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Introduction

Despite representing the 27% of the energy budget of the Universe, Dark Matter
composition remains one of the most fascinating open problems in Fundamental
Physics. In the last five decades the collection of new indisputable evidences con-
cerning its existence has been closely accompanied by the attempts to find a suitable
model to understand its origin and microscopic nature. A widely spread assumption
in the literature is that the Dark Matter is an elementary particle as much as the
ones described by the Standard Model of Particle Physics. In this case, the mass
range available for DM models can vary from 10−22 eV to be confined inside galactic
halos to enormous scales as the ones of Grand Unified Theories of 1015GeV . This
range can be significantly reduced if one considers models that have been in ther-
mal equilibrium with the primordial bath of SM particles at some early stages of
the evolution of our Universe. To compose the observed energy density of DM we
observe today, at some point these thermal models have to decouple from thermal
equilibrium in a process called freeze-out. In this scenario, DM mass must be higher
than some keV to allow for structure formation and lighter than some 10TeV for
perturbative unitarity.

A principle that has lead physicists in their attempt to unveil the Dark Matter mys-
tery is the one of trying to solve the inconsistencies of the Standard Model adding
new degrees of freedom which could provide a satisfying description of DM nature.
This is the case of Weakly Interacting Massive Particles, which could solve the hier-
archy problem. They constitute a thermal model with massmχ = (10GeV—10TeV )
and an annihilation cross section of the order of typical Weak Interactions ïÃvð =
1 pb, hence their name. This choice "miraculously" leads to the observed DM density
today. Another famous example is the one of the axions, that are designed for solv-
ing the Strong CP Problem, but can also be light (e.g. with respect to WIMPs) Dark
Matter candidates, thanks to their oscillations in the Friedmann-Robertson-Walker
(FRW) background, in the so-called misalignment mechanism.

Strong bounds for QCD axions and Axion-like Particles (which in general do not
solve the Strong CP problem) come from astrophysical environments such as the Sun,
White Dwarves, Red Giants and Core-Collapse Supernovae. Clearly, these bounds
can be applied also to other light DM candidates. For example, the absence of signals
in WIMP direct detection experiments pushed phenomenologists to investigate also
light thermal (thus in the keV—10GeV region) models that interact weakly with the
SM. However, they would be overproduced by the freeze-out mechanism unless they
can interact also with a "mediator" that drives may be coupled to the SM through
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renormalizable portal operators (Ref. [1]). These mediators may be of particular
interest also for direct detection purposes, especially if they are nucleo-philic scalars.

In this thesis work we will study in detail a light DM mediator coupled to the
SM thanks to the Higgs-portal operator H H. In Chapter 5 we will introduce the
problems of light thermal DM models and thus the necessity of the mediators. Then,
we will show how the Higgs-portal mechanism couples the mediators to the SM and
in particular to hadrons (pions and nucleons in particular). A light scalar coupled to
nucleons would be massively produced in hot, dense and nucleon-rich environments
such as Core-Collapse Supernovae, that we will study in Chapter 4.

Before doing so, we review the SM theory and its drawbacks in Chapter 1 in order
to develop the formalism and the concepts for the following Chapters. Chapter 2
is entirely dedicated to what we know about Dark Matter and suitable models that
have been proposed throughout the years. One particular model, the axion, is so
fascinating that is worth going more in detail in a dedicated Chapter (3). Moreover,
probably going back to Iwamoto’s work in the early ’80s (Ref. [2]), the techniques
for studying the emission of light particles by Core-Collapse Supernovae has been
developed specifically to constrain the elusive axion, as we will show in Chapter 4.

With all these premises, we can study the behaviour of the (CP-even) scalar mediator
in the SN environment in Chapter 6. There, we will produce original and self-
consistent bounds on the masses and couplings of the scalar. In particular, we will
discuss where and how we differ from the previous literature (mainly Ref. [3]) about
bounds from the luminosity of scalar production, which will be constrained with the
famous Raffelt criterion (Ref. [4]). In addition to that, we will add bounds coming
from Low-Energy Supernovae (following Ref. [5]), SN1987A gamma rays detected
by GRS and cosmic diffuse photons coming from all past CCSN events.
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Chapter 1

The Standard Model and its

drawbacks

The Standard Model of Particle Physics is a Lorentz invariant QFT built upon the
gauge group SU(3)C × SU(2)L × U(1)Y and the requirement of renormalizability.
The fermionic content is represented in gauge group multiplets and in Weyl basis:

Qi
L ∼ (3, 2,+1/6)

LiL ∼ (1, 2,−1/2)

uiR ∼ (3, 1, 2/3)

diR ∼ (3, 1,−1/3)

eiR ∼ (1, 1,−1)

In this notation QL = (uL, dL)
T and LL = (¿L, eL)

T . The i apex is there to account
for multiple generation for both quarks and leptons.
We will call Ga

µ the SU(3)C gauge bosons, W i
µ the SU(2)L ones and Bµ for U(1)Y .

It is known that in order to maintain the gauge invariance, the lagrangian should
be built using the field strength tensors and the gauge bosons must transform under
the gauge transformation in the adjoint representation of the gauge group. The field
strength tensor is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν

and it is built in a way such that a gauge transformation acting on the fermionic
fields

È → È′(x) = U(x)È(x) = exp{−iÄ · ¹(x)/2}È(x)
with Ä i being the generators of the (in general non-abelian) gauge group, transforms
with covariant derivatives as:

DµÈ(x) → D′
µÈ

′(x) = U(x)DµÈ(x)

Being as usual Dµ = ∂µ + igÄ ·A. In this way the gauge fields must transform as

Aaµ(x) → A′ a
µ (x) = Aaµ(x) +

1

g
∂µ¹

a(x)− fabcAbµ(x)¹
c(x)
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With all these prescriptions gauge invariance is ensured since this way the field
strength tensor is gauge invariant and also the Dirac lagrangian term È̄i /DÈ.
The final ingredient is the Higgs field, which is a complex scalar doubletH of SU(2)L,
or better

H ∼ (1, 2, 1/2)

Having this in mind and defining H̃ = iÃ2H
∗, the Standard Model Lagrangian is:

LSM = −1

4
Ga
µνG

a,µν − 1

4
W i
µνW

i,µν − 1

4
BµνB

µν

+Qj
Li /DQ

j
L + LjLi /DL

j
L + ujRi /Du

j
R + djRi /Dd

j
R + ejRi /De

j
R

+ (DµH) (DµH)− V (H)

− Y ij
d Q

i
LH djR − Y ij

u Q
i
LH̃ ujR − Y ij

e L
i
LH ejR + h.c.

(1.1)

In this equation a shorthand notation, which is a little imprecise, has been used.
Defining Ãµ = (1, Ãi) and Ãµ = (1,−Ãi), with Dµ being the covariant derivative
(which of course changes for each fermionic field along with its transformation prop-
erties under the gauge group), we mean

ÈLi /DÈL = È 
LiÃ

µDµÈL and ÈRi /DÈR = È 
RiÃ

µDµÈR

The phenomenology that can be extracted from this construction is rich and, disre-
garding for a while the open problems, consistent with observations: within its most
successful predictions we remember the discovery of the W and Z bosons (1983), of
the top quark (1995) and finally of the Higgs boson (2012).

1.1 Electroweak Spontaneous symmetry breaking and
Higgs interactions

The easiest way to provide spontaneous symmetry breaking in the Higgs sector
within all the previous requirements is to assume a mexican-hat potential:

V (H) = −µ2H H + ¼(H H)2 with H =
1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)

The gauge symmetry ensures that we can choose the vacuum

ïHð = 1√
2

(
0
v

)
with µ2 = ¼v2

Expanding around the new vacuum as H = (v + h)/
√
2 we transform the Higgs

lagrangian
LH = (∂µH) (∂µH) + µ2H H − ¼(H H)2

in the new lagrangian of the Higgs boson h with its mass and self interactions:

Lh =
1

2
∂µh ∂

µh− 1

2
M2

h h
2 − ¼ v h3 − ¼

4
h4 where M2

h = 2¼ v2 (1.2)
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Masses of the gauge bosons

In the broken phase, three d.o.f. out of four of the Higgs field seem to disappear
and the only one remaining is the Higgs boson. As Goldstone theorem requires, the
three broken generators must correspond to three Goldstone bosons, that we do not
see explicitly in Lh. However, in a gauge theory, thus local, we can choose the gauge
in order to make the three Goldstone bosons be eaten up by the gauge bosons, which
now become massive, acquiring the longitudinal d.o.f.. This particular gauge choice
will be called unitary gauge, since it arises from the possibility to parametrize the
Higgs field around the stable vacuum as

H =
1√
2

(
0

v + h

)
exp

{
i
ÃiÀi(x)

2

}

In a gauge theory we can choose functions ¹i(x) to make this expression to recast
into the previous one without the exponential.
Being DµH = (∂µ + ig ÃiW i

µ/2 + ig′ YHBµ)H, we see that (DµH) (DµH) becomes
(the kinetic term of the Higgs boson was already taken into account in Lh)

LhGB =
1

2

(
0 v + h

)



g

2
W 3
µ + g′ YH Bµ

g

2
(W 1

µ − iW 2
µ)

g

2
(W 1

µ + iW 2
µ)

g

2
W 3
µ − g′ YH Bµ




2(
0

v + h

)

Performing all the algebra and defining W±
µ = (W 1

µ ∓ iW 2
µ)/

√
2, we get

LhGB =
1

2
(v + h)2



g2

2
W+
µ W

−,µ +
(
W 3
µ Bµ

)



g2

4
−g g

′YH
2

−g g
′YH
2

g′2Y 2
H



(
W 3,µ

Bµ

)



It is now evident that, for each value of YH we have a massless gauge boson, the
photon, as required by the spontaneous breaking of SU(2)L×U(1)Y in U(1)em. So,
we will call the diagonalizing basis (Zµ Aµ) and define

(cW =) cos ¹W =
g√

g2 + 4g′ 2Y 2
H

Thus,

LhGB =

(
1 +

h

v

)2 [
M2

W W+
µ W

−,µ +
1

2
M2

Z ZµZ
µ

]
(1.3)

where

M2
W =

g2v2

4
and M2

Z =
M2

W

c2W
.

Fermion masses

Let us, for a moment, stick to a model with one generation of fermions. Thus, the
Yukawa part of the LSM contains the interactions between the fermions and the
Higgs field. A priori we could have used two different scalar doublets for the yu
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and yd term, each of them making SSB and leading to fermion masses. We therefore
invoke a somewhat principle of minimality, using only one scalar doubletH. Namely,

LY = −ydQLH dR − yuQLH̃ uR − yeLLH eR + h.c.

In this simplified scenario, once one expands the Higgs field around the vacuum.
very easily gets:

Lf = −
(
1 +

h

v

)
muuu−

(
1 +

h

v

)
mddd−

(
1 +

h

v

)
meee (1.4)

with mi = yiv/
√
2. As it will be shown in Section 1.3 accounting for the flavour

structure will lead to even more interesting consequences driven from LY .
Finally, we can comment the fact that the absence of ¿R in the lagrangian leads to
a null mass for neutrinos. We do not explicitly put a ¿R in the lagrangian since it is
well-known that in experiments neutrinos have appeared only left-handed. However,
we know that neutrinos are massive, as it will be discussed in Section 1.4: thus, we
cannot settle for a null neutrino mass and we try to provide mechanisms to cure this
problem.

1.2 Fermion interactions with gauge bosons

The Dirac term provides the interactions of the fermion fields with the gauge bosons.
Again, to illustrate the mechanism, we stick to a one generation model. In this case
we are allowed to assume that the ÈL and ÈR Weyl fermions are nothing else than
the chiral projections of 4D fermions. In this case ÈL = (1−µ5)È and ÈR = (1+µ5)È.
The Dirac lagrangian is:

LD = QL iµ
µ

(
∂µ + igS

¼a

2
Ga
µ + ig

Ãi

2
W i
µ + ig′ YQBµ

)
QL

+ LLiµ
µ

(
∂µ + ig

Ãi

2
W i
µ + ig′ YLBµ

)
LL

+ uR iµ
µ

(
∂µ + igS

¼a

2
Ga
µ + ig′ YuBµ

)
uR

+ dR iµ
µ

(
∂µ + igS

¼a

2
Ga
µ + ig′ YdBµ

)
dR

+ eR iµ
µ (∂µ + ig′ YeBµ) eR

where ¼a are the Gell-Mann matrices of SU(3)C . Carrying on the algebra and
passing to the diagonalizing base of the gauge bosons masses (Zµ and Aµ), we get
the lagrangian (written symbolically just for quarks; if the difference between up
and down quark is unnecessary, it will be generically written È):
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L = u i/∂ u+ d i/∂ d kinetic term

− gSÈ /G
a¼a

2
È Strong Interactions

− g√
2

(
uL /W

+
dL + dL /W

−
uL

)
Charged Current Weak Interactions

− g

cW

(
gLÈL /ZÈL + gRÈR /ZÈR

)
Neutral Current Weak Interactions

−QeÈ /AÈ Electromagnetic Interactions

(1.5)

The new parameters appearing are a combination of the previous ones:

e =
g

sW

Q =
Ã3

2
+ YQ = Yψ

gL =
Ã3

2
−Qs2W

gR = −Qs2W
It is now quite evident that in order to maintain gauge invariance in LY , we must
also choose a suitable YH such that −YQ+YH+Yd = 0 (U(1)Y invariance condition).
This implies YH = 1/2 and we get the same from the u quark. Thus, as expected,
the charge of the Higgs boson has to be zero, in accordance with the fact that it
does not interact with the photon.

1.3 Flavour structure of the Standard Model

The fermionic content of the Standard model contains three generations of quark
and lepton doublets, respectively:

(
u
d

) (
c
s

) (
t
b

)
and

(
¿e
e

) (
¿µ
µ

) (
¿τ
Ä

)

Of course, the only way to get a renormalizable and gauge invariant theory allow-
ing for interactions between different generations of fermions is given by LSM in
Equation 1.1. In particular, let us focus on the Yukawa term for quarks:

LY = −Y ij
d Q

i
LH djR − Y ij

u Q
i
LH̃ ujR + h.c.

In the broken phase, we would have mass-mixing of the kind

LSSBY £ −Md
ij d

i

L d
j
R −Mu

ij u
i
L u

j
R + h.c.

Employing the singular value decomposition, one can diagonalize the mass matrices
using unitary rotations of the fields. In particular:

qiL → q′ iL = Lijq q
j
L and qiR → q′ iR = Rij

q q
j
R

7



Concerning fermion interactions with gauge bosons, we see that only one term is
not flavour-diagonal, that is the CCW interactions. Thus,

LCCWI = − g√
2

(
uiL (L

 
uLd)ij /W

+
djL + d

i

L (L
 
dLu)ij /W

−
ujL

)

The matrix L 
uLd is a unitary matrix called VCKM that allows for changes in flavour

in CCW interactions. The CKM matrix is a source of CP violation, since CP
invariance would require VCKM = V ∗

CKM , but the CKM matrix contains one (and
only one) physical phase, that cannot be absorbed by a field redefinition.
Instead, in the lepton sector we do not have this effect since we do not have a matrix
Yν to diagonalize. This translates in the fact that we can freely rotate the ¿L field
such that Lν = Le, thus making also the CCW term flavour-diagonal.

Low energy QCD and the chiral lagrangian 1

The QCD lagrangian below the confinement scale ΛQCD can be written as

LQCD = −1

4
Ga
µνG

a,µν + Ψ̄L i /DΨL + Ψ̄R i /DΨR − Ψ̄LM ΨR − Ψ̄RM ΨL (1.6)

upon defining Dµ = ∂µ + igS G
a
µ¼

a/2 and

Ψ =



u
d
s


 and M =



mu 0 0
0 md 0
0 0 ms


 .

The heavy quarks (c, b, t) have masses above ΛQCD, so they will be absent in our
regime of interest. Quantum Chromodynamics does not couple different quarks, so
that we can write the lagrangian in this form.
In the massless limit for quarks (which is particularly accurate when describing only
the up and down quarks) this lagrangian has a global U(3)L × U(3)R symmetry:
namely, it is possible to rotate left-handed components differently from the right-
handed ones. However, even in this limit, the QCD vacuum induces a spontaneous
symmetry breaking U(3)L × U(3)R → U(3)V , since

ïΨΨð = ïuu+ dd+ ssð ≠ 0

and this scalar singlet is invariant only if we rotate the left- and right-handed com-
ponents by the same quantity. Goldstone theorem would then guarantee the ex-
istence of 9 Nambu-Golstone bosons coming from the breaking of U(3)A (calling
U(3)L×U(3)R ≡ U(3)A×U(3)V ). However, this is not the end of the story, because
the difference between the quark masses brakes also U(3)V ≃ U(1)B × SU(3)V into
U(1)B, that ensures baryon number conservation by the QCD lagrangian. There-
fore, the massless Goldstone bosons, that we will call pions, are in reality just
pseudo-NGBs, because the mass matrix would induce non-zero masses for them (see
Appendix A for the details). Finally, as it will be discussed in Chapter 3, the boson

1More details can be found in Appendix A

8



¸′ associated to the U(1)A breaking is much heavier than the other quarks. This
happens since U(1)A is an anomalous symmetry of the theory even in the massless
quark limit. Hence, the source of symmetry breaking that generates the mass of the
boson ¸′ is not the mass matrix and we do not expect then that ¸′ mass would be
suppressed by the ratio mq/ΛQCD.
We give here an expression for the effective theory at lowest order that describes the
pions, known as chiral perturbation theory (ÇPT):

Lχ =
f 2
π

4
Tr
{
∂µΣ

 ∂µΣ
}
− Bf 2

π

2
Tr
{
M(Σ + Σ)

}
(1.7)

where B has dimensions of a mass and

Σ = exp

{
iÃa¼a

fπ

}
= exp







Ã0 + ¸/

√
3

√
2Ã+

√
2K+

√
2Ã− −Ã0 + ¸/

√
3

√
2K0

√
2K−

√
2K

0 −2¸/
√
3







Lχ has two main advantages: it encodes in a synthetic and elegant way the symme-
tries of the original LQCD and it is perturbative below ΛQCD where it is accurate.
From this lagrangian we will extract pion masses and their interaction with the
Higgs boson in Chapter 4.

1.4 The Standard Model drawbacks

We have seen the Standard model as a beautiful theory motivated by convincing
requirements as gauge symmetry and renormalizability. Many of the successes of
this theory come exactly from this construction. However, we need to extend, if
not modify, it in order to answer some fundamental questions that arise from obser-
vations. In this Section we will see some of the most important open problems in
Particle Physics.

Dark Matter

We have gained in the last century convincing evidence that the matter present
Universe is not only the one described by LSM (in the jargon of Cosmology baryonic),
which represents only an ≈ 5% of the energy density of the Universe. Another ≈ 27%
is composed by a form of matter that does not interact electromagnetically, thus it
is called Dark Matter. Despite its invisibility, its presence is inferred through the
gravitational effects on visible matter, radiation, and the large-scale structure of the
Universe, as we will delve into in Chapter 2.

The concept of Dark Matter was first proposed in the 1930s by Swiss astronomer
Fritz Zwicky, who noticed that galaxies within clusters were moving faster than
could be explained by the visible matter alone. After having been set aside for 40
years, the work of Zwicky gained the attention of the community thanks to Vera
Rubin’s observation of galactic rotation curves. In the last five decades we have
collected evidence of Dark Matter presence at every cosmological scale.
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However, the nature of Dark Matter remains one of the biggest open questions in
Cosmology and Particle Physics. Various candidates for Dark Matter have been
proposed, including Weakly Interacting Massive Particles (WIMPs), axions, and
sterile neutrinos. These particles interact with ordinary matter primarily through
gravity, which makes them difficult to detect directly.

Several experiments and observational strategies are currently underway to detect
Dark Matter. These include direct detection experiments that attempt to observe
the rare interactions between Dark Matter particles and ordinary matter, and in-
direct detection methods that look for the products of Dark Matter annihilations
or decays. Additionally, particle accelerators like the Large Hadron Collider (LHC)
seek to produce Dark Matter particles through high-energy collisions.

Understanding Dark Matter is crucial for explaining the formation and evolution
of galaxies, clusters of galaxies, and the Universe as a whole. Its discovery would
not only solve a key puzzle in Cosmology, but would also provide new insights
into Particle Physics, potentially revealing new fundamental particles and forces.
As technology and experimental techniques advance, the search for Dark Matter
continues to be a dynamic and rapidly evolving field, promising exciting discoveries
in the years to come.

Baryon Asymmetry

Baryon asymmetry refers to the observed disparity in the abundance of baryons
compared to their antiparticles. According to the Dirac lagrangian, matter and an-
timatter should have been produced in equal quantities during the early stages of
the universe’s evolution. Instead, we observe that our Universe is predominantly
composed of matter, with very little antimatter present. To be more precise inves-
tigating Big Bang Nucleosynthesis (BBN) and the Cosmic Microwave Background
(CMB), we get

¸B ≡ nB − nB
nγ

= (5.8—6.6) · 10−10

Even though we could simply accept this fact and assume that the Universe was
born with, simplifying, one extra baryon for each 109 baryons and antibaryons (and
photons), this is not convincing since inflation would have washed away this differ-
ence and reheating would have created particles and antiparticles almost in equal
abundance. Therefore, we seek to find a dynamical model creating the observed
asymmetry.

However, every model attempting to solve this puzzle has to satisfy three important
conditions, known as Sakharov conditions:

• B violation: it is quite clear that our model has to treat baryons and an-
tibaryons differently in order to provide the asymmetry.

• C and CP violation: even in the case of B violation, if we had a theory
conserving C and CP, the rate for the production of baryons and antibaryons
would be exactly the same, thus providing a symmetric Universe.

10



• Out of equilibrium processes: the production of baryons and antibaryons
must happen out of equilibrium, i.e. there must exist a finite non-zero chemical
potential µB. Otherwise, equilibrium distributions would be forced to be the
same as required by µB = 0 at equilibrium.

As we have seen in Section 1.3 the Standard Model provides sources of C and CP
violation even at tree level: C is trivially violated by the chiral structure of the SM,
while CP is violated by the VCKM . However, it provides B violation only at loop
level, thus it is an effect so suppressed that cannot give the observed ¸B.

One of the most interesting scenarios is the one of baryogenesis via leptogenesis,
employing the fact that B-L is a non anomalous symmetry of the SM. A viable can-
didate is a sterile Majorana neutrino NR that decays out of equilibrium. This model
satisfies the three Sakharov conditions and provides also a mechanism to suppress
neutrino masses. The baryogenesis would take place because of the "reshuffling" of
the asymmetry between baryons and leptons, conserving B-L.

Another famous model is represented by Great Unification Theories, which aim
to a unification of strong and electroweak forces at very high energies (ΛGUT ≈
1016GeV ). The decay of these heavy particles could satisfy Sakharov conditions.
However, these theories would also lead to the proton decay, whose lifetime has
been measured to be ÄP ≳ 1034 yr and its measure will be investigated by Hyper-
Kamiokande.

Neutrino masses

Neutrinos have peculiar properties, which make them unique in the SM theory.
Firstly, their mass is really small compared to the lightest non-neutrino fermion,
which is the electron: this is, in a first approximation, why their mass is assumed
to be 0 in the SM. Then, they are the only fermions in the SM which do not carry
electric charge, hence their name. Finally, we have seen them to appear only with
left-handed chirality in experiments: this justifies why we do not put a ¿R in the
SM lagrangian. However, there is no symmetry preventing neutrinos to have a mass
term, so the most general renormalizable mass term respecting the SM gauge group
comes from:

Lmass,ν = −Y e
ijL

i
HejR − Y ν

ijL
i
H̃¿jR −Mij(¿

i
R)

 iÃ2(¿
j
R)

∗ + h.c.

It includes a Majorana mass term for the right-handed neutrino since it is chargeless
under any gauge interaction in the SM, hence the name "sterile".
A beautiful explanation of the reason why we write also a Majorana mass term
is also that a pure Dirac term would be really innatural, since it would require a
Yukawa coupling of the order yν ≈ 10−12. A Majorana mass term would cure this
non-naturalness, because Mij can receive huge corrections at loop level: this comes
from the fact that a Majorana mass term is super-renormalizable and that there
is no additional symmetry in taking Mij = 0 (only if right-handed neutrinos do
not carry any lepton number). Therefore, the masses of light neutrinos are formally
m2/M with m being the Dirac masses and M the Majorana ones. This is the famous
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see-saw mechanism.

An important implication of neutrinos being massive and that, in general, their
mass matrix is not flavour-diagonal is that (flavour eigenstate) neutrinos oscillate in
vacuum. This solves the solar neutrino problem: the Sun would produce almost only
electron neutrinos, but the flux of solar electron neutrinos is 1/3 of the predicted
one, meaning that during their travel to Earth electron neutrinos oscillate and when
they arrive at Earth they are almost with equal probability ¿e, ¿µ or ¿τ .
However, we do not know exactly the value of neutrino masses from oscillations,
because these are sensitive only to ∆m2

12 = (7.50 ± 0.20) · 10−5 eV 2 and ∆m2
23 =

(2.32± 0.12) · 10−3 eV 2: these differences are consistent with either m1 < m2 < m3

(normal hierarchy) or m3 < m1 < m2 (inverted hierarchy).

As a final comment, currently it is still unknown whether neutrinos have also a
Majorana mass term: this is investigated by neutrino-less double beta (0¿2´) decays
experiments. 0¿2´ events would violate lepton number and thus would be a clear
evidence that neutrinos must have a Majorana mass term.

Strong CP problem 2

The QCD lagrangian in Equation 1.6 is CP conserving. However, an additional term,
emerging at quantum level and respecting all gauge and Lorentz requirements, can
be added to the lagrangian: it is known as ¹-term, namely

LQCD+θ = LQCD + ¹
g2S
32Ã2

Ga
µνG̃

a,µν

Although being a total derivative, Lθ has physical implications (i.e. modifies the
action), due to the non-triviality of the QCD vacuum.

The ¹-term would imply a non-zero electric dipole moment for neutrons, which has
not been measured. This allows to put a bound to the neutron EDM dn ≲ 10−26 e·cm
and, comparing this value with the theoretical prediction, it implies ¹ ≲ 10−10. The
smallness of ¹ poses a naturalness problem, because ¹ is a parameter for a U(1)
rotation, meaning that it ranges from 0 and 2Ã and so, in principle, it should be a
number of order one. This issue is known as the strong CP problem.

Among the possible solutions (see Chapter 3 for more details) the most interesting
one is the Peccei-Quinn mechanism, which implies the existence of a new degree of
freedom ϕ, that makes the vacuum of the theory CP conserving and whose excitation
around the vacuum are called axions. This scenario is really appealing, because it
not only solves the strong CP problem, but it also have cosmological implications,
due to the fact that axions are a convincing dark matter candidate.

Experiments like CAST and the future IAXO are searching for an axion discovery
taking advantage of the Primakoff process µ → ϕ µ, using the Sun as a source of
photons. Axions have also been studied in astrophysical environments, which have
produced convincing bounds on their couplings and mass.

2This will be the topic of Chapter 3.
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Inflation

The Hot Big Bang model, which assumes a singularity at the beginning of our
Universe and that its components were in thermal equilibrium with themselves
with a temperature decreasing with the expansion of the Universe, has provided
us with testable predictions, mainly the Big Bang Nucleosynthesis and the Cosmic
Microwave Background, which are its most popular successes. In practice, we gained
so much evidences about BBN and CMB that every theory with new Physics must
reproduce these results.

However, the HBB scenario has two famous shortcomings. The first one is the hori-
zon problem, which involves causal inconsistencies in the HBB model. In fact, we
observe the Universe to be homogeneous and isotropic on large cosmological scales
(more than 100Mpc), as it is beautifully confirmed by the CMB observations, for
which we have observed photons coming from the recombination epoch to share the
same bleck-body spectrum, with tiny fluctuations (¶T/T ≃ 10−5). The problem
arises when we compare the comoving Hubble radius rH = 1/ȧ (which is the co-
moving distance of causal connection in one Hubble time) today with the on at the
recombination epoch. Being

ṙH = − ä

a2
,

the Hubble radius has increased (as long as we assume a decelerated expansion)
from recombination by a factor of order 106. This would imply, for example, that
there is no possibility for CMB photons coming from two opposite directions in the
sky to share the same distribution, because they have never been in causal contact
before recombination.
The second issue is known as flatness problem and regards a naturalness problem
in the curvature of our Universe: defining Ωk = −k/a2H2 as the contribution of the
curvature to the energy budget of the Universe, we have measured |Ωk(t0) − 1| <
10−3. This would imply that, following back the cosmological evolution in the HBB
model, at very early times (let’s say the Planck time) |Ωk(tP ) − 1| ≲ 10−60, which
is a pretty unnatural result.

The solution for these two problems involves an inflationary period at very early
times. In a first approximation we assume that in this period the scale factor grows
exponentially and, in order to solve both problems, we would need at least a 60—70
e-folds expansion. The easiest way to provide an accelerated expansion is to add a
scalar ϕ (the inflaton) to the action:

S =

∫
d4x

√−g
[
M2

p

2
R+ LSM +

1

2
gµν∂µϕ ∂νϕ− V (ϕ)

]

If the potential is chosen in order to satisfy the slow-roll conditions, then the inflaton
can dominate the energy budget and produce an accelerated expansion.

This is not the end of the story, because inflation can also explain fluctuations around
a homogeneous and isotropic Universe. Basically, once a fluctuation exits the horizon
(i.e. its typical scale ¼ becomes greater than rH), it "freezes" and remains constant
until it re-enters the horizon during the "normal" phases of decelerated expansion.
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Thanks to these fluctuations, matter has fallen into overdense regions, creating the
structure we observe nowadays.

For the aforementioned reasons, inflation is a really motivated scenario in Cosmol-
ogy. Direct evidence of inflation would come from the observation of the produced
primordial gravitational waves. The hopes of the community are addressed to the
next generation interferometers, which could obsreve this "smoking gun" of infla-
tionary epoch.

Accelerated expansion and Dark Energy

A naive expectation about the evolution of the Universe is that the expansion is
decelerating: this is enforced by the Einstein equation for a FRW background

ä

a
= − 1

6M2
p

(Ä+ 3P ).

For conventional fluids like matter and radiation, we get that ä < 0. Defining the
deceleration parameter as

q0 ≡ − ä(t0)

a(t0)H2
0

we would expect, if the Universe today was dominated by matter, that q0 = ΩM(t0)/2.
However, by measuring deviations from the Hubble law using the light from very
distant galaxies, it has been obtained q0 ≃ −0.55, which means that the expansion
of the Universe is accelerating. An explanation would come from the fact that the
Universe today is dominated by a cosmological constant, which having P = −Ä,
produces an accelerated exponential expansion. If we suppose that the radiation
contribution to the energy density is negligible and that the Universe is flat, from
q0 = ΩM(t0)/2− ΩΛ(t0) = −0.55 and ΩM + ΩΛ = 1, we get

ΩM(t0) = 0.32 and ΩΛ(t0) = 0.68.

The cosmological fluid causing the accelerated expansion has received the name of
Dark Energy.

One candidate for Dark Energy is, as anticipated before, a cosmological constant Λ,
which would make A ∝ exp{Ht} with H2 = Λ/3M2

p . From ΩΛ(t0), we infer Λ ≃
(1meV )4. The Standard Model fails completely to reproduce this result, because
from the vacuum energy of the SM (which in GR has implications on Einstein
equations) we get an estimate 120 orders of magnitude higher than the observed Λ.

Then, another possibility is to add another degree of freedom, which for the sake
of simplicity and in order to satisfy the requirement of isotropy can be chosen as
a scalar field ϕ, called quintessence. The lagrangian for this model is completely
analogous to the one of inflation, but Dark Energy operates at energy scales much
lower than inflation. In particular, also in this case we would ask for the scalar
potential to satisfy the slow-roll conditions.
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The hierarchy problem

The hierarchy problem arises when a bare quantity, such as a mass or a coupling,
is orders of magnitudes higher than the observed value for that quantity, meaning
that there has to be extreme fine-tuning between the tree-level and the loop levels
in order to have a cancellation and to remain with the observed result. A famous
example is the one of the Higgs mass term µ2H H, which is super-renormalizable
and thus sensitive to the UV corrections. In the Wilsonian formalism, we can write
the corrections to µ2 as

∆µ2 ∝ ¼2

16Ã2
Λ2
UV

with y some Yukawa coupling of the Higgs. The question now becomes why cor-
rections can become so important or equivalently why the Higgs mass is so small
compared to Mp, hence the name "hierarchy problem". Clearly fermions do not
suffer this kind of problem, since setting their mass to 0 enhances the symmetries
of the lagrangian, because of the appearance of the chiral symmetry. Gauge boson
masses, instead, are protected by gauge symmetry. Thus, the problem is particularly
crude for the Higgs, since in the SM it can easily interact with anything up to the
scaled of validity of the SM, i.e. ΛUV =Mp ∼ 1019GeV .

The elegant solution for these problem is Supersymmetry (SUSY). It postulates
for every fermion and boson of the SM the existence of a partner with the same
quantum numbers and with spin ±1/2. One could easily write a superpotential
encoding the interaction between a particle and its superpartner and would see that,
schematically, a fermion loop would cancel a boson loop and viceversa. This would
elegantly set to zero quantum corrections, thus eliminating the hierarchy problem.

Other solutions, that will not be discussed, may be: the Little Higgs Model, the
Composite Higgs model or even the no Higgs model (or technicolor).

Grand Unified Theories

Grand Unified Theories historically emerge from the observed fact that the three
gauge coupling of the SM gauge group approximately seem to converge in one point
at some high energy scale tracing their RG evolution from MZ . Proposed in the
1970s by Georgi and Glashow (Ref. [6]), the idea is that the SM gauge group is
the result of the spontaneous breaking of a more fundamental SU(5) (throughout
the years also SO(10) and E6 have been proposed). In a theory with SUSY, this
kind of mechanism accomplishes to unify all gauge forces at some ΛGUT = 1015GeV .
Very elegantly, this theory provides explanations for the fractional charges of quarks,
which is an ignored question in the SM.

GUTs also predict the existence of new particles, such as the X and Y bosons, which
facilitate proton decay, a forbidden process in the Standard Model being the proton
the lightest particle with B = 1. Although proton decay has not been detected,
its observation would be a significant indicator of GUTs. Current experiments, like
Super-Kamiokande in Japan, are designed to search for such rare events.
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Despite their elegance, GUTs fall back into the hierarchy problem, given that again
ΛGUT is so much higher than the electroweak scale, hence requiring fine-tuning.

Quantum gravity

Up to this point we have completely ignored gravity, in the sense that we have
treated it just as a background field. To have a holistic comprehension of Nature,
however, we need to quantize it. One could in principle thing that, since we have
an action for General Relativity

S =

∫
d4x

√−g
[
M2

p

2
R+ L(gµν ,ΦSM)

]

one could simply quantize the Einstein-Hilbert lagrangian. Of course this can be
done and we get exactly what we know in GR: gravity is a massless spin-2 particle!
GR as a QFT however is not renormalizable, thus we can have control of the theory
only up to a certain energy scale. Given a mass scale M , one should start to see
quantum effects of gravity when the Compton wavelength of that scale ¼ ∼ 1/M is
of the order of the Schwarzschild radius rS ∼M/M2

p . Therefore, GR can be treated
as a good low-energy EFT for gravity only up to Mp ∼ 1019GeV .

Clearly, at high energies we would need to UV complete gravity. One prominent UV
approach is String Theory, which postulates that the fundamental constituents of
reality are one-dimensional strings rather than point particles. These strings vibrate
at different frequencies, corresponding to various particles, including the graviton,
which mediates gravity. Another proposed model is Loop Quantum Gravity, which
suggests that spacetime is quantized, composed of discrete loops that form a spin
network. Finally, Asymptotically Safe Gravity proposes that gravity becomes scale-
invariant at high energies, governed by a non-trivial ultraviolet fixed point. Each
of these models provides a framework to understand gravity’s quantum nature, ad-
dressing issues like singularities and unifying it with other fundamental forces.
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Chapter 2

Dark Matter

Among the aforementioned problems the Dark Matter one is probably the most
convincing about the need to go beyond the Standard Model. In fact, in this Chapter
we will see the evidences of DM existence (Section 2.1), the reasons why the SM
cannot provide satisfying DM candidates (Section 2.2) and, finally, we will briefly
review proposed viable models for DM (Section 2.3).

2.1 Evidences of Dark Matter

In this Section we will overview the milestones leading us to the conviction that Dark
Matter exists. An important observation regards the very different lengthscales at
which we have collected evidence for DM.

Zwicky’s observations of the Coma cluster

In the 1930s the Swiss astronomer Fritz Zwicky, observing the Coma cluster, esti-
mated its mass using two different techniques, which indeed were discovered to give
totally different results!
The first method was to simply count the number of galaxies in the cluster, that are
approximately 800, and estimate the mass of each of them as 109M», from which
he extracted

M
(vis)
Coma ∼ 800 · 109 ·M» ∼ 1.6 · 1042 kg

which will be called the visible mass of the cluster since it is inferred by the electro-
magnetic radiation emitted by the galaxies.
The other method, instead, aims at measuring the mass from the gravitational force.
Firstly, Zwicky measured using the Doppler effect that the typical dispersion veloc-
ities of galaxies inside the cluster is v ∼ 103 km/s. Then, he estimated the mass
assuming the cluster is a virialized object, thus

2K + V ∼ 0 (2.1)
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with K being the total kinetic energy of the cluster and V the total potential energy.
Then,

K =
∑

i

1

2
miv

2
i ∼

1

2
MComav

2

While V is computed assuming that the galaxies are uniformly distributed and the
cluster has spherical symmetry with radius RComa ∼ 106 l.y.. Thus,

V = −
∑

i<j

Gmimj

rij
∼ −3

5

GM2
Coma

RComa

Then, using the virial theorem (Eq. 2.1), he obtained

M
(grav)
Coma ∼ 5

3

RComa

G
v2 ∼ 2.4 · 1044 kg.

Hence, he obtained M
(grav)
Coma k M

(vis)
Coma with a difference two orders of magnitude,

unjustified even by the rough assumptions that were used. This fact can be equiv-
alently paraphrased affirming that the galaxies are moving too fast with respect to
the total visible mass of the cluster.

Galactic rotation curves

Zwicky’s work gained popularity only in the ’70s with Vera Rubin’s studies on galac-
tic rotation curves. The rotation velocity of stars in spiral galaxies were measured
via the Doppler shift of the 21 cm line of neutral hydrogen hyperfine transition. To
make a rough estimate for the theoretical expectation we assume spherical symmetry,
which is reasonable since the mass in spiral galaxies is almost entirely concentrated
around the central "bulb". Thus, from Newtonian mechanics

v2(r)

r
= G

M(r)

r2

In the central region (r j rc) we assume an uniform matter distribution, thus
M(r) ∝ r3, while for r k rc we expect M(r) to be a constant. So, our prediction is

v(r) ∝
{
r r j rc

r−1/2 r k rc

However, as we can see in Figure 2.1 this is not what happens: for larger radii
the velocity profile is constant, compatible with a density profile Ä(r) ∝ r−2. The
conclusion is that there is an invisible halo surrounding the galaxy and extending
far beyond the visible radius of the galaxy: in fact, typical optical radii for spiral
galaxies are of the order of 10 kpc (the Milky way has rMW ∼ 12 kpc), while halos
extend all the way down to 200 kpc.
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Figure 2.1: Rotation curve of NGC 3198 Galaxy.

Gravitational lensing

We mention another evidence of the existence of DM, represented by gravitational
lensing around heavy objects, as predicted by General Relativity. The effect depends
on the mass of the objects bending light, so, comparing the observed effect with the
expectation due to visible matter, we can infer if there is some form of invisible
matter. This is exactly what has been done for halos of galaxies and clusters of
galaxies and, at this point not surprisingly, lensing measurements confirmed that
there is an enormous amount of Dark Matter in these systems.

CMB and Dark Matter density

The largest scale we can investigate via electromagnetic radiation is the Cosmic Mi-
crowave Background, which originated when electrons and protons decoupled from
the photon bath, allowing for recombination to happen. A key point of the CMB
radiation is that it is extremely isotropic, with anisotropies expressed by typical
variation of the blackbody temperature of ¶T/T ∼ 10−5.
However, CMB anisotropies are crucial in order to understand the composition of
the Universe at the time of CMB and thus infer the densities of the species today.
In particular, we are interested to measure the Ω parameters of the various species,
being

Ωi =
Äi
Äc

with Äc(t) =
3H2

8ÃG
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The crucial consideration is the different behaviour between baryonic matter (in
this context it is the matter coupled to the photon bath during CMB and BBN,
disregarding its baryonic or leptonic nature) and dark matter. In fact, we have to
consider that anisotropies were generated as remnants of the inflationary epoch, so
naively one would expect that matter would have fallen in overdense regions from
underdense ones. This is true for dark matter, which has never been in thermal
equilibrium with photons or, even if it was, had already decoupled at the times of
BBN and CMB. Baryonic matter, instead, was tightly bound to photons by Comp-
ton and Coulomb processes, so the collapse was balanced by radiation pressure.
Having this in mind, the observable that was examined was the CMB power spec-
trum (Figure 2.2) measured by the Planck satellite. In particular, the angular power
spectrum is defined as

ï¶T (¹i, ϕi)¶T (¹j, ϕj)ð =
∑

l

(2l + 1)ClPl(cos ¹ij)

Variations in ΩB and ΩDM produce different modifications of the power spectrum
below and, fitting Planck data, the following results have been obtained

ΩB h
2 = 0.02233± 0.00015

ΩDM h2 = 0.1428± 0.0012

Figure 2.2: Fit of the angular power spectrum with data obtained by Planck satellite.
Credits to ESA and the Planck collaboration.
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2.2 Conditions for Dark Matter

Nowadays, we still do not know what is the mysterious Dark Matter, even though
the community is convinced about its existence. However, by simple arguments, we
can rule out easily all the SM particles. In fact Dark matter has to be:

• Dark: it means it does not interact electromagnetically, thus it has to be
EM chargeless. Easily we rule out the quarks, the charged leptons and the
W bosons. It is arguable if the DM can be a colored chargeless particle,
like a neutral quark q0. However, in this case it easily happens that below
confinement, a neutral meson would appear and it would mix with the Ã0,
which is coupled to photons via the anomalous Ã0 µ µ interactions.

• Matter: it must behave as a pressureless fluid, in other words as non-relativistic
matter, at least at the time of BBN and CMB. This must happen because if
DM was radiation at the time of CMB, it would have elapsed the fluctuations
above the flat FLRW background, in the case DM was decoupled from the
photon bath at recombination, or it would have been an additional relativis-
tic degree of freedom at recombination coupled to photons, thus changing the
degrees of freedom at that time g∗(Td). CMB observation are consistent with
non-relativistic Dark Matter at the time of CMB formation. Thus we exclude
photons, since it is obviously still relativistic, and neutrinos, since the would
have elapsed cosmological structures.

• Stable: Dark Matter is essential for structure formation, because, since it
behaves as non-relativistic matter before all other standard components of the
Universe (namely light nuclei, electrons, photons and neutrinos), it provides a
"depression" for these objects in which to fall once they have decoupled and
become non relativistic. This is fundamental for the formation of galaxies
and larger cosmological structures. Clearly, DM has to be there long enough
to create structure and we still observe it in halos around galaxies. For the
formation of structure as we see it today, the typical requirement is that the
DM lifetime ÄDM ≳ 200ÄH . We finally exclude the Z and h bosons.

As we will see in Section 2.3, there is space for a plethora of models satisfying
these requirements. The main categorization of Dark Matter candidates can be
made asking whether or not DM particles ever reached thermal equilibrium with
the photon bath in the history of the Universe. These models are called thermal
models. They are characterized by the fact that the relic density is set by the
decoupling (or freeze-out) from equilibrium. Heuristically, one should compare the
typical interaction rate that keeps the particle in equilibrium Γ = nïÃvð with the
expansion rate of the Universe H. The freeze-out condition is the simply

Γ(TFO) ≃ H(TFO).

Then, the relic abundance is found considering that the comoving number density
Y ≡ n/s (with s being the entropy density) is constant when number and entropy
changing processes have stopped. Therefore, in general

ΩDM ≡ ÄDM
Äc

=
mDM YFO s0

Äc
(2.2)
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with s0 = 2890 cm−3.

Bounds on Dark Matter masses

Simple bounds on DM masses can be inferred by the requirement that DM is confined
in halos around galaxies. This gives bounds on the minimum masses that they can
have.

If the DM is a boson, then the only thing we can ask is that its de Broglie wave-
length ¼DM is smaller that the typical radius Rd of dwarf galaxies, which are the
smallest objects in which we see the Dark Matter presence, so that DM is confined
inside the halo. Heuristically, taking as momentum of the particle mDM vDM and
approximating vDM with the escape velocity from such a system, one finds

mDM ≳ 10−22 eV.

In the case of fermions, the constraint is much more severe, being related to the
Pauli exclusion principle, and it is known as Tremaine-Gunn bound. In this case,
the typical assumption is that DM is in its lowest excited state, so that if we compare
the Fermi velocity of the system, with the typical escape velocity, one easily finds
that

mDM ≳ (10—100) eV.

This result depends on the actual model one takes for fermions and for the galaxy,
bot all the models agree with the bound as order of magnitude. So, this is one good
indication that neutrinos cannot be DM particles, since recent results (Ref. [7])
constrain the sum of neutrino masses to

∑
mν ≲ 0.2 eV .

Bounds on Dark Matter charge

It is obvious that the fact that Dark Matter is invisible puts only an upper bound
to its charge. Experimental searches for heavy hydrogen DM e− conclude that

qDM ≲

{
10−6 mDM = 10GeV

10−4 mDM = 10TeV

Often, as in this case, limits are weaker for heavier models, because the number
density of dark matter is inversely proportional to its mass!

Bounds on DM self-interactions

DM is typically assumed to be collisionless, since it forms spherically shaped halos
which otherwise would become disks, as for the baryonic matter. Constraints on
DM self-interactions can be derived from observations of systems, such as the Bullet
Cluster (Figure 2.3). It is the event of two clusters colliding and by the obtained
image it can be observed that the baryonic components of the clusters do not sim-
ply merge, as the DM halos instead do, but they slow down and heat up. As a
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Figure 2.3: The Bullet cluster and its halo

consequence, the Bullet Cluster is an evidence that DM should be collisionless and
non-baryonic.

An upper bound on DM self-interactions can be imposed, assuming that at most one
self-interaction happened during the lifetime of a typical galaxy, like the Milky Way.
Plugging that ÄMW

DM ≈ 0.3GeV cm−3 and v = vesc ≈ 200 km/s and ÄMW ≈ 1010 yrs,
from

ÄMW
DM

ÃDM
mDM

vesc ÄMW ≲ 1 one gets
ÃDM
mDM

≲ 1 cm2/g

Hot relics and Neutrino Dark Matter

Thermal models can be distinguished in hot models, if the decoupling happens when
the particle is still relativistic, and cold models, in the opposite case.

Clearly, for an hot relic, the mass of the particle is irrelevant for the freeze-out
process, which is dominated by the temperature T . Thus at the freeze-out

YFO =
45·(3)

2Ã4

geff
g∗s(TFO)

≈ 0.0026 geff

(
106.75

g∗s(TFO)

)

Plugging the result in Equation 2.2, we easily get

ΩDM ≃ 0.076

(
geff

g∗s(TFO)

) (mDM

eV

)

The first parenthesis is a number of order (0.01—1), thus we have a hot relic DM if
the mass is in the ballpark (10—100) eV . This is too high for neutrinos, for which
we pointed out

∑
mν ≲ 0.2 eV , hence neutrinos cannot constitute entirely the Dark

Matter abundance we have measured.
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However, hot relics carry an important issue with themselves, which makes them
unappealing Dark Matter candidates: they tend to destroy the primordial fluctua-
tions, which is in contrast with the observations. In fact, after having decoupled,
they "freely-stream" along FRW geodesics, thus moving away from overdense regions
toward underdense ones. This elapses primordial perturbations and is dramatically
in contrast with observations. To see it we compare the typical free-stream scale ¼FS
from decoupling to matter-radiation equality, when cosmological perturbations start
to grow significantly, with the typical radius of a galactic halo ≈ 0.1Mpc. Assuming
the hierarchy TFO k TNR > TMRE , with TNR ≃ mDM is the temperature at which
the relic becomes non-relativistic, a direct computation gives

¼FS ≃ 0.1Mpc

(
1 keV

mDM

) (
TDMMRE

TMRE

)[
1 + log

(
TNR
TMRE

)]
.

Here, the ratio in the second parenthesis accounts for the fact that it could be that at
MRE, the hot relic and the photons may have different temperatures: it is anyway an
order one factor. Thus, for particles with masses below the keV , the free-streaming
elapses a typical galactic halo, which is in contrast with observation. We have seen
that to account for DM, hot relics must have masses of some (10—100) eV , hence we
conclude that hot relic are not good DM candidates. To be more precise, it would be
better to compare tha mass-scale washed out MFS ∝ ÄDM¼

3
FS with the typical mass

of a galactic halo. The bound obtained is nevertheless the same. However, we have
seen that neutrinos cannot account for all the DM abundance, but do free-stream
after having decoupled. From the argument of the mass comparison it is possible to
see why the free-streaming of neutrinos is not a problem, since nowadays Äν j ÄDM .

2.3 Candidates for Dark Matter

In this Section we will briefly review the main models that have been proposed as
DM candidates.

Weakly Interacting Massive Particles

Weakly interacting massive particles (WIMPs) often emerge in supersymmetric the-
ories, suitable for solving the hierarchy problem (e.g. of the Higgs mass prob-
lem). In many theories the lightest of them is the neutralino, with a mass of
100GeV—10TeV , which, being protected by a symmetry, called R-parity, is also
stable. Of course, due to SUSY prescriptions, it typically interacts with a cross-
section typical of weak interactions, hence the name. Namely, calling the WIMP
particle Ç

Ã(ÇÇ→ SM SM) ∼ 1 pb.

These choice ensures the thermalization in the early Universe, making WIMPs a
thermal model. For the given values of masses and annihilation cross section (which
in a first approximation can be seen as the only process causing the departure from
equilibrium), one obtains

xFO =
mχ

TFO
≃ 20—25
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Figure 2.4: WIMP bounds updated to 2021. Figure appears in Ref. [8]

quite independently of the exact parameters. This justifies the assumption used to
compute xFO that WIMPs decouple when non-relativistic, thus they are considered
cold relics. Now, one can write the comoving number density as

Yχ(TFO) =
2.3

Ã

xFO
mχ

g
1/2
∗ (TFO)

g∗s(TFO)

1

Mp ïÃvð

Using it to determine the relic density, we obtain

Ωχ h
2 = 0.12

(xFO
25

) ( 106.75

g∗(TFO)

)1/2 (
0.7 pb

ïÃvð

)

We have beautifully obtained the observed relic density of DM and, moreover, the
result is almost independent of the WIMP mass! This approximated result is re-
produced even by a more accurate computation, considering the freeze-out as non
instantaneous, which involves the Boltzmann equation. This result has been referred
to as "the WIMP miracle".

The drawback of this model is that we have not observed supersymmetric partners at
colliders and WIMPs should have been revealed at the LHC scales. Direct searches
of WIMPs are usually conducted with scattering on heavy nuclei of noble gases.
Bounds (Figure 2.4) have been put almost to the "neutrino floor", i.e. the region
where the signal would be indistinguishable from a neutrino scattering on the nuclei.
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Axions

Axions appear as a new degree of freedom aimed at solving the Strong CP problem
1. They emerge as pseudo Goldstone bosons from the breaking of the Peccei-Quinn
symmetry at some high-energy scale fa, which ensures that the Strong CP problem is
elegantly solved by the axions. As WIMPs do, they not only solve a drawback of the
SM, but they provide in a natural way a convincing Dark Matter candidate. Axions,
however, are not thermal models, since they behave as non-relativistic Dark Matter
thanks to a mechanism known as misalignment. The quest for axion discovery is
now a popular topic of Phenomenology and Experimental Physics and we redirect
to Section 3.5 for a brief review of experimental setups and achievements (Figure
3.2).

ALPs

Axion-like particles are light pseudoscalars that, as much as axion do, thanks to the
misalignment mechanism can be Dark Matter candidates. The difference with the
QCD axion is that ALPs are nor required to solve the Strong CP problem, hence
they are less constrained in the parameter space, since the mass and the coupling
to photons do not have to satisfy the QCD axion relation ma ∝ gaγ. The exclusion
plot in Figure 3.2 applies to ALPs and the QCD axion landscape is highlighted in
yellow.

Scalars 2

For thermal DM Ç with masses below the GeV it is well-known that the freeze-out
process in the Standard Model would lead to an overproduction of Ç (see Ref. [9]),
unless it has a SM neutral mediator ϕ, that opens new interaction channels and
could then deplete the overabundance. In this case typically these mediators can
mix with renormalizable portal operators like LH, Bµν or H H. This portal has
the effect of coupling the scalars to all the SM (or better, to all that is coupled to
the portal operators). Light scalar mediators would then be abundantly produced
in astrophysical environments as will be the topic of Chapter 6.

Sterile neutrinos

As we discussed in Section 1.4 when discussing neutrino masses, sterile neutrinos
can naturally set the masses of the light neutrinos to be as small as we know, if
their mass is really high, potentially at the GUTs scales, which is the famous see-saw
mechanism. The heavy neutrinos would the interact only via the Yukawa interaction
with the lepton doublets and the Higgs doublet. It is really weakly interacting, so
it appears to be a good DM candidate, which has never become thermal, but the
stability is not satisfied if the masses are greater than 1 keV (see Ref. [10] for more
details). Thus, sterile neutrinos do not accomplish to both solve the problem of
neutrino masses and of DM, so they appear as less motivated candidates.

1More on the Strong CP problem and the axion in Chapter 3
2Light DM scalars will be the topic of Chapter 5
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Asymmetric Dark Matter

In this framework, motivated by the fact that ÄDM ∼ 5ÄB, i.e. that the two energy
densities are very similar, it is supposed that the Dark Matter density has been
generated via a process similar to baryogenesis, that is equivalent to say that also
DM experiences a particle-antiparticle asymmetry (see Ref. [11]). The main idea is
that visible matter (VM) and DM are connected in an original gauge group GV ×GD

and there are various possibilities to engineer that only the visible baryon number
BV , or the BD, or a non-trivial combination of the two, or even that they are
both broken. Then, various possibilities realize the particle-antiparticle symmetry
breaking, ensuring that the relic abundance of DM should be the same (order of)
the VM one, thanks to the original shared symmetry.
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Chapter 3

The Strong CP Problem and the

Axion

In this Chapter we will study more in detail the Strong CP Problem (Section 3.1),
as a SM drawback emerging from the QCD structure itself. Then, we will focus
on the axion (Section 3.3), which elegantly solves the Strong CP problem, but is
also a viable DM candidate (Section 3.4), which makes it an even more interesting
scenario.

3.1 The Strong CP Problem

The Strong CP problem emerges from the symmetries of the QCD lagrangian (see
also Section 1.3):

LQCD = −1

4
Ga
µνG

a,µν + Ψ̄L i /DΨL + Ψ̄R i /DΨR − Ψ̄LM ΨR − Ψ̄RM ΨL.

As we pointed out, for mq → 0, LQCD has a global symmetry group at classical level
SU(3)L×SU(3)R×U(1)B×U(1)A. In particular, remembering that Ψ = (u, d, s)T ,
we know that U(1)B acts vectorially, meaning that it rotates the left- and the right-
handed components by the same quantity, while U(1)A is axial, meaning that it
rotates the left- and the right-handed (Weyl) fermions with opposite sign:

U(1)B : Ψ → eiαΨ U(1)A : Ψ → eiαγ5Ψ.

As a frequent topic of many QFT textbooks (e.g. Ref. [12]) is that if one applies
an axial rotation, the path integral measure is not invariant, and one gets 1

LQCD → LQCD + 2³
g2S
32Ã2

GG̃

It is then evident that we have to add the ¹-term in the lagrangian because it is
not forbidden by gauge symmetry and it is renormalizable; moreover, we do not get

1The following conventions are hereby adopted ε0123 = −1 and GG̃ ≡ 1

2
Ga

µνG̃
a,µν . Moreover,

in this Chapter gluons will be indicated as Aa
µ to ease readability.
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enhanced symmetry setting ¹ = 0, since a term like Lθ is generated anyway by the
anomaly of U(1)A. At this point, it is also evident that ¹ is not physical, because
a chiral rotation shifts it. Thus, we now discuss the implications of adding to our
lagrangian

Lθ = ¹
g2S
32Ã2

GG̃.

An important observation is that Lθ is the total derivative of a current (Chern-
Simons) Kµ:

GG̃ = ∂µK
µ = ∂µ ε

µνρσ
(
AaνG

a
ρσ +

gS
3
fabcAaνA

b
ρA

c
σ

)
.

Hence it is reasonable to expect that this term has no physical implications, since a
total derivative vanishes on the boundary, hence does not contribute to the action.
However, being QCD a non-abelian theory, its vacuum has a non trivial structure,
due to possible gauge choices not connected to the identity. Of course, a reasonable
condition for the vacuum is Aaµ = 0, but then pure gauge choices A′

µ = −igSΩ ∂µΩ
are equivalent to the zero-field vacuum. It can be shown (Ref. [13]) that a gauge
choice Ω1, which is not connected to the identity, generates:

g2S
32Ã2

∫
d4xGG̃

∣∣∣∣
Ω1

= 1

Defining Ωn = (Ω1)
n with n ∈ Z and evaluating the integral on Ωn, we obtain that

the result is n. Choosing the temporal gauge Aa0 = 0, we have that Ki = 0, so

¿ =
g2S
32Ã2

∫
d4xGG̃

∣∣∣∣
Ων

=⇒ g2S
32Ã2

∫
d4x ∂0K

0
ν =

g2S
32Ã2

∫
d3xK0

ν

∣∣t=+∞

t=−∞
= ¿

Thus, ¿ has the interpretation of the winding number of a solution that is An for
t→ −∞ and An+ν at t→ +∞.

Let us now call |nð the vacuum configuration related to the gauge choice Ωn and be
U1 the unitary transformation related to Ω1 that acts on these states. Without loss
of generality, we can take

U1 |nð ≡ |n+ 1ð .
Thus, the vacuum is not gauge invariant! A vacuum choice which is gauge invariant
is the ¹-vacuum

|¹ð ≡
∑

n

e−inθ |nð =⇒ U1 |¹ð = eiθ |¹ð

We now point out that using a ¹-vacuum for LQCD is completely equivalent to adding
the ¹-term:

ï¹| O |¹ð =
∑

m,n

ei(m−n) θ ïm| O |nð =
∑

ν,n

eiνθ ïn+ ¿| O |nð

From what we have seen above, both terms in the sum imply a transition for a
certain vacuum state |nð to |n+ ¿ð. We can eliminate the sum over n by passing to
the path integral:

∑

ν,n

eiνθ ïn+ ¿| O |nð =
∑

ν

∫
DA¶

(
¿ −

∫
d4x ¹

g2S
32Ã2

GG̃

)
O ei

∫
d4x LQCD+Lθ
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With the ¶, we can eliminate also the sum over ¿ and we remain exactly with what
we have claimed. This is an unequivocal proof that the ¹-term must be included in
our lagrangian.

However, ¹ itself is not physical, because a chiral rotation modifies it. If we switch
on the quark masses, we immediately notice that axial rotations are no more a
symmetry of the QCD lagrangian and, in particular, they produce a complex phase
for the mass matrix. We can now write:

LQCD = −1

4
Ga
µνG

a,µν + Ψ̄L i /DΨL + Ψ̄R i /DΨR − Ψ̄LMeiθq ΨR − Ψ̄RMe−iθq ΨL.

Thus, for a quark axial rotation of angle ³:

¹ → ¹ + 2³ and ¹q → ¹q + 2³

The combination ¹ = ¹− ¹q is finally independent on quark chiral rotations: hence,
it is physically observable.

At low energy the CP violation of the ¹-term is reflected in a CP violating coupling
between pions and nucleons: namely, assuming now to be in the SU(2) limit,

LπN = ÃaΨ(iµ5gπN + gπN) Ä
aΨ

Without focusing on the details of the computations, an interaction diagram like in
Figure below generates an electric dipole moment for the neutron.

n n

µ

p

Ã−

Ã−

gπN gπN

The effective lagrangian describing it can be written as

LnEDM £ dn Fµν n µ
µνiµ5 n

Of course dn ∝ gπNgπN , but we can also estimate it in NDA since it must be
proportional to ¹ and it must be zero when at least one quark is massless. This
happens because ¹q ≃ arg det M , thus a massless quark would make the ¹-term
unphysical again and we could simply rotate it away. Thus,

dn ≃ ¹
mq

mN

1

mN

.

A correct computation, which takes care of regularizing well the divergence of the
loop with the cutoff mN , obtains dn ≈ 3 · 10−16 ¹ e · cm. Comparing this result with
the experimental uncertainty (indeed, we do not measure any electric dipole moment
for the neutron), it has been obtained dexpn ≲ 10−26. The simple consequence is that

¹ ≲ 10−10.

Then, the Strong CP problem arises: one possibility is that we have two unnaturally
small independent parameters ¹ and ¹q; the other possibility is that we have an
extreme fine tuning between these two variables, which is equally unattractive.
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3.2 Non-axionic solutions to the Strong CP problem

Before passing to the most popular solution to the Strong CP problem, the axion,
we revise briefly some non-axionic solutions that have been proposed throughout
the years.

The first one, that we have already mentioned, is to take (at least) one massless
quark. In this case we cannot reabsorb eventual chiral rotations of the massless
quark(s) and this would mahe ¹ unphysical. In principle, we could actually solve
the Strong CP problem if mu ≲ 10−10md, as the neutron EDM is proportional to
mumd/(mu + md). However, the up quark mass is a fraction of order 1/2 of the
down mass. Thus, this possibility is experimentally excluded.

Another possibility is to exploit RG evolution of CP violating interactions, supposing
that at some RG scale ¹ = 0. The only other CP violating phase of the SM comes
from φCKM , the physical phase of the CKM matrix. Treating ¹ and φCKM as
spurions of the CP symmetry and expressing the ´ function of ¹ as a function of
possible CP violating interactions, i.e. the Yukawas and the SU(2)L gauge ones, it
has been obtained that the first non-zero contribution is:

´θ ∝ g2 arg Tr
{
Y 4
u Y

4
d Y

2
u Y

2
d

}

An exact computation at leading order would require going at 7 loops in the SM
computation, which is definitely not convenient. For more details see Ref. [14].

Finally, there are models which P and CP are assumed as good symmetries in the
UV and are then broken at the EW scale2. For theories asking that P is a good
symmetry, however, ¹ can be made vanishing at tree level, but would receive loop
corrections from the very same construction of symmetrizing the SM theory (e.g.
we would need to add a right-handed Higgs). CP models are built in a way to make
¹ and φCKM vanish in the UV. However, the CKM phase is huge compared to ¹:
this is why these theories are very fragile, because of many coincidences between
physical scales have to happen in order to accomplish this result. These theories are
nowadays unappealing with respect to the axion, which we will now discuss.

3.3 The Axion solution

The axion solution solves the Strong CP problem in a very clean and fascinating
way. In fact, if at EW scales we have an additional degree of freedom ϕ such that

LSM+φ £
1

2
∂µϕ ∂

µϕ+

(
ϕ

fa
+ ¹

)
1

32Ã2
GG̃,

the Strong CP problem is solved dynamically choosing ïϕð = −¹fa. This is beauti-
fully guaranteed by the Vafa-Witten theorem (Ref. [16]), that states that P cannot
be spontaneously broken in QCD. As a consequence, the VEV of any term in front
of GG̃ is null, since, symbolically, E(0) f E(¹) for each ¹.

2See Ref. [15] for more details on these models.
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We have discovered that adding the axion field ϕ, on the vacuum of the theory, no
¹-term appears, hence no neutron EDM: this solves the Strong CP problem. Now,
more properly, the axions will be excitations above the CP symmetric vacuum, that
we will nevertheless denote as ϕ. The lagrangian for these particles is then

LSM+φ = LSM +
1

2
∂µϕ ∂

µϕ+
ϕ

fa

1

32Ã2
GG̃

At energies below ΛQCD the axion takes a potential due to its interactions with
pions. We illustrate this in the chiral lagrangian with 2 generations, for the sake of
simplicity. we employ the fact that a chiral rotation of quarks can transfer the CP
violation to the quark mass matrix M . Thus, the rotation needed to make the GG̃
term disappear is realized by

Ψ → exp

{
−i ϕ

2fa
µ5Qa

}
Ψ such that M → ei

φ
2fa

QaMei
φ

2fa
Qa (3.1)

with Qa an arbitrary matrix in flavour space that satisfies Tr{Qa} = 1 (as the axial
anomaly involves traces over flavor, Lorentz and gauge indices). A convenient choice
in order to find the axion potential is: Qa = diag{1/2, 1/2}. With this choice we
can extract the axion-pions potential from the chiral lagrangian term (Appendix A)

−Bf
2
π

2
Tr
{
M ei

φ
2fa Σ + ΣM e−i

φ
2fa

}

A direct computation gives

V (ϕ, Ãa) = −m2
πf

2
π

√

cos2
ϕ

2fa
+

(
mu −md

mu +md

)2
Ã2
0

Ã2
sin2 ϕ

2fa
cos

(
Ã

fπ
− φ(ϕ)

)

where Ã2 = Ã2
0 + 2Ã+Ã− and tanφ(ϕ) = mu−md

mu+md

π0

π
tanϕ/2fa. Clearly, there is an

absolute minimum for ϕ = 0 and Ãa = 0, so that, as Vafa-Witten theorem requires,
the vacuum of the theory is CP conserving. Moreover, this potential generates the
mass term for the axion: namely,

m2
a =

m2
π f

2
π

f 2
a

mumd

(mu +md)2
hence ma ≈ 5.7meV

(
109GeV

fa

)

The use of ÇPT is the justified if fa ≳ 1GeV .

Until now, we have treated the topic as if quarks were only coupled to gluons.
However, they transform under the full SM gauge group: a chiral rotation of quarks
would then generate terms of the kind

¹
g2S
32Ã2

GG̃+ ¹1
g2

32Ã2
WW̃ + ¹2

g′2

32Ã2
BB̃

Being U(1)B+L anomalous under SU(2)L ×U(1)Y , we can nevertheless set freely ¹1
to 0. Of course, ¹2 does not contribute to the action, being U(1)Y an abelian group:
this is important, because ¹1 and ¹2 being unphysical means that we do not have
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an Electroweak CP problem. If we now work in the broken phase of the SM, this
means that we have an axion coupling to the photons that is conventionally written
as

Lφγ =
1

4
gaγFF̃ (3.2)

Therefore, if the axion has an original g0aγ coming for a suitable UV model, the chiral
rotation in Equation 3.1, would then induce an axion-photon coupling of the kind:

gaγ = g0aγ − (2Nc)
e2

8Ã2 fa
Tr
{
QaQ

2
em

}

with Qem being the generator of U(1)em, which lives in the diagonal subgroup of
SU(3)V × U(1)B. A convenient choice is to choose Qa such that it eliminates the
mass mixing between the axion and the neutral pion, because otherwise whenever
we need the coupling gaγ, we cannot forget to add the mass mixing to the pion and
then the vertex Ã0 µ µ. The choice that allows us to do that is

Qa =
M−1

Tr{M−1} .

UV Models for the Axion: PQ mechanism

So far, we have discussed how an additional degree of freedom, the axion, which
has a coupling with GG̃ solves the Strong CP problem and which is its effective
lagrangian at energies below the confinement scale. Now we want to briefly review
the UV models that can generate the axions. The most famous way to generate
the axion with the properties we have required is the Peccei-Quinn mechanism:
the SM has to be extended with a new global symmetry U(1)PQ that has to be
anomalous under SU(3)C and spontaneously broken at some energy scale that we

will identify with our fa. The anomaly under SU(3)C generates the GG̃ term and
the spontaneous breaking of U(1)PQ guarantees the existence of one new degree of
freedom, the pseudo-NGB (of course, we do not have an exact symmetry) that will
be the axion.

The first proposed model that encodes the PQ mechanism is the Peccei-Quinn-
Weinberg-Wilczek model (Refs. [17, 18]), which postulates another Higgs doublet
such that in the Yukawa sector

L £ −Y ij
u Q

i

LHuu
j
R − Y ij

d Q
i

LHdd
j
R + h.c.

For this kind of theory, however, the PQ breaking scale is below the EW scale,
which makes the axion coupling to the SM not suppressed enough: this would lead
to unobserved decays K → Ãϕ. For this reason PQWW models are somewhat
excluded.

The idea that SM quarks carry the anomaly, which is the essential idea of PQWW
models, is promoted also by Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model, which
gives also name to this entire class of models. The model (Ref. [19],Ref. [20]) con-
sists of the extension of the Higgs doublet to Hu ∼ (1, 2,−1/2), Hd ∼ (1, 2,+1/2)
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and a brand new Φ ∼ (1, 1, 0), which allows to decouple PQ and EW scales. Then,
the potential for these scalars

V (Hu, Hd,Φ) = V (|Hu|2, |Hd|2, |H 
uHd|, |(HuHd)|, |Φ|2)− ¼(HuHd)(Φ

 )2

Here, by (HuHd) it is meant the contraction of the doublets with the totally anti-
symmetric tensor εij of SU(2)L. For suitable forms of the potential, all three scalars
take a VEV. The axion is contained in Hu and Hd, so that it will be coupled to the
SM fermions. The obtained low-energy lagrangian for the axion would then be

LDFSZ £ N
³S
8Ã

ϕ

vPQ
GG̃+ E

³

8Ã

ϕ

vPQ
FF̃ +N

∂µϕ

2vPQ

∑

f

cf fµ
µµ5f

Finally, we discuss another class of UV completions, named after the Kim-Shifman-
Vainshtein-Zakharov model (KSVZ) (Ref. [21, 22]). In this models we add new

colored quarks which will provide the GG̃ term for the axion. Thus, we extend the
SM with a new complex scalar Φ ∼ (1, 1, 0) and a new quark È ∼ (3, 1, 0), both
charged under U(1)PQ and such that ÈL and ÈR have different charges, in order to
generate the axial anomaly. A Lagrangian for this theory would be

LKSV Z = ∂µΦ
∗ ∂µΦ + È i /D È − (yψÈLΦÈR + h.c.)− V (Φ)

If V (Φ) is built in order to spontaneously brake at vPQ. Because of Goldstone theo-
rem, the axion now lives in the exponential representation of the broken symmetry,
that means that the Yukawa assumes the form

L £ yψvPQ√
2
ÈL e

i φ
vPQ

γ5
ÈR + h.c.

Then, with a chiral rotation, we can transfer the axion to the GG̃ term as we are
now used to. As a last comment, we notice that that if we want vPQ k vEW , the
new quarks must be really massive and, in practice, we do not see them in colliders.

3.4 Axion Cosmology

In this Section we will discuss the cosmological relevance of the axion scenario. In
fact, the axion is also a viable Dark Matter candidate, a fact that makes this particle
so popular in Phenomenology.

We want to study what happens when we couple the axion field to a FLRW back-
ground (this is why we did not call the axion a, since now on a(t) will be the scale
factor of our metric) ds2 = −dt2 + a(t)2dx⃗ · dx⃗. For consistency we will assume the
axion field to depend only on time and we will treat its cosmological evolution in
a semi-analytical way. We study the Klein-Gordon equation of motion in a FLRW
background, namely

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0
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In the previous Section we have seen that the axion has a (small) mass, so we will
approximate the potential to be quadratic and, when in contact with a thermal bath
at temperature T , with a T dependence: V (ϕ) = mφ(T )

2ϕ2/2, with

mφ(T ) =





mφ T < ΛQCD

mφ

(
ΛQCD
T

)n
2

T > ΛQCD

The n in the exponent is fitted with lattice data and we will take n = 6.84 (Ref.
[23]).

In both cases, the KG equation is the one of a damped oscillator with a (time-
dependent) friction H, which in our case is the Hubble parameter. We identify two
regimes in the damped oscillator, in analogy with Classical Mechanics: the field is
stuck by Hubble friction or the field oscillates and is slowly damped. Clearly, we need
to compare H(T ) and mφ(T ) to understand which phase dominates. We will call
Tosc the temperature such that 3H(Tosc) = mφ(Tosc). Assuming that Tosc > ΛQCD
we find Tosc by comparing

3
g∗(Tosc)T

2
osc√

3Mp

= mφ(Tosc) =⇒ Tosc ≃ 1.18

(
1012GeV

fa

)0.185

GeV

which a posteriori motivates the assumption Tosc > ΛQCD. At high temperatures
H is big, while mφ(T ) is suppressed, thus today we are in the oscillatory phase of
the axion field and we want to compute its energy density. The energy density of a
scalar field in a FLRW background is simply

Äφ =
1

2
ϕ̇2 + V (ϕ),

which, in analogy with Classical Mechanics is a kinetic plus a potential term. In the
oscillatory phase we can use the virial theorem and easily show that

Ä̇φ = −3HÄφ.

We have just shown that nowadays the axion field behaves exactly as Cold Dark
Matter!

However, we want to reproduce also the Dark Matter abundance. To do it we notice
that in a first approximation, we can treat the axion field as stuck at the initial
value ϕi it gets after PQ symmetry breaking until it starts to oscillate at T = Tosc.
Then, very rapidly the mass overtakes the friction and we can approximate the
amplitude of oscillations to be damped in a timescale much bigger than the period
of oscillation. We can then use the adiabatic invariant, in analogy with Classical
Mechanics,

I =
1

2Ã

∮
d¹ pθ(¹) =

a3mφ(T )¹
2

2

where ¹ = ϕ/fa and pθ is the conjugated momentum to ¹ in the "KG" lagrangian

L = a3
(
1

2
¹̇2 − 1

2
m2
φ ¹

2

)
.
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Then, using the adiabatic invariant above, we easily that

¹0 ≃
(
T0
Tosc

) 3
2
(
ΛQCD
Tosc

)n
4

¹i

Since ¹i comes from the SSB of the U(1)PQ symmetry, it is natural for ¹i to have a
value of order Ã. Being T0 ≈ 2.7 · 10−4 eV , it is clear that the background solution
in a FLRW background does not generate a Strong CP problem (we verified it
previously only in a T = 0 theory). Now, thanks to the virial theorem we easily get
the abundance of axion matter today:

Ωφ ≡
Äφ
Äcr

=
m2
φ f

2
a ¹

2
0

Äcr
≃ 0.3

(
fa

1011GeV

)1.185

This is approximately the observed result, for a value of fa which is not ruled out
by experiments or astrophysical bounds (see Section 3.5). Thus, the axion well
reproduces the DM abundance, which is quite an astonishing result! For this precise
reason, in the current jargon axion means two things:

• QCD axion: it solves the Strong CP problem and it is a good DM candidate.
It is characterised by the relation ma = f−1

a ∝ gaγ.

• ALPs: axion-like particles are more general pseudoscalars which are not re-
quired to solve the Strong CP problem, but can be good DM candidates. For
them the mass and the coupling are two independent variables.

In our discussion we have an undetermined quantity ¹i, about which we can comment
further. In fact, there are two different scenarios depending on whether the PQ
mechanism is realized before or after the onset of inflation. This uncertainty is
enforced by the fact that, up to now, we do not know the energy scale of inflation
EINF . If the PQ transition happens before inflation, the comoving Hubble radius at
that time was (as required by the inflationary model) larger (or equal) to the current
one. Thus, there is no way that causal regions with different ¹i have interacted and,
as a result, we remain with an unspecified ¹i, which we assume of order 1. On the
other hand, if inflation ended before the SSB of PQ symmetry, then different field
values have interacted and it is conceivable to take

¹2i = ï¹2ð = Ã2

3
.

Of course, the treatment that has been discussed here is only a first approximation:
the oscillation does nor begin all in a sudden and one has to perform a numerical
integration; the potential is in general anharmonic, so not every ¹i contributes the
same to the axion relic density; finally, the mechanism through which we have
computed the axion relic density, known as misalignment mechanism, is not the
only contribution, as one should consider also decays of topological defects of the
PQ phase transition, which are nevertheless difficult to compute.

We have to check the last ingredient before saying that the axion is a good Dark
Matter candidate: its stability. The axion (at least in a reasonable range of fa) can
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decay only through ϕ→ µ µ and ϕ→ ¿¿. The latter presents some issues. The first
one is to be strongly model dependent, being the couplings of the axion to fermions
inherited mostly by the structure of the UV model, intead of by the PQ mechanism.
Secondly, we know that (at least two) neutrinos are massive, thus the decay may be
kinematically forbidden. Ultimately, the axion couples derivatively to the fermionic
axial current jµA = fµµµ5f . Integrating by parts, the axion couples then to ∂muj

µ
A

which classically is
∂µ j

µ
A = 2imfµ5f.

Thus the coupling of the axion to neutrinos is suppressed by a mν/fa. Hence, the
more likely the decay is kinematically allowed, the higher is the price to pay in terms
of suppression, which is quadratic in mν/fa. It is therefore reasonable to assume
that the axion decays only to photons.

To compute the decay rate Γ(ϕ→ µ µ), we use the axion-photon coupling as defined
in Equation 3.2. Very famously, the result becomes

Γ(ϕ→ µ µ) =
g2aγm

3
φ

64Ã

For gaγ there is a model-dependent component

g0aγ =
³

2Ãfa

E

N

with E/N = 0 in the KSVZ model and E/N = 8/3 in the DFSZ. Considering now
the term obtained from the chiral rotation that eliminates the mass mixing between
the axion and the pion and working in Nf = 2, we find

gaγ =
³

2Ãfa

(
E

N
− 2

3

4md +mu

mu +md

)

This now sets the benchmark result (for which we remember that ms ∝ f−1
a )

Äφ = 1.3 · 1028
(

fa
109GeV

)
yrs,

which is an astonishing amount of time, 18 orders of magnitude bigger that the
life of our Universe! Therefore, the axion is enough long-lived to be a good DM
candidate.

3.5 Axion searches and bounds

Due to its enormous lifetime is practically impossible to see an axion decay in the
lab. To hope for an axion detection (or, in the the opposite case, to put bounds)
an interesting idea is to use the so called helioscopes. In fact, due to the axion-
photon coupling, in presence of a strong magnetic field, we can possibly hope for a
Primakoff process (Figure 3.1) µ N → ϕN , i.e. a photon conversion into an axion
in presence of an external field (here indicated as a heavy nucleon). Of course, the
photons are the ones coming from the Sun, hence the name. The main experiment
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in this case is CAST (CERN Axion Solar Telescope), which has put the bound
gaγ ≲ 6 · 10−11GeV −1. If we model the coupling as gaγ = ³/(2Ãfa), we translate
the CAST result as fa ≳ 108GeV . Future experiments, like the International Axion
Observatory (IAXO), will go even further this result.

µ ϕ
gaγ

Figure 3.1: Primakoff process.

Another possibility is to produce axions in the laboratory (e.g. via inverse Primakoff)
and then detect them with the same technique. One example are the "Light Shining
through a Wall" experiments (e.g. ALPS I): axions are produced in the presence of
a strong magnetic field, passes through a wall (impenetrable for photons) and gets
converted back into photons. Clearly, the price to pay is in terms of the rate of the
process, which in this case is proportional ti g4aγ. The bound is therefore weaker:

gaγ ≲ 6 · 10−8GeV −1

Last but not least, axions could be produced naturally in highly energetic and dense
astrophysical objects, such as stars and their remnants. Typical considerations
involve the fact that if the star (take e.g. the Sun) radiates invisible light particles,
its lifetime would be nevertheless affected and we can put a bound. We have also
bounds thanks to the Supernova 1987A, studying the gamma rays we received from
that event. These arguments will be the topic of the next Chapters (4 and 6) and
for a detailed review, one can take Ref. [24] as a reference.

An important observation is that typically these bounds are made for a generic ALP,
so that we can treat the mass and the coupling to photons as independent variables.
The following plot (Figure 3.2), represents our current axion bounds in terms of
mass and photon couplings.
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Figure 3.2: Exclusion plot for a ALPs. In red: lab experiments. In green: astrophysical
bounds. In blue: cosmological bounds. In yellow: the landscape of the QCD axion. In
pink: proposed new experiments.
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Chapter 4

Supernova Physics and Light

Particles Emission

In this Chapter we briefly review the standard lore about Core-Collapse Supernovae
(Section 4.1), with a particular attention to neutrino emissions. New feebly inter-
acting particles may affect the process of cooling, as it will be discussed in Section
4.2, where we will present the so-called Raffelt criterion (see Ref. [4]). Then, we
explicitly compute the emissivity of a particle in the constant matrix element ap-
proximation, which leads to an analytic result: this reproduces Ref. [25] (Section
4.3). Finally (Section 4.4) , we apply the previous reasoning to the case of an ALP
emission from a Proto-Neutron Star (PNS), to get a clue about astrophysical bounds
discussed in Section 3.5.

4.1 Supernova Physics

Stars with masses M ≳ 8M» have enough energy to ignite the CO core and, by a
sequence of fuel exhaustions, which imply contraction, thus temperature increase,
thus the activation of new heavier nuclei burning phases, the star reaches a point in
which the core is composed by elements in the Fe group. These elements saturate
the nuclear binding energy, therefore fusion reactions cannot occur anymore. The Fe
core mass increases thanks to the outer burning shells and, being degenerate, shrinks,
until it exceeds the Chandrasekhar limit of MCh ≃ 1.4M» (which happens for M ≳

8M»). At this point, the core becomes unstable and, since there is no nuclear
burning supporting it, the collapse begins. We can divide it in four subsequent
phases phases, which added together last more or less 5—10 s and are considered
the standard lore of Type II Supernova event (also called Core-Collapse SN) and the
relic is a PNS or a black hole, for even larger masses (supposedly for M ≳ 25M»).
During this time interval the star radiates the gravitational binding energy of the
core, which by a naive Newtonian argument is found to be

Eb ≃
3

5

GM2
core

R
≈ 1.6 · 1053

(
Mcore

M»

)2 (
10 km

R

)
erg/s
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mainly in the form of neutrino radiation. The first observation of the expelled
neutrinos happened in the 1987, when the blue supergiant Sanduleak, located in the
Large Magellanic Cloud, exploded in the event which is now known as SN 1987A.

The first phase is the collapse of the core, which is triggered by the onset of the
µ +56 Fe → 13³+ 4n reaction of iron photo-dissociation, that consumes 124.4MeV
of energy. This implies the electron thermal pressure reduction. Once the collapse
has started, the electron density has to increase, enhancing the electron Fermi mo-
mentum: in practice, beta decays become statistically forbidden, since the electrons
would receive a momentum well inside the Fermi sphere. At this moment, electron
absorption on heavy nuclei can take place and is not counterbalanced by beta de-
cays. Thus, neutrinos are created in this process and in the first tens of ms can
escape freely.
The innermost part of the core undergoes an homologous collapse Ref. [26], i.e.
it maintains its internal structure (for example its density profile) the same, while
shrinking. The typical ratio between the infalling velocity and the radius is v/r ≈
400—700s−1. The inner core is thus defined as the region for which the infalling
velocity is subsonic, meaning that the inner core is in good contact within itself.
The outer layers of the core will simply free-fall.
Clearly, as the density keeps increasing, neutrino interactions with nuclei becomes
more efficient, until a density of 1012 g/cm3 (for a characteristic 10MeV neutrino),
when they will be trapped. At this point, there is a typical radius Rν , which contains
the so called neutrinosphere, above which neutrinoes freely stream outside the star
and below which neutrinos move by diffusion. In approximately 100ms, the inner
core collapses into the neutrinosphere.
Shortly after, the inner core reaches the nuclear density Ä0 ≃ 3 · 1014 g/cm3, where
the equation of state stiffens. This creates a shock at the edge of the inner core,
which stores the energy of the outer layers and soon starts propagating outwards:
we can naively think as if the outer layer crashed onto the inner core and release
its kinetic energy in the shock. This is called "bounce and shock" scenario and was
firstly proposed by Colgate and Johnson in 1960.

The outgoing shock carries enough energy to dissociate the heavy nuclei in its pas-
sage. This has the effect of reducing the efficiency of neutrino trapping, which now
can escape more easily. Then, the protons coming from dissociated nuclei quickly
netronize thanks to electron capture, which allows for a sudden production of ¿es,
causing a burst called "prompt ¿e burst". As a result, the bloated outer layers of
the core settle in ≲ 1 s onto the surface of the inner core. The object now created
is the Proto Neutron Star, which has a typical radius of 20 km and a temperature
of 30—40MeV .

Because it dissociates nuclei, the shock stalls for some hundredths ofms at a constant
radius. However, it is revived by accretion of the infalling material and by absorption
of some neutrino energy. One can see by numerical simulation (as Janka and Müller
did in 1993, well shown in Ref. [27] Ch.11 pp 402-403) that a small change in the
neutrino luminosity from the central compact object drives dramatically different
endings for the shock wave. If Lν ≳ 2.2 · 1052 erg/s the shock can travel again
outwards and, since the binding energy of the progenitor star in realistic models is
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some 1050 erg 1(see Ref. [28]), the star will be completely disrupted by the shock.

Finally, the PNS undergoes a phase of Kelvin-Helmoltz cooling, which means that it
cools down by neutrino emission at the surface. Neutrinos are in fact trapped inside
the PNS and their travel towards the surface is diffusive. At this point neutrinos
undergo many different reactions (see Table 2 and Figure 3 of Ref. [29]), so that
it emits neutrinos and antineutrinos of all flavors with the same luminosity. This
is enforced by the fact that ¿e emissions allow for the deleptonization of the PNS.
Now, the lepton number of the PNS is 0 and positrons can make their appearance:
Thus, neutral current weak interaction of e+ e− will create couples of ¿¿ of all flavors,
along with proton nucleon bremsstrahlung. In this phase, lasting approximately 10 s
neutrinos are produced at some tenths of B/s. Neutrino driven winds in this phase
are supposed to lead to heavier than iron elements nucleosynthesis, mainly through
slow (s-) and rapid (r-) processes.

At the and of these processes we end up with a 10 km Neutron Star, that has emitted
in more or less 10 s its ≈ 300B binding energy in the form of (anti)neutrinos. Only
a small fraction O(1%) of this incredible amount of energy is necessary to eject the
progenitor mantle and, also, a small fraction is lost in electromagnetic radiation,
making SNe by far the most luminous stellar events in the Universe. The peak of
explosion luminosities outshines the entire galaxy of the SN event.

4.2 Light particles emission and bounds

The existence of new BSM particle may affect stellar evolution, given that the emis-
sion of invisible particles leads to a faster energy loss. In a virialized thermal object
like a star, an energy loss implies a contraction, which implies a temperature in-
crease, which implies faster fuel consumption. For example, for our Sun, we suppose
that it loses energy mainly through electromagnetic radiation, thus we define the
relative contribution of some "exotic" radiation (for many more details on this topic
see Section 1.3 of Ref. [27])

¶x =
Lx

Lx + Lγ
.

Naively, one thinks that ¶T/T ≃ −¶x, where we mean that exotic particles imply
the reduction of typical timescales of physical processes, e.g. the hydrogen burning
phase of our Sun. We know the solar luminosity L» and we know, for our solar
models, that the Sun is halfway through its main-sequence evolution. The only
reasonable bound we can put is thus Lx ≲ L». This kind of bounds are now famous
as Raffelt bounds or Raffelt criterium (see e.g. Ref. [4]).

In the case of PNS cooling a particle coupled somehow to nucleons can be produced
efficiently due to the enormous density Ä0 ≈ 3 · 1014 g/cm3 and temperature of
T ≈ 30MeV . A well-established estimate for the duration of the cooling phase has

1Now on, we will prefer the Bethe as energy unit of measure: 1B = 1051 erg
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been computed in Ref. [30]:

tE = 10 s

(
RPNS

10 km

)2(
Ä

2Ä0

)2/3

with Ä being the central density. Clearly, the production of new particles cools the
PNS faster than the characteristic 10 s of neutrinos. The SN 1987A event is the
only one for which we have detected the emitted neutrinos on Earth and from its
data at Kamiokande detector Ref. [31], at IMB Ref. [32] and at Baksan Ref. [33]
(one can also see data in Ref. [27] Ch. 11 pp. 419-420), we can say that the cooling
lasted for more than 5 s, allowing us to put a Raffelt bound of the kind

Lx ≲ Lν ≈ (3—5) · 1053 erg/s (4.1)

from the best fit of the ¿ signal data. The exact luminosity value depends on the
model one uses for the partition of the energy between the flavours, but the ballpark
is within the values in brackets.

Then, once we have a BSM Particle Physics model for a new particle, we can put
bounds on its masses and coupling from a PNS by imposing the Raffelt bound (Equa-
tion 4.1). If one assumes spherical symmetry and free streaming of the particle(s)
produced, the luminosity will simply be

Lx =

∫ RNS

0

dr ϵ̇x(r)4Ãr
2. (4.2)

The quantity ϵ̇ is called emissivity and thus represents the emitted energy per unit
time and volume of the produced particle(s) and it can be computed starting from
the matrix element of the event M, as we will do in the following Section.

4.3 Emissivity of light particles

Having in mind the axion production from nucleons, in this Section we reproduce
the result of Brinkmann and Turner Ref. [25] for a PNS in the one-zone assumption,
which means that we will assume constant T and n in the whole core of the collapsed
star. Moreover, we will work under the assumption that there are only neutrons,
which have temperature T = 30MeV and density stiffened to the nuclear density
n = 1038 cm−3. To reproduce Brinkmann and Turner, we assume a constant matrix
element (see Ref. [25] for their motivation). Thus, the emissivity for the process
nn→ nn a is defined as

ϵ̇ =

∫
d3p1

(2Ã)3 2E1

d3p2
(2Ã)3 2E2

d3p3
(2Ã)3 2E3

d3p4
(2Ã)3 2E4

d3q

(2Ã)3 2Es
· S · (2Ã)4¶(4)(pi − pf )·

· |M|2 · ES · f(E1) f(E2) (1− f(E3)) (1− f(E4))

Following the prescriptions shown in Appendix B, we get the expression (identical
to Equation 7a and 7b of Ref. [25]).

ϵ̇ = S|M|2m0.5 T 6.5 I(y)
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with y = µ−m
T

and I(y) defined as

I(y) =
1

23.5Ã7

∫ +∞

0

du+ du−

∫ u−

0

du∗
3 (u+u−u

∗
3)

1/2(u− − u∗
3)

2
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e2(u++u−−y) − 1

1
√
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(
(u

1/2
+ − u

1/2
− )2

2
− y

2

)




× 1

1− e−2(u++u∗3−y)

1√
u+u∗

3

log




cosh

(
(u

1/2
+ + u

∗,1/2
3 )2

2
− y

2

)

cosh

(
(u

1/2
+ − u

∗,1/2
3 )2

2
− y

2

)




In the limits in which the nucleons are very degenerate or very non-degenerate, we
get an analytic result, identical to Equations 5a and 6a of Ref. [25] (see Appendix
B).

ϵ̇(ND) =
S|M|2

4 · 35 · Ã6.5
m0.5 T 6.5 e2y

ϵ̇(D) =
31
√
2

64 · 3780ÃS|M|2m0.5 T 6.5 y1/2

We are finally able to reproduce Figure 2 of Ref. [25] with both analytic and
numerical integrations of I(y):

4.4 Axion emission and cooling bounds

We now want to do better, without approximating the matrix element as a constant.
So, we have to model the axion-nucleon coupling: the most convenient choice is a
pseudovector coupling to a nucleon N

LaN =
gaN
2mN

∂µaNµ
µµ5N

which upon integration by parts becomes LaN = −igaNaNµ5N . For a process in
which the ALP is produced only by one kind of nucleon, which is a good approxi-
mation in the PNS environment were neutrons are more abundant than protons, we
can study the axion emission from an elastic scattering of the kind n(p1)n(p2) →
n(p3)n(p4) a(q). There are 8 diagrams contributing to this specific process, 4 "di-
rect" in Figure 4.2 and 4 with exchanged momenta p3 and p4, thus with a minus
sign (which agrees with Ref. [25], that corrects Iwamoto’s Ref. [2]).

For the One Pion Exchange potential, we use the pseudoscalar coupling (Equation
A.2)

LOPE = −i f 2mN

mπ

ÃaÈµ5Ä
aÈ.
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Figure 4.1: Constant matrix emission for nn→ nna in the NR regime and one zone and
one nucleon assumption.

Thus, defining k = p2 − p4 and l = p2 − p3, we can compute the squared matrix
element (averaged over axion’s directions) in the degenerate limit (k · l j |k||l|) for
nucleons and non-relativistic kinematics (Appendix C). The leading order in the NR
expansion leads to (in agreement with p. 2347 of Ref. [25]):

∑

spins

|M|2 = 256

3

g2aNf
4m2

N

m4
π

[
k4

(k2 +m2
π)

2
+

l4

(l2 +m2
π)

2
+

k2l2

(k2 +m2
π)(l

2 +m2
π)

]

(4.3)

For this squared matrix element we can thus compute the emissivity in a quasi2-
analytic form in the degenerate limit (see Appendix B for more details):

ϵ̇a(D) =
32 · S
3(2Ã)8

m2f 4 g2an
m4
π

T 3

mpF

∫ +∞

0

dÉ É2F (É/T )

∫

k2+l2f4p2
F

dk dl
2m√

1− k2 + l2

4p2F

×

×
[

k4

(k2 +m2
π)

2
+

k2l2

(k2 +m2
π)(l

2 +m2
π)

+
l4

(l2 +m2
π)

2

]

The value of the Fermi momentum pF ≈ 300MeV is determined directly from the
number density of the PNS of n = 1038 cm−3 form pF = (3Ã2n)1/3. In the following
expression yπ = mπ/2pF j 1, thus making sense of the quasi-analytic expression
that agrees with Iwamoto Ref. [2]

ϵ̇a(D) =
31

3780Ã

g2an
m4
π

m2 T 6 pF F (yπ)

2Actually the mixed term in k and l is not analytic, but for the values of mπ and pF we have in
mind one can numerically show that it contributes approximately as much as the other two terms,
which of course contribute the same.
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Figure 4.2: Contributing diagrams to n(p1)n(p2) → n(p3)n(p4) a(q) + exchange diagrams
of p3 and p4 with a minus sign.

with F (yπ) = 1− 3

2
yπ arctan

1

yπ
+

1

2

y2π
1 + y2π

.

Plugging the numerical values for a one-zone approximated PNS with radius R ≃
10 km, one gets that La ≲ Lν ≈ 3 · 1053 erg/s if

gaN ≲ 7 ∗ 10−10

(
30MeV

T

)2(
300MeV

pF

)
.
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Chapter 5

Light scalar models

Light CP-even scalars often appear in the literature as sub-GeV thermal Dark Matter
mediators, as it will be discussed in Section 5.1. This mediators could couple to the
rest of the SM via renormalizable portal interactions, which are appealing because
of their somewhat minimal number of free parameters required. In particular, we
will study an Higgs-portal mechanism and its consequences in the couplings of the
DM mediator (that we will call ϕ) in Section 5.2. Our goal, as will be discussed
in Chapter 6, is to produce ϕ inside Core-Collapse Supernovae, thus in a baryon-
dominated environment. Since the Higgs-portal mechanism provides a mass mixing
ϕ − h, it is necessary to discuss how the SM Higgs couples to nucleons, which will
be straightforwardly translated in a result for the scalars (Section 5.3).

5.1 Why scalars?

The mass range in which thermal weakly interacting DM can live spans from the
keV region, below which structure formation is elapsed by free-streaming (Section
2.2), to 10TeV for perturbative unitarity. As it is possible to see in Figure 2.4,
10GeV—10TeV WIMP DM still did not produce a signal, even with an highly
increasing sensitivity, pushing the bound towards the neutrino fog.

Below this region, there are still well-motivated models reproducing the DM cosmic
abundance, as asymmetric DM (Ref. [11]) or freeze-in (Ref. [34]). As pointed out
in Ref. [35], WIMP targets for nuclear recoils can be arranged to be sensitive to
lower energy deposition, hence to lighter DM. For sub-GeV DM there are proposals
for direct detection experiments on lighter nuclei, such as liquid helium detectors,
bond breaking in molecules and defect creation in crystal lattices. For MeV—GeV
DM the energy deposition is such that the effect is more visible in scattering off
electrons, which could produce signals using semiconductors, atoms, graphene or
scintillators.

However, as it will be shown in a moment, sub-GeV DM of this kind would be
overproduced unless it has a mediator, allowing it to decay in SM particles. Models
with nucleo-philic or lepto-philic mediators are particularly appealing for direct de-
tection, since one can think of possible renormalizable operators coupling them to
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the SM, thus leading to bounds on the mediator itself, along with its astrophysical
bounds, which will be the scope of this thesis work (Chapter 6).

Overproduction of sub-GeV DM and mediators

In Sections 2.2 and 2.3 we have discussed how the freeze-out process of thermal
DM sets the DM relic density. If we now suppose that DM is composed by a light
fermion Ç (we are thinking to mχ below the EW scale), a condition that ensures the
stability of DM is that Ç has a conserved charge, coming from whatever symmetry.
For a thermal model, we need to ensure that Ç has some form of interactions with
the SM1. Clearly, the presence of a symmetry leads us to consider only annihilation
processes ÇÇ→ SM SM , and we assume weak interactions (or weaker), so that the
coupling is at most GF . We are now going to show that these considerations for
light thermal DM inevitably lead to an overabundance in its relic density (as shown
in Ref. [9]).

In fact, we have seen in Sections 2.1 and 2.2 that cosmological structure formation
forbids hot thermal relics, thus we want to study the freeze-out process when Ç is
already non-relativistic. In this framework, the thermal averaged cross section can
be written as

ïÃvð ≃
G2
Fm

2
χ

16Ã

of course we are not considering order one factors, which are not relevant for the
discussion. Using the NR equilibrium number density expression

n(eq)
χ = gχ

(
mχT

2Ã

)3/2

e−mχ/T

and remembering that x ≡ mχ/T , we can find the freeze-out temperature simply by
requiring Γann(TFO) ≃ H(TFO). From

Γann(TFO) = n(eq)
χ (TFO)ïÃvð ≃

Ã

3
√
10

g
1/2
∗ (TFO)T

2
FO

MP

= H(TFO)

The estimate that can be obtained is

xFO ≃ 15 + 3 log 10 · log10
( mχ

1GeV

)

The Cold DM condition requires xFO k 1, thus weakly interacting sub-GeV thermal
DM can hardly be a cold relic. Moreover, this would lead to an overabundant DM
relic density: by employing the fact that Yχ ≡ nχ/s is constant, we get

ΩDM h2 =
mχYχ(TFO)s0
Äc(t0)/h2

1This is not necessary, since DM may thermalize and freeze-out in the dark sector. However,
if we hope for a directly detectable model, we cannot prescind some form of interactions with the
SM.
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Being s0 ≈ 2890 cm−3 and Äc(t0) ≈ 1.05 · 10−5 h2GeV/cm3, we get an estimate

ΩDM h2 = 540

(
g
1/2
∗ (TFO)

g∗s(TFO)

) (xFO
15

) (1GeV

mχ

)2

While the first two parentheses are always factors of order 1 (in particular, the first
is order one below EW scale), the relic density is dramatically influenced by the

mass of mχ, and sub-GeV DM is definitely incompatible with Ω
(obs)
DM h2 ≈ 0.12. This

makes even more evident why WIMP particles are chosen to have masses definitely
above 10GeV .

However, the overabundance could be depleted if there was a new mediator, coupling
the DM to the SM (as discussed in detail in Ref. [1]). A DM mediator ϕ can keep
DM in thermal equilibrium longer via the processes in Figure 5.1.

Ç ϕ

Ç ϕ

Ç

Ç

Ç

È

È

ϕ

Figure 5.1: On the left: the t-channel interaction with mediators. On the right: s-channel
interaction. ψ is a SM fermion.

In fact ϕ can easily talk with the SM model thanks to renormalizable portal opera-
tors. In this thesis work we assume a scenario for a Higgs-portal mechanism (Section
5.2), through which we can easily model ϕ—SM interactions. Then, one can easily
engineer the coupling gχ between Ç and ϕ in order for the cross section to reproduce
the relic density.

Brief review of scalar mediator landscapes

There is a plethora of models of Dark Matter candidates Ç and mediators ϕ, which
can produce, depending on the case, bounds from direct detection on Earth, Astro-
physics or Cosmology. Having in mind a typical NR direct detection cross section
of

ÃDD =
4Ã³χ ³T

(m2
φ + q2)2

µ2
Tχ,

where ³χ accounts for ϕ − Ç interactions and ³T for ϕ−target interactions. q is a
typical exchanged momentum in NR elastic scattering and µTχ is the reduced mass
for target-DM interactions. For Earth-based direct detection, the typical velocity
of DM particles is v ≲ 10−3 (the escape velocity from the Milky Way), thus q ≲

10−3mχ. Mediators can be thus divided in two main categories:

• Massive mediators: If mediators have typical masses mφ k |q| (we take as
a benchmark value mφ k 1MeV ), their ÃDD is strongly influenced by the
mass. In this regime typically scalars are not produced inside stars (could
be only during Core-Collapse Supernovae), this does not constrain the ϕ−SM
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interactions, so that ³T can become as large as 10−9. Plugging the numbers,
we can write

ÃmassiveDD = 2 · 10−40 cm2
(³χ³T
10−16

)(µTχ
me

)2(
5MeV

mφ

)4

.

Thus, for massive models, the rate remains quite low, even for large couplings.
A mild bound of (as in Ref. [35])

³χ ≲ 0.02

(
1 keV

mχ

)1/2 ( mφ

1MeV

)2

comes from DM self-interactions.

• Massless mediators: If we take a massless mediator, with a benchmark mo-
mentum transfer in DD experiments of |q| ≲ 1MeV , one has strong con-
straints from Astrophysics (³T ≲ 10−25), since scalars would be easily pro-
duced in stellar environments. The DD cross section can be parametrized
as

ÃmasslessDD = 1 · 10−39 cm2
(³χ³T
10−30

)(µTχ
me

)2(
1 keV

|q|

)4

.

Massless mediators would be thus much more easily detectable even with small
couplings to DM. However, Massless mediators would be thus much more easily
detectable even with small couplings to DM. However, the strongest bound on
³χ is put by DM self-interactions, which in the massless mediator limit become
very important:

³χ ≲ 6 · 10−10
( mχ

1MeV

)3/2
.

Clearly, these microscopic details depend, in general, on the microscopic model
one assumes for the DM particle (whether it is a scalar or a fermion) and on the
mediator portal operators with the SM. Proposed portal operators involve LH, the
hypercharge field Bµν or the Higgs H H (the topic of Section 5.2). Depending on
the model, one has more nucleo-philic or lepto-philic scalars, which indicate which
is the suitable physical system in which to obtain the bounds.

5.2 Higgs-portal mechanism

The portal mechanism assumed in this thesis work assumes that the SM sterile Φ
couples with the Higgs doubletH through the most general renormalizable potential:

VHΦ = µ2
HH

 H + ¼H(H
 H)2

+BΦΦ +
µ2
Φ

2
Φ2 +

AΦ

6
Φ3 +

¼Φ
24

Φ4

(AΦHΦ +
¼ΦH
2

Φ2)H H

(5.1)
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Without loss of generality one can assume that Φ does not take a VEV, thus leading
to BΦ = −AΦHv

2/2, with v being the EW scale of SSB (v ≈ 246GeV ). Parametriz-
ing

H =
1√
2

(
0

v + h̃

)
,

it is a direct computation to show that the mass potential is

VM =
1

2

(
h̃ Φ

)


2¼Hv

2 AΦHv

AΦHv µ2
Φ +

¼ΦHv
2

2



(
h̃
Φ

)

Of course, this lagrangian can be diagonalized in order to remove the mass mixing.
Thus, we can choose (

h̃
Φ

)
=

(
cos ¹c sin ¹c
− sin ¹c cos ¹c

)(
h
ϕ

)
, (5.2)

so that h is the physical SM Higgs boson with a mass

m2
h =

1

2

(
T +

√
T 2 − 4D

)

with T = 2¼Hv
2 + µ2

Φ +
¼ΦHv

2

2
and D = 2¼Hv

2(µ2
Φ +

¼ΦHv
2

2
)− A2

ΦHv
2.

We do not focus on the details of how the ¹c angle depends on the VHΦ parameters,
but we will use these angles for describing the coupling of the scalar ϕ to the SM.
The recipe is quite straightforward: if in the SM something is coupled with the Higgs
boson, for example hÈÈ, to get how the scalar couples to È, we simply substitute
h with h̃, since hÈÈ comes from something like "LψHÈ". Finally, one substitutes

to h̃ the ϕ sin ¹c from Equation 5.2. At a computational level, this means that if the
physical Higgs boson has some interaction with coupling g in the SM without Φ,
then, when we switch on Φ, the coupling of ϕ to the same operator will be g sin ¹c.

5.3 Higgs interactions with hadrons

One could naively think that the interactions of the Higgs boson h with hadrons,
since the Higgs does not couple to gluons, would be well described by the interaction
with constituent light quarks. Thus, one would expect a coupling for processes like
hNN and hÃÃ of the order of the Yukawas of light quarks yq ≃ 10−5. However,
this is not the case, since Higgs interactions with heavy quarks efficiently produce
an effective Higgs-gluon coupling through the triangle diagram(s):

h

g

g

Considering this effective interaction, we can get, with some effort, the effective
interactions of the Higgs with hadrons.
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Higgs interactions with nucleons

The discussion follows the key passages of Refs. [36] and [37]. Phenomenologically,
the Higgs couples to nucleons via

LhN = −h
v
ïN |

∑

h

mhhh |Nð

with negligible momentum transfer. The light quarks contributions can be clearly
neglected2. When we integrate out heavy quarks, we have essentially that, at leading
order in a 1/mh heavy quark expansion

∑

h

mhhh→ −2

3

³S
8Ã
Ga
µνG

aµν (5.3)

This can be linked to the nucleon masses, since

mNÈNÈN = ïN | ¹µµ |Nð .

The trace of the energy-momentum tensor in QCD, considering the triangle diagram
is

¹µµ = muuu+mddd+msss+
∑

h

mhhh+
´(³S)

4³S
Ga
µνG

aµν (5.4)

with ´(³S) = −(9− 2

3
nh)

³2
S

2Ã
.

It is therefore evident that the heavy quark expansion cancels the contribution com-
ing from Equation 5.3 cancels the heavy quark contribution in the gluon term of
Equation 5.4. Now, neglecting light quark masses, we simply get:

mNÈNÈN = −9
³S
8Ã

ïN |Ga
µνG

aµν |Nð . (5.5)

Now, substituting Equations 5.3 and 5.5 in LhN , one gets

LhN = −h
v

2nh
27

mNÈNÈN . (5.6)

We will call yhN the quantity

yhN ≡ 2nh
27

mN

v
≈ 8.4 · 10−4

which will be our effective Higgs-nucleon coupling. As we have seen this is almost
two orders of magnitude more than what we would have predicted from the light
quark Yukawas. We finally comment the fact that, neglecting the light quark masses,
the nucleon interaction with the Higgs boson has an isospin symmetry, as expected
since quark masses are the source of isospin symmetry breaking.

2The strange quark is neither too heavy nor too light, so our assumption to consider it light is
somewhat arbitrary.
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Higgs interactions with pions

This discussion follows the key passages of Ref. [38]. In the SM a single Higgs boson
couples to a certain operator as

Leff =
h

v
m
∂L
∂m

withm being the mass of a certain field in L. The effect of light quarks on Higgs-pion
coupling is easy to compute: taking the quark mass term (see also A)

Bf 2
π

2
Tr
{
M(Σ + Σ)

}
(5.7)

and applying the recipe this leads to

Leff,light =
Bf 2

π

2

h

v
Tr
{
M(Σ + Σ)

}
. (5.8)

The heavy quark contribution is evaluated in an EFT fashion, by employing that

mh
∂

∂mh

= mh
∂³S
∂mh

∂

∂³S
+mh

∂ml

∂mh

∂

∂ml

.

At leading order in perturbation theory, we have that the RG evolution of ³S is

6Ã

³S(µ)
= 3b log

µ

ΛQCD
− 2

∑

h

Θ(µ−mh) log
µ

mh

+O(³S(µ))

while the light quark evolution with respect to mh is of order ³2
S. Performing

explicitly the computation, one gets at leading order in perturbation theory

mh
∂

∂mh

=
2

3b
ΛQCD

∂

∂ΛQCD
.

Finally, by NDA, the ÇPT parameters fπ and B must be proportional to the only
energy scale relevant to the process, thus ΛQCD. This means that (for Lχ as in
Equation 1.7)

ΛQCD
∂Lχ
∂ΛQCD

= fπ
∂Lχ
∂fπ

+B
∂Lχ
∂B

.

An explicit calculation, leads to the final result:

Leff,heavy =
2nh
3b

[
h

v

2f 2
π

4
Tr
{
∂µΣ

 ∂µΣ
}
+

3Bf 2
π

2

h

v
Tr
{
M(Σ + Σ)

}]
,

to which we add the light quarks contribution in Equation 5.8, obtaining

Lhπ =
nh
3b

h

v
f 2
π Tr

{
∂µΣ

 ∂µΣ
}
+
Bf 2

π

2

h

v
(1 + 2

nh
b
) Tr
{
M(Σ + Σ)

}
. (5.9)

From this lagrangian any amplitude concerning one Higgs boson coupling with an
even number of pions (for parity invariance), thus this is an interesting and powerful
result.
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Explicit result for the DM mediator ϕ interacting with the

pions

Following the recipe exposed in Section 5.2, we can explicitly find the interactions
of the DM scalar mediator ϕ with the pions from the lagrangian Lhπ (Equation 5.9),
simply by substituting the h with ϕ sin ¹c.

If we now want to extract the hÃaÃa interaction, we would need to expand Σ =
exp{iÃaÃa}3 in order to get two pionic fields, thus at first order in the kinetic-like
term and at second order in the mass-like term.

From the first term, we get

L(1)
φππ =

nh
3b

ϕ sin ¹c
v

2∂µÃ
a ∂µÃa.

Integrating by parts twice, it becomes

L(1)
φππ =

2nh
3b

sin ¹c
v

[
1

2
ÃaÃa□ϕ− ϕÃa□Ãa

]

Acting with the equations of motion:

L(1)
φππ =

2nh
3b

sin ¹c
v

ϕÃaÃa
[
−1

2
m2
φ +m2

π

]

For the other term, by the definition of pion masses in Appendix A, one gets:

L(2)
φππ = −1

2

sin ¹c
v

(1 + 2
nh
b
)m2

πϕÃ
aÃa.

Putting all together and plugging the values nh = 3 and b = 11 − 2nl/3 = 9, one
gets

Lφππ = − 1

9v

(
m2
φ +

11

2
m2
π

)
ϕ sin ¹c

(
Ã2
0 + 2Ã+Ã−

)
. (5.10)

3For the sake of simplicity, for our scopes we show the result for Nf = 2.
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Chapter 6

Supernova emission of CP-even

scalars

In this Chapter we will apply the considerations of Chapters 4 and 5 about the
scenario in which a DM mediator CP-even scalar ϕ, coupled to the SM thanks to
Higgs-portal operators discussed in detail in Section 5.2, has nucleo-philic couplings
coming from the Higgs-nucleon interaction described in Section 5.3. This would
imply an efficient production of these scalars in very hot and dense environments,
such as a cooling Proto-Neutron Star. We will compare our results with the existing
literature, especially with the ones presented in Ref. [3], trying to stress where there
is agreement and where we differ.

In Section 6.1 we will discuss the amplitudes relevant for the cooling process N N →
N N ϕ (with N being a nucleon) and find an approximate analytic bound, which is
possible only in the mS j T ≃ 30MeV limit. Then we will show a full numeric
bound for a one-zone PNS with only neutrons.

If coupled to the SM, the scalar ϕ may decay through every process which is kine-
matically allowed and is inherited by the Higgs boson interactions with the SM.
General decays in Low-Energy Supernovae will be discussed in Section 6.2. Decays
of the scalar which involve photons can be constrained from the gamma rays de-
tected during the SN 1987A event on Earth, as discussed in Section 6.3, and by the
extra-galactic photons flux, which is the topic of Section 6.4.

6.1 Production of scalars and cooling bound

As we briefly sketched in Section 4.1 the last phase of the Core-Collapse process is
the Kelvin-Helmoltz cooling, in which the PNS radiates the enormous gravitational
binding energy lost in the collapse mainly in the form of (anti)neutrinos of all flavors.
During this phase, the temperature is about T ≃ 30MeV and the nucleon number
density is of the order of n ≃ 1038 cm−3, which is of the order of the nuclear density.
It is fair to say that the PNS is almost entirely composed of neutrons. Since the
nucleon masses are much higher than the temperature, it is reasonable to treat the
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nucleons as non-relativistic particles. Moreover, at nuclear densities the Fermi mo-
mentum pF = (3Ã2n)1/3 ≃ 300MeV , which is much greater than the temperature,
so it seems conceivable to approximately adopt a degenerate gas model. In this sce-
nario, ϕ scalars can be easily produced in nucleon elastic scattering, thanks to both
their coupling to nucleons and pions inherited by the Higgs-hadrons interactions
(Section 5.3). The relevant diagrams are therefore:

n1 n2

n3 n4

ϕ

Ã0

n1 n2

n3 n4

ϕ

Ã0

n1 n2

n3 n4

ϕ

Ã0

n1 n2

n3 n4

ϕ

Ã0

n1 n2

n3 n4

ϕ
Ã0

Ã0

Figure 6.1: Contributing diagrams to n(p1)n(p2) → n(p3)n(p4)φ(q) + exchange diagrams
of p3 and p4 with a minus sign. Diagrams in which the scalar is emitted from nucleons are
called (a) and (b) on the left, (c) and (d) on the right, the one with emission from pions is
called (e).

The interaction potential driving the emission is given by Equations A.2, 5.6 and
5.10:

L £ −i f 2mN

mπ

ÃaÈµ5Ä
aÈ − ϕ sin ¹c

(
Aπ
(
Ã2
0 + 2Ã+Ã−

)
+ yhNÈNÈN

)

For later convenience we call the salar-pions coupling

Aπ ≡ 1

9v

(
m2
φ +

11

2
m2
π

)
.

Some considerations about the amplitudes

The matrix elements for nn→ nnϕ are explicitly:
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Ma = −iG yhN
[
u(p3)

i(/p3 + /q +mN)

(p3 + q)2 −m2
N

µ5 u(p1)

]
i

k2 −m2
π

[u(p4)µ5u(p2)]

Mb = −iG yhN [u(p3)µ5 u(p1)]
i

k2 −m2
π

[
u(p4)

i(/p4 + /q +mN)

(p4 + q)2 −m2
N

µ5u(p2)

]

Mc = −iG yhN
[
u(p3)µ5

i(/p1 − /q +mN)

(p1 − q)2 −m2
N

u(p1)

]
i

k2 −m2
π

[u(p4)µ5u(p2)]

Md = −iG yhN [u(p3)µ5 u(p1)]
i

k2 −m2
π

[
u(p4)µ5

i(/p2 − /q +mN)

(p2 − q)2 −m2
N

u(p2)

]

Me = −iGAπ [u(p3)µ5u(p1)]
i

(k + q)2 −m2
π

i

k2 −m2
π

[u(p4)µ5u(p2)]

with G = (2mN/mπ)
2 f 2 sin ¹c and k = p2 − p4. Of course, we have to consider the

u-channel exchanging p3 and p4, in which a minus sign has to be added: namely
M ′

a = −Ma(p3 ´ p4) and so on.

We refer to Appendix D for an explicit expression of the total squared matrix (aver-
aged over ϕ directions in analogy with Equation 4.3 for the axion) in the degenerate
and non-relativistic limit. Thereafter, we explicitly show how it compares with
previous literature of Refs. [3, 1, 39].

We hereby comment the main differences:

• with Ref. [3]: there is a minor difference concerning the fact that their coupling
Aπ is

A(BMZ)
π =

2

9v

(
m2
φ +

11

2
m2
π

)
.

Then, more importantly, they show that in the vanishing limit for the mass of
the scalar mS

1 the square of the sum of the amplitudes concerning emission
from nucleonic legs, as their interference term with the diagrams concerning
emission from the pionic propagator, vanish. One can explicitly have a confir-
mation of this fact in their Eq. A.15 and their Fig. 2. In Appendix D we show
that this is definitely not true and their result comes from a non consistent
NR expansion of the nucleon legs propagators in the emission by nucleons.

• with Ref. [39], which is the result then used in Eq. 34 of Ref. [1]: they do
not consider emission from nucleon propagators, even though a posteriori one
could not neglect it. Then, only the term in their squared amplitude going as
E−2
S agrees with ours, while the other (without an explicit ES dependence) is

different. Quite strangely, they do not use this last piece for computing their
emissivity (Eqs. 20 and 21 of Ref. [39], reported in Eq. 34 of [1]).

With respect to Ref. [3] ("BMZ"), the important consequence is the fact that
BMZ obtain an amplitude such that in the massless scalar limit, the emission from
nucleon legs is null. This is not what we get and a priori we do not see any symmetry
enhancement in sending the mass of the scalar to zero. The interactions of the scalar

1For consistency with the literature, we will often call the scalar φ also S.
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with nucleons is inherited by the SM Higgs-nucleon interactions through the mixing
angle sin ¹c, which in general does not vanish if mφ does.

Explicit emissivity in the massless limit

In the massless limit, the squared amplitudes fully written in Equations D.1, D.2
and D.3 simplify and we can treat them analytically to get an insight about the
results, before passing to fully numeric evaluations.

Bare pionic emission

We start from the pure pion emission amplitude (squared) Iπ:

Iπ(k, l, ES) = 4A2
π

[
k4

(k2 +m2
π)

4
+

l4

(l2 +m2
π)

4
+

k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

]

We can now pass to compute the emissivity (see Appendix B and, in particular,
B.1) remebering that, for M a function only of k, l and ES,

ϵ̇ =
SG2

8(2Ã)8
T 3

mN pF

∫ +∞

0

dES E
2
SF (ES/T )

∫

K2+l2f4p2
F

dk dl
2mN√

1− k2 + l2

4p2F

|M|2

with F (É/T ) =
É

6T 3

4Ã2T 2 + É2

eω/T − 1
.

Plugging explicitly |M|2 = G2Iπ, in the approximation in which the mixed term in
k and l is equal to the other two (which must evidently be equal to each other), we
get an analytic expression (yπ = mπ/2pF ):

ϵ̇π =
SG2

(2Ã)8
T 6 pF

(
11

9vEW

)2
124Ã6

6 · 315 · Ã
32

[
y2π(1− 3y2π)(y

2
π + 3)

(y2π + 1)3
+ 3yπ arctan

1

yπ

]
(6.1)

Interference term

In this case the dependence of the squared amplitude on the energies and momenta
is the same as for Iπ. Namely,

Iint = −16

3
Aπ yhNN

m2
π

mN

[
k4

(k2 +m2
π)

4
+

l4

(l2 +m2
π)

4
+

k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

]

Thus, using the computation for ϵ̇π

ϵ̇int = − SG2

(2Ã)8
T 6 pF

(
176

54vEWmN

)
yhNN

124Ã6

6 · 315 ·
Ã

32

[
y2π(1− 3y2π)(y

2
π + 3)

(y2π + 1)3
+ 3yπ arctan

1

yπ

]

(6.2)
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Bare nucleonic emission

In the case of emission from nucleons, we can write IN = IS + I0 + I2 + I4.

• IS terms have a E−2
S explicit dependence, which is an interesting feature of our

model, that for masses mS j T makes the emission spectrum non-thermal (we
discuss it in Appendix E). In this case, (notice that we are using adimensional
k and l)

IS =
16

15E2
S

y2hNN

(
2pF
m4
N

)4 [
k2l2(k4 + l4 + k2l2)

(k2 + y2π)
2(l2 + y2π)

2
y4π +

3k4l4(k2 + l2)

(k2 + y2π)
2(l2 + y2π)

2
y2π

+
3k6l6

(k2 + y2π)
2(l2 + y2π)

2

]

(6.3)

In this case it is noticeable that the energy dependence changes! The only
analytic result can be obtained in the limit yπ → 0, which is nevertheless a
good assumption in a PNS (yπ ≃ 0.24):

ϵ̇S =
SG2

(2Ã)8
16

5
y2hNN T

4 pF

(
2pF
mN

)4
11Ã4

90

Ã

30
(6.4)

• I0 is a term that explicitly goes as E0
Sm

0
π:

I0 =
16

15

y2hNN
m2
N

[
k8

(k8 + y2π)
4
− k4l4

(k2 + y2π)
2(l2 + y2π)

2
+

l8

(l2 + y2π)
4

]

This can be integrated analytically as usual assuming that the mixed term is
equal to the other two "unmixed":

ϵ̇0 =
SG2

(2Ã)8
16

15

y2hNN
m2
N

T 6 pF
124Ã6

6 · 315
Ã

96

[
105y6π + 280y4π + 221y2π + 48

(y2π + 1)3
− 105yπ arctan

1

yπ

]

(6.5)

• I2 can be written as

I2 =
16

15

y2hNN
m2
N

y2π

[
2k6

(k2 + y2π)
4
− k4l2 + k2l4

(k2 + y2π)
2(l2 + y2π)

2
+

2l4

(l2 + y2π)
4

]

Thus, as usual, assuming the mixed term behaves as the others

ϵ̇2 =
SG2

(2Ã)8
16

15

y2hNN
m2
N

T 6 pF
124Ã6

6 · 315
5Ã

16

[
yπ arctan

1

yπ
− 15y6π + 40y4π + 33y2π

15(y2π + 1)3

]

(6.6)

• I4 =
64

15

y2hNN
m2
N

y4π

[
k4

(k2 + y2π)
4
+

l4

(l2 + y2π)
4

]
. So,

ϵ̇4 =
SG2

(2Ã)8
64

15

y2hNN
m2
N

T 6 pF
124Ã6

6 · 315
Ã

48

[
y2π(1− 3y2π)(y

2
π + 3)

(y2π + 1)3
+ 3yπ arctan

1

yπ

]

(6.7)

59



We can now give the numerical expression for all these pieces, which give benchmark
values for the emissivities in the massless limit. For a T = 30MeV , pF = 300MeV
PNS it results in:

ϵ̇π = 0.11 sin2 ¹cMeV 5

ϵ̇int = −0.010 sin2 ¹cMeV 5

ϵ̇S = 0.38 sin2 ¹cMeV 5

ϵ̇0 = 0.047 sin2 ¹cMeV 5

ϵ̇2 = −0.013 sin2 ¹cMeV 5

ϵ̇4 = 0.015 sin2 ¹cMeV 5

(6.8)

Cooling bound

As discussed in Sections 4.1 and 4.2, the neutrino luminosity has been observed to be
Lν = (3—5) · 1053 erg/s = (1.2—2) · 1038MeV 2. Thus, adding all the contributions
in Equation 6.8, we impose the Raffelt criterion Lφ ≲ Lν , by simply applying the
relation between luminosity and emissivity in Equation 4.2. The summation gives

ϵ̇tot = 0.55 sin2 ¹cMeV 5 (6.9)

For a one-zone PNS model, we can thus estimate the scalar luminosity as Lφ =
ϵ̇tot

4
3
ÃR3

∗, with R∗ ∼ 10 km. The Raffelt criterion then is computed from 2:

0.55 · sin2 ¹c
4Ã

3
(5.1 · 1016)3MeV 2 ≲ 1.2 · 1038MeV 2

This implies sin ¹c ≲ 6.2 · 10−7.

If, as in Ref. [3], we considered only the emission from the pionic propagator, we
would have obtained an emissivity (which is ϵ̇π) about 5 times lower, which would
have implied sin ¹c ≲ 1.4 · 10−6. We cast back into BMZ result when we use their
coupling Aπ which is twice as big as ours. Given that ϵ̇π ∝ A2

π sin
2 ¹c, the sine we

obtain is precisely BMZ’s one: sin ¹c
(BMZ) ≲ 7 · 10−7. Hence, for a coincidence of

numerical factor, our result is quite similar to BMZ one.

A numeric result, which takes in consideration both the effects of the scalar and the
pion masses in the amplitudes and in the phase space, is shown in Figure 6.2.

6.2 Low-Energy Supernovae bound

Core-Collapse SNe (CCSNe) cover wide ranges of energies and luminosities. As
briefly discussed in Section 4.1, the SN explosion energy is of the order of 1—2B.
If new degrees of freedom are produced in the PNS, but decay inside the progenitor
star, they contribute to the explosion energy, thus their energy deposition may
constrain the masses and couplings of the new Physics3.

2We make evident the transformation from km to MeV −1.
3For a more detailed discussion we refer to Ref. [5]
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To better constrain this scenario, one can use the lowest energy SN cases, called Low-
Energy SNe (LESNe). Observationally, they have 56Ni masses of some 10−3M», are
even 100 times dimmer than "normal" CCSNe and 2—3 times slower photospheric
expansion velocities. These evidences point out to a SN explosion energy of only
0.1B, as observed for example from the reconstruction of SN1054 (the event that
lead to the Crab Nebula), for which we refer to [40].

If the scalar decay products quickly thermalize in the medium when the scalar
decays inside the progenitor star, then one could say that all the energy of the
scalar contributes to the SN explosion energy, thus, calling Emantle the deposited
energy of the scalars in the mantle, one can say that LESNe imply Emantle ≲ 0.1B.
Explicitly, Emantle can be computed as

Emantle = ∆t

∫ +∞

mS

dES
dLS
dES

[
exp{−RNS/¼S} − exp{−R∗/¼S}

]
. (6.10)

∆t ≃ 3 s4 is approximately the production time of the scalars during the collapse
phases, LS is the luminosity of the scalar (thus related to its production), RNS ≃
20 km is the radius of the PNS and R∗ ≃ (3—100) · 1012 cm is the radius of the
progenitor. Some approximations are made, which make our formula differ from
Eq. 1 of Ref. [5]. Firstly, the production is assumed as constant in time. Then,
we are using a one-zone PNS model, which allows us to neglect where in the PNS
the scalar is produced: in the exponential involving R∗, which sets the "probability"
that a particle decays inside the progenitor, this can be done quite safely, due to
the many orders of magnitude between R∗ and RNS; the exponential containing
RNS, instead, reminds us that the particle has to decay outside the PNS to enforce
the argument. Since, the particle is produced inside the PNS, one should include
a geometrical factor in the first exponential of Equation 6.10. However, we do not
put it and leave this piece as an approximate benchmark suppression factor.

The term ¼S is the mean free path for decays, thus defined as:

¼S ≡ µ´ÄS =
µ´

ΓS

with µ = ES/mS = (1 − ´2)−1/2 is the Lorentz boost factor. The total decay rate
of the scalar is the sum of many contributions, each of them inherited by the Higgs
interactions with the SM through the mixing. We report the main contributions (in
the scalar’s rest frame) here (for a reference: Ref. [3] Eqs. 3.1-3.5 and Sec. 6.3 of
Ref. [41]):

Γ0(S → µ µ) =
³2
emm

3
S sin

2 ¹c
256Ã3v2EW

∣∣∑

f

N f
CQ

2
fA1/2(Äf ) + A1(ÄW )

∣∣2

Γ0(S → e+ e−) =
mSm

2
e sin

2 ¹c
8Ãv2EW

(
1− 4m2

e

m2
S

)3/2

4Which is in the range of the duration of a CCSNe event (∆t ≲ 10 s) and is consistent with
Ref. [5].
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Γ0(S → µ+ µ−) =
mSm

2
µ sin

2 ¹c

8Ãv2EW

(
1−

4m2
µ

m2
S

)3/2

Γ0(S → ÃaÃa) =
sin2 ¹c

27 · 64ÃmSv2EW

(
m2
S +

11

2
m2
π

)2(
1− 4m2

π

m2
S

)1/2

Note that we have corrected Eqs. 3.4 and 3.5 of Ref. [3] since their Aπ is twice as
ours.

We have said that the bound we will consider is Emantle ≲ 0.1B. The greater is
sin ¹c (now on, for readability purposes, we will call it sc), then the grater are the
production (LS ∝ s2c) and the decay rate ΓS ∝ s2c . Therefore, there is an upper
bound on sc at a given mass. However, if sc increases too much, it may happen that
¼S ≲ RNS, then the particles do not release energy in the mantle, since the tend
to decay inside the PNS. Thus, it will not be possible to exclude very high values
of sc with this argument. These very high values are however often excluded with
rare meson decays and beam dump experiments. Finally, if ¼S k R∗ it is possible
to expand both exponentials in Equation 6.10, leading to a much easier to evaluate

Elow
mantle = ∆t

∫ +∞

mS

dES
dLS
dES

R∗ ΓS
µ´

. (6.11)

When new decay channels activate, such as formS > 2me, there is an abrupt increase
in ΓS. So, for the aforementioned reasons the exclusion plot (Figure 6.2) will move
downwards, because the scalar is more likely to decay in the progenitor star (since
¼S decreases), but also inside the PNS.

Figure 6.2: Exclusion plot given by LESNe and Raffelt criterium from neutrino luminosity
Lν assuming freely streaming scalars. For the latter, clearly, the excluded region is the
upper part.

In the plot right above we truncated by hand the curve of the free-streaming bound
(dashed black line) since free-streaming of neutrinos is physically not possible for the
region above the LESNe excluded zone, for the fact that scalars would decay inside
the PNS, thus making it impossible to apply the Raffelt criterium. Clearly this
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would be automatically taken into account if one considered decays and trapping
when computing Lφ.

6.3 Gamma ray bound

If the scalar, once having left the progenitor star, can decay into photons, these could
either be detected as gamma rays, if coming from a near-galactic SN event (such as
SN1987A), or contribute to the extra-galactic photons background, as discussed in
Section 6.4. We hereby follow the discussion of Ref. [42] and apply it to our specific
model.

In this Section we consider the bound coming from SN1987A gamma rays. Photons
produced in the decay of scalars would have been detected by the Gamma-Ray
Spectrometer (GRS) on board of the Solar Maximum Mission (SMM) satellite. The
data collected by GRS since the arrival of the first IMB neutrino from SN1987A have
been taken for tf = 223.2 s, after which SMM passed through the South Atlantic
radiation anomaly (more details on the background would have been required, so
data from photons arrived later are discarded). The collected data acquired from
GRS during the 223.2 s are exposed in Table 6.1.

Channel Energy band Gamma fluence limits [cm−2]

[MeV] 10 s [43] 223.2 s [44]

1 4.1—6.4 0.9 6.11
2 10—25 0.4 1.48
3 25—100 0.6 1.84

Table 6.1: GRS 3σ upper fluence limits for the two indicated time intervals after the arrival
of the first neutrino from SN1987A at IMB.

We can study the fluence on Earth of the photons assuming that the scalars are
produced on a timescale much shorter than the other relevant timescales (the decay
time tD and tLMC ≡ RLMC/c). SN1987A was located in the Large Magellanic Cloud,
at a distance of RLMC = 160 kpc from Earth. Let Rγ be the distance that the photon
produced by the (radially propagating) scalar decayed after a distance RD = ´tD
has to travel to reach Earth. Elementary geometry sets 5

Rγ =
√
R2
LMC −R2

D sin2 ¹ −RD cos ¹

with ¹ being the production angle of the photon in the center of mass. A priori we
do not know if the scalar decays near the SN (RD j RLMC) or near Earth (which
is the opposite limit). Calling ¹∗ the angle of the production of the photon in the
center of mass of the scalar, basic special relativity gives

cos ¹ =
´ + cos ¹∗

1 + ´ cos ¹∗
.

5We are following the steps of Ref. [44].
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Then, substituting this expression back in Rγ, one gets that the time delay between
the first neutrino arrival and the photon detection is

t =
tD

µ2(1 + ´ cos ¹∗)
+

[
R2
LMC −R2

D

(
1−

(
´ + cos ¹∗

1 + ´ cos ¹∗

)2
)]1/2

−RLMC (6.12)

Clearly, this formula gets simplified once RD j RLMC , when we remain with the
first term only. This is also true if RD ≃ ¼S k RLMC (e.g. if tD ≳ ÄH , the Hubble
time, ÄH ≃ 10Gyr). We assume then that only the first term is relevant. We
checked that if RD ≃ RLMC , there is at most an order one factor difference between
the whole expression 6.12 and its first term.

Of course, the number of photons decaying between tD and tD + dtD is

dN

dtD
=

1

µÄS
e
−

tD
γτS .

Thus, the number of photons produced per unit time of arrival becomes

dN

dt
= CγBγ

µ(1 + ´ cos ¹∗)

ÄS
exp

{
−µ(1 + ´ cos ¹∗) t

ÄS

}
(6.13)

with Bγ the branching ratio of processes leading to photons and Cγ the number of
photons produced in the decay.

We can now interpret the LHS of Equation 6.13 as the flux of photons detected at
Earth per unit time, solid angle and CoM energy É, if we multiply the RHS by the
production rate dNS/dES and a normalized distribution f(É, cos ¹∗). Clearly, for
S → µ µ isotropy of the decay and energy-momentum conservation can lead only to

f(É, cos ¹∗) =
1

2
¶
(
É − mS

2

)
.

Explicitly,

dFγ
dt d cos ¹∗dÉ

=
1

4ÃR2
LMC

CγBγ
µ(1 + ´ cos ¹∗)

ÄS
exp

{
−µ(1 + ´ cos ¹∗) t

ÄS

}
×

× f(É, cos ¹∗)

∫ +∞

mS

dES
dNS

dES
e−R∗/λS(ES)

Being Eγ the energy of the emitted photon in the LAB frame, one has Eγ = µ(1 +
´ cos ¹∗)É. Thus the delta function becomes accordingly

¶
(
É − mS

2

)
= ¶

(
Eγ

µ(1 + ´ cos ¹∗)
− mS

2

)

If one integrates the delta in d cos ¹∗, and considers the process S → µ µ, the result
obtained is (Cγ = 2)

dFγ
dEγ dt

= 2
2Eγ
mS

Γ(S → µ µ) e−2Eγ tΓS/mS

∫
dES

1

pS

dΦS

dES
· e−R∗/λ(ES) (6.14)
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where we have defined ΦS ≡ NS/(4ÃR
2
LMC).

Finally, integrating this result in dt between 0 and 223.2 s and in dEγ between the
extrema of Channel 3 of Table 6.1: Emin = 25MeV and Emax = 100MeV . The use
of Channel 3 of the GRS detector if justified, as in Sec. V of Ref. [42], by the fact
that it leads to more restrictive bounds. Then, for the S → µ µ process one has6

Fγ(Ch.3) = 2Bγγ

∫ +∞

mS

dES
1

pS

dΦS

dES
· e−R∗/λ(ES)×

×
∫ Emax

Emin

dEγ Θ(µ(1 + ´)mS/2− Eγ)
(
1− e−2Eγ tf ΓS/mS

)

(6.15)

For the produced flux ΦS I consider a 10 s production from a 20 km neutron star
at T = 30MeV . In the low coupling regime (where we can Taylor expand the
exponential of the decays) Fγ becomes, calling Emax

D ≡ µ(1 + ´)mS/2:

Fγ(Ch.3) =
4Γ(S → µ µ) tf

mS

∫ +∞

mS

dES
1

pS

dΦS

dES
·e−R∗/λ(ES)

∫ Emax

Emin

dEγ Eγ Θ(Emax
D − Eγ)

(6.16)

We comment an interesting difference between Equation 6.15 and its low coupling
version 6.16. The first one scales as Bγγ, while the second as Γ(S → µ µ). This
happens because for low couplings the decay time is much longer than the 223 s
survey, so effectively most of the scalars are still decaying. Thus, the Fγ becomes
∝ BγγΓS, which is always increasing. For example, if the rate doubled due to the
activation of new decay channels, even if these new channels are dominant and do
not produce photons, naively also the number of scalars decaying doubles, thus
leaving the number of photons produced the same (or greater). Instead, if all the
scalars decayed before arriving at Earth, it would be important how many scalars
had decayed into photons, which is governed only by the branching ratio of the
process(es).

In our model the decay into two photons is not the only one relevant, since the
scalar couples also to electrons and muons, which can produce photons by final
state radiation (FSR). A good analysis of the process can be found in Ref. [45].
In particular, considering the differential rate per CoM photon energy in the FSR
produced by the decay into electrons

dΓFSR
dÉ

=
2³emΓ(S → e+ e−)

Ã É

[
1− 2¼γ + (1− 2¼γ + 2¼2γ) log

(
1− 2¼γ
m2
e/m

2
S

)]
(6.17)

with ¼γ = É/mS. Being Eγ = µ(1 + ´ cos ¹∗)É the energy in the LAB frame and
calling Ç = µ(1 + ´ cos ¹∗), we can write:

dFγ
dEγ

=

∫ γ(1+β)

γ(1−β)

dÇ

µ´

ÄTOT
Ç

(1− e−χ tf/τTOT )

∫
dES

dΦS

dES

1

2

dΓFSR,e
dÉ

· e−R∗/λ(ES)

6We include the Heaviside Θ due to the fact that energy-momentum conservation constrains
the domain of integration in dEγ .
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and

dΓFSR
dÉ

=
2³emΓS→e+ e−

Ã Eγ

[
Ç− 2¼+ (Ç− 2¼+ 2

¼2

Ç
) log

(
1− 2¼/Ç

m2
e/m

2
S

)]

where ¼ = Eγ/mS. We now have to deal with the fact that the logarithm in
Equation 6.17 requires ¼ f (1−4m2

e/m
2
S)Ç/2 and we ask for the Channel 3 of Table

6.1. Calling Emax
D,FSR ≡ µ(1 + ´)(1− 4m2

e/m
2
S) ·mS/2:

F FSR,e
γ =

∫ +∞

mS

dES
dΦS

dES

1

2
· e−R∗/λ(ES)

∫ Emax

Emin

dEγ Θ
(
Emax
D,FSR − Eγ

) (
1− e−χ tf ΓS

)
×

×
∫ γ(1+β)

γ(1−β)

dÇ

µ´

2³emBe+ e−

Ã Eγ

[
1− 2

¼

Ç
+ (1− 2

¼

Ç
+ 2

¼2

Ç2
) log

(
1− 2¼/Ç

m2
e/m

2
S

)]

(6.18)

With Bi being the branching ratio of the decay channel i. Of course, we get an
analogous formula for the final state radiation from muonic legs.

The exclusion plot obtained summing all the contributions (S → µ µ, S → e+ e− µ
and S → µ+ µ− µ) is shown in Figure 6.3.

Figure 6.3: Exclusion plot from the Channel 3 of GRS (Table 6.1).

Before passing to a brief analytic interpretation, we clear out what we mean by low
coupling. In the low mass limit (mS < 2me), the low coupling condition may be
rewritten as (remembering ΓS→γ γ ∝ m3

Ss
2
c)

2
Emax
mS

tfΓS << 1 =⇒ sC << 10−3
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This limit is always satisfied in the lower part of the exclusion plot. Practically
speaking, linear order expansion of the low coupling regime well-describes the physics.
For mS → 0, the production integral is (almost) independent from mS and is pro-

portional to s2C and ΓS ∝ m3
S s

2
C , then, we expect a behaviour like sC ∝ m

−1/2
S . The

descent is milder than in the same regime for the LESNe bound (Figure 6.2), where

we have sC ∝ m
−3/4
S .

Asking that Fγ(25—100MeV ) < 1.84 cm−2, we analyze the exclusion plot in two
possible regimes:

• Low coupling: in the low coupling limit we can neglect the exponentials
accounting for the decays. Then, increasing the coupling, we increase the pro-
duction of scalars and their decay into photons. Thus, we expect a decreasing
exclusion boundary untilmS ≳ 100MeV , when the production becomes Boltz-
mann suppressed.
For mS > 2me the decay channel into electrons activates: very soon the de-
cay of scalars into electrons starts to dominate the total decay width (e.g.
Be+e− ≈ 104Bγγ already for mS = 1.023MeV , that is only 1 keV above the
threshold for decay into electrons). However, final state radiation from elec-
trons starts to dominate the flux a few hundredths of keV later than the
threshold. The reason why it happens is because in the scalar rest frame
the radiated photons takes at most (when the electrons are produced almost
at rest) mS − 2me, which in the lab frame corresponds to a maximum of
2ES(1−2me/mS) which for ES ≈ 100MeV is inside the detection channel for
mS > 1.15MeV .
Then, being Γ(S → e+e−) ≈ 104Γ(S → µ µ) slightly above the threshold, we
expect that the flux of photons from final state radiation is ∼ 100 times higher
than the one from the decay into photons, since the flux goes as ³emΓS→e+e− .
This creates a smooth jump for the sine which becomes very broadly speaking
1001/4 ∼ 3 times lower, as confirmed by the plot 6.3.

• High coupling: in this case we change perspective, since the flux is regu-
lated by the exponential of the decay inside the progenitor star. Thus, the
flux decreases when the sine increases, since the particles decay faster. The
interpretation in this case is that the curve must be parallel to the curve for
the same regime in the LESNe bound. Here, every time a new decay channel
activates, the bound has to deminish because we can no more exclude the
higher coupling region in which "all" the particles decay in the progenitor. It
is therefore natural that in this case the energy released into low energy SNe
put a better bound.

6.4 Diffuse photons bound

Radiative decays of scalars emitted in past SN events contribute to the diffuse cos-
mic gamma-ray background and thus can be constrained by the extra-galactic back-
ground light (see Ref. [46]). Following the discussion in Sec. VI of Ref. [42], the
differential number density of photons that have accumulated due to scalars emitted
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in all past CCSN explosions is

dnγ
dÉ

=

∫ +∞

0

dz(1+z)n′
cc(z)

∫ +∞

mS

dEz Θ

(
Ez
2
(1 + ´)− Éz

)
fD(z)CγBγ

dpγ
dÉz

dNS

dEz
·e−

R∗

λ(ES)

Here z is the red-shift at which the CCSN event happens, n′
cc(z) is the differential

number density per red-shift z, Éz = (1 + z)É is the blue-shifted photon energy, Ez
is the blue-shifted energy of the scalar and dNs/dEz is the production rate per unit
energy in the SN at red-shift z. Clearly, the probability to create a photon detected
in the energy interval É and É + dÉ is

dpγ
dÉ

dÉ =
dpγ
dÉz

dÉz = (1 + z)
dpγ
dÉz

dÉ

hence the jacobian factor in front of n′
cc(z). Calling É∗ the energy of the photon in

the center of mass for the scalar, one simply gets Éz = µ(1 + ´ cos ¹∗)É∗. Thus, for
the process S → µ µ one has Cγ = 2 and

dpγ
dÉz

=

∫ 1

−1

d cos ¹∗
dpγ

dÉ∗d cos ¹∗
dÉ∗

dÉz

=

∫ 1

−1

d cos ¹∗
1

2
¶(É∗ −mS/2)

1

µ(1 + ´ cos ¹∗)

=
1

Ez

1√
´2 − (1− 2Éz/Ez)2

Finally fD(z) takes into account the probability that a scalar produced by a CC
event at red-shift z has now decayed. Practically speaking, fD is 1 if the scalar
lifetime is much less than the Hubble time H−1 ≃ 10Gyr (order of magnitude). In
our range of interest for sin ¹c, which spans down to 10−9, we cannot always assume
it (only for masses below the MeV ).

The factor fD(z) is

fD(z) = 1− exp

{
−
∫ z

0

dzD
t′(zD)

ÄS

mS

ES(zD)

}

with the last quotient being the boost factor with

ES(zD) = ES
1 + zD
1 + z

.

To be clear z is the red-shift at which a scalar with energy ES has been produced.
Its energy now, if it had not decayed, would be ES/(1 + z). zD is the red-shift at
which the scalar decays. The expression for fD(z) can be written as

fD(z) = 1− exp

{
−(1 + z)

∫ z

0

dzD
1

ÄS

mS

Ez
g(zD)

}

with

g(zD) =
1

(1 + zD)2
1

H0

(
ΩM(1 + zD)

3 + ΩΛ

)−1/2
.
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So, if the lifetime of the scalar is not negligible with respect to ÄH , one has to deal
with the cosmological history between the SN event and the eventual decay. Clearly,
ΩM = 0.32 and ΩΛ = 0.68 are the nowadays contributions respectively of matter and
Dark Energy. We do not consider other contributions since CCSNe events, being
the spectacular end of massive stars, may happen only in Matter (or DE) dominated
epochs.

Instead, for the S → e+ e− µ final state radiation processes for electrons (equivalently
for the muons), we have instead Cγ = 1 (at leading order in perturbation theory)
and

dnγ
dÉ

=

∫ +∞

0

dz(1 + z)n′
cc(z)

∫ +∞

mS

dES

∫ γ(1+β)

γ(1−β)

dÇ

µ´
Θ

(
mS

2

(
1− 4m2

e

m2
S

)
− Éz

Ç

)

× fD(z)Be+e−
dpγ

dÉzd cos ¹∗
dNS

dES
· e−R∗/λ(ES)

with Ç defined as in Eq. 49 (Ç = µ(1 + ´ cos ¹∗)). The factor 2 which in Eq. 56
was before Bγ now of course disappears because we produce, at leading order in
perturbation theory, only one electron. Finally, repeating the same argument as
before,

,
dpγ

dÉzd cos ¹∗
=

dpγ
dÉ∗d cos ¹∗

dÉ∗

dÉz

=
1

2

2³em
ÃÉ∗

(
1− 2

É∗

mS

+ (1− 2
É∗

mS

+ 2(
É∗

mS

)2) log

(
1− 2Éz/(ÇmS)

m2
e/m

2
S

))
1

µ(1 + ´ cos ¹∗)

=
1

2

2³em
ÃÉz

(
1− 2

Éz
ÇmS

+ (1− 2
Éz
ÇmS

+ 2(
Éz
ÇmS

)2) log

(
1− 2Éz/(ÇmS)

m2
e/m

2
S

))
.

Cosmic core-collapse rate

The cosmic CC density we need n′
cc(z) is usually parametrized as

n′
cc(z) = kccÄ̇∗(z)t

′(z).

The factor Ä̇∗(z) is the star formation rate, which is a much explored topic in the
literature (Refs. [47, 48, 49, 50]). The value of kcc is well-explained in Eq. 39 of
Ref. [51]: kcc ≃ (135M»)

−1. A plot with our n′
cc(z) can be found in Fig. 9 of Ref.

[42]. For our scopes, we approximate the CC density rate of function of Yüksel et
al. (Ref. [47]) as a Dirac delta in z = 1. Explicitly:

n′
cc(z) ≃ 1.05 · 107Mpc−3 ¶(z − 1).

Looking at Fig. 9 of Ref. [42], it is quite evident that using different n′
cc profiles we do

not get more than an order one factor difference, so we stick with our approximation.

Numerical bound

What is observed by Ackermann et al. in Ref. [46] is that the extra-galactic flux
between É = 2MeV and 200MeV has approximately a É−2 dependence, such that

É2dΦγ

dÉ
≃ 2 · 10−3MeV cm−2 s−1 ster−1.
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To pass from dnγ/dÉ we had computed to dΦγ/dÉ we clearly have to multiply by c
and divide by the total solid angle 4Ã.

Keeping all this in mind we can compute the differential flux and compare with
observations. Thus, we will span over photon energies É in the (2—200)MeV range
and require

É2dΦγ

dÉ

∣∣∣∣
max

≲ 2 · 10−3MeV cm−2 s−1 ster−1

The obtained exclusion plot is shown in Figure 6.4. It has two main differences
with its counterpart of SN1947A gamma rays in Figure 6.3. Firstly, when the decay
channel into electrons activates, the production of photons gets much reduced due
to the abrupt decrease of Bγγ (we discussed this fact below Equation 6.16). This
happens because passing the MeV scale, the decay rate of the scalar becomes much
larger than H0. The second main difference, related to the first one, concerns the
fact the the exclusion plot closes itself when the decay channels into muons activate,
because of the combined effect leading to a scarce production of photons both for
low couplings (i.e. when we neglect the probability the the particle decays in R∗)
and for high coupling, when we can no more exclude strongly coupled scalars.

Figure 6.4: Exclusion plot from diffuse cosmic γ background.

As a final comment we notice that below the MeV scale and in the low coupling
region, the slope of the excluded boundary is decreasing. Often in the literature
the lower part of the plot is basically constant, as in Fig. 2 of Ref. [5]. This must
straightforwardly happen if the particle has a decay rate much greater than H0,
since the factor fD(z) can be taken as 1, so basically the flux Φγ can depend only
on the production rate dNS/dEZ , which is basically constant in mS when mS j T .
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If, however, as in our case, one has that for low masses the decay time is greater
than ÄH , then the factor fD(z) becomes

fD(z) ≃ (1 + z)
mS ΓS
Ez

∫ z

0

dzD g(zD).

Of course, in this limit, ΓS = Γ(S → µ µ) so that the exclusion condition implies
sC ∝ m−1

S in this region.

Instead, when the decay into electrons is dominant, which is immediately above the
threshold mS > 2me, it is safe to say that all the scalars decay within the Hubble
time, hence making the exclusion plot a combination of the effects of the branching
ratios into photons (very broadly speaking Bγ ≃ Bγγ + ³emBe+e−) and, for masses
above the temperature scale T = 30MeV , of the thermal Boltzmann suppression.
Below 30MeV we can say that we expect first an abrupt increase in sin ¹c because
of the suppressed Bγ, which afterward increases slowly again, as one can appreciate
in the lower part of Figure 6.4.
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Conclusions

We have seen in Chapter 5 that thanks to the Higgs-portal mechanism, our scalar
couples to every operator to which the SM Higgs boson h is coupled and the only
new parameter added is sC ≡ sin ¹C . Thus, the lagrangian that has been used to
study the production of scalars in CCSNe is given by

L £ −i f 2mN

mπ

ÃaÈµ5Ä
aÈ − ϕ sin ¹c

(
Aπ
(
Ã2
0 + 2Ã+Ã−

)
+ yhNÈNÈN

)
.

From this lagrangian, we have computed the luminosity of ϕ emission and, imposing
the Raffelt criterion Lφ ≲ Lν , we numerically got that at low masses (w.r.t. the
temperature T ≃ 30MeV )

sC ≲ 6.6 · 10−7

which is equal to the bound in Ref. [3], only because of a coincidence of factors ≈ 2
which cancel out, as we have interpreted in Section 6.1.

However, thanks to the fact that decays of the scalar may produce photons, we can
push the bound even further low to sC ≲ 10−9 or even 10−10 (for masses above the
MeV ) thanks to the SN1987A photons detected by GRS a few seconds after the
arrival of the first neutrino at the IMB detector (Section 6.2) and the extra-galactic
photon flux measured by Ackermann et al. in Ref. [46], which can be constrained
in both cases because of the sC and mS of the decay rates of the scalar and its
production. The bound from all past CCSNe is however less restrictive than its
counterpart of "direct" photons from SN1987A, as one can appreciate in Figure 6.5.

The upper part of the plot is better constrained by Low-Energy Supernovae, re-
quiring that decays of the scalar deposit less energy than 0.1B = 1050 erg in the
progenitor star mantle. Clearly, this bound does not exclude enormous values for
sC , because in this case the scalar may decay already inside the Proto-Neutron star,
making the argument moot. However, for these values ϕ would be coupled to the
SM comparably with h, leading to constraints from colliders and rare meson decays.
For example, as noted in Sec. IV of Ref. [1], the kaon decays K → Ã ϕ put a
conservative bound sC ≲ 10−4, which effectively exclude the upper part of Figure
6.5.

Final comments and desiderata

All the discussion of Chapter 6 involves a scalar that once created, freely streams
away from the PNS and possibly decays. We did not consider the possibility of re-
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Figure 6.5: Final exclusion plot obtained by freely streaming scalars emitted by a PNS
with T ≃ 30MeV . In dashed black the cooling bound (Sec. 6.1), in red the LESNe bound
for 0.1B deposition (Sec. 6.2), in green gamma rays bound from SN1987A (Sec. 6.3) and
in gray the cosmic diffuse γ bound (Sec. 6.4).

absorption, hence eventual trapping, inside the PNS. In practice, this would make
impossible that scalars with masses above few T are efficiently produced, because
they would more easily decay or be absorbed. To correctly model trapping of scalars,
however, one would need more precise SN profiles and more accurate numerics (be-
cause in the trapping regime it is relevant where the scalar is produced, so that in
this framework the one-zone model we have used is way too approximate), which
are beyond the scopes of this thesis work.

Additionally, as pointed out in Ref. [52], decays slightly outside the progenitor
star may produce particles that thermalize. This is particularly efficient when the
scalar can decay into e+ e− directly, so that a electron-(muon-)photon plasma can
be created. The creation of an expanding plasma cools the decay products, thus the
energy of photons arriving at Earth (either from SN1987A or past CCSN events).
Effectively, this would mean that we should not exclude (or alternatively, we should
re-include) suitable values of sc in the upper part of the green and grey plots in
Figure 6.5.
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Appendix A

The chiral lagrangian

The chiral lagrangian is the EFT describing QCD at the energies below ΛQCD ∼
1GeV , which is the energy scale at which QCD becomes non-perturbative. Broadly
speaking, the picture is that quarks are forced to form bound states which are color
singlets, since the gluons must disappear from the theory. This is the nature of
confinement and the newly formed particles are the hadrons. Clearly, the QCD
lagrangian is impractical at these scales, for which we need an effective theory de-
scribing the new degrees of freedom. The idea under this discussion is that the
EFT conserves the symmetries of the UV one and this guides us in writing the new
lagrangian.

Below the confinement scale ΛQCD, the only relevant d.o.f. are the light quarks
(u, d, s) and the QCD lagrangian can be written as

LQCD = −1

4
Ga
µνG

a,µν + Ψ̄L i /DΨL + Ψ̄R i /DΨR − Ψ̄LM ΨR − Ψ̄RM ΨL (A.1)

upon defining Dµ = ∂µ + igS G
a
µ¼

a/2 and

Ψ =



u
d
s


 and M =



mu 0 0
0 md 0
0 0 ms


 .

For a moment, let us forget about quark masses. If we set mq = 0, LQCD has a global
U(3)L × U(3)R symmetry, called chiral symmetry. The chiral symmetry group can
be also written as SU(3)V × SU(3)A × U(1)V × U(1)A. Ψ transforms under the
fundamental representation of SU(3) and, a priori, any 3× 3 hermitian matrix can
be taken as generator for each U(1). Vectorial rotations are the ones rotating the
L and R components of the same angle, while the axial ones rotate L and R by a
different angle: in a compact form:

V : Ψ → eiαTΨ A : Ψ → eiαTγ5Ψ

The Noether currents associated with the symmetry subgroups are:

SU(3)V : jaµV = Ψ µµ
¼a

2
Ψ SU(3)A : jaµA = Ψ µµµ5

¼a

2
Ψ
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U(1)V : j0µV = Ψ µµX Ψ U(1)A : j0µA = Ψ µµµ5X
′ Ψ

It is well-known that U(1)A is not a good symmetry at quantum level, since it does
not leave invariant the path integral measure (see Chapter 3). Therefore, now on
we will ignore it. Vafa and Witten [16] have shown that the vacuum of QCD is
necessarily invariant under vectorial transformations, simply because if |³,+ð is a
state of energy Eα and parity +1, then the same is true for Qã

V |³,+ð1, and parity
is not spontaneously broken in QCD. This implies that Qã

V |0ð = 0. Instead, the
fact that we do not see degenerate hadron multiplets with opposite parities, forces
Qa
A |0ð ≠ 0.

One can use Chapter 3.2.2 of [53] as a reference to show that, defining the scalar
and pseudoscalar currents

Sa ≡ Ψ
¼a

2
Ψ and Pa ≡ Ψµ5

¼a

2
Ψ,

symmetry arguments and a bit amount of algebra imply ï0|Sa(y) |0ð = 0. Thus,
it is trivial that ïuuð = ïddð = ïssð. Instead, there is no reason why one should
take ïΨΨð = 0, thus we will assume that ïuu+ dd+ ssð ≠ 0, as motivated by pion
existence.

In fact, the quark condensate ïΨΨð = 0 breakes SU(3)A, thus implying its sponta-
neous breaking. It is well-known that the Goldstone bosons associated to the SSB
of a broken symmetry may be written (CCWZ formalism) in terms of

U(Ã) = exp

{
i
ÃaT a

fπ

}

with T a being the broken generators. In general, the transformation of U(Ã) under
the full group G is complicated and, in particular, non linear. However, if we
restrict to transformations only in the unbroken directions, i.e. h ∈ H where H is
the unbroken subgroup of G, the pions transform under the adjoint of H:

Ãa → hÃah .

For transformation along broken generators, at linear order the transformation is a
shift of the pions Ãa → Ãa − ³afπ + . . . . This implies that pions must couple only
derivatively!

If, as in the case under study, the coset group is symmetric (i.e. the broken gener-
ators Xa algebra closes in the unbroken one T c, [Xa, Xb] ∝ T c), one could instead
use the the Σ(Ã) ≡ U(Ã)2 realization of the fields, because it has much simpler
transformation properties. In terms of our original SU(3)L × SU(3)R,

Σ → LΣR 

To build the kinetic term for pions, we write the easiest invariant under G transfor-
mation, canonically normalized, 2-derivatives term, which is

Lχ =
f 2
π

4
Tr
{
∂µΣ

 ∂µΣ
}
=

1

2
∂µÃ

a ∂µÃa + . . .

1As notation, a ranges from 1 to 8, while ã = 0, . . . , 8.
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In our case, a convenient parametrization for the pion fields is

Σ = exp

{
iÃa¼a

fπ

}
= exp







Ã0 + ¸/

√
3

√
2Ã+

√
2K+

√
2Ã− −Ã0 + ¸/

√
3

√
2K0

√
2K−

√
2K

0 −2¸/
√
3







Clearly, the shift symmetry forbids any potential for the pions, which are conse-
quently forced to be massless, as required by Goldstone theorem.

Pion masses

Pions have been observed to be massive, thus we need a mechanism that gives them
their mass, trying not to give up to our EFT description.

All the previous results were obtained in the massless quark limit, where the chiral
symmetry emerged. In reality quarks have masses, written in the mass matrix M .
Quark masses explicitly break the chiral symmetry, but their mass is negligible with
respect to ΛQCD, that is when chiral symmetry spontaneously breaks. This is really
accurate for the up and down quark masses, while ms is the same order of the scale
fπ coming from the quark condensate. Therefore, the EFT we will derive will be less
accurate for mesons containing the strange quark. Quark masses break explicitly
SU(3)V ×SU(3)A×U(1)V in SU(3)V ×U(1)V if all the quarks have the same mass,
while we remain only with U(1)V if the quark have different masses. This argument
implies that by symmetry if all quarks had the same masses, pions would be all
forced to have the same masses.

To write a mass term in the chiral lagrangian, we adopt the spurion field description.
This means that we promote the mass matrix M to be a field that has to transform
under chiral symmetry in order to leave the QCD lagrangian invariant. Then, after
we have written an invariant effective lagrangian, we "remember" that M is just a
constant matrix From the term

Ψ̄LM ΨR

we evince thatM has to transform asM → LMR . Thus, the simplest non vanishing
invariant mass term for quarks is

Lχ £ Bf 2
π

2
Tr
{
MΣ + ΣM  

}

with B being a dimensional quantities, [B] = 2, which has to be determined by
experiments.

Finding the quark masses is now a simple exercise:

m2(Ã±) = B(mu +md)

m2(K±) = B(mu +ms)

m2(K0, K
0
) = B(md +ms)

The neutral pion and the the ¸ have a mass mixing, since their generators commute,

Lmix = −B
2

(
Ã0 ¸

)( mu +md (mu −md)/
√
3

(mu −md)/
√
3 (mu +md + 4ms)/3

)(
Ã0

¸

)
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One diagonalizes the matrix and identifies the neutral pion as the lightest mass
eigenstate. It is worth noticing that in the mu = md the charged pions Ã± and
the Ã0, have the same mass. This happens because the setting mu = md enhances
the symmetries of the system, due to the fact that know there is a SU(2) invariant
subgroup of SU(3)!

Interaction with nucleons: the OPE potential

For our scopes we are not interested in the most general pion-nucleon lagrangian,
starting from first principles (i.e. the chiral symmetry), an approach that can be
appreciated in [53]. We want to derive the One-Pion Exchange potential, which is
much easier. Now on, In fact, the pions are non-linear realizations of the original
chiral symmetry and, restricting to SU(2)V isospin theory, we can write the nucleon
doublet doublet

È =

(
p
n

)

which quite evidently transforms in in the fundamental of SU(2)V . We know that
pions, associated to the broken generators of SU(2)A, must couple derivatively (for
shift symmetry) to the broken current. The only possibility to have isospin and
Lorentz invariance is a pseudovector coupling of the form:

LOPE = gπN
∂µÃ

a

fπ
Èµµµ5Ä

aÈ

One can simplify the result, since integrating by parts (which leaves invariant the
action) and remembering that ∂µj

aµ
A = 2imÈµ5È, one gets

LOPE = −i gπN
mN

fπ
ÃaÈµ5Ä

aÈ.

The parametrization that we use in the main text is

LOPE = −i f 2mN

mπ

ÃaÈµ5Ä
aÈ. (A.2)

with f , or equivalently gπN to be experimentally measured.
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Appendix B

Emissivity computations

The emissivity of the scalars is defined as the power of scalar emission in the process
N(p1) N(p2) −→ N(p3) N(p4) ϕ(q) given a thermal bath with temperature T and
chemical potential µ

ϵ̇ =

∫
d3p1

(2Ã)3 2E1

d3p2
(2Ã)3 2E2

d3p3
(2Ã)3 2E3

d3p4
(2Ã)3 2E4

d3q

(2Ã)3 2Es
· S · (2Ã)4¶(4)(pf − pi)·

· |M|2 · ES · f(E1) f(E2) (1− f(E3)) (1− f(E4))

Where f(Ei) = f(Ei;T, µ) = [exp{Ei − µ/T}+ 1]−1 is the usual distribution func-
tion for fermions. S is the symmetry factor associated to eventual identical particles
in the initial and final state.
To solve the integral is useful to redefine 3-momenta in the CoM frame:

p+ =
p1 + p2

2
p− =

p1 − p2

2
p∗
3 = p3 − p+ p∗

4 = p4 − p+

Thus, the measure of the integral becomes 8 d3p+ d
3p− d

3p∗3 d
3p∗4 d

3q and the Dirac
delta splits in ¶(E1 + E2 − E3 − E4 − ES)¶

(3)(p∗
3 + p∗

4), since the momentum of
the scalar in negligible (of order ε). We now have to write the energies in a more
convenient way (already assuming p∗

3 + p∗
4 = 0), by using the non-relativistic limit

and defining u = p2/2mT , µ1 = p+ · p−/|p+||p−| and µc = p+ · p∗
3/|p+||p∗

3|:

E1 = m+
p2
1

2m
= m+ T (u+ + u− + 2

√
u+u−µ1)

E2 = m+
p2
2

2m
= m+ T (u+ + u− − 2

√
u+u−µ1)

E3 = m+
p2
3

2m
= m+ T (u+ + u∗

3 + 2
√
u+u∗

3µc)

E4 = m+
p2
4

2m
= m+ T (u+ + u∗

3 − 2
√
u+u∗

3µc)

Now we notice that all the u variables are intrinsically of order ε: therefore, at
leading order E1E2E3E4 is is simply m4. While the energy conservation condition
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now reads E1 + E2 − E3 − E4 − ES = 2T (u− − u∗
3)− ES.Putting all together, with

the constant matrix element approximation:

ϵ̇ =
S|M|2
4(2Ã)11

4Ã

m4

∫
d3p+ d

3p− d
3p∗3

∫ +∞

mS

dES ES

√
E2
S −m2

S

× ¶(2T (u− − u∗
3)− ES)f(E1)f(E2)(1− f(E3))(1− f(E4))

=
S|M|2
4(2Ã)11

4Ã

m4

∫
d3p+ d

3p− d
3p∗3 [2T (u− − u∗

3)]

√
[2T (u− − u∗

3)]
2 −m2

S

× f(E1)f(E2)(1− f(E3))(1− f(E4))

of course where we will have the condition u− g u∗
3 − mS/2T . Now on, since

mS ∼ O(ε), we will neglect it. Working on the distribution functions, we have that

fi ≡ f(Ei) =

[
exp

(
Ei − µ

T

)
+ 1

]−1

≃
[
exp

(
m− µ

T

)
exp

(
p2
i

2mT

)
+ 1

]−1

We now call y = (µ − m)/T and this parameter will govern the behaviour of our
system.

Non-degenerate case

The ND case is defined by y → −∞. In this case

fi =
1

1 + eui−y
∼ ey−ui j 1

so that the blocking factors 1 − f3 and 1 − f4 can be neglected. Moreover, f1f2 ∼
e2y−(u1+u2) ∼ e2y e−2u+ e−2u− . Thus, the integrand now does not depend on µ1 and
µc: therefore, d3p = 2Ã(2mT )3/2u1/2du. Putting all together

ϵ̇ =
S|M|2
4(2Ã)11

2(2Ã)4

m4
(2mT )9/2(2T )2 e2y

×
∫ +∞

0

du+

∫ +∞

0

du−

∫ u−

0

du∗
3(u+u−u

∗
3)

1/2 (u− − u∗
3)

2 e−2u+e−2u−

=
32
√
2

(2Ã)7
S|M|2m0.5 T 6.5 e2y

×
∫ +∞

0

du+ u
1/2
+ e−2u+

∫ +∞

0

du− u
1/2
− e−2u−

∫ u−

0

du∗
3 u

∗1/2
3 (u− − u∗

3)
2

Given that
∫ +∞

0
dy yα e−2y = Γ(³ + 1)/2α+1, we have

ϵ̇ =
32
√
2

(2Ã)7
S|M|2m0.5 T 6.5 e2y · Ã

1/2

25/2
·
∫ +∞

0

du− u
1/2
− e−2u−

16

105
u
7/2
−

=
32
√
2

(2Ã)7
S|M|2m0.5 T 6.5 e2y · Ã

1/2

25/2
· 4

35

=
S|M|2

4 · 35 · Ã6.5
m0.5 T 6.5 e2y
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Now, we remember that for a nucleon the number density is

n = 2

∫
d3p

(2Ã)3
1

1 + exp

(
m− µ

T

)
exp

(
p2
i

2mT

)

With the same computations and assumptions as above we easily get the very well-
known

n = 2

(
mT

2Ã

)3/2

ey

So, putting all together, we get

Ė =
S|M|2

2 · 35 · Ã3.5
m

(
T

m

)3.5

n2

The result is in beautiful accordance with expectations, since in ND conditions we
expect that the process is governed both by n and T and both concur to enhance
the emissivity.

Degenerate case

From the definition above

ϵ̇ =

∫
d3p1

(2Ã)3 2E1

d3p2
(2Ã)3 2E2

d3p3
(2Ã)3 2E3

d3p4
(2Ã)3 2E4

d3q

(2Ã)3 2Es
· S

× (2Ã)4¶(4)(p1 + p2 − p3 − p4 − q) · |M|2 · ES · f(E1) f(E2) (1− f(E3)) (1− f(E4))

leading to

ϵ̇ =
S|M|2
32(2Ã)11

1

m4

∫
d3p1 d

3p2 d
3p3 d

3p4 d
3q ¶

(
k · l
m

− ES

)

× ¶(3)(p1 + p2 − p3 − p4) f1f2(1− f3)(1− f4)

we will now use a trick that is valid in the degenerate (we use also the NR condition
Ei = m + p2i /2m) limit since, by definition, p2F k mT , so we can approximate the
nucleons as laying on the Fermi surface:

d3pi = d3pi

∫
dEi ¶(Ei−EF ) = d3pi

m

pF
¶(pi− pF )

∫
dEi = d3pi

mT

pF
¶(pi− pF )

∫
dxi

This separates the radial (on the energy) integrals and the angular ones. To manip-
ulate the angular part, it is useful to insert the resolutions of the identity:

1 =

∫
d3k ¶(3)(k− (p2 − p4))

1 =

∫
d3l ¶(3)(l− (p2 − p4))
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At this point the integral becomes

ϵ̇ =
S|M|2
32(2Ã)11

p3F T
3

m

∫
d3p2 d

3p3 d
3p4 d

3q d3k d3l ¶

(
k · l
m

− ES

) 4∏

j=2

¶(pj − pF )

¶(3)(k− (p2 − p4)) ¶
(3)(l− (p2 − p4))

∫ ∞

−∞

dx2 dx3 dx4
1

ex1 + 1

1

ex2 + 1

1

e−x3 + 1

1

e−x4 + 1

with obviously x1 = x3 + x4 + ES/T − x2. We call É ≡ ES and define:

F (É/T ) =

∫ ∞

−∞

dx2 dx3 dx4
1

ex1 + 1

1

ex2 + 1

1

e−x3 + 1

1

e−x4 + 1
=

É

6T 3

4Ã2T 2 + É2

eω/T − 1

We make the integrations over p3 and p4 via the Dirac deltas we have introduced
and observe that the angular components of p2 and q are unconstrained:

ϵ̇ =
S|M|2
32(2Ã)11

T 3

mp3F
· (4Ã)2p2F

∫ +∞

0

dÉ É2F (É/T ) (2Ã)

∫ +∞

0

dk dl k2l2
∫ 2π

0

dϕ ¶

(
k · l
m

− É

)

∫ 1

−1

dy3 dy4¶(
√
p2F + l2 − 2lpFy3 − pF ) ¶(

√
p2F + k2 − 2kpFy4 − pF )

The integrals in the y variables just give jacobians and constrain the region of
integration to k, l f 2pF . We get:

ϵ̇ =
S|M|2
8(2Ã)8

T 3

mpF

∫ +∞

0

dÉ É2F (É/T )

∫ 2pF

0

dk dl kl

∫ 2π

0

dϕ ¶

(
kl cos ¹kl

m
− É

)

We can parametrize the 3-momenta such that

cos ¹kl = cosϕ

√
1− k2

4p2F

√
1− l2

4p2F
+

kl

4p2F

Thus:
∫ 2π

0

dϕ ¶

(
kl cos ¹kl

m
− É

)
=

2m

kl

1
[(

1− k2

4p2F

)(
1− l2

4p2F

)
−
(
mÉ

kl
− kl

4p2F

)2
]1/2

Now, in order to arrive to an exact expression, we could make an approximation. In
fact, in degenerate conditions one can very easily check that assuming all fermions
on the Fermi surface, k̂ · l̂ ∼ 0. Therefore, whenever possible, one could make the as-
sumption that k·l j kl. Therefore, thanks to energy conservation setting mÉ = k·l,
we can neglect the É term inside the square root in the previous expression.

ϵ̇ =
S|M|2
8(2Ã)8

T 3

mpF

∫ +∞

0

dÉ É2F (É/T )

∫

K2+l2f4p2
F

dk dl
2m√

1− k2 + l2

4p2F

(B.1)
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Note also that the integration of the delta in dϕ, as it should, now constrains the
region of integration, in which we can now integrate in polar coordinates. Pretty
easily this becomes:

ϵ̇ =
S|M|2
8(2Ã)8

T 3

mpF
(4Ã)mp2F

∫ +∞

0

dÉ É2F (É/T ) =
S|M|2
8(2Ã)8

4ÃpFT
6

∫ +∞

0

dx
x3

6

4Ã2 + x2

ex − 1

The integral results (exactly) in

ϵ̇ =
S|M|2
8(2Ã)8

4ÃpFT
6 · 124Ã

6

6 · 315

Substituting pF = (2mTy)1/2, we recast into Turner’s result

ϵ̇ =
31
√
2

64 · 3780ÃS|M|2m0.5 T 6.5 y1/2
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Appendix C

Non-Relativistic expansion of scalar

products

We want to study the process N1(p1) + N2(p2) −→ N3(p3) + N4(p4) + ϕ(q) in an
environment in which the kinetic energy of the nucleons is much smaller then their
rest mass: we will be interested therefore in expansions in the parameter ε = T/mN .
Therefore the four-momenta of the nucleons can be expanded as

pµi =

(
mN +

p2
i

2mN

ε− p4
i

8m3
N

ε2 +O(ε3), piε
1
2

)

We define also the classical kinetic energy as K = p2/2m, which is of course the

same order of T , thus the 3-momentum is O(ε
1
2 ). Since the mass difference between

protons and neutrons is higher order in ε than the difference between Ki, we assume
isospin invariance. Therefore, the energy of the scalar must be at most of order ε,
constraining the scalar mass to be also at most of order ε. So we write

qµ = (ES ε, q ε)

of course with q2 = E2
S−m2

S. Our goal is now to consistently parametrize the scalar
products between the 4-momenta up to order ε2, where we expect the scalar mass
to appear. We begin defining k = p2 − p4 and l = p2 − p3. Therefore, by definition
k2 = 2m2

N − 2p2 · p4, but also

(
(K2 −K4)ε+O(ε2), k ε

1
2

)
= −k2 ε+ (K2 −K4)

2 ε2

So, p2 · p4 = m2
N +

ε

2
k2 − ε2

2
(K2 −K4)

2. We proceed for all the products between
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the pi:

p1 · p2 = m2
N +

ε

2
(k2 + l2 + 2k · l)− ε

3
2

2
(q · k + q · l) + ε2

2
q2 − ε2

2
(K1 −K2)

2

p1 · p3 = m2
N +

ε

2
k2 − ε

3
2 q · k − ε2

2
(m2

S + (K2 −K4)(K2 −K4 − 2ES))

p1 · p4 = m2
N +

ε

2
l2 − ε

3
2 q · l − ε2

2
(m2

S + (K2 −K3)(K2 −K3 − 2ES))

p2 · p3 = m2
N +

ε

2
l2 − ε2

2
(K2 −K3)

2

p2 · p4 = m2
N +

ε

2
k2 − ε2

2
(K2 −K4)

2

p3 · p4 = m2
N =

ε

2
(k2 + l2 − 2k · l)− ε2

2
(K3 −K4)

2

We made use of the additional relation p1 − p2 = −(k + l − q) (4-momenta!).
Now, to pass to the products pi · q, first of all we define the parameters ´i from
q·pi = mN |q| ´i then we exploit the useful relations of the kind 2p1 = p1+p2−k−l+q
and we get

p1 · q = (mN +K1 ε)ES ε− ε
3
2 |q|mN

(
´1 + ´2

2

)
− ε

3
2

2
(−q · k − q · l + q2ε

1
2 )

p2 · q = (mN +K2 ε)ES ε− ε
3
2 |q|mN

(
´1 + ´2

2

)
− ε

3
2

2
(+q · k + q · l − q2ε

1
2 )

p3 · q = (mN +K3 ε)ES ε− ε
3
2 |q|mN

(
´1 + ´2

2

)
− ε

3
2

2
(+q · k − q · l − q2ε

1
2 )

p4 · q = (mN +K4 ε)ES ε− ε
3
2 |q|mN

(
´1 + ´2

2

)
− ε

3
2

2
(−q · k + q · l − q2ε

1
2 )

Finally, demanding that (p1 + p2 − p3 − p4) · pi− q · pi is 0 at each order in ϵ, we get
some useful relations between the variables:

k · l = mN ES

´1 + ´2 =
q · k + q · l
mN |q|

0 = −1

2
E2
S − (K2 +K3 −K4)ES + (K2 −K3)(K2 −K4)
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Appendix D

Squared amplitude and comparison

with existing literature

Using the notation of Appendix C, taking the degenerate limit means that one can
neglect the k · l = mN ·ES whenever this does not lead to inconsistent results. Thus,
the squared amplitude is computed and the relations in Appendix C are substituted
in the scalar products. Then, averaging over the scalar directions means that

ïk̂ · q̂ð = 0

ï(k̂ · q̂)2ð = 1

3

ï(k̂ · q̂)4ð = 1

5

ï(k̂ · q̂)2(l̂ · q̂)2ð = 1 + ï(k̂ · l̂)2ð
15

Let Mnuc ≡Ma+Mb+Mc+Md+M
′
a+M

′
b+M

′
c+M

′
d and Mπ =Me+M

′
e (remember

that M ′ = −M(p3 ´ p4)), then

|Mnuc +Mπ|2 = G2 [Inuc + Iint + Iπ]

withG = (2mN/mπ)
2 f 2 sin ¹c, G

2Iπ = |Mπ|2 (idem for Inuc) andG2Iint = 2Re{MnucM
∗
π}.

Explicitly, in the degenerate limit:

Iπ = 4A2
π

[
k4

(k2 +m2
π)

4
+

l4

(l2 +m2
π)

4
+

k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

]
(D.1)

Iint = −16m2
πAπ yhN
3mN

[
k4

(k2 +m2
π)

4
+

l4

(l2 +m2
π)

4
+

k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

]

+
m2
S

E2
S

4Aπ yhN
mN

[
10m2

π

3

(
k4

(k2 +m2
π)

4
+

l4

(l2 +m2
π)

4
+

k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

)

+

(
2k6

(k2 +m2
π)

4
+

2l6

(l2 +m2
π)

4
+

k2l2 (k2 + l2)

(k2 +m2
π)

2(l2 +m2
π)

2

)]

(D.2)
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Inuc =
16y2hN
15m2

N

[(
k8

(k2 +m2
π)

4
+

l8

(l2 +m2
π)

4
− k4l4

(k2 +m2
π)

2(l2 +m2
π)

2

)

+m2
π

(
2k6

(k2 +m2
π)

4
+

2l6

(l2 +m2
π)

4
− k2l2 (k2 + l2)

(k2 +m2
π)

2(l2 +m2
π)

2

)

+ 4m4
π

(
k4

(k2 +m2
π)

4
+

l4

(l2 +m2
π)

4

)]

− 8y2hN
15m2

N

m2
S

E2
S

[
4

(
k8

(k2 +m2
π)

4
+

l8

(l2 +m2
π)

4
− k4l4

(k2 +m2
π)

2(l2 +m2
π)

2

)

+m2
π

(
18k6

(k2 +m2
π)

4
+

18l6

(l2 +m2
π)

4
+

k2l2 (k2 + l2)

(k2 +m2
π)

2(l2 +m2
π)

2

)

+m4
π

(
26k4

(k2 +m2
π)

4
+

26l4

(l2 +m2
π)

4
+

80k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

)]

− 4y2hN
15m2

N

m4
S

E4
S

[(
19k8

(k2 +m2
π)

4
+

19l8

(l2 +m2
π)

4
− 44k4l4

(k2 +m2
π)

2(l2 +m2
π)

2

)

+m2
π

(
58k6

(k2 +m2
π)

4
+

58l6

(l2 +m2
π)

4
+

84k2l2 (k2 + l2)

(k2 +m2
π)

2(l2 +m2
π)

2

)

+m4
π

(
204k4

(k2 +m2
π)

4
+

204l4

(l2 +m2
π)

4
+

140k2l2

(k2 +m2
π)

2(l2 +m2
π)

2

)]

+
16y2hN
15m4

N

1

E2
S

(
1− 1

2

m2
S

E2
S

+
m4
S

E4
S

)
3k6l6 + 3m2

πk
4l4(k2 + l2) +m4

πk
2l2(k4 + l4 + k2l2)

(k2 +m2
π)

2(l2 +m2
π)

2

(D.3)

D.1 Comparison with previous literature

Having expressed the squared amplitudes, we can focus on the difference between
the matrix element squared we obtain and the previous literature.

Ref. [3]1

The BMZ term of pure emission from nucleon legs should be 0 in the limit of
vanishing scalar mass, which is not our case, as it is manifest from their Eq. A.15.
In terms of the non-relativistic expansion in the previous section, Mohapatra forgets
terms that are relevant at the NLO level. At leading order in ε (defined as in
Appendix C as our NR expansion parameter) in fact we can write:

1

k2 −m2
π

∼ − 1

k2 +m2
π

and
1

(pi ± q)2 −m2
N

∼ 1

±2mNES

With this simplification it is easy to verify that M̃nuc =Ma+Mb+Mc+Md is zero
at leading order due to Dirac equation. Namely,

M̃LO
nuc ∝ [u(p3)µ5u(p1)]

[
u(p4)(/p4 + /p2)µ5u(p2)

]
+
[
u(p3)(/p3 + /p1)µ5u(p1)

]
[u(p4)µ5u(p2)] = 0

1We indicate the authors as BMZ
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So, we must go beyond leading order and see what happens:

• for the pionic propagator (all the kinematic variables are defined in Appendix
C):

1

k2 −m2
π

∼ − 1

k2 +m2
π

1

ε

(
1 +

(K2 −K4)
2ε

k2 +m2
π

)

• for the nucleon propagator:

1

(p1 − q)2 −m2
N

∼ − 1

2mNESε

(
1 +

ES − 2K1

2mN

ε

)

1

(p2 − q)2 −m2
N

∼ − 1

2mNESε

(
1 +

q · k+ q · l
ESmN

ε
1
2

− E3
SmN + 2E2

SK2mN − 2ESmNm
2
S − 2(q · k+ q · l)2

2m2
NE

2
S

ε

)

1

(p3 + q)2 −m2
N

∼ +
1

2mNESε

(
1 +

q · k
ESmN

ε
1
2 − E3

SmN + 2E2
SK3mN − 2(q · k)2
2m2

NE
2
S

ε

)

1

(p4 + q)2 −m2
N

∼ +
1

2mNESε

(
1 +

q · l
ESmN

ε
1
2 − E3

SmN + 2E2
SK4mN − 2(q · l)2
2m2

NE
2
S

ε

)

However, this is not what BMZ get in their expansion. This is because they overlook
terms that are dominant or comparable with respect to m2

S. Concretely what they
do is an expansion of the form:

1

(pi ± q)2 −m2
N

∼ 1

±2mNESε

(
1∓ m2

S

2mNES
ε

)

We have checked that with this expansion and neglecting every other term (both in
the nucleon and in the pion propagators), we cast back into their expression for the
amplitude squared, which goes as:

|MNLO
nuc +M

′NLO
nuc |2 ∝ m4

S

E4
S

[
k4

(k2 +m2
π)

2
+

l4

(l2 +m2
π)

2
+

k2l2 − 2(k · l)2
(k2 +m2

π)(l
2 +m2

π)

]

Actually, there is a minus sign in their Eq. A.8 in front of the mixed term because
they overlooked the minus sign arising from exchange of fermion legs between t and
u channels.

Ref. [39]

We averaged the amplitude in Eqs. 20 and 21 of Ishizuka and Yoshimura over the
scalar direction and considered the degenerate case. We got (they used a different
notation on momenta so that their q is our k, their q′ is out l and their k is our q):

∑

spins

|M|2 = g2D

(
f

mπ

)4

·
[

16

15m4
N

1

E2
S

(
k2l6

(l2 +mπ)2
+

l2k6

(k2 +mπ)2
+

k4l4

(k2 +mπ)(l2 +m2
π)

)
+

+
1

3m2
N

(
32k2l2

(k2 +mπ)(l2 +m2
π)

+
464k4

5(k2 +mπ)2
+

464l4

5(l2 +mπ)2

)]
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By direct evaluation we see that the term that goes as E−2
S is identical to our term,

while the other is not. It seems that their formula for the emissivity neglects the
second term (going as E0

S) as we can see from the T 4 dependence in their Eq. 20:

ϵ̇D = y2hNN sin2 ¹C

(
f

mπ

)4

T 4 p5F
11

(15Ã)3
GD(mπ/pF )

This is exactly equal to ϵ̇S (Equation 6.4) once we evaluate ϵ̇D for mπ/pF → 0. The
equivalence is also valid when ϵ̇S is numerically evaluated for yπ ≈ 0.24. Basically,
it seems evident to us that in Ref. [39] they overlooked the computation of the
emissivity for the E0

S term and, in any case, their somehow disappeared piece is
different from ours.
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Appendix E

Non-thermal emission spectrum

In this Appendix we show that a (dominant) term going as ES−2 in the full ampli-
tude, implies that the emission spectrum for free-streaming scalars is non thermal,
since they do not in general respect a properly normalized Maxwell-Boltzmann (it
is quasi-thermal only for scalars that have masses ms ≃ T )

dN

dEs
= ·S

Es
√
E2
s −m2

s

T 3
exp

{(
−Es
T

)}

This can be appreciated in the plots below (Figure E.1).

Figure E.1: Emission spectra: in blue the free-streaming one, in yellow the thermal one

This implies that the average emission energy ïESð depends on the mass of the
scalar, as it is possible to see in Figure E.2.

The consequences of this fact may be seen e.g. in the low coupling region of the
LESNe bound (Figure 6.2) for the MeV region (i.e. dominated by the decays int
electrons). Naively, for a thermal spectrum where the emitted energy is almost
constant, we would expect that s4m2

S ≃ const, due to the fact that the production
goes as s2, the decay rate as s2mS and the boost factor as ïESð/mS (which is at the
denominator). This would produce the dashed black line in Fig. E.3, which at high
masses is wrong by a factor of 5—6. If we correct this line accounting for the fact
that dN/dES is now dependent on the mass through the dependency of ïESð, and
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Figure E.2: Average emission energy as a function of the mass.

the same consideration holds for the boosted factor, we get the dashed blue line,
which is always very close to the numerical curve except up to numerical factors of
order 1—1.5.

Figure E.3

The same considerations apply to the SN 1987A gamma ray bound in the same
region and low coupling limit. In fact, by a look to formulae in Equations 6.16 and
6.18, we have that

Fγ ∝
dN

dES
ÇΓS

1

µ´
≃ dN

dES
mS

since Ç ≃ µ, ´ ≃ 1 and ΓS ≈ ΓS→e+ e− ∝ mS. Correcting the expected behaviour
of s ∝ m

−1/4
S with the non-thermal emission considerations, we reproduce the be-
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haviour of the numerics (in Figure E.4 the corrections make the flux of photons
produced by the decay into electrons a constant).

Figure E.4

We delve a little more into why we have a mass dependence of ïESð even for masses
mS j T . If one takes Equation 6.3 and applies it to the scalar emission, one easily
sees (plugging all the numbers) that the dominant contribution in the mS j T limit
comes from the E−2

S term. In this case the emissivity goes as

ϵ̇ ∝
∫ +∞

mS

dES

√
E2
S −m2

S

4Ã2T 2 + E2
S

eES/T − 1

If mS j T it is trivial that ϵ̇ is constant in mS. The problems come when one tries
to compute the production rate per unit volume, which is simply

ṙ ∝
∫ +∞

mS

dES

√
E2
S −m2

S

ES

4Ã2T 2 + E2
S

eES/T − 1
.

For mS → 0 there is a divergence now. If one splits the integral at an energy value
of 10MeV , the two contributions behave very differently:

ṙ ∝
∫ 10MeV

mS

dES
4Ã2T 3

ES
+

∫ +∞

10MeV

dES
4Ã2T 2 + E2

S

eES/T − 1
≃ 4Ã2T 3 log

10MeV

mS

+ const.

(E.1)
The average emission energy can be computed as ϵ̇/ṙ. Using Equation E.15, one can
see that for low enough masses the average energy goes as ïESð ∝ logmS. This must
happen, since when the emissivity is independent of the mass, we cannot expect the
same for the rate of production. In other words: in our theory and in the massless
limit the energy taken away from the PNS is effectively independent of the mass,
but, because of the E−2

S the scalars "prefer" to be produced with low energies, thus
leading to an increased production rate. These considerations can be appreciated
in Figure E.2, where we have approximated (dashed black line) the emission energy
using only the E−2

S term and in the massless limit, which is less a 10% away from
the numerical value at low masses.
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