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Introduction

The fundamental forces in our universe are well described by Standard Model, which is a quantum
field theory (QFT) with gauge group: SU(3)C ⊗SU(2)L⊗U(1)Y and General Relativity, which is the
classical theory of gravity. Quantum field theory, being the natural framework for the quantum descrip-
tion of interacting many-particle systems, found a fertile field of applications also in the description
of condensed matter systems. Most notably, the framework of QFT can describe superconductivity,
superfluidity and critical phenomena.

Although the standard model is well-established and its predictions match perfectly the outcome of
scattering events performed at the Large Hadron Collider at CERN, there are some phenomena that
call for a better description. In particular our understanding of QFT is mostly perturbative, in the
sense that most of the computations are obtained from an expansion of some parameters around a free
theory. For instance in the context of low energy quantum chromodynamics (QCD) when the strong
coupling αs ≈ 1, the usual perturbative analysis breaks down. Confinement is a phenomena that
manifests itself at this energy scale and indeed it is still not understood. Moreover, General Relativity
is only a good description of the classical theory of gravity. In particular one expects that at very short
lengths scales, of the order of the Planck’s length lp ≈ 10−33cm it breaks down. The gravitational force
at these scales should be described through a quantum theory and the best candidate as a theory of
quantum gravity is the String Theory which also provides a description of strongly interacting QFTs
through the AdS/CFT duality.

AdS/CFT. One of the most spectacular results in string theory is the so-called AdS/CFT corre-
spondence [1]. It states that a string theory formulated in a space AdSd+1 × X is dual to a gauge
theory with conformal invariance (CFT side) which lives on the boundary of AdSd+1. Here AdS is
anti-de Sitter space, which is defined as the d + 1 dimensional space of constant negative curvature,
with isometries SO(2, d). The previous result allows to connect gravity with gauge theory indeed,
SO(2, d) is also the symmetry group of a d-dimensional conformal field theory. Moreover it is a spe-
cial case of the holographic principle [2] that, roughly speaking, states that the informations on the
gravitational degrees of freedom in the bulk are encoded in the boundary. The most famous example
is the correspondence between N = 4 super-Yang-Mills (SYM) theory in four dimensions and type IIB
superstring theory on AdS5 ×S5 which is the product of five dimensional anti-de Sitter space and five
dimensional sphere.

Let us spend a few more words about the correspondence, in fact they will be useful in order to
appreciate how the concept of integrability enters in game. In a gauge theory with a gauge group
SU(Nc), there are two relevant parameters: the number of colors Nc which is related to the size of the
gauge group and the ’t Hooft coupling λ = g2YMNc, where gYM is the Yang-Mills coupling. While in
a string theory, there are the string tension T and the string coupling gstr.

The equivalence is supposed to hold at any point in the parameter space, but it is more testable in
the planar or large-N limit, since the gauge theory simplifies a lot, as it is pointed out by ’t Hooft [2].
The large-N limit is an approximation in a different direction with respect to the usual perturbation
theory, which is an expansion in small gYM at fixed Nc. In the usual perturbative expansions, Feynman
diagrams have a higher and higher order in loops at higher order in gYM . By contrast, at large Nc,
diagrams naturally ordanise in a genus expansion, where the leading diagrams are planar (i.e. can
be drawn on a sphere without self interaction) and the subleading have higher genus [3]. At a given
genus, diagrams may have an arbitrary high number of loops.

v
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This genus expansion suggests to take Nc →∞ while λ remains finite (which means taking gYM →
0). Correspondingly, on the string theory side of the duality, one can take an analogous planar limit.
This corresponds to taking gstr → 0, while the tension T remains fixed. The correspondence identifies
the couplings on either side as

λ ∝ T 2 ,
1

Nc
∝ gstr

T 2
∝ gstr

λ
. (1)

In particular if λ≫ 1 we are in the non perturbative regime of the gauge theory, while, on the other
side, T ≫ 1 and hence we are in the perturbative regime of the string theory. This consideration allows
us to clarify that the AdS/CFT correspondence is a strong/weak duality. This provides a powerful
tool in order to do explicit calculation, in fact depending on the validity regime, one can move from
the gauge theory to the string and vice versa.

More precisely, the correspondence provides a way to map observables from one side to the other
of the duality in some particular regimes and integrability allows to connect the two sides also in the
intermediate ones. In particular, since in the large N-limit we are dealing with free strings, natural
observables are the string energy levels. Clearly also in the CFT side it is in principle possible to
compute the energy spectrum which, in particular, is related to the eigenvalues of the generator of
dilatations. And so, as we said before, the aim of integrability is to give a description of the spectrum
valid at any intermediate coupling.

Integrability in AdS5/CFT4. The first hint about integrability in the large-N limit on the gauge
theory side, was discovered in [4]. In particular Minahan and Zarembo showed that the problem of
finding the spectrum of a gauge theory can be rephrased in terms of integrable spin chain, indeed
intuitively the various gauge fields play the role of the spins pointing in different directions, at leading
order in λ, in the space of flavors.

It turns out that, if we take into account loop effects in the computation of the energy levels of the
CFT, then we are forced to add interaction more and more complicated to the spin chain Hamiltonian.
In particular, at one loop the CFT problem is related to the Heisenberg spin chain (nearest-neighbor
interactions), while at two loops the spin chain Hamiltonian has also a next to nearest-neighbors
interactions [5]. It turns out that the key object on which one should focus to obtain all-loop results
is not the Hamiltonian, which becomes more and more complicated at higher orders, but rather the
S-matrix. In fact, this can be fixed by imposing compatibility with the symmetries of the model. In
particular, in this context, the S-matrix describes the scattering of collective excitations of the spins
of definite momentum, called spin waves or magnons. For instance, a one-magnon state in a simple
two-state system would look like

|Ψ(p)⟩ =
∑
n

eipn |↓↓ · · · ↓↑n↓ · · · ↓⟩ , (2)

while a two-magnon state would feature an incoming and a reflected wave

|Ψ(p1, p2)⟩ =
∑
n1<n2

(eip1n1+ip2n2 + S(p1, p2)e
ip2n1+ip1n2) |↓ · · · ↓↑n1

↓ · · · ↓↑n2
↓↓⟩ (3)

where S(p1, p2) is the S-matrix (which in this simple example is just a compelx number, rather than
a matrix). A crucial property, that makes this system exactly solvable, is that the scattering of two
magnons is uniquely fixed, and the S-matrix factorizes [6] i.e. the M-body S- matrix can be rewritten
as a product of two-body S-matrices. This is a typical feature of integrable theories, which amounts
to satisfying the Yang-Baxter equation:

S23 · S13 · S12 = S12 · S13 · S23 (4)
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Figure 1: This figure represents the Yang-Baxter equations for the three particle S-matrix. In particular,
for consistency, the two different factorizations of the three particles S-matrix must be equals. The
equation is non trivial as long there is more than one particle in the spectrum, so that the difference
two-body S-matrices do not trivially commute. Here i, j, k etc label the entries of the S-matrix

The integrability structure was studied also from the string point of view. The string is described
as a non linear σ-model (NLSM) on the AdS5 × S5 background. It is possible to exploit the coset
description [7] of the Green-Schwarz action [8] in order to show that the theory is integrable as a
classical field theory [9]. In fact the equation of motion can be recast as the flatness condition for a
Lax connection Lα(z, τ, σ)

1

∂τLσ(z, τ, σ)− ∂σLτ (z, τ, σ) + [Lτ (z, τ, σ), Lσ(z, τ, σ)] = 0. (5)

If we want to use the same approach used in the previous case, i.e. to derive the scattering matrix, it
is crucial to take into account that the integrable model is the one arising on the worldsheet after the
gauge-fixing procedure, hence in this case the excitations live on the worldsheet and they correspond
to the bosonic and fermionic coordinate that parametrize the ambient space time. It turns out that the
Hamiltonian of the gauge-fixed string theory is highly non-linear. However, in the large string tension
limit T → ∞, it is possible to implement the usual perturbation theory. In particular it is possible
to extract the quartic expansion (in fields) of the string Hamiltonian and, from this, the tree-level
two-body process, as in [10],[11]. In order to improve the precision also loop contributions can be
taken into account such as two loops effects [12]. Eventually, also in this case, the S-matrix respects
the Yang-Baxter equation.

The program of finding the S-matrix is so important because its knowledge allows one to construct
the Bethe-Yang equations by imposing periodicity of the wave-function. These are the equations that
one should solve to compute the spectrum of the theory.

There are several references in which the integrability structure of a string in AdS5×S5 background
is largely treated such as [13],[14].

Deformations. One can wonder whether it is possible to deform the AdS5 × S5 background pre-
serving the integrable structure. The answer to the previous question could, in fact, highlight the
necessary conditions in order to preserve integrability, in a less constrained system.

A possible approach in order to obtain new integrable theory consists in directly deforming the
symmetry algebra by a continuous parameter q. In order to clarify this deformation procedure, let us
consider a bosonic string that propagates in a sphere S2. We can write the action of this non linear
σ-model, using the coset formulation in which the target space is described as

S2 ≡ SO(3)

SO(2)
≊
SU(2)

SO(2)
=
SU(2)

U(1)
, (6)

1In general the Lax formalism is the one uses to prove classical integrability in the case of quantum field theory
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where SU(2) is the group of the isometries of the sphere. The q-deformation consists in deforming
the algebra su(2) and this implies a deformation of the sphere S2. Geometrically, in this simple case,
it corresponds to squashing the sphere to obtain an ellipsoid. While, at the Lie algebra level, su(2)
invariance is lost and only an u(1) subalgebra is preserved, it is intuitively clear that an ellipsoid has
”more symmetry” than just u(1). The quantum group su(2)q is precisely what econdes such deformed
symmetries. The action, for a real q-deformation, of the AdS5×S5 superstring was obtained by Delduc,
Magro and Vicedo in [15]. It is a generalization of deformations valid for bosonic cosets [16] and it is of
the type of the Yang-Baxter σ-model of Klimcik. It is sometimes referred to as η-deformation, where
η is the deformation parameter related to q. In particular the classical integrability, from the S-matrix
point of view, for η-deformation of the AdS5×S5 background was proved in [17]. The remarkable fact
is that by construction the deformation procedure preserves the classical integrability of the original
model.

AdS3. Together with the study of the deformed AdS5×S5 model, it is interesting to analyze whether
the integrable structure is preserved also at less symmetric and lower dimensional backgrounds. In
particular, one could focus on AdS3 spaces, indeed the AdS3 gravity was the first example of the
holographic duality, and it can be seen as an easier set-up to investigate the gravitational models.
Moreover, AdS3 gravity is not trivial at all, indeed as shown in [18], if there is a negative cosmological
constant term, then it admits black hole solutions.

So, it is interesting to study the integrability of strings moving in AdS3 ×M background and it
turns out that the case of AdS3 × S3 is particularly rich also when it comes to deformations. An
intuitive reason for this is that, only in the case of AdS3×S3, the isometries factorise between a ”left”
and ”right” isometry group. In particular SO(2, 2) = SU(1, 1)× SU(1, 1), where we note the further
local (algebra) isomorphism SU(1, 1) = SL(2,R), and SO(4) = SU(2)×SU(2). This factorisation fits
with the existence of a left and right sector of the dual CFT2. We remark that for superstrings, it is
possible to prove that the theory is consistent if the space time dimensions are D = 10. In the case of
AdS5 × S5 this constraint is respected, but not in the lower dimensional one. Indeed the AdS3 × S3

background is always accompanied by another manifold M , for instance M = T 4 or M = S3 × S1, in
order to reach D = 10. These two choices forM are also very special in that they solve the supergravity
equations and they have the maximal possible amount of (super)symmetry. Also in this case there are
several reviews on the AdS3/CFT2 topic for instance [19].

About this thesis. This thesis in particular is devoted to confirming that some deformations of
the AdS3 × S3 background produce still integrable string models. In particular we will verify that the
tree-level S-matrices of non linear σ-model on AdS3 × S3 deformed as in [20] and as in [32], respect
the Yang-Baxter equation. It is important to remark that in our study we will focus on the bosonic
strings which will provide an important input for the comprehensive study of this background namely,
including the fermionic degrees of freedom, and so considering the two parameter deformation of the
AdS3 × S3 superstring model.

As we said before, the S-matrix governs the scattering processes on the worldsheet. In order
to obtain it, it is necessary to compute the Hamiltonian, which we will obtain using the first order
formalism. This will turn out to have a very complicated dependence on the fields, and therefore we
should use an expansion in the limit of large string tension to obtain its quadratic expansion. From
the latter we could then obtain the S-matrix at the tree-level simply by including the expression of the
fields in terms of creation and annihilation operators. Finally, to prove integrability, we should check
whether this will respect the Yang-Baxter equation. With the same spirit, we will analyze also the,
well known, integrability of the string σ-model in AdS3 × S3 and in the η-deformation of AdS3 × S3

backgrounds. However the document will be divide as follows:

In chapter 1 we will review some basic concepts in flat space bosonic string such as the classical
bosonic string and the light cone quantization.

In chapter 2 we will discuss about the formulation of bosonic string in a less banal background.
In particular we will introduce the first order formalism, which will be crucial in order to perform
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perturbative computations. In this chapter we will keep the discussion as general as possible, but
with particular attention to the AdS3 × S3 background. Moreover we will recall the basic notions in
scattering theory, and finally we will present the S-matrix computation in the case of bosinc string
propagates in a flat spacetime.

In chapter 3 we will review the concept of integrability both from a classical and quantum point of
views. In particular our attention will be on integrability for field theory. Indeed in the case a system
with an infinite number of degrees of freedom, will be necessary to introduce the Lax formalism.
Moreover, in this chapter we will give some examples of classically integrable field models such as the
principal chiral model and the symmetric space σ-model.

In chapter 4 we will concretize the previous concepts to the bosonic string in AdS3×S3 background.
In particular first we will study the classical integrability of this model using the Lax formalism and
then we will move to the perturbative computations using the first order formalism. Eventually we
will present the tree-level S-matrix for this model.

In chapter 5 we will analyze the bosonic string in the case of one and two parameters deformations
of AdS3 × S3 background. Also in this case we will recover the previous analysis. In particular first
we will study the classical integrability of these models using the Lax formalism and then we will
move to the perturbative computations using the first order formalism. Eventually we will present the
tree-level S-matrix for both the models.

Chapter 6 contains the conclusions.

The original results of this thesis have been published in [21].
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Chapter 1

Bosonic String in flat space

The following chapter summarizes some concepts in bosonic strings, which are the building block of
the thesis. The literature on bosonic strings is very vast and covers all the aspects on this topic, but
for our purposes light-cone quantization and the strings spectrum are key concepts. All the material
is taken, mostly, from [22], [23], [24], [25].

1.1 Action

A natural way to introduce the action for bosonic strings is to start with the description of a point-
like particle moving in a background gravitational field i.e. in a Riemannian geometry described by
a metric tensor Gµν(X). The metric is assumed to have D − 1 positive eigenvalues and one negative
eigenvalue, moreover we set always ℏ = c = 1 in order to work with natural units.

Thus, with this assumptions, the action is

S =
1

2

ˆ
dτ
(
e−1(τ)ẋ2 − e(τ)m2

)
, (1.1)

where e(τ) is identified as the world-line metric and ẋ2 = Gµν ẋ
µẋν .

The previous expression, called Polyakov action, is invariant under reparametrisation of τ → τ̃(τ).
At infinitesimal level this reads as: τ → τ̃(τ) = τ + ϵ(τ) with ϵ(τ) small, which corresponds to local
diffeomorphisms invariance on the world-line:

xµ(τ)→ xµ(τ) +
dxµ

dτ
ϵ(τ) , e(τ)→ e(τ) +

d

dτ
(ϵ(τ)e(τ)). (1.2)

Moreover (1.1) is valid both for massless and massive particles. In fact if we solve the e equation of
motion:

δS

δe
= 0 ⇐⇒ ẋ2 + e2(τ)m2 = 0, (1.3)

and we substitute the e(τ) solution back in (1.1), then we find the action valid for a massive particle

S = −m
ˆ
dτ
√
−ẋ2. (1.4)

The general lesson is that we can use local diffeomorphisms invariance to fix the gauge by setting the
equation of motion for e(τ) to a constraint. Now, the point-like action can be extended to objects of
higher dimensionality n. Hence their motions describe a n + 1 dimensional manifold with a metric
hαβ(ξ).

In the specific case of n = 1, we are dealing with one-dimensional objects, called strings , and in
particular the space-time surface described is called a world-sheet. It is clear that, in order to obtain a

1



2 1.Bosonic String in flat space

dimensionless string action, there must be a multiplicative factor T with dimension of (mass)2, which
can be identified as the string tension. So the string action is

S = −T
2

ˆ
d2ξ
√
−hhαβ(ξ)Gµν(X)∂αX

µ∂βX
ν , (1.5)

where ξ = (σ0, σ) ≡ (τ, σ) and
√
−h is the square root of minus the determinant of the world-sheet

metric.

It is useful to spend some more words to comment on the objects in the game. hαβ is the metric
that describes the geometry of the world-sheet, on which there is a system of coordinates ξ. The
string map: Xµ, provides an embedding of the world-sheet into the D-dimensional spacetime, which
geometry is described by Gµν(X). It is clear, for consistency, that D ≥ 2.

Let us now analyze the symmetries of (1.5) paying particular attention to their distinction into two
different types

The first are spacetime symmetries which, for instance, in the case of Minkowski metric Gµν = ηµν
are just reduced to the Poincaré invariance:

Xµ → ΛµνX
ν + bµ, (1.6)

with Λµν ∈ SO(1, D − 1) and bµ ∈ RD. They can be interpreted as global symmetries from the
perspective of (1+1)-dimensional field theory.

The second are the world-sheet symmetries, that correspond to reparametrisation invariance: ξα →
ξα + ϵα(ξ), under which the fields transform according to their tensorial natures:

Xµ(ξ)→ Xµ(ξ) + ϵρ∂ρX
µ, hαβ → hαβ + ϵρ∂ρhαβ + (∂αϵ

ρ)hρβ + (∂βϵ
ρ)hαρ. (1.7)

Moreover, there is also a Weyl invariance 1 which is the following transformation:

hαβ → Λ(ξ)hαβ ,
√
−hhαβ →

√
−hhαβ . (1.8)

It is crucial to appreciate that in string theory, the coordinates of the spacetime Xµ are promoted
to dynamical scalar fields (scalar for the transformation property (1.7) under local diffeomorphisms)
in the 2-dimensional field theory on the world-sheet defined by action (1.5). Studying bosonic string
theory is equivalent to studying 2-dimensional gravity coupled to scalars. At this point it is important
to compute the stress-energy tensor, which in general measures the variation of the matter part of the
action with respect to the metric. In this case the equations of motion for the world-sheet metric are
proportional to the stress-energy tensor as we can find considering the variations of (1.5)

δS

δhαβ
= 0 ⇐⇒ Tαβ ≡ −

2

T
√
−h

δS

δhαβ
= ∂αX

µ∂βXµ −
1

2
hαβh

α′β′
∂α′Xµ∂β′Xµ = 0 (1.9)

Let us considering a string propagating in flat ambient spacetime Gµν = ηµν

S = −T
2

ˆ
dσdτ

√
−hhαβηµν∂αXµ∂βX

ν . (1.10)

The presence of the Weyl invariance identifies string theory as a very special generalization of the point-
like particle theory. Indeed, in general, hαβ is a symmetric tensor so it has 1

2n(n + 1) independent
components but in the particular case of n = 1, it is possible to gauge-away the hαβ dependence (using
reparametrisation invariance and Weyl symmetry) setting hαβ = ηαβ . This procedure leads to

Sgf =
T

2

ˆ
Σ

dτdσ(∂τX
µ∂τXµ − ∂σXµ∂σXµ) = −

T

2

ˆ
Σ

dσdτηαβ∂αX
µ∂βXµ. (1.11)

1In particular the Weyl invariance is present only in the case of strings
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The gauge fixing condition implies that the stress-energy tensor is automatically traceless. On the
other hand, in order to find the fields equations of motion, we can also consider the general variation
of (1.11):

δSgf = −T
ˆ
dσdτ ηαβ∂αX · ∂βδX

= −T
ˆ
dσdτ ηαβ∂β(∂αX · δX) + T

ˆ
dσdτ ηαβ∂β∂αX · δX.

(1.12)

The last, in the second line, is a volume term that gives the 2-dimensional wave equation:

□Xµ =
( ∂2

∂σ2
− ∂2

∂τ2

)
Xµ = 0, (1.13)

while the first is a surface term, indeed for finite strings the spatial coordinate of the world-sheet is
restricted to a finite interval σ ∈ [−l, l] while τ ∈ (−∞,∞). Hence we are able to rewrite

−T
ˆ
dσdτ ηαβ∂β(∂αX · δX) = −T

ˆ
dτ ∂σX · δX|σ=lσ=−l + T

ˆ
dσ ∂τX · δX|τ=∞

τ=−∞, (1.14)

which, clearly, manifests the difference between open and closed strings, indeed the first ones are given
by the vanishing of the surface term, while for the second ones the periodicity of X is sufficient to
ensure the stationarity of the action. Moreover, in order to solve the equation of motion also the
constraints Tαβ = 0 are needed

T10 = T01 = ∂τX · ∂σX = 0, T00 = T11 =
1

2

(
(∂τX)2 + (∂σX)2

)
= 0. (1.15)

A convenient set of coordinates are the light-cone coordinates defined as: σ+ = τ +σ and σ− = τ −σ.
The world-sheet metric as well as the derivatives change in

η+− = η−+ = −1

2
, η++ = η−− = 0→ ∂± =

1

2
(∂τ ± ∂σ). (1.16)

So the equation of motion for the scalars fields become: ∂+∂−X
µ = 0 which implies that its solutions

take the forms: Xµ(σ, τ) = Xµ
L(σ

+) +Xµ
R(σ

−). Also (1.15) becomes 2:

T++ =
1

2
(T00 + T01) =

1

4
(Ẋ2 +X ′2 + 2Ẋ ·X ′) = ∂+X · ∂+X

T−− =
1

2
(T00 − T01) =

1

4
(Ẋ2 +X ′2 − 2Ẋ ·X ′) = ∂−X · ∂−X,

(1.17)

which are not automatically satisfied, while the traceless of Tαβ is immediate since T+− = T−+ = 0.
So the conditions that must be implemented as constraints in flat coordinates take the form: T++ =
T−− = 0.

1.2 Oscillators expansion

In the previous section we mentioned that the difference between open and closed string arises when
one tries to ensure the stationarity of the action. In the following we will look closely at these solutions
and it will be useful to define

T =
1

2πα′ . (1.18)

The closed strings are loops with no free ends, topologically equivalent to circles, thus the periodicity
condition is just:

Xµ(τ, σ) = Xµ(τ, σ + 2π), (1.19)

2In (1.17) we have used the notation ∂τX = Ẋ and ∂σX = X′.
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while the open strings are obtained imposing certain boundary conditions, for instance the Neumann-
Neumann ones reads as

X ′µ(τ, 0) = X ′µ(τ, π) = 0. (1.20)

However, in order to write down the closed string solution of the wave equation, it is useful to note
that:

∂+X
µ = ∂+X

µ
L, ∂−X

µ = ∂−X
µ
R. (1.21)

In this way (1.19) can be extended, independently, for right and left moving simply because, in the
light-cone coordinates, the derivative selects only one of the modes. Thus starting from the previous,
we can express Xµ

R and Xµ
L by their Fourier expansions

Xµ
R(τ − σ) =

1

2
xµ +

1

4πT
pµ(τ − σ) + i√

4πT

∑
n ̸=0

αµn
n
e−in(τ−σ),

Xµ
L(τ + σ) =

1

2
xµ +

1

4πT
pµ(τ + σ) +

i√
4πT

∑
n ̸=0

α̃µn
n
e−in(τ+σ).

(1.22)

It is also immediate to note that in the case of open strings, the left and right modes are not present
and in fact the solution is given by

Xµ(τ, σ) = xµ +
1

πT
pµτ +

i√
πT

∑
n ̸=0

αµn
n
e−inτ cos(nσ). (1.23)

Some observations are useful: first of all, in (1.22), α̃µn, α
µ
n represent independent right and left

Fourier modes, moreover in the sum Xµ = Xµ
L + Xµ

R the linear term in σ vanishes implying the
consistency of the periodicity condition. Finally, in both the cases, reality of scalar fields Xµ = (Xµ)∗

implies that:
αµ−n = (αµn)

∗, α̃µ−n = (α̃µn)
∗. (1.24)

The closed string zero mode are fixed conventionally to: α̃µ0 = αµ0 = 1√
4πT

pµ, while in the open

case aµ0 = 1√
πT
pµ. This fact implies an important difference between open and closed strings mass

spectrum, but apart from this the following analysis is very similar. So let us focus in the case of closed
string.

All the discussion is actually based on a flat world-sheet metric, hence also the constraints T++ =
T−− = 0 must be imposed. It is possible to Fourier expands also (1.17)

T++ = (∂+X
µ
L)

2 =
1

4πT

∞∑
m=−∞

L̃me
−imσ+

→ L̃m = 2T

ˆ 2π

0

dσeimσ
+

T++ =
1

2

∞∑
n=−∞

α̃m−n · α̃n,

T−− = (∂−X
µ
R)

2 =
1

4πT

∞∑
m=−∞

Lme
−imσ−

→ Lm = 2T

ˆ 2π

0

dσeimσ
−
T−− =

1

2

∞∑
n=−∞

αm−n · αn,

(1.25)

hence the constraints can be rewrite as: Lm = 0, L̃m = 0 ∀m ∈ Z where Lm and L̃m are called the
Virasoro generators and classically respect the Witt algebra

{Lm, Ln}PB = −i(m− n)Lm+n, {L̃m, L̃n}PB = −i(m− n)L̃m+n. (1.26)

It is not difficult to see that in the case of open string one obtains only the first algebraic relations of
(1.26). Now, since the zero Fourier mode is related to the momentum of the string, it is interesting to
analyze L0, L̃0, indeed we can extract the mass of the mode. This can be done starting from (1.25),
setting m = 0, and finally considering that α2

0 = α̃2
0 = − 1

2α
′M2

closed :

M2
closed =

2

α′

∞∑
n=1

(α−n · αn + α̃−n · α̃n). (1.27)

In the case of opens string, following basically the same steps one can arrives at

M2
open =

1

α′

∞∑
n=1

α−n · αn. (1.28)
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1.3 Quantization

All the previous discussion is valid at the classical level. There are several ways to quantize a theory,
for instance: the old covariant quantization (OCQ) which is a procedure that is manifest Lorentz
invariant, but unitarity holds only for certain dimensions of spacetime. The light-cone quantization
(LCQ) which is a procedure that leads to a unitary theory, but Lorentz invariance holds for certain
dimensions of spacetime. Finally the path-integral quantization which is a method uses the Faddeev-
Popov procedure. For the purpose of this thesis, the most convenient choice is the second.

1.3.1 Quantization of the oscillator algebra

In the canonical quantization the classical fields Xµ(τ, σ) and their canonical momenta, defined by
pµ(τ, σ) ≡ δL

δ∂τXµ , are promoted to operators, by replacing:

{ , }PB → −i[ , ]. (1.29)

So the classical Poisson structures, between conjugate variables are promoted to equal time commuta-
tion relations between operators that in the case of closed string (1.22) reads as

{αµm, ανn}P.B = imδm+n,0η
µν → [aµm, a

ν
n] = δm+n,0η

µν

{α̃µm, α̃νn}P.B = imδm+n,0η
µν → [ãµm, ã

ν
n] = δm+n,0η

µν

{α̃µm, ανn}P.B = 0→ [ãµm, a
ν
n] = 0,

(1.30)

where, we have rescaled the modes in order to obtain the algebra of harmonic oscillators with the
standard normalizations, and also we assumed to have real fields, for which aµ†n = aµ−n. However, this
procedure yields a non unitary quantum theory, namely there are some states, into the Hilbert space,
with negative norm. For instance, if one considers a state defined as |ψ⟩ = a0−n |0⟩, then

⟨ψ|ψ⟩ = ⟨0| a0na0−n |0⟩ = ⟨0| [a0n, a0−n] |0⟩ = ⟨0|0⟩ η00 = −⟨0|0⟩ < 0. (1.31)

This is actually only an apparent issue, indeed we have still to impose the constraints Tαβ = 0, which
can be rephrased using their modes expansions. The further advantage is that, in this way, we are also
able to construct their quantum operators versions, which could be defined as

Lm =
1

2

∑
n

am−n · an, L̃m =
1

2

∑
n

ãm−n · ãn. (1.32)

Clearly, the vanishing of the stress energy tensor components should be replaced by Lm |ψ⟩ = L̃m |ψ⟩ =
0, but once again we find a problem, indeed the quantum Virasoro operators L0 and L̃0 manifest the
ordering problem which is, colloquially, an ambiguity in the definition of a quantum operator starting
from its classical counterpart. The root of the problem basically stays in the quantization procedure
because is not clear, a priori, what is the correct order of products of non commuting operators. In
order to solve this ambiguities one usually defines the normal-ordering as:

: aµma
ν
n := aµma

ν
n if m ≤ n, : aµma

ν
n := aνna

µ
m if m > n. (1.33)

With this, the problematic Virasoro operators for closed strings read as

L0 =
1

2
α2
0 +

∑
n>0

a−n · an, L̃0 =
1

2
α2
0 +

∑
n>0

ã−n · ãn. (1.34)

Because of the normal-ordering ambiguity, we include an undetermined constant a every time we will
use L0 and L̃0, and we are allowed to call physical a state ( for closed strings ) such that

(Lm − aδm,0) |ψ⟩ = 0, (L̃m − aδm,0) |ψ⟩ = 0 ∀m ≥ 0. (1.35)

Taking the difference between the zero components of the previous equations, we obtained the so called
level matching condition

(L0 − L̃0) |ψ⟩ = 0. (1.36)
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Moreover, this is not the end, indeed the ordering ambiguity also affects the quantum Virasoro algebra.
Let us look at the first relation in (1.26) with the substitution of the Poisson brackets with the
commutators and with the further adjoint of the normal-ordering in the definition of the Virasoro
operators. Initially we also set a = 0, and we start by considering the following commutator, which
will be the building block for all the computations

[aµm, Ln] =
1

2

∞∑
p=−∞

[aµm, : a
ν
pan−p,ν :] =

1

2

∞∑
p=−∞

(
mδm+p,0a

µ
n−p +maµpδm+n−p,0

)
= maµn+m. (1.37)

In the previous, we used only the algebra (1.30) and the previous definition of normal-ordering. With
this it is then possible to compute

[Lm, Ln] =
1

2

0∑
p=−∞

[aµpam−p,µ, Ln] +
1

2

∞∑
p=1

[aµm−pap,µ, Ln]

=
1

2

0∑
p=−∞

(
paµp+nam−p,µ + (m− p)aµpam−p+n,µ

)
+

1

2

∞∑
p=1

(
(m− p)aµm−p+nap,µ + paµm−pan+p,µ

)
.

(1.38)

Now, in order to reconstruct the harmonic oscillators algebra, it is useful to change the index to
p = q − n in the first and in the last terms of the previous summation

[Lm, Ln] =
1

2

( n∑
q=−∞

(q − n)aµq am+n−q,µ +

0∑
p=−∞

(m− p)aµpam+n−p,µ

+

∞∑
p=1

(m− p)aµm+n−pap,µ +

∞∑
q=n+1

(q − n)aµm+n−qaq,µ

)
.

(1.39)

Without loss of generality we consider n > 0, moreover using the harmonic oscillators algebra

aµq am+m−q,µ = aµm+n−qaq,µ + qδm+n,0η
µ
µ = aµm+n−qaq,µ + qDδm+n,0, (1.40)

then we obtain

[Lm, Ln] =
1

2

∞∑
p=−∞

(m− n) : aµpam+n−p,µ : +
D

2
δm+n,0

n∑
q=1

(q2 − nq). (1.41)

D is the dimension of the spacetime where the string propagates. Finally, it is possible to write down
explicitly the Virasoro algebra once that the following relations are included

n∑
q=1

q2 =
1

6
n(n+ 1)(2n+ 1),

n∑
q=1

q =
1

2
n(n+ 1). (1.42)

In particular the Virasoro algebra with a = 0 is

[Lm, Ln] = (m− n)Lm+n +
D

12
m(m2 − 1)δm+m,0. (1.43)

while, if a ̸= 0, then Lm → Lm − aδm,0 and

[Lm, Ln] = (m− n)Lm+n +
(D
12
m3 +

(
2a− D

12

)
m
)
δm+n,0. (1.44)

It is also possible to prove that only for a = 1 and for D = 26 there are no ghosts, namely states with
negative norm. Instead of doing this derivation, we will see how these conditions arise in light-cone
gauge which will be more useful for what we want to do. At this point, before proceeding with the
light-cone quantization, we can build the strings spectrum.
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1.3.2 String spectrum

In the previous section we mentioned that for some values of a and D, the spectrum is ghost-free.
So let us set the normal-ordering constant a = 1, and the dimension of the spacetime to D = 26.
Furthermore, we have also said that the Hilbert space is obtained by acting on the vacuum with the
creation operators aµ−n |0⟩, where µ = 0, . . . , 25, but a generic state

|ψ⟩ = aµ1
n1
aµ1
n1
· · · aµN

nN
|0⟩, (1.45)

is physical if and only if it respects the Virasoro constraints (1.35). Moreover, the masses of the
excitations are modified with respect to the classical counterparts by the normal-ordering constant
and in particular we must distinguish between closed and open strings. However for both the cases,
the mass shell condition implements the first Virasoro condition.

Open string spectrum The mass shell condition is

M2
open =

1

α′

( ∞∑
n=1

a−n · an − 1
)
=

1

α′ (N − 1), (1.46)

where we introduced the number operator N = L0 − 1
2a

2
0 that satisfies

[N, aµ−n] = naµ−n. (1.47)

The first level is then a Tachyon, indeed for this state the eigenvalue of the number operator is N = 0
and so M2

closed = − 1
α′ . Moreover it is a physical state since all the other Virasoro constraints are

satisfied. For the second level, N = 1 , we find D-states with M2
closed = 0

|A(ζ, k)⟩ = ηµνζ
µaν−1 |0⟩ , (1.48)

where ζµ is the polarization vector of the state and k is the momentum. The other Virasoro constraints
are satisfied if ζ · k = 0. Thus the polarization vector ζµ describes D − 2 = 24 transverse degrees of
freedom, and the longitudinal ones are decoupled. This basically is a massless vector boson.

Closed string spectrum Following the same strategy, the mass shell condition is

M2
closed =

2

α′

( ∞∑
n=1

a−n · an +

∞∑
n=1

ã−n · ãn − 2
)
=

2

α′ (N + Ñ − 2), (1.49)

where N = L0 − 1
2a

2
0, Ñ = L̃0 − 1

2a
2
0 that satisfies

[N, aµ−n] = naµ−n, [N, ãµ−n] = nãµ−n. (1.50)

Moreover, taking the difference between L0 − L̃0 we obtain the level matching condition N − Ñ = 0
which tells us that in any physical state the eigenvalue of the number operator in the left and right
sectors must be the same. However, also in this case the level N = Ñ = 0 is a Tachyon, with a mass
M2
open = − 4

α′ . For N = Ñ = 1 we have a tensor state with M2
closed = 0

|A(ζ, k)⟩ = ζµνa
µ
−1ã

ν
−1 |0⟩ , (1.51)

where ζµν is the polarization tensor. This state describes various fields depending on the polarization
tensor, in particular the symmetric part ζ(µν) describes a massless spin 2 particle which can be treats as
Graviton, and so its field is the metric Gµν(X). The anti-symmetric part ζ[µν] describes the degrees of

freedom of an anti-symmetric tensor Bµν(X) called Klab-Ramond field. Finally the trace ζ(0) represents
a scalar field Φ(X) called Dilaton. However, all the other Virasoro constraints are satisfied imposing
the transversality conditions

ζµνk
µ = ζµνk

ν = 0, (1.52)

which in particular identifies as physical only the transverse degrees of freedom.
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1.3.3 Quantization in light-cone gauge

In the light-cone formalism, Tαβ = 0 are imposed before quantization. The fundamental observation is
that hαβ = ηαβ does not completely fix the gauge. In order to see this, it is convenient to write (1.11)
in light cone coordinates:

S = T

ˆ
dσ+dσ−∂+X

µ∂−Xµ. (1.53)

It is evident that any reparametrisation like σ+ → σ̃+ = f(σ+) and σ− → σ̃− = f(σ−), with f(σ±)
generic functions, leaves the action invariant. Clearly, for closed strings σ+ and σ− are reparamerized
independently, while for open strings they are connected by the boundary conditions. This implies
that the light-cone coordinates transform as:

τ =
1

2

(
σ+ + σ−

)
→ τ̃ =

1

2

(
σ̃+(τ + σ) + σ̃−(τ − σ)

)
σ =

1

2

(
σ+ − σ−

)
→ σ̃ =

1

2

(
σ̃+(τ + σ)− σ̃−(τ − σ)

)
.

(1.54)

Hence we deduce that ∂+∂−τ̃ = 0, and on the other hand, once τ̃ is chosen, σ̃ is completely determined.
In order to appreciate the advantage of the previous assertion, it is useful to introduce the spacetime
light-cone coordinate:

X± =
1√
2
(X0 ±XD−1), Xi, i = 1, . . . , D − 2 , (1.55)

so the spacetime metric and, consequently, the scalar product between spacetime vectors become:

η+− = η−+ = −1, ηij = δij =⇒ XµXνηµν = −2X+X− +XiXi. (1.56)

The fact that τ̃ satisfies the same equation of Xµ implies that we can chose a solution for τ̃ such that

X+(τ, σ) = x+ +
1

2πT
p+τ̃ , (1.57)

which does not depend directly on σ. Having fixed X+(τ, σ), then, it also possible to deduce X−(τ, σ)
in terms of Xi(τ, σ).

First order formalism We will see how to do this gauge fixing in a slightly different way, which will
tour out to be more suitable for curved backgrounds which we will see later in the thesis. In particular
while for flat space the light-cone gauge fixing and the choice of hαβ = ηαβ are compatible, this is not
so for curved backgrounds as we will see later. Therefore let us start from the full form of the action
before any gauge fixing 3

S = −T
2

ˆ
dσdτ γαβ∂αX

µ∂βXµ. (1.58)

We introduce the light cone coordinates as in (1.55) and the light-cone momenta

P± =
∂L

∂Ẋ±
, Pi =

∂L

∂Ẋi
. (1.59)

Expressing the velocities via the momenta

Ẋ± =
1

T
(P∓ − TγτσX ′±), Ẋi =

1

Tγττ
(−P i − TγτσX ′i), (1.60)

it is then possible to write down the phase space Lagrangian density in light-cone coordinates as

L = PiẊ
i + P−Ẋ

− + P+Ẋ
+ +

1

2Tγττ

(
− 2P−P+ + PiP

i + T 2X ′
iX

′i − 2T 2X ′−X ′+
)

+
γτσ

γττ

(
PiX

′i + P−X
′− + P+X

′+
)
.

(1.61)

3In the action we identified γαβ =
√
−hhαβ
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The phase space light-cone gauge consists in imposing the following conditions 4

X+ =
p+

2πT
τ̃ , P+ =

p+

2π
= const. (1.62)

This choice allows us to completely remove the gauge degrees of freedom present in the Lagrangian
that we wrote above. Moreover in (1.61) we can identified also the Virasoro constraints formulated in
the phase space

C1 = PiX
′i + P−X

′− + P+X
′+, C2 = −2P−P+ + PiP

i + T 2X ′
iX

′i − 2T 2X ′−X ′+. (1.63)

Let us consider the closed string case, and let us solve some constraints followed from the Lagrangian
(1.61). In particular varying the Lagrangian with respect to γττ and imposing the phase space gauge-
fixing condition, we find

P+ = −P− = − π

p+

(
PiP

i + T 2X ′
iX

′i
)
. (1.64)

Now, the following equations are the results of the variations with respect to P− and γτσ respectively

δL

δP−
= Ẋ− − P+

Tγττ
= 0 =⇒ Ẋ− =

π

Tp+
(PiP

i + T 2X ′
iX

′i),

δL

δγτσ
= 0 =⇒ X ′− =

2π

p+
PiX

′i.

(1.65)

Integrating the last line in the previous formula we obtain that

X−(σ = π)−X−(σ = 0) =
2π

p+

ˆ 2π

0

dσPiX
′i, (1.66)

which for a closed string must be zero. This basically is the only constraint which remains unsolved
and it is the level matching condition. Moreover, substituting the solution of all the constraints and
the gauge-fixing conditions in the Lagrangian, it is then possible to deduce the Hamiltonian

H =
1

2T

ˆ 2π

0

dσ(PiP
i + T 2X ′

iX
′i). (1.67)

Thus from (1.65) we find that the zero mode of X− evolves as

ẋ− =
H

p+
=⇒ p− =

2πT

p+
H. (1.68)

Finally, with the following oscillations expansion we give a complete solution for the fields X−

α−
n =

√
πT

p+

∞∑
m=−∞

D−2∑
i=1

αin−mα
i
m, α̃−

n =

√
πT

p+

∞∑
m=−∞

D−2∑
i=1

α̃in−mα̃
i
m. (1.69)

We can then check the mass of the string, in particular since we have found that p− = 2πT
p+ H we get

for the mass
M2
closed = −pµpµ = 2p+p− − pipi = −pipi + 4πTH

=
2

α′

∞∑
n=1

D−1∑
i=1

(αi−nα
i
n + α̃i−nα̃

i
n).

(1.70)

Moreover, also the level matching, in terms of transverse oscillators, reads as∑
n ̸=0

(αi−nα
i
n − α̃i−nα̃in) = 0. (1.71)

4For closed string
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Thus, the level-matching condition tells that the left- and right-moving oscillators contribute the same
amount of energy.

However at this level the objects are still classical. The Poisson structure and, after the quantization
procedure, the commutation relations are present only for the transverse oscillators, just because X+

and X− can be expressed in terms of Xi.

[Xi(σ, τ), Xj(σ′, τ)] = [P i(σ, τ), P j(σ′, τ)] = 0

[Xi(σ, τ), P j(σ′, τ)] = iδijδ(σ − σ′), [p+, x−] = i.
(1.72)

In particular for closed strings, the previous leads to

[aim, a
j
n] = mδm+n,0δ

ij , [ãim, ã
j
n] = mδm+n,0δ

ij . (1.73)

It is then possible to construct the Hilbert space, just acting on the vacuum |0⟩ with the creation
operators:

aim(ãim) |0⟩ = 0, ai†m(ãi†m) |0⟩ = ai−m(ãi−m) |0⟩ = |ψ⟩ , ∀m > 0. (1.74)

Since the Virasoro constraints are implemented before the quantization, one has only D − 2 degrees
of freedom, and the quantum theory is automatically unitary, indeed the problem was the presence of
ηµν in the commutation relations while in this case there is a δij .

As we mentioned before, the problem in this case is the Lorentz invariance. This issue can be
intuitively understood simply looking at the Hilbert space, since it is generated acting on the vacuum
only with the transverse creation operators. In order to understand more rigorously how to restore
the Lorentz invariance, it is necessary to check if the commutation relations, that define its algebra,
are valid even at quantum level. It turns out that for a = 1 and D = 26, the Lorentz algebra is not
anomalous.

1.3.4 Poincaré invariance and critical dimension

In this subsection we will compute explicitly the critical dimension.

In particular, for closed strings, by using the Noether theorem we can compute the conserved
quantities connected to classical Lorentz invariance

Jµν = T

ˆ 2π

0

dσ(XµẊν −XνẊµ). (1.75)

Moreover they become the generators of the Lorentz transformations, indeed they respect the following
algebra:

{Jµν , Jρ,σ}PB = iηµρJνσ + iηνσJµρ − iηµσJνρ − iηνρJµσ. (1.76)

Since X± are singled out in LCQ, a breakdown of Lorentz invariance might show up in an anomaly of
the algebra satisfied by J i− namely [J i−, Jj−] ̸= 0. Let us sketch the explicit computation, that can
be found in chapter 4 of [25]. First of all, the mode expansion of the problematic Lorentz generator is

J i− =
1

2
(xip− + p−xi)− x−pi − i

∞∑
n=1

1

n
(ai−na

−
n − a−−nain)− i

∞∑
n=1

1

n
(ãi−nã

−
n − ã−−nãin)

= li− − i
∞∑
n=1

1

n
(a

[i
−na

−]
n )− i

∞∑
n=1

1

n
(ã

[i
−nã

−]
n )

= li− + Si− + S̃i−.

(1.77)

Clearly, because of the intrinsic structure of the Lorentz generator, the computation of the commutation
relation can be divided into separate parts whose building blocks are basically summarized in the
following table
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[ , ] p+ p− pj xj x− ajm a−m
p+ 0 0 0 0 i 0 0

p− 0 0 0 -i p
i

p+ -ip
−

p+ - 2πTp+ majm - 2πTp+ ma−m
pi 0 0 0 -iδij 0 0 0

xi 0 i p
i

p+ iδij 0 0 i δ
ijδm
4πT i

aim
p+

x− -i ip
−

p+ 0 0 0 0 i
a−m
p+

ain 0 2πT
p+ nain 0 -i δ

ijδn
4πT 0 nδijδn+m

√
4πT
p+ nain+m

a−n 0 2πT
p+ na−n 0 -i

ain
p+ -i

a−n
p+ -i

√
4πT
p+ main+m [a−n , a

−
m]

Table 1.1: Important commutation relations. In particular [a−m, a
−
n ] can be computed as [Lm, Ln]

We report also the following important commutation relation in the general case of a ̸= 0

[a−m, a
−
n ] =

√
4πT

p+
(m− n)a−m+n +

4πT

p+2

(D − 2

12
m3 + 2am− D − 2

12
m
)
δm+n,0 (1.78)

With this it then possible to evaluate the following commutations relations

[li−, lj−] =
i

4
[pi, xj ]

p−

p+
+
p−

p+
i

4
[pi, xj ] +

i

2
[x−, p−]δij =

1

2

p−

p+
δij − 1

2

p−

p+
δij = 0,

[li−, Sj−] + [Si−, lj−] = −2p
−

p+

∞∑
n=1

1

n
a
[i
−na

j]
n +

1

p+

∞∑
n=1

1

n
(−a[j−na−]

n p
i + a

[i
−na

−]
n p

j),

[Si−, Sj−] =
4
√
πTa−0
p+

∞∑
n=1

1

n
a
[i
−na

j]
n +

1

p+

∞∑
n=1

1

n
(a

[j
−na

−]
n p

i − a[i−na−]
n p

j)

−
∞∑
n=1

(4πT
p+2

2n− f(n)

n2

)
a
[i
−na

j]
n .

(1.79)

Finally, it is now possible to compute

[J i−, Jj−] = [Si−, Sj−] + [li−, Sj−] + [Si−, lj−] + [li−, lj−] + [S̃i−, S̃j−] + [li−, S̃j−] + [S̃i−, lj−]

=
4πT

(p+)2

∞∑
n=1

∆n(a
[i
−na

j]
n + ã

[i
−nã

j]
n ), ∆n = n

(D − 2

12
− 2
)
+

1

n

(
2a− D − 2

12

)
(1.80)

Thus the commutator matches the classical Poisson structure if and only if D = 26 and a = 1, which
is the same result that we will obtain in the case of closed strings.

Finally it is possible to prove that the bosonic quantum strings are ghost free and are Lorentz
invariant if the normal order constant a = 1 and the spacetime dimension is D = 26.
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Chapter 2

Non linear σ-model

In this chapter we will review the basic tools that will be useful in order to approach the perturbative
analysis of bosonic strings in a background described by the metric Gµν(X). The final purpose is to
evaluate the S-matrix for AdS3 × S3 deformed background. First of all, AdSn and Sn are maximally
symmetric spaces. Focusing on the anti de Sitter space, it is a maximally symmetric solution of the
free Einstein equations. This means that AdSn (as well as Sn) has the maximal numbers of Killing
vectors which are vector fields that satisfy the following equations:

∇(µKν) = 0, (2.1)

where ∇ is the covariant derivative

∇µKν = ∂µKν − ΓξµνKξ, (2.2)

and where Γξµν are the Christoffel symbols.

(2.1) is symmetric in the indexes µ, ν, and is called Killing equation. Its solutions are in one-to-one
correspondence with continuous symmetries of the metric. Physically they can be understood as the
directions along which the metric does not change [26]. Let us provide some more generalities about
the two previous spaces [27].

Sphere. The n-dimensional sphere is a maximally symmetric space with positive curvature, which
can be defined through its embedding in flat Rn+1 dimensional space with metric

ds2 =

n+1∑
i=1

dX2
i , (2.3)

as the submanifold described by
n+1∑
i=1

X2
i = R2. (2.4)

The constant R is the radius of the sphere and its isotropy group is SO(n). From this it is possible to
define the sphere also by the coset

Sn ≡ SO(n+ 1)

SO(n)
. (2.5)

Anti-de Sitter. The n-dimensional anti-de Sitter is a maximally symmetric Lorentzian space with
negative curvature, which can be defined through its embedding in flat R2,n−1 dimensional space with
metric

ds2 =

n−1∑
i=1

dX2
i − dX2

0 − dX2
n, (2.6)

13
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as the submanifold described by
n−1∑
i=1

X2
i −X2

0 −X2
n = −R2. (2.7)

The constant R is the radius of the AdS space and its isotropy group is SO(1, n− 1). From this it is
possible to define the AdS space also by the coset

AdSn ≡
SO(2, n− 1)

SO(1, n− 1)
. (2.8)

In order to evaluate the S-matrix one has to quantize the theory and, as we pointed out, the
quantization scheme which is convenient to adopt in this context is the LCQ. However the light-cone
quantization approach is problematic in the case of AdS background, indeed in flat space, one starts
by fixing the conformal gauge

hαβ = ηαβ , (2.9)

and then one fixes the residual conformal diffeomorphism symmetry on the worldsheet by choosing
(1.57). The requirement for being able to choose the light-cone gauge in a curved space is the existence
of a null Killing vector. It turns out that the above conditions do not apply in the case of AdS metric
as it is pointed out in [7].

The way to avoid the issue is to use first-order formalism, which has the advantage naturally
producing the Hamiltonian.

2.1 AdS3 × S3 metric

For future convenience let us spend some words on the metric of AdS3 × S3, in particular this will be
useful in order to understand how to introduce light-cone coordinates and also to appreciate intuitively
what is the decompactification limit that we will use.

We stress one more time that our aim is to find the S-matrix for some deformation of the previous
background, but once again the starting point will be the evaluation of the metric and the parametriza-
tion that we expose in this subsection will act as a starting tool. In the following we will use basically
the parametrization given in [13] for the AdS5 × S5 string, with the further simplification that in our
case two of the angles in AdS and S are set to zero.

Figure 2.1: The left plot is the surface of AdS2 embedded in R3 while the right one is the surface of S2

embedded in R3

For the three-sphere S3, we use the coordinate Ya, a = 1, .., 4 to parametrize the Euclidean space
R4. The unitary three dimensional sphere, embedded in this space, is defined by the constraint
YaYbδ

ab = 1, which is respected by the parametrization:

Y1 + iY2 = reiθ, Y3 + iY4 =
√
1− r2eiϕ, (2.10)
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with 0 < r < 1, and 0 < ϕ, θ < 2π. Hence the metric which is induced on the sphere is

ds2S3 = (1− r2)dϕ2 + dr2

(1− r2)
+ r2dθ2. (2.11)

Despite the previous is the most intuitive parametrization, in this context there is a more convenient
set of coordinates. Indeed the constraint can be satisfied also by

Y1 + iY2 =
y1 + iy2

1 + |y|2
4

, Y3 + iY4 =
1− |y|2

4

1 + |y|2
4

eiϕ, (2.12)

where |y|2 ≡ y21 + y22 . With this coordinates the metric becomes

d2S3 =

(
1− |y|2

4

1 + |y|2
4

)2

dϕ2 +
dy21 + dy22(
1 + |y|2

4

) . (2.13)

In the case of AdS3 we proceed in the same way, so the embedding space R2,2 is parametrized
by the coordinates Za, a = 0, .., 3. The three dimensional unitary anti-de Sitter space is defined by
ZaZbη

ab = −1 where ηab = diag(−1, 1, 1,−1). Also in this case there are a naive parametrization for
which the new constraint is satisfied:

Z1 + iZ2 = ρeiψ, Z0 + iZ3 =
√
1 + ρ2eit, (2.14)

where 0 < ρ <∞ and the angle 0 < ψ < 2π, moreover −∞ < t <∞ is the non compact time. Using
this local coordinates, the metric induced on the AdS space is

ds2AdS3
= −(1− ρ2)dt2 + dρ2

(1 + ρ2)
+ ρ2dψ2. (2.15)

Also in this case a most convenient parametrization is

Z1 + iZ2 =
z1 + iz2

1− |z|2
4

, Z0 + iZ3 =
1 + |z|2

4

1− |z|2
4

eit, (2.16)

where |z|2 = z21 + z22 . Thus the metric in this coordinates reads as:

ds2AdS3
= −

(
1 + |z|2

4

1− |z|2
4

)2

dt2 +
dz21 + dz22(
1− |z|2

4

)2 . (2.17)

Finally, merging the two metrics, we can give the expression of the induced metric on AdS3×S3 which
is

ds2 = −Gttdt2 +Gϕϕdϕ
2 +Gzzdz

2 +Gyydy
2, (2.18)

where

Gtt =

(
1 + |z|2

4

1− |z|2
4

)2

, Gϕϕ =

(
1− |y|2

4

1 + |y|2
4

)2

, Gzz =
1(

1− |z|2
4

)2 , Gyy =
1(

1 + |y|2
4

)2 . (2.19)

A crucial consideration is that the previous form highlights two isometries which are the shifts of the
time t and space coordinate ϕ. Indeed the metric does not depends on the time t and on the angle ϕ,
so the shift

t→ t+ t0, ϕ→ ϕ+ ϕ0, (2.20)

with t0 and ϕ0 two constants, leaves ds2 invariant. This fact has deep implications since, as we will
see, the two previous translations leave also the action invariant and so, via the Noether theorem, one
can define two conserved charges.
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2.2 Bosonic string in light-cone-gauge

Let us consider the action of non a linear σ-model for a closed string. In this section we will slightly
change the notation that we used in chapter 1. In particular

√
h hαβ → γαβ (as we used, when we

introduced the first order formalism for flat space), and we set σ ∈ [−l/2, l/2]. Moreover we also
change the background metric indexes to GMN (X) following the notation used in [28]. This will be
useful in order to appreciate the distinction between the light-cone coordinate and the transverse ones
which will be denoted by the indexes µ ν, or in other words the difference between the longitudinal
and the transverse degrees of freedom. Moreover in the previous section we note that the t and ϕ
coordinates played a special role in the parametrization of the metric. So, having in mind the example
of AdS3 × S3, we denote XM = (t,Xµ, ϕ).

In the previous chapter we reviewed the flat space bosonic string, but here we want to consider a
more general situation where the spacetime metric is not banal. The curved metric can be understood
as a state of the graviton describing the fluctuations of the metric around ηµν .

Hence the general lesson is that a closed string propagates in a background described by states of
its own massless fluctuations. In other words the propagation in a curved spacetime corresponds to
coupling the string fields to the gravitational sector of its massless excitations. But with the same
spirit, we are led to including also the other fields corresponding to the other components of the
polarization tensor.

A natural generalization of (1.5) is then an action that describes a system which is known as non
linear σ-model:

S = −T
2

ˆ
Σ

d2ξ
√
−h [ (hαβGµν(X(ξ))− ϵαβBµν)∂αXµ∂βX

ν + α′R(2)(h)Φ(X(ξ)) ], (2.21)

where ϵαβ is completely anti-symmetric. As we said before, we will slightly change the notation with
respect to the 1, thus (2.21) can be rewrite as

S = −T
2

ˆ ∞

−∞
dτ

ˆ l
2

− l
2

dσ
(
γαβ∂αX

M∂βX
NGMN (X)− ϵαβ∂αXM∂βX

NBMN (X)
)
. (2.22)

where we set to zero the Fradkin-Tseytlin R(2)(h) term 1. At this level we treat the target space metric
GMN as general as possible with special attention to AdS3 × S3. In order to rewrite the action in the
first order formalism it is necessary to evaluate the conjugate momenta to XM

pM =
δS

δẊM
= −Tγτβ∂βXNGMN + T∂σX

NBMN

= −T
(
γττ∂τX

NGMN + γτσ∂σX
NGMN − ∂σXNBMN

) (2.23)

hence, denoting as usual ∂τX
M = ẊM and ∂σX

M = X ′M , it is possible to extract

ẊQ =
(
− pM + γτσX ′NGMN +X ′NBMN

)GMQ

Tγττ
. (2.24)

Thus, with the substitution of the previous into (2.22) we obtain

S =

ˆ ∞

−∞
dτ

ˆ l
2

− l
2

dσ
(
pM Ẋ

M +
γτσ

γττ
C1 +

1

2Tγττ
C2

)
, (2.25)

where

C1 = pMX
′M ,

C2 = GMNpMpN + T 2GMNX
′MX ′N − 2TpMX

′QGMNBNQ + T 2X ′PX ′QBMPBNQG
MN .

(2.26)

1In the case of AdS3 × S3 it turns out that Φ(X) = const. Moreover, in two dimensions,
´
d2ξ

√
−hR(2)(h), is a

topological invariant. So for our purposes the Fradkin-Tseytlin is a topological invariant
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The previous action is a clear generalization of the one obtained integrating the Lagrangian (1.61)
introduced in the fist chapter. It is evident that the action (2.25) does not longer manifest the Poincaré
invariance, but this fact is not very surprising since the Hamiltonian formalism is not covariant. In
chapter 1 we have pointed out also that imposing the equation of motion for the worldsheet metric
was equivalent to imposing Tαβ = 0 which were called the Virasoro constraints. This was linked to the
fact that exploiting the Weyl and the reparametrization invariances one can reabsorbs the worldsheet
metric dependences in the action. In this context this is performs by imposing

C1 = 0, C2 = 0, (2.27)

so we will call these conditions the Virasoro constraints.

Let us focus on the case of AdS3 × S3. As we mentioned in Section 2.1, the metric element of the
form (2.19) leads immediate to two conserved charges

E = −
ˆ l

2

− l
2

dσ pt, J =

ˆ l
2

− l
2

dσ pϕ, (2.28)

where pt and pϕ are the conjugate momenta to the coordinate t and ϕ. It is clear that E is the target
space energy since it is associated to time translations, while J is the total angular momentum of the
string in the ϕ direction, since it is associated to ϕ translations.

With this two special coordinate, we can construct the light-cone ones

x− ≡ ϕ− t, x+ ≡ (1− a)t+ aϕ, (2.29)

where a is a generic parameter. The conjugate momenta to this variables are defined in such a way
that will be a liner combinations of pt and pϕ

p− =
δS

δẋ−
= (1− a)pϕ − apt , p+ =

δS

δẋ+
= pϕ + pt. (2.30)

In terms of the general light-cone coordinates and momenta the action (2.25) takes the form

S =

ˆ ∞

−∞
dτ

ˆ l
2

− l
2

dσ
(
p−ẋ+ + p+ẋ− + pyẎ + pzŻ +

γτσ

γττ
C1 +

1

2Tγττ
C2

)
=

ˆ ∞

−∞
dτ

ˆ l
2

− l
2

dσ
(
p−ẋ+ + p+ẋ− + pµẊ

µ +
γτσ

γττ
C1 +

1

2Tγττ
C2

)
,

(2.31)

where in the last line we collect the transverse fields in the expression pµẊ
µ. The first Virasoro

constraint is linear in p+
C1 = p+x

′− + p−x
′+ + pµX

′µ, (2.32)

while the second is quadratic in p+

C2 =G++p2+ + 2G+−p+p− +G−−p2− + T 2G−−(x
′−)2

+ 2T 2G+−x
′+x′− + T 2G++(x

′+)2 +Hx.
(2.33)

In both the previous expressions we have assumed that the B-field vanishes in the light-cone directions,
moreover in the last one, Hx contains only the transverse fields

Hx = Gµνpµpν + T 2X ′µX ′νGµν − 2TpµX
′ρBνρG

µν + T 2X ′λX ′ρBµλBνρG
µν , (2.34)

and
G++ = a2Gϕϕ + (a− 1)2Gtt, G+− = aGϕϕ + (a− 1)Gtt, G−− = Gϕϕ +Gtt

G−− = (a− 1)2Gϕϕ + a2Gtt, G+− = −(a− 1)Gϕϕ − aGtt, G++ = Gϕϕ +Gtt.
(2.35)

The uniform light-cone gauge-fixing conditions are archived by setting

x+ = τ + amσ, p− = 1. (2.36)



18 2.Non linear σ-model

The word uniform is associated with the condition p− = 1 which means that the momentum is
distributed uniformly along the string. Moreover the integer m is the winding number of the string
along the circle parametrized by ϕ. From now on, we set m = 0.

The advantage of this gauge choice stays in the fact that the term

p−ẋ
+ + p+ẋ

− + pµẊ
µ (2.37)

in the action (2.31) is simplified, in fact ẋ+ = 1, x′+ = 0, and so, dropping the constant and the total
time derivative term ẋ−, we end up with the gauge-fixed action

Sgf =

ˆ ∞

−∞
dτ

ˆ l
2

− l
2

dσ
(
pµẊ

µ −H
)
, (2.38)

where
H = −p+

(
pµ, X

µ, X ′µ
)

(2.39)

is the Hamiltonian density of the worldsheet. A crucial observation is that it depends only on the
transverse fields.

Hence, in order to find the Hamiltonian i.e. −p+ it is necessary to solve first the linear constraint

C1 = x′− + pµX
′µ = 0 =⇒ x′− = −pµX ′µ, (2.40)

and after that, we solve C2 = 0 using the previous solution. Since the second constraint is quadratic,
we are dealing with two solutions, and we keep those that lead to a positive defined Hamiltonian.

The most general solution for the second Virasoro constraint is the following:

H = −p+ =
G+− +

√
(G+−)

2 −G−−(G++ + T 2G++(x′−)2 +Hx)
G−− . (2.41)

If, in the previous expression, we consider a = 1
2 and we include the metric elements in the case of

flat space, then the square root vanishes, and we recovered the Hamiltonian found in the previous
chapter, which basically is the free Hamiltonian. The situation is different if we consider a ̸= 1

2 , indeed
also in flat space the square root does not vanish. Moreover, it is clear that the worldsheet light-cone
Hamiltonian has a complicated non liner dependence on the fields i.e. coordinates and momenta, hence
it is very hard that it can be used in order to perform direct canonical quantization.

However it is possible to consider some limits, in which the Hamiltonian can be used for perturbative
calculations. In order to see this, it is interesting to recast (2.28) using light-cone coordinates and
momenta

P+ =

ˆ l
2

− l
2

dσp+ = J − E, P− =

ˆ l
2

− l
2

dσp− = (1− a)J + aE, (2.42)

where the capital momenta is related to the conserved charges while the lower case momenta represents
the corresponding density charge. The gauge-fixing condition leads to p− = 1 and so the second integral
becomes trivial

P− = l, (2.43)

which means that the light-cone string sigma model is defined on a cylinder of radius equal to the
momentum P−. With this fact, we analyzed some limit cases in the following.

The Berenstein-Maldacena-Nastase (BMN ) limit is performed by taking T → ∞ (large string
tension limit) and P− →∞ while keeping T

P−
fixed. The gauge-fixed action then admits a well defined

expansion in power of T−1, in which the leading contribution is quadratic in the fields. The subsequent
contributions correspond to interaction terms.

The limit in which P− → ∞ with T fixed is called decompactification limit. From the observation
that the momentum is related to the radius of a closed string (2.43), we can deduce that in this
limit, the non linear σ model is defined on a plane instead of a cylinder. A crucial fact is that
in this way the asymptotic states and the S-matrix are well defined. Then, in order to perform
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Figure 2.2: Intuitive visualization of decompactification limit

perturbative calculations we can take a large tension expansion in T−1. The advantage of this approach
is that it allows to distinguish between decompactification of the worldsheet and the expansion of the
Hamiltonian.

Let us mention also that there are convenient choices for the parameter a [13]. If a = 0, then we
obtain t = τ , P− = J , which is the temporal gauge. Since the Hamiltonian is a function of P−, with
this choice of the parameter the Hamiltonian depends only on J . If a = 1

2 , then we obtain the usual
light-cone gauge

x+ =
1

2
(t+ ϕ) = τ, P− =

1

2
(E + J), (2.44)

which indeed coincide with the (1.55). The last choice simplifies drastically the perturbative compu-
tations in the large string tension limit. Finally, the last interesting choice is to set a = 1, that leads
to

x+ = ϕ = τ, P− = E, (2.45)

which means that the angle variable ϕ is identified as the worldsheet time τ and that the energy is
distributed uniformly along the string.

2.3 Perturbative expansion and Quantization

As we mention in the previous section, the S-matrix as well as the asymptotic states are well defined
in the decompactification limit. Since our aim is to calculate the S-matrix for AdS3 × S3 deformed
background it is convenient to adopt this limit, and it is also crucial to quantize the Hamiltonian (2.41)
which is highly non linear. In order to proceed, we need to systematically expand it in the large-tension
limit. A way to archived this is by rescaling the coordinate σ → Tσ and the fields

Xµ →
Xµ√
T
, pµ →

pµ√
T
. (2.46)

By the rescaling we have introduced an explicit dependence on the coupling in the string Lagrangian
and Hamiltonian. In this way, sending T →∞ it is possible to use perturbative techniques. This leads

Sgf =

ˆ
dσdτ

(
L2 +

L4

T
+ . . .

)
,

H =

ˆ
dσdτ

(
H2 +

H4

T
+ . . .

)
.

(2.47)

The explicit expressions for Ln, Hn depend on the specific model, however the root is quite general
and basically the subscript n indicates the power of the fields that compose the specific terms.
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As we mentioned in the first chapter, the quantization is archived promoting the classical Poisson
structures to commutations relations. In this specific case, the action depends only on the transverse
fields, and so

[Xµ(σ, τ), pν(σ
′, τ)] = iδµν δ(σ − σ′). (2.48)

The commutation relations between creation and annihilation operators can be obtained once the
oscillators expansion of the conjugate variables are given. In particular for real scalar fields

Xµ(σ, τ) =

ˆ
dp

1√
2ω(p)

(
eipσaµ(p, τ) + e−ipσaµ†(p, τ)

)
, (2.49)

while the analytic expression for the conjugate momenta depend on the model. For the sake of con-
creteness let us considering the action of a free theory composed by the previous fields

S = −1

2

ˆ
dσdτ γαβ∂αXµ(σ, τ)∂βX

µ(σ, τ). (2.50)

The expression for the conjugate momenta (actually the density) are

pµ(σ, τ) ≡
δL

δ∂τXµ
= ∂τXµ(σ, τ)

=

ˆ
dp i

√
ω(p)√
2

(
e−ipσa†µ(p, τ)− eipσaµ(p, τ)

)
,

(2.51)

where we used
aµ(p, τ) = e−iω(p)τaµ(p), aµ†(p, τ) = e+iω(p)τaµ†(p), (2.52)

and where ω(p) is the dispersion relation. Hence, the creation and annihilation operators satisfy the
canonical commutation relations

[aµ(p, τ), a†ν(p
′, τ)] = δµν δ(p− p′). (2.53)

Let us point out that, as we exposed in chapter 1, the Hilbert space of the theory, quantized in the
light-cone approach, does not has states with negative norm, i.e. negative probability. Indeed, the
index µ and ν are associated to the transverse fields, which means that in this case δµν has only positive
eigenvalues.

2.4 Perturbative world-sheet S-matrix

In this section we will review some generalities about the scattering theory [13]. Clearly, the explicit
expression for the S-matrix strongly depends on the model, but the basic notions that govern this huge
topic are in common for all the models that we will analyze.

In scattering theory the S-matrix S is a unitary operator mapping free particle out-states to free
particles in-states in the Heisenberg pictures. Both the states belong to the same Hilbert space of the
model and are eigenvectors of the full Hamiltonian H with eigenvalues E

H |p1, p2, .., pn⟩in/outi2,..,in
= E |p1, p2, .., pn⟩in/outi2,..,in

, (2.54)

where i1, .., in are the flavor indices that label different kinds of particles, and pk is the momentum
carried by the particle of flavor ik. In order to describe the in- and out-states we introduce creation and
annihilation operators that act on the same Hilbert space and that satisfy the commutation relation
(2.53). The Hilbert space has a vacuum |Ω⟩ that is annihilate by the operators ain(p) ≡ ain(p, 0), and
aout(p) ≡ aout(p, 0). So the in- out-states are created as

|p1, . . . , pn⟩(in)i1,...,in
= a†in,i1(p1) . . . a

†
in,in

(pn) |Ω⟩ ,

|p1, . . . , pn⟩(out)i1,...,in
= a†out,i1(p1) . . . a

†
out,in

(pn) |Ω⟩ .
(2.55)
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Since the in- and out-operators satisfy the canonical commutation relations, by virtue of the Stone -
Von Neumann theorem, they are connected together by a unitary operator S which is the S-matrix

a†in(p, τ) = Sa†out(p, τ)S†, ain(p, τ) = Saout(p, τ)S†. (2.56)

Thus, from (2.55), we deduce that in- out- states are related by the S-matrix, in fact

|p1, . . . , pn⟩(in)i1,...,in
= S |p1, . . . , pn⟩(out)i1,...,in

, (2.57)

which also implies that in absence of interactions we have S = I. Clearly the in- and out- operators are
not the creation and annihilation operators of the interacting theory, in fact they are free operators
that coincide with the operators of the interacting theory at τ =∞, τ = −∞ as we will point out in
(2.64). Moreover the fact that they evolve freely implies that they respect the Heisenberg equations of
motion with the free Hamiltonian (which in our case is the quadratic part H2 in (2.47))

ȧin,k(p, τ) = i[H2(a
†
in, ain), ain,k(p, τ)], ȧout,k(p, τ) = i[H2(a

†
out, aout), aout,k(p, τ)] (2.58)

In order to compute the S-matrix in the perturbation theory usually one splits the full Hamiltonian
into the free and interaction parts

H = H0 +Hint, (2.59)

and one introduces creation and annihilation operators satisfying the canonical commutation relations
(2.53) under which the free Hamiltonian reads as

H0 =

ˆ
dp
∑
k

(
ωk(p)a

†
k(p, τ)ak(p, τ)

)
. (2.60)

The operators ak(p, τ), a
†
k(p, τ), as well as H0, are interacting Heisenberg fields which respect the

following equation of motion

ȧk(p, τ) = i[H, ak(p, τ)] = i[H0 +Hint, ak(p, τ)]
= −iωk(p)ak(p, τ) + i[Hint, ak(p, τ)].

(2.61)

Also in this case it is possible to relate the two sets of creation and annihilation operators by unitary
transformations, since they respect the canonical commutation relations. Moreover, for the same
reason, one can connects this set of operators with the old in- out- creation and annihilation operators

a†(p, τ) = U†
in(τ)a

†
in(p, τ)Uin(τ), a(p, τ) = U†

in(τ)ain(p, τ)Uin(τ)

a†(p, τ) = Uout(τ)a†out(p, τ)U
†
out(τ), a(p, τ) = Uout(τ)aout(p, τ)U†

out(τ).
(2.62)

If we require that

Uin(−∞) = I, Uout(∞) = I, (2.63)

then this implies that the free creation and annihilation operators tend to the interacting ones in the
the limit of infinite time, in particular

lim
τ→∞

aout(p, τ)→ a(p, τ), lim
τ→−∞

ain(p, τ)→ a(p, τ). (2.64)

It is also clear that the operator U and S are connected, indeed using (2.56)

Uout(τ)a†out(p, τ)U
†
out(τ) = a†(p, τ) = U†

in(τ)a
†
in(p, τ)Uin(τ)

= U†
in(τ) S a

†
out(p, τ) S†Uin(τ),

(2.65)

which leads to

S = Uin(τ)Uout(τ). (2.66)
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The dependence on time is only apparent in the previous formula since the in- and out- operators evolve
as free operators and thus their time dependence cancels. So one can choose the most convenient instant
of time τ . Clearly a possible convenient choice is τ =∞ since the boundary conditions (2.63) are valid

S = Uin(∞) = Uout(−∞), (2.67)

hence if we find U, then we find an expression for the S-matrix. Let us start taking the time derivative
of the first line of (2.62)

ȧ† = U̇†
ina

†
inUin + U†

inȧ
†
inUin + U†

ina
†
inU̇in,

ȧ = U̇†
inainUin + U†

inȧinUin + U†
inainU̇in,

(2.68)

now, using the equation of motion for the operators involved, we obtain

[U̇inU†
in + iHint, a†in(p, τ)] = 0, [U̇inU†

in + iHint, ain(p, τ)] = 0. (2.69)

It is remarkable to noticed that the interacting Hamiltonian is now a function of the in-operators
instead of a(p, τ) and a†(p, τ), and the change is archived using (2.62)

Hint(ain, a†in) = H(a†in, ain)−Hin,0 = UinH(a†k, ak)U
†
in −Hin,0. (2.70)

Equation (2.68) implies that

U̇inU†
in + iHint(a†in, ain) = 0. (2.71)

The last can be solved by the following time-order operator

Uin(τ̃) = T exp
(
− i
ˆ τ̃

−∞
dτHint(a†in(τ), ain(τ))

)
. (2.72)

Moreover, the same consideration is valid for Uout

Uout(τ̃) = T exp
(
− i
ˆ ∞

τ̃

dτHint(a†out(τ), aout(τ))
)
, (2.73)

where in the two expression for Uin(τ) and Uout(τ) we have used the time-ordered exponential T exp.
Thus, it is possible to derive the explicit expression for the S-matrix using the expression found above
and (2.66)

S = Uin(τ̃ =∞) = Texp
(
− i
ˆ ∞

−∞
dτHint(a†in(τ), ain(τ))

)
= Uout(τ̃ = −∞) = Texp

(
− i
ˆ ∞

−∞
dτHint(a†out(τ), aout(τ))

)
.

(2.74)

Clearly, perturbation theory requires the expansions for the previous time-order exponentials, which
are archived by a series in the coupling constant. We will need only the leading order term

S = I+
i

T
T, T = −T

ˆ ∞

−∞
dτHint(τ) + . . . , (2.75)

where T is, in general, the coupling constant that in this case corresponds to the string tension. As we
said before, in the decompactification limit the scattering matrix is well defined, and the perturbation
theory is performed in the large string tension limit. Thus we can compute the worldsheet two-particles
S-matrix for the light-cone σ-model simply finding the expansion in terms of creation and annihilation
operators, for the quartic Hamiltonian that we have denoted byH4 in (2.47). The choice of the creation
and annihilation operators should be the corrected one if the quadratic Hamiltonian H2 has the same
expression of (2.60).

In order to complete the discussion, we note that from (2.62) and setting a(p) = a(p, 0) and
a†(p) = a†(p, 0), then we connect naturally

a†(p) = U†
in(0)a

†
inUin(0), a(p) = U†

in(0)ain(p)Uin(0), (2.76)
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as well as for out-operators. This implies that (2.62) can be rewritten as

|p1, . . . , pn⟩(in)i1,...,in
= Uin(0)a†i1(p1) . . . a

†
in
(pn) |0⟩ = Uin(0) |Φα⟩ , (2.77)

where |0⟩ = U†
in(0) |Ω⟩ is the state such that ak(p) |0⟩ = 0, moreover in the last formula we used the

unitarity condition U†U = I. In order to find the explicit expression for Uin(0) and for Uout(0) we
introduce free time dependent operators

a†(p, τ)free,k = eiωk(p)τa†k(p), a(p, τ)free,k = e−iωk(p)τak(p), (2.78)

which basically justify the expression (2.52). However since in this way they have the same time
dependence of the in- out- operators, we are then able to connect

a†(p, τ)free = U†
in(0)a

†
in(p, τ)Uin(0), a(p, τ)free = U†

in(0)ain(p, τ)Uin(0). (2.79)

Thus, it is manifest that

Uin(τ̃) = Uin(0)T exp
(
− i
ˆ τ̃

−∞
dτHint(a†(p, t)free, a(p, t)free)

)
U†
in(0),

Uout(τ̃) = U†
out(0)T exp

(
− i
ˆ ∞

τ̃

dτHint(a†(p, t)free, a(p, t)free)
)
Uout(0).

(2.80)

Then it is possible to extract the S-matrix elements as

⟨out|in⟩β,α = ⟨Φβ |Uout(0)Uin(0) |Φα⟩ = ⟨Φβ | S̃ |Φα⟩ , (2.81)

where

S̃ = Uout(0)Uin(0). (2.82)

It is important to noticed that the operators S̃ differs from S present in (2.66) by the opposite order
of the operators Uin, Uout.

2.5 S-matrix in flat space

In this section we will expose the S-matrix computation in the case of flat space in order to familiarize
with the future computation using the first order formalism. Basically the starting action is (1.11),
and we further set the dimension of the spacetime to D = 4. The line element does not depends on
the fields

ds2 = −dt2 + dX2
1 + dX2

2 + dX2
3 , (2.83)

and the Virasoro constraints reads as

C1 = pMX
′µ = 0, C2 = ηMNpMpN + T 2ηMNX

′MX ′N = 0. (2.84)

In the case of AdS3×S3 we have identified two special coordinates, because the metric did not depend
explicitly on them. This fact reflects directly on the symmetry (traslations) of the model. In this case
there are no preferred coordinates. Hence we can choose the time t and another generic coordinate
and, from them, construct the light-cone coordinates. For instance we solve the Virasoro constraints
introducing the light-cone coordinates

x− ≡ X3 − t, x+ ≡ (1− a)t+ aX3,

p− =
δS

δẋ−
= (1− a)px3

− apt , p+ =
δS

δẋ+
= px3

+ pt.
(2.85)

and the gauge-fixing condition

x+ = τ, p− = 1. (2.86)
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With this, we can solve the first equation in (2.84) obtaining

x′− = −Px1
X ′

1 − Px2
X ′

2. (2.87)

While the second equation in (2.84) becomes

C2 = P 2
x1

+ P 2
x2
− ((1− a)p− − p+)2 + (ap− + p+)

2 + T 2
(
X ′2

1 +X ′2
2

+ ((1− a)x′− + x′+)
2 − (−ax′− + x′+)

2
)
= 0.

(2.88)

Now, we have to use (2.87) and the gauge fixing condition to extract the Hamiltonian from the previous
equation

H = −
ˆ
dσp+(Px, X,X

′). (2.89)

Of course we have a similar expression to (2.41), thus we need also to rescale the fields as in (2.46)
in order to get the perturbative expansion of the Hamiltonian. In particular, taking the large string
tension limit, we obtain the quadratic expression in the fields

H(2) =
1

2
(P 2
x1

+ P 2
x2

+X ′2
1 +X ′2

2 ). (2.90)

It is convenient to introduce the complex variables

X1 =
−i(X − X̄)√

2
, X2 =

−(X + X̄)√
2

,

X ′
1 =
−i(X ′ − X̄ ′)√

2
, X ′

2 =
−(X ′ + X̄ ′)√

2
,

Px1 =
−i(Px − P̄ )√

2
, Px2 =

−(Px + P̄ )√
2

.

(2.91)

With this H(2) becomes
H(2) = PxP̄x +X ′X̄ ′. (2.92)

The previous corresponds to the free Hamiltonian that describes the motion of a massless complex
scalar field indeed the two transverse real degrees of freedom are now encoded in the real and complex
components of the field X. Now, it is important to notice that the free wave equation that come from
the last quadratic Hamiltonian is solved by the following modes expansion

X(σ, τ) =

ˆ
dp
(e−iω(p)τ+ipσ√

2g(p)
ax(p) +

eiω̄(p)τ−ipσ√
2ḡ(p)

a†x̄(p)
)
,

X̄(σ, τ) =

ˆ
dp
(e−iω̄(p)τ+ipσ√

2ḡ(p)
ax̄(p) +

eiω(p)τ−ipσ√
2g(p)

a†x(p)
)
,

X ′(σ, τ) =

ˆ
dp
(e−iω(p)τ+ipσ√

2g(p)
ipax(p)−

eiω̄(p)τ−ipσ√
2ḡ(p)

ipa†x̄(p)
)
,

X̄ ′(σ, τ) =

ˆ
dp
(e−iω̄(p)τ+ipσ√

2ḡ(p)
ipax̄(p)−

eiω(p)τ−ipσ√
2g(p)

ipa†x(p)
)
,

Px(σ, τ) =

ˆ
dp
(
− ie

−iω(p)τ+ipσ√
2g(p)

ω(p)ax(p) + i
eiω̄(p)τ−ipσ√

2ḡ(p)
ω̄(p)a†x̄(p)

)
,

P̄x(σ, τ) =

ˆ
dp
(
− ie

−iω̄(p)τ+ipσ√
2ḡ(p)

ω̄(p)ax̄(p) + i
eiω(p)τ−ipσ√

2g(p)
ω(p)a†x(p)

)
.

(2.93)

In this relations we can identify that the operators ax(p) and ax̄(p) destroy a particle and an

antiparticle respectively, while the operators a†x(p) and a†x̄(p) create a particle and an antiparticle.
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Hence, if we include the modes expansion in the quadratic Hamiltonian we then should find the
structure exposed in the section 2.4.

In order to explicit write down H(2) in terms of creation and annihilation operators, we also need
the dispersion relation ω(p) =

√
p2 and the normalization condition g(p) = ω(p). Moreover, in this

case we have also that ω(p) = ω̄(p) and hence g(p) = ḡ(p). With this considerations it is immediate
to obtain

H(2) =

ˆ
dp ω(p)

(
a†x(p)ax(p) + a†x̄(p)ax̄(p)

)
. (2.94)

We are now in the correct position to start with the computation of the S-matrix. For this aim,
we start by writing down the quartic expansion which follows from the rescaling and the large string
tension limit of (2.41)

H(4) =
(1− 2a)

8

(
(P 2
x1

+ P 2
x2
)2 − 8Px1

Px2
X ′

1X
′
2 + 2P 2

x2
X ′2

1 − 2P 2
x2
X ′2

2

− 2P 2
x1
X ′2

1 + 2P 2
x1
X ′2

2 + (X ′2
1 +X ′2

2 )2
)
.

(2.95)

The expression is again more readable if one uses the change of variables (2.91), in fact

H(4) =
(−1 + 2a)

2
(P 2
x −X ′2)(P̄ 2

x − X̄ ′2). (2.96)

It is crucial to point out that in the case of a = 1
2 the quartic Hamiltonian i.e. the interacting part,

vanishes. This fact is actually what we expected, indeed we have to deal with flat spacetime that
yields a free σ model. However, in the case of a ̸= 1

2 the interacting Hamiltonian is present. The tree
level S-matrix computation basically consists in the rewriting of the quartic Hamiltonian in terms of
oscillators. So, including (2.93), in (2.96) we obtain

H(4) =

ˆ
dp1dp2

(
TXX(p1, p2)a

†
x(p1)a

†
x(p2)ax(p1)ax(p2)+

TX̄X̄(p1, p2)a
†
x̄(p1)a

†
x̄(p2)ax̄(p1)ax̄(p2) + . . .

)
.

(2.97)

Let us spend a few more words about the computations. In particular, when products of four fields
expressed as in (2.93) are integrated, continuous products of Dirac delta are encountered. These, once
integrated, provide the following Jacobian

Ω(p1, p2) =
1

ω′(p1)− ω′(p2)
, (2.98)

which can be computed once the dispersion relationship is known. So, using ω(p) =
√
p2, it turns out

that

Ω(p1, p2) =
ω(p1)ω(p2)

p1ω(p2)− p2ω(p1)
=

√
p21
√
p22

p1
√
p22 − p2

√
p21
. (2.99)

The previous Jacobian is a factor that must be taken into account for the calculation of each matrix
element. For instance

TXX = (1− 2a)
(p1p2 − ω(p1)ω(p2))2

2ω(p1)ω(p2)
Ω(p1, p2), (2.100)

that it can be rewritten, explicitly using the dispersion relation and multiplying the numerator and
denominator by p1

√
p22 − p2

√
p21, in a more readable way as

TXX = (−1 + 2a)
p1ω(p2)− p2ω(p1)

2
. (2.101)

It is also manifest that we can distinguish between four different situation

TXX = (−1 + 2a)p1p2 ⇐⇒ p1 > 0, p2 < 0, TXX = 0 ⇐⇒ p1 > 0, p2 > 0,

TXX = (1− 2a)p1p2 ⇐⇒ p1 < 0, p2 > 0, TXX = 0 ⇐⇒ p1 < 0, p2 < 0,
(2.102)
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which tells us that, in two dimensions, two massless relativistic particles with momenta oriented in the
same direction, never meet, while if the momenta are oriented in opposite directions, they can scatter.
However, in the following we report all the non vanishing T -matrix elements

TXX(p1, p2) = (−1 + 2a)
p1ω(p2)− p2ω(p1)

2
, TX̄X̄(p1, p2) = (−1 + 2a)

p1ω(p2)− p2ω(p1)
2

,

TX̄X(p1, p2) = (−1 + 2a)
p1ω(p2)− p2ω(p1)

2
, TXX̄(p1, p2) = (−1 + 2a)

p1ω(p2)− p2ω(p1)
2

.

(2.103)

We can then extract directly the S-matrix elements remembering that

S = I+
i

T
T. (2.104)

We remark that in the previous expressions we denoted with TXX the tree-level T -matrix elements
which corresponds to the scattering of two particles into two particles as well as TXX̄ corresponds to
the scattering of a particle and an antiparticle into a particle and an antiparticle.

Finally, we mention that if the complete two-body S-matrix and the dispersion relation are known
i.e. by including all the loops contributions, then it is possible to compute the spectrum of the closed
string using the Bethe-Yang equations. From the point of view of the ZF algebra we can define an
asymptotic wave function as

|ψ(p1, . . . , pM )⟩ =
∑
π∈sM

Sπ |pπ(1), . . . , pπ(M)⟩ , (2.105)

where π ∈ sM is a permutation and each asymptotic state reads as

|p1, . . . , pM ⟩ =
ˆ
dσ1 . . . dσMe

i(p1σ1+···+pMσM )A†(σ1) . . . A
†(σM ) |0⟩ . (2.106)

If we require the periodicity under the shift σi → σi + l 2, then we obtain the Bethe-Yang equations

eipkl
M∏
j ̸=k

S(pk, pj) = 1, k = 1, . . . ,M. (2.107)

In particular, the spectrum matches with the one given in chapter 1.

2Where l is the length of the string



Chapter 3

Integrability

Integrability is a very broad concept that emerges both from classical Hamiltonian and quantum
systems. Colloquially, an integrable system enjoys so many symmetries that its dynamic is completely
constrained and it turns out that it is solvable exactly. The last statement means that it is possible
to find some important information, for instance the spectrum, of the theory solving some system of
algebraic equations. In the following we will analyze this concept, from a classical point of view as well
as from the quantum prospective.

3.1 Classical integrability

Integrability in classical mechanics is a quite simple concept, which for instance is exposed in [29].
Let us focus in the case of Hamiltonian systems. In that systems we describe the motion of the
n-degrees of freedom with a trajectory in a 2n-dimensional phase-space M with local coordinates
(qi, pj) i, j = 1, . . . , n. The evolution of a generic function f ≡ f(q(t), p(t), t) of the phase space is
given by

ḟ =
∂f(q(t), p(t), t)

∂t
+
{
f(q(t), p(t), t), H(q(t), p(t))

}
P.B.

. (3.1)

A function f(q(t), p(t)) is called a first integral or a constant of motion if ḟ = 0, which reads as{
f(q(t), p(t)), H(q(t), p(t))

}
P.B.

= 0. (3.2)

Two first integral are in involution if

{f1(q(t), p(t)), f2(q(t), p(t))}P.B. = 0. (3.3)

Moreover a set of k first-integrals are independent functions if their gradients are linearly independent

rk(∇f1, . . . ,∇fk) = k. (3.4)

A system will be solvable if it admits sufficient many first integrals. In a more formal way, integrability
can be archived via the Liouville-Arnol’d theorem. It states that an integrable system consist in a 2n
dimensional phase space together with n independents functions f1, . . . , fn in involution

{fj , fk} = 0, j, k = 1, . . . , n. (3.5)

Let be
Mf ≡ {(q, p) ∈M : fk(q, p) = ck}, ck = const, k = 1, . . . , n, (3.6)

a n-dimensional surface of first-integrals. If Mf is compact and connected then it is diffeomorphic to
a torus

Tn = S1 × S1 × · · · × S1, (3.7)

27
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and we can introduce the action-angle coordinates

I1, . . . , In, ϕ1, . . . , ϕn, 0 ≤ ϕk ≤ 2π. (3.8)

Moreover the equations of motion become

İk = 0, ϕ̇k = ωk(I1, . . . , In), k = 1, . . . , n. (3.9)

Typically one of the first-integrals is the Hamiltonian while the others can be found geometrically.

Figure 3.1: This picture, reported from [19], represents the tori foliation of the phase space. The motion,
which is sketched by the arrow, is periodic and in particular it winds around one of the tori .

The crucial idea is therefore that if we have enough symmetries then the dynamic is constrained
such that the model is solvable. Since, in this thesis, we are dealing with field theory, it is crucial
to extend the previous concepts in the case of infinity degrees of freedom. Naturally this is not the
most convenient approach in the case of fields since we will find an infinite set of conserved quantities
in involution. Thus, in the case of field theory, the so-called Lax formalism is the most convenient
formalism, as it is pointed out in [19]. Let us consider two dimensional classical field theory since the
sting-NLSM is formulated on the two dimensional woldsheet. Moreover we assume that the equation
of motion can be recast as

∂τU(τ, σ, z)− ∂σV (τ, σ, z) = [V (τ, σ, z), U(τ, σ, z)], (3.10)

where U, V are matrices depending on the fields and a complex parameter z. We may think that the
previous equation arises from the following system

∂τΨ(τ, σ, z) = V (τ, σ, z)Ψ(τ, σ, z),

∂σΨ(τ, σ, z) = U(τ, σ, z)Ψ(τ, σ, z),
(3.11)

since
∂σ∂τΨ(τ, σ, z) = ∂σV (τ, σ, z)Ψ(τ, σ, z) + V (τ, σ, z)∂σΨ(τ, σ, z)

=
(
∂σV (τ, σ, z) + V (τ, σ, z)U(τ, σ, z)

)
Ψ(τ, σ, z),

(3.12)

∂τ∂σΨ(τ, σ, z) = ∂τU(τ, σ, z)Ψ(τ, σ, z) + U(τ, σ, z)∂τΨ(τ, σ, z)

=
(
∂τU(τ, σ, z) + U(τ, σ, z)V (τ, σ, z)

)
Ψ(τ, σ, z)

(3.13)

and thus this implies (3.10), by requiring that (∂σ∂τ − ∂τ∂σ)Ψ = 0.
This procedure, called the inverse scattering method, allows to solve the systems of linear equations

instead of the non linear ones (3.10). Now, if we introduce a 2-dimensional connection Lα with
components

Lσ(τ, σ, z) = U(τ, σ, z), Lτ (τ, σ, z) = V (τ, σ, z), (3.14)
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then, the equation of motion (3.10) can be rewritten as the zero-curvature equation [13]

∂βLα − ∂αLβ + [Lα, Lβ ] = 0. (3.15)

A connection Lα with this property is called Lax connection and the equation (3.15) is called the zero-
curvature (Lax) representation of an integrable partial differential equation. The usefulness of the Lax
connection lies in the fact that for an integrable model it provides a way to exhibit the conservation
laws and hence the first integrals. In order to see this we define the monodromy matrix T (τ, z) by the
path-ordered exponential

T (τ, z) =←−exp
(ˆ l

2

− l
2

dσU(τ, σ, z)
)
. (3.16)

The evolution in time is archived once we compute ∂τT (τ, z), and for the sake of simplicity we consider
a closed string with σ ∈ [0, 2π]. In this way the time derivative of (3.16) is

∂τT (τ, z) =

ˆ 2π

0

dσ
(←−exp ˆ 2π

0

U(τ, σ̃, z)
)
∂τU(τ, σ, z)

=

ˆ 2π

0

dσ
(←−exp ˆ 2π

σ

U(τ, σ̃, z)
)
∂τU(τ, σ, z)

(←−exp ˆ σ

0

U(τ, σ̃, z)
)
.

(3.17)

Now, using 3.10

∂τT (τ, z) =

ˆ 2π

0

dσ
(←−exp ˆ 2π

σ

U(τ, σ̃, z)
)
(∂σV + [V,U ])

(←−exp ˆ σ

0

U(τ, σ̃, z)
)

=

ˆ 2π

0

dσ∂σ

[(←−exp ˆ 2π

σ

U(τ, σ̃, z)
)
V (τ, σ, z)

(←−exp ˆ σ

0

U(τ, σ̃, z)
)]
,

(3.18)

which can be rewrite in a more compact and useful way as

∂τT (τ, z) = [V (τ, 0, z), T (τ, z)]. (3.19)

The last equation is crucial because the eigenvalues of T (τ, z), defined by

det(T (τ, z)− µI) = 0, (3.20)

actually do not depend on τ , and hence they are integrals of motion. So, in the Lax formalism, the
integrability of a field theory is archived once it is possible to recast the equation of motion using the
components of the Lax connection as in (3.10). In this way it is possible to define the monodromy
matrix whose eigenvalues basically encode the (infinite) conserved charges.

3.2 Principal chiral model

In the following section we will concretize the Lax formalism for the principal chiral model using the
same notation of [13]. This toy model is the most simple example of integrable 2-dimensional field
theory and basically it is a non linear σ-model with base space R1,1 and target space a Lie group G,
hence the fields is the group elements g ≡ g(σ, τ) ∈ G, and their dynamic is governed by the action

S = −1

2

ˆ
dτdσγαβTr(∂αgg

−1∂βgg
−1). (3.21)

where we use the notation γαβ ≡
√
−γγαβ . The equations of motion

∂α(γ
αβ∂βgg

−1) = 0,

∂α(γ
αβg−1∂βg) = 0,

(3.22)

can be rewritten in terms of

Aαl = −γαβ∂βgg−1, Aαr = −γαβg−1∂βg, (3.23)
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as
∂αA

α
l = ∂αA

α
r = 0. (3.24)

It is useful to introduce a connection that will depends on Ar, Al and also on two parameters l1, l2,
which basically depend on the spectral parameter z introduced in the previous section

Lα = l1Aα + l2γαβϵ
βρAρ. (3.25)

In this context, namely in two dimensions, it is useful to rewrite the zero curvature equation as

2ϵαβ∂αLβ − ϵαβ [Lα, Lβ ] = 0, (3.26)

where ϵαβ is a completely antisymmetric tensor, and so expanding explicitly the previous contractions
one obtains

2ϵτσ∂τLσ + 2ϵστ∂σLτ − ϵτσ[Lτ , Lσ] + ϵστ [Lσ, Lτ ] = 0,

2∂τLσ − 2∂σLτ − [Lτ , Lσ]− [Lσ, Lτ ] = 0,
(3.27)

which is (3.10). Now, using the identity ϵαβγβρϵ
ρδ = γαδ, we can write down the zero curvature

equation for the connection (3.25)

2l1ϵ
αβ∂αAβ − (l21 − l22)ϵαβ [Aα, Aβ ] + 2l2∂αA

α = 0. (3.28)

The term
2l2∂αA

α (3.29)

vanishes due to the equations of motion. On the other hand, both Ar, Al are flat

∂αA
l
β − ∂βAlα + [Alα, A

l
β ] = 0, ∂αA

r
β − ∂βArα − [Arα, A

r
β ] = 0, (3.30)

hence, the first terms in (3.28) become

2l1 − 2(l21 − l22)[Arα, Arβ ] = 0, 2l1 + 2(l21 − l22)[Alα, Alβ ] = 0. (3.31)

We deduce that the zero curvature equation (on-shell) is respected if

l21 − l22 − l1 = 0, A = Ar,

l21 − l22 + l1 = 0, A = Al.
(3.32)

Finally we can also give the expression for the Lax connection for the principal chiral model, when the
previous system is solved in terms of a spectral parameter z

Lrα = − z2

1− z2
Arα +

z

1− z2
γαβϵ

βρArρ,

Llα =
z2

1− z2
Alα +

z

1− z2
γαβϵ

βρAlρ.

(3.33)

Eventually we rephrased the equation of motion for the principal chiral model as the zero curvature
condition for the previous Lax connection.

3.3 Symmetric space σ model

The symmetric space σ model is another classically integrable field theory [27], but this example
highlights also the classical integrability of AdS3×S3 string NLSM since its Lagrangian can be recast
in a similar fashion to the one of the symmetric space σ model. This is a two dimensional filed theory
with base manifold R1,1 and with target space M = G/H, where G is a connected semi-simple Lie
group and H a particular subgroup of G. Moreover, the Lie algebra admits a Z2-graded decomposition

g = g(0) ⊕ g(2), [g(i), g(j)] ⊂ g(i+j mod4), (3.34)
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where g(0) label the algebra of H. It it then useful to introduce the projectors into the single subspace
in which the algebra is decomposed P (j)X = X(j), where X ∈ g(j) and j = 1, 2. In the light-cone
coordinates the action can be written as

S = T

ˆ
d2σTr

(
g−1∂−gP

(2)g−1∂+g
)

= T

ˆ
d2σTr

(
(g−1∂−g)

(2)(g−1∂+g)
(2)
)
,

(3.35)

where the Tr is the ad-invariant Killing form on g = Lie(G). In particular, the ad-invariance is
archived as

Tr[Ad−1
g (X)Ad−1

g (Y )] = Tr[Adg(X)Adg(Y )] = Tr[XY ], ∀g ∈ G, ∀X, Y ∈ g, (3.36)

and where we used Adg to label the adjoint representations Adg(X) = gXg−1. In particular the
expression in the first line of the equation (3.35) is clearly invariant under the global transformations
g → g0g with g0 ∈ G. Thus, it is possible to extract the conserved current associated to the previous
group transformations

J± = Adg(g
−1∂±g)

(2), (3.37)

which, as in the case of the principal chiral model, satisfies the flatness condition

∂+J− − ∂−J+ + [J+, J−] = 0. (3.38)

Moreover the equation of motion is the conservation equation

∂−J
(2)
+ + ∂−J

(2)
− + [J

(0)
− , J

(2)
+ ] + [J

(0)
+ , J

(2)
− ] = 0. (3.39)

One can notice that the last equation decomposes according to the Z2 grading. Also the flatness
condition can be decompose in the same way

∂+J
(0)
− − ∂−J (0)

+ + [J
(0)
+ , J

(0)
− ] + [J

(2)
+ , J

(2)
− ] = 0,

∂+J
(2)
− − ∂−J (2)

+ + [J
(0)
+ , J

(0)
− ] + [J

(2)
+ , J

(2)
− ] = 0.

(3.40)

As we performed in the previous section, we can collect all this information on a Lax connection that
respect a flatness condition

L±(z) = J
(0)
± + z±1J

(2)
± , (3.41)

where z is again the spectral parameter.

3.4 Quantum integrability

In this section we will analyze the integrability of a 2-dimensional QFT (following [19]) since the string
nonlinear σ-model turns out to be of this type. Let us assume that we have quantized a classical
integrable theory. Let be

Q1, . . . ,Qn, . . . , [Qi,Qj ] = 0, (3.42)

the infinite conserved charges. Since they commute between each other, we can simultaneously diago-
nalize them. We identify a basis of the Hilbert space labeled with the momentum and flavors α. The
charges act on this basis as

Qn |p⟩(in,out)α = Qn(p;α) |p⟩(in,out)α . (3.43)

Generically, these charges are built up as an invariant tensor constructed out of the labels α and many
functions of particle momenta. For instance in some theories it is possible to have Qn(p;α) ∝ pn. Now,
if we consider the action of such charges on the M-particle state

Qn |p1, . . . , pM ⟩(in)α1,...,αM
=
(
Qn(p1;α1) + · · ·+Qn(pM ;αM )

)
|p1, . . . , pM ⟩(in)α1,...,αM

, (3.44)
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and we consequently evolve the in-state into the out-state |p̃1, . . . , p̃M ⟩(out)α̃1,...,α̃M
, then considering that

the charges are conserved, we obtain the following identity

M∑
j=1

Qn(pj ;αj) =

M̃∑
k=1

Qn(p̃k; α̃k). (3.45)

The only way for the previous equality to be worth ∀Qn is that the incoming momenta correspond to
the outcoming momenta i.e. M = M̃ . This fact in 2-dimensional QFT has deeper implications for the
scattering events.

Let us consider the 2-particles scattering event. As we said in the chapter 2, the in-state |p1, p2⟩(in)α1,α2

is defined at τ = −∞, moreover we order the momenta as p1 > p2. Since there is only one spatial
dimension, the particles can move on a line, and at some point they scatter. For the conservation laws
(3.45), the resulting state is of the form |p2, p1⟩α̃2,α̃1

where the momenta are exactly the same, while
the flavor indexes may change.

In the case of M-particles events the in-state is |p1, . . . , pM ⟩(in)α1,...,αM
, where we assume p1 > p2 >

· · · > pM . At some point, two of the particles that compose this state undergo a 2 → 2 scattering
event, whose dynamic is described above. After a sequence of 1

2M(M − 1) scattering, the particles are
spatially order following their momenta pM , . . . , p1. We then deduce that the M-particles scattering,
factorizes in a series of 2-particles events. This special property was pointed out by the Zamolodchikov
brothers in their seminal paper [30]. Since the property of the scattering process is encoded in the
S-matrix, the fundamental object that we need to determinate is the 2-particles S-matrix S(p1, p2).

Clearly, the S-matrix must respect some conditions. The first is that there are no 2→M scatterings
unless M = 2, namely there are no particle production. Another one is that, apparently, there are
several ways to factorize a M → M process into 2 → 2 events. Indeed we can group together the
particles in several ways. It is clear that, for consistency, all the factorizations must bring to the
same S-matrix. For instance in the case of a 3 → 3 event, we can have two different factorizations.
Each of the two give a cubic expression in terms of the S-matrix, and their equality gives the famous
Yang-Baxter equation. The physical reason for the Yang-Baxter equation is that, as we mentioned
before, the charges Qn are in general functions of particle momenta. They are unitary operators in the
quantum theory that implement the transformations, under which the classical action is invariant, into
the Hilbert space of the quantum theory. These transformations in particular shift the momentum pj
of the particles. Clearly, the amount of the shift may change from one particle to the others.

3.4.1 The Zamolodchikov-Faddeev algebra

The Zamolodchikov-Faddeev (ZF) algebra consists in a series of relations which are respected by a
particular representation of the asymptotic Hilbert space. In this description we will follow [19] as well
as [13]. However, the ZF algebra is defined in terms of abstract creation and annihilation operators
A†
α(p), Aα(p) which act on the vacuum as

A†
α |0⟩ = |p⟩

(in)
α = |p⟩(out)α , Aα(p) |0⟩ = 0. (3.46)

These are related to the in- out-states, introduced in the chapter 2, by the following relations

|p1, . . . , pn⟩(in)i1,...,in
= A†

i1
(p1) . . . A

†
in
(pn) |0⟩ ,

|p1, . . . , pn⟩(out)i1,...,in
= (−1)

∑
k<l ϵik ϵilA†

in
(pn) . . . A

†
i1
(p1) |0⟩ ,

(3.47)

where we included the fact that when two fermions are exchanged, then we must take into account
an overall minus sign, which in the previous formula is given by (−1)ϵ. So in the case of fermions
ϵ = −1 while for bosons ϵ = 0. The in- out-states are the eigenstates of the Hamiltonian of the
model H and the order of momenta are p1 > . . . , pn. It is important to notice that the ZF creation
and annihilation operators are not the Heisenberg in- out- operators ain(p), aout(p), in fact they do
not satisfy the canonical commutation relations in the interacting theory, so they are not related to
the in- out- operators by a unitary transformation. The final advantage is that in this new point of
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view for the asymptotic states, a scattering process, are understood as a reordering of particles in the
momentum space.

Let us focus in the case of 2-body collisions, where we set p1 > p2,

|p1, p2⟩(in)α1,α2
= A†

α1
(p1)A

†
α2
(p2) |0⟩

|p1, p2⟩(out)α3,α4
= (−1)ϵα3

ϵα4A†
α3
(p2)A

†
α4
(p1) |0⟩ .

(3.48)

As it is pointed out before, in the case of fermions ϵα = 1, which allows the presence of a minus sign
due to the exchange of the two fermionic particles. Hence, in the case of the 2→ 2 process, there are
two possibilities. In the first ones, known as forward scattering, particles keep their initial momenta.
In the second case, known as backward scattering, particles exchange their initial momenta. From the
discussion of the previous chapter we can write

|p1, p2⟩(in)α1,α2
= Sα3,α4

α1,α2
|p1, p2⟩(out)α3,α4

, (3.49)

and so we are able to find the commutations relation for the ZF operators

A†
α1
(p1)A

†
α2
(p2) = (−1)ϵα3

ϵα4Sα3,α4
α1,α2

(p1, p2)A
†
α3
(p2)A

†
α4
(p1), (3.50)

which manifest the fact that the ZF operators satisfy a different algebra respect to the in- out- operators.
In order to simplify the notation, it is useful to adopt matrix formalism. For this aim, let Ej and

Ej be rows and column vectors with all vanishing entries except the one in the i-th position which is
equal to the identity. These are the basis respectively in the vector space V and in the dual vector
space V∗. A basis of matrices that act on V is given by Eij = Ej ⊗ Ei. Then we can express the ZF
operators as rows and columns

A† = A†
α(p)E

α, A = Aα(p)Eα. (3.51)

We can then reabsorbing the permutation sign into the R matrix, which is defined as

R(p, q) = Rα3,α4
α1,α2

(p, q)Eα1
α3
⊗ Eα2

α4
= (−1)ϵα3 ϵα4Sα3,α4

α1,α2
(p, q)Eα1

α3
⊗ Eα2

α4
, (3.52)

hence the (3.50) takes the form

A†
(1)A

†
(2) = A†

(2)A
†
(1)R(12), (3.53)

where the subscript indices specify the subspace of the tensor product V ⊗ V on which the operators
act i.e.

A†
(1)A

†
(2) = A†

i (p1)A
†
j(p2)E

i ⊗ Ej . (3.54)

In order to complete the algebra it is necessary to manifest also the relations between the annihilation
operators. So the complete ZF algebra is

A†
(1)A

†
(2) = A†

(2)A
†
(1)R(12), A(1)A(2) = R(12)A(2)A(1),

A(1)A
†
(2) = A(2)R(21)A

†
(1) + δ(p1 − p2)I.

(3.55)

3.4.2 Yang-Baxter equation

From (3.50) we immediately deduce that

A†
(1)A

†
(2) = A†

(2)A
†
(1)R(12) = A†

(1)A
†
(2)R(21)R(12), (3.56)

and so the consistency condition

R(21)R(12) = R(12)R(21) = I, (3.57)

called braiding unitarity. The previous condition supplements the usual unitarity of the S-matrix as
well as for the R-matrix, which reads as

R(12)R
†
(12) = R†

(12)R(12) = I. (3.58)
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Since our aim is to highlight the factorization of the S-matrix, we should extend our argument to
3-particle states like

|p1, p2, p3⟩(in)α1,α2,α3
= A†

α1
(p1)A

†
α2
(p2)A

†
α3
(p3) |0⟩ ,

|p1, p2, p3⟩(out)α1,α2,α3
= (−1)

∑
k<l ϵαk

ϵαlA†
α1
(p3)A

†
α2
(p2)A

†
α3
(p1) |0⟩ .

(3.59)

Let us denote, as in the previous cases, A†
(1)A

†
(2)A

†
(3) a combination that act on V ⊗ V ⊗ V.

If we connect the creation operators with the annihilation ones then we find two different relations

A†
(1)A

†
(2)A

†
(3) = A†

(3)A
†
(2)A

†
(1)R(12)R(13)R(23),

A†
(1)A

†
(2)A

†
(3) = A†

(3)A
†
(2)A

†
(1)R(23)R(13)R(12),

(3.60)

where we denoted
R(12) = RklijE

i
k⊗E

j
l ⊗ I2, R(13) = RklijE

i
k ⊗ I2 ⊗ Ejl ,

R(23) = Rklij I2 ⊗ Eik ⊗ E
j
l .

(3.61)

Hence the equality of the products in (3.60) leads to the famous Yang-Baxter equation

R(12)R(13)R(23) = R(23)R(13)R(12), (3.62)

which can be rewritten in terms of S-matrix as

S(12)(p1, p2)S(13)(p1, p3)S(23)(p2, p3) = S(23)(p2, p3)S(13)(p1, p3)S(12)(p1, p2). (3.63)

It is crucial to recognize that both the left and the right side represent the 3-particles S-matrix and
the equation is just an equality for its factorization. So we end up with the crucial observation that
a necessary condition for the factorization of the S-matrix is that it must respect the Yang-Baxter
equation.

We conclude this chapter with some further observations. The first one is that the S-matrix in (3.63)
can be expanded in power of the coupling. This feature, typically happen in perturbation theory, and
as me mentioned in the chapter 2 we will consider only

S = I+
i

T
T. (3.64)

Using this expansion, (3.63) simply reads as

[T(12),T(13)] + [T(12),T(23)] + [T(13),T(23)] = 0, (3.65)

which basically is the classical version of the Yang-Baxter equation. The second is a summary of
what we had exposed, that will turn useful in future. If one has to deal with a classically integrable
field theory, the most convenient formalism in order to describe this property is the Lax one. The
infinite many conserved charges, once the theory is quantized, force the factorization of the S-matrix.
Hence the integrable structure is encoded into the structure of the scattering process. In particular,
a 2-dimensional quantum field theory is integrable if its scattering matrix respects the Yang-Baxter
equation. So, our final purpose is basically to extract the S-matrix and verify if it respects the previous
equation.



Chapter 4

AdS3 × S3

In this chapter we will focus on the integrability structure underlying the non linear σ-model with
target space AdS3 × S3. First of all we will review the classical integrability of this model, and then
we will move to the computation of the tree-level S-matrix. Finally we will check if the Yang-Baxter
equations are respected.

4.1 Classical integrability

In this section we will analyze the classical integrability structure of the non linear σ-model with
target space AdS3 × S3 according to [20]. First of all we point out that it is possible to use the coset
parametrization for this space that has the advantage of highlighting its integrable structure

AdS3 × S3 ≡ SO(2, 2)× SO(4)

SO(1, 2)× SO(3)
∼=
SU(1, 1)× SU(2)

SO(1, 2)× SO(3)
. (4.1)

In this formulation we have linked the group SO(2, 2) in (2.8) to SU(1, 1) as well as the group SO(4)
to SU(2).

We can think that SU(1, 1) are the isometries of AdS3 while SU(2) are the isometries of S3. In this
way the action of the string can be written as a non linear σ-model with base space the world-sheet
and with target space AdS3 × S3. This was first realized on the AdS5 × S5 background and then
specialized in our case. We also mention that this formalism work also in the case of superstring, in
which the coset are

AdS3 × S3 ≡ PSU(1, 1|2)× PSU(1, 1|2)
SO(1, 2)× SO(3)

. (4.2)

In particular PSU(1, 1|2) contains the bosonic subgroup SU(1, 1)×SU(2). The integrability structure
becomes evident in the case of superstring and clearly it also implies the integrability of their bosonic
part.

For the sake of simplicity, let us focus only on the S3 space that forms the full spacetime, indeed
all the following discussion can be extended also to the AdS3 part.

The S3 σ-model can be written as a principal chiral model, that was mentioned in chapter 3, for
the group SU(2). The action, in the light-cone coordinates, can be written as

S = −1

2

ˆ
d2σTr(J+J−), J = g−1dg ∈ su(2). (4.3)

J is the conserved current under the global left group transformation, and g ∈ SU(2). This action is
equivalent to the one of the symmetric space σ-model for

F

F0
=
SU(2)× SU(2)

SU(2)diag
. (4.4)

35
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In order to see this, let us analyze in more detail the last model. In particular the algebra f =
su(2)⊕ su(2) admits a Z2-decomposition in

f = f0 ⊕ f2, [fi, fj ] ⊂ fi+j, mod 4. (4.5)

where f0 is the algebra corresponding to the diagonal subalgebra of su(2) ⊕ su(2) while f2 is the
orthogonal complement. Using a block diagonal matrix realization for the group F , then its algebra
elements read as

A =

(
A 0
0 Ā

)
∈ f, A, Ā ∈ su(2). (4.6)

In particular, using the projectors into the graded subspaces, we can then express the decomposition
as

P0A =

(
A0 0
0 A0

)
=

1

2

(
A+ Ã 0

0 A+ Ã

)
,

P2A =

(
A2 0
0 −A2

)
=

1

2

(
A− Ã 0

0 Ã − A

)
,

(4.7)

with P0, P2 two projectors that project into f0 and f2 respectively. From the previous, it is manifest
that

Tr(fifj) = 0, i+ j ̸= 0 mod 4, (4.8)

since, for instance

Tr(f0f2) =
1

4
Tr

((
A+ Ã 0

0 A+ Ã

)(
A− Ã 0

0 Ã − A

))
= A2 − Ã2 −A2 + Ã2 = 0. (4.9)

The advantage is that the action can be rewritten as

S = −
ˆ
d2σTr(J+(P2J−)), (4.10)

where

J = f−1df =

(
J 0

0 J̃

)
=

(
g−1dg 0

0 g̃−1dg̃

)
,

g, g̃ ∈ SU(2), f ∈ SU(2)× SU(2), J, J̃ ∈ su(2).

(4.11)

Then it is possible to recover (4.3), setting J̃ = 0 and using the previous expressions for the projectors
and for J in (4.10).

Now, the equation of motion following from the action (4.10) is

∂+(P2J−) + ∂−(P2J+) + [J+, P2J−] + [J−, P2J+] = 0, (4.12)

where J is the left invariant current and so it respects the flatness condition

∂−J+ − ∂+J− + [J−,J+] = 0. (4.13)

It now possible to project the flatness condition and the equation of motion into f0 and f2 using the
projectors, and then eventually to prove that the resulting equations follow from the flatness condition
of the following Lax connection

L± = J0± + z±2J2±. (4.14)

This basically proves the integrability of the non linear S3 sigma model. Moreover, this formulation
will be the starting point for the deformed background analysis. We also pointed out that the above
construction can be analytically continued from S3 to AdS3 or equivalently from SU(2) to SU(1, 1).
Indeed all the formulas written in terms of algebra-value fields, will be the same except for some minus
signs that take into account the correct signature of the metric.



37 4.AdS3 × S3

The next step, is to give an explicit expression for the metric as well as for the action. We will use
the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.15)

With this, the following parametrization of f ∈ SU(2)× SU(2)

f =

⎛⎜⎜⎝
exp
(
iσ3

2 (ϕ+ θ) + iσ1

2 arcsin(r)
)

0

0 exp
(
iσ3

2 (θ − ϕ)− iσ1

2 arcsin(r)
)

,

⎞⎟⎟⎠ (4.16)

gives the non linear σ-model with target space described by the metric

ds2S3 =
dr2

1− r2
+ (1− r2)dϕ2 + r2dθ2, (4.17)

which matches (2.11). Moreover, if we parametrize f ∈ SU(1, 1)× SU(1, 1) as

f =

⎛⎝exp(iσ3

2 (ψ + t) + iσ1

2 arcsinh(ρ)
)

0

0 exp
(
iσ3

2 (ψ − t)− iσ1

2 arcsinh(ρ)
)⎞⎠ (4.18)

then, this gives the non linear σ-model with target space described by the metric

ds2AdS3
=

dρ2

1 + ρ2
− (1 + ρ2)dt2 + ρ2dψ2, (4.19)

which matches (2.15). Then we can deduce that the non linear σ-model in AdS3×S3, with the metric

ds2 = ds2S3 + ds2AdS3
, (4.20)

is a classical integrable field theory, since the sphere can be connected with the anti de Sitter space and
we had proven that the equation of motion for S3 σ-model can be recast as the flatness condition for
a Lax connection. At this point we can also clarify the meaning of the fact that the AdS3 non linear
σ-model can be obtained by analytically continuing the S3 one. Indeed the analytic continuation from
S3 to AdS3 can be implemented at the level of the coordinates as

r → −iρ, ϕ→ t, θ → ψ. (4.21)

4.2 Quadratic Hamiltonian

The starting point is the metric

ds2 =
dρ2

1 + ρ2
− (1 + ρ2)dt2 + ρ2dψ2 +

dr2

1− r2
+ (1− r2)dϕ2 + r2dθ2, (4.22)

where
r ∈ [0, 1], θ ∈ (−π, π], ϕ ∈ (−π, π],
ρ ∈ [0,∞), ψ ∈ [−π, π], t ∈ (−∞,∞).

(4.23)

We further used the following change of coordinates

ρ→
√
Z2
1 + Z2

2 , r →
√
Y 2
1 + Y 2

2 , ψ → − arctan
(Z2

Z1

)
, θ → arctan

(Y2
Y1

)
. (4.24)
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With this, the metric tensor becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1− Z2
1 − Z2

2 0 0 0 0 0

0
1+Z2

2

1+Z2
1+Z

2
2
− Z1Z2

1+Z2
1+Z

2
2

0 0 0

0 − Z1Z2

1+Z2
1+Z

2
2

1+Z2
1

1+Z2
1+Z

2
2

0 0 0

0 0 0 1− Y 2
1 − Y 2

2 0 0

0 0 0 0 − −1+Y 2
2

−1+Y 2
1 +Y 2

2
− Y1Y2

−1+Y 2
1 +Y 2

2

0 0 0 0 − Y1Y2

−1+Y 2
1 +Y 2

2
− −1+Y 2

1

−1+Y 2
1 +Y 2

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.25)

In the previous we have identified as transverse fields Y1, Y2 in the case of S3 and Z1, Z2 in the case
of AdS3.

Now, since in the first order formalism it is necessary to find the momenta conjugate to the canonical
variables, let us write the Lagrangian in the action (2.22) exploiting the parametrization given above
and expanding it up to second order in the fields and in their derivatives. Moreover, we further set the
B-field to zero

L(2) = −T
2
γαβ

(
− (1 + Z2)∂αt∂βt+ ∂αZi∂βZi + (1− Y 2)∂αϕ∂βϕ+ ∂αYi∂βYi

)
. (4.26)

In the previous expression we have implicit used the Einstein notation for the Y and Z fields, namely
∂αZi∂βZi = ∂αZ1∂βZ1 + ∂αZ2∂βZ2 and Z2 = Z2

1 + Z2
2 . The conjugate momenta are defined as

Pyi =
δL(2)

δ∂τY i
= Ẏi, Pzi =

δL(2)

δ∂τZi
= Żi. (4.27)

With this, it is then possible to introduce the first order formalism as we exposed in the section 2.2.
Hence rescaling the fields on the worldsheet as in (2.46), it is then possible to expand (2.41) taking
the large string tension limit. In particular the quadratic term is

H(2) =
1

2

(
P 2
z1 + P 2

z2 + P 2
y1 + P 2

y2 + Y 2
1 + Y 2

2 + Z2
1 + Z2

2 + Y ′2
1 + Y ′2

2 + Z ′2
1 + Z ′2

2

)
, (4.28)

where

Y ′
i = ∂σYi, Z ′

i = ∂σZi. (4.29)

As we expected, H(2) depends only on the transverse fields, and it is the free Hamiltonian of four
massive bosons with unitary mass. As we mentioned before, the Yi coordinates describe the fields
associated to the sphere, while the Zi coordinates describe the fields related to the anti-de Sitter
space.

It is convenient to introduce two complex fields, which have the advantage of leading to a more
readable perturbative Hamiltonian. Clearly, also the derivatives of the fields change, in particular

Z =
−Z2 + i Z1√

2
, Z̄ =

−Z2 − i Z1√
2

, Ȳ =
−Y1 − i Y2√

2
, Y =

−Y1 + i Y2√
2

,

Pz =
−Pz2 + i Pz1√

2
, P̄z =

−Pz2 − i Pz1√
2

, P̄y =
−Py1 − i Py2√

2
, Py =

−Py1 + i Py2√
2

,

Z ′ =
−Z ′

2 + i Z ′
1√

2
, Z̄ ′ =

−Z ′
2 − i Z ′

1√
2

, Ȳ ′ =
−Y ′

1 − i Y ′
2√

2
, Y ′ =

−Y ′
1 + i Y ′

2√
2

.

(4.30)

Whit this redefinitions, the quadratic part becomes

H(2) = PyP̄y + PzP̄z + Y Ȳ + ZZ̄ + Y ′Ȳ ′ + Z ′Z̄ ′. (4.31)

This is the free Hamiltonian of two complex fields, whose real and imaginary components encode
the previous real degrees of freedoms. In order to diagonalized H(2), we can introduce the following
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oscillators expansion

Z(σ, τ) =

ˆ
dp

(
e−iω(p)τ+ipσ√

2g(p)
az(p) +

eiω̄(p)τ−ipσ√
2ḡ(p)

a†z̄(p)

)
,

Y (σ, τ) =

ˆ
dp

(
e−iω(p)τ+ipσ√

2g(p)
ay(p) +

eiω̄(p)τ−ipσ√
2ḡ(p)

a†ȳ(p)

)
,

Z̄(σ, τ) =

ˆ
dp

(
e−iω̄(p)τ+ipσ√

2ḡ(p)
az̄(p) +

eiω(p)τ−ipσ√
2g(p)

a†z(p)

)
,

Ȳ (σ, τ) =

ˆ
dp

(
e−iω̄(p)τ+ipσ√

2ḡ(p)
aȳ(p) +

eiω(p)τ−ipσ√
2g(p)

a†y(p)

)
.

(4.32)

Moreover, the previous ansatz implies also that

Py(σ, τ) =

ˆ
dp

(
− ie

−iω(p)τ+ipσ√
2g(p)

ω(p)ay(p) + i
eiω̄(p)τ−ipσ√

2ḡ(p)
ω̄(p)a†ȳ(p)

)
,

P̄y(σ, τ) =

ˆ
dp

(
− ie

−iω̄(p)τ+ipσ√
2ḡ(p)

ω̄(p)aȳ(p) + i
eiω(p)τ−ipσ√

2g(p)
ω(p)a†y(p)

)
,

Y ′(σ, τ) =

ˆ
dp

(
ip
e−iω(p)τ+ipσ√

2g(p)
ay(p)− ip

eiω(p)τ−ipσ√
2ḡ(p)

a†ȳ(p)

)
,

Ȳ ′(σ, τ) =

ˆ
dp

(
ip
e−iω̄(p)τ+ipσ√

2ḡ(p)
aȳ(p)− ip

eiω(p)τ−ipσ√
2g(p)

a†y(p)

)
,

(4.33)

and similar for the Z ′, Z̄ ′, Pz, P̄z. Using the equation of motion, we find that

ω(p) =
√

1 + p2, ω̄(p) =
√

1 + p2. (4.34)

Moreover, if

g(p) = ω(p), ḡ(p) = ω̄(p) = ω(p), (4.35)

then, the fields and their canonical conjugate momenta satisfy the canonical commutation relations

[az(p), a
†
z(p

′)] = δ(p− p′), [ay(p), a
†
y(p

′)] = δ(p− p′),

[az̄(p), a
†
z̄(p

′)] = δ(p− p′), [aȳ(p), a
†
ȳ(p

′)] = δ(p− p′),
(4.36)

From the previous one can deduce that the creation operators are a†i while the annihilation ones are
the ai. In particular

oscillator particle
a†z(p) |Z(p)⟩
a†z̄(p) |Z̄(p)⟩
a†y(p) |Y (p)⟩
a†ȳ(p) |Ȳ (p)⟩

Table 4.1: Particles created by the corresponding creation operators

We are now able to find the expansion of the quadratic Hamiltonian which is

H(2) =

ˆ
dp ω(p)

(
a†z(p)az(p) + a†y(p)ay(p) + a†z̄(p)az̄(p) + a†ȳ(p)aȳ(p)

)
. (4.37)
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4.3 S-matrix for AdS3 × S3

With the previous considerations it is then possible to extract the S-matrix. This process essentially
boils down to finding the interaction Hamiltonian and rewriting it in terms of oscillators. All the
conceptual steps will be valid also in the deformed case. Thus, the expansion of (2.41), with the
substitution (4.30) leads to the following a-gauge quartic Hamiltonian

H(4) =
1

2

(
− P 2

y P̄
2
y − 2PyP̄yPzP̄z − P 2

z P̄
2
z − P̄ 2

y Y
2 + P̄ 2

y Y
′2 − 4PyP̄yY Ȳ − 2PzP̄zY Ȳ − P 2

y Ȳ
2 + 3Y 2Ȳ 2

+ Y ′2Ȳ 2 − 2PzP̄zY
′Ȳ ′ + P 2

y Ȳ
′2 + Y 2Ȳ ′2 − Y ′2Ȳ ′2 + P̄ 2

z Z
2 + 2P̄yP̄zY

′Z ′ + 2PyP̄zȲ
′Z ′

+ P̄ 2
z Z

′2 + 2PyP̄yZZ̄ + 4PzP̄zZZ̄ + 2Y Ȳ ZZ̄ + 2Y ′Ȳ ′ZZ̄ + P 2
z Z̄

2 − Z2Z̄2 − Z ′2Z̄2

+ 2PyPzȲ
′Z̄ ′ − 2PyP̄yZ

′Z̄ ′ − 2Y Ȳ Z ′Z̄ ′ − 2Y ′Ȳ ′Z ′Z̄ ′ + P 2
z Z̄

′2 − Z2Z̄ ′2 + 2P̄yPzY
′Z̄ ′

− Z ′2Z̄ ′2 + 2
(
− (Y Ȳ + ZZ̄)2 + ((Py − Y ′)(P̄y − Ȳ ′) + (Pz − Z ′)(P̄z − Z̄ ′))

((Py + Y ′)(P̄y + Ȳ ′) + (Pz + Z ′)(P̄z + Z̄ ′))
)
a
)
.

(4.38)

The inclusion of the modes decomposition into the previous expression leaves several integrals in the
variables σ, τ, p1, p2, p3, p4. The integrals in τ and σ imply momentum and energy conservations
since their integrands are like
ˆ
dτdσe−iτ(ω(p1)+ω(p2)−ω(p3)−ω(p4))eiσ(p1+p2−p3−p4) ∝ δ(ω(p1)+ω(p2)−ω(p3)−ω(p4))δ(p1+p2−p3−p4).

(4.39)
Clearly, the Dirac delta must be then integrated in the momenta, and this operation yields a Jacobian

Ω(p1, p2) =
1

ω(p1)′ − ω(p2)′
(4.40)

which depends on the derivative of the dispersion relation. In particular, in this case we have ω(p) =√
1 + p2, which basically gives

Ω(p1, p2) =
ω(p1)ω(p2)

ω(p1)p2 − ω(p2)p1
. (4.41)

Eventually, we are left with a sum of expressions of the form

H(4) = · · ·+
ˆ
dp1dp2 T

kl
ij a

†
k(p1)a

†
l (p2)a

i(p1)a
j(p2) + . . . , (4.42)

where the flavors {i, j, k, l} ranging in {y, ȳ, z, z̄}. As in the flat case, T klij is an elements of the
tree-level T -matrix and it turns out that it is diagonal i.e. takes the form

T klij = δki δ
l
jTij . (4.43)

Clearly, the explicit structure of the non vanishing elements defines the scattering processes, but apart
from that, the crucial property is the diagonal form of the scattering matrix. Indeed the Yang-Baxter
equation is automatically satisfied, since one of the elements in which the the 3-body scattering matrix
is factorized can be obtain via the following tensor product

S12 = S(p1, p2)⊗ I4. (4.44)

For this reason the Yang-Baxter equation can be written in terms of the S-matrix as

S(p2, p3)⊗ I4 · I4 ⊗ S(p1, p3) · S(p1, p2)⊗ I4 = I4 ⊗ S(p1, p2) · S(p1, p3)⊗ I4 · I4 ⊗ S(p2, p3). (4.45)

From the T -matrix, whose non vanishing elements are (4.50), it is then easy to construct the S matrix
as

S = I+
i

T
T, (4.46)
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which satisfies the (4.45). We conclude this chapter by mentioning also that in the limit a → 1
2 we

obtain the same results that can be found in [13] for the bosonic sector. Moreover in the literature
there are also the matrix elements in the case of generic a as in [10]. In this paper T.Klose et al found
that the matrix elements involved in the scatterings are

Y (p1)Y (p2)→ Y (p1)Y (p2)

TY Y→Y Y =
1

2

(
(1− 2a)(ω(p2)p1 − ω(p1)p2) +

(p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
+

2p1p2
ω(p2)p1 − ω(p1)p2

,

Z(p1)Z(p2)→ Z(p1)Z(p2)

TZZ→ZZ =
1

2

(
(1− 2a)(ω(p2)p1 − ω(p1)p2)−

(p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
− 2p1p2
ω(p2)p1 − ω(p1)p2

,

Z(p1)Y (p2)→ Z(p1)Y (p2)

TZY→ZY =
1

2

(
(1− 2a)(ω(p2)p1 − ω(p1)p2) +

p21 − p22
ω(p2)p1 − ω(p1)p2

)
.

(4.47)

It is also crucial to notice that the elements of the scattering matrix (4.50) can be related together.
Indeed in the case of a→ 1

2 , we can connected

TY Y = −TZ̄Z̄ , TȲ Ȳ = −TZZ , TȲ Y = −TZZ̄ . (4.48)

This fact basically is related to the analytic continuation (4.21) between AdS3 and S3. Moreover,
another crucial consideration is related to the dependence of (4.50) on the a parameter. Indeed, the
previous dependence is quite general, and in particular one can obtains the S-matrix in the general
a-gauge, simply shifting the computation performed at a = 1

2

Tij(p1, p2) = Tij(p1, p2)|a= 1
2
− (a− 1

2
)(p1ω(p2)− p2ω(p1)). (4.49)
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The result of our computations for the matrix elements are presented in the following

TZZ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
− (p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
− 2p1p2
ω(p2)p1 − ω(p1)p2

,

TY Y =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

(p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
+

2p1p2
ω(p2)p1 − ω(p1)p2

,

TZY =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p21 − p22
ω(p2)p1 − ω(p1)p2

)
,

TY Z =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p22 − p21
ω(p2)p1 − ω(p1)p2

)
,

TZ̄Z̄ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
− (p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
− 2p1p2
ω(p2)p1 − ω(p1)p2

,

TȲ Ȳ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

(p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
+

2p1p2
ω(p2)p1 − ω(p1)p2

,

TZ̄Ȳ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p21 − p22
ω(p2)p1 − ω(p1)p2

)
,

TȲ Z̄ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p22 − p21
ω(p2)p1 − ω(p1)p2

)
,

TZZ̄ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
− (p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
− 2p1p2
ω(p2)p1 − ω(p1)p2

,

TY Ȳ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

(p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
+

2p1p2
ω(p2)p1 − ω(p1)p2

,

TZȲ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p21 − p22
ω(p2)p1 − ω(p1)p2

)
,

TY Z̄ =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p22 − p21
ω(p2)p1 − ω(p1)p2

)
,

TZ̄Z =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
− (p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
− 2p1p2
ω(p2)p1 − ω(p1)p2

,

TȲ Y =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

(p1 − p2)2

ω(p2)p1 − ω(p1)p2

)
+

2p1p2
ω(p2)p1 − ω(p1)p2

,

YZ̄Y =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p21 − p22
ω(p2)p1 − ω(p1)p2

)
,

TȲ Z =
1

2

(
(1− 2a)

(
ω(p2)p1 − ω(p1)p2

)
+

p22 − p21
ω(p2)p1 − ω(p1)p2

)
.

(4.50)



Chapter 5

Deformation of AdS3 × S3

In this chapter we will analyze the integrability structure of the bosonic string non linear σ-model in
the AdS3×S3 deformed background. First of all we will review the formulation of the deformed model
using the same structure exposed in the previous chapter and then we will move to the perturbative
analysis.

5.1 Classical Integrability

All this discussion is based on [20]. Our starting point is the coset realization presented in section
4.1. Also in this case the target spacetime is the product of two maximally symmetric spaces, but
with some parameters that take into account the deformations. Thus, we can still focus only on the
deformation of the σ-model formulated on the sphere and study its possible deformations. Then we
can still perform an analytic continuation from S3 to AdS3. The bi-Yang-Baxter deformation of the
σ-model formulated on SU(2) is described by the action

S = −1

2

ˆ
d2σTr

(
J+

1

1− αRg − βRg̃
J−

)
(5.1)

where Rg = Ad−1
g RAdg and R is a solution of the modified classical Yang-Baxter equation

[RM,RN ] +R([RM,N ] + [M,RN ]) = [M,N ], (5.2)

where M, N are elements of the algebra. Moreover, in (5.1), α and β are two real parameters and J
is the left-invariant current

J = g−1dg, g ∈ SU(2). (5.3)

Also in this case the action can be recast as the action of the symmetric space coset sigma model.
Let us consider the group-valued field f ∈ SU(2)× SU(2), and a solution R of the modified classical
Yang-Baxter equation for the algebra su(2)⊕ su(2). The action for this model reads as

S = −
ˆ
d2σTr

(
J+
(
P2

1

1− IχL,R
RfP2

J−
))
, (5.4)

where

IχL,R
=

(
χLI 0
0 χRI

)
. (5.5)

Now we want to connect the deformed action for the symmetric space σ-model with the one of the
bi-Yang-Baxter deformation. In order to do this, it is useful to consider

R =

(
R 0
0 ±R

)
, J =

(
J 0

0 J̃

)
, J = g−1dg, J̃ = g̃−1dg̃. (5.6)

43
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Then including this expressions in (5.4), with the further identification χL = 2α, χR = ±2β, it is
possible to obtain the following action

S = −1

2

ˆ
d2σTr

(
(J+ − J̃+)

1

1− αRg − βRg̃
(J− − J̃−)

)
. (5.7)

In particular it turn out that the previous action is obtained promoting SU(2) to a gauge group in
(5.1) and so using the gauge fixing condition J̃ = 0 in (5.7) it is possible to recover (5.1). At this
point we can investigate the classical integrability structure using the same procedure used in 4.1. The
equation of motion which follows from the variation of the action (5.4) is

∂+(P2O
−1
− J−) + [J+, P2O

−1
− J−] + ∂−(P2O

−1
+ J+) + [J−, P2O

−1
+ J+]

+ IχL,R
([RfP2O

−1
− J−, P2O

−1
+ J+] + [P2O

−1
− J−, RfP2O

−1
+ J+]) = 0,

(5.8)

where
O± ≡ 1± IχL,R

RfP2. (5.9)

J satisfies the flatness condition

∂−J+ − ∂+J− + [J−,J+] = 0. (5.10)

The next step should be the projection into the Z2 decomposition of the algebra using the projectors.
For this aim it is useful to define

K± = O−1
± J±, K =

(
K 0

0 K̃

)
. (5.11)

With this, the equation of motion an the flatness condition become

Ξ = ∂+(P2K−) + [K+, P2K−] + ∂−(P2K+) + [K−, P2K+] = 0,

∂−K+ − ∂+K− + [K+,K−] + I2χL,R
[P2K−, P2K+] + IχL,R

RfΞ = 0.
(5.12)

It is also useful to define

K̃0 = K0 + χ+χ−K2, K̃2 =
√
1 + χ2

+

√
1 + χ2

−K2, (5.13)

where

χ± =
1

2
(χL ± χR). (5.14)

It is then possible to prove that K̃0 and K̃2 satisfy the equation of motion and the flatness condition
that, in the case of the undeformed model, were satisfied by J0 and J2, namely

∂+K̃2− + [K̃0+, K̃2−] + ∂−K̃2+ + [K̃0−, K̃2+] = 0,

∂−K̃0+ − ∂+K̃0− + [K̃0−, K̃0+] + [K̃2−, K̃2+] = 0,

∂−K̃2+ + [K̃0−, K̃2+]− ∂+K̃2− − [K̃0+, K̃2−] = 0.

(5.15)

The previous equations follow from the flatness condition of a Lax connection defined as

L± = K̃0± + z±2K̃2±, (5.16)

or equivalently

L± = K0± + χ+χ−K2± + z±2
√
1 + χ2

+

√
1 + χ2

−K2±. (5.17)

Thus, at the end, we are able to recast the equation of motion as the flatness condition for a Lax
connection. This basically is sufficient to ensure the classical integrability.

As in the previous chapter, in order to explicitly perform perturbative computations we need to
have the expression of the action. For this aim, it is crucial to have the spacetime metric. If we use
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(4.18) for the AdS3 part and (4.16) for the S3 one and we insert this expressions in (5.4) then we
obtain the non linear σ-model with target space described by the metrics

ds2S3 =
1

1 + χ2
−(1− r2) + χ2

+r
2

(
dr2

1− r2
+ (1− r2)

(
1 + χ2

−(1− r2)
)
dϕ2

+ r2(1 + χ2
+r

2)dθ2 + 2χ−χ+r
2(1− r2)dϕdθ

)
,

ds2AdS3
=

1

1 + χ2
−(1 + ρ2)− χ2

−ρ
2

(
dρ2

1 + ρ2
− (1 + ρ2)

(
1 + χ2

−(1 + ρ2)
)
dt2

+ ρ2(1− χ2
+ρ

2)dψ2 + 2χ−χ+ρ
2(1 + ρ2)dtdψ

)
.

(5.18)

5.2 One parameter deformation

Here, we will set one the previous deformation parameters to zero in order to recover the so called
η-deformation of AdS3×S3. The S-matrix of string in η-deformed AdS5×S5 can be found in [17]. In
this section we will treat the lower dimensional case.

The starting point is to write down the metric. In particular we recover the line element used in
the previous reference by sending to zero one of the deformation parameters present in (5.18). We can
note that χ− → 0, reproduces the line element of the η-deformed background

ds2 =
1

1 + χ2r2

( dr2

1− r2
+ (1− r2)dϕ2 + r2(1 + χ2r2)dθ2

)
+

1

1− χ2ρ2

( dρ2

1 + ρ2
− (1 + ρ2)dt2 + ρ2(1− χ2ρ2)dψ2

)
,

(5.19)

where we also set χ+ = χ.

Figure 5.1: [31]. η deformation for the AdS2 space (left) and for the S2 space (right). In particular, the
first two figures are obtained considering χ = 0 while the last two are obtained with χ = 1
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As in the undeformed case, it is convenient to use the following further change of coordinates

ρ→
√
Z2
1 + Z2

2 , r →
√
Y 2
1 + Y 2

2 , ψ → − arctan
(Z2

Z1

)
, θ → arctan

(Y2
Y1

)
. (5.20)

This produce the following non vanishing elements of the metric tensor

Gtt =
1 + Z2

1 + Z2
2

−1 + (Z2
1 + Z2

2 )χ
2
, Gz1z1 =

−1 + Z4
2χ

2 + Z2
2 (−1 + χ2 + Z2

1χ
2)

(1 + Z2
1 + Z2

2 )(−1 + Z2
1χ

2 + Z2
2χ

2)
,

Gz1z2 =
−Z3

1Z2χ
2 + Z1Z2(1− (1 + Z2

2 )χ
2)

(1 + Z2
1 + Z2

2 )(−1 + Z2
1χ

2 + Z2
2χ

2)
,

Gz2z2 =
−1 + Z4

1χ
2 + Z2

1 (−1 + χ2 + Z2
2χ

2)

(1 + Z2
1 + Z2

2 )(−1 + Z2
1χ

2 + Z2
2χ

2)
,

Gϕϕ = − −1 + Y 2
1 + Y 2

2

1 + (Y 2
1 + Y 2

2 )χ
2
, Gy1y1 =

−1 + Y 4
2 χ

2 + Y 2
2 (1− χ2 + Y 2

1 χ
2)

(−1 + Y 2
1 + Y 2

2 )(1 + Y 2
1 χ

2 + Y 2
2 χ

2)
,

Gy1y2 = − Y 3
1 Y2χ

2 + Y1Y2(1 + (−1 + Y 2
2 )χ

2)

(−1 + Y 2
1 + Y 2

2 )(1 + Y 2
1 χ

2 + Y 2
2 χ

2)
,

Gy2y2 =
−1 + Y 4

1 χ
2 + Y 2

1 (1− χ2 + Y 2
2 χ

2)

(−1 + Y 2
1 + Y 2

2 )(1 + Y 2
1 χ

2 + Y 2
2 χ

2)
.

(5.21)

In the previous expressions we have identified as transverse fields Y1, Y2 in the case of S3 and Z1, Z2

in the case of AdS3.

5.2.1 Quadratic Hamiltonian

The first order formalism allows us to extract the perturbative Hamiltonian, but as a preliminary step
it is necessary to deduce the conjugate momenta. We start our analysis using the usual string action
in a generic spacetime with the B-field set to zero

S = −T
2

ˆ
dσdτγαβ

(
∂αX

M∂βX
NGMN (X)

)
. (5.22)

Let us first expand the metric elements (5.21) up to quartic order in fields, and insert the resulting
expressions in the previous action, taking into account only the quadratic terms in the fields and in
their derivatives. This procedure leads to the following quadratic Lagrangian

L(2) = −T
2
γαβ

(
−
(
1 + Z2(1 + χ2)

)
∂αt∂βt+ ∂αZi∂βZi +

(
1− Y 2(1 + χ2)

)
∂αϕ∂βϕ

+ ∂αYi∂βYi

)
,

(5.23)

where, as in the undeformed case, we used ∂αYi∂βYi = ∂αY1∂βY1 + ∂αY2∂βY2 and also Y 2 = Y 2
1 + Y 2

2 .
From this we can extract the conjugate momenta to the canonical variables

Pyi ≡
∂L(2)

∂∂τYi
= Ẏi, Pzi ≡

∂L(2)

∂∂τZi
= Żi. (5.24)

Thus, we can use the first order formalism introduced in chapter 2, and extract for instance the
quadratic Hamiltonian in the general light-cone gauge

H(2) =
1

2

(
P 2
y1 +P

2
y2 +P

2
z1 +P

2
z2 +(Y 2

1 +Y 2
2 )(1+χ

2)+(Z1
1+Z

2
2 )(1+χ

2)+Y ′2
1 +Y ′2

2 +Z ′2
1 +Z ′2

2

)
. (5.25)

This is the free Hamiltonian of 2 massive bosons described by the fields Y1, Y2 coming from the
sphere, and 2 massive bosons described by the fields Z1, Z2 coming from the anti-de Sitter space.
Before moving to a further change of coordinates let us consider the equations of motion that follows
from the (5.23), in particular let us set the worldsheet metric to be diagonal with γττ = −1 and
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γσσ = 1 and also t = ϕ = τ which is satisfied in the uniform light-cone gauge (2.44). With this the
Euler-Lagrange equations , that follow from (5.23), are

∂α
∂L(2)

∂∂αY i
− ∂L(2)

∂Y i
= ∂α∂

αYi + (1 + χ2)Yi = 0,

∂α
∂L(2)

∂∂αZi
− ∂L(2)

∂Zi
= ∂α∂

αZi + (1 + χ2)Zi = 0.

(5.26)

If we consider the plane wave solution as Yi ≈ e−iω(p)t+ipσ and Zi ≈ e−iω(p)t+ipσ, then we find that
the dispersion relation is

ω(p) =
√
p2 + (1 + χ2). (5.27)

So, as we can deduce from the Hamiltonian, the mass of the bosons is m2 = (1 + χ2).

Let us consider the same change of coordinates that we have introduced in the previous chapter in
(4.30)

Z =
−Z2 + i Z1√

2
, Z̄ =

−Z2 − i Z1√
2

, Ȳ =
−Y1 − i Y2√

2
, Y =

−Y1 + i Y2√
2

,

Pz =
−Pz2 + i Pz1√

2
, P̄z =

−Pz2 − i Pz1√
2

, P̄y =
−Py1 − i Py2√

2
, Py =

−Py1 + i Py2√
2

,

Z ′ =
−Z ′

2 + i Z ′
1√

2
, Z̄ ′ =

−Z ′
2 − i Z ′

1√
2

, Ȳ ′ =
−Y ′

1 − i Y ′
2√

2
, Y ′ =

−Y ′
1 + i Y ′

2√
2

,

(5.28)

This complex coordinates have the advantage to lead a more convenient form for the future quartic
Hamiltonian. So, H(2) becomes

H(2) = PyP̄y + PzP̄z + Y Ȳ (1 + χ2) + ZZ̄(1 + χ2) + Y ′Ȳ ′ + Z ′Z̄ ′. (5.29)

The diagonalizaton of (5.29) as well as the solution of the equations of motion (once the complex fields
are introduced) are archived via the same ansatz on the oscillators expansion used in the undeformed
case 4.32. Also in this case, from the equations of motion for the complex fields, we deduce that
ω(p) = ω̄(p).

Since the momenta is simply the time derivative of the corresponding conjugate variables, we have
also that the momenta and the sigma derivative ( ∂σY = Y ′ ) of the fields are the same with respect
to the undeformed case. Moreover the commutation relations between the fields are transferred to
the creation and annihilation operators, once 4.32 are included. In particular the following canonical
commutation relations are obtained requiring the equality between the normalization coefficients ḡ(p) =
g(p)

[az̄(p), a
†
z̄(p

′)] = δ(p− p′), [aȳ(p), a
†
ȳ(p

′)] = δ(p− p′),
[az(p), a

†
z(p

′)] = δ(p− p′), [ay(p), a
†
y(p

′)] = δ(p− p′).
(5.30)

Once the oscillators expansion is included in the (5.29) we obtain

H(2) =

ˆ
dp ω(p)

(
a†z̄(p)az̄(p) + a†ȳ(p)aȳ(p) + a†z(p)az(p) + a†y(p)ay(p)

)
, (5.31)

which is the correct form of the free Hamiltonian of two complex bosons.
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5.2.2 Quartic Hamiltonian

Now, it is possible to extract the quartic Hamiltonian from the general (2.41) which in the η-deformed
case and in the general a-gauge is

H(4) =
1

8

(
− 16PyP̄yY Ȳ + 16PzP̄zZZ̄ +m2

(
8PyP̄yZZ̄ − 8PzP̄zY Ȳ + 8Y ′Ȳ ′ZZ̄ − 8Y Ȳ Z ′Z̄ ′

+ 8m2Y Ȳ ZZ̄(1− 2a)− 4Y 2Ȳ 2(−3 + 2m2a+ χ2)− 4Z2Z̄2(1 + 2a+ (−3 + 2a)χ2)
)

+ (1− 2a)
(
4P̄ 2

z Z
′2 + 4P̄ 2

y Y
′2 + 4P 2

y Ȳ
′2 + 8P̄yP̄zY

′Z ′ + 8PyP̄zȲ
′Z ′ + 8P̄yPzY

′Z̄ ′

+ 8PyPzȲ
′Z̄ ′ + 4P 2

z Z̄
′2 − 4P 2

y P̄
2
y − 8PyP̄yPzP̄z − 4P 2

z P̄
2
z − 8PzP̄zY

′Ȳ ′

− 8Y ′Ȳ ′Z ′Z̄ ′ − 4Z ′2Z̄ ′2 − 4Y ′2Ȳ ′2 − 8PyP̄yZ
′Z̄ ′
)
− 16χ2

(
Y Y ′Ȳ Ȳ ′ − ZZ ′Z̄Z̄ ′

)
+ 4(χ2 − 1)

(
P̄ 2
y Y

2 + P 2
y Ȳ

2 − Y ′2Ȳ 2 − Y 2Ȳ ′2 − P̄ 2
z Z

2 − P 2
z Z̄

2 + Z ′2Z̄2 + Z2Z̄ ′2
))
.

(5.32)
Hence, in order to find the S-matrix we must include the oscillators expansions in the previous for-
mula. As we found for the undeformed model, this process yields several integrals in the variables
σ, τ, p1, p2, p3, p4.

The integrations on τ and σ give a product of Dirac delta, that still gives the same Jacobian
obtained in the undeformed case

Ω(p1, p2) =
ω(p1)ω(p2)

p1ω(p2)− p2ω(p1)
, (5.33)

with a different dispersion relation. Eventually, we obtained the following expression

H(4) = · · ·+
ˆ
dp1dp2T

kl
ij (p1, p2)a

†
k(p1)a

†
l (p2)a

i(p1)a
j(p2) + . . . , (5.34)

from which we deduced the scattering matrix elements. In particular, in the case of a = 1
2

TZZ =− 1

2

(p1 − p2)2 + χ2(ω(p1)− ω(p2))2 + 4p1p2 + 4χ2ω(p1)ω(p2)

ω(p2)p1 − ω(p1)p2
,

TZ̄Z̄ =− 1

2

(p1 − p2)2 + χ2(ω(p1)− ω(p2))2 + 4p1p2 + 4χ2ω(p1)ω(p2)

ω(p2)p1 − ω(p1)p2
,

TZ̄Z =− 1

2

(p1 − p2)2 + χ2(ω(p1)− ω(p2))2

ω(p2)p1 − ω(p1)p2
,

TZȲ =
1

2

m2(p22 − p21)
ω(p2)p1 − ω(p1)p2

,

TZY =
1

2

m2(p22 − p21)
ω(p2)p1 − ω(p1)p2

,

TZ̄Y =
1

2

m2(p22 − p21)
ω(p2)p1 − ω(p1)p2

,

TZ̄Ȳ =
1

2

m2(p22 − p21)
ω(p2)p1 − ω(p1)p2

.

(5.35)

In the previous chapter we pointed out that it is sufficient to compute the the S-matrix elements with
a = 1

2 and then obtain the general ones simply by the shift (4.49), moreover all the other matrix
elements can be obtained by the analytic continuation (4.21). However, also in this case the S-matrix
is diagonal, and hence it respects the Yang-Baxter equation 4.45.

5.3 Two parameter deformation

Let us move to the most general case of AdS3×S3 with two deformation parameters. The line element
is the sum of the one that comes from the sphere and the one that comes from the anti-de Sitter space
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(5.18). Using the same strategy used before, the first operation that we performed is the change of
coordinates (5.20). This leads to a quite complicated expression for the metric tensor

Gtt =
(1 + Z2

1 + Z2
2 )(1 + (1 + Z2

1 + Z2
2 )χ

2
−)

−1− χ2
− + (Z2

1 + Z2
2 )(−χ2

− + χ2
+)

GZ1Z1
=

−1 + Z4
2χ

2
+ + Z2

2 (−1 + Z2
1χ

2
+ + χ2

+)

(1 + Z2
1 + Z2

2 )(−1− χ2
− + Z2

1 (−χ2
− + χ2

+) + Z2
2 (−χ2

− + χ2
+))

GZ2Z2
=

−1 + Z4
1χ

2
+ + Z2

1 (−1 + Z2
1χ

2
+ + χ2

+)

(1 + Z2
1 + Z2

2 )(−1− χ2
− + Z2

1 (−χ2
− + χ2

+) + Z2
2 (−χ2

− + χ2
+))

GtZ1
= − Z2(1 + Z2

1 + Z2
2 )χ+χ−

−1− χ2
− + (Z2

1 + Z2
2 )(−χ2

− + χ2
+)

GtZ2
=

Z1(1 + Z2
1 + Z2

2 )χ+χ−

−1− χ2
− + (Z2

1 + Z2
2 )(−χ2

− + χ2
+)

GZ1Z2
=

−Z3
1Z2χ

2
+ + Z1Z2(1− χ2

+(1 + Z2
2 ))

(1 + Z2
1 + Z2

2 )(−1− χ2
− + Z2

1 (−χ2
− + χ2

+) + Z2
2 (−χ2

− + χ2
+))

Gϕϕ =
(−1 + Y 2

1 + Y 2
2 )(−1 + (−1 + Y 2

1 + Y 2
2 )χ

2
−)

1 + χ2
− − (Y 2

1 + Y 2
2 )(χ

2
− − χ2

+)

GY1Y1 =
−1 + Y 4

2 χ
2
+ + Y 2

2 (1 + Y 2
1 χ

2
+ − χ2

+)

(−1 + Y 2
1 + Y 2

2 )(1 + χ2
− − Y 2

1 (+χ
2
− − χ2

+)− Y 2
2 (−χ2

− + χ2
+))

GY2Y2 =
−1 + Y 4

1 χ
2
+ + Y 2

1 (1 + Y 2
2 χ

2
+ − χ2

+)

(−1 + Y 2
1 + Y 2

2 )(1 + χ2
− − Y 2

1 (+χ
2
− − χ2

+)− Y 2
2 (−χ2

− + χ2
+))

GϕY1 =
Y2(−1 + Y 2

1 + Y 2
2 )χ+χ−

1 + χ2
− − (Y 2

1 + Y 2
2 )(+χ

2
− − χ2

+)

GϕY2 = − Y1(−1 + Y 2
1 + Y 2

2 )χ+χ−

1 + χ2
− − (Y 2

1 + Y 2
2 )(+χ

2
− − χ2

+)

GY1Y2 = −
Y 3
1 Y2χ

2
+ + Y1Y2(1 + χ2

+(−1 + Y 2
2 ))

(−1 + Y 2
1 + Y 2

2 )(1 + χ2
− − Y 2

1 (χ
2
− − χ2

+)− Y 2
2 (χ

2
− − χ2

+))

(5.36)

We also implicitly used the fact that the metric tensor is symmetric, and hence the terms GY1ϕ = GϕY1,

and so on. Moreover as in the previous cases, we have identified Y1, Y2 as the transverse fields coming
from sphere, while Z1, Z2 the transverse fields coming from the anti-de Sitter space.

5.3.1 Quadratic Hamiltonian

With the previous metric, it is then possible to write down the gauge-fixed action and so we introduce
the light-cone coordinates x± and their canonical momenta p± by setting

t = x+ − ax−, ϕ = x+ + (1− a)x−, pt = (1− a)p+ − p−, pϕ = ap+ + p−, (5.37)

where a is the same real parameter introduced in the previous cases. Then the uniform light-cone
gauge is fixed by

x+ = τ, p− = 1. (5.38)

Thus following the procedure explained in chapter 2 we arrive at the light-cone Hamiltonian

H(Xµ, X ′µ, Pµ) = −
ˆ
dσ p+((X

µ, X ′µ, Pµ). (5.39)

We stress again that at this level the Hamiltonian is still highly non linear, hence is not useful in order
to directly quantize the model. As we said before, once the fields are rescaled as in (2.46), then it is
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possible to perform the large-tension expansion T →∞ and extract the perturbative Hamiltonian. In
particular, the explicit computation gives the following expression for H(2)

H(2) =
1

2(1 + χ2
−)

(
P 2
y1(1 + χ2

−)
2 + P 2

y2(1 + χ2
−)

2 + P 2
z1(1 + χ2

−)
2 + P 2

z2(1 + χ2
−)

2

+ (1 + χ2
−)(1 + χ2

+)
(
Y 2
1 + Z2

1 + Z2
2 + Y 2

2

)
+ Z ′2

1 + Z ′2
2 + Y ′2

1 + Y ′2
2

+ χ−(1 + χ2
−)χ+

(
2Pz2Z1 − 2Pz1Z2 − 2Py2Y1 + 2Py1Y2

))
.

(5.40)

It is immediate to notice that the quadratic Hamiltonian is not canonically normalized, hence it is
convenient to perform the following rescaling

Pyi →
Pyi√
1 + χ2

−

, Pzi →
Pzi√
1 + χ2

−

,

Yi →
√

1 + χ2
−Yi, Zi →

√
1 + χ2

−Zi,

Y ′
i →

√
1 + χ2

−Y
′
i , Z ′

i →
√
1 + χ2

−Z
′
i,

(5.41)

where i = 1, 2. Moreover, the expression is further simplified by introducing the same complex fields
introduced in the η-deformed model and also in the undeformed model (4.30). Eventually, the quadratic
Hamiltonian reads as

H(2) =PyP̄y + PzP̄z + Y ′Ȳ ′ + Z ′Z̄ ′ +m2(Y Ȳ + ZZ̄) + iχ+χ−(P̄yY + P̄zZ − PyȲ − PzZ̄), (5.42)

with
m2 = (1 + χ2

+)(1 + χ2
−). (5.43)

This is the free Hamiltonian of two complex massive bosons, with quite surprising behaviours,
indeed the dispersion relations for particles and antiparticles are different.

In order to see this, let us write down the quadratic Lagrangian and then let us find and solve the
equation of motion. Moreover this has another further advantage indeed we can find the conjugate
momenta that will be useful when we will introduce the oscillators expansion. Clearly the momenta
could be obtained also from the Hamiltonian, using the Hamilton equations.

So we included the expansion of the metric (5.36) in the general action of non linear σ-model with
the B-fields set to zero

S =

ˆ
dσdτγαβ(∂αX

M∂βX
NGMN (X)). (5.44)

Moreover, in the first order formalism the world-sheet metric is imposed to be diagonal, with γττ = −1
and γσσ = 1, by the Virasoro constraints, so let us consider this metric in the previous action. Let
us also set ϕ = t = τ , which basically is realized in the uniform light-cone gauge (2.44). With this
considerations, and after a further expansion of the metric in order to take into account the quadratic
terms in the fields and in their derivatives, then the quadratic Lagrangian reads as

L(2) =
1

2(1 + χ2
−)

(
(∂σY1)

2 + (∂σY2)
2 + (∂σZ1)

2 + (∂σZ2)
2 − (∂τY1)

2 − (∂τY2)
2 − (∂τZ1)

2 − (∂τZ2)
2

+ (1 + χ2
− + χ2

+)(Y
2
1 + Y 2

2 + Z2
1 + Z2

2 ) + 2χ+χ−(∂τY2Y1 − ∂τY1Y2 − ∂τZ2Z1 + ∂τZ1Z2)
)
.

(5.45)
As in the Hamiltonian case, we introduce a similar expression to (4.30), but we must take into account
that the momenta in the Lagrangian formalism is not present, and so we must use the time derivative
of the complex fields. However, dropping the overall constant, we find

L(2) = ∂σY ∂σȲ + ∂σZ∂σZ̄ − ∂τY ∂τ Ȳ − ∂τZ∂τ Z̄ + (1 + χ2
+ + χ2

−)(Y Ȳ + ZZ̄)

+ iχ+χ−(∂τ Ȳ Y − ∂τY Ȳ + ∂τ Z̄Z − ∂τZZ̄).
(5.46)
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At this point we find, for instance, the equations of motion for the Y and Ȳ fields as

∂α
∂L
∂∂αY

− ∂L
∂Y

= ∂2σȲ − ∂2τ Ȳ − 2iχ+χ−∂τ Ȳ − (1 + χ2
+ + χ2

−)Ȳ = 0,

∂α
∂L
∂∂αȲ

− ∂L
∂Ȳ

= ∂2σY − ∂2τY + 2iχ+χ−∂τY − (1 + χ2
+ + χ2

−)Y = 0.

(5.47)

Hence, considering solutions like

Y ∝ e−iω(p)τ+ipσ, Ȳ ∝ e−iω̄(p)τ+ipσ, (5.48)

we find that
ω̄(p)2 − 2χ+χ−ω̄(p)− p2 − (1 + χ2

− + χ2
+) = 0,

ω(p)2 + 2χ+χ−ω(p)− p2 − (1 + χ2
− + χ2

+) = 0.
(5.49)

Finally, the solution of the previous quadratic equations are

ω(p) = −χ+χ− +
√
p2 + (1 + χ2

+)(1 + χ2
−), ω̄(p) = χ+χ− +

√
p2 + (1 + χ2

+)(1 + χ2
−), (5.50)

which confirms the previous considerations. The same results are valid also for the Z and Z̄ fields.
Moreover the conjugate momenta are defined as

P̄y ≡
δL
δ∂τY

, Py ≡
δL
δ∂τ Ȳ

P̄z ≡
δL
δ∂τZ

, Pz ≡
δL
δ∂τ Z̄

.

(5.51)

Hence, in this case we find that

P̄y = ∂τ Ȳ + iȲ χ+χ−, Py = ∂τY − iY χ+χ−,

P̄z = ∂τ Z̄ + iZ̄χ+χ−, Pz = ∂τZ − iZχ+χ−.
(5.52)

In order to diagonalize the quadratic Hamiltonian we introduce the oscillators expansion of the fields,
which in this case are more insidious with respect to the undeformed and to the η-deformed models.

For instance we must take into account that there are two different dispersion relations, but apart
from this, the equation of motion can be solved by the same ansatz used in the previous cases that we
report in the following

Z(σ, τ) =

ˆ
dp

(
e−iω(p)τ+ipσ√

2g(p)
az(p) +

eiω̄(p)−ipσ√
2ḡ(p)

a†z̄(p)

)
,

Z̄(σ, τ) =

ˆ
dp

(
e−iω̄(p)τ+ipσ√

2ḡ(p)
az̄(p) +

eiω(p)τ−ipσ√
2g(p)

a†z(p)

)
,

Y (σ, τ) =

ˆ
dp

(
e−iω(p)τ+ipσ√

2g(p)
ay(p) +

eiω̄(p)−ipσ√
2ḡ(p)

a†ȳ(p)

)
,

Ȳ (σ, τ) =

ˆ
dp

(
e−iω̄(p)τ+ipσ√

2ḡ(p)
aȳ(p) +

eiω(p)τ−ipσ√
2g(p)

a†y(p)

)
,

(5.53)

where ω(p) and ω̄(p) are the dispersion relation given in (5.50), moreover we have still to find the
correct normalization namely we have to find g(p) and ḡ(p). Since the normalizations are obtained by
imposing the canonical commutation relations between the fields, in this case, it is useful to present
also the σ-derivative of the fields and the conjugate momenta. In particular

Z ′ =

ˆ
dp

(
ip
e−iω(p)τ+ipσ√

2g(p)
az(p)− ip

eiω̄(p)−ipσ√
2ḡ(p)

a†z̄(p)

)
,

Z̄ ′ =

ˆ
dp

(
ip
e−iω̄(p)τ+ipσ√

2ḡ(p)
az̄(p)− ip

eiω(p)τ−ipσ√
2g(p)

a†z(p)

)
,

(5.54)
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and the same consideration is valid also for Y ′ and Ȳ ′

Y ′ =

ˆ
dp

(
ip
e−iω(p)τ+ipσ√

2g(p)
ay(p)− ip

eiω̄(p)−ipσ√
2ḡ(p)

a†ȳ(p)

)
,

Ȳ ′ =

ˆ
dp

(
ip
e−iω̄(p)τ+ipσ√

2ḡ(p)
aȳ(p)− ip

eiω(p)τ−ipσ√
2g(p)

a†y(p)

)
.

(5.55)

For the conjugate momenta we have to consider (5.52), in particular

Py = ∂τY − iY χ+χ−

=

ˆ
dp

(
− i(ω(p) + χ+χ−)

e−iω(p)τ+ipσ√
2g(p)

ay(p) + i(ω̄(p)− χ+χ−)
eiω̄(p)−ipσ√

2ḡ(p)
a†ȳ(p)

)
,

P̄y = ∂τ Ȳ + iȲ χ+χ−

=

ˆ
dp

(
− i(ω̄(p)− χ−χ+)

e−iω̄(p)τ+ipσ√
2ḡ(p)

aȳ(p) + i(ω(p) + χ−χ+)
eiω(p)τ−ipσ√

2g(p)
a†y(p)

)
,

Pz = ∂τZ − iZχ+χ−

=

ˆ
dp

(
− i(ω(p) + χ+χ−)

e−iω(p)τ+ipσ√
2g(p)

az(p) + i(ω̄(p)− χ+χ−)
eiω̄(p)−ipσ√

2ḡ(p)
a†z̄(p)

)
,

P̄z = ∂τ Z̄ + iZ̄χ+χ−

=

ˆ
dp

(
− i(ω̄(p)− χ−χ+)

e−iω̄(p)τ+ipσ√
2ḡ(p)

az̄(p) + i(ω(p) + χ−χ+)
eiω(p)τ−ipσ√

2g(p)
a†z(p)

)
.

(5.56)

At the classical level the sympletic structures underlying the Hamiltonian formalism, induces the
Poisson parenthesis between the variables and their conjugate momenta. Let us focus on the Y and Ȳ
fields. We have that

[Y (σ, τ), P̄y(σ̃, τ)] =

ˆ
dp1dp2

(
− i(ω̄(p2)− χ+χ−)

e−iτ(ω̄(p2)−ω̄(p1))+iσ̃p2−iσp1√
2ḡ(p1)

√
2ḡ(p2)

[a†ȳ(p1, τ), aȳ(p2, τ)]

+ i(ω(p2) + χ+χ−)
e+iτ(ω(p2)−ω(p1))−iσ̃p2+iσp1√

2g(p1)
√

2g(p2)
[ay(p1, τ), a

†
y(p2, τ)]

)
,

(5.57)
where we used the second line in the following canonical commutation relations between creation and
annihilation operators

[aȳ(p1, τ), a
†
ȳ(p2, τ)] = δ(p1 − p2), [ay(p1, τ), a

†
y(p2, τ)] = δ(p1 − p2)

[aȳ(p1, τ), a
†
y(p2, τ)] = 0, [ay(p1, τ), a

†
ȳ(p2, τ)] = 0.

(5.58)

Hence, using the first line of the previous, and integrating along p2, we can obtain

[Y (σ, τ), P̄y(σ̃, τ)] =

ˆ
dp1

(
i(ω̄(p1)− χ+χ−)

eip1(−σ̃+σ)

2ḡ(p1)
+ i(ω(p1) + χ+χ−)

eip1(σ−σ̃)

2g(p1)

)

=

ˆ
dp1i

(√
p21 + (1 + χ2

+)(1 + χ2
−)

2ḡ(p1)
+

√
p21 + (1 + χ2

+)(1 + χ2
−)

2g(p1)

)
eip1(σ−σ̃).

(5.59)
In the second line we used the explicit expression for the dispersion relations. Moreover it is immediate
to notice that we obtain the canonical commutation relation between the fields and their canonical
momenta if and only if

ḡ(p1) = ω̄(p1)− χ+χ−, g(p1) = ω(p1) + χ+χ−, (5.60)
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indeed

[Y (σ, τ), P̄y(σ̃, τ)] =

ˆ
dp1i

( √
p21 + (1 + χ2

+)(1 + χ2
−)

2
√
p21 + (1 + χ2

+)(1 + χ2
−)

+

√
p21 + (1 + χ2

+)(1 + χ2
−)

2
√
p21 + (1 + χ2

+)(1 + χ2
−)

)
eip1(σ−σ̃)

= iδ(σ − σ̃).
(5.61)

The same considerations are valid also for the other fields, and thus commutation relations between
creation and annihilation operators linked to the Z and Z̄ fields are

[az̄(p1, τ), a
†
z̄(p2, τ)] = δ(p1 − p2), [az(p1, τ), a

†
z(p2, τ)] = δ(p1 − p2)

[az̄(p1, τ), a
†
z(p2, τ)] = 0, [az(p1, τ), a

†
z̄(p2, τ)] = 0.

(5.62)

With (5.62) and (5.58) we also deduce that a†z̄ creates an antiparticle with flavors Z while a†z creates

a particle of flavors Z as well as a†ȳ creates a antiparticle of flavors Y while a†y creates a particle of
flavors Y . Clarified this, then we include the oscillators expansions of the fields in the expression of
(5.42)

H(2) =

ˆ
dp
(
ω(p)

(
a†z(p)az(p) + a†y(p)ay(p)

)
+ ω̄(p)

(
a†z̄(p)az̄(p) + a†ȳ(p)aȳ(p)

))
. (5.63)

5.3.2 Quartic Hamiltonian

The quartic Hamilton is crucial in order to compute the S-matrix. The following expression is obtained
considering a = 1

2

H(4) =
1

2

(
m2
(
2PyP̄yZZ̄ − 2PzP̄zY Ȳ + 2Y Ȳ ′ZZ̄ − 2Y Ȳ Z ′Z̄ ′ − 3iP̄yY

2Ȳ χ−χ+ + 3iPyY Ȳ
2χ−χ+

− iP̄zY Ȳ Zχ−χ+ − iPyȲ ZZ̄χ−χ+ + 3iP̄zZ
2Z̄χ−χ+ − 3iPzZZ̄

2χ−χ+ + iPzY Ȳ Z̄χ−χ+

+ iP̄yY ZZ̄χ−χ+

)
+ χ−χ+

(
iP 2
y P̄yȲ − iPyP̄ 2

y Y − iP̄yPzP̄zY + iPyPzP̄zȲ − iP̄yY ′2Ȳ

+ iPyY Ȳ
′2 + iPyP̄yP̄zZ + iPzP̄

2
z Z + iP̄zY

′Ȳ ′Z − iP̄zY ′Ȳ Z ′ + iP̄zY Ȳ
′Z ′ − iPyP̄yPzZ̄

− iPzY ′Ȳ ′Z̄ − iP 2
z P̄zZ̄ + iP̄yY

′Z ′Z̄ + iPyȲ
′Z ′Z̄ + iP̄zZ

′2Z̄ − iPzY ′Ȳ Z̄ ′ + iPzY Ȳ
′Z̄ ′

− iP̄yY ′ZZ̄ ′ − iPyȲ ′Z ′Z̄ ′ − iP̄yY Z ′Z̄ ′ + iPyȲ Z
′Z̄ ′ − iPzZZ̄ ′2

)
+ 4(χ− − χ+)(χ− + χ+)

(
Y Y ′Ȳ Ȳ ′ − ZZ ′Z̄Z̄ ′

)
+ (1 + χ2

−)(−1 + χ2
+)
(
P̄ 2
y Y

2 + P 2
y Ȳ

2

− Y ′2Ȳ 2 − Y 2Ȳ ′2 − P̄ 2
z Z

2 − P 2
z Z̄

2 + Z ′2Z̄2 + Z2Z̄ ′2
)

+ 2(1 + χ2
−)

2(−1 + χ2
+)(1 + χ2

+)
(
Z2Z̄2 − Y 2Ȳ 2

)
+ 4(1 + χ2

−(2 + χ2
+))
(
+ PzP̄zZZ̄ − PyP̄yY Ȳ

))
.

(5.64)
We then plug the oscillators expansions in the (5.64), as we made for the quadratic Hamiltonian and
then, as for the undeformed and for the η-deformed models, we must compute several integrals. In
particular, the Jacobian is the same with respect to the one parameter case, indeed in the products of
the exponentials

eiτ(ω(p1)+ω(p2)−ω̄(p3)−ω̄(p4)) (5.65)

the shifting factor cancels out in the sum ω(pi)− ω̄(pj).
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In the following we will present the tree-level T -matrix in the case of a = 1
2 .

TZZ =
1

2D

(
(p1 + p2)

2 + (χ2
− + χ2

+)(ω(p1) + ω(p2))
2 − χ−χ+

(
4(ω(p1) + ω(p2))

+ 4χ−χ+(1− ω(p1)ω(p2)) + (p2ω(p1)− p1ω(p2))(p2 − p1)
))
,

TZ̄Z̄ =
1

2D

(
(p1 + p2)

2 + (χ2
− + χ2

+)(ω̄(p1) + ω̄(p2))
2 + χ−χ+

(
4(ω̄(p1) + ω̄(p2))

− 4χ−χ+(1− ω̄(p1)ω̄(p2)) + (p2ω̄(p1)− p1ω̄(p2))(p2 − p1)
))
,

TZ̄Z =
1

2D

(
− (p1 − p2)2 − (χ2

− + χ2
+)(ω̄(p1)− ω(p2))2

+ χ−χ+

(
ω(p2)(4 + p21 + p1p2)− ω̄(p1)(4 + p22 + p1p2) + 4χ+χ−(1 + ω(p2)ω̄(p1))

))
,

TZȲ =
1

2D

(
m2(p22 − p21) + χ−χ+(p1 − p2)

(
− p1(ω̄(p2)− χ−χ+) + p2(ω(p1) + χ+χ−)

))
,

TZY =
1

2D

(
m2(p22 − p21) + χ−χ+(p1 + p2)

(
p1(ω(p2) + χ−χ+)− p2(ω(p1) + χ+χ−)

))
,

TZ̄Y =
1

2D

(
m2(p22 − p21) + χ−χ+(p2 − p1)

(
− p1(ω(p2) + χ−χ+) + p2(ω̄(p1)− χ+χ−)

))
,

TZ̄Ȳ =
1

2D

(
m2(p22 − p21) + χ−χ+(p1 + p2)

(
− p1(ω̄(p2)− χ−χ+) + p2(ω̄(p1)− χ+χ−)

))
,

(5.66)
where we introduced the short-hand,

D =
(
p1

√
p22 +m2 − p2

√
p21 +m2

)
=
(
p1

√
p22 + (1 + χ2

+)(1 + χ2
−)− p2

√
p21 + (1 + χ2

+)(1 + χ2
−)
)
.

(5.67)

As it is pointed out in the case of undeformed and in the η-deformed AdS3×S3 backgrounds, the others
non vanishing elements of the T -matrix are obtained exploiting the analytic continuation from S3 to
AdS3 (4.21). Moreover, another equivalent approach in order to deduce the other matrix elements, is
to exploit the unitarity of the S-matrix, that at the tree-level reads as

Tij(p1, p2) = −Tji(p2, p1). (5.68)

Finally, it is clear that the also in this case the S-matrix is diagonal, and so it respects the Yang-
Baxter equations (4.45). This fact basically proves the classical integrability of the model.
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5.4 Explicit results for the three parameter deformation

In this section we will report the bosonic tree-level S-matrix computed in [21], for the most general
three-parameter deformation of ref.[32]. In particular the line element and B-field take the form

ds2 = ds2(1) + ds2(2) , B = B(1) +B(2) , (5.69)

where the subscript labels (1) and (2) refer to AdS3 and S3, respectively, and

ds2(1) =
1

F(1)

[ 1− q2ρ2(1 + ρ2)

1 + ρ2
dρ2 − 2qχ−ρ(1 + ρ2) dρ dt+ 2qχ+ρ

3 dρ dψ

−(1 + χ2
−(1 + ρ2))(1 + ρ2) dt2 + 2χ+χ−ρ

2(1 + ρ2) dt dψ + ρ2(1− ρ2χ2
+) d ψ

2
]
,

ds2(2) =
1

F(2)

[ 1 + q2r2(1− r2)
1− r2

dr2 − 2qχ−r(1− r2) dr dω − 2qχ+r
3 dr dϕ

+(1 + χ2
−(1− r2))(1− r2) dω2 + 2χ+χ−r

2(1− r2) dω dϕ+ r2(1 + χ2
+r

2) dϕ2
]
,

(5.70)

and

B(1) =
a q

F(1)
ρ2
[
2 + (1 + ρ2)q2 + (1 + ρ2)χ2

− + (1− ρ2)χ2
+

]
dt ∧ dψ ,

B(2) =
a q

F(2)
r2
[
2 + (1− r2)q2 + (1− r2)χ2

− + (1 + r2)χ2
+

]
dω ∧ dϕ ,

(5.71)

with
F(1) =1− χ2

+ρ
2 + χ2

−(1 + ρ2)− q2ρ2(1 + ρ2) ,

F(2) =1 + χ2
+r

2 + χ2
−(1− r2) + q2r2(1− r2) ,

(5.72)

and

a =
1√

(q2 + χ2
+ + χ2

−)
2
+ 4(q2 − χ2

+χ
2
−)

. (5.73)

Before proceeding with the expansion of the Hamiltonian we use the change of coordinate (5.20) and
then, in this case, it is convenient to perform also the following canonical transformation:

Pj =
P̃j√
1 + χ2

−

− q χ−√
1 + χ2

−

X̃j , Xj =
√
1 + χ2

− X̃
j . (5.74)

Then, the quadratic Hamiltonian reads

H(2) =PzP̄z + Ź ´̄Z +m2ZZ̄ + iχ+χ−(ZP̄z − Z̄Pz)− iλ(Z ´̄Z − Z̄Ź)

+ PyP̄y + Ý ´̄Y +m2Y Ȳ + iχ+χ−(Y P̄y − Ȳ Py)− iλ(Y ´̄Y − Ȳ Ý ) ,
(5.75)

with
m2 = q2 + (1 + χ2

+)(1 + χ2
−) , λ = a q (2 + q2 + χ2

− + χ2
+) . (5.76)

In this case the three deformation parameters are χ+, χ−, q. Now, using the same expansions given
for the previous cases (4.32), we obtain

H(2) =

ˆ
dp
[
ω(p)

(
a†z(p)az(p) + a†y(p)ay(p)

)
+ ω̄(p)

(
a†z̄(p)az̄(p) + a†ȳ(p)aȳ(p)

)]
, (5.77)

where
ω(p) =

√
p2 − 2λp+m2 − χ+χ− , ω̄(p) =

√
p2 + 2λp+m2 + χ+χ− , (5.78)

where m and λ are given by eq. (5.76). Below we write the quartic Hamiltonian H(4) for a = 1/2
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H(4) =
1

2

{
m2
(
−2PzP̄zY Ȳ + 2PyP̄yZZ̄ + 2Ý ´̄Y ZZ̄ − 2Y Ȳ Ź ´̄Z

+ χ−(q − iχ+)
(
+P̄zY Ȳ Z − P̄yY ZZ̄

)
+ χ−(q + iχ+)

(
PzY Ȳ Z̄ − PyȲ ZZ̄

))
+ λ

(
−iP̄ 2

y Y Ý − iPzP̄zÝ Ȳ + iPzP̄zY
´̄Y + iP 2

y Ȳ
´̄Y − iÝ 2Ȳ ´̄Y + iY Ý ´̄Y 2

+ iP̄yP̄zÝ Z + iPyP̄z
´̄Y Z − iP̄yP̄zY Ź + iPyP̄zȲ Ź + iP̄ 2

z ZŹ − iP̄yPzÝ Z̄

− iPyPz ´̄Y Z̄ + iPyP̄yŹZ̄ + iÝ ´̄Y ŹZ̄ − iP̄yPzY ´̄Z + iPyPzȲ
´̄Z − iPyP̄yZ ´̄Z

− iÝ ´̄Y Z ´̄Z − iÝ Ȳ Ź ´̄Z + iY ´̄Y Ź ´̄Z − iP 2
z Z̄

´̄Z + iŹ2Z̄ ´̄Z − iZŹ ´̄Z2

+ (m2 − 2iqχ2
−χ+)

(
−iY ´̄Y ZZ̄ + iY Ȳ Z ´̄Z

)
− χ−(iq − χ+)

(
2P̄zZŹZ̄ − 2P̄yY Ý Ȳ

)
+ (m2 + 2iqχ2

−χ+)
(
+iÝ Ȳ ZZ̄ − iY Ȳ ŹZ̄

)
+ χ−(iq + χ+)

(
2PzZZ̄

´̄Z − 2PyY Ȳ
´̄Y
)

+ (χ−χ+)
(
−2P̄zY Ȳ Ź + 2P̄yÝ ZZ̄ + 2Py

´̄Y ZZ̄ − 2PzY Ȳ
´̄Z
))

+ χ−(q − iχ+)
(
−P 2

y P̄yȲ − PyPzP̄zȲ + P̄yÝ
2Ȳ + P̄zÝ Ȳ Ź + PyP̄yPzZ̄

+ P 2
z P̄zZ̄ + PzÝ

´̄Y Z̄ − P̄yÝ ŹZ̄ − Py ´̄Y ŹZ̄ − P̄zŹ2Z̄ + PzÝ Ȳ
´̄Z − PyȲ Ź ´̄Z

)
+ 4(1 + χ2

−(2 + χ2
+))
(
PzP̄zZZ̄ − PyP̄yY Ȳ

)
+ χ−(q + iχ+)

(
−PyP̄ 2

y Y − P̄yPzP̄zY

+ PyY
´̄Y 2 + PyP̄yP̄zZ + PzP̄

2
z Z + P̄zÝ

´̄Y Z + P̄zY
´̄Y Ź + PzY

´̄Y ´̄Z − P̄yÝ Z ´̄Z

− Py ´̄Y Z ´̄Z − P̄yY Ź ´̄Z − PzZ ´̄Z2
)
+ (q2 − χ2

− + χ2
+)
(
−4Y Ý Ȳ ´̄Y + 4ZŹZ̄ ´̄Z

)
+ qχ2

−χ+

(
−2iPyP̄zȲ Z + 2iP̄yPzY Z̄ − 2iY ´̄Y ŹZ̄ + 2iÝ Ȳ Z ´̄Z

)
+ (qλχ−)

(
−2iP̄zY ´̄Y Z + 2iPzÝ Ȳ Z̄ − 2iPyȲ ŹZ̄ + 2iP̄yY Z

´̄Z
)

+ (1 + χ2
− + (q − iχ+)(q − i(1 + χ2

−)χ+))
(
Ý 2Ȳ 2 + P 2

z Z̄
2 − P 2

y Ȳ
2 − Ź2Z̄2

)
+ (1 + χ2

− + (q + iχ+)(q + i(1 + χ2
−)χ+))

(
−P̄ 2

y Y
2 + Y 2 ´̄Y 2 + P̄ 2

z Z
2 − Z2 ´̄Z2

)
+ (q4 + 2q2(1 + χ2

+) + (1 + χ2
−)

2(−1 + χ4
+))
(
−2Y 2Ȳ 2 + 2Z2Z̄2

)
+ χ−(q(q

2 + 4iqχ+ + 1 + 5χ2
+ + χ2

−(−3 + χ2
+))− 3iχ+m

2)
(
PzZZ̄

2 − PyY Ȳ 2
)

+ χ−(q(q
2 − 4iqχ+ + 1 + 5χ2

+ + χ2
−(−3 + χ2

+)) + 3iχ+m
2)
(
P̄zZ

2Z̄ − P̄yY 2Ȳ
)

+ aq(3q4 − 2iq3χ2
−χ+ − 2iqχ2

−χ+(2 + χ2
− + χ2

+) + q2(9 + 6χ2
+ − χ2

−(−2 + χ2
+))

− (1 + χ2
+)(2 + χ4

− − 3χ2
+ + χ2

−(7 + χ2
+)))

(
+iY 2Ȳ ´̄Y − iZ2Z̄ ´̄Z

)
+ aq(3q4 + 2iq3χ2

−χ+ + 2iqχ2
−χ+(2 + χ2

− + χ2
+) + q2(9 + 6χ2

+ − χ2
−(−2 + χ2

+))

− (1 + χ2
+)(2 + χ4

− − 3χ2
+ + χ2

−(7 + χ2
+)))

(
−iY Ý Ȳ 2 + iZŹZ̄2

)}
.

(5.79)

Finally, including the expansion in creation and annihilation operators in the previous expression we
find the following tree-level S-matrix elements

TZY =
1

2D

[
m2(p22 − p21) + λ(p1 − p2)

(
m2 + χ2

−χ
2
+ + p1p2 − ω1ω2

)
+ χ−χ+

(
p2 + p1 − 2λ

)(
p1(ω2 + χ−χ+)− p2(ω1 + χ−χ+)

)]
,

(5.80)
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TZȲ =
1

2D

[
m2(p22 − p21) + λ(p1 + p2)

(
m2 + χ2

−χ
2
+ − p1p2 + ω1ω̄2

)
+ χ−χ+

(
p1 − p2 − 2λ

)(
− p1(ω̄2 − χ−χ+) + p2(ω1 + χ−χ+)

)]
,

(5.81)

TZ̄Y =
1

2D

[
m2(p22 − p21)− λ(p1 + p2)

(
m2 + χ2

−χ
2
+ − p1p2 + ω̄1ω2

)
+ χ−χ+

(
p2 − p1 − 2λ

)(
− p1(ω2 + χ−χ+) + p2(ω̄1 − χ−χ+)

)]
,

(5.82)

TZ̄Ȳ =
1

2D

[
m2(p22 − p21)− λ(p1 − p2)

(
m2 + χ2

−χ
2
+ + p1p2 − ω̄1ω̄2

)
+ χ−χ+

(
p1 + p2 + 2λ

)(
− p1(ω̄2 − χ−χ+) + p2(ω̄1 − χ−χ+)

)]
,

(5.83)

TZZ =
1

2D

[
(p1 + p2)

2 + (q2 + χ2
− + χ2

+)(ω1 + ω2)
2 − 4q2(ω1ω2 − p1p2 − 1)

− χ−χ+(4(ω1 + ω2) + 4χ−χ+(1− ω1ω2) + (p2ω1 − p1ω2)(p2 − p1))

− λ
(
p1(p

2
2 − ω2(ω1 + 2χ−χ+) + p2(p

2
1 − ω1(ω2 + 2χ−χ+)))

)
− aq(p1 + p2)C

]
,

(5.84)

TZ̄Z̄ =
1

2D

[
(p1 + p2)

2 + (q2 + χ2
− + χ2

+)(ω̄1 + ω̄2)
2 − 4q2(ω̄1ω̄2 − p1p2 − 1)

+ χ−χ+(4(ω̄1 + ω̄2)− 4χ−χ+(1− ω̄1ω̄2) + (p2ω̄1 − p1ω̄2)(p2 − p1))

+ λ
(
p1(p

2
2 − ω̄2(ω̄1 − 2χ−χ+)) + p2(p

2
1 − ω̄1(ω̄2 − 2χ−χ+))

)
+ aq(p1 + p2)C

]
,

(5.85)

TZ̄Z =
1

2D

[
− (p1 − p2)2 − (q2 + χ2

− + χ2
+)(ω̄1 − ω2)

2 − 4q2(ω̄1ω2 − p1p2 + 1)

+ λ
(
− p1(p22 + ω2(ω̄1 − 2χ−χ+)) + p2(p

2
1 + ω̄1(ω2 + 2χ−χ+))

)
+ χ−χ+

(
ω2(4 + p21 + p1p2)− ω̄1(4 + p22 + p1p2) + 4χ−χ+(1 + ω2ω̄1)

)
+ aq(−p1 + p2)C

]
,

(5.86)

where we introduced the short-hand,

D = ((p2 ± λ)(ω1 ± χ−χ+)− (p1 ± λ)(ω2 ± χ−χ+)), (5.87)

where the sign of the shift ±λ is positive for Z and Y and negative for Z̄ and Ȳ and ωj is either ω(pj)
or ω̄(pj) depending on the particle’s flavour. Similarly, we introduce the constant C

C = q2(7 + q2 + 2(χ2
− + χ2

+)) + (2− χ2
− − χ2

+ + χ4
− + χ4

+ − 6χ2
−χ

2
+) . (5.88)

Also in this case the the remaining S-matrix elements can be computed either by braising unitarity or
by observing the relation between AdS3 and S3 fields,

SY Y = −SZ̄Z̄ , SȲ Ȳ = −SZZ , SȲ Y = −SZZ̄ . (5.89)

Moreover the expression for general α can be obtained by

Tij(p1, p2) = Tij(p1, p2)
⏐⏐⏐
a=1/2

+ (a− 1
2 )
(
p2ω(p1)− p1ω(p2)

)
. (5.90)

We deduce that also in this case the matrix is diagonal and consequently the Yang-Baxter equation is
trivially satisfied
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Chapter 6

Conclusions

In our work we have computed the tree-level bosonic S-matrix for various models all related to the
underlying background AdS3 × S3.

In particular we first analyzed the string in the undeformed AdS3×S3 background. The integrability
structure of this model follows from the well known integrability of the superstrings in AdS5 × S5.
However, we first pointed out that the equation of motion for this model can be rephrased in terms of
the a Lax connection, implying that the non linear σ-model is classically integrable. Then we moved to
a perturbative analysis, using the first order formalism, in order to deduce the light-cone gauge-fixed
Hamiltonian of the model. For our purposes it was particularly important to find the quartic expansion
(in fields) of the above Hamiltonian, since the computation of the tree-level S-matrix essentially boils
down to rewriting the quartic Hamiltonian in terms of oscillators. Eventually we recovered the S-matrix
elements, which can be found in literature. Moreover, from (4.50), we can immediately recognize the
factorization of S-matrix, which indeed is a crucial property for an integrable system.

Then we moved to the deformed background. In particular we considered the η-deformation ,
the two-parameters deformation (χ−, χ+) and the three-parameters deformation (χ−, χ+, q) of
the AdS3 × S3 background. Also in this case we first pointed out that the equation of motion, for
general two-parameters deformed string σ-model, can be recast as the zero curvature condition for a
Lax connection. Afterwards, we used the first order formalism in order to deduce the perturbative
Hamiltonian of the mode. As in the undeformed model, the computations of the S-matrix consist in
the substitution of the oscillators expansion of the fields into the quartic (in fields) Hamiltonian of the
model. Eventually, for the η-deformed model, we recovered the matrix elements that can be found in
literature, while, in the two-parameters and three-parameters deformations cases the matrix elements
are not present in literature. However, we find that, in all the cases, the S-matrix is diagonal, and
therefore it respects the Yang-Baxter equation as expected.

A consistency check for the matrix elements in the two-parameters and in the three-parameters
cases is given by the limit to the η-deformed and to the undeformed models. In particular, for the
first deformations, sending χ− → 0, it is straightforward to check that (5.66) become (5.35), while the
limit χ+ → 0, χ− → 0 of the matrix elements (5.66) recover the undeformed ones (4.50). For the
three-parameters in addition to the previous limits it must also be added q → 0, and it is evident that
all the previous models are recovered.

We stress also that we found that the bosonic model is only classically integrable. The quantum
validity of the previous statement does not follow immediately, as we limited ourselves to tree-level
computations.
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