heat capacity is recorded. At 24.4 bar the cp of nitrogen passes from 3.7 kJ/kgK at

-155◦C to 2 kJ/kgK at -145◦C. In a Temperature-Heat Flow diagram a decrease in cp causes the

slope of the temperature profile to increase and this explains the observed non-linearity.
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4.6.3 Two-stage expansion cycle

The layout of the two-stage expansion cycle is reported in Figure 4.23.

Figure 4.23: Process flowsheet of the two-stage expansion cycle

Compared to the other dual-turbine alternatives, the refrigerant split occurs after the first

expansion in the High-Pressure expander (point 10). Only a fraction of the total mass flow

rate of the refrigerant undergoes a second expansion in order to generate the cooling effect

required to complete the liquefaction and sub-cooling of natural gas feed.

Due to the different pressure levels of the refrigerant streams in the two circuits (HP and LP

circuit), a two-stage compression is needed such that the mixing process occurs when the

refrigerant streams in point 12 and in point 18 have the same pressure.

Refrigerant is pure nitrogen which enters the cold box (point 8) at 20◦C and at 120 bar. Nitrogen

mass flow rate is 10 kg/s.

The design specifications which are implemented in order to achieve the 3 K-approach in all

the heat exchange sections are listed below:

• first MHEX: the approach is achieved by varying the cold-side outlet temperature, that

is the temperature of natural gas and nitrogen streams in points 2 and 11;

• second MHEX: the approach is governed by the intermediate pressure level, i.e. the

discharge pressure of High-Pressure expander (point 10);

• two-stream HEX: the approach is achieved acting on the discharge pressure of the

Low-Pressure expander (point 13).

As to the remaining model variables which have to be fixed as input, the second intermediate

temperature level is -90◦C (temperature of natural gas feed in point 3), while the splitter is set

so that 47 % of the total nitrogen mass flow rate is sent to the low-pressure circuit.

As a result the calculated temperature at the cold-side outlet of the first MHEX is -40◦C.

The intermediate pressure level results 46.7 bar while Low-Pressure expander discharge pres-

sure is 10.3 bar. Nitrogen cycle is shown in the T-s diagram of Figure 4.24 together with the

corresponding values of temperature, pressure and specific enthalpy.
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T P h

[◦C] [bar] [kJ/kg]

8 20.0 120.0 280.4

9 -40.0 120.0 201.8

10 -91.5 46.7 159.4

11 -66.6 46.7 192.4

12 17.0 46.7 290.6

13 -153.0 10.3 110.7

14 -112.5 10.3 158.9

15 -66.6 10.3 209.5

16 17.0 10.3 298.8

17 217.2 46.7 508.4

18 20.0 46.7 294.0

19 18.4 46.7 292.2

20 131.9 120.0 411.2

Figure 4.24: Representation of the T-s refrigerant cycle for the two-stage expansion cycle.
Values of temperature, pressure and specific enthalpy are listed on the right

It has to be noted that nitrogen streams in points 10 and 14, i.e. cold refrigerant stream entering

the cold side of the second MHEX, are not characterised by the same temperature. Therefore

the second Multiple-Stream Heat Exchanger which is presented in the model corresponds in

reality to two separated heat exchange sections: a two-stream HEX in which the cold nitrogen

stream in 14 warms up until it reaches the temperature in 10, and a MHEX in which the two

refrigerant streams warm up passing from -91.5◦C to -66.6◦C.

It is also found that under these conditions the minimum nitrogen mass flow rate that can

be sent to the low-pressure circuit is 23 % of the total. As the refrigerant flow rate in the low-

pressure circuit is diminished the discharge pressure of the LP expander decreases and with

that the refrigerant temperature at the LP expander outlet. However if the split fraction is below

23 % the expansion process ends in the two-phase region. On the contrary the maximum split

fraction is 55 %, above which a crossover of the temperature profiles occurs at the second

MHEX.

Total compression power is 2174 kW, of which 1189 kW in the High-Pressure compressor. HP

expander power production is 419 kW while LP expander power is 215 kW.

The total heat duty at the cold box is 1585 kW. The first MHEX is the one providing the largest

share of the total duty (946 kW), followed by the second MHEX (415 kW) and the two-stream

HEX (224 kW). Cold box conductance is 171.9 kW/K. The heat rejected at the first cooler

amounts to 1014 kW, while the heat duty of the second cooler is 1320 kW. Correspondingly the

calculated UA-values for the coolers are 17.4 kW/K and 35.8 kW/K, respectively.

Results are summarised in Table 4.11 together with the performance indicators for the two-

stage expansion cycle. Moreover Figure 4.25 reports the Composite Curves for the cold box of

the liquefaction cycle.
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Table 4.11: Main results and performance indicators for the two-stage expansion cycle

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

1540 225.1 0.515 1598 27.61

Figure 4.25: Hot and Cold Composite Curves for the two-stage expansion cycle. The contin-
uous black vertical line indicates the two sections which are comprised within the second
Multi-Stream Heat Exchanger

Considering the three heat exchangers as in Figure 4.25 it can be observed that pinch points

are found at the hot end of the first MHEX, internally in the second MHEX and at the cold end

of the two-stream HEX. Average LMTD’s are 10.6 K for the first MHEX, 6.5 K for the second

MHEX and 11.7 for the two-stream HEX.

As mentioned above, the second Multiple-Stream Heat Exchanger comprises in reality two

separated heat exchange sections, which are made visible in Figure 4.23 through the contin-

uous black vertical line. The change in slope of the Cold Composite Curve is the result of

the temperature profile aggregation between the intermediate-pressure and low-pressure

nitrogen stream which, from a heat network viewpoint, takes place when the low-pressure

refrigerant temperature reaches -91.5◦C.
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4.6.4 Discussion

From a thermodynamic viewpoint it is beneficial to develop the single-expander configuration

moving to a dual-turbine cycle. As shown in this Section the presence of a dual expansion

process allows a significant reduction in the net power consumption and a closer match of the

temperature profiles.

Among the analysed dual-expander configuration the one implementing a different pressure

ratio is found to be the most efficient, followed by the two-stage cycle and the dual-expander

cycle with a common pressure ratio for the expanders.

Having the expanders connected in parallel with different pressure ratio is more beneficial

compared to the two-stage cycle, as this allows to decrease the overall cycle pressure ratio (low

pressure level is 16.9 bar against 10.3 bar of the two-stage expansion alternative). Although

nitrogen mass flow rate is higher, High-Pressure expander works with a lower flow rate, hence

its thermodynamic performance is higher.

The dual-turbine cycle with the same expander pressure ratio achieves a close match of the

temperature profiles through the splitting of the refrigerant. With respect to the other two

alternatives it is however penalised by the compression process which takes place in one single

stage, similarly to what is observed in Section 4.4.

60



4.7. Dual-refrigerant configurations

4.7 Dual-refrigerant configurations

All the expander-based cycles which have been previously presented employ pure nitrogen

as refrigerant medium. In this Section the possibility of having a two-refrigerant cycle is

considered. Refrigerants are not mixed and they have separate circuits. Nitrogen is always one

of the two refrigerants, while the second one can be methane or natural gas feed itself in an

open cycle.

4.7.1 N2 sub-cooling dual-refrigerant cycle

In the first dual-refrigerant configuration methane provides the cooling effect in the first part

of the natural gas cooling curve, whereas nitrogen has to provide the cooling effect to complete

the liquefaction and the sub-cooling of the natural gas feed. The cycle is sketched in Figure

4.26.

Figure 4.26: Process flowsheet of the dual-refrigerant cycle employing nitrogen for the last
phase of the cooling process

Each of the refrigerant cycles is a single-expander cycle with a two-stage compression in which

the Low-Pressure compressor is mechanically coupled to the expander.

Methane enters the first cold box at 20◦C and 50 bar. Nitrogen enters the bottoming cold box

at 20◦C and 80 bar. In both cycles the expander discharge pressure is set equal to 15 bar.

Methane provides the cooling of the natural gas feed down to -80◦C (point 3). At this tem-

perature level NG feed is a two-phase mixture with a vapour fraction of 0.75 on mass basis.

Therefore methane is mostly active in the sensible pre-cooling of the natural gas, while nitro-

gen provides the cooling effect for the completion of the liquefaction and for the sub-cooling
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phase down to -150◦C.

From a modelling viewpoint the intermediate pressure level for both cycles is constrained by

the mechanical coupling of expander and LP compressor, therefore it is a model output. As to

the temperature approaches at the heat exchangers, the following design specifications are

applied:

• methane cycle: methane flow rate governs the approach at the first MHEX, while its

temperature at the expander inlet is varied to achieve the MITA at the two-stream HEX;

• nitrogen cycle: the same modelling approach used for the methane cycle is applied,

with nitrogen flow rate governing the approach at the nitrogen-nitrogen HEX.

Results indicate that the intermediate pressure levels are 24.7 bar in the methane cycle and 23

bar in the nitrogen cycle. Methane mass flow rate is 2.7 kg/s while nitrogen mass flow rate is

7.2 kg/s. Methane enters the expander at -19.2◦C while nitrogen expander inlet temperature is

-81.5◦C. Methane and nitrogen cycles are shown in the T-s diagrams of Figures 4.27 and 4.28,

respectively.

Power consumption at the High-Pressure compressors is 1206 kW and 375 kW for the nitrogen

and methane cycle, respectively. Nitrogen expander produces 349 kW, while methane expander

power production is 262 kW. As mentioned above, these are equal to the power consumption

of the Low-Pressure compressors in the two cycles.

The total heat duty at the cold box is 2049 kW, of which 969 kW is the heat duty of the nitrogen-

nitrogen HEX. Cold box heat conductance is 219.7 kW/K split as following among the different

heat exchangers: as to the methane cycle, 38.1 kW/K at the MHEX and 46.2 kW/K at the

two-stream HEX; as to the nitrogen cycle, 114.5 kW/K at the nitrogen-nitrogen HEX and 20.9

kW/K at the nitrogen-natural gas HEX.

The heat rejected at the coolers amounts to 2375 kW. The sum of the calculated UA-values for

the coolers is 86.1 kW/K.

T P h

[◦C] [bar] [kJ/kg]

8 20.0 50.0 -63.2

9 -19.2 50.0 -167.5

10 -84.1 15.0 -268.9

11 -43.5 15.0 -172.1

12 17.0 15.0 -33.3

13 61.4 24.7 63.1

14 20.0 24.7 -36.4

15 84.5 50.0 102.2

Figure 4.27: Representation of the T-s methane cycle for analysed dual-refrigerant configura-
tion. Values of temperature, pressure and specific enthalpy are listed on the right
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T P h

[◦C] [bar] [kJ/kg]

16 20.0 80.0 287.3

17 -81.5 80.0 154.5

18 -153.0 15.0 102.8

19 -104.8 15.0 181.2

20 17.0 15.0 297.7

21 63.7 23.0 346.0

22 20.0 23.0 299.1

23 179.2 80.0 465.9

Figure 4.28: Representation of the T-s nitrogen cycle for the analysed dual-refrigerant configu-
ration. Values of temperature, pressure and specific enthalpy are listed on the right

Table 4.12 reports the main results and the performance indicators for the presented dual-

refrigerant cycle. Figure on the left 4.29 shows the aggregated temperature profiles for those

heat exchangers having natural gas on the hot side. The temperature profiles for the nitrogen-

nitrogen HEX are presented in Figure 4.29 on the right.

Table 4.12: Main results and performance indicators for the dual-refrigerant cycle employing
nitrogen for the last phase of the cooling process

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

1581 305.8 0.502 1640 26.89

Figure 4.29: On the left: Hot and Cold Composite Curves for the part of cold box having
natural gas on the hot side. The thick dotted line separates the methane-side cold box from
the nitrogen-side cold box. On the right: hot and cold temperature profiles for the nitrogen-
nitrogen HEX
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On the methane side pinch points are activated at the hot end of the Multiple-Stream Heat

Exchanger and internally in the two-stream HEX. Average LMTD’s are 10 K and 5.7 K, respec-

tively. On the nitrogen side the pinch point at the nitrogen-nitrogen HEX is found at the warm

end (average LMTD of 8.5 K) while the nitrogen-natural gas HEX shows the approach at the

cold end (average LMTD of 21 K).

Sensitivity analysis on natural gas intermediate temperature

Natural gas intermediate temperature is the temperature level at which the feed is brought by

the methane cycle. As presented the base case is -80◦C. The performance of the liquefaction

cycle is assessed when this temperature is changed to -70◦C and -90◦C. From a modelling point

of view the same approach is applied in terms of design specifications and inputs to the model.

Table 4.13 reports the results from the sensitivity analysis in terms of COP for the methane

and nitrogen cycle together with COP and FOM for the whole liquefaction cycle.

Table 4.13: COP of methane and nitrogen cycles together with COP and FOM for the whole
liquefaction cycle when varying natural gas intermediate temperature

TNG COPCH4 COPN2 COP FOM
[◦C] [-] [-] [-] [%]

-70 1.075 0.363 0.476 25.53
-80 0.948 0.363 0.502 26.89
-90 0.768 0.363 0.584 31.30

Methane cycle proves to be more efficient than nitrogen cycle. As a consequence it can be

concluded that it is beneficial to reduce the intermediate temperature, i.e. it is beneficial that

methane cycle provides a larger share of the natural gas cooling load compared to nitrogen

cycle.

The effect of decreasing the intermediate temperature level on the Composite Curves at the

cold box is shown in Figure 4.30. It can be clearly seen how closer the profiles are. For the last

heat exchange section, that is the nitrogen-natural gas HEX, average LMTD passes from 21 K

to 10 K.

4.7.2 CH4 sub-cooling dual-refrigerant cycle

In a specular way compared to the previous case methane can be employed to cover the last

phases of the natural gas cooling process, while nitrogen can be used to cool natural gas in

the warmer temperature range. The layout of this dual-refrigerant alternative is sketched in

Figure 4.31.
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Figure 4.30: Hot and Cold Composite Curves for the heat exchange sections having natural gas
on the hot side in the case of natural gas intermediate temperature level equal to -90◦C

Figure 4.31: Process flowsheet of the dual-refrigerant cycle employing methane for the last
phase of the cooling process

The main consequence of having methane acting in the last phase of natural gas cooling is

that methane low pressure has to be significantly lower than the previous case (i.e. 15 bar) in

order to provide the cooling effect down to -150◦C. According to Aspen Plus simulation the

maximum pressure level which can be implemented without having liquid formation at the

expander outlet is 1.95 bar. In the present case low pressure level on methane side is set equal

to 0.7 bar, while high pressure level is 3 bar. On nitrogen side the low pressure level is equal to

15 bar, while nitrogen enters the cold box at 80 bar.
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Again natural gas intermediate temperature is set equal to -80◦C. Temperature approaches are

achieved manipulating the same variables as for the previous dual-refrigerant cycle.

Results from Aspen Plus simulation give an intermediate pressure level of of 30.9 bar on

nitrogen side and of 1.1 bar on methane side. Nitrogen and methane flow rates are 3.6 kg/s

and 5.4 kg/s, respectively. Nitrogen enters the expander at 1.5◦C, while the expander inlet

temperature on methane side is -109.4◦C. Nitrogen and methane cycles are shown in the T-s

diagrams of Figures 4.32 and 4.33.

T P h

[◦C] [bar] [kJ/kg]

8 20.0 80.0 287.3

9 1.5 80.0 265.3

10 -93.1 15.0 177.7

11 -15.0 15.0 263.4

12 17.0 15.0 297.7

13 100.0 30.9 383.8

14 20.0 30.9 297.3

15 135.5 80.0 417.8

Figure 4.32: Representation of the T-s nitrogen cycle for analysed dual-refrigerant configura-
tion. Values of temperature, pressure and specific enthalpy are listed on the right

T P h

[◦C] [bar] [kJ/kg]

16 20.0 3.0 -14.1

17 -109.4 3.0 -294.3

18 -153.0 0.7 -379.8

19 -114.4 0.7 -298.1

20 17.0 0.7 -18.5

21 54.9 1.1 66.7

22 20.0 1.1 -12.2

23 113.2 3.0 205.2

Figure 4.33: Representation of the T-s methane cycle for the analysed dual-refrigerant configu-
ration. Values of temperature, pressure and specific enthalpy are listed on the right
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Compression power on nitrogen side is 436 kW while it is 1172 kW for the methane High-

Pressure compressor. Nitrogen expander produces 311 kW, while methane expander power

production is 460 kW. The heat duty of the cold box is in total 2381 kW, of which 1507 kW

represent the heat duty at the methane-methane heat exchanger. The cold-box heat conduc-

tance results equal to 502.7 kW/K, remarkably larger than the case of having N2 providing the

sub-cooling of natural gas. This is mainly due to the methane-methane heat exchanger, which

heat conductance is given by Aspen Plus equal to 404.7 kW/K.

The heat rejected at the coolers is 2401 kW, of which 791 kW in the nitrogen cycle. Calculated

UA-values for the coolers are: 11.3 kW/K and 12.6 kW/K for the first and second cooler on the

nitrogen side, 34.7 kW/K and 37.3 kW/K for the first and second cooler on the methane side.

Table 4.14 summarises the simulation results and introduces the performance indicators for

the analysed dual-refrigerant alternative. Moreover Figure 4.34 on the left shows the aggre-

gated temperature profiles for those heat exchangers contributing to the natural gas cooling.

On the right in Figure 4.34 the temperature profiles at the methane-methane heat exchanger

are presented.

Table 4.14: Main results and performance indicators for the dual-refrigerant cycle employing
methane for the last phase of the cooling process

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

1608 598.6 0.494 1667 26.45

Figure 4.34: On the left: Hot and Cold Composite Curves for the part of cold box having
natural gas on the hot side. The thick dotted line separates the nitrogen-side cold box from
the methane-side cold box. On the right: hot and cold temperature profiles for the methane-
methane HEX

The situation is analogous to the previous dual-refrigerant case as to the location of pinch

points. Average LMTD’s are 7.9 K and 4.9 K for the MHEX and the two-stream HEX on nitrogen

side, while on methane side methane-natural gas HEX has an average LMTD of 22.9 K and

methane-methane HEX’s average LMTD is 3.7 K.
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The temperature profiles at the methane-methane HEX give the reason for the very high UA-

value at this two-stream heat exchanger. They are almost parallel given the small difference in

pressure between the cold methane stream (0.7 bar) and the warm methane stream (3 bar).

Similarly to what observed for N2 sub-cooling dual-refrigerant cycle, the large temperature

difference at the last heat exchanger (in this case, methane-natural gas HEX) can be signifi-

cantly reduced by decreasing the natural gas intermediate temperature. In the -90◦C-case the

average LMTD for this heat exchanger becomes 11.9 K. Once again it is beneficial to decrease

natural gas intermediate temperature as shown in Table 4.15.

Table 4.15: COP of nitrogen and methane cycles together with COP and FOM for the whole
liquefaction cycle when varying natural gas intermediate temperature

TNG COPN2 COPCH4 COP FOM
[◦C] [-] [-] [-] [%]

-70 0.877 0.373 0.471 25.22
-80 0.817 0.373 0.494 26.45
-90 0.656 0.373 0.541 29.00

4.7.3 Niche cycle

The last dual-refrigerant configuration which is modelled and analysed is the so-called Niche

cycle. The layout of this dual-refrigerant cycle is sketched in Figure 4.35.

Figure 4.35: Process flowsheet of the Niche cycle
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The main feature of this configuration is the use of a part of natural gas feed as a refrigerant

to cool down natural gas feed itself. This leads to the realisation of an open configuration on

natural gas side.

The feed is mixed with the recirculated natural gas (state point 15) which is at 20◦C and at

33 bar as the feed itself in order to avoid mixing losses. From a modelling point of view this

means that the intermediate pressure level on the natural gas side is now an input (33 bar),

hence the expander discharge pressure is a model variable given the constraint on the me-

chanical coupling between Low-Pressure compressor and expander. The opposite occurs on

the nitrogen side, with the intermediate pressure level being a model variable and depending

on the chosen expander discharge pressure.

High pressure level on natural gas side is set equal to 40 bar. After the first two-stream HEX,

the natural gas stream is split so that 1 kg/s is the flow rate that is sent to the nitrogen cycle,

whereas the remaining mass flow rate is the one being recirculated and undergoing the expan-

sion process. Expander inlet temperature on natural gas side is set equal to -10◦C.

On the nitrogen side high pressure level is 80 bar, while expander discharge pressure is set

equal to 15 bar.

Temperature approaches are achieved implementing the following design specifications:

• natural gas cycle: total natural gas flow rate (NG feed plus recirculated flow rates)

governs the approach at the first two-stream HEX, while natural gas intermediate tem-

perature (i.e. temperature in point 3) is varied to achieve the MITA at the second HEX;

• nitrogen cycle: nitrogen mass flow rate governs the approach at the nitrogen-nitrogen

HEX, while expander inlet temperature is varied in order to achieve the pinch point at

the natural gas-nitrogen HEX.

Results from Aspen simulation show that the recirculated natural gas flow rate has to be 2.9

kg/s. Low pressure level on natural gas side is 26.5 bar. Natural gas intermediate temperature

is -31◦C. As to the nitrogen cycle, the calculated mass flow rate is 10.8 kg/s while the expander

inlet temperature is -81.5◦C. The intermediate pressure level results 23 bar.

The thermodynamic state points for both cycles are listed in Table 4.165. Temperature-Entropy

diagrams are omitted being analogous to the ones presented for the N2 sub-cooling dual-

refrigerant cycle.

Compression power on natural gas and nitrogen side is 115 kW and 1802 kW, respectively.

Natural gas expander produces 98 kW, while nitrogen expander power production is 522 kW.

The total heat load at the cold box is 2446 kW, 1448 kW being the heat duty of the nitrogen-

nitrogen heat exchanger. The cold box heat conductance is 236.1 kW/K. Again the biggest

contribution to it comes from the nitrogen-nitrogen HEX (171 kW/K).

5Only for the present case the listed values of specific enthalpy for the natural gas mixture are the ones given by
Aspen Plus using Peng-Robinson EOS as property method.
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As to the coolers, the total heat rejected results 2710 kW. The majority of it is rejected on

nitrogen side (2456 kW). The sum of the calculated UA-values for the coolers amounts to 97.1

kW/K. It has to be remarked that on natural gas side the refrigerant enters the cooler at a

temperature lower than 50◦C. As previously stated, in these cases a LMTD of 10 K is applied.

Table 4.17 summarises the results and reports the values of the performance indicators for the

Niche cycle.

Table 4.16: Thermodynamic state points on nitrogen (left) and natural gas (right) side for the
Niche cycle. Values of natural gas specific enthalpy are given by Aspen Plus

T P h

[◦C] [bar] [kJ/kg]

15 20.0 80.0 287.3

16 -81.5 80.0 154.5

17 -153.0 15.0 102.8

18 -104.8 15.0 181.2

19 17.0 15.0 297.7

20 63.7 23.0 346.0

21 20.0 23.0 299.1

22 179.2 80.0 465.9

T P h

[◦C] [bar] [kJ/kg]

8 20.0 40.0 -4290

2 -10.0 40.0 -4364

9 -34.0 26.5 -4398

10 -26.0 26.5 -4379

11 17.0 26.5 -4279

12 34.9 33.0 -4245

13 20.0 33.0 -4280

14 35.9 40.0 -4251

Table 4.17: Main results and performance indicators for the Niche cycle

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

1917 333.2 0.414 1992 22.18

In order to fairly compare all the liquefaction alternatives the same boundaries have to be

applied for the calculation of COP and FOM. In the case of the Niche cycle, the liquefied natural

gas exits the cold box at -150◦C and 40 bar, whereas in all the previous configurations the

outlet pressure is 33 bar. Therefore COP and FOM are calculated using the values of specific

enthalpy and entropy for the natural gas mixture at -150◦C and 33 bar.

Figure 4.36 on the left shows the aggregated temperature profiles for those heat exchangers

contributing to natural gas cooling. On the right in Figure 4.36 the temperature profiles at the

nitrogen-nitrogen heat exchanger are presented.

Pinch points are activated at the extremities of both natural gas-side and nitrogen-side cold

boxes. The average LMTD’s are 7.8 and 7.7 K for the first and the second two-stream HEX on

natural gas side, while on nitrogen side they are 8.5 K for the nitrogen-nitrogen HEX and 32 K

for the natural gas-nitrogen HEX.
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Figure 4.36: On the left: Hot and Cold Composite Curves for the part of cold box having
natural gas on the hot side. The thick dotted line separates the natural gas-side cold box
from the nitrogen-side cold box. On the right: hot and cold temperature profiles for the
nitrogen-nitrogen HEX

As shown for the previous dual-refrigerant configurations, a way to reduce the large tem-

perature difference for the last two-stream HEX is to reduce the natural gas intermediate

temperature. However this is not possible for the Niche cycle. If natural gas intermediate

temperature decreases, the same has to occur for the natural gas temperature at the expander

outlet. There are two limitations for this: firstly, natural gas at the expander outlet has to

remain in the gaseous form; secondly, discharge pressure cannot be too low as the expander

power is forced to be equal to the one of Low-Pressure compressor, which discharge pressure

is fixed at 33 bar.

4.8 Conclusive remarks

Thirteen expander-based configurations are modelled using Aspen Plus simulation software

and they are presented and analysed in this Chapter focusing on their thermodynamic perfor-

mance. Simulation results are summarised in Table 4.18. Figure of Merit for the liquefaction

process can be improved from 17 % to 30 %. This increase corresponds to a reduction in net

power consumption from 2500 kW to 1450 kW.

The least efficient alternative is the single-expander cycle with one-stage compression. The

reason is twofold. On one side a large temperature difference at the cold box is recorded.

On the other side a single-stage compression process is inefficient and can be significantly

improved by adding a second compression stage and an inter-cooler between the two com-

pressors. Results show that implementing an inter-cooled two-stage compression allows a

reduction in net power consumption of 26.5 %. As discussed, the design of the compression

process does not affect the heat exchange section of the cycle, the so-called cold box, where

natural gas is cooled and liquefied.
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Table 4.18: Summary of the simulation results for the developed models

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

Single-expader - one comp. stage 2495 91.4 0.318 2588 17.04
Two-stage comp. (no coupling) 1835 142.5 0.432 1904 21.17
Two-stage comp. (with coupling) 1970 141.5 0.403 2043 21.59

R410A pre-cooling 1783 153.2 0.445 1849 23.85
Propane pre-cooling 1775 156.1 0.447 1841 23.96
Sub-critical CO2 pre-cooling 1828 146.7 0.434 1896 23.26
Super-critical CO2 pre-cooling 1868 144.2 0.425 1938 22.76

Dual-turbine - different PR 1447 303.1 0.548 1501 29.38
Dual-turbine - same PR 1646 263.9 0.482 1707 25.84
Two-stage expansion 1540 225.1 0.515 1598 27.61

N2 sub-cooling 1581 305.8 0.502 1640 26.89
CH4 sub-cooling 1608 598.6 0.494 1667 26.45
Niche 1917 333.2 0.414 1992 22.18

A first possibility of reducing the gap between the temperature profiles at the cold box is

to add a pre-cooling phase. Among the considered refrigerants propane results the most

effective, allowing an increase in FOM of almost 7 %. Correspondingly net power consumption

is reduced by almost 30 %. It is also shown that the pre-cooling cycle should cover a larger

share of the natural gas cooling demand.

Pre-cooling alternatives are compared given the same pre-cooling temperature, i.e. given

the same contribution from the pre-cooling cycle to the fulfilment of the natural gas cooling

demand. Therefore the low-pressure levels in the pre-cooling cycle vary depending on the

employed refrigerant and could go below atmospheric level (0.98 bar for the propane-case

with -40◦C as pre-cooling temperature).

Another category of expander-based cycles comprises the dual-expander configurations in

which expansion process takes place in two different expanders. Three expansion designs are

presented. The highest benefit in terms of reduction of net power consumption is recorded

when having different expander pressure ratios (-42 % compared to the single-expansion cycle

with one compression stage).

Finally dual-refrigerant configurations are presented. Refrigerants (nitrogen and methane

or nitrogen and natural gas itself) contribute to the natural gas cooling in separate loops. If

nitrogen and methane are used, nitrogen is found to be more effective than methane to cool

natural gas in the lower temperature range, i.e. for feed liquefaction and sub-cooling. N2

sub-cooling dual-refrigerant cycle allows a reduction of net power consumption of almost

37 % with respect to the least efficient alternative, which can go up to 44 % if the natural

gas intermediate temperature is reduced. A lower intermediate temperature level leads to a

significant reduction of the average LMTD at the last two-stream heat exchanger of the cold
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box (from 21 K to 10 K), thus decreasing the exergy loss during the heat exchange process. In

fact from the thermodynamic theory the influence of the heat-transfer driving force increases

with decreasing temperature level at which the heat transfer takes place [67].

Niche cycle uses natural gas itself as refrigerant medium in an open configuration. This

expander-based alternative is not as interesting as the other dual-refrigerant cycles given

the smaller reduction in power consumption (-23 % compared to the single-expansion cycle

with one compression stage), linked to the impossibility of reducing natural gas intermediate

temperature as much as in the other dual-refrigerant configurations.

As extensively presented through the use of the Composite Curve representation, all the

further developments of the single-expander cycle, namely pre-cooling cycles, dual-expander

cycles and dual-refrigerant cycles, allow a substantial reduction in power consumption thanks

to a closer match of the temperature profiles. The average cold box LMTD can be used as an

indicator for the spread between the Hot and Cold Composite Curves. It is calculated as the

ratio of cold box heat duty to its total UA-value. Values are listed below for the best cycles of

each category.

• single-expander cycle: 16 K

• propane pre-cooled single-expander cycle: 12 K

• dual-expander cycle with different pressure ratio: 8 K

• N2 sub-cooling dual-refrigerant cycle: 9 K

This result was expected as the area between the Composite Curves is related to the exergy

destruction in the heat exchange process. As presented by Linnhoff and Dhole [68] a Compos-

ite Curve can be redrawn by replacing the temperature with the Carnot factor ηC resulting in

the so-called "exergy Composite Curve". The area between the exergy Composite Curves is

directly proportional to the lost work during the heat exchange process, thus to the net work

input to the cycle [51].

In light of this concept the choice of modelling and presenting liquefaction cycle designs

in which all the heat exchange devices present a temperature approach of 3 K goes in the

direction of optimising the configurations. However a number of model inputs had to be

arbitrarily set and these values might be sub-optimal. A rigorous thermodynamic optimisation

is therefore required and is the main focus of the next Chapter.

The optimisation target is not only the minimisation of net power input to the cycle but also

the minimisation of the overall heat network conductance, or UA-value, which is an indicator

of the required heat exchange area. The reason for this choice originates from the conflicting

relation between net power consumption and total UA-value which is observed throughout

the thermodynamic modelling phase. As the net power consumption is reduced, the total

UA-value increases, passing from 91 kW/K for the least efficient cycle to 303 kW/k for the most

efficient alternative.
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5 Thermodynamic optimisation of
expander-based LNG configurations

This Chapter presents the results from the thermodynamic optimisation of

the developed models. The optimisation process gives a robust answer to the

research aim of quantifying the performance improvement that can be achieved

for an expander-based liquefaction cycle. Moreover it provides the optimal

design for each of the thirteen cycles which will be used for the subsequent steps

of economic evaluation and comparison with other liquefaction alternatives.

5.1 Introduction

Thermodynamic optimisation is performed using the tool OSMOSE [69] developed at the

École Polytechnique Fédérale de Lausanne (EPFL). This tool is suitable for process integration

and optimisation and is run using Matlab platform as control interface of Aspen Plus. The

optimisation algorithm is genetic.

The thermodynamic optimisation is performed in two subsequent steps and its aim is twofold.

The objective of the first step is the minimisation of the net power consumption. Successively

a series of Multi-Objective Optimisations is performed with the aim of simultaneously min-

imising the net power consumption and the required heat transfer area, the latter through the

total UA-value for the liquefaction cycle.

The presentation of the results follows the categorisation introduced in Chapter 4. For each

expander-based configuration the set of decision variables is presented with the correspond-

ing variation ranges and optimal values. Successively the optimised cycle performance is

discussed by means of an exergy analysis. Finally the Pareto fronts which are obtained from

the Multi-Objective Optimisations are illustrated per group of expander-based configurations.

For the sake of readability and conciseness the cold box Composite Curves for the optimal

cycles are not shown in this Chapter but are presented in Appendix C.
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5.2 Methodology

Before running an optimisation the relevant decision variables have to be identified and for

each of them a sensible variation interval has to be provided. A large interval theoretically im-

proves the probability of finding the global optimum. Nonetheless it increases computational

burden and the possibility of non-convergence. The optimisation of a thermodynamic system

is not a trivial problem due to the high degree of non-linearity, non-continuity and to the

large research space. In the literature this is addressed by limiting the degrees of freedom for

complex systems, thus decreasing the computational burden. The drawback is that potentially

good solutions may be left outside the research space [38].

In the present work the variation ranges for the decision variables are set based on the litera-

ture and the sensitivity analyses presented in Chapter 4. Decision variables will be presented

for each model together with the corresponding boundaries. They normally coincide with the

design variables presented in Chapter 4 during the modelling process.

5.2.1 Penalty function formulation

The optimisation problem is constrained by the introduction of penalty functions. Their aim

is to ensure that the following conditions are fulfilled:

• the temperature approach at every heat exchanger cannot be lower than 3 K. For com-

putational reasons this boundary is set equal to 2.995 K.

• the vapour fraction at both compressor and expander inlets and outlets cannot be lower

than 1. Again for computational reasons this boundary is set equal to 0.995.

The two penalty conditions are addressed differently.

In the case of refrigerant vapour fraction at the suction and discharge of turbo-machinery,

the algorithm is required to discard any solution which brings the vapour fraction below the

threshold of 1.

Conversely for the temperature approach two situations can be identified: a negative temper-

ature approach, corresponding to thermodynamic infeasibility, and a positive temperature

approach but below the 3 K-threshold, corresponding to technical infeasibility.

Solutions that are thermodynamically feasible but impracticable are penalised following a

"functional" approach, according to which the objective function’s value is set to linearly de-

crease from a 0-K to a 3-K temperature difference1. This way a solution bringing a temperature

approach of e.g. 2 K is further investigated by the optimiser.

Solutions that are impossible from a thermodynamic viewpoint are directly discarded as in

the case of the vapour fraction constraint.

1The interested reader can find additional explanation in Appendix D together with an assessment of the
influence that penalty function formulations have on the optimisation outcome.
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5.2.2 Exergy analysis

Exergy analysis is performed on the optimal cycle design. The main goal of the exergy analysis

is to visualise the distribution of exergy destructions and losses in the liquefaction cycle. For

this purpose components’ rational efficiency defects are calculated.

The reader should refer to the work of Kotas [52] for the definitions of exergy fuel and product

of compressors, expanders, heat exchangers, valves and mixers.

A remark has to be made regarding the coolers and more generally all the heat exchange blocks

with only one stream. The purpose of these components is to reject heat to the ambient. For

the sake of the exergy analysis this rejection is regarded as an exergy loss2. Therefore the cooler

rational efficiency defect is calculated as the ratio of the exergy loss to the net power input to

the cycle.

The boundaries for the exergy analysis are placed before the expansion and flashing of the

liquefied natural gas. Given this assumption chemical exergy can be disregarded as no change

in chemical composition occurs.

5.2.3 Statistical analysis

The tool OSMOSE allows to run a statistical analysis as post-computational phase of a Multi-

Objective Optimisation (MOO). It allows to understand the distribution of the decision vari-

ables’ values along the Pareto front and the dependencies between decision variables and

objective functions.

In the present work Pearson partial linear correlation coefficients ρ are post-computed and

discussed in this Chapter after the MOO’s regarding the simultaneous minimisation of net

power consumption and total UA-value. These coefficients describe the relation between the

variables x and y when the influence of all the other variables z is eliminated.

ρx,y ·z =
ρx,y −ρx,zρy,z√

(1−ρ2
x,z )(1−ρ2

y,z )
(5.1)

The Pearson partial linear coefficient are used to discuss the dependency of objective functions

on a specific decision variable in datasets containing n values, when the influence of all the

other decision variables is eliminated. Values of ±1 indicate a perfect linear correlation, while

a value of 0 indicates absence of linear correlation [55].

2In rigorous terms this exergy loss accounts for (1) the exergy destruction due to the temperature difference
between the heat exchange fluids at the cooler, and (2) the actual exergy lost to the ambient. The absence of the
secondary-side fluid makes these two terms indistinguishable, therefore the cooler is characterised by a pure
exergy loss.
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5.3 Single-expander configurations

5.3.1 Single compression stage

Table 5.1 shows the decision variables and their corresponding optimal values. The perfor-

mance of the optimised single-expander cycle is summarised in Table 5.2.

Table 5.1: Decision variables, corresponding variation ranges and optimal values for the
single-expander cycle with one compression stage

Decision Unit Range Optimal
variable value

Phigh bar [60 130] 116.8
Plow bar [1 20] 12.6
Tin

exp °C [-100 0] -54.1
ṁN2 kg/s [5 20] 8.7

Table 5.2: Main results and performance indicators for the optimised single-expander cycle
with one compression stage

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

2475 137.4 0.320 2568 17.18

It is observed that all the solutions around the optimum present similar values for the decision

variables. Figure 5.1 shows the distribution of exergy destructions and losses in the cycle.

Component ĖD ĖL δ

[kW] [kW] [%]

Comp 369 - 14.89

Exp 278 - 11.24

MHEX 1 134 - 5.40

HEX 2 201 - 8.12

Cooler - 1069 43.17

Figure 5.1: Figure of Merit and distribution of exergy destructions and losses for the optimised
single-expander cycle with one compression stage
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With respect to the model presented in Section 4.4.1 the optimisation provides a slightly better

design, achieving a reduction of 0.8 % in net power consumption. This is obtained through a

reduction of the cycle pressure ratio, which in turns causes the required refrigerant flow rate to

be higher. Figure 5.1 shows that the cooler is the component dissipating the highest fraction

of the exergy input to the cycle. The highest exergy destruction takes place in the compressor

given the high pressure ratio (above 9).

5.3.2 Two compression stages

Table 5.3 lists the decision variables for the optimisation of the two-stage compression cycles.

As presented in Section 4.4.2 the mechanical coupling makes the intermediate pressure level a

model variable. In the optimal configuration the intermediate pressure level is equal to 15.6

bar. Table 5.4 shows the optimised performance of the two-stage compression cycles.

Table 5.3: Decision variables, corresponding variation ranges and optimal values for the
single-expander cycles with two compression stages (without and with mechanical coupling)

Decision Unit Range Optimal value
variable no mech. coupling with mech. coupling

Phigh bar [60 130] 129.6 114.3
Plow bar [1 10] 7.8 6.6
Pint bar [11 59] 33.6 (constrained)
Tin

exp °C [-100 0] -25.2 -24.6
ṁN2 kg/s [5 20] 6.3 6.3

Table 5.4: Main results and performance indicators for the optimised single-expander cycle
with two compression stages in the cases of no mechanical coupling and with mechanical
coupling

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

No mech. coupling 1796 133.8 0.441 1863 23.67
With mech. coupling 1945 135.3 0.408 2018 21.86

No variability in terms of decision variables is recorded close to the optimum for both cases.

In both cases the optimiser provides a better design compared to the ones presented in

Section 4.4.2. For the two-stage compression cycle with no mechanical coupling between LP

compressor and expander a decrease of 3.6 % in net power consumption is achieved. The

improvement is smaller when mechanical coupling is implemented (-1.3 % in net power

consumption).
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With respect to the single-expander cycle with one compression stage the reduction in net

power consumption is 27 % in the case of no mechanical coupling, 21 % in the case of

mechanical coupling. The compression process design is therefore confirmed to be highly

influencing for the performance of an expander-based liquefaction cycle.

Figures 5.2 and 5.3 illustrate the distribution of exergy destructions and losses for the optimal

design.

Component ĖD ĖL δ

[kW] [kW] [%]

LP Comp 175 - 9.77

HP Comp 165 9.21

Expander 297 - 16.54

MHEX 1 36 - 2.01

HEX 2 127 - 7.05

Cooler 1 - 290 16.12

Cooler 2 - 281 15.63

Figure 5.2: Figure of Merit and distribution of exergy destructions and losses for the optimised
single-expander cycle with two compression stages and no mechanical coupling

Component ĖD ĖL δ

[kW] [kW] [%]

LP Comp 103 - 5.28

HP Comp 240 12.35

Exp 305 - 15.67

MHEX 1 34 - 1.73

HEX 2 122 - 6.25

Cooler 1 - 90 4.62

Cooler 2 - 627 32.24

Figure 5.3: Figure of Merit and distribution of exergy destructions and losses for the optimised
single-expander cycle with two compression stages and mechanical coupling

The exergy loss at the coolers represents the largest dissipation in both cycles. Nevertheless the

two-stage compression allows to significantly reduce this exergy loss when compared with the

single-stage alternative. This is expected as the inter-cooled two-stage compression process

leads to lower compressor outlet temperatures, thus a lower heat rejection to the ambient.
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Moreover having a more efficient compression process allows to enlarge the cycle pressure

ratio, hence allowing a reduction in the required nitrogen flow rate (6.3 kg/s against 8.7 kg/s).

Finally, a significant reduction in exergy destruction at the cold box is observed when compar-

ing the single-stage and the two-stage compression alternatives.

Comparing the two-stage compression alternatives it can be noted that implementing the

mechanical coupling leads to a lower exergetic performance for the overall compression pro-

cess given the sub-optimality of the intermediate pressure level. As a consequence, exergy

dissipation at the coolers is slightly higher (717 kW against 571 kW).

From a thermodynamic viewpoint, given the high pressure ratio (above 16 in both cases) it is

meaningful to design the compression process with more than two stages, as this results to be

beneficial in terms of power consumption reduction.

5.3.3 Multi-Objective Optimisation

Figure 5.4 illustrates the Pareto fronts obtained from the Multi-Objective Optimisation of the

single-expander configurations. The total UA-value is reported on the y axis.

Figure 5.4: Pareto fronts for the single-expander configurations

The ranking of the three alternatives in terms of minimum net power consumption (thus

maximum Figure of Merit) is clearly visible. It can also be noted that in the best possible design

the required heat transfer area is much higher for the one-stage compression case. This is also

the configuration which achieves the lowest total UA-value at higher power consumptions.
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The distribution analysis of the decision variables indicates that the optimal value of nitrogen

high pressure is always close to the upper bound of 130 bar. Conversely nitrogen mass flow

rate is always close to the lower bound of 5 kg/s. The lowest values of nitrogen flow rate

characterise the solutions minimising the heat network conductance.

The expander inlet temperature shows the lowest values in those solutions minimising the net

power consumption. If the minimisation of the total UA-value is the objective, a value close to

0◦C has to be chosen.

Refrigerant low pressure level is the decision variable showing the highest variability among

the optimal points constituting the Pareto frontiers. Low pressure level has to be kept as high

as possible if the objective is to minimise the power consumption, as low as possible if instead

heat transfer area has to be minimised. The same consideration holds for the intermediate

pressure level, when applicable.

Considering the Pearson partial linear coefficients, for the one-stage compression cycle low

pressure level is the decision variable showing the highest correlation with net power con-

sumption. Pearson partial coefficient is -0.7. Therefore an increase in refrigerant low pressure

level is connected to a decrease in net power consumption, given the smaller pressure ratio.

As to the correlation of the total heat transfer area with the decision variables, an increase in

nitrogen low pressure level leads to a higher heat network conductance (ρ of +0.3).

When considering the two-stage compression cycle with no mechanical coupling, nitrogen

temperature at the expander inlet and intermediate pressure level present a positive correla-

tion coefficient with respect to net power consumption (ρ of +0.5 in both cases). Once again

nitrogen low pressure level is the most correlated decision variable with respect to the total

UA-value, with a Pearson partial coefficient of +0.4.

For the two-stage compression cycle with mechanical coupling the decision variable which

is mostly correlated with both objectives is the low pressure level of the refrigerant. Pearson

coefficient is -0.6 when considering the net power consumption, +0.6 regarding the total

UA-value. If the low pressure level increases, the temperature at the expander outlet gets

higher, thus reducing the average temperature difference available for natural gas sub-cooling.

Overall it is interesting to notice how the partial coefficient analysis confirms the trade-off

between the two conflicting objectives. Especially regarding the refrigerant low pressure level,

a change in this decision variable leads to opposite effects on net power consumption and

total UA-value.

82



5.4. Pre-cooling configurations

5.4 Pre-cooling configurations

Four pre-cooling alternatives are optimised, each one employing a different refrigerant in the

pre-cooling cycle, namely R410A, propane, sub-critical and super-critical CO2.

Tables 5.5 and 5.6 list the decision variables, the corresponding variation ranges and optimal

values for the four alternatives. They differ only in terms of variation ranges for the decision

variables of the pre-cooling cycle, which are tailored on the specific refrigerant.

As to the sub-critical pre-cooling cycles, the high pressure level ranges from the saturation

pressure at 20◦C to the critical pressure for each of the considered refrigerants. In the case of

the super-critical CO2 the lower bound is the critical pressure, while the upper is set equal to

100 bar. The refrigerant temperature at the throttling valve inlet is kept fixed at 20◦C during

the optimisation process.

Low pressure level range is defined in such a way that the refrigerant can achieve evaporation

temperatures as low as -43◦C and as high as -3◦C, these values being connected to the variation

range of the pre-cooling temperature.

Refrigerant mass flow rate in the pre-cooling cycle is not a decision variable but is calculated in

order to achieve the desired super-heating at the evaporator, thus the temperature approach

at the evaporator warm side.

Table 5.5: Decision variables, corresponding variation ranges and optimal values for the R410A
pre-cooled (on the left) and propane pre-cooled (on the right) single-expander cycle

Decision Unit Range Optimal

variable value

Phigh,N2
bar [60 130] 82.8

Plow,N2
bar [1 10] 8.7

Tin
exp °C [-100 -45] -55.1

ṁN2 kg/s [1 15] 6.3

Phigh,PC bar [13.98 49] 13.98

Plow,PC bar [1 8] 1.5

TPC °C [-40 0] -39.4

Decision Unit Range Optimal

variable value

Phigh,N2
bar [60 130] 108

Plow,N2
bar [1 10] 9.9

Tin
exp °C [-100 -45] -46.6

ṁN2 kg/s [1 15] 5.6

Phigh,PC bar [8.37 42.5] 8.37

Plow,PC bar [0.5 5] 0.98

TPC °C [-40 0] -39.9
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Table 5.6: Decision variables, corresponding variation ranges and optimal values for the
sub-critical (on the left) and super-critical (on the right) CO2 pre-cooled single-expander cycle

Decision Unit Range Optimal

variable value

Phigh,N2
bar [60 130] 103.4

Plow,N2
bar [1 10] 9.4

Tin
exp °C [-100 -45] -46.5

ṁN2 kg/s [1 15] 5.6

Phigh,PC bar [57.35 73.8] 57.35

Plow,PC bar [5 35] 8.8

TPC °C [-40 0] -40

Decision Unit Range Optimal

variable value

Phigh,N2
bar [60 130] 105.6

Plow,N2
bar [1 10] 9.3

Tin
exp °C [-100 -45] -45.1

ṁN2 kg/s [1 15] 5.7

Phigh,PC bar [73.9 100] 73.9

Plow,PC bar [5 35] 10.4

TPC °C [-40 0] -35.4

Once again small variability in decision variable values is observed around the optimum for

all the four pre-cooling alternatives.

Looking at the optimum values for the decision variable two main features can be spotted.

Firstly all the optimal solutions present a high pressure level which tends to hit the lower bound

of the feasible variation range. This is expected as compression power in the pre-cooling cycle

is reduced if the pressure ratio is smaller. Secondly all the sub-critical alternatives show an

optimal pre-cooling temperature towards the lower bound of -40◦C, given the higher COP of

the pre-cooling cycle. This confirms the trends observed and discussed in Section 4.5.1.

Table 5.7 reports the comparison of the optimised pre-cooling configurations.

Table 5.7: Comparison of optimal pre-cooling cycles in terms of refrigerant mass and vol-
ume flow rates, net power consumption, total heat network conductance, COP, unit energy
consumption and FOM

ṁref V̇ref Ẇnet Total UA-value COP w FOM
[kg/s] [m3/s] [kW] [kW/K] [-] [kJ/kgLNG] [%]

R410A 3.4 0.19 1626 153.9 0.488 1687 26.14
Propane 1.6 0.25 1559 176.2 0.509 1617 27.27
Sub-critical CO2 2.6 0.06 1711 169.1 0.464 1774 24.85
Super-critical CO2 2.3 0.04 1772 154.6 0.448 1838 24.00

Propane is the most effective refrigerant among the ones simulated, closely followed by R410A

and sub-critical CO2. R410A-case is instead more convenient than propane when considering

the high-pressure level on the nitrogen side and the volume flow rate at the evaporator, which

is connected to the required heat transfer area in the pre-cooling cycle. As expected, the

super-critical CO2 alternative is not advantageous in terms of net power consumption.
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With respect to the best solution which is described in Section 4.5 (propane pre-cooling at

-40◦C) the optimiser provides a slightly better solution, with a decrease in net power consump-

tion of 2.3 % (from 1596 kW to 1559 kW). With respect to the optimised single-expander cycle

with one compression stage, a 37 % reduction in net power consumption is achieved.

The distribution of exergy destructions and losses is shown below only for the propane case.

Component ĖD ĖL δ

[kW] [kW] [%]

N2 Comp 254 - 16.30

Exp 205 - 13.16

MHEX 1 3 - 0.18

HEX 2 92 - 5.93

Cooler - 394 25.25

PC Comp 41 - 2.60

Condenser - 38 2.41

Valve 40 - 2.59

Evaporator 67 - 4.31

Figure 5.5: Distribution of exergy destructions and losses for the optimised propane pre-cooled
single-expander cycle

The exergy lost to cool the refrigerants is again the largest dissipation in the cycle, followed by

the exergy destruction during the compression process. The presence of a pre-cooling cycle

reduces the exergy destruction caused by the heat exchange process in the nitrogen cycle.

This is due to the reduction of the average LMTD’s at the MHEX and HEX when pre-cooling

temperature is -40◦C (as shown in Figure 4.15 in Section 4.4.2).

Pre-cooling cycle is responsible for 21 % of the total exergy destruction and for 9 % of the total

exergy loss.

5.4.1 Multi-Objective Optimisation

Figure 5.6 illustrates the Pareto fronts obtained from the Multi-Objective Optimisation of the

pre-cooling configurations.

The four alternatives are quite close to each other, both in terms of minimum net power

consumption and minimum total UA-value. Propane is the most effective refrigerant for the

pre-cooling phase. Nevertheless this is achieved with the highest heat network conductance

among the considered pre-cooling cycles.

Considering the decision variable distribution along the Pareto fronts similar conclusions

for the four pre-cooling alternatives can be drawn. Nitrogen mass flow rate, expander inlet

temperature and low pressure level in the pre-cooling cycle do not vary and they are all close

to their respective optimal points shown in Tables 5.5 and 5.6.
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Chapter 5. Thermodynamic optimisation of expander-based LNG configurations

Figure 5.6: Pareto fronts for the pre-cooling configurations

Conversely the other decision variables show a large variability. In particular a pre-cooling

temperature as low as -40◦C is beneficial for the minimisation of net power consumption,

while it hits the upper bound of 0◦C for those solutions presenting the minimum total UA-

value. The same trend is observed for the high pressure level in the pre-cooling cycle, which

has to be kept as low as possible if net power consumption has to be minimised. A higher

value for this pressure level goes in the direction of heat transfer area minimisation, as it is

connected to an increase of refrigerant quality at the evaporator inlet, thus to a decrease in

flow rate.

Quite surprisingly the optimal solutions for the minimisation of net power consumption show

a high pressure level on nitrogen side which tends to be closer to the upper bound of 130 bar.

Only the R410A-case achieves the optimum at a nitrogen high pressure lower than 100 bar, as

shown in Table 5.5. Solutions giving a low heat network conductance are instead characterised

by high pressure levels closer to 60 bar.

The analysis of the Pearson partial coefficients indicates that net power consumption is

particularly correlated with the high pressure level on nitrogen side. Values of ρ for N2 high

pressure range from -0.5 in the R410A case to -0.9 in the propane case. Pre-cooling temperature

level shows in general a lower degree of linear correlation (ρ ranging from +0.3 to +0.5).

As to the relation between decision variables and the total heat transfer area, low pressure

levels both on nitrogen side and in the pre-cooling cycles result to be the most correlated

decision variables with values for the Pearson partial coefficient between +0.6 and +0.8.
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5.5. Dual-expander configurations

5.5 Dual-expander configurations

The three dual-expander cycles which are presented in Section 4.6, namely dual-turbine cycle

with different pressure ratio, dual-turbine cycle with the same pressure ratio and two-stage

cycle, are optimised and the optimisation outcome is reported in this Section.

In general terms the relevant decision variables are the pressure levels and flow rate of the

refrigerant, natural gas intermediate temperatures and the split fraction, that is the fraction of

the refrigerant flow rate which is sent to the low-pressure circuit.

Intermediate pressure level is applicable only for those configurations having different pres-

sure ratios for the expanders. For this reason the decision variables for the dual-turbine cycle

with different pressure ratio and the two-stage expansion cycle are presented together in Table

5.8. Table 5.9 shows the same for the dual-turbine cycle with the same expander pressure ratio.

Table 5.8: Decision variables, variation ranges and optimal values for the dual-turbine cycle
with different pressure ratio (on the left) and for the two-stage expansion cycle (on the right)

Decision Unit Range Optimal

variable value

Phigh bar [80 130] 116.5

Plow bar [1 25] 18.5

Pint bar [30 75] 50.8

TNG
int,1 °C [-45 0] -29

TNG
int,2 °C [-100 -50] -73.9

ṁN2 kg/s [5 20] 13.8

Split frac. - [0.05 0.5] 0.36

Decision Unit Range Optimal

variable value

Phigh bar [80 130] 109.2

Plow bar [1 25] 10.1

Pint bar [30 75] 38.9

TNG
int,1 °C [-45 0] -44.4

TNG
int,2 °C [-100 -50] -89

ṁN2 kg/s [5 20] 11.4

Split frac. - [0.05 0.5] 0.29

Table 5.9: Decision variables, corresponding variation ranges and optimal values for the
dual-turbine cycle with the same pressure ratio

Decision Unit Range Optimal
variable value

Phigh bar [80 130] 94.9
Plow bar [1 50] 22.6
TNG

int,1 °C [-45 0] -26.8

TNG
int,2 °C [-100 -50] -94.7

ṁN2 kg/s [5 20] 11.4
Split frac - [0.05 0.5] 0.29

As previously mentioned the presence of a two-stage compression (as in the case of the dual-

expansion cycles with different expander pressure ratio) leads to a larger cycle pressure ratio.

The optimal values for nitrogen flow rate are higher compared to the required flow rates for

single-expander cycles and pre-cooling cycles.
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All the solutions close to the thermodynamic optimum are characterised by similar values for

the decision variables in the three dual-expander configurations.

Table 5.10 shows the comparison between the optimised cycles in terms of net power con-

sumption, heat network conductance and performance indicators.

The dual-turbine cycle with different pressure ratio results to be the best performing among

the dual-expander cycles, closely followed by the two-stage expansion cycle. As discussed in

Section 4.6, the dual-turbine cycle with the same pressure ratio is penalised compared to the

other two alternatives by the single-stage compression process.

The optimisation procedures allows to improve all the considered cycle with respect to the

modelled ones. The largest improvement in terms of net power consumption is achieved with

the two-stage expansion cycle (-4.4 %).

The introduction of a dual-expansion process is found to largely improve the single-expansion

cycle with one compression stage. The best alternative gives a reduction in net power con-

sumption of 42 %, higher than the reduction which can be achieved with the best pre-cooling

alternative.

Table 5.10: Main results and performance indicators for the optimised dual-expander cycles

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

Dual-turbine - different PR 1431 280.0 0.554 1484 29.71
Dual-turbine - same PR 1614 288.1 0.492 1674 26.35
Two-stage expansion 1472 240.0 0.539 1527 28.88

The three optimal dual-expansion cycles are compared in terms of exergy destructions and

losses. Results are presented in Figures 5.7 to 5.9.

Component ĖD ĖL δ

[kW] [kW] [%]

LP Comp 96 - 6.72

HP Comp 220 - 15.37

LP Exp 113 - 7.90

HP Exp 96 - 6.68

MHEX 1 44 - 3.10

MHEX 2 28 - 1.95

HEX 3 96 - 6.69

Cooler 1 - 105 7.36

Cooler 2 - 208 14.53

Mixer < 0.1 - < 0.01

Figure 5.7: Figure of Merit and distribution of exergy destructions and losses for the optimised
dual-turbine cycle with different pressure ratio
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Component ĖD ĖL δ

[kW] [kW] [%]

Comp 315 - 19.50

Exp 1 166 - 10.31

Exp 2 49 - 3.03

MHEX 1 37 - 2.31

MHEX 2 49 - 3.02

HEX 3 38 - 2.33

Cooler - 533 33.06

Mixer 1 - 0.08

Figure 5.8: Figure of Merit and distribution of exergy destructions and losses for the optimised
dual-turbine cycle with the same pressure ratio

Component ĖD ĖL δ

[kW] [kW] [%]

LP Comp 86 - 5.83

HP Comp 226 15.34

LP Exp 59 - 4.02

HP Exp 152 - 10.31

MHEX 1 81 - 5.47

MHEX 2 25 - 1.70

HEX 3 19 - 1.31

Cooler 1 - 130 8.84

Cooler 2 - 269 18.3

Mixer < 0.1 - < 0.01

Figure 5.9: Figure of Merit and distribution of exergy destructions and losses for the optimised
two-stage expansion cycle

The dual-turbine cycle with the same pressure ratio is the alternative presenting the most

efficient heat exchange process at the cold box. Exergy destruction at the cold box amounts to

124 kW (it is 168 kW for the dual-expander cycle with different pressure ratio). In spite of this

it shows the lowest Figure of Merit, mainly due to the high exergy dissipation at the cooler.

For the dual-turbine cycle with different pressure ratio and the two-stage expansion cycle

the exergy destruction at the compressors becomes as impacting as the exergy loss due to

the refrigerant cooling process. Expansion process is ranked third and is found to be slightly

more efficient in the dual-turbine cycle with different pressure ratio, mostly because in this

alternative both HP and LP expanders work with a fraction of the total nitrogen flow rate,

whereas in the two-stage expansion cycle the splitting of refrigerant flow rate takes place after

the first expansion.
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5.5.1 Multi-Objective Optimisation

The Pareto fronts for the three considered dual-expansion configurations are illustrated in

Figure 5.10.

Figure 5.10: Pareto fronts for the dual-expander configurations

The two-stage expansion cycle is the one achieving the optimum in terms of net power con-

sumption with the lowest heat network conductance. The dual-turbine cycle with the same

expander pressure ratio shows not to be convenient as it is the alternative requiring a highest

total heat transfer area without achieving net power consumption levels as low as for the other

two configurations.

The distribution analysis of the decision variables gives some common indications for the

dual-expander configurations. Specifically it is found that the low pressure level of the re-

frigerant and natural gas intermediate temperatures largely vary along the Pareto fronts. If

net power consumption has to be minimised, refrigerant low pressure level has to be kept as

high as possible, while natural gas intermediate temperatures have to be moved towards the

corresponding lower bounds. This way the temperature difference between the refrigerant and

the natural gas in the sub-cooling phase can be reduced and with that net power consumption.
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5.5. Dual-expander configurations

As to the Pearson partial linear coefficients, it is found that net power consumption is highly

correlated with the refrigerant low pressure level, with a coefficient ρ of -0.9 in the case of

dual-turbine cycle with different pressure ratio and of -0.4 in the case of dual-turbine cycle

with the same pressure ratio. As the low pressure level increases, the cycle pressure ratio

decreases and with that the required power consumption. Net power consumption is also

found to increase whether nitrogen flow rate increases (ρ of +0.8 for the dual-turbine cycle

with different pressure ratio) or natural gas first intermediate temperature increases (ρ of +0.6

in the two-stage expansion cycle).

The total heat transfer area is found particularly correlated with the intermediate pressure

level (ρ of +0.4 for the first dual-turbine alternative and of +0.6 for the third) and with natural

gas first intermediate temperature level (ρ of -0.5 for the second dual-turbine configuration).
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5.6 Dual-refrigerant configurations

Dual-refrigerant configurations are presented in Section 4.7. They are characterised by the use

of two refrigerants in separate loop, namely nitrogen and methane or nitrogen and natural gas

itself, the latter being known as Niche cycle.

For the sake of thermodynamic optimisation dual-refrigerant configurations are generally

two separate single-expander cycles, each of them implementing an inter-cooled two-stage

compression with the mechanical coupling between Low-Pressure compressor and the ex-

pander. Therefore the decision variables for each of the refrigerant loops are analogous to the

ones presented in Section 5.3.2 with the addition of the natural gas intermediate temperature,

which is the natural gas temperature after the first refrigerant loop.

Niche cycle differs from this approach for the absence of the low pressure level on natu-

ral gas side. As explained in Section 4.7.3 the intermediate pressure level has to coincide

with natural gas feed pressure (33 bar), hence the low pressure level is constrained such that

the expander power production coincides in absolute terms with LP compressor consumption.

Tables 5.11 and 5.12 list the decision variables for the three analysed dual-refrigerant configu-

rations with the corresponding variation ranges and optimal values.

For the first dual-refrigerant alternative, namely N2 sub-cooling dual-refrigerant cycle, inter-

mediate pressure levels are 21.5 bar on nitrogen side and 30.9 bar on methane side.

Intermediate pressure levels are 37.3 bar on nitrogen side and 3.3 bar on methane side in the

CH4 sub-cooling dual-refrigerant case.

For the Niche cycle intermediate pressure level on nitrogen side is 16.4 bar, while low pressure

level on natural gas side is 24.5 bar.

Table 5.11: Decision variables, corresponding variation ranges and optimal values for N2

sub-cooling (on the left) and CH4 sub-cooling (on the right) dual-refrigerant configurations

Decision Unit Range Optimal

variable value

Phigh,N2
bar [60 90] 74.8

Phigh,CH4
bar [60 90] 85.8

Plow,N2
bar [5 30] 13.8

Plow,CH4
bar [5 30] 19.1

Tin
exp,N2

°C [-100 -50] -81.1

Tin
exp,CH4

°C [-50 0] -24.8

TNG
int °C [-120 -20] -98.3

ṁN2 kg/s [1 5] 3.0

ṁCH4 kg/s [1 5] 3.8

Decision Unit Range Optimal

variable value

Phigh,N2
bar [60 130] 77.4

Phigh,CH4
bar [2.5 20] 13.2

Plow,N2
bar [1 30] 22.7

Plow,CH4
bar [0.1 2] 1.9

Tin
exp,N2

°C [-100 0] -32.4

Tin
exp,CH4

°C [-130 -80] -86.4

TNG
int °C [-120 -20] -87.4

ṁN2 kg/s [1 8] 7.4

ṁCH4 kg/s [1 8] 2.5
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Table 5.12: Decision variables, corresponding variation ranges and optimal values for Niche
cycle

Decision Unit Range Optimal
variable value

Phigh,N2
bar [60 90] 85.5

Phigh,NG bar [30 80] 42.9
Plow,N2

bar [1 30] 8.4
Tin

exp,N2
°C [-100 0] -51.8

Tin
exp,NG °C [-15 0] -2.3

TNG
int °C [-50 -20] -31.9

ṁN2 kg/s [5 12] 6.8
ṁNG

3 kg/s [1.1 5] 3.1

As for all the previous expander-based configurations, solutions close to the thermodynamic

optimum are characterised by similar values of decision variables.

Looking at the optimal values for the decision variables it can be observed that for closed-loop

configurations the optimisation algorithm tends to push natural gas intermediate temperature

towards the lower bound of its variation range, confirming what was discussed in Section 4.7.

Moreover it is interesting to notice that for the CH4 sub-cooling alternative the optimiser gives

a solution in which low pressure on methane side is above atmospheric level.

Table 5.13 reports the comparison of the optimised dual-refrigerant configurations in terms of

net power consumption, total UA-value and performance indicators.

N2 sub-cooling results the most efficient among the considered dual-refrigerant configura-

tions and among all the expander-based cycles. With respect to the optimised single-expander

cycle with one compression stage it allows a reduction in net power consumption of almost

48 %. Furthermore it is confirmed that Niche cycle is not an interesting alternative as it per-

forms worse than the optimised dual-refrigerant, dual-expander and sub-critical pre-cooling

configurations.

Table 5.13: Main results and performance indicators for the optimised dual-refrigerant cycles

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

N2 sub-cooling 1288 285.9 0.616 1336 33.02
CH4 sub-cooling 1429 342.2 0.555 1482 29.76
Niche 1758 277.1 0.450 1828 24.18

3Total natural gas mass flow rate, i.e feed flow rate (1 kg/s) plus recirculated flow rate.
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Comparing the optimised results with those obtained during the modelling stage substan-

tial improvements are brought by the thermodynamic optimisation for all the three dual-

refrigerant alternatives. The highest reduction in net power consumption occurs for N2

sub-cooling cycle (-18.5 %, -5.2 % when considering the modelled alternative with lowered

natural gas intermediate temperature).

Figures from 5.11 to 5.13 illustrate the distribution of exergy destructions and losses in the

three optimised dual-refrigerant configurations.

Component ĖD ĖL δ

[kW] [kW] [%]

N2 LP Comp 25 - 1.97

N2 HP Comp 73 - 5.64

N2 Exp 67 - 5.17

CH4 LP Comp 58 - 4.49

CH4 HP Comp 120 - 9.35

CH4 Exp 107 - 8.33

MHEX 1 51 - 3.95

HEX 2 39 - 2.99

HEX 3 28 - 2.20

HEX 4 15 - 1.18

N2 Cooler 1 - 10 0.79

N2 Cooler 2 - 109 8.46

CH4 Cooler 1 - 23 1.78

CH4 Cooler 2 - 138 10.68

Figure 5.11: Figure of Merit and distribution of exergy destructions and losses for the optimised
N2 sub-cooling dual-refrigerant cycle

Component ĖD ĖL δ

[kW] [kW] [%]

N2 LP Comp 70 - 4.88

N2 HP Comp 104 - 7.25

N2 Exp 127 - 8.88

CH4 LP Comp 48 - 3.36

CH4 HP Comp 114 - 7.96

CH4 Exp 124 - 8.69

MHEX 1 38 - 2.69

HEX 2 23 - 1.59

HEX 3 22 - 1.53

HEX 4 53 - 3.69

N2 Cooler 1 - 33 2.31

N2 Cooler 2 - 88 6.14

CH4 Cooler 1 - 20 1.42

CH4 Cooler 2 - 141 9.85

Figure 5.12: Figure of Merit and distribution of exergy destructions and losses for the optimised
CH4 sub-cooling dual-refrigerant cycle
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Component ĖD ĖL δ

[kW] [kW] [%]

N2 LP Comp 88 - 4.95

N2 HP Comp 219 - 12.29

N2 Exp 248 - 13.88

NG LP Comp 17 - 0.98

NG HP Comp 22 - 1.25

NG Exp 22 - 1.23

MHEX 1 7 - 0.38

HEX 2 3 - 0.19

HEX 3 30 - 1.67

HEX 4 171 - 9.6

N2 Cooler 1 - 58 3.25

N2 Cooler 2 - 454 25.42

NG Cooler 1 - 4 0.22

NG Cooler 2 - 6 0.34

Loss - 3 0.17

Figure 5.13: Figure of Merit and distribution of exergy destructions and losses for the optimised
Niche cycle

For the close-loop dual-refrigerant alternatives the exergy destruction connected to the com-

pression process is as impacting as the exergy dissipated for refrigerant cooling. The expansion

process is generally ranked third and it is observed that the largest irreversibility takes place in

the pre-cooling cycle expander. The exergy lost at the coolers is considerably smaller com-

pared to the previous expander-based configurations, mainly due to the comparatively lower

refrigerant temperature at compressor outlets.

As already pointed out, Niche cycle is penalised compared to the other dual-refrigerant alterna-

tives by the large temperature difference occurring at the last heat exchanger (nitrogen-natural

gas heat exchanger). Moreover in Figure 5.13 an additional exergy loss is introduced. As

discussed in Section 4.7.3 the liquefied natural gas exits the cold box at a higher pressure com-

pared to all other expander-based cycles (42.9 bar against 33 bar). In order to fairly compare

the different configurations the physical exergy difference linked to this pressure difference is

regarded as an exergy loss.
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5.6.1 Multi-Objective Optimisation

Figure 5.14 illustrates the Pareto fronts for the analysed dual-refrigerant configurations.

Figure 5.14: Pareto fronts for the dual-refrigerant configurations

Having methane active in the lower temperature range is less beneficial than having nitro-

gen. In fact a smaller net power consumption can be achieved with the N2 sub-cooling case.

Moreover the optimal point in terms of net power consumption is achieved with a lower

requirement in terms of heat transfer area. This is due to the lower UA-value at the nitrogen-

nitrogen heat exchanger compared to the methane-methane case.

Analysing the distribution of the decision variables along the Pareto fronts, it can be observed

that for all the three dual-refrigerant alternatives refrigerants’ low pressure and expander

inlet temperature show a remarkable variability. Similarly to what already discussed for other

expander-based configurations, the low pressure level for both refrigerants is found to be

higher at the left end of the Pareto fronts (minimum net power consumption) while it hits

the lower bound of its variation range on the right end (minimum heat transfer area). The

opposite happens with refrigerants’ expander inlet temperature.

Some differences can also be highlighted. For instance in the N2 sub-cooling case all the

solutions show a similar value of natural gas intermediate temperature and of refrigerants’

flow rates. This is not the case for the CH4 sub-cooling configuration, in which natural gas

intermediate temperature is found to move towards the lower bound of its variation range as

the Pareto front is followed from the left to the right, i.e. as net power consumption increases.

The same happens with refrigerants’ flow rates.
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Conversely in the Niche cycle the variation of natural gas intermediate temperature along

the Pareto front is opposite, that is a natural gas intermediate temperature as high as -20◦C

characterises those solutions minimising the required heat transfer area.

The analysis in terms of Pearson partial coefficients confirms what observed about the deci-

sion variable distribution.

For N2 sub-cooling dual-refrigerant cycle the net power consumption is negatively correlated

with nitrogen low pressure level (ρ of -0.9) and nitrogen temperature at the expander inlet (ρ

of -0.7). An increase in both these decision variables leads to a closer match of the temperature

profiles, thus to a lower net power consumption.

Respecting the trade-off between net power consumption and heat transfer area, the total

UA-value is positively correlated with low pressure level and temperature at the expander inlet

on methane side (ρ of +0.6 for both decision variables). Moreover methane high pressure level

shows a Pearson partial coefficient of -0.4 with respect to the total UA-value.

When considering the CH4 sub-cooling alternative the net power consumption is found highly

correlated with methane high pressure level (Pearson partial coefficient of +0.6). The total

UA-value is confirmed to be positively correlated with methane and nitrogen low pressure

levels (ρ of +0.8 and +0.9, respectively) and is found negatively correlated with refrigerants’

flow rates (ρ of -0.8).

In the case of Niche cycle the net power consumption is perfectly linearly correlated with

nitrogen low pressure level. A high negative correlation is recorded with nitrogen tempera-

ture at the expander inlet (ρ of -0.8). Pearson partial linear coefficients are generally lower

when considering the total heat transfer area. The total UA-value presents a positive linear

correlation with nitrogen low pressure level (ρ of +0.5).
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5.7 Discussion

This Chapter presents the results from the thermodynamic optimisation of thirteen different

expander-based configurations for natural gas liquefaction.

The aim is to understand which design improvements can be adopted and to quantify their

influence in terms of net power consumption and, at a later stage, of required heat transfer

area. The need for a rigorous optimisation procedure through a genetic algorithm is justified

by the relatively high number of decision variables that expander-based cycles present, usually

pressure, temperature levels and refrigerant flow rates. As a remark, when comparing the

optimisation outcome with the modelling results (presented in Chapter 4) it can be seen that

all the optimised models perform better than the modelled ones. Moreover close-loop dual-

refrigerant configurations overcome the dual-expander cycles in terms of thermodynamic

performance.

The base case is the single-expander cycle with one compression stage, which achieves a net

power consumption of 2475 kW. With respect to this, the design improvements that can be

pursued are listed in Table 5.14 and discussed below.

Table 5.14: Summary of the Single-Objective Optimisation results for the developed models

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

Single-expader - one comp. stage 2475 137.4 0.320 2568 17.18
Two-stage comp. (no coupling) 1796 133.8 0.441 1863 23.67
Two-stage comp. (with coupling) 1945 135.3 0.408 2018 21.86

R410A pre-cooling 1626 153.9 0.488 1687 26.14
Propane pre-cooling 1559 176.2 0.509 1617 27.27
Sub-critical CO2 pre-cooling 1711 169.1 0.464 1774 24.85
Super-critical CO2 pre-cooling 1772 154.6 0.448 1838 24.00

Dual-turbine - different PR 1431 280.0 0.554 1484 29.71
Dual-turbine - same PR 1614 288.1 0.492 1674 26.35
Two-stage expansion 1472 240.0 0.539 1527 28.88

N2 sub-cooling 1288 285.9 0.616 1336 33.02
CH4 sub-cooling 1429 342.2 0.555 1482 29.76
Niche 1758 277.1 0.450 1828 24.18

• Adopting an inter-cooled two-stage compression reduces the power consumption by

27 %. If Low-Pressure compressor is driven by the expander this reduction is lower, but

fewer equipment is required. From a thermodynamic viewpoint it can be concluded

that inter-cooled multi-stage compression design should be implemented.

• Pre-cooling of natural gas is beneficial and leads to a 37 %-saving in net power consump-

tion. Pre-cooling cycle should cover a larger share of natural gas cooling load. Limitation

to that is given by the pre-cooling refrigerant’s saturation pressure and volume flow rate.

• Adopting a dual expansion process reduces net power consumption by 42 % for the best

dual-turbine cycle.
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5.7. Discussion

• The highest benefit is recorded when choosing a dual-refrigerant cycle in which both

refrigerants are used in closed loops. Nitrogen is confirmed to be more suitable than

methane for natural gas cooling at lower temperature range. Net power consumption is

reduced by 48 % with respect to the base case.

First and foremost it has to be said that further reductions in power consumption could have

been achieved by coupling two design improvement steps, i.e. dual expansion with a pre-

cooling cycle or pre-cooling single-expander cycle with inter-cooled two-stage compression.

As an example He et al. [70] investigate and optimise a dual-turbine cycle with different

pressure ratio adding R410A pre-cooling and inter-cooled three-stage compression, achieving

a Figure of Merit of 56 %. This is not covered in the present work and could represent a future

development of it. However this goes in the direction of a more complex cycle design, which is

usually avoided for small-scale liquefaction plants.

It could also be argued that the dual-refrigerant alternatives perform the best as they com-

bine the dual-refrigerant concept with the inter-cooled two-stage compression process. This

modelling choice is adopted as these cycles are designed in such a way in "real-life" applica-

tions. Moreover the inter-cooled two-stage compression is also implemented in some of the

considered dual-expander configurations, therefore the provided ranking is considered robust.

Comparing the obtained results with the ones presented in the literature some differences can

be highlighted.

For instance He et al. [41] claim that R410A is the most effective pre-cooling refrigerant,

whereas in this work it is found that propane achieves the best performance. This difference

originates from the variation range which is set for the pre-cooling temperature, as the authors

set a lower bound of -44◦C for R410A and of -37◦C for propane. On one side this penalises the

propane alternative, on the other hand it avoids having sub-atmospheric refrigerant in the

pre-cooling cycle, a condition which is not required and fulfilled in the present work.

As to dual-expander cycles, Khan et al. [43] achieve a unit energy consumption of 2700

kJ/kg for the base-case single-expander cycle and of 1800 kJ/kg for the dual-turbine cycle

with different pressure ratio (relative difference of -33 %). Values are slightly higher than

the ones achieved in this work, mainly because authors select lower isentropic efficiency

for the turbo-machinery (0.75 for both compressors and expanders) and a lower natural gas

outlet temperature (-158.5◦C). This difference is however mitigated by the presence of an

inter-cooled four-stage compression process.

Dual-turbine cycle with different pressure ratio is the best dual-expander alternative also in

the work of Chang et al. [60]. However the same authors show that dual-expander alternatives

achieve improvements in Figure of Merit of 15 % compared to the single-expander cycle,

slightly higher than what found in the present work. They select a lower expander isentropic

efficiency (0.8) but they consider a richer natural gas feed, which liquefaction is shown to

be less energy intensive. Moreover the same authors find that the two-stage expansion cycle

performs slightly worse than the dual-turbine cycle with the same pressure ratio. Therefore

further investigation could be performed about these aspects.
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Chapter 5. Thermodynamic optimisation of expander-based LNG configurations

An exergy analysis in terms of components’ rational efficiency defects is performed on the

optimal cycle designs. The exergy dissipated to the ambient due to the cooling process of the

refrigerant is the largest loss. Waste heat could be utilised e.g. for district heat purposes as

the refrigerant temperature at compressor outlets is usually higher than 100◦C. Compression

process shows the largest fraction of exergy destruction, followed by the refrigerant expansion.

Exergy destruction at the cold box is linked to the spread of the temperature profiles, hence it

tends to become less and less impacting as the single-expander cycle with one compression

stage is improved. An overview of the exergy destructions (at compressors, expanders and

cold box heat exchangers) and losses (at refrigerant coolers) is given in Figure 5.15.

Figure 5.15: Exergy destructions and losses grouped per component category for the optimised
expander-based configurations

Overall compression is the process responsible for the largest exergy destruction, followed

by expansion and cold box heat exchange. This ranking is confirmed in the literature ([42],

[70]). The exergy loss at the cooler is significantly influenced by the assumed refrigerant

outlet temperature and is generally more impacting in less efficient cycles, whereas in the best

alternatives it impacts less than the thermodynamic efficiency of compressors.

The trade-off between net power consumption and required heat transfer area is illustrated

by means of Pareto fronts. In the Chapter they are presented per category of expander-based

configurations. Additionally Figure 5.16 shows all the Pareto fronts in one single graph in

order to remark how reductions in net power consumption are achieved at the expense of total

UA-value.
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5.8. Conclusion

Figure 5.16: Pareto fronts for the thirteen analysed expander-based configurations grouped
according to the followed categorisation

The trade-off is also highlighted by the statistical analysis in terms of decision variable dis-

tribution and Pearson partial linear coefficients. The most recurring result is the negative

correlation between refrigerant’s (or refrigerants’) low pressure level with net power consump-

tion, whereas the required heat transfer area is positively correlated with the same decision

variable.

5.8 Conclusion

Thermodynamic optimisation is performed on the modelled expander-based configuration

with the aim of minimising net power consumption and to find the thermodynamic optimal

design for each of them. Results show that the N2 sub-cooling dual-refrigerant cycle is the most

efficient cycle, achieving a Figure of Merit of 33 %. Correspondingly net power consumption is

reduced by 48 % with respect to the single-expander cycle with one compression stage.

Multi-Objective Optimisations are included in order to highlight the trade-off between power

consumption and required heat transfer area, the latter through the total UA-value for the

liquefaction cycle. As a result, for the expander-based concept net power consumption is

found to range between 1300 and 8000 kW, while heat network conductance can range between

50 and 300 kW/K.
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6 Economic analysis of expander-based
LNG configurations

This Chapter presents the economic analysis performed on the developed and

optimised expander-based models. Its aim is to identify the most promising

alternatives from an economic point of view which will be used for the compari-

son with other liquefaction concepts hereafter.

The main economic figures are calculated for each configuration in the thermo-

dynamic optimal design. Two sizes for the liquefaction facility are considered

and the economic ranking is obtained accordingly. The most influencing pa-

rameters are identified through a series of sensitivity analyses.

6.1 Introduction

The tool OSMOSE allows to retrieve output data from Aspen simulations and use them as input

for further analyses. The performed economic evaluation is based on this concept through

the use of cost functions which translate a thermodynamic value into a monetary figure for

the liquefaction cycle.

The starting point is the set of optimal designs which are obtained through the rigorous

thermodynamic optimisation presented in Chapter 5. As extensively discussed in the literature,

the economic optimum may not coincide with the thermodynamic optimum given the trade-

off between power consumption and heat transfer area. In light of this, the choice of comparing

the expander-based configurations in their optimal design is discussed further in this Chapter.

Following the present introduction, the applied methodology is presented as well as the main

data and cost assumptions. Successively the thirteen expander-based configurations are

ranked according to the three economic performance indicators introduced in Section 3.4.1,

namely Unitary Profit (UP), Net Present Value (NPV) and Adjusted Pay-Back Time (APBT).

Finally a series of sensitivity analyses is presented to highlight the most influencing parameters

on the economic analysis outcome.
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Chapter 6. Economic analysis of expander-based LNG configurations

6.2 Methodology and data assumptions

The economic analysis is set up for two different plant sizes, a small-scale plant size and a

large-scale plant size.

The Danish Maritime Authority considers in [10] a throughput of 52000 m3/yr for a small-scale

liquefaction facility, and of 343000 m3/yr for a large-scale one (volume flow rates are given at

LNG storage conditions). Given the assumptions on natural gas side (discussed in Section 4.3)

this translates into a natural gas feed flow rate of 0.8 kg/s for the small-scale case and of 5.5

kg/s for the large-scale case.

Again according to the Danish Maritime Authority report, a lifetime of 40 years is considered

for both plant sizes. Availability factor of 95 % is assumed considering that LNG facilities are

intended for ship bunkering.

6.2.1 Determination of the main economic figures

The economic analysis of natural gas liquefaction configurations is performed according to the

Module Costing Technique (MCT) which is extensively used for preliminary cost estimations

of chemical plants [71]. According to this approach all direct and indirect costs are related to

the purchased cost of equipment evaluated at some base conditions, C 0
P, as a function of the

capacity parameter A.

log10 C 0
P = k1 +k2 log10 A+k3

(
log10 A

)2 (6.1)

This is then adjusted for the actual operating conditions of the equipment, in terms of e.g.

working pressure, and for the construction material, obtaining the actual purchased cost of

equipment.

All the expenses directly and indirectly related to the equipment, such as transportation costs,

civil works, labour and materials for installation, piping, insulation and electrical equipment,

are accounted in the so-called Bare Module Cost Factor, FBM. If the Bare Module Cost Factor

contains the multiplying factors accounting for construction material (FM) and working

pressure (FP), the Bare Module Equipment Cost CBM is calculated as in Equation 6.2.

CBM =C 0
P ·FBM (6.2)

In this work the Bare Module Equipment Cost for centrifugal compressors, radial expanders,

compressor electric drives, refrigerant coolers and phase separators is calculated applying the

correlations given by Turton et al. [71], rescaling the obtained value using the CEPCI index for

2014 (equal to 576.1) in order to estimate the current price from the 1998 one (CEPCI index

equal to 382) [72]. Details of applied correlations can be found in Appendix E together with

the Matlab scripts used for their implementation.

cost data for Multiple-Stream and two-stream Heat Exchangers are provided by SWEP for

flat-plate heat exchangers. The same data are assumed valid for plate-fin heat exchangers.

The Bare Module Cost Factor given by Turton et al. for flat-plate heat exchangers is applied.
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6.2. Methodology and data assumptions

The Total Capital Investment (TCI) is calculated as in Toffolo et al. [73].

TCI = 1.18
n∑
i

CBM,i (6.3)

where 1.18 is assumed to be the Bare Module Cost Factor for contingencies and fees.

As to the Operation and Maintenance cost the following inputs are applied:

• plant maintenance is set to be 2 % of the Total Capital Investment [10];

• natural gas feed price is set equal to 14.85AC/MWh as suggested by Kosan Crisplant A/S;

• electricity price is 8.79 cAC/kWh as in the third EU Quarterly Report on 2015 European

Electricity Markets for Danish industrial consumers [74]. Electricity consumption is

given by the total compressor power requirement, thus expander power production is

disregarded;

• LNG price is assumed to be 28AC/MWh as suggested by Kosan Crisplant A/S;

• cost data for working fluids are reported in Table 6.1.

Table 6.1: Cost data for working fluids

Fluid Cost Reference
[$/kg]

Nitrogen 3.5 [75]
R410A 227.9 [76]
Propane 103.6 [76]
CO2 51.8 [76]
Methane 103.6 assumption

As stated by Kosan Crisplant A/S, natural gas feed and LNG prices are based on Higher Heating

Value. Given the considered feed composition and the assumption on flashing end pressure,

HHV is 54.45 MJ/kg for the natural gas feed and 54.54 MJ/kg for the produced LNG. These

values are calculated by Aspen Plus. Natural gas feed price does not include PSO taxes as the

liquefaction facility is not the gas end-user.

For the working fluids a Bare Module Factor of 1.25 is assumed to take into consideration

installation costs [73].

The economic figures are calculated in Danish Krone (DKK). Conversion factors for Euro and

Dollar are 7.45 and 6.6, respectively [77].
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Chapter 6. Economic analysis of expander-based LNG configurations

6.2.2 Estimation of heat exchanger area and U-values

A separate Section of the methodology has to deal with the estimations of heat exchanger area

and the overall heat transfer coefficient, U .

Aspen Plus calculates the UA-values for Multiple-Stream and two-stream Heat Exchangers

by discretisation of the heat exchanger into finite control volumes. Therefore the U-value

has to be estimated in order to obtain a sensible value for the heat transfer area to be used in

cost correlations. This estimation is performed using SWEP software [78] by implementing

temperature and pressure conditions for the heat exchange fluids as in the optimised models.

Average values are considered. Pressure drops are requested by the software as input data and

are set equal to 1 % of the gas pressure, as this is the usual range in process specifications [79].

Table 6.2 reports the U-values in W/m2K for the different heat exchange possibilities. Methane

is analysed both in medium- and low-pressure conditions (15 bar and 3 bar, respectively)

given the differences in its low pressure level between the N2 sub-cooling and CH4 sub-cooling

dual-refrigerant cases.

Table 6.2: U-values in W/m2K for the different heat exchange possibilities

Cold-side fluid Hot-side fluid
Gaseous Condensing Liquid

Nitrogen Methane hydrocarbon hydrocarbon hydrocarbon

Nitrogen - medium pressure 250 - 225 400 550
Methane - medium pressure - 375 375 750 750
Methane - low pressure - 80 80 100 150

For Multiple-Stream Heat Exchangers the lowest U-value among the applicable fluid pairs

is selected. For those two-stream Heat Exchangers having natural gas on the hot side, the

U-value is computed taking into consideration natural gas inlet and outlet quality.

The approach is necessarily different for refrigerant coolers (and condensers, when applicable)

given the fact that they are modelled as heat exchange devices with only one stream, therefore

the UA-value is not calculated by Aspen Plus. For the sake of economic analysis, the heat

transfer area for refrigerant coolers is directly computed using SWEP software assuming a

flat-plate heat exchanger design. Details are provided in Appendix E.1

1Alternatively the coolers could have been replaced by two-stream HEX’s with water as cold-side fluid entering
at 10◦C and exiting at 40◦C. Expected film coefficients are in the range of 2200 W/m2K for water and 400 W/m2K
for high-pressure nitrogen and methane.
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6.3. Results

6.3 Results

Table 6.3 presents the main economic figures and performance indicators for the small-scale

expander-based configurations. The same is shown in Table 6.4 for the large-scale case. Yearly

revenues are 73 Million DKK (MDKK) for the small-scale configurations and 502 MDKK for the

large-scale ones. They do not vary with the configuration as revenues only depend on LNG

price, liquefaction rate and availability factor.

Table 6.3: Total Capital Investment, O&M cost and economic performance indicators for
small-scale expander-based configurations

TCI O&M UP NPV APBT
[MDKK] [MDKK/year] [DKK/kgLNG] [MDKK] [years]

Single-expander - one comp. stage 115 56 0.321 89 10.1
Two-stage comp. (no coupling) 99 53 0.520 143 6.4
Two-stage comp. (with coupling) 104 51 0.591 163 6.0
R410A pre-cooling 84 51 0.651 179 4.7
Propane pre-cooling 80 50 0.683 188 4.4
Sub-critical CO2 pre-cooling 85 51 0.633 174 4.9
Super-critical CO2 pre-cooling 88 52 0.606 167 5.2
Dual-turbine - diff. PR 87 51 0.646 178 4.9
Dual-turbine - same PR 92 52 0.587 162 5.5
Two-stage expansion 89 51 0.626 173 5.1
N2 sub-cooling 80 47 0.822 227 3.7
CH4 sub-cooling 105 48 0.684 188 4.4
Niche 102 50 0.630 173 5.7

Table 6.4: Total Capital Investment, O&M cost and economic performance indicators for
large-scale expander-based configurations

TCI O&M UP NPV APBT
[MDKK] [MDKK/year] [DKK/kgLNG] [MDKK] [years]

Single-expander - one comp. stage 732 383 0.362 685 8.8
Two-stage comp. (no coupling) 599 361 0.572 1084 5.4
Two-stage comp. (with coupling) 636 347 0.642 1216 5.2
R410A pre-cooling 519 349 0.688 1303 4.1
Propane pre-cooling 495 346 0.721 1366 3.8
Sub-critical CO2 pre-cooling 530 351 0.669 1267 4.3
Super-critical CO2 pre-cooling 551 354 0.640 1213 4.6
Dual-turbine - diff. PR 530 348 0.692 1311 4.2
Dual-turbine - same PR 585 355 0.616 1168 5.0
Two-stage expansion 551 350 0.666 1262 4.5
N2 sub-cooling 470 324 0.874 1656 3.1
CH4 sub-cooling 611 331 0.755 1431 4.4
Niche 618 341 0.683 1291 4.8
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It can be noticed that Unitary Profits increase passing from small scale to large scale. Conse-

quently the Adjusted Pay-Back Time decreases. This is expected as the liquefaction facilities

benefit from economies of scale.

For both sizes the three most promising configurations are, in order, N2 sub-cooling dual-

refrigerant cycle, CH4 sub-cooling dual-refrigerant cycle and propane pre-cooled single-

expander cycle. The least favourable alternative is the single-expander cycle with one com-

pression stage.

The threshold LNG price is calculated as the minimum sale price to get a zero-NPV. It is

maximum for the least convenient alternative, being around 185 DKK per kg of produced LNG

(i.e. 24.8AC), and minimum for the N2 sub-cooling dual-refrigerant cycle (approximately 150

DKK per kg of LNG, corresponding to 20AC). This translates into a LNG-to-NG price threshold

ratio between 1.4 and 1.7, depending on configuration and size.

Overall it can be inferred that those configurations achieving the lowest net power consump-

tion are the ones yielding the best economic results. Nevertheless some cases deviate from this

general trend. Propane pre-cooling cycle results to be more favourable than dual-expander

configurations given the fewer equipment. Moreover the two-stage compression cycle with

mechanical coupling between LP compressor and expander is more advantageous than the

one without coupling due to the electricity saving at the Low-Pressure compressor.

6.3.1 Sensitivity analyses

A series of sensitivity analyses is performed. The influence of natural gas, electricity and LNG

prices is assessed here and the applied parameter variation is reported in Table 6.5. One

parameter is changed at the time. The influence of maintenance cost, U-values and cost of

working fluids is also assessed but is not reported as these parameters are found not to be as

influencing2.

Table 6.5: Parameter variation for the conducted sensitivity analyses

Parameter Unit Base case High case: +10% Low case: -10%

NG price [€/MWh] 14.85 16.335 13.365
Electricity price [c€/kWh] 8.79 9.67 7.91
LNG price [€/MWh] 28 30.8 25.2

Results are displayed in Figures 6.1 to 6.3 reporting the Unitary Profit percentage variation

corresponding to a ±10 % variation of the input parameter. Given the high number of configu-

rations which have to be evaluated, spider plots illustrate only the maximum and minimum

output percentage variation. All the intermediate cases fall within the shaded area.

2If maintenance passes from 2 % to 3 % of the Total Capital Investment (relative increase of +50 %), a decrease in
Unitary Profit occurs ranging between -15 % and -4 %. Moreover a 10 %-variation in U-values and cost of working
fluids has an almost negligible effect on Unitary Profits (percentage variations smaller than 1 % for all cases).
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Results show that the boundary cases are always the single-expander cycle with one compres-

sion stage and the N2 sub-cooling dual-refrigerant cycle, the former being more influenced

than the latter by the variations in natural gas, electricity and LNG prices. Though similar, the

variations are slightly smaller for the large-scale cases. This is due to the economy of scale

effect which favours large-scale configurations and makes less impacting a change in the

investigated input parameters.

Figure 6.1: Results from natural gas price sensitivity

Figure 6.2: Results from electricity price sensitivity

Figure 6.3: Results from LNG price sensitivity
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LNG sale price is the most influencing parameter. Considering the small-scale case, a 10%

increase in LNG price results in a Unitary Profit increase of 38.5 % for the most promising

configuration, of 98.4 % for the worst performing one. Values for the large-scale case are 36

% and 87 %, respectively. Natural gas feed price is ranked second (Unitary Profit variations

between ±20 % and ±50 %), while electricity price is the least influencing parameter (Unitary

Profit variations between ±3 % and ±18 %). They affect Unitary Profit in an opposite way

compared to LNG price, as they contribute to the O&M cost for the liquefaction facility.

6.4 Discussion

This Chapter presents the economic analysis of the developed expander-based models for

LNG production and ranks them according to the three considered economic performance

indicators. Unitary Profits varying from 0.32 DKK/kgLNG to 0.87 DKK/kgLNG are obtained,

depending on the configuration and on the size.

Very little is found in the literature about economic analysis and in most cases this aspect

is addressed by investigating the trade-off between power consumption and heat transfer

area, which partly reflects the trade-off between investment and operation cost, as the capital

expenditure may be dominated by the turbo-machinery cost.

Economic figures are determined combining thermodynamic results with cost functions,

which reliability is therefore crucial to obtain sensible results. The correlations given by Turton

et al. are widely applied for preliminary cost estimation of chemical plants. Nevertheless they

may be unsuitable given the peculiarities of a cryogenic application like natural gas lique-

faction. Moreover an important simplification is introduced when applying flat-plate heat

exchanger cost correlation to Multiple-Stream plate-fin heat exchangers, which correlations

are not well developed and not found in the literature.

In the present study many simplifications are adopted in the Discounted Cash Flow analysis.

For instance, no tax and financial considerations are included. The choice of a 8 %-discount

rate may be argued as well, since the industry-related risk for a small-scale LNG facility can

contribute to a considerable increase in the cost of capital. In light of these simplifications the

aim of this analysis is not to give a realistic indication about the economic profitability of a

LNG production facility in the Danish context, but rather to couple thermodynamic results

with economic data to further understand the interplay between them.

As an example it is found that coupling a booster compressor with the expander is not ther-

modynamically convenient, but is economically favourable, as the booster compressor does

not need an electric motor and its power consumption is fully provided by the expander.

Moreover the simpler design of pre-cooling configurations determines the economic superior-

ity of small-scale R410A and propane pre-cooled cycles over the dual-expander configurations.

Sensitivity analyses are performed applying the same percentage variation on the three main

economic inputs, namely natural gas feed, electricity and LNG prices. This is done with the
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aim of providing the mathematical sensitivity of economic results given the identical percent-

age variation on the inputs. This way the reader is made aware that LNG price is the most

influencing parameter on the economic outcome. However this approach disregards the real

variations that can be experienced by a liquefaction facility.

For instance LNG price is claimed to be highly variable. Kosan Crisplant A/S suggests a possible

variation range between 28 and 40AC/MWh, while the Danish Maritime Authority in [10] builds

three LNG price scenarios in which the lower bound is 32 AC/MWh and the upper one is 48

AC/MWh. The choice of 28AC/MWh is therefore conservative.

Conversely it is expected that electricity price is the least variable input given the fact that

liquefaction facilities are large power consumers and they are likely to have special supply

contracts.

Natural gas price for the liquefaction facilities is the spot market price. A variation range of

±10 % with respect to the base case of 14.85AC/MWh covers the fluctuations of the spot market

price observed from December 2015 to June 2016, as in Figure 6.4.

Figure 6.4: Evolution of natural gas spot market price inAC/MWh [80]

As aforementioned, performing the economic comparison on thermodynamic optimum cycles

is a key assumption. This might be unfair as the economic optimum is likely not to coincide

with the thermodynamic one. To understand that, a series of Multi-Objective Optimisations

is performed on the least and the most economically favourable alternatives with the aim of

simultaneously minimising compressor and heat exchange network investment costs. Results

are displayed in Figure 6.5 for the single-expander cycle with one compression stage and in

Figure 6.6 for the N2 sub-cooling dual-refrigerant cycle.

As expected compressor investment cost increases together with power consumption, while

the investment cost relative to the heat exchange network decreases. However it can be seen

that compressor cost is much higher than the investment in heat exchangers for all cases.

Given the same increase in net power consumption, the increase in investment associated to

the compressors is one order of magnitude greater than the decrease in investment relative to

heat exchangers.
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Figure 6.5: Results from the Multi-Objective Optimisations on the single-expander cycle with
one compression stage for the small-scale (left) and large-scale (right) case. HEX investment
cost is reported on the secondary vertical axis

Figure 6.6: Results from the Multi-Objective Optimisations on the N2 sub-cooling dual-
refrigerant cycle for the small-scale (left) and large-scale (right) case. HEX investment cost is
reported on the secondary vertical axis

As a remark, Figure 6.7 illustrates that with the employed cost correlations the investment

cost associated to compressors represents the largest share of the Total Capital Investment.

The small-scale N2 sub-cooling dual-refrigerant case is taken as an example, however similar

results are obtained for the large-scale case and for the other configurations. As a conse-

quence, no trade-off between compressor and heat exchanger cost occurs, therefore the

thermodynamic optimum coincides with the economic one.
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6.4. Discussion

Figure 6.7: Breakdown of Total Capital Investment for the small-scale N2 sub-cooling dual-
refrigerant cycle (thermodynamic optimal design)

The negligible influence that U-value uncertainty plays on the economic performance of the

investigated configurations is connected to this outcome.

In order to further investigate the cost correlation influence, an additional set of cost correla-

tions for compressors and heat exchangers is applied to the small-scale N2 sub-cooling dual

refrigerant case. The formulation is reported in Section E.7 of Appendix E.

Figure 6.8 on the left depicts the Pareto fronts obtained from the simultaneous minimisations

of compressor and heat exchange network investment costs. Moreover Figure 6.9 illustrates

the breakdown of Total Capital Investment for the thermodynamic optimum design.

It can be clearly understood that when using the second set of cost correlations a trade-off

between compressor and heat exchanger investment costs occurs, therefore the minimum

value for the investment cost associated to these two components is not located in the ther-

modynamic optimum (as shown in Figure 6.8 on the right).

It is also found that the capital cost for the heat exchange network is similarly estimated in

both cases (as noticeable in Figures 6.6 and 6.8 on the left). Conversely Turton’s correlation

largely overestimates compressor investment cost compared to the second applied correlation.

This outcome is not affected by the construction material, as the same Bare Module Cost

Factor is applied in both cases (equal to 6.3, corresponding to stainless steel). Moreover the

selected type of compressor is not influencing either, given that according to Turton et al.

centrifugal, axial and reciprocating compressors present the same Bare Module Cost.

Finally the system costs and the economic performance indicators for the three most favourable

alternatives are re-calculated using the additional set of cost correlations for compressors and

flat-plate heat exchangers. Once again thermodynamic optimal cycles are considered. Results

are listed in Table 6.6 for the small-scale case and in Table 6.7 for the large scale-one.
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Figure 6.8: On the left: Pareto fronts from the simultaneous minimisation of compressor and
heat exchange network investment costs. On the right: sum of compressor and heat exchange
network investment costs highlighting the existing trade-off

Figure 6.9: Breakdown of Total Capital Investment for the small-scale N2 sub-cooling dual-
refrigerant cycle (thermodynamic optimal design)

It can be noted that Total Capital Investments are lower than the ones presented in Tables 6.3

and 6.4 given the lower influence of compressor investment cost. This is confirmed by the fact

that TCI increases as the cycle design becomes more complex and the heat network conduc-

tance increases, while previously it was found to follow the trend in power consumption.

A change of ranking occurs in the small-scale case, in which propane pre-cooling cycle is more

convenient than the CH4 sub-cooling dual-refrigerant alternative, the latter being penalised

by the higher heat network conductance (342.2 kW/K against 176.2 kW/K).
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Table 6.6: System costs and economic performance indicators for the three most favourable
small-scale expander-based configurations when using the additional set of cost correlations

TCI O&M UP NPV APBT
[MDKK] [MDKK/year] [DKK/kgLNG] [MDKK] [years]

Propane pre-cooling 18 49 0.96 266 0.8
N2 sub-cooling 22 46 1.08 298 0.9
CH4 sub-cooling 50 47 0.93 256 2.2

Table 6.7: System costs and economic performance indicators for the three most favourable
large-scale expander-based configurations when using the additional set of cost correlations

TCI O&M UP NPV APBT
[MDKK] [MDKK/year] [DKK/kgLNG] [MDKK] [years]

Propane pre-cooling 66 337 1.00 1898 0.4
N2 sub-cooling 77 316 1.13 2142 0.4
CH4 sub-cooling 158 322 1.05 1992 0.9

As to the large-scale comparison, the ranking obtained using Turton’s correlations is con-

firmed.

The second set of cost correlations was made available only at the end of the thesis period,

therefore the economic comparison of different LNG production alternatives is performed ap-

plying Turton’s correlation for compressors and considering LNG production configurations in

their thermodynamic optimum design. Nevertheless this Chapter highlights the implications

of this choice and sets the basis for future developments in terms of cost data validation and,

if applicable, research of the economic optimum for the different expander-based configu-

rations. This could be done by choosing as objective function the total annual cost for the

facility as sum of the annualised investment and the O&M cost.

6.5 Conclusions

The thirteen expander-based configurations are analysed in this Chapter from an economic

point of view. Two plant sizes are considered in the assessment, corresponding to natural gas

feed flow rates of 0.8 kg/s (small scale) and 5.5 kg/s (large scale). The comparison is performed

on the optimal cycle design for each configuration.

Results show that in both small and large scale N2 sub-cooling dual refrigerant cycle is the

most favourable alternative, followed by CH4 sub-cooling dual-refrigerant cycle and propane

pre-cooled single-expander cycle. These three configurations are therefore selected for the

comparison with cascade and Mixed-Refrigerant systems, which is the content of next Chapter.

A discussion is presented about the cost correlation influence on the economic results. In

the present case compressor investment cost covers the largest share of the Total Capital

Investment, therefore the economic optimum coincides with the thermodynamic one.
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7 Economic comparison of LNG produc-
tion alternatives

Natural gas liquefaction cycles can be classified according to three main con-

cepts, namely cascade, Mixed-Refrigerant and expander-based systems. This

Chapter presents the economic comparison of these three different alternatives.

The most favourable expander-based configurations identified in Chapter 6 are

compared with the cascade and Mixed-Refrigerant configurations modelled

and optimised in the Master Thesis Modelling and Optimisation of Cascade

and Mixed-Refrigerant Cycles for Natural Gas Liquefaction. Depending on the

configuration size, modifications to the cycles are applied in order to compare

realistic designs.

7.1 Introduction

Cascade and Mixed-Refrigerant (MR) systems are included in the economic analysis, and

the comparison between the three LNG production concepts is the content of this Chapter.

Aspen Plus models for the investigated cascade and Mixed-Refrigerant cycles are developed by

Nicola Lonardi and their features are extensively described in the Master Thesis Modelling and

Optimisation of Cascade and Mixed-Refrigerant Cycles for Natural Gas Liquefaction [81]. The

reader should therefore refer to this work for the details of these LNG production alternatives.

In this Chapter only the relevant pieces of information are provided.

Single-stage and two-stage cascade cycles are taken as examples of cascade systems, the

latter characterised by a two-stage compression process for each of the three refrigerant

loops, namely propane pre-cooling, ethylene liquefaction and methane sub-cooling. The

conventional design of Conoco Phillips [49] is considered, in which each of these loops employs

a pure fluid as refrigerant, hence the need for several cooling stages in order to reduce the

gap between natural gas and refrigerant temperature profiles. The cooling effect is generated

through a Joule-Thomson expansion. Given the increased design complexity, the two-stage

cascade system is considered only for large-scale applications.
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The Mixed-Refrigerant category comprises a Single Mixed-Refrigerant process, that is the

PRICO cycle, and the propane pre-cooled Mixed-Refrigerant cycle, which is referred to as C3-

MR cycle, adopting the same nomenclature as in Lonardi [81]. These cycles are characterised

by the use of a mixture as refrigerant, which composition is optimised in order to reproduce

the shape of the natural gas cooling curve. The refrigerating effect is again obtained through a

Joule-Thomson expansion. PRICO cycle is suitable for small-scale applications, as its design

presents fewer equipment, whereas C3-MR cycle is considered for large-scale applications,

given the increased design complexity and the higher efficiency.

The process flowsheet of the selected LNG configurations is sketched in Appendix F.

Following the present introduction, the applied methodology is described and the relevant

assumptions are detailed. Successively results are presented distinguishing between small-

scale and large-scale cases. The sensitivity of economic results to natural gas, electricity and

LNG prices is quantified. The influence of natural gas composition on economic performance

is included in a separate section.

7.2 Methodology

In the attempt of comparing the different LNG production configurations in realistic condi-

tions, modifications are applied to the reference models.

For small-scale applications only two-stream heat exchangers are required. This goes in the

direction of employing simpler and cheaper equipment in the liquefaction facility design.

Therefore Aspen Plus models are modified accordingly through the introduction of refrigerant

stream splitting on the cold side of Multiple-Stream Heat Exchangers, as in Figure 7.1.

Figure 7.1: Graphical representation of the splitting procedure

Flow rate splitting introduces a degree of freedom in the model which is normally used to

control the temperature approach at the new heat exchangers. A new series of thermodynamic

optimisations is performed to determine the new optimal design. The optimisation of one-

stage cascade and PRICO cycles with only two-stream heat exchangers is performed and

discussed in the work Modelling and Optimisation of Cascade and Mixed-Refrigerant Cycles

for Natural Gas Liquefaction.
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For large-scale application Multiple-Stream Heat Exchangers are instead considered. The

difference with the reference models is the turbo-machinery efficiency, which is increased to

the maximum limit as found in the literature. Compressor polytropic efficiency is increased

from 0.82 to 0.85, while expander isentropic efficiency is improved passing from 0.85 to 0.9.

This has a non-negligible impact on the cycle design of expander-based configurations. In

fact a change in the expansion efficiency makes the set of optimal designs as in Chapter

5 no longer applicable, since changes in the refrigerant temperature before the cryogenic

heat exchanger are recorded1. As a consequence thermodynamic optimisation is required to

determine the optimum for the expander-based configurations when expander isentropic

efficiency is increased. The new set of optimal decision variables for the three expander-based

configurations is reported in Appendix F.

This does not apply for cascade and Mixed-Refrigerant systems, as a change in compressor

polytropic efficiency only influences the refrigerant temperature at cooler inlets, thus cooler

heat duty2. As a consequence, optimal values for the decision variables are not affected and

the results from the thermodynamic optimisation presented in the work Modelling and Op-

timisation of Cascade and Mixed-Refrigerant Cycles for Natural Gas Liquefaction are used as

such.

The methodology and assumptions for the economic analysis are analogous to those pre-

sented in the previous Chapter. The price of pure hydrocarbons and hydrocarbon mixtures

which are used as refrigerants in cascade and Mixed-Refrigerant systems is assumed to be

equal to the price of propane, i.e. 103.6 $/kg.

1This outcome is emphasised in Appendix B through the sensitivity analysis on the expander isentropic
efficiency.

2Once again this is discussed in Appendix B through the sensitivity analysis on the compressor polytropic
efficiency.
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7.2.1 U-value estimation

The U-values for the heat exchange processes in cascade and Mixed-Refrigerant cycles differ

from the ones presented in Chapter 6 given the fact that refrigerants (mainly pure hydrocar-

bons or hydrocarbon mixtures) are not always in the gaseous phase, as it was instead required

for nitrogen (and methane, when applicable) in the expander-based configurations.

These U-values are estimated using the AspenTech tool Exchanger Design and Rating imple-

menting the actual refrigerant conditions (e.g. including the super-heating phase at the cold

side of all the heat exchangers of cascade systems).

The applied U-values are listed in Table 7.1 for cascade systems. Tables 7.2 and 7.3 present the

U-value estimations for Mixed-Refrigerant systems.

Table 7.1: U-values in W/m2K for the different heat exchange possibilities in cascade systems

Cold-side fluid Hot-side fluid
Gaseous Condensing Liquid

hydrocarbon hydrocarbon hydrocarbon

Pure hydrocarbon3 120 400 2000

Table 7.2: U-values in W/m2K for the different heat exchange possibilities in the PRICO cycle

Cold-side fluid Hot-side fluid
Condensing MR Natural Gas

Mixed Refrigerant 300 660

Table 7.3: U-values in W/m2K for the different heat exchange possibilities in the C3-MR cycle

Cold-side fluid Hot-side fluid
Gaseous Condensing Condensing Liquid

hydrocarbon hydrocarbon MR hydrocarbon

Mixed Refrigerant 120 400 300 2000

3As a remark, the cold-side refrigerant in cascade systems undergoes the evaporation process, followed by the
super-heating stage in order to achieve the temperature approach at the warm end of all heat exchangers. The
U-value estimation takes that into account.
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7.3 Results

The considered LNG production alternatives are ranked according to Unitary Profit (UP),

Net Present Value (NPV) and Adjusted Pay-Back Time (APBT). As discussed in the previous

Chapter, the comparison is performed on thermodynamic optimal cycles.

7.3.1 Results from small-scale comparison

Table 7.4 reports the thermodynamic performance of the small-scale LNG production alterna-

tives. Moreover Table 7.5 ranks them according to the three economic performance indicators.

The annual revenues for small-scale configurations are equal to 73 MDKK.

Table 7.4: Comparison of optimal small-scale liquefaction cycles in terms of net power con-
sumption, total heat network conductance, COP, unit energy consumption and Figure of
Merit

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

Propane pre-cooling 1559 176.2 0.509 1617 27.27
N2 sub-cooling 1288 285.9 0.616 1336 33.02
CH4 sub-cooling 1429 342.2 0.555 1482 29.76
PRICO 1489 1231 0.533 1544 28.57
Cascade - one stage 1152 445.8 0.689 1195 36.86

Table 7.5: Total Capital Investment, O&M cost and economic performance indicators for
small-scale LNG production alternatives

TCI O&M UP NPV APBT
[MDKK] [MDKK/year] [DKK/kgLNG] [MDKK] [years]

Propane pre-cooling 80.7 50.5 0.682 187.9 4.4
N2 sub-cooling 79.8 47.3 0.823 226.7 3.7
CH4 sub-cooling 104.7 48.4 0.684 188.5 4.4
PRICO 71.1 48.0 0.824 227.0 3.4
Cascade - one stage 52.9 47.3 0.919 253.2 2.4

It has first to be highlighted that the small-scale expander-based optimal cycles are identical

to the ones presented in Chapter 5, i.e. the splitting of Multiple-Stream Heat Exchangers into

two-stream HEX’s does not affect the cycle design in terms of pressure levels, temperatures and

refrigerant mass flow rates. The same occurs for the one-stage cascade cycle, whereas PRICO

cycle is largely affected, mainly due to the increase of the required refrigerant flow rate. This is

detailed in the Master Thesis Modelling and Optimisation of Cascade and Mixed-Refrigerant

Cycles for Natural Gas Liquefaction.
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One-stage cascade cycle is together the most efficient and the most economically convenient

alternative. This outcome is expected after what discussed in Chapter 6. Despite its simpler

design, PRICO cycle is slightly less convenient than N2 sub-cooling dual-refrigerant cycle,

mainly due to the larger power consumption.

For the one-stage cascade cycle the threshold of LNG sale price, i.e. the LNG sale price yielding

a zero-NPV, is 148 DKK per kg of produced LNG (corresponding to 19.9AC). For PRICO cycle

this threshold is at 154 DKK per kg of LNG.

7.3.2 Results from large-scale comparison

Table 7.6 reports the thermodynamic performance of the large-scale LNG production alter-

natives. The economic ranking is provided in Table 7.7. The annual revenues for large-scale

configurations are equal to 502 MDKK.

Table 7.6: Comparison of large-scale liquefaction cycles in terms of net power consumption,
total heat network conductance, COP, unit energy consumption and Figure of Merit

Ẇnet Total UA-value COP w FOM
[kW] [kW/K] [-] [kJ/kgLNG] [%]

Propane pre-cooling 1371 152.5 0.578 1423 31.00
N2 sub-cooling 1127 273.7 0.704 1169 37.72
CH4 sub-cooling 1319 515.1 0.601 1368 32.24
C3-MR 880 541.5 0.901 913 46.51
Cascade - two stages 872 488.5 0.909 905 48.75

Table 7.7: Total Capital Investment, O&M cost and economic performance indicators for
large-scale LNG production alternatives

TCI O&M UP NPV APBT
[MDKK] [MDKK/year] [DKK/kgLNG] [MDKK] [years]

Propane pre-cooling 473.3 340.4 0.767 1454 3.5
N2 sub-cooling 460.6 318.7 0.911 1725 2.9
CH4 sub-cooling 690.7 329.1 0.724 1372 5.0
C3-MR 279.5 307.7 1.076 2038 1.6
Cascade - two stages 305.6 308.0 1.060 2008 1.8

Comparing the thermodynamic performance of large-scale and small-scale expander-based

configurations it can be noted that the improvements in turbo-machinery equipment lead

to a significant reduction in net power consumption (maximum reduction of 12.5 % in the

N2 sub-cooling dual-refrigerant case). Once again the best performing cycle is the two-stage

cascade cycle, closely followed by the propane pre-cooled Mixed-Refrigerant alternative.

122



7.3. Results

The most advantageous alternative from an economic viewpoint is the C3-MR cycle. Despite

its lower power consumption, the two-stage cascade cycle is penalised by the more complex

design and by the higher number of heat exchangers and compressors. As to the expander-

based configurations, large-scale propane pre-cooling cycle overcomes the CH4 sub-cooling

dual-refrigerant alternative. These two cycles are characterised by almost the same net power

consumption, but the dual-refrigerant alternative is penalised by the more complex design

and by the larger heat network conductance (more than three times higher than in the pre-

cooling cycle case).

For C3-MR and the two-stage cascade cycles the threshold for LNG sale price is approximately

138 DKK per kg of produced LNG, corresponding to 18.5AC.

7.3.3 Sensitivity analyses

Similarly to what presented in Chapter 6, the sensitivity of the economic results to natural gas

feed, electricity and LNG sale price is assessed. One parameter is changed at the time. A ±10

%-variation is applied on the input parameters as in Table 6.5 and the percentage variation on

Unitary Profit is calculated and graphically reported in Figures 7.2, 7.3 and 7.4.

The least affected cycles are the cascade and Mixed-Refrigerant alternatives. Among the

dual-expander configurations, N2 sub-cooling dual-refrigerant cycle is the one presenting

the smallest percentage variations in Unitary Profit. This is due to the fact that more efficient

cycles are generally characterised by smaller O&M cost, therefore a variation in the O&M cost

fraction connected to natural gas feed and electricity consumption is less impacting on the

economic outcome. As to LNG sale price, a change in the yearly revenue for the liquefaction

facility affects less its economy if the variable costs are less decisive.

Due to economies of scale, the output percentage variations are smaller in the large-scale

cases for all the investigated input parameters.

Figure 7.2: Results from natural gas price sensitivity for small-scale (on the left) and large-scale
(on the right) cases
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Figure 7.3: Results from electricity price sensitivity for small-scale (on the left) and large-scale
(on the right) cases

Figure 7.4: Results from LNG sale price sensitivity for small-scale (on the left) and large-scale
(on the right) cases

In absolute terms LNG sale price proves to be the most influencing parameter. A +10 %-

increase in LNG sale price causes the Unitary Profit to increase by 46 % for small-scale propane

pre-cooling. The percentage increase is 41 % for the large-scale case. Natural gas feed price is

ranked second, while electricity price is the least influencing input.

The U-value estimation and other inputs (e.g. the cost of working fluids and maintenance cost)

are assessed as well. Results are not presented here as these parameters are not as influencing.

For instance, a ±10 %-variation in the U-value estimation has almost a negligible effect on

Unitary Profit, with percentage variations smaller than 1 % for all cases.

7.3.4 Influence of natural gas composition on economic performance

Among the considered natural gas feed compositions presented in Section B.3 of Appendix

B, three cases are selected, namely Italian, German and Spanish grid natural gases. The

corresponding compositions are presented in Table 7.8 together with the Danish reference

case.
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Table 7.8: Natural gas grid composition for Denmark (suggestion of Kosan Crisplant A/S) and
for three different European countries as given in [82] in terms of molar fractions

CH4 C2H6 C3H8 n-C4H10 i-C4H10 n-C5H12 i-C5H12 N2

Denmark 0.903 0.060 0.024 0.006 0.004 0.000 0.000 0.003
Italy 0.980 0.007 0.002 0.001 0.000 0.000 0.000 0.009
Germany 0.839 0.038 0.008 0.004 0.002 0.003 0.002 0.104
Spain 0.816 0.134 0.037 0.004 0.003 0.000 0.000 0.007

This selection is made to highlight three different deviations from the Danish natural gas grid

composition:

• increase of methane fraction at the expense of C2+ hydrocarbon content (Italian case);

• increase of nitrogen fraction at the expense of methane fraction (German case);

• increase of C2+ hydrocarbon content at the expense of methane fraction (Spanish case).

The composition of the natural gas feed affects the economic performance of the liquefaction

facility through several parameters. The natural gas feed price is based on feed Higher Heating

Value. Revenues depend on LNG Higher Heating Value and liquefaction rate. Finally, the

natural gas feed composition affects the required net power consumption. With respect to that,

Table 7.9 summarises the main properties of the considered natural gas feed compositions.

The minimum ideal liquefaction work per kg of natural gas feed is provided as an indicator for

the different power consumption in the four cases.

Table 7.9: Natural gas and LNG HHV’s, minimum ideal liquefaction work and liquefaction rate
for the considered natural gas compositions

HHVNG HHVLNG wmin Liquefaction rate
[MJ/kg] [MJ/kg] [kJ/kgNG] [%]

Denmark 54.45 54.54 425.2 96.40
Italy 54.57 54.98 470.2 94.53
Germany 46.27 51.70 416.5 83.53
Spain 53.70 53.93 392.8 96.58

The interested reader can find additional details about the influence of natural gas feed

composition on the liquefaction cycle from a thermodynamic viewpoint in Appendix B. In

general terms, the heating values increase together with the methane fraction in the natural

gas mixture. The same does power consumption, given the higher cooling load. As to the

liquefaction rate, methane and nitrogen are the components mostly present in the off-gas

after the flashing, hence the lower liquefaction rates for Italian and German cases.
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It has to be added that LNG in the German case is characterised by a nitrogen molar fraction

of 3.7 %, which is above the usual specification on nitrogen content (normally below 1 %).

Therefore the German grid natural gas should undergo a pretreatment stage upstream in order

to reduce its nitrogen content.

The optimal designs cannot be applied as such when changing the natural gas feed com-

position. For instance, a change in cooling load requires a different refrigerant flow rate given

the same temperature approach. Moreover, the feed composition affects the shape of the

natural gas cooling curve, leading to potential crossovers at the cold box.

In order to evaluate the economic figures when varying the natural gas feed composition, the

following methodology is applied:

• no changes in the cycle pressure levels are performed;

• for all the systems the refrigerant mass flow rates are adjusted in order to achieve the 3

K-approach at the heat exchangers;

• only for expander-based configurations the expander inlet temperature has to be

changed as well, in order to avoid crossovers of the temperature profiles in those heat

exchangers active in the liquefaction part of the natural gas cooling curve.

Results are reported in Table 7.10 for the small-scale comparison and in Table 7.11 for the

large-scale case in terms of percentage deviations of Unitary Profit with respect to the Danish

reference case (as in Tables 7.5 and 7.7).

Table 7.10: Unitary Profits for the different natural gas feed composition as percentage devia-
tion from the Danish reference case (small-scale case)

Unitary Profit
[% variation]

Italy Germany Spain

Propane pre-cooling -14.2 -29.0 +3.2
N2 sub-cooling -10.2 -27.5 +3.6
CH4 sub-cooling -19.7 -36.1 +8.8
PRICO -22.1 -29.3 +6.3
Cascade - one stage -5.2 -24.2 +1.4

The Italian and German grid compositions determine a worsening of economic performance.

The Italian grid natural gas requires a higher compression power than the Danish one, hence

both compressor investment cost and O&M cost increase. The higher LNG HHV is compen-

sated by the lower liquefaction rate, therefore the yearly revenues are lower (72.2 MDKK in

small scale, 496 MDKK in large scale).
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Table 7.11: Unitary Profits for the different natural gas feed composition as percentage devia-
tion from the Danish reference case (large-scale case)

Unitary Profit
[% variation]

Italy Germany Spain

Propane pre-cooling -8.3 -21.5 +1.4
N2 sub-cooling -10.7 -24.1 +2.7
CH4 sub-cooling -10.0 -27.7 +6.9
C3-MR -16.8 -25.3 +0.5
Cascade - two stages -4.5 -20.1 +1.2

Conversely, compression power is lower for the German grid natural gas composition, which

leads to a decrease of both Total Capital Investment and O&M cost. However this is offset by

the significantly lower liquefaction rate and by the lower LNG HHV. The yearly revenues are 60

MDKK for small-scale cycles and 412 MDKK for large-scale configurations.

The Spanish grid natural gas composition allows an improvement in the economic perfor-

mance thanks to the lower net power consumption and to the higher liquefaction rate, which

positively offset the decrease in LNG Higher Heating Value, hence the lower yearly revenues

(72.3 MDKK in small scale, 497 MDKK in large scale).

Among the different alternatives, expander-based and Mixed-Refrigerant configurations are

highly influenced by the natural gas feed composition. Conversely, cascade systems overall

present the smallest percentage variations in Unitary Profit. This outcome derives from the

smaller changes in refrigerant flow rates for cascade systems compared to the other liquefac-

tion concepts.

7.4 Discussion

The economic analysis performed in this Chapter bases itself on the same assumptions which

are discussed in Chapter 6, therefore results have the same limitations. In particular, the use

of Turton’s cost correlation for compressors makes the economic optimum coincide with the

thermodynamic one. This is anyhow verified given the fact that cascade and Mixed-Refrigerant

systems generally require larger heat transfer area than expander-based configurations. The

small-scale PRICO cycle is considered, as it presents a heat network conductance more than

three times higher than expander-based cycles.

Figure 7.5 on the left depicts how compressor and heat exchanger investment costs vary along

with net power consumption. On the right the breakdown of Total Capital Investment is

provided for the thermodynamic optimal design.
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Figure 7.5: On the left: Pareto frontiers for the simultaneous minimisation of compressor and
heat exchange network investment costs. On the right: breakdown of Total Capital Investment
for small-scale optimal PRICO cycle

No trade-off between compressor and heat exchange network investments occurs. This would

be observed when applying the second set of cost correlations used in Chapter 6, which could

result in a different economic optimum for the small-scale PRICO cycle.

Small-scale comparison is performed after changing the design of the considered cycles

so that only two-stream heat exchangers are implemented. Refrigerant splitting on the cold

side is therefore required to change a Multiple-Stream Heat Exchanger into two two-stream

HEX’s. It is found that this procedure does not alter the optimal cycle for expander-based

configurations. A similar result is highlighted by Lonardi for cascade systems. The same author

shows that for Mixed-Refrigerant systems this is no longer valid, i.e. refrigerant splitting highly

influences the liquefaction cycle, particularly in terms of required refrigerant flow rate.

As a general outcome it can be inferred that when the refrigerant is a pure fluid and when

the temperature approaches are external, the splitting does not alter the required flow rates.

Observing the temperature profiles for the optimal expander-based configurations reported

in Appendix C, it can be claimed that for some systems (e.g. dual-refrigerant cycles) the

temperature approaches are located internally in some heat exchangers. However these are

already two-stream HEX’s and are not affected by the splitting procedure.

Additional remarks have to be made about the way the influence of natural gas feed composi-

tion on the economic outcome is assessed.

The thermodynamic optimum depends on the feed composition, therefore the liquefaction fa-

cility should be optimised accordingly. This is computationally intensive and is not performed

due to time constraints.
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The results cannot be read either as indicators of the configuration flexibility when the feed

composition changes. An off-design analysis would be required to give such outcome. Overall

a change in the natural gas composition translates into a different cooling load. Once the

refrigerant flow rate is kept fixed, a change in the temperature approaches at the heat exchang-

ers occurs, which may lead to technical and thermodynamic violations.

The basic idea was to apply the least number of modifications to the optimal cycles, mainly to

respect the 3 K-approach requirements at the heat exchangers, and to assess which economic

figures are affected by the feed composition and why. The main modification regards the

refrigerant flow rates, which have to be adjusted according to the natural gas cooling load.

Expander-based configurations also require the control of the expander inlet temperature,

being a key model variable to avoid crossovers in that part of the cold box active in the lique-

faction phase.

Finally, the economic figures are calculated changing the feed composition but keeping the

same inputs as for the Danish context. This is done to highlight the influence that natural

gas composition has on the economic outcome when all the other inputs are kept constant.

Nevertheless a thorough analysis would require to update natural gas, electricity and LNG

prices according to the different European countries where the liquefaction facility is located.

Looking at the data given by the European Commission about electricity markets for 2015 [74],

it can be spotted that Denmark has the lowest electricity price for industrial consumers (the

highest case being Italy, with 16.93 cAC/kWh). Therefore the economic outcome for Italian, Ger-

man and Spanish cases would be worse compared to what presented. The better profitability

of the Spanish case should be checked, as the reduction in power consumption could be offset

by the higher electricity price (35 % higher than the Danish case).

Further data analyses are required for natural gas and LNG prices in the different European

countries. As an example, the Italian Energy Market Manager gives a natural gas spot price of

approximately 15.1AC/MWh [83], slightly higher than the one used for the Danish case.

7.5 Conclusion

This Chapter outlines the economic ranking for small-scale and large-scale natural gas lique-

faction alternatives. In the attempt to make the comparison more realistic, only two-stream

heat exchangers are implemented in small-scale applications, whereas large-scale cycles

present the highest efficiency for turbo-machinery equipment.

Results show that one-stage cascade cycle is the most attractive alternative in small scale,

yielding a Unitary Profit of 0.92 DKK per kg of produced LNG. Among large-scale configura-

tions C3-MR cycle is the most favourable with a Unitary Profit of 1.08 DKK per kg of produced

LNG.

The influence of feed composition on economic performance is assessed showing that very

high methane or nitrogen content in the natural gas mixture is not beneficial, the former due

to the increased power consumption, the latter due to the decreased liquefaction rate and

Higher Heating Value of the output LNG.
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8 Discussion

This thesis bases itself on many assumptions and the presented results are

subjected to various limitations. The aim of this Chapter is to summarise the

discussions which are performed throughout the report and to highlight how

assumptions and limitations affect the outcomes. Possible improvements to the

study are mentioned.

Thermodynamic modelling

The modelling stage is fundamental for this thesis work and represents the basis for thermody-

namic optimisation first, and subsequently for economic considerations. Therefore all the

assumptions which are adopted in this phase affect the results.

Thermodynamic simulation is based on Peng-Robinson model. On one side this choice en-

ables to have computational effectiveness and to get a consistent literature benchmark with

which to compare the results. On the other side it introduces inaccuracies in the estimation of

key thermodynamic variables. As shown in Appendix A, the Figure of Merit is slightly over-

estimated, while a larger underestimation of the heat transfer area can be expected. Result

validation should be performed using GERG-2008 property method to provide more accurate

indications. The barrier is given by heavier computational burdens and non-convergence

issues.

Overestimation of the thermodynamic performance is also caused by the assumption on

turbo-machinery mechanical efficiency (which is set unitary) and on pressure losses (disre-

garded in heat exchange processes). Mechanical efficiency is anyhow high in real equipment.

Conversely, disregarding pressure losses may lead to significant underestimation of real energy

consumption, given the high working pressure levels and especially for large-scale systems.

Heat transfer plays a central role in the liquefaction process. Nevertheless this is not the

focus of this thesis work and heat exchange processes are simulated relying on the approach

and assumptions comprised in Aspen Plus. The software adopts a Distributed Parameter
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Model (DPM), which means that the heat exchange device is divided into zones of variable

size and is simulated applying a lumped parameter model in each of them [64]. The number

of zones has to be set, and in the present work 50 zones are always considered for all heat

exchangers, requiring the addition of extra zones in those parts presenting non-linear tem-

perature profiles. Variables like UA-value and Logarithmic Mean Temperature Difference are

averaged based on the discretisation of heat exchangers into zones.

Moreover the software works by assuming the same temperature for the hot-side streams at

the outlet of each discretisation zone. This is a simplification and justifies the absence of pinch

point violations when reporting the Composite Curves for Multiple-Stream Heat Exchangers.

Other assumptions are the absence of axial thermal conduction and heat gains/losses.

Thermodynamic optimisation

Thermodynamic optimisation by means of genetic algorithm requires a compromise between

research space, iterations and number of evaluations on one side, and the computational bur-

den on the other one. For this work the optimisation routine was deliberately computational-

and time-intensive. As a consequence, optimisation outcomes are claimed to be robust. This

is overall confirmed when comparing the obtained results with the literature, as discussed

in Chapter 5. Moreover the thermodynamic superiority of Mixed-Refrigerant and cascade

cycles is verified through the comparison with the work of Lonardi [81], which main results

are included in Chapter 7.

From a designer point of view the optimisation effort may be not as worthy. Although the

optimisation procedure always allows to reduce the net power consumption with respect to

the modelled cycles, the achieved reductions are overall quite small (smaller than 5 % for

most expander-based cases). What is found to be decisive is instead to seek for cycle designs

yielding a small temperature difference in heat exchangers, mainly acting on the refriger-

ant flow rates, pressure and temperature levels. This is also a general finding of the Master

Thesis Modelling and Optimisation of Cascade and Mixed-Refrigerant Cycles for Natural Gas

Liquefaction when dealing with cascade systems. Conversely, the optimisation routine is

fundamental when considering Mixed-Refrigerant systems given the key role played by the

refrigerant composition.

Economic considerations

The main uncertainty associated to the economic results is identified in the cost correlations

which are used to translate thermodynamic outputs into economic figures for the liquefaction

facility.

Given the fact that natural gas liquefaction is highly energy intensive, compression power

represents a decisive voice for the O&M cost. Reducing power consumption comes at the

expense of heat transfer area, as extensively shown in this report. Therefore a trade-off between

operation and investment costs could occur. This is mainly dependent on the share of turbo-

machinery investment cost, which could be dominant in the Total Capital Investment.
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In the present work, the use of Turton’s cost correlations makes the compressor the most

capital-intensive component, therefore the economic optimum coincides with the thermody-

namic one. Consequently, only if different configurations have a similar power consumption,

the effect of factors like design complexity and heat transfer area is spotted in the economic

results. In light of this, the superiority of one-stage cascade cycle for small-scale applications is

regarded to be a biased result, as the other small-scale alternatives are characterised by larger

power consumption. The inferiority of expander-based cycles for small-scale applications is

another consequence.

An additional set of cost correlations for compressors and heat exchangers is assessed leading

to a different result. This uncertainty highlights the need for cost data validation, which is

outside the scope of this thesis and is left as necessary future work to make such analyses

reliable.

Beside the influence of cost correlations, many simplifications are adopted in the economic

analysis. Among them, the Discounted Cash Flow model does not take into account any

bankability consideration, therefore results cannot be fully taken as realistic indication of LNG

project profitability in a Danish context. Cost data provided by SWEP are valid for flat-plate

heat exchangers and are applied as such to Multiple-Stream plate-fin heat exchangers. More-

over many of the analysed cases present working pressure above 100 bar on the refrigerant

side, which is beyond the operating conditions for SWEP heat exchangers (normally up to 60

bar).

133





9 Conclusion

This thesis focuses on the thermodynamic and economic analysis of different LNG production

configurations. Interest in LNG is growing in the shipping sector due to economic advantages

over oil alternatives and stricter environmental regulations for shipboard NOx and SOx emis-

sions.

LNG production is highly energy intensive, therefore a thorough thermodynamic analysis

and optimisation is required to reduce the compression power consumption. Focus is put

on the expander-based configuration and thirteen models are developed using the software

Aspen Plus. The modelling stage highlights two main drivers for efficiency improvements: the

compression process design and the reduction of the mean temperature difference at the cold

box.

Inter-cooled multi-stage compression should be preferred to the single-stage one. Secondly,

the temperature difference at the cold box is a decisive factor for the exergy destruction during

the liquefaction process and can be reduced by:

• adding a pre-cooling stage;

• introducing a dual-expansion process;

• implementing a dual-refrigerant cycle.

Thermodynamic optimisation by means of genetic algorithm is performed to quantify the

efficiency improvements.

Among the pre-cooling alternatives, the one employing propane is the best performing achiev-

ing a Figure of Merit of 27.3 % and a unit energy consumption of 1617 kJ per kg of produced

LNG.

If a dual-turbine cycle is designed, the two expanders should have different pressure ratios, as

this is the solution yielding the highest Figure of Merit (29.7 %).

As to the dual-refrigerant alternatives, the use of nitrogen is found beneficial for the liquefac-

tion and sub-cooling phases, while methane should be employed for the sensible pre-cooling

of the natural gas feed. The N2 sub-cooling alternative is the most efficient among the thirteen

cycles under investigation, providing a Figure of Merit of 33 % and requiring 1336 kJ/kg as unit

energy consumption.
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Exergy analysis is performed on the thermodynamic optimal cycles. Components’ rational

efficiency defects are computed to highlight the distribution of exergy destructions and losses.

Exergy loss at refrigerant coolers generally represents the largest dissipation of useful work.

The waste heat should be utilised given the high temperature level of the refrigerant streams at

cooler inlets. Compression processes are responsible for the greatest share of exergy destruc-

tion, followed by expansions.

The reduction in power consumption comes at the expense of heat transfer area. This is

pinpointed through a series of Multi-Objective Optimisations aiming at simultaneously min-

imising the net power consumption and the overall heat network conductance. The latter is

found to range between 50 kW/K and 300 kW/K for the expander-based concept.

The existence of a trade-off between power consumption and heat transfer area justifies

an economic analysis for the LNG production configurations. A simplified Discounted Cash

Flow model is set up and the different alternatives are compared based on Unitary Profit, NPV

and Adjusted Pay-Back Time. Two plant sizes are considered, which differ for the natural gas

feed flow rate, being 0.8 kg/s in the small-scale case and 5.5 kg/s for large-scale applications.

Liquefaction cycles are assessed and compared in their thermodynamic optimal design.

Both for small-scale and large-scale applications N2 sub-cooling dual-refrigerant configura-

tion results the most favourable. Unitary Profits are 0.82 (small scale) and 0.87 (large scale)

DKK per kg of produced LNG. Correspondingly NPV is 227 MDKK in small scale (Pay-Back

Time of 4 years) and 1656 MDKK in large scale (Pay-Back Time of 3 years).

The most economically viable expander-based alternatives are selected and compared with

cascade and Mixed-Refrigerant configurations. Aspen Plus models for these two liquefaction

concepts are developed and optimised in the Master Thesis Modelling and Optimisation of

Cascade and Mixed-Refrigerant Cycles for Natural Gas Liquefaction. Results show that the

expander-based concept is not economically competitive with cascade and Mixed-Refrigerant

systems. The most convenient small-scale configuration is the one-stage cascade (Unitary

Profit of 0.92 DKK per kg of LNG), while among large-scale cycles propane pre-cooled Mixed-

Refrigerant configuration is the most favourable (Unitary Profit of 1.08 DKK per kg of produced

LNG).

The main influencing parameters for the economic performance are, in order, LNG sale price,

natural gas feed price and electricity price. The reliability of economic outcomes is largely

discussed, as it mostly depends on the employed cost correlations. The ones used for this

work make compressors the most capital-intensive components, leading to the coincidence

of thermodynamic and economic optimum. The assessment of alternative cost correlations

highlights the need for cost data validation as a necessary future development of the present

thesis. This goes in the direction of bringing a modelling- and simulation-based work closer

to the reality of natural gas liquefaction facilities, including more realistic modelling and

off-design considerations.

136



Bibliography

[1] IPCC. Climate Change 2014. Synthesis Report. Summary Chapter for Policymakers.

Technical report, 2014. URL https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_

SYR_FINAL_SPM.pdf.

[2] Veronika Eyring, James J. Corbett, David S. Lee, and James J. Winebrake. Brief summary

of the impact of ship emissions on atmospheric composition, climate, and human health.

Document submitted to the Health and Environment sub-group of the International

Maritime Organization, 2007. URL http://www.pa.op.dlr.de/~VeronikaEyring/Eyringetal_

IMOBriefSummary_FINAL.pdf.

[3] Fabio Burel, Rodolfo Taccani, and Nicola Zuliani. Improving sustainability of maritime

transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy, 57:

412–420, 2013. ISSN 03605442. URL http://dx.doi.org/10.1016/j.energy.2013.05.002.

[4] Mar Viana, Pieter Hammingh, Augustin Colette, Xavier Querol, Bart Degraeuwe, Ina

de Vlieger, and John van Aardenne. Impact of maritime transport emissions on coastal

air quality in Europe. Atmospheric Environment, 90:96–105, 2014. ISSN 18732844. URL

http://dx.doi.org/10.1016/j.atmosenv.2014.03.046.

[5] Cengiz Deniz and Burak Zincir. Environmental and economical assessment of alternative

marine fuels. Journal of Cleaner Production, 113(X):438–449, 2016. ISSN 09596526. URL

http://linkinghub.elsevier.com/retrieve/pii/S0959652615018119.

[6] Janusz Cofala, Markus Amann, Chris Heyes, Fabian Wagner, Zbigniew Klimont, Max

Posch, Wolfgang Schöpp, Leonor Tarasson, Jan Eiof Jonson, Chris Whall, and Andrianna

Stavrakaki. Analysis of Policy Measures to Reduce Ship Emissions in the Context of

the Revision of the National Emissions Ceilings Directive. Final Report. 2007. URL

http://webarchive.iiasa.ac.at/rains/reports/IR06-107_Ships.pdf.

[7] United Nations. International Marine Organization. URL http://www.imo.org/en/About/

Pages/Default.aspx. Accessed February 2016.

[8] International Marine Organization. Revised MARPOL Annex VI: Regulations for the

Prevention of Air Pollution from Ships and NOx. Technical report, October 2009.

137

https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf
http://www.pa.op.dlr.de/~VeronikaEyring/Eyringetal_IMOBriefSummary_FINAL.pdf
http://www.pa.op.dlr.de/~VeronikaEyring/Eyringetal_IMOBriefSummary_FINAL.pdf
http://dx.doi.org/10.1016/j.energy.2013.05.002
http://dx.doi.org/10.1016/j.atmosenv.2014.03.046
http://linkinghub.elsevier.com/retrieve/pii/S0959652615018119
http://webarchive.iiasa.ac.at/rains/reports/IR06-107_Ships.pdf
http://www.imo.org/en/About/Pages/Default.aspx
http://www.imo.org/en/About/Pages/Default.aspx


Bibliography

[9] Environmental Protection Agency. Ministry of Environment and Food of Den-

mark. Reducing shipping emissions. URL http://eng.mst.dk/topics/air/

reducing-shipping-emissions/. Accessed January 2016.

[10] Danish Maritime Authority. North European LNG Infrastructure Project. Technical report.

URL http://www.dma.dk/themes/LNGinfrastructureproject/Documents/FinalReport/

LNG_Summary_Report_20120522_optimerad.pdf.

[11] European Commission. COMMUNICATION FROM THE COMMISSION TO THE EU-

ROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL

COMMITTEE AND THE COMMITTEE OF THE REGIONS. Clean Power for Transport:

A European alternative fuels strategy. COM/2013/017, . URL http://eur-lex.europa.eu/

legal-content/EN/ALL/?uri=CELEX%3A52013PC0017. Accessed February 2016.

[12] Heather Thomson, James J. Corbett, and James J. Winebrake. Natural gas as a marine

fuel. Energy Policy, 87:153–167, 2015. ISSN 03014215. URL http://dx.doi.org/10.1016/j.

enpol.2015.08.027.

[13] eia. U.S. Energy Information Administration. International Energy Statistics. URL https://

www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=5&pid=57&aid=6. Accessed Febru-

ary 2016.

[14] Selma Bengtsson, Karin Andersson, and Erik Fridell. Life cycle assessment of

marine fuels - A comparative study of four fossil fuels for marine propulsion.

Technical Report 11:125, Chalmers University of Technology, Gothenburg, Swe-

den, 2011. URL http://www.dma.dk/themes/LNGinfrastructureproject/Documents/

Fuelsandenvironment/LCAoffourpossiblemarinefuels.pdf.

[15] European Commission. European Commissions’ study on LNG as a shipping fuel

shows industry’s support, . URL http://ec.europa.eu/transport/modes/maritime/news/

2015-03-03-lng_en.htm. Accessed February 2016.

[16] Peter D. Lund, Juuso Lindgren, Jani Mikkola, and Jyri Salpakari. Review of energy system

flexibility measures to enable high levels of variable renewable electricity. Renewable

and Sustainable Energy Reviews, 45:785–807, 2015. ISSN 13640321. URL http://dx.doi.

org/10.1016/j.rser.2015.01.057.

[17] Saeid Mokhatab, William A. Poe, and John Y. Mak. Natural Gas Fundamentals. In Hand-

book of Natural Gas Transmission and Processing, chapter 1. 2015. ISBN 9780128014998.

[18] Alireza Bahadori. Overview of Natural Gas Resources. In Natural Gas Processing. Tech-

nology and Engineering Design, chapter 1, pages 1–22. 2014. ISBN 9780080999715. URL

http://linkinghub.elsevier.com/retrieve/pii/B9780080999715000015.

[19] IEA. International Energy Agency. Resources to Reserves 2013 - Oil, Gas and Coal Technolo-

gies for the Energy Markets of the Future. 2013. ISBN 9789264083547. URL http://www.

iea.org/publications/freepublications/publication/resources-to-reserves-2013.html.

138

http://eng.mst.dk/topics/air/reducing-shipping-emissions/
http://eng.mst.dk/topics/air/reducing-shipping-emissions/
http://www.dma.dk/themes/LNGinfrastructureproject/Documents/Final Report/LNG_Summary_Report_20120522_optimerad.pdf
http://www.dma.dk/themes/LNGinfrastructureproject/Documents/Final Report/LNG_Summary_Report_20120522_optimerad.pdf
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52013PC0017
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A52013PC0017
http://dx.doi.org/10.1016/j.enpol.2015.08.027
http://dx.doi.org/10.1016/j.enpol.2015.08.027
https://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=5&pid=57&aid=6
https://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=5&pid=57&aid=6
http://www.dma.dk/themes/LNGinfrastructureproject/Documents/Fuels and environment/LCA of four possible marine fuels.pdf
http://www.dma.dk/themes/LNGinfrastructureproject/Documents/Fuels and environment/LCA of four possible marine fuels.pdf
http://ec.europa.eu/transport/modes/maritime/news/2015-03-03-lng_en.htm
http://ec.europa.eu/transport/modes/maritime/news/2015-03-03-lng_en.htm
http://dx.doi.org/10.1016/j.rser.2015.01.057
http://dx.doi.org/10.1016/j.rser.2015.01.057
http://linkinghub.elsevier.com/retrieve/pii/B9780080999715000015
http://www.iea.org/publications/freepublications/publication/resources-to-reserves-2013.html
http://www.iea.org/publications/freepublications/publication/resources-to-reserves-2013.html


Bibliography

[20] IEA. International Energy Agency. Natural Gas. URL https://www.iea.org/aboutus/faqs/

naturalgas/. Accessed February 2016.

[21] Lijiang Wei and Peng Geng. A review on natural gas/diesel dual fuel combustion, emis-

sions and performance. Fuel Processing Technology, 142:264–278, 2016. ISSN 03783820.

URL http://dx.doi.org/10.1016/j.fuproc.2015.09.018.

[22] Francis S. Manning and Richard E. Thomson. Characterization of Natural Gas and

Its Products. In Oilfield Processing of Petroleum: Natural Gas, volume 1, chapter 2,

page 7. PennWell Books, 1991. URL https://books.google.dk/books?id=FnDp8V9TX9oC&

printsec=frontcover&hl=it&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.

[23] Alireza Bahadori. Natural Gas Properties. In Natural Gas Processing. Technology and

Engineering Design, chapter 2, pages 23–58. 2014. ISBN 9780080999715.

[24] Stephen R. Turns. An Introduction to Combustion - Concepts and Applications. Third

edition, 2012.

[25] U.S. Department of Energy. Appendix A. Lower and Higher Heating Values of Gas, Liquid

and Solid Fuels. Biomass Energy Data Book. URL http://cta.ornl.gov/bedb/appendix_a.

shtml. Accessed March 2016.

[26] Bjørn Austbø and Truls Gundersen. Optimization of a single expander LNG process.

Energy Procedia, 64(C):63–72, 2015. ISSN 18766102. URL http://dx.doi.org/10.1016/j.

egypro.2015.01.009.

[27] Satish Kumar, Hyouk Tae Kwon, Kwang Ho Choi, Wonsub Lim, Jae Hyun Cho, Kyungjae

Tak, and Il Moon. LNG: An eco-friendly cryogenic fuel for sustainable development.

Applied Energy, 88(12):4264–4273, 2011. ISSN 03062619. URL http://dx.doi.org/10.1016/

j.apenergy.2011.06.035.

[28] IPCC. Changing in Atmospheric Costituents and in Radiative Forcing. In IPCC

Fourth Assessment Report (AR4), chapter 2. 2007. URL https://www.ipcc.ch/pdf/

assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf.

[29] Selma Bengtsson, Erik Fridell, and Karin Andersson. Environmental assessment of two

pathways towards the use of biofuels in shipping. Energy Policy, 44:451–463, 2012. ISSN

03014215. URL http://dx.doi.org/10.1016/j.enpol.2012.02.030.

[30] Alireza Bahadori. Liquefied Natural Gas. In Natural Gas Processing. Technology and

Engineering Design, chapter 13. 2014. ISBN 9780124202047.

[31] Saeid Mokhatab, William A. Poe, and John Y. Mak. LNG Fundamentals. In Handbook of

Liquefied Natural Gas, chapter 1, pages 1–106. Elsevier, 2014. ISBN 9780124045859. URL

http://www.sciencedirect.com/science/article/pii/B9780124045859000015.

[32] Statoil. Snøhvit. URL http://www.statoil.com/en/OurOperations/ExplorationProd/ncs/

snoehvit/Pages/default.aspx. Accessed March 2016.

139

https://www.iea.org/aboutus/faqs/naturalgas/
https://www.iea.org/aboutus/faqs/naturalgas/
http://dx.doi.org/10.1016/j.fuproc.2015.09.018
https://books.google.dk/books?id=FnDp8V9TX9oC&printsec=frontcover&hl=it&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.dk/books?id=FnDp8V9TX9oC&printsec=frontcover&hl=it&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://cta.ornl.gov/bedb/appendix_a.shtml
http://cta.ornl.gov/bedb/appendix_a.shtml
http://dx.doi.org/10.1016/j.egypro.2015.01.009
http://dx.doi.org/10.1016/j.egypro.2015.01.009
http://dx.doi.org/10.1016/j.apenergy.2011.06.035
http://dx.doi.org/10.1016/j.apenergy.2011.06.035
https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
http://dx.doi.org/10.1016/j.enpol.2012.02.030
http://www.sciencedirect.com/science/article/pii/B9780124045859000015
http://www.statoil.com/en/OurOperations/ExplorationProd/ncs/snoehvit/Pages/default.aspx
http://www.statoil.com/en/OurOperations/ExplorationProd/ncs/snoehvit/Pages/default.aspx


Bibliography

[33] Florian Dauber and Roland Span. Modelling liquefied-natural-gas processes using highly

accurate property models. Applied Energy, 97:822–827, 2012. ISSN 03062619. URL

http://dx.doi.org/10.1016/j.apenergy.2011.11.045.

[34] Chonghun Han and Youngsub Lim. LNG Processing. From Liquefaction to Storage,

volume 31. Elsevier B.V., 2012. ISBN 1570-7946. URL http://dx.doi.org/10.1016/

B978-0-444-59507-2.50013-5.

[35] Saeid Mokhatab and William A. Poe. Basic Concepts of Natural Gas Processing. In

Handbook of Natural Gas Transmission and Processing (Second Edition), chapter 3, pages

181–193. 2012. ISBN 978-0-12-386914-2. URL http://www.sciencedirect.com/science/

article/pii/B9780123869142000042.

[36] Roy Scott Heiersted. Snøhvit LNG Project: Europe’s First Base-Load LNG Production,

2005. URL http://www.venezuelagas.net/documents/Liquid-2005-05.pdf.

[37] Saeid Mokhatab, William A. Poe, and John Y. Mak. Natural Gas Liquefaction. In Handbook

of Liquefied Natural Gas, chapter 3, pages 147–183. Elsevier, 2014. ISBN 9780124045859.

URL http://www.sciencedirect.com/science/article/pii/B9780124045859000039.

[38] Bjørn Austbø, Sigurd Weidemann Løvseth, and Truls Gundersen. Annotated bibliography-

Use of optimization in LNG process design and operation. Computers and Chemi-

cal Engineering, 71:391–414, 2014. ISSN 00981354. URL http://dx.doi.org/10.1016/j.

compchemeng.2014.09.010.

[39] Adrian J. Finn, Grant L. Johnson, and Terry R. Tomlinson. LNG technology for offshore

and mid-scale plants. GPA Annual Convention Proceedings, 2000. ISSN 00968870.

[40] Aida Kheradmand, Seid Ehsan Marashi, and Masoud Ghorbanian. Offshore LNG Produc-

tion. Technical report, NTNU, Trondheim, 2010.

[41] T.B. He and Y.L. Ju. Performance improvement of nitrogen expansion liquefaction process

for small-scale LNG plant. Cryogenics, 61:111–119, 2014. ISSN 00112275. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0011227513000866.

[42] Zongming Yuan, Mengmeng Cui, Ying Xie, and Chunlin Li. Design and analysis of a

small-scale natural gas liquefaction process adopting single nitrogen expansion with

carbon dioxide pre-cooling. Applied Thermal Engineering, 64(1-2):139–146, 2014. ISSN

13594311. URL http://dx.doi.org/10.1016/j.applthermaleng.2013.12.011.

[43] Mohd Shariq Khan, Sanggyu Lee, Mesfin Getu, and Moonyong Lee. Knowledge inspired

investigation of selected parameters on energy consumption in nitrogen single and

dual expander processes of natural gas liquefaction. Journal of Natural Gas Science and

Engineering, 23:324–337, 2015. ISSN 18755100. doi: 10.1016/j.jngse.2015.02.008.

[44] Zongming Yuan, Mengmeng Cui, Rui Song, and Ying Xie. Evaluation of prediction models

for the physical parameters in natural gas liquefaction processes. Journal of Natural Gas

140

http://dx.doi.org/10.1016/j.apenergy.2011.11.045
http://dx.doi.org/10.1016/B978-0-444-59507-2.50013-5
http://dx.doi.org/10.1016/B978-0-444-59507-2.50013-5
http://www.sciencedirect.com/science/article/pii/B9780123869142000042
http://www.sciencedirect.com/science/article/pii/B9780123869142000042
http://www.venezuelagas.net/documents/Liquid-2005-05.pdf
http://www.sciencedirect.com/science/article/pii/B9780124045859000039
http://dx.doi.org/10.1016/j.compchemeng.2014.09.010
http://dx.doi.org/10.1016/j.compchemeng.2014.09.010
http://linkinghub.elsevier.com/retrieve/pii/S0011227513000866
http://linkinghub.elsevier.com/retrieve/pii/S0011227513000866
http://dx.doi.org/10.1016/j.applthermaleng.2013.12.011


Bibliography

Science and Engineering, 2015. ISSN 18755100. URL http://dx.doi.org/10.1016/j.jngse.

2015.09.042.

[45] O. Kunz and W. Wagner. The GERG-2008 wide-range equation of state for natural gases

and other mixtures: An expansion of GERG-2004. Journal of Chemical and Engineering

Data, 57(11):3032–3091, 2012. ISSN 00219568. URL http://pubs.acs.org/doi/pdf/10.1021/

je300655b.

[46] Aspen Technology. Aspen Plus. URL http://www.aspentech.com/products/engineering/

aspen-plus/. Accessed March 2016.

[47] Ho Myung Chang. A thermodynamic review of cryogenic refrigeration cycles for liq-

uefaction of natural gas. Cryogenics, 72:127–147, 2015. ISSN 00112275. URL http:

//dx.doi.org/10.1016/j.cryogenics.2015.10.003.

[48] Damian Vogt. Efficiencies. In KTH. Turbomachinery Lecture Notes., pages 1–8. 2007.

URL http://www.energy.kth.se/compedu/webcompedu/WebHelp/media%5CLecture_

notes%5CS2%5Cefficiencies.pdf.

[49] Weldon Ransbarger. A fresh look at LNG process efficiency. Hydrocarbon Engineering, 12,

2007. ISSN 14689340. URL http://lnglicensing.conocophillips.com/Documents/SMID_

016_WeldonsPaperLNGIndustry.pdf.

[50] Adrian J. Finn. Are floating LNG facilities viable options? Hydrocarbon Processing, 88(7):

31–39, 2009. URL https://issuu.com/androsov.info/docs/hp_2009_07.

[51] C.W. Remeljej and A.F.A. Hoadley. An exergy analysis of small-scale liquefied natural

gas (LNG) liquefaction processes. Energy, 31(12):1669–1683, 2006. ISSN 03605442. doi:

10.1016/j.energy.2005.09.005.

[52] T.J. Kotas. The Exergy Method of Thermal Plant Analysis. Elsevier Science, 2013. ISBN

9781483100364. URL https://books.google.dk/books?id=-QLLBAAAQBAJ.

[53] Hoseyn Sayyaadi and M. Babaelahi. Exergetic Optimization of a Refrigeration Cycle for

Re-Liquefaction of LNG Boil-Off Gas. International Journal of Thermodynamics, 13(4):

127–133, 2010. ISSN 13019724.

[54] Hoseyn Sayyaadi and M. Babaelahi. Multi-objective optimization of a joule cycle for

re-liquefaction of the Liquefied Natural Gas. Applied Energy, 88(9):3012–3021, 2011. ISSN

03062619. doi: 10.1016/j.apenergy.2011.03.041.

[55] T-V. Nguyen, B. Elmegaard, P. Breuhaus, and F. Haglind. Modelling, analysis and optimisa-

tion of energy systems on offshore platforms. PhD thesis, Technical University of Denmark,

2014.

[56] MathWorks. MATLAB. URL http://se.mathworks.com/products/matlab/. Accessed

March 2016.

141

http://dx.doi.org/10.1016/j.jngse.2015.09.042
http://dx.doi.org/10.1016/j.jngse.2015.09.042
http://pubs.acs.org/doi/pdf/10.1021/je300655b
http://pubs.acs.org/doi/pdf/10.1021/je300655b
http://www.aspentech.com/products/engineering/aspen-plus/
http://www.aspentech.com/products/engineering/aspen-plus/
http://dx.doi.org/10.1016/j.cryogenics.2015.10.003
http://dx.doi.org/10.1016/j.cryogenics.2015.10.003
http://www.energy.kth.se/compedu/webcompedu/WebHelp/media%5CLecture_notes%5CS2%5Cefficiencies.pdf
http://www.energy.kth.se/compedu/webcompedu/WebHelp/media%5CLecture_notes%5CS2%5Cefficiencies.pdf
http://lnglicensing.conocophillips.com/Documents/SMID_016_WeldonsPaperLNGIndustry.pdf
http://lnglicensing.conocophillips.com/Documents/SMID_016_WeldonsPaperLNGIndustry.pdf
https://issuu.com/androsov.info/docs/hp_2009_07
https://books.google.dk/books?id=-QLLBAAAQBAJ
http://se.mathworks.com/products/matlab/


Bibliography

[57] Lena Kitzing, Marie Münster, and Jonas Katz. Evaluating projects - Basic economic princi-

ples and methods. Technical report, DTU Management Engineering, Energy Economics

and Regulation & Energy System Analysis, 2015.

[58] M. Roberts, F. Chen, and Ö. Saygi-Arslan. Brayton refrigeration cycles for small-scale

LNG. Gas Processing, pages 27–32. July-August 2015.

[59] Maya Kusmaya and Jostein Pettersen. Liquefaction Process Evaluation for

Floating LNG, 2014. URL http://www.gas.uni-miskolc.hu/publics/Projekt-feladat_

liquefaction-process-evaluation-for-flng_rev2.pptx.pdf.

[60] H.M. Chang, J.H. Park, K.S. Cha, S. Lee, and K.H. Choe. Modified Reverse-Brayton Cycles

for Efficient Liquefaction of Natural Gas. Cryocoolers 17, pages 435–442, 2012.

[61] Sultan Seif Pwaga. Sensitivity Analysis of Proposed LNG liquefaction Processes for LNG

FPSO. Master thesis, NTNU, 2011.

[62] J.H. Foglietta. LNG production using dual independent expander refrigeration cycles,

2002. URL http://www.google.com/patents/US6412302. US Patent 6412302.

[63] Lummus Technology. NicheLNG Liquefaction Technology. Technical report, 2011. URL

http://www.digitalrefining.com/data/literature/file/1300330005.pdf.

[64] Julio César Pacio. Multiscale thermo-hydraulic modeling of cryogenic heat exchangers.

PhD thesis, Norwegian University of Science and Technology, 2012.

[65] EES - Engineering Equation Solver. URL http://www.fchart.com/ees/. Accessed May

2016.

[66] Todd B. Jekel and Douglas T. Reindl. Single- or Two-Stage Compression. ASHRAE Journal.

August 2008.

[67] Bjørn Austbø and Truls Gundersen. Using thermodynamic insight in the optimiza-

tion of LNG processes, volume 33. Elsevier, 2014. URL http://dx.doi.org/10.1016/

B978-0-444-63455-9.50047-7.

[68] B. Linnhoff and V. R. Dhole. Shaftwork targets for low-temperature process design.

Chemical Engineering Science, 47(8):2081–2091, 1992. ISSN 00092509. doi: 10.1016/

0009-2509(92)80324-6.

[69] Industrial Energy Systems Laboratory LENI. OSMOSE Platform. URL http://leni.epfl.ch/

osmose. Accessed June 2016.

[70] Tianbiao He and Yonglin Ju. Optimal synthesis of expansion liquefaction cycle for

distributed-scale LNG (liquefied natural gas) plant. Energy, 88:268–280, 2015. ISSN

03605442. URL http://dx.doi.org/10.1016/j.energy.2015.05.046.

142

http://www.gas.uni-miskolc.hu/publics/Projekt-feladat_liquefaction-process-evaluation-for-flng_rev2.pptx.pdf
http://www.gas.uni-miskolc.hu/publics/Projekt-feladat_liquefaction-process-evaluation-for-flng_rev2.pptx.pdf
http://www.google.com/patents/US6412302
http://www.digitalrefining.com/data/literature/file/1300330005.pdf
http://www.fchart.com/ees/
http://dx.doi.org/10.1016/B978-0-444-63455-9.50047-7
http://dx.doi.org/10.1016/B978-0-444-63455-9.50047-7
http://leni.epfl.ch/osmose
http://leni.epfl.ch/osmose
http://dx.doi.org/10.1016/j.energy.2015.05.046


Bibliography

[71] Richard Turton, Richard C. Bailie, Wallace B. Whiting, Joseph A. Shaeiwitz, and Debangsu

Bhattacharyya. Analysis, Synthesis and Design of Chemical Processes. Prentice Hall, fourth

edition, 2012.

[72] CEPCI index. URL http://www.chemengonline.com/pci-home. Accessed May 2016.

[73] Andrea Toffolo, Andrea Lazzaretto, Giovanni Manente, and Marco Paci. A multi-criteria

approach for the optimal selection of working fluid and design parameters in Organic

Rankine Cycle systems. Applied Energy, 121:219–232, 2014. ISSN 03062619. URL http:

//dx.doi.org/10.1016/j.apenergy.2014.01.089.

[74] European Commission. Quarterly Report on European Electricity Markets. Technical

report, 2015. URL https://ec.europa.eu/energy/sites/ener/files/documents/quarterly_

report_on_european_electricity_markets_q3_2015.pdf.

[75] J. Walker and E.R. Bingham. Low-Capacity Cryogenic Refrigeration. Clarendon Press, The

University of Calgary, 1994.

[76] EmersonTechnologies Climate. Refrigerant Choices for Commercial Refrigeration - Find-

ing the Right Balance. Technical report. URL http://www.emersonclimate.com/europe/

Documents/Resources/TGE124_Refrigerant_Report_EN_1009.pdf.

[77] Currency converter. URL https://www.oanda.com/currency/converter/. Accessed May

2016.

[78] SWEP. SSP Calculation Software. URL http://www.swep.net/support/

ssp-calculation-software/. Accessed May 2016.

[79] Geoff F. Hewitt and Simon J. Pugh. Approximate Design and Costing Methods for Heat

Exchangers. Heat Transfer Engineering, 28(2):76–86, 2007. ISSN 0145-7632. URL http:

//dx.doi.org/10.1080/01457630601023229.

[80] EEX - European Energy Exchange. TTF PEGAS. URL https://www.eex.com/en/

market-data/natural-gas/spot-market/ttf#!/2016/06/15. Accessed June 2016.

[81] Nicola Lonardi. Modelling and Optimisation of Cascade and Mixed-Refrigerant Cycles

for Natural Gas Liquefaction. Master thesis - unpublished work, Technical University of

Denmark, 2016.

[82] M. Adelt, M. Hoppe, M. Montero, and G. Peureux. Report on gas composition range in

Europe. Technical report, 2010. URL http://www.ingas-eu.org/docs/DB0.1.pdf.

[83] Gestore Mercati Energetici. MGP-GAS. URL http://www.mercatoelettrico.org/It/esiti/

MGP-GAS/EsitiGasMGP.aspx. Accessed 28/06/2016.

[84] Joachim Gross and Gabriele Sadowski. Application of the Perturbed-Chain SAFT Equation

of State to Associating Systems. Ind. Eng. Chem. Res., 41:5510–5515, 2002. ISSN 0888-5885.

doi: 10.1021/ie010954d.

143

http://www.chemengonline.com/pci-home
http://dx.doi.org/10.1016/j.apenergy.2014.01.089
http://dx.doi.org/10.1016/j.apenergy.2014.01.089
https://ec.europa.eu/energy/sites/ener/files/documents/quarterly_report_on_european_electricity_markets_q3_2015.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/quarterly_report_on_european_electricity_markets_q3_2015.pdf
http://www.emersonclimate.com/europe/Documents/Resources/TGE124_Refrigerant_Report_EN_1009.pdf
http://www.emersonclimate.com/europe/Documents/Resources/TGE124_Refrigerant_Report_EN_1009.pdf
https://www.oanda.com/currency/converter/
http://www.swep.net/support/ssp-calculation-software/
http://www.swep.net/support/ssp-calculation-software/
http://dx.doi.org/10.1080/01457630601023229
http://dx.doi.org/10.1080/01457630601023229
https://www.eex.com/en/market-data/natural-gas/spot-market/ttf#!/2016/06/15
https://www.eex.com/en/market-data/natural-gas/spot-market/ttf#!/2016/06/15
http://www.ingas-eu.org/docs/DB0.1.pdf
http://www.mercatoelettrico.org/It/esiti/MGP-GAS/EsitiGasMGP.aspx
http://www.mercatoelettrico.org/It/esiti/MGP-GAS/EsitiGasMGP.aspx




A Influence of property methods on the
simulation results

The property method is a thermodynamic model which is implemented in

simulation tools to predict the thermophysical properties of pure substances

and mixtures. The most well-known models are the Equations of State (EOS).

Different Equations of State exist and simulation results can significantly differ

depending on which EOS is employed, thus leading to uncertainties in optimal

design determination. The aim of this Appendix Section is to quantify the

numerical deviations which are obtained when simulating the same natural gas

liquefaction configuration with various property methods.

The single-expander configuration in Figure A.1 is considered and is simulated using Peng-

Robinson (PR) and Soave-Redlich-Kwong (SRK) cubic EOS, Benedict-Webb-Rubin-Starling

(BWRS) and Lee-Kesler-Plöcker (LKP) virial EOS, Perturbated Chain with Statistical Association

Fluid Theory (PC-SAFT) molecular-based EOS1 and GERG-2008 empirical multi-parameter

EOS.

Figure A.1: Process flowsheet of the single-expander cycle

The natural gas feed enters the liquefaction cycle at 20◦C and 33 bar (state point 1). It is cooled

in isobaric conditions down to -150◦C (state point 3).

1Pure component parameters of the PC-SAFT EOS are taken from the work of Gross and Sadowski [84].
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Appendix A. Influence of property methods on the simulation results

Refrigerant is nitrogen and its mass flow rate is set equal to 8 kg/s. Nitrogen enters the cold box

at 20◦C and 120 bar (state point 7), while its temperature at the expander inlet -45◦C. Expander

discharge pressure is 10 bar.

The modelling assumptions are those applied in Chapter 4. In particular pressure losses are

disregarded. Compressor polytropic efficiency is 0.82, while expander isentropic efficiency is

set equal to 0.85.

Coherently with what exposed in Section 2.2.3, results obtained using GERG-2008 property

package are regarded as the reference case. The percentage deviations from the reference

value of the model variable are therefore calculated when testing the other Equations of State

(Equation A.1).

Deviation = Variable−VariableGERG−2008

VariableGERG−2008
·100 [%] (A.1)

The model variables which are considered in the assessment are natural gas cooling demand,

Q̇C, compressor power consumption Ẇcomp, expander power production Ẇexp, system Figure

of Merit and UA-values and MITA’s for the Multiple-Stream and the two-stream Heat Exchang-

ers.

Table A.1 reports the reference results obtained when using GERG-2008 Equation of State.

Table A.1: Simulation results using GERG-2008 property method

Variable Unit Value

Q̇C kW 795.3
Ẇcomp kW 3327
Ẇexp kW 679
FOM % 15.96
U A1 kW/K 46.6
MITA1 K 6.7
U A2 kW/K 24.1
MITA2 K 4.2

Figures A.2 and A.3 reports the calculated percentage deviations on the simulation results

when using different property methods.

Peng-Robinson cubic EOS proves to be accurate when predicting natural gas cooling load,

with a percentage variation of -0.25 % with respect to the prediction of GERG-2008 EOS.

This confirms the good accuracy of the model for the evaluation of enthalpy and isobaric

specific heat capacity in the two-phase region, as shown by Yuan et al. [44]. Conversely,

deviations on the prediction of compression and expansion power are larger. Compression

power requirement is underestimated by 0.8 %, while expansion power is underestimated by

2.6 %.
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Figure A.2: Comparison of the property methods in terms of percentage deviation from the
results obtained using GERG-2008 for natural gas cooling load, compressor and expander
power and system Figure of Merit

Figure A.3: Comparison of the property methods in terms of percentage deviation from
the results obtained using GERG-2008 for UA-values and Minimum Internal Temperature
Approaches at the first MHEX and at the second two-stream HEX

Except for Benedict-Webb-Rubin-Starling virial EOS, all the remaining Equations of State

overestimate the system Figure of Merit with respect to the one calculated using GERG-2008

property method. Using Peng-Robinson EOS the deviation is +1 %. BWRS EOS proves to be

the closest to the reference result, with a percentage deviation of -0.17 %, closely followed by

PC-SAFT EOS (percentage variation of +0.19 %).
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Considering the variables associated to the heat exchange process at the cold box, it can be

observed that the percentage deviations are overall greater in magnitude, ranging from +19.4

% to -33.5 %. PR property method leads to an underestimation of the heat exchanger conduc-

tance, thus the required heat transfer area (percentage deviation of -4.4 % for the MHEX and

of -3.2 % for the two-stream HEX). Benedict-Webb-Rubin-Starling virial EOS proves to be the

most accurate, closely followed by PC-SAFT molecular-based EOS.

As to the MITA evaluation, the use of PR property method leads to an overestimation for both

heat exchangers. Percentage deviations are +9.8 % (7.4◦C against the reference case of 6.7◦C)

for the MHEX and +25 % at the two-stream HEX (5.2◦C against 4.2◦C). BWRS and PC-SAFT

Equations of State prove to be the most accurate for the first Multiple-Stream Heat Exchanger

(+4.7 % and +4.8 %, respectively), while Lee-Kesler-Plöcker virial EOS is the most accurate for

the second two-stream Heat Exchanger (-6.8 %).

In light of this assessment it can be concluded that the use of Peng-Robinson EOS leads

to a slight overestimation of the cycle performance, as this property method is not accurate in

the prediction of compression and expansion power.

Furthermore the heat exchanger UA-value is underestimated, leading to an underestimation

of the required heat transfer area for the liquefaction facility.

Finally the use of Peng-Robinson property method leads to large inaccuracy in the evaluation

of heat exchanger temperature approaches. This has a non-negligible impact on the outcomes

of the thermodynamic analysis, as in most cases the model variables are calculated by Aspen

Plus in order to respect the 3 K-approach condition. This is not shown in this Appendix due

to non-convergence of Aspen Plus design specifications when using GERG-2008 property

method. This is also the reason why result validation is not performed.

148



B Sensitivity analyses on the single-
expander cycle

A series of sensitivity analyses is performed on the single-expander configuration

in order to understand how input parameters affect the liquefaction cycle and

its performance. The configuration which is simulated is the single-expander

cycle with one compression stage reported in Figure 4.2.

The investigated inputs are natural gas feed temperature, pressure and compo-

sition, and turbo-machinery efficiency.

B.1 Sensitivity on natural gas feed temperature

The influence of natural gas feed temperature is assessed following two different modelling

approaches:

1. the temperature approach at the two-stream HEX is controlled by nitrogen temperature

at the expander inlet. Nitrogen mass flow rate is kept constant and equal to 10 kg/s;

2. the second approach implies the definition of an additional design specification in order

to obtain the 3 K-approach at the Multiple-Stream Heat Exchanger as well by varying

the refrigerant mass flow rate.

Natural gas feed temperature is varied from 5◦C to 40◦C with a step change of 0.5◦C. Nitrogen

high pressure level is set equal to 120 bar, while the expander outlet pressure is 10 bar. The

pressure ratio as well as the turbo-machinery efficiency is kept constant during the assess-

ment.

The increase of feed temperature causes natural gas cooling load to increase passing from 758

kW to 841 kW (percentage variation of +11 %).

Results for the first approach show that net power consumption increases as NG feed temper-

ature increases. Since the refrigerant mass flow is kept constant, compressor inlet experiences

a higher refrigerant temperature with the increasing cooling load. This causes compression

power to increase.
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Appendix B. Sensitivity analyses on the single-expander cycle

The increase in net power consumption is shown in Figure B.1. Relative increase is 3.9 %.

Correspondingly an increase in the COP is recorded from 0.259 to 0.277 given the fact that

natural gas cooling load increases relatively more than the net power consumption. On the

contrary system FOM decreases, passing from 14.5 % to 13.95 %, as depicted in Figure B.1 on

the secondary vertical axis.

Figure B.1: Trend of net power consumption (continuous line, primary vertical axis) and of
system Figure of Merit (dotted line, secondary vertical axis) when varying NG feed temperature
according to the first modelling approach

When implementing the second modelling approach the pinch point at the Multiple-Stream

Heat Exchanger is always activated at the warm end. For this reason the feasible range in

which natural gas feed temperature can be varied goes up to 24◦C. For higher feed inlet tem-

peratures the requirement of 3 K-approach at the MHEX results in crossovers of the Hot and

Cold Composite Curves.

In the feasible interval two behaviours can be identified, corresponding to two temperature

intervals: 5◦C - 20◦C and 20◦C - 24◦C. This is clearly visible in Figure B.2.

As long as natural gas feed temperature stays below 20◦C, nitrogen temperature at the compres-

sor inlet is specified to be 17◦C, as the approach is governed by the nitrogen inlet temperature

(20◦C). Therefore in this interval the refrigerant mass flow rate has to steadily increase in order

to satisfy the increasing cooling load on natural gas side, causing in turn power consumption

to increase (as shown in Figure B.2 on the left). Correspondingly the cycle FOM steadily

decreases passing from 17.81 % to 17.04 %.

It should be noted that the values of Figure of Merit are overall higher when implementing the

second approach compared to the first one. The reason for this lies on the calculated value of

nitrogen mass flow rate in order to achieve the 3 K-approach at the hot end of the MHEX. This

value leads to a closer match of the temperature profiles.

On the contrary when natural gas feed temperature exceeds 20◦C, nitrogen temperature at

the compressor inlet starts to increase from 17◦C in order to respect the condition on the

temperature approach at the MHEX, reaching 21◦C for a natural gas feed temperature of 24◦C.
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B.1. Sensitivity on natural gas feed temperature

This is achieved with a slight decrease of the refrigerant mass flow rate (from 7.48 kg/s to

7.28 kg/s), as the total heat duty at the Multiple-Stream Heat Exchanger decreases, which in

turn results in a slight decrease of the power consumption (Figure B.2 on the left) and in a

slight increase of the cycle FOM. The decrease rate of the power consumption is lower than its

increase rate in the previous interval and does not follow the decrease rate of the refrigerant

mass flow rate, as this beneficial drop is partly compensated by the increase of the enthalpy

difference supplied by compressor, connected to the increase of compressor inlet temperature.

Figure B.2: On the left: trend of net power consumption (continuous line, primary vertical
axis) and of refrigerant mass flow rate (dotted line, secondary vertical axis) when varying NG
feed temperature according to the second modelling approach. On the right: trend of net
power consumption (continuous line, primary vertical axis) and of system Figure of Merit
(dotted line, secondary vertical axis) when varying NG feed temperature according to the
second modelling approach

From this sensitivity analysis it can be concluded that it is beneficial for the liquefaction

system that natural gas feed temperature is as low as possible. This determines a decrease

in the cooling load which, depending on the modelling approach, leads to a decrease of the

compressor inlet temperature once the refrigerant mass flow rate is fixed (first approach) or to

a decrease of the necessary refrigerant mass flow rate once compressor inlet temperature is

specified (second approach). As a consequence, a decrease in the net power consumption is

obtained in both cases.

Furthermore it is shown that having the temperature approach of 3 K at both ends of the

cold box is possible only for a natural gas feed temperature below 24◦C. Above this limit a

simultaneous change in nitrogen flow rate and cold box inlet temperature has to be applied.
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B.2 Sensitivity on natural gas feed pressure

Natural gas feed pressure is varied from 15 bar to 50 bar with a step change of 0.5 bar. Again

nitrogen high pressure level is set equal to 120 bar, while the expander outlet pressure is 10 bar.

Pressure ratio as well as turbo-machinery efficiency are kept constant during the assessment.

Natural gas feed pressure influences the shape of the Hot Composite Curve in the liquefaction

part of the cold box. This is reported in Figure B.3 where the HCC is drawn for three NG feed

pressures, namely 15, 33 and 50 bar. Nitrogen temperature at the expander inlet is -41.5◦C to

achieve the 3 K-approach at the cold end of the two-stream Heat Exchanger.

Figure B.3: Hot Composite Curves for different NG feed pressures

It can be observed that the lower the feed pressure is, the lower the liquefaction temperature

range becomes. This has to be taken into account since, for instance, it is not possible to

achieve a 3 K-approach at both extremities of the cold box when NG feed pressure falls below

15 bar, due to a crossover of the temperature profiles in the liquefaction part. The 15 bar-case

is the one allowing to achieve the approach of 3 K at the extremities of the cold box and in the

liquefaction zone and is therefore regarded as the lower bound for this sensitivity analysis.

Natural gas cooling load decreases as the feed pressure increases passing from 818.9 kW

to 768.7 kW (relative variation of -6.1 %). This can be explained referring to a generic log P-h

diagram. The enthalpy of vaporisation, i.e. the enthalpy difference between saturated liquid

condition and saturated vapour condition at the same pressure, decreases as the pressure

increases. This positively compensate the increase in sensible heat load connected to the

increase of the isobaric specific heat.

The influence of natural gas feed pressure is assessed following the same methodology applied

for the sensitivity on the feed temperature, that is with the same two modelling approaches.
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Results from the first approach show that it is beneficial to increase the natural gas feed

pressure since this allows to reduce the required compression power for the liquefaction

system. The reason for this decrease is once again found in the lower nitrogen temperature at

the compressor inlet, connected to the decrease of the cooling load. As depicted in Figure B.4,

net power consumption decreases passing from 3009 kW to 2940 kW (relative variation of -2.3

%).

Figure B.4: Trend of net power consumption (continuous line, primary vertical axis) and of
system Figure of Merit (dotted line, secondary vertical axis) when varying NG feed pressure
according to the first modelling approach

Nevertheless two drawbacks can be identified. The first one deals with the liquefaction rate,

that is the amount of LNG produced per unit of feed flow rate (1 kg/s). Given a flashing

pressure of 1.7 bar, results show that an increasing feed pressure causes the liquefaction rate

to decrease, passing from 96.8 % to 96 % (relative variation of -0.8 %). Methane is the most

abundant component in the off-gas (molar fraction of 96 % for a feed pressure of 33 bar) and

the amount of methane which is flashed slightly increases with increasing feed pressure. In

the present case, however, unit energy consumption steadily decreases given the fact that the

net power consumption diminishes relatively more than the liquefaction rate.

The second drawback regards the system Figure of Merit which is found to be decreasing as

natural gas feed pressure increases. This is illustrated in Figure B.4. Figure of Merit drops from

17.26 % for the 15 bar-case to 12.95 % for the 50 bar-case (relative variation of -25 %). The

reason for this trend lies on the shape of the HCC’s on varying NG feed pressure (as shown in

Figure B.3). A higher feed pressure determines a larger mean temperature difference between

the Composite Curves, thus a less efficient heat exchange process.
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Considering the second modelling approach results are analogous to the ones above presented.

Given the specification of the 3 K-approach at the MHEX by varying nitrogen mass flow rate,

the refrigerant temperature at the compressor inlet is fixed at 17◦C. Therefore the system

responds to the decrease of the cooling load by decreasing the refrigerant mass flow rate,

which in turn causes the compressor power to decrease. As presented in Figure B.5, the

percentage variation is -6.1 % (from 2575 kW to 2417 kW). Moreover, the system FOM is found

to be decreasing as the natural gas feed pressure increases (from 20.16 % to 15.75 %, relative

variation of -22 %). Once again this behaviour is caused by the larger temperature difference

between the Composite Curves, as already explained. Moreover, as in the sensitivity on feed

temperature, the second approach gives overall higher values for the exergetic efficiency given

the closer match of the temperature profiles.

Figure B.5: Trend of net power consumption (continuous line, primary vertical axis) and of
system Figure of Merit (dotted line, secondary vertical axis) when varying NG feed pressure
according to the second modelling approach

In conclusion, the results of this sensitivity analysis highlight that is beneficial to increase

natural gas feed pressure as this allows to decrease the cooling load and in turn the net power

consumption of the liquefaction system. Nevertheless this reduction should be compared

with the higher compression power required by the feed natural gas in order to fairly assess

the benefits arising from a higher feed pressure.

It is also found that both liquefaction rate and system FOM are negatively affected by higher

feed pressures. The decrease of liquefaction rate is found not to be enough to cause an increase

of the unit energy consumption, whereas the system Figure Of Merit is significantly influenced

by the mean temperature difference between the Composite Curves, which increases as the

natural gas feed pressure increases.
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B.3 Sensitivity on natural gas feed composition

The influence of natural gas feed composition on the liquefaction cycle and on its performance

is assessed according to two different modelling approaches:

1. the first approach implies the definition of two design specifications to achieve the

MITA at the cold box, one on the approach at the two-stream HEX by varying nitrogen

temperature at the expander inlet, and the other one on the approach at the MHEX by

varying the refrigerant mass flow rate. The cycle low-pressure level is fixed at 10 bar.

Both approaches are set to 3 K;

2. the second approach is similar to the first as to the design specification on the approach

at the two-stream HEX, whereas it imposes the 3 K-approach at the MHEX by varying

the cycle low-pressure level, i.e. the expander discharge pressure. Refrigerant mass flow

rate is kept fixed at 10 kg/s.

The reference case for the feed composition is the Danish grid natural gas composition as

suggested by Kosan Crisplant A/S. Five different compositions are evaluated corresponding to

the natural gas grid composition found in Italy, France, Germany, United Kingdom and Spain,

as given in [82]. From the natural gas mixtures presented in [82] CO2, water and heavier hy-

drocarbon (C8+) content is removed and redistributed equally to the remaining components.

The analysed compositions are listed in Table B.1 in terms of molar fractions.

Italian grid natural gas is the one presenting the highest fraction of methane in the mixture,

while the Spanish one is the one characterized by the smallest methane presence. The highest

nitrogen fraction is recorded for the case of Germany, while Denmark presents the minimum

value. Spanish grid natural gas is the one characterized by the highest presence of C2+ hydro-

carbons, followed by the Danish one. Leanest natural gases are found in the cases of Italy and

UK.

Table B.1: Natural gas grid composition for Denmark (suggestion of Kosan Crisplant A/S) and
for five different European countries as given in [82] in terms of molar fractions

CH4 C2H6 C3H8 n-C4H10 i-C4H10 n-C5H12 i-C5H12 N2

Denmark 0.903 0.060 0.024 0.006 0.004 0.000 0.000 0.003
Italy 0.980 0.007 0.002 0.001 0.000 0.000 0.000 0.009
France 0.899 0.062 0.015 0.005 0.002 0.003 0.002 0.011
Germany 0.839 0.038 0.008 0.004 0.002 0.003 0.002 0.104
UK 0.923 0.038 0.008 0.002 0.001 0.000 0.001 0.027
Spain 0.816 0.134 0.037 0.004 0.003 0.000 0.000 0.007
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For the different natural gas compositions the cooling load is calculated together with the

Lower Heating Value, the Higher Heating Value1, the minimum ideal work requirement2 and

the liquefaction rate. Natural gases are cooled down from 20◦C to -150◦C in isobaric conditions

at 33 bar. Pressure is later reduced to 1.7 bar. A natural gas feed mass flow rate of 1 kg/s is

applied. Values are listed in Table B.2.

Table B.2: LHV, HHV, cooling load, minimum ideal liquefaction work and liquefaction rate for
the analysed natural gas compositions

LHV HHV QC wmin Liquefaction rate
[MJ/kg] [MJ/kg] [kJ/kgNG] [kJ/kgNG] [%]

Denmark 49.19 54.45 793.3 425.2 96.40
Italy 49.15 54.57 804.8 470.2 94.53
France 48.56 53.75 787.0 424.1 95.12
Germany 41.77 46.27 722.9 416.5 83.53
UK 47.54 52.71 784.0 444.7 92.54
Spain 48.61 53.70 781.3 392.8 96.58

The cooling load increases as the natural gas mixture gets richer in methane. The heat of con-

densation is highest for methane, steadily decreases for C2+ hydrocarbons and is minimum

for nitrogen. Consequently German grid natural gas has the lowest cooling load. The same

trend is observed when considering the heating values of the gas mixtures.

Regarding the minimum work ideally required to liquefy the unitary mass of natural gas, it can

be inferred that it increases when methane fraction in the mixture is increased at the expense

of C2+ hydrocarbon content, as in the cases of Denmark and Italy. The same happens when

methane fraction is increased at the expense of N2 content (UK and Germany cases).

As to the liquefaction rate, methane and nitrogen are the components which are mostly

present in the off-gas. Therefore the higher the nitrogen content is, the lower the liquefaction

rate results. This is the case of Germany with a liquefaction rate of 83.53 %. Furthermore,

given the same nitrogen content the liquefaction rate is higher for richer natural gases. This

can be spotted when comparing Italian and Spanish grid natural gases.

Results from the first modelling approach are reported in Table B.3.

The refrigerant mass flow rate and the net power consumption follow the trend in cooling load.

N2 flow rate and net power consumption are maximum for the Italian case, being the one with

the highest presence of methane, and minimum for Germany, being the German grid natural

gas the one with the highest nitrogen molar fraction.

1LHV and HHV are given directly by Aspen Plus on a mass basis and for a reference temperature of 15◦C.
2This is the numerator of FOM expression, see Equation 3.6.
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Table B.3: Refrigerant mass flow rate, net power consumption, unit energy consumption and
Figure of Merit when simulating the system according to the first modelling approach

N2 mass flow rate Ẇnet w FOM
[kg/s] [kW] [kJ/kgLNG] [%]

Denmark 7.48 2495 2588 17.04
Italy 7.59 2531 2677 18.58
France 7.42 2475 2602 17.14
Germany 6.81 2273 2722 18.32
UK 7.39 2465 2664 18.04
Spain 7.36 2457 2544 15.99

Italy and Germany are the cases for which the largest unit energy consumptions are observed.

In the Italian case this is linked to the high cooling load, thus the relatively high refrigerant

mass flow rate. Conversely in the German case this is due to the high nitrogen molar fraction

in the natural gas mixture, which leads to a relatively small liquefaction rate.

As to the Figure of Merit, Italian and German grid compositions are also the ones giving the

most efficient liquefaction cycles. One of the drivers for this outcome is spotted when looking

at the temperature profiles at the cold box. Figure B.6 depicts the Hot Composite Curves

for Italian, German and Spanish grid natural gas, the Spanish one brought as example of a

low-FOM liquefaction cycle. The shape of the HCC’s for the Italian and German cases allows a

closer match of the temperature profiles, hence a better thermodynamic performance.

Figure B.6: Hot Composite Curves for Italian, German and Spanish grid natural gas composi-
tions
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Results from the second modelling approach are reported in Table B.4. As expected, the

refrigerant low pressure level increases as natural gas cooling load decreases. This occurs

when nitrogen molar fraction increases at the expense of methane molar fraction (UK and

Germany cases) or when C2+ hydrocarbon content increases at the expense of methane molar

fraction (Italian and Danish cases). Unit energy consumption confirms to be highest for Italian

and German grid natural gases.

Similarly to what above discussed, Italian case shows the highest Figure of Merit closely

followed by the German one, whereas Spanish case is the poorest liquefaction cycle from a

thermodynamic viewpoint.

Table B.4: Refrigerant low pressure level, net power consumption, unit energy consumption
and Figure of Merit when simulating the system according to the second modelling approach

N2 low pressure Ẇnet w FOM
[bar] [kW] [kJ/kgLNG] [%]

Denmark 16.1 2492 2585 17.06
Italy 15.8 2524 2670 18.63
France 16.3 2474 2601 17.14
Germany 18.2 2300 2753 18.11
UK 16.4 2466 2664 18.04
Spain 16.5 2458 2545 15.98
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B.4 Sensitivity on turbo-machinery efficiency

The influence of compressor polytropic efficiency and expander isentropic efficiency on the

thermodynamic cycle is assessed. The sensitivity analysis is performed by changing one

parameter at the time.

Natural gas inlet temperature is 20◦C while its inlet pressure is 33 bar. It exits the cold box at

-150◦C. Nitrogen hot stream enters the Multiple-Stream Heat Exchanger at 20◦C and 120 bar.

Expander discharge pressure is set equal to 10 bar.

Two design specifications are implemented at the heat exchangers, in order to achieve the 3

K-approach at the two-stream HEX by varying nitrogen temperature at the expander inlet, and

the 3 K-approach at the MHEX by varying nitrogen mass flow rate.

Results are displayed in spider plots. A spider plot reports the percentage variation on the

calculated variable Y corresponding to a percentage variation on the investigated parameter

X . Moreover the average Sensitivity Ratios are calculated. The Sensitivity Ratio (SR) is defined

as the ratio of the percentage variation on the calculated variable Y to the percentage variation

of the investigated parameter X .

SR = ∆Y /Y0

∆X /X0
= (Y −Y0)/Y0

(X −X0)/X0
(B.1)

The reference value for compressor polytropic efficiency is 0.82. It is varied with a step

change of ±2.5 % up to ±5 %.

Given the fact that compressor inlet temperature is fixed by design specification at 17◦C,

compressor polytropic efficiency influences the compressor power consumption and the

refrigerant outlet temperature, thus the cooler heat duty. The liquefaction part of the cycle is

not altered. Results are presented in Figure B.7. In the reference case compression power is

3130 kW, compressor outlet temperature is 407.5◦C and the cooler duty is 3288 kW.

Figure B.7: Percentage variations of compression power, compressor outlet temperature and
cooler heat duty when varying compressor polytropic efficiency

159



Appendix B. Sensitivity analyses on the single-expander cycle

It can first be noticed that the three variables present the same dependency direction, that is

compression power, compressor outlet temperature and cooler duty increase when compres-

sor polytropic efficiency decreases, and vice versa. A lower polytropic efficiency determines a

higher real compression work compared to the minimum ideal one. Given the higher outlet

enthalpy, compressor outlet temperature is higher when polytropic efficiency is lower. Finally

a higher compressor outlet temperature determines a higher heat load at the cooler.

From Figure B.7 it can also be seen that the percentage variations for the three variables are

close to each other, with a value between +7.1 % and +7.8 % when polytropic efficiency is 0.779

(-5 %) and between -6.2 % and -6.8 % when polytropic efficiency is 0.861 (+5 %). The average

SR’s are -1.44 for the compression power, -1.32 for the compressor outlet temperature and

-1.37 for the cooler duty.

Considering the expander isentropic efficiency the reference value is set equal to 0.85. It

is varied with a step change of ±2.5 % up to ±5 %.

Contrary to the compressor polytropic efficiency, the expander isentropic efficiency affects the

liquefaction part of the thermodynamic cycle. It has to be remarked that nitrogen temperature

at the expander outlet is fixed at -153◦C through a design specification and the expander

pressure ratio is kept constant. Therefore a change in the expander isentropic efficiency will

affect the refrigerant temperature at the expander inlet. More specifically, if the expander

isentropic efficiency increases, nitrogen temperature at the expander inlet will increase, i.e. it

will move towards temperatures closer to 0◦C. As a consequence the total duty at the cold box

will decrease, leading to a decrease in the required refrigerant mass flow rate.

These behaviours can be graphically observed in Figure B.8 together with the dependency of

expansion power on expander isentropic efficiency. In the reference case the expander power

production is 635 kW, nitrogen temperature at the expander inlet is -41.5◦C and nitrogen mass

flow rate is 7.48 kg/s.

Expander inlet temperature and refrigerant mass flow rate present the same dependency di-

rection3. On the contrary expansion power increases with the increase of expander isentropic

efficiency, as the real expansion work is closer to the maximum ideal one.

Expansion power increases by 1.76 % when expander isentropic efficiency is 5 % higher than

the reference case, while it decreases by 1.86 % in the opposite situation. Its average SR is 0.36.

The absolute value of expander inlet temperature is 12.4 % higher when expander isentropic

efficiency is 5 % lower, while it is 13.7 % lower in the opposite situation. For the refrigerant

mass flow rate the percentage variations are +7.6 % and -7.1 %, respectively. The average SR’s

are -2.61 and -1.46, respectively.

3A negative percentage variation on a negative quantity (as nitrogen temperature at the expander inlet) results
in an increase of the negative variable.
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Figure B.8: Percentage variations of expander power, expander inlet temperature and refriger-
ant flow rate when varying expander isentropic efficiency

Both the compressor polytropic efficiency and the expander isentropic efficiency impact the

cycle Figure of Merit. As above presented, compressor polytropic efficiency only influences

the power requirement at the compressor, while expander isentropic efficiency influences

both expansion and compression power, the latter through the impact on the refrigerant mass

flow rate. In order to understand which component efficiency has the greatest impact on the

thermodynamic performance, the Figure of Merit is calculated for the two different sensitivity

analyses and its percentage variations are reported in the spider plot of Figure B.9. It has to be

remarked that natural gas inlet and outlet conditions are kept fixed, i.e. the numerator in the

FOM expression is constant.

Figure B.9: Percentage variations of FOM when varying compressor polytropic efficiency and
expander isentropic efficiency
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As expected an increase in turbo-machinery efficiency allows the cycle Figure of Merit to

increase. From Figure B.9 it can be inferred that the expander isentropic efficiency is slightly

more influencing than the compressor polytropic efficiency. A 5 %-increase in compressor

polytropic efficiency results in a FOM percentage increase of 9.3 %, while a 5 %-increase in

expander isentropic efficiency results in a FOM percentage increase of 10.3 %. As a remark,

average SR’s are 1.81 and 1.93, respectively. These results reflect the fact that a change in ex-

pander isentropic efficiency affects the power consumption of both expander and compressor,

as aforementioned.
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C Composite Curves for the optimised
expander-based configurations

This Appendix reports the cold box Composite Curves (CC’s) and the tempera-

ture profiles for the optimised expander-based configurations. Correspondingly

the values of heat duty, UA-value and Logarithmic Mean Temperature Difference

are listed for all the heat exchangers.

C.1 Single-expander configurations

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 1073 76.9 14.0

HEX 2 583 23.5 24.8

Figure C.1: CC’s and heat exchange characterisation for the optimal single-expander cycle
with one compression stage presented in Section 5.3.1
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Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 483 42.1 11.5

HEX 2 684 44.5 15.4

Figure C.2: CC’s and heat exchange characterisation for the optimal single-expander cycle
with two compression stages and no mechanical coupling presented in Section 5.3.2

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 469 42.1 11.1

HEX 2 686 47.2 14.5

Figure C.3: CC’s and heat exchange characterisation for the optimal single-expander cycle
with two compression stages and with mechanical coupling presented in Section 5.3.2

C.2 Pre-cooling configurations

Q̇ UA LMTD

[kW] [kW/K] [K]

EVAP 621 40.1 15.5

MHEX 1 197 24.9 7.9

HEX 2 579 38.1 15.2

Figure C.4: CC’s and heat exchange characterisation for the optimal single-expander cycle
with R410A pre-cooling presented in Section 5.4
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C.2. Pre-cooling configurations

Q̇ UA LMTD

[kW] [kW/K] [K]

EVAP 592 38.9 15.2

MHEX 1 79 13.9 5.7

HEX 2 613 73.2 8.4

Figure C.5: CC’s and heat exchange characterisation for the optimal single-expander cycle
with propane pre-cooling presented in Section 5.4

Q̇ UA LMTD

[kW] [kW/K] [K]

EVAP 590 37.9 15.6

MHEX 1 77 13.7 5.6

HEX 2 613 76.3 8.0

Figure C.6: CC’s and heat exchange characterisation for the optimal single-expander cycle
with sub-critical CO2 pre-cooling presented in Section 5.4

Q̇ UA LMTD

[kW] [kW/K] [K]

EVAP 548 35.8 15.3

MHEX 1 115 17.4 6.6

HEX 2 619 61.4 10.1

Figure C.7: CC’s and heat exchange characterisation for the optimal single-expander cycle
with super-critical CO2 pre-cooling presented in Section 5.4
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C.3 Dual-expander configurations

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 999 125.7 7.9

MHEX 2 526 76.7 6.9

HEX 3 485 44.1 11.0

Figure C.8: CC’s and heat exchange characterisation for the optimal dual-turbine cycle with
different pressure ratio presented in Section 5.5

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 785 93.7 8.4

MHEX 2 820 133.6 6.1

HEX 3 201 17.6 11.4

Figure C.9: CC’s and heat exchange characterisation for the optimal dual-turbine cycle with
the same pressure ratio presented in Section 5.5

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 1134 110.6 10.3

MHEX 2 387 67.3 5.7

HEX 3 235 38.6 6.1

Figure C.10: CC’s and heat exchange characterisation for the optimal two-stage expansion
cycle presented in Section 5.5
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C.4 Dual-refrigerant configurations

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 653 56.4 11.6

HEX 2 500 71.9 7.0

HEX 4 186 32.2 5.8

Figure C.11: CC’s and heat exchange characterisation for the optimal N2 sub-cooling dual-
refrigerant cycle presented in Section 5.6

Q̇ UA LMTD

[kW] [kW/K] [K]

HEX 3 400 48.7 8.2

Figure C.12: Temperature profiles and heat exchange characterisation for the optimal N2

sub-cooling dual-refrigerant cycle presented in Section 5.6

Q̇ UA LMTD

[kW] [kW/K] [K]

MHEX 1 605 60.0 10.1

HEX 2 363 56.8 6.4

HEX 4 304 25.4 11.9

Figure C.13: CC’s and heat exchange characterisation for the optimal CH4 sub-cooling dual-
refrigerant cycle presented in Section 5.6

167



Appendix C. Composite Curves for the optimised expander-based configurations

Q̇ UA LMTD

[kW] [kW/K] [K]

HEX 3 614 118.7 5.2

Figure C.14: Temperature profiles and heat exchange characterisation for the optimal CH4

sub-cooling dual-refrigerant cycle presented in Section 5.6

Q̇ UA LMTD

[kW] [kW/K] [K]

HEX 1 173 22.0 7.9

HEX 2 80 10.8 7.4

HEX 4 643 643.4 22.0

Figure C.15: CC’s and heat exchange characterisation for the optimal Niche cycle presented in
Section 5.6

Q̇ UA LMTD

[kW] [kW/K] [K]

HEX 3 624 84.6 7.4

Figure C.16: Temperature profiles and heat exchange characterisation for the optimal Niche
cycle presented in Section 5.6
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D Influence of penalty function formula-
tions on the optimisation outcome

The optimisation problem is constrained through the introduction of penalty

functions. They have to ensure that all the solutions fulfil specific conditions,

i.e. the temperature approach cannot be lower than 3 K and the refrigerant has

always to be in gaseous form at the suction and discharge of turbo-machinery

equipment.

Penalty functions can be formulated differently. The aim of this Appendix Sec-

tion is to show how the penalty formulation influences the optimisation out-

come.

As presented in Chapter 5 penalty functions are addressed differently whether they concern

the refrigerant vapour fraction or the temperature approaches at the heat exchangers.

An example for the penalty function regarding the vapour fraction x is the following:

if x ≤ 0.995

Ẇnet = 109 [W]

Total UA-value = 109 [W/K]

end

This penalty formulation is referred to as single-value penalty. The values which are assigned

to the objective functions are on purpose extremely high so that the optimiser can discard the

solutions which violate the condition on the vapour fraction.

A single-value penalty function can be also implemented for the temperature approach at the

heat exchangers.

if MITA ≤ 2.995

Ẇnet = 109 [W]

Total UA-value = 109 [W/K]

end
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However this formulation does not distinguish between thermodynamic infeasibility (i.e.

negative MITA) and technical infeasibility (i.e. positive MITA but lower than 3 K). To take this

into account two alternative formulations can be identified, namely a two-value penalty and a

"functional" formulation.

The two-value penalty formulation is handled as following:

if 0.01 ≤ MITA ≤ 2.995

Ẇnet = 5 ·107 [W]

Total UA-value = 5 ·106 [W/K]

elseif MITA ≤ 0.01

Ẇnet = 109 [W]

Total UA-value = 109 [W/K]

else

end

The "functional" penalty formulation is instead managed as following:

if 0.01 ≤ MITA ≤ 2.995

Ẇnet = 2 ·107 + (3−MITA) ·107 [W]

Total UA-value = 2 ·106 + (3−MITA) ·106 [W/K]

elseif MITA ≤ 0.01

Ẇnet = 109 [W]

Total UA-value = 109 [W/K]

else

end

In both cases the aim is to differentiate a thermodynamic violation from a technical violation.

It is expected that addressing the constraint on temperature approaches according to a two-

value or functional approach can improve the optimisation outcome.

For this reason the single-expander cycle with one compression stage and the N2 sub-cooling

dual-refrigerant cycle are optimised using the three possible penalty formulations for the Min-

imum Internal Temperature Approaches. Only Single-Objective Optimisations are addressed,

with the aim of minimising the net power consumption. The single-expander cycle with one

compression stage is the simplest configuration and has the smallest number of decision

variables (4). On the contrary the dual-refrigerant cycle represents a complex design and has

the highest number of decision variables (9).

The size of the initial population is 300 for the single-expander cycle with one compression

stage, 700 for the dual-refrigerant cycle. The number of evaluations is set to 3000 and 5000,

respectively. The analysis is performed only once, without changing the optimisation parame-

ters.

The penalty formulations are compared by plotting the minimum value of the objective

function at different numbers of iterations. Figure D.1 refers to optimisation of the single-

expander cycle with one compression stage, while Figure D.2 refers to the optimisation of the

N2 sub-cooling dual-refrigerant cycle.
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Figure D.1: Minimum values of the objective function for the three different penalty formula-
tions in the optimisation of the single-expander cycle

Figure D.2: Minimum values of the objective function for the three different penalty formula-
tions in the optimisation of the dual-refrigerant cycle

The functional approach results to be the best among the penalty formulations, leading to

the lowest value of the objective function in both cases. The two-value penalty formulation

is found to give intermediate results, while the single-value penalty approach performs the

worst in both cases.

In light of this assessment it can be concluded that the use of a functional approach is beneficial

for the optimisation algorithm to converge towards the global optimum. This confirms the

robustness of the optimal solutions for the investigated expander-based cycles.
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E Cost correlations

This Appendix Section details the cost correlations which are applied for the

economic analysis of LNG production alternatives. They report the developed

Matlab scripts which are used in the post-computational phase and in which

the reader can find all the relevant assumptions. For the refrigerant coolers addi-

tional explanations are given about the applied methodology for the estimation

of coolers’ heat transfer area.

E.1 Compressors

1 function[BareModul_cost_comp]=cost_CentrifugalCompressors(power,efficiency)

2

3 %% DESCRIPTION

4 % Cost of the centrifugal compressor without electric driver

5 %

6 % REFERENCE: R. Turton, Analysis, Synthesis and Design of

7 % chemical processes, Prentice Hall, NJ, 1998

8 %

9 % INPUTS: Mechanical power [kW]

10 % Compressor polytropic efficiency [-]

11 %

12 % CAPACITY PARAMETER: Fluid power [kW]

13 %

14 % Currency is USD to be later converted in DKK

15 % 1 USD = 6.6 DKK

16 %

17 % ASSUMPTION: Whenever the fluid power exceeds the maximum limit,

18 % an additional compressor is purchased

19 %

20 % OUTPUT: Bare Module Cost of the compressor

21 %==========================================================================

22 %% BARE MODULE COST CALCULATION

23 % Compressor type: centrifugal

173



Appendix E. Cost correlations

24 k1 = 2.9945;

25 k2 = 0.9524;

26 k3 = 0;

27

28 % Compressor material

29 % f_BM = 2.5; %carbon steel

30 f_BM = 6.3; %stainless steel

31 % f_BM = 13; %nichel alloy

32

33 fluid_power = efficiency*power;

34

35 if fluid_power < 50 %[kW]

36 warning('Fluid Power for Centrifugal Compressor is too low!');

37 end

38

39 C_P_1996 = 10^(k1 + k2*log10(fluid_power) + k3*(log10(fluid_power))^2);

40

41 if fluid_power > 8000 %[kW]

42 warning('Fluid Power for Centrifugal Compressor is too high!');

43 limit_ratio = fluid_power/8000;

44 number_compfull = floor(limit_ratio);

45 exceedance = 8000*(limit_ratio - number_compfull);

46 C_P_1996 = number_compfull*(10^(k1 + k2*log10(8000) +

47 + k3*(log10(8000))^2)) + 10^(k1 + k2*log10(exceedance) +

48 + k3*(log10(exceedance))^2);

49 end

50

51 % Actualisation and currency conversion

52 CEPCI_1996 = 382;

53 CEPCI_2014 = 576.1;

54 f_actualisation = CEPCI_2014/CEPCI_1996;

55 f_conversion = 6.6;

56

57 BareModul_cost_comp = C_P_1996 * f_BM * f_actualisation * f_conversion;

58 end

E.2 Compressor drives

1 function[BareModul_cost_drive]=cost_ElectricDrives(power)

2 %% DESCRIPTION

3 % Cost of the electric drive for the compressors

4 % Given the application an explosion-proof expander is selected

5 %

6 % REFERENCE: R. Turton, Analysis, Synthesis and Design of

7 % chemical processes, Prentice Hall, NJ, 1998

8 %

9 % INPUTS: Shaft power [kW]

10 %

11 % CAPACITY PARAMETER: Shaft power [kW]

12 %
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13 % Currency is USD to be later converted in DKK

14 % 1 USD = 6.6 DKK

15 %

16 % ASSUMPTION: Whenever the shaft power exceeds the maximum limit,

17 % an additional electric drive is purchased

18 %

19 % OUTPUT: Bare Module Cost of the compressor

20 %==========================================================================

21 %% COST CALCULATION

22 % Drive type: electric- explosion-proof

23 k1 = 2.3006;

24 k2 = 1.0947;

25 k3 = -0.10160;

26

27 f_BM = 1.5;

28

29 if power < 3 %[kW]

30 warning('Shaft power for Electric Drive-Explosion-Proof is too low!');

31 end

32

33 C_P_1996 = 10^(k1 + k2*log10(power) + k3*(log10(power))^2);

34

35 if power > 6000 %[kW]

36 warning('Shaft power for Electric Drive-Explosion-Proof is too high!');

37 limit_ratio = power/6000;

38 number_drivefull = floor(limit_ratio);

39 exceedance = 8000*(limit_ratio - number_drivefull);

40 C_P_1996 = number_drivefull*(10^(k1 + k2*log10(6000) +

41 + k3*(log10(6000))^2)) + 10^(k1 + k2*log10(exceedance) +

42 + k3*(log10(exceedance))^2);

43 end

44

45 % Actualisation and currency conversion

46 CEPCI_1996 = 382;

47 CEPCI_2014 = 576.1;

48 f_actualisation = CEPCI_2014/CEPCI_1996;

49 f_conversion = 6.6;

50

51 BareModul_cost_drive = C_P_1996 * f_BM * f_actualisation * f_conversion;

52 end

E.3 Expander

1 function[BareModul_cost_expander]=cost_Expander(power)

2 %% DESCRIPTION

3 % Cost of the expander

4 %

5 % REFERENCE: R. Turton, Analysis, Synthesis and Design of

6 % chemical processes, Prentice Hall, NJ, 1998

7 %
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8 % INPUTS: Shaft power [kW]

9 %

10 % CAPACITY PARAMETER: Shaft power [kW]

11 %

12 % Currency is USD to be later converted in DKK

13 % 1 USD = 6.6 DKK

14 %

15 % ASSUMPTION: Whenever the shaft power exceeds the maximum limit,

16 % an additional expander is purchased

17 %

18 % OUTPUT: Bare Module Cost of the compressor

19 %==========================================================================

20 %% COST CALCULATION

21 % Expander type: radial gas expander

22 k1 = 3.1143;

23 k2 = 0.6923;

24 k3 = 0;

25

26 % Expander material

27 % f_BM = 3; %carbon steel

28 f_BM = 5; %stainless steel

29 % f_BM = 6; %nichel alloy

30

31 if power < 100 %[kW]

32 warning('Shaft power for Expander is too low!');

33 end

34

35 C_P_1996 = 10^(k1 + k2*log10(power) + k3*(log10(power))^2);

36

37 if power > 1500 %[kW]

38 warning('Shaft power for Expander is too high!');

39 limit_ratio = power/1500;

40 number_expfull = floor(limit_ratio);

41 exceedance = 8000*(limit_ratio - number_expfull);

42 C_P_1996 = number_expfull*(10^(k1 + k2*log10(1500) +

43 + k3*(log10(1500))^2)) + 10^(k1 + k2*log10(exceedance) +

44 + k3*(log10(exceedance))^2);

45 end

46

47 % Actualisation and currency conversion

48 CEPCI_1996 = 382;

49 CEPCI_2014 = 576.1;

50 f_actualisation = CEPCI_2014/CEPCI_1996;

51 f_conversion = 6.6;

52

53 BareModul_cost_expander = C_P_1996 * f_BM * f_actualisation * f_conversion;

54 end
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E.4 Phase separator

1 function[BareModul_cost_FlashSep]=cost_FlashDrum(volumeflow, pressure)

2 %% DESCRIPTION

3 % Cost of the phase separator

4 %

5 % REFERENCES: G.D.Ulrich, A Guide to Chemical Engineering Process

6 % Design and Economics, Wiley, NJ, 1984

7 % R. Turton, Analysis, Synthesis and Design of

8 % chemical processes, Prentice Hall, NJ, 1998

9 %

10 % INPUTS: Volume flow rate [m^3/s]

11 % Inlet pressure [bar]

12 %

13 % CAPACITY PARAMETER: Vessel height [m]

14 %

15 % Currency is USD to be later converted in DKK

16 % 1 USD = 6.6 DKK

17 %

18 % ASSUMPTIONS: Vertical vessels are considered

19 % Limitations for flash diameter:

20 % diameter [m] 0.3:4

21 % height [m] 1: 20

22 % Length to diameter ratio:

23 % L/D = 3 below 19 barg;

24 % L/D = 4 for 19-34 barg;

25 % L/D = 5 above 34 barg

26 %

27 % OUTPUT: Bare Module Cost of the phase separator

28 %==========================================================================

29 %% Size calculation

30 d_max = 4; % maximum diameter for fixed bed

31

32 % --- Number of units -----

33 % residence time = 600[s]

34 d = (2/pi*600*volumeflow)^(1/3);

35 units = ceil((d/d_max)^3); % cubic relation between diameter and volume

36 volumeflow = volumeflow/units;

37

38 diameter = (2/pi*600*volumeflow)^(1/3);

39 %% COST CALCULATION

40 % Correlation coefficients

41 K = [3.3392 0.5538 0.2851

42 3.4746 0.5893 0.2053

43 3.6237 0.5262 0.2146

44 3.7559 0.6361 0.1069

45 3.9484 0.4623 0.1717

46 4.0547 0.4620 0.1558

47 4.1110 0.6094 0.0490

48 4.3919 0.2859 0.1842];
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49

50 if diameter <= 0.3

51 diameter = 0.3;

52 if (pressure-1) <= 19

53 H = 3*diameter;

54 elseif (pressure-1) <= 34

55 H = 4*diameter;

56 else

57 H = 5*diameter;

58 end

59 k1 = K(1,1);

60 k2 = K(1,2);

61 k3 = K(1,3);

62 end

63

64 if diameter > 0.3 && diameter <= 0.5

65 diameter = 0.5;

66 if (pressure-1) <= 19

67 H = 3*diameter;

68 elseif (pressure-1) <= 34

69 H = 4*diameter;

70 else

71 H = 5*diameter;

72 end

73 k1 = K(2,1);

74 k2 = K(2,2);

75 k3 = K(2,3);

76 end

77

78 if diameter > 0.5 && diameter <= 1

79 diameter = 1;

80 if (pressure-1) <= 19

81 H = 3*diameter;

82 elseif (pressure-1) <= 34

83 H = 4*diameter;

84 else

85 H = 5*diameter;

86 end

87 k1 = K(3,1);

88 k2 = K(3,2);

89 k3 = K(3,3);

90 end

91

92 if diameter > 1 && diameter <= 1.5

93 diameter = 1.5;

94 if (pressure-1) <= 19

95 H = 3*diameter;

96 elseif (pressure-1) <= 34

97 H = 4*diameter;

98 else

99 H = 5*diameter;

100 end
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101 k1 = K(4,1);

102 k2 = K(4,2);

103 k3 = K(4,3);

104 end

105

106 if diameter > 1.5 && diameter <= 2

107 diameter = 2;

108 if (pressure-1) <= 19

109 H = 3*diameter;

110 elseif (pressure-1) <= 34

111 H = 4*diameter;

112 else

113 H = 5*diameter;

114 end

115 k1 = K(5,1);

116 k2 = K(5,2);

117 k3 = K(5,3);

118 end

119

120 if diameter > 2 && diameter <= 2.5

121 diameter = 2.5;

122 if (pressure-1) <= 19

123 H = 3*diameter;

124 elseif (pressure-1) <= 34

125 H = 4*diameter;

126 else

127 H = 5*diameter;

128 end

129 k1 = K(6,1);

130 k2 = K(6,2);

131 k3 = K(6,3);

132 end

133

134 if diameter > 2.5 && diameter <= 3

135 diameter = 3;

136 if (pressure-1) <= 19

137 H = 3*diameter;

138 elseif (pressure-1) <= 34

139 H = 4*diameter;

140 else

141 H = 5*diameter;

142 end

143 k1 = K(7,1);

144 k2 = K(7,2);

145 k3 = K(7,3);

146 end

147

148 if diameter > 3

149 diameter = 4;

150 if (pressure-1) <= 19

151 H = 3*diameter;

152 elseif (pressure-1) <= 34
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153 H = 4*diameter;

154 else

155 H = 5*diameter;

156 end

157 k1 = K(8,1);

158 k2 = K(8,2);

159 k3 = K(8,3);

160 end

161

162 % Pressure factor calculation

163 if (pressure-1) <= -0.5

164 FP = 1.25;

165 elseif (pressure-1) > -0.5 && (pressure-1) <= 3.7

166 FP = 1;

167 else

168 FP = 0.5146 + 0.6838*log10(pressure-1) +

169 + 0.2970*(log10(pressure-1))^2 + 0.0235*(log10(pressure-1))^6 +

170 + 0.0020*(log10(pressure-1))^8;

171 end

172

173 % Geometry coefficients

174 b1 = 2.5;

175 b2 = 1.72;

176

177 % Material factor

178 % FM_SS = 4; %stainless steel

179 FM_CS = 1; %carbon steel

180

181 % Bare Module Cost Factor calculation

182 F_BM = b1 + b2*FM_CS*FP;

183

184 C_P_1996 = 10^(k1 + k2*log10(H) + k3*(log10(H))^2);

185

186 % Actualisation and currency conversion

187 CEPCI_1996 = 382;

188 CEPCI_2014 = 576.1;

189 f_actualisation = CEPCI_2014/CEPCI_1996;

190 f_conversion = 6.6;

191

192 BareModul_cost_FlashSep = C_P_1996*F_BM*f_actualisation*f_conversion*units;

193 end

E.5 Flat-plate heat exchangers

The author is not allowed to publish the Matlab script relative to flat-plate heat exchangers

because it contains confidential cost data.

The Bare Module Cost Factor given by Turton et al. [71] is applied. It has the following

expression:

FBM = b1 +b2 ·FM (E.1)
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in which

b1 = 1.53

b2 = 1.27

FM = 2.3 (stainless steel)

E.6 Coolers

As mentioned in Chapter 6, the heat transfer area is directly estimated using SWEP software

for the refrigerant coolers and for the condensers (applicable only in the pre-cooling configu-

rations).

The cooler area is estimated for two refrigerant cases, namely nitrogen and methane. Given

the significant differences in terms of mass flow rate and cooler inlet temperature that the

refrigerants present in the thirteen expander-based configurations, a matrix of heat transfer

area is created as a function of refrigerant mass flow rate and inlet temperature. For the

nitrogen case mass flow rate ranges between 0.5 and 20 kg/s with a step change of 0.5 kg/s,

while inlet temperature is varied between 50◦C and 500◦C with a step change of 25◦C. For

methane the ranges are 0.5 kg/s - 10 kg/s and 50◦C - 300◦C, respectively and with the same

step changes. The value of heat transfer area is determined using the Matlab function interp2.

The range of the mass flow rate is extended through an interpolation function defined on the

average value of the heat transfer area for each temperature level.

The maximum pressure level applicable in SWEP software is considered, namely 60 bar for

nitrogen and 50 bar for methane. Pressure drops are 1 % of refrigerant pressure on gas side, 1

bar on water side [79]. A correction factor is applied to take into consideration the refrigerant

pressure level as in the optimised models.

For the condenser the following values of heat transfer area are applied. The condenser cost is

calculated applying the cost correlation provided by SWEP for flat-plate heat exchangers.

• R410A: 90 m2;

• Propane: 120 m2;

• CO2: 90 m2 both in sub- and super-critical cases.

E.6.1 Nitrogen coolers

1 function[BareModul_cost_gascooler]=cost_GasCoolers_N2(pressure,mass_flow,

2 temperature)

3 %% DESCRIPTION

4 % Cost of the Nitrogen coolers

5 %

6 % REFERENCE: R. Turton, Analysis, Synthesis and Design of

7 % chemical processes, Prentice Hall, NJ, 1998

8 %

9 % INPUTS: Nitrogen inlet pressure [bar]
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10 % Nitrogen mass flow rate [kg/s]

11 % Nitrogen inlet temperature [C]

12 %

13 % CAPACITY PARAMETER: Heat transfer area [m^2]

14 %

15 % Currency is USD to be later converted in DKK

16 % 1 USD = 6.6 DKK

17 %

18 % ASSUMPTION: Heat transfer area is determined using SWEP

19 % software;

20 % Water is the fluid on the secondary side

21 % Water enters the cooler at 10 C and exits at 40 C

22 % Nitrogen pressure is set at 60 bar

23 % Pressure drops on nitrogen side is 1% of nitrogen

24 % pressure: 60 kPa

25 % 1 bar on water side

26 % If nitrogen pressure is below 60 bar,

27 % a correction factor on the area is applied

28 % OUTPUT: Bare Module Cost of the nitrogen gas cooler

29 %==========================================================================

30 %% AREA CALCULATION

31

32 if pressure-1 > 250 %[barg]

33 warning('Pressure is too high!');

34 end

35

36 A = [1.43 2.6 9.4 18.2 24.4 40.2 50.3 67.9 88.8 80.3

37 0.93 2.35 6.39 15.4 27.8 39 53 72.5 66.3 78

38 0.93 2.24 6.77 14.5 29.6 40.6 55.8 77.6 68.6 81.1

39 0.992 2.3 7.71 14.9 32.1 43.3 60.1 73.8 73.3 86.6

40 1.05 2.41 8.08 15.4 32 46 64.7 83.6 77.2 92

41 1.05 2.46 8.84 16.4 33.5 48.7 69.4 67.1 81.1 97.5

42 1.12 2.52 9.96 18 35.1 51.1 74.5 70.2 85 102

43 1.18 2.58 8.46 19.7 36.7 53.8 79.9 73.3 89.7 108

44 1.24 2.63 8.65 22 38.2 56.9 74.8 76.4 93.6 114];

45

46 mass = [0.5, 1, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20];

47 temp = [50; 87.5; 125; 187.5; 200; 312.5; 375; 437.5; 500];

48

49 % Mass flow correction factor

50 if mass_flow > 20

51 f_mass = 2.3428*mass_flow^1.2329;

52 mass_flow = 0.5;

53 else f_mass = 1;

54 end

55

56 if temperature >= 50 && temperature <= 500

57 area =interp2(mass,temp,A,mass_flow,temperature);

58 elseif temperature < 50

59 warning('Cooler inlet gas temperature is below 50 degrees');

60 temperature = 50;

61 area =interp2(mass,temp,A,mass_flow,temperature);
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62 elseif temperature > 500

63 warning('Cooler inlet gas temperature is above 500 degrees');

64 temperature = 500;

65 area =interp2(mass,temp,A,mass_flow,temperature);

66 else

67 end

68

69 %Pressure correction factor

70 if pressure >= 60

71 f_pressure = 1;

72 else f_pressure = 85.402*pressure^(-1.085);

73 end

74

75 area = area*f_pressure*f_mass;

76

77 if area < 3.5 %[m^2]

78 warning('Heat exchange area is too low!');

79 end

80

81 if area > 20000 %[m^2]

82 warning('Heat exchange area is too high!');

83 end

84

85 if area < 1

86 area = ceil(area);

87 end

88 %% BARE MODULE COST CALCULATION

89 % Turton's correlation for air coolers is applied

90 k1 = 3.6418;

91 k2 = 0.4053;

92 k3 = 0;

93

94 c1 = -0.06154;

95 c2 = 0.0473;

96 c3 = 0;

97

98 b1 = 1.53;

99 b2 = 1.27;

100

101 F_M = 3; %stainless steel

102

103 C_P_1996 = 10^(k1 + k2*log10(area) + k3*(log10(area))^2);

104 F_P = 10^(c1 + c2*log10(pressure-1) + c3*(log10(pressure-1))^2);

105

106 F_BM = b1 + b2*F_M*F_P;

107

108 % Actualisation and currency conversion

109 CEPCI_1996 = 382;

110 CEPCI_2014 = 576.1;

111 f_actualisation = CEPCI_2014/CEPCI_1996;

112 f_conversion = 6.6;

113
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114 BareModul_cost_gascooler = C_P_1996*F_BM*f_actualisation*f_conversion;

115 end

E.6.2 Methane coolers

1 function[BareModul_cost_gascooler]=cost_GasCoolers_CH4(pressure,mass_flow,

2 temperature)

3 %% DESCRIPTION

4 % Cost of the Methane coolers

5 %

6 % REFERENCE: R. Turton, Analysis, Synthesis and Design of

7 % chemical processes, Prentice Hall, NJ, 1998

8 %

9 % INPUTS: Methane inlet pressure [bar]

10 % Methane mass flow rate [kg/s]

11 % Methane inlet temperature [C]

12 %

13 % CAPACITY PARAMETER: Heat transfer area [m^2]

14 %

15 % Currency is USD to be later converted in DKK

16 % 1 USD = 6.6 DKK

17 %

18 % ASSUMPTION: Heat transfer area is determined using SWEP

19 % software;

20 % Water is the fluid on the secondary side

21 % Water enters the cooler at 10 C and exits at 40 C

22 % Methane pressure is set at 60 bar

23 % Pressure drops on nitrogen side is 1% of methane

24 % pressure: 50 kPa

25 % 1 bar on water side

26 % If methane pressure is below 60 bar,

27 % a correction factor on the area is applied

28 % OUTPUT: Bare Module Cost of the methane gas cooler

29 %==========================================================================

30 %% AREA CALCULATION

31

32 if pressure-1 > 250 %[barg]

33 warning('Pressure is too high!');

34 end

35

36 A = [2.13 5.12 16.7 26 52.6 92.4

37 1.74 5.04 13.2 30.3 47.2 76.4

38 1.86 5.28 13.5 29.2 48.7 81.5

39 1.92 5.52 13.9 30 50.7 73.8

40 1.98 5.08 14.5 30.8 52.3 78.4

41 2.17 5.08 16.5 37.8 65.1 75.7];

42

43 mass = [0.5, 1, 2.5, 5, 7.5, 10];

44 temp = [50; 100; 150; 200; 250; 300];

45
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46 % Mass flow correction factor

47 if mass_flow > 10

48 f_mass = 2.4343*mass_flow^1.2023;

49 mass_flow = 0.5;

50 else f_mass = 1;

51 end

52

53 if temperature >= 50 && temperature <= 300

54 area =interp2(mass,temp,A,mass_flow,temperature);

55 elseif temperature < 50

56 warning('Cooler inlet gas temperature is below 50 degrees');

57 temperature = 50;

58 area =interp2(mass,temp,A,mass_flow,temperature);

59 elseif temperature > 300

60 warning('Cooler inlet gas temperature is above 500 degrees');

61 temperature = 300;

62 area =interp2(mass,temp,A,mass_flow,temperature);

63 else

64 end

65

66 % Pressure correction factor

67 if pressure >= 50

68 f_pressure = 1;

69 else f_pressure = 52.2982*pressure^(-1.036);

70 end

71

72 area = area*f_pressure*f_mass;

73

74 if area < 3.5 %[m^2]

75 warning('Heat exchange area is too low!');

76 area = 3.5;

77 end

78 if area > 20000 %[m^2]

79 warning('Heat exchange area is too high!');

80 end

81

82 if area < 1

83 area = ceil(area);

84 end

85 %% BARE MODULE COST CALCULATION

86 % Turton's correlation for air coolers is applied

87 k1 = 3.6418;

88 k2 = 0.4053;

89 k3 = 0;

90

91 c1 = -0.06154;

92 c2 = 0.0473;

93 c3 = 0;

94

95 b1 = 1.53;

96 b2 = 1.27;

97
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98 F_M = 3; %stainless steel

99

100 C_P_1996 = 10^(k1 + k2*log10(area) + k3*(log10(area))^2);

101 F_P = 10^(c1 + c2*log10(pressure-1) + c3*(log10(pressure-1))^2);

102

103 F_BM = b1 + b2*F_M*F_P;

104

105 % Actualisation and currency conversion

106 CEPCI_1996 = 382;

107 CEPCI_2014 = 576.1;

108

109 f_actualisation = CEPCI_2014/CEPCI_1996;

110

111 f_conversion = 6.6;

112

113 BareModul_cost_gascooler = C_P_1996 *F_BM*f_actualisation*f_conversion;

114 end

E.7 Additional correlations

The general formulation is given in Equation E.2.

CP =C 0
P ·

(
X

X 0

)α
(E.2)

X is the capacity parameter and the superscript 0 refers to the base case. α is the scaling

coefficient.

E.7.1 Compressor

The correlation is provided by FK Teknik A/S and is relative to a propane compressor inclusive

of electric motor.

C 0
P = 10631 [AC]

X 0 = 178.4 [m3/h]

α = 0.79

The Bare Module Factor as given by Turton et al. is applied.

E.7.2 Flat-plate heat exchanger

The correlation is provided by FK Teknik A/s and Ahlsell Danmark ApS and is valid for flat-plate

heat exchangers working with propane, hydrocarbons and low-pressure corrosive chemicals.

C 0
P = 15526 [AC]

X 0 = 42 [m2]

α = 0.8

The Bare Module Factor as given by Turton et al. is applied.
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F Process flowsheet for cascade and
Mixed-Refrigerant cycles and updated
optimisation results

This Appendix Section complements the economic comparison of different LNG

production concepts which is the content of Chapter 7.

The process flowsheet of the included cascade and Mixed-Refrigerant cycles

is sketched. These cycles are analysed in details in the work of Lonardi [81],

to which the reader is referred. Furthermore the new set of optimal decision

variables is presented for the three considered expander-based configurations.

The need for a further thermodynamic optimisation is justified by the change in

expander isentropic efficiency when considering large-scale applications.

F.1 Process flowsheet

One-stage cascade cycle

Figure F.1: Process flowsheet of the small-scale one-stage cascade cycle [81]
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Table F.1: Values of the main parameters in the optimised one-stage cascade cycle [81]

Parameter Variable Unit Value

Pre-cooling temperature T2, T7, T13, T19 °C -35.2
Liquefaction temperature T3, T14, T20 °C -95.0
Propane high pressure P6 bar 8.54
Propane low pressure P8 bar 1.20
Propane flow rate ṁ6 kg/s 2.79
Ethylene high pressure P12 bar 17.76
Ethylene low pressure P15 bar 1.42
Ethylene flow rate ṁ12 kg/s 1.83
Methane high pressure P18 bar 31.71
Methane low pressure P22 bar 1.96
Methane flow rate ṁ18 kg/s 0.57

Two-stage cascade cycle

Figure F.2: Process flowsheet of the large-scale two-stage cascade cycle [81]
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Table F.2: Values of the main parameters in the optimised two-stage cascade cycle [81]

Parameter Variable Unit Value

Pre-cooling temperature T3, T16, T25, T40 °C -39.3
Liquefaction temperature T5, T31, T42 °C -94.1
Propane high pressure P10 bar 8.37
Propane intermediate pressure P12, P20 bar 3.12
Propane low pressure P17 bar 1.01
Propane flow rate ṁ10 kg/s 2.89
Ethylene high pressure P23 bar 14.93
Ethylene intermediate pressure P27, P35 bar 4.58
Ethylene low pressure P32 bar 1.48
Ethylene flow rate ṁ23 kg/s 1.77
Methane high pressure P38 bar 32.20
Methane intermediate pressure P44, P52 bar 6.53
Methane low pressure P49 bar 1.96
Methane flow rate ṁ38 kg/s 0.60

PRICO cycle

Figure F.3: Process flowsheet of the small-scale PRICO cycle [81]
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Table F.3: Values of the main parameters in the optimised PRICO cycle [81]

Parameter Variable Unit Value

Mixed Refrigerant flow rate ṁ6 kg/s 11.17
Methane flow rate ṁCH4 kg/s 1.32
Ethane flow rate ṁC2H6 kg/s 2.52
Propane flow rate ṁC3H8 kg/s 0.16
n-Butane flow rate ṁn-C4H10 kg/s 0.14
i-Butane flow rate ṁi-C4H10 kg/s 2.26
n-Pentane flow rate ṁn-C5H12 kg/s 3.48
i-Pentane flow rate ṁi-C5H12 kg/s 0.53
Nitrogen flow rate ṁN2 kg/s 0.75
Split flow rate ṁ11 kg/s 1.73
High pressure level P6 bar 5.67
Low pressure level P8 bar 1.07

C3-MR cycle

Figure F.4: Process flowsheet of the large-scale C3-MR cycle [81]
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F.2. Optimal decision variables for large-scale expander-based configurations

Table F.4: Values of the main parameters in the optimised C3-MR cycle [81]

Parameter Variable Unit Value

Pre-cooling propane flow rate ṁ21 kg/s 2.76
Pre-cooling high-pressure level P21 bar 8.37
Pre-cooling low-pressure level P23 bar 1.74
Pre-cooling temperature T2, T9, T22 °C -26.1
Mixed Refrigerant flow rate ṁ8 kg/s 3.06
Methane flow rate ṁCH4 kg/s 0.37
Ethane flow rate ṁC2H6 kg/s 1.59
Propane flow rate ṁC3H8 kg/s 0.28
n-Butane flow rate ṁn-C4H10 kg/s 0.48
i-Butane flow rate ṁi-C4H10 kg/s 0.30
n-Pentane flow rate ṁn-C5H12 kg/s 0.00
i-Pentane flow rate ṁi-C5H12 kg/s 0.00
Nitrogen flow rate ṁN2 kg/s 0.03
High pressure level P8 bar 12.01
Low pressure level P13, P16 bar 1.36
Intermediate temperature T3, T12, T14 °C -122.8

F.2 Optimal decision variables for large-scale expander-based con-

figurations

Propane pre-cooling single-expander cycle

Table F.5: Decision variables, corresponding variation ranges and optimal values for the large
scale single-expander cycle with propane pre-cooling

Decision Unit Range Optimal
variable value

Phigh,N2
bar [60 130] 120.7

Plow,N2
bar [1 15] 13.0

Tin
exp °C [-100 -45] -48.8

ṁN2 kg/s [1 15] 6.0
Phigh,PC bar [8.37 42.5] 8.37
Plow,PC bar [0.5 5] 1.36
TPC °C [-40 0] -32.2
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N2 sub-cooling dual-refrigerant cycle

Table F.6: Decision variables, corresponding variation ranges and optimal values for the large
scale N2 sub-cooling dual-refrigerant cycle

Decision Unit Range Optimal
variable value

Phigh,N2
bar [60 90] 85.7

Phigh,CH4
bar [60 90] 76.0

Plow,N2
bar [5 30] 14.5

Plow,CH4
bar [5 30] 17.0

Tin
exp,N2

°C [-100 -50] -73.7

Tin
exp,CH4

°C [-50 0] -24.1

TNG
int °C [-120 -20] -92.9

ṁN2 kg/s [1 5] 3.0
ṁCH4 kg/s [1 5] 3.6

CH4 sub-cooling dual-refrigerant cycle

Table F.7: Decision variables, corresponding variation ranges and optimal values for the large
scale CH4 sub-cooling dual-refrigerant cycle

Decision Unit Range Optimal
variable value

Phigh,N2
bar [60 130] 103.0

Phigh,CH4
bar [2.5 20] 4.3

Plow,N2
bar [1 30] 29.9

Plow,CH4
bar [0.1 2] 0.91

Tin
exp,N2

°C [-100 0] -6.0

Tin
exp,CH4

°C [-130 -80] -101.8

TNG
int °C [-120 -20] -76.7

ṁN2 kg/s [1 8] 4.0
ṁCH4 kg/s [1 8] 4.8
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If you aren’t in over your head,

how do you know how tall you are?

— T.S. Eliot
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