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Abstract

This thesis face the problem of making a drone autonomously able to navigate inside an
unknown environment. The control and plan of trajectories requires that theUAV(Unamn-
ed Aerial Vehicle) knows how the environment is structured and also its position with
respect to it. Visual SLAM(Simultaneous Localization And Mapping) technology rep-
resents the state-of-the-art solution to this problem. However, considering a monocular
camera as visual sensor, the mapping module is able to recover only a sparse or at most a
semi-dense pointclud description of the map. Here it is presented a new mapping process
based on the sensor fusion between a 2D LiDAR(Laser Detection And Ranging) and a
depth map output of a CNN(Convolutional Neural Network) having as input only a sin-
gular monocular RGB image. The capability of the software architecture built is then
validated through experiments. The final results will not identify a ready-to-use solution
inside the field of autonomous UAV but instead should suggest a small opening for new
possible research frontiers based on the presented algorithm and sensors setup.
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Introduction

As the first robots start to appear in our companies, computer vision enthusiasts immedi-
ately envisioned how cameras can be used not only for giving to the robot the capability of
”see”, but also make them able of understanding their surroundings and act accordingly.
Reaching such awareness for a computer would means to have the ability of navigat-
ing autonomously in an unknown environment, without any type of prior information,
while simultaneously interacting with it. To this aim, people started to think of how make
robots more ”intelligent”; Combining this with the rise in popularity of Artificial Intel-
ligence (AI), a lot of researchers start to work on this problem. SLAM (Simultaneous
Localization and Mapping) is the technology that robot scientists found for achieving
such fascinating goal: its aim is to estimate the position of a robot, that is moving inside
an unknown environment, while building a model (map) of its surroundings. Then, if
the algorithm is relying on images information, this technology takes the name of Visual
SLAM. For 30 years this topic has fascinated many researchers, that started to spent their
efforts into try to define robust and reliable algorithm implementation. So, Given these
considerations, one might ask: why is it so difficult to work with images? The problem is
hidden in the type of information that the algorithm is elaborating. Due to its nature, the
computer understands images like a Matrix of numbers, that directly corresponds to pix-
els intensities. These values are obtained at the end of an image formation process, that
involves a lot of parameters, phenomenon and noise sources. For this reason, it is really
hard to identify robust and distinguishable pattern of data in an image that corresponds to
a specific meanings/objects as it is for a human being. One successfully way to deal with
this problem is to rely on AI and ML (Machine Learning) models, which have proven
to be able to achieve astonishing results regarding image pattern recognition. Following
such trend, also the Visual SLAM framework reach very important results; however the
problem can not be considered to be solved yet. The most difficult part concerns the
algorithmic implementation of this solution, despite the theoretical part can be consid-
ered to already reaches its maturity. In particular, the autonomous navigation capability
is difficult to achieve because requires meeting four important aspects: real-time perfor-
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mances, adaptation to different environments, a dense and reliable reconstruction of the
robot’s surroundings and an accurate robot localization. In literature, a lot of SLAM im-
plementation define only a sparse solution to the mapping problem; the most famous are
[7], [8]. Other implementation are able to find a semi-dense reconstruction, like [4]. The
difference with respect to a dense reconstruction is that only some pixels in the image
have a depth estimation value. Unfortunately, this is an essential characterization that
the map model needs to have in order to making the UAV autonomously able to navigate
inside an unknown environment. One solution was found by [9]; however, the cost of
the hardware was too high for consider this like a possible implementable solution. In-
deed, the paper exploited a a Nvidia Quadro K5200 GPU with 8GB of VRAM as device
for running a CNN(Convolutional Neaural Network) model, which cost is around 475$
nowadays and 2,499.00$ at the time of the paper publication. This thesis has the final
aim to reconstruct a reliable absolute scaled dense representation of the environment, in-
side the SLAM framework, exploiting a combination of a 2D LiDAR and a camera as
sensors system. The idea is to enhance the performance of one of the current state of the
art algorithm with a different map building process, based on a deep learning learning
model. Considering such final goal, this work should be seen like a proof of concept that
try to give new way of thinking to the SLAM mapping problem; It will not identify a
ready-to-use solution

Motivation

Thanks to the continuous technological progress and change of companies needs, nowa-
days we can face the transition of paradigm related to robots, namely from automation to
autonomy. under this new concept, robots are not a machine that deal with only repetitive
and tedious tasks, but they are also able to adapt to the environment and to the different
type of assignments that could be given to them. Inside the navigation context, the thing
that classify a robot as autonomous is the ability to accomplish to a task through the con-
trol and plan of trajectories while relying only on its on-board sensors. To achieve such
goal, the robot needs to know its position with respect to the environment and under-
stand how it is structured. This could be classically achieved using GPS or pre-set map.
The SLAM algorithm has the aim to extend such ability also for unknown environments,
where the robot has no prior information about its surroundings. This is usually the case
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of indoor environment, a scenario where the GPS is not available. The algorithm consists
into the localization of the robot inside the environment where it is moving while creating
a map of it. For this reason, SLAM is playing a crucial role in the field of UVs(Unmanned
Vehicles), pushed by their thriving market and the variety of applications that can be ex-
ecuted. Among the others, Self-driving cars and products delivery are the two crucial
applications where SLAM showed to fit very well. A lot of efforts has spent on these
two topics, due to the fascinating nature of the studies but also for the amount of funding
received. Indeed, the research in this area is pushed both by automotive and e-commerce
companies, given the possibility to obtain a lower cost of transport for products, the rise
in market demand and, specially, that the majority of incidents on the road are caused by
humans’ errors. Other fields of application are that related to agriculture,security, mon-
itoring. In this case, for example, an UAV (Unmanned Aerial Vehicles) can be used for
covering large areas, reporting important information to a central unit that will elaborate
them, so as to infer high level information of interest. This could be a leaks present inside
a manufacturing plant, the amount of water in the different areas of a terrain, the progress
of the harvest or, eventually, the presence of unauthorized persons inside a working area.
Another framework in which SLAM is widely used is that one related to AV/VR (Aug-
mented Vision/Virtual Reality), where objects in the scene should be kept in an exact
position with respect to a world reference frame, even if the vision system (a phone, a
camera or similar) is moving inside the environment.

Project goals

This thesis work is part of a long-term project launched by the Université Catholique du
Louvain (UCL), which objective is to obtain a drone able to autonomous navigate in an
indoor environment. In particular, the focus of the work is pointed towards a modification
of actual state of the art algorithm, rather than build a new software architecture related
to the problem. The overall idea is to orient the work in the most promising research di-
rection, trying to implement new features instead of starting a new solution from scratch.
This give the possibility to be guided by several years of research in this field, without
spending efforts in already closed tricky part of the problem. I was accepted by the Uni-
versity as a graduate student with the purpose of working on this thesis project, winning
an Erasmus+ scholarship for the academic year 2021-2022. Considering the difficulties

3



and complexity related to this project, the work should be intended to be pursued by a
team of two persons. For this reason, in the first part of this thesis, I worked with one
colleague of the University of Padua, Pasini Lorenzo, in Erasmus+ mobility as well. We
work together while understanding the overall structure of SLAM algorithm implemen-
tation and for the setup of the sensors system. After the first month, we split our work so
as to try to find two different solutions regarding the same problem.

Previous work

In this brief summary, some results obtained from last years thesis about this project are
reported. The project started in 2012, and from that year, many thesis have been written.
Initially, efforts were directed to solve the SLAM problem, considering the production of
a 2D map. In 2015, the thesis work has moved on another direction, trying to reproduceb
a 3D map of the environment, since it is actually the space in which the drone is moving.
In all of these project, until 2018, the UAV used in the different works was the Parrot
AR.Drone 2.0. However, the results obtained until last year were not so good, mainly for
the computation power of the drone and the poor module integration that it offered with
respect to software modification. The students involved into the thesis of the 2021 year
[10] decided to overcome this problem trying a new approach, namely constructing a little
prototype of the drone. The overall idea is that of simulating the UAV behavior, having
complete access to all modules of the sensors system but without considering any type
of actuation capability. The reason was that of concentrating the studies into the SLAM
process instead of working also on the control system and on an efficient implementation,
so as to avoid the bottleneck due to low computational power of the integrated device
in the UAV. These two problems are considered of secondary importance and for this
reason decoupled with respect to making the robot autonomously able to navigate. In
future, given a first prototype solution, then also these problems will be involved inside
the overall project work. Briefly discussing the results obtained in the last year thesis,
they decide to fuse together the 2D LiDAR (Light Detection And Ranging) and camera
informations by means of a projection of laser distance measurements over the image
plane, something that inspired me for the solution obtained in my thesis work. Then,
given such projection, they try to generalize the distance associate to a pixel location into
spatially near locations. However, this solution lacks for a logical reasoning, because it
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is not possible to infer a priori pixels behavior associate to a generic pixel location in
the image. Indeed, the final results obtained was highly case-dependent, hence not well-
generalized for different scenarios. Despite the poor results obtained, last year thesis
was very helpful to me, because give me a lot of insights and hidden tricks which have
accelerated the first part of the thesis project, namely that ones dealing with the sensors
system setup and LiDAR-camera fusion process.

Thesis structure

in the first chapter some mathematical tools usually exploited in the implementation of
slam algorithms are given; in addition, the evolution of SLAM in history is briefly de-
scribed. The second chapter will discuss a summary of a generic software architecture
identifiable for visual slam algorithms. The third chapter briefly introduce the LSD-
SLAM [4] implementation, namely the algorithm that this thesis aim to improve through
the densification of its reconstructed map. The fourth chapter will concern the sensor
system used during the thesis work for data acquisition. The fifth chapter will contain
the explanation regarding the solution implemented by this thesis for obtaining an im-
provement for the mapping process, based on the fusion of LiDAR and camera sensor
information. The last chapter will show the final results obtained and will report some
considerations about possible future improvements that could follow the work presented
in this thesis.
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1
SLAM Foundation and History

The purpose of this chapter is to give a general introduction about the SLAM (Simul-
taneous Localization And Mapping) algorithms; it will be divided in two sections: the
first one will deal with a brief introduction of the most important mathematical methods
used in SLAM. The second one contain a summary of the evolution of this research topic
through years and a generic description about the problem formulation.

1.1 Mathematical tools

This first section has the aim to provide some insights about the basic mathematical tools
used inside the SLAM framework. Its aim is to give to the reader an overall idea about
the mathematical foundations and theory in which the SLAM algorithm rely.

1.1.1 Pose representation

One of the two core parts of SLAM problem deal with the localization process. It substan-
tially consists into the estimation of the pose of the robot (pose = position + orientation)
exploiting the information coming from the sensors system. It is of fundamental impor-
tance to understand how to represent the pose of the robot because it should be chose
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considering the type of application that the robot should be able to satisfy. The two most
common situations are: one in which the robot is changing its height, moving on a 3D
environment and another in which the robot is constrained to move on a plane, hence a
2D scenario. Since this thesis consider the case of an UAV as mobile robot, in the fol-
lowing it will be analyzed how it is possible to describe the pose of a robot in the case
of three-dimensional rigid body motion. In general, when considering a pose in a space,
it is important to define with respect to which reference frame such pose is evaluated.
It is considered a fixed reference frame, called world reference frame, that is set in an
arbitrary position in the 3D space. It is described as a triplet of axis Xw,Yw,Zw ∈ R3.

Then the rigid body can be interpreted as another reference frame, centered at the centre
of mass of the object of interest with an initial orientation, that can be chose arbitrary1; in
this case the reference frame is represented by Xi, Yi, Zi ∈ R3. A visual representation
is reported in the image 1.1, where two 3D rigid body reference frame are considered. In
this scenario, let’s consider a vector v with coordinates vw in the world reference frame
while vc in the rigid body reference frame. The coordinates difference between these two
vectors representation is caused by the rigid body motion that exists between the world
reference frame and the robot body. Intuitively, such motion consists into a combination
of a rotation plus a translation. A rotation in the 3D space is described by means of an
orthogonal matrix R ∈ R3x3, hence RT = R−1. In general, the set of orthogonal matrix
is expressed through the orthogonal group2:

O(n) = { R ∈ Rnxn | RTR = RRT = I } (1.1)

However, investigating the property of an orthogonal matrix, it is possible to observe that:
det(R) = ±1. For this reason, it is defined the so-called Special Orthogonal(SO) group,
namely the set of orthogonal matrices which determinant is equivalent to 1:

SO(n) = { R ∈ Rnxn | RRT = RRT = I , det(R) = 1 } (1.2)

For what is concerning the translation vector, it is simply described as a vector t ∈ Rn,
without any further constraints. Visualizing an example of this roto-translation in the

1for example, by convention, if the rigid body considered is a camera, the z axis coincide with the optical
axis

2the group notion needs to be deeper characterized, since it plays an important role in the pose esti-
mation process; to this aim, one can refer to the Lie theory subsection for further information about this
mathematical object
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Figure 1.1: representation of two 3D rigid body agents by means of their reference frame
representation; in the image are depicted both the translation vectors and Euler’s angles
associated to each frame

three-dimensional space in figure 1.1, it is possible to describe the existing motion be-
tween two general rigid body agents as:

pi = Rijpj + tij (1.3)

where the letters ”i, j” are representing the two different reference systems. pi, pj are,
respectively, the point coordinate expressed with respect to reference system i and j.
Rij ∈ SO(n), tij ∈ Rn are the rotation plus translation component of the roto-translation
between the two frames. In this context, the subscripts ”ij” should be read as: ”from ref-
erence frame j to reference frame i”. As can be figured out from (1.3), the roto-translation
corresponds an affine transformation in Rn. Fortunately, It is possible to represent it by
means of a linear operation in Rn+1, considering a slight modification of the coordinate
vector to transform. In particular, it will be considered its homogeneous coordinate rep-
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resentation: [
pi
1

]
=

[
Rij tij
03x1 1

][
pj
1

]
= Tij

[
pj
1

]
(1.4)

ThematrixTij ∈ Rn+1 has a special structure, consisting of a rotationmatrix on the upper-
left corner,Rij ∈ SO(n), and a translation vector on the upper-right corner, t ∈ Rn. In this
equation, the roto-translation transformation is performed in an n-dimensional space; for
this reason, the matrixT live in the (n+1)-dimension. Following the discussion above, it is
possible to define the so called Special Euclidean group SE(n), described in the following
set of matrices:

SE(n) =

{
T =

[
R t
03x1 1

]
∈ R(n+1)×(n+1)

∣∣∣∣∣ R ∈ SO(n), t ∈ Rn

}
(1.5)

Hence, given two reference frames, the Euclidean transformation that is linking them
together is expressed by means of a roto-translation matrix T ∈ SE(3); however this
means that (n+1)×(n+1) values are used for representing such information. Considering
the structure of the matrix in (1.5) and the constraints associated to a rotation matrix in
(1.2), one might ask: is it possible to define a roto-translation between two 3D rigid body
reference framewith less parameters? The answer is yes. As can be easily pointed out, this
change of representation will involve only the way in which the orientation of the robot
is expressed. Indeed, it is not possible to reduce the DOFs associated to the translation
vector description; it is already in its minimal representation.

Quaternions and Euler angles

Going deeper in the pose representation analysis, the rotation matrix description of robot
orientation shows two important problems:

• the rotation matrix has 9 entries, but only three degrees of freedom, due to the
orthogonal and unitary length vectors constraints that the matrix needs to satisfy.
Hence, one possible question could be: is it possible to find more compact repre-
sentation that still allow to preserve all the rotation information?

• considering an optimization problem constructed over the robot pose, then the al-
gorithm should take care also for the constraints associated to the rotation ma-
trix in order to find a good n-dimensional direction where searching for a mini-
mizer/maximizer.
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One not-minimal alternative to rotation matrix representation is to express a rotation as
a pair versor-angle (n, θ), with n ∈ R3, |n| = 1, axis of rotation and θ ∈ R angle of
rotation. This representation needs the identification of four parameters instead of nine.
The equivalence between a rotationmatrix and a versor-angle representation is established
by the Rodrigues’ formula:

R = cos θI+ (1− cos θ)nnT + sin θ[n]x (1.6)

where [·]x denote the skew-symmetric operator, namely amap that return a skew-symmetric
matrix construct on a vector in Rn, given as input. For example, in the 3D space:

[n]x =

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 , with: n = [n1 n2 n3]
T (1.7)

Conversely, it is possible to derive a pair angle-versor starting from a rotation matrix
description3:

tr(R) = 1 + 2 cos θ −→ θ = arccos

(
tr(R)− 1

2

)
(1.9)

for the axis of rotation n, starting from the observation that the versor does not change
after the rotation, since it is performed along its direction; this means that:

Rn = n (1.10)

Hence, n is the eigenvector ofR associated to the unitary eigenvalue. The solution to this
linear equation (three equation in three variables) will provide the axis [n1, n2, n3] where
the rotation is performed.

Another non-minimal representations of robot orientation is given by quaternions. They
represents an extension of complex numbers in the case of three-dimensional rotation.

3rewriting the Rodrigues’ formula in an equivalent manner, is it possible to directly evaluate the trace
of the matrix:

R = I+ (1− cos θ)(rrT − I) + sin θ[r]x −→ tr(R) = 1 + 2 cos θ (1.8)
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Following the idea of versor-angle pair already introduced, a quaternion q consists on a
four-dimensional number, having a real part and three different imaginary part. in general
it is defined with the following notation:

q = q0 + q1i⃗+ q2j⃗ + q3k⃗ (1.11)

or equivalently in vector representation of the axis component:

q = [q0, q⃗]T , q0 ∈ R, q⃗ = [q1, q2, q3]T ∈ R3 (1.12)

where i, j, k represent the versor axis associated to the imaginary part, while q0 ∈ R. The
quaternion satisfy the so called Hamilton’s rule:

i2⃗ = j 2⃗ = k2⃗ = −1

i⃗j⃗ = k⃗, j⃗i⃗ = −k⃗

j⃗k⃗ = i⃗, k⃗j⃗ = −i⃗

k⃗i⃗ = j⃗, ik⃗ = −j⃗

(1.13)

We can use a unit quaternion to represent any rotation in the 3D space, where the unit
quaternion satisfy the unitary norm property:

||q|| = q20 + q21 + q22 + q23 = q20 + qTq = 1 (1.14)

Give a unitary quaternion of the form q = q0 + q⃗, it is possible to provide a physical
interpretation to this quantity, considering a rotation expressed in terms of q0 around an
axis described by means of q⃗:

q0 = cos

(
θ

2

)
, q⃗ = E sin

(
θ

2

)
(1.15)

where E is the versor where it is performed the 3D rotation; making a comparison to what
discuss in the versor-angle case before, we can derive the following equivalence: E = n.
Starting from (1.6), it is possible to write a similar representation for the quaternion:

R = I+ 2q0[q⃗]x + 2[q⃗]2x (1.16)
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from (1.16) it is possible to notice the so called double coverage property of quaternion,
due to the half angle representation of (1.15). Indeed we have:

q =

[
q0

q⃗

]
−→ R(q) = I+ 2q0[q⃗]x + 2[q⃗]2x (1.17)

−q =

[
−q0
−q⃗

]
−→ R(−q) = I+ 2q0[q⃗]x + 2[q⃗]2x (1.18)

observing that:
[q⃗]2x =


−(q2 + q3)

2 q1q2 q1q3

q1q2 −(q21 + q23) q2q3

q1q3 q2q3 −(q21 + q22)

 = [−q⃗]2x

q0[q⃗]x = −q0[−q⃗]x

(1.19)

At this point one might ask: why use quaternions instead of more easily interpretable
versor-angle pair? The answer is enclosed in the way in which successive rotation can be
composed. Since SO(3) is a group that is closed with respect to matrix multiplication, we
have that the composition of rotation matrices deal with their multiplication. This is not
the case with quaternions, due to their different algebra. In this framework, let’s consider
a vector v ∈ R3 and a rotation matrix R ∈ SO(3). we have that:

v′ = Rv (1.20)

where v′ represent the vector v rotated by the matrix R. We can obtain an equivalent
relationship in the quaternion algebra:

v̂′ = q(R) ◦ v̂ ◦ q(R)−1 (1.21)

where:

• v̂, v̂′ represent the vector description v, v′ ∈ R3 in its equivalent form for quaternion
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manipulation, following:

v̂ =

[
0
v

]
v̂′ =

[
0
v′
]

(1.22)

• q(R) is the quaternion derived from the matrix definitionR; it can be derived pass-
ing first through the versor-pair angle representation and then recovering the quater-
nion rotation description

the proof of such proposition can be easily derived from the Hamilton product definition,
that express the composition of quaternion in the following form:

qtot = q1 ◦ q2 −→ Rtot = R1R2 (1.23)

q1 ◦ q2 =

[
q0,1q0,2 − q⃗T1 q⃗2

q0,2q⃗1 + q0,2q⃗1 + q⃗1xq⃗2

]
(1.24)

It can be shown that this composition is faster than the common rotation matrix multipli-
cation:

composition of two Rotation matrices
composition of two quaternions

⇐⇒
27 multiplications and 18 additions
16 multiplications and 12 additions

Moreover, this quaternions does not suffer from the Gimball lock problem; hence, for
these two main reasons, it is the most commonly used pose representation exploited in
the robotic community.

A minimal representation for the description of the orientation of the robot is provided
by Euler angles. They substantially consists into a triplet of angles, that corresponds to a
predefined sequence of elementary rotations performed around the axis of the rigid body
reference frame. As can be noticed, a rotation matrix that has 3 DOFs is represented
through three parameters. The overall result exploited in this framework is the Euler’s
rotation theorem, that can be roughly summarized in the following statement: given a
generic rotation R ∈ SO(3), it can be described by the composition of three different ro-
tationRφ,Rθ,Rψ about the three elementary axis, where two consecutive rotations cannot
be performed on the same axis. Hence:

• 3 choices for the initial rotation axis: X , Y , Z
−→ For example let’s consider Z .
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• 2 choices for the second axis; following the example, we can choose a rotation axis
between X , Y
−→ Let’s choose axis Y

• 2 choices for the last axis of rotation Z
−→ Concluding the example, let’s choose axis Z

At the end, 12 different triplets of Euler angles could be used so as to represent a generic
rotation in the 3D space. The most famous are the triplets ZYZ ,ZYX , where the first
is usually applied in the field of robotics and the second is widely choose as convention
in the aerospace/aeronautics field. Considering the case of ZYX 4 triplet, a rotation is
described by a triplet [φ, θ, ψ]T and the final matrix rotation can be computed through the
ordered composition of three elementary matrices:

1. Rotate around axis Z of the rigid body reference frame of a quantity equivalent to
the yaw angle φ

2. Rotate around axis Y after first rotation is already performed of a quantity equiva-
lent to the pitch angle θ

3. Rotate around axis X after the second rotation of a quantity equivalent to the roll
angle ψ

R = Rz(ϕ)Ry(θ)Rx(ψ) (1.25)

=

cosφ − sinφ 0

sinφ cosφ 0

0 0 1


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


1 0 0

0 cosψ − sinψ
0 sinψ cosψ

 (1.26)

The matrix composition in the case of Roll-Pitch-Yaw Euler angles is that one depicted
in the image 1.2. The biggest drawbacks in Euler angles representation is caused by the
so called Gimbal lock problem. In the case of ZYX triplet with a rotation of ±π related
to the pitch angle, then the first rotation and the third rotation in (1.2) will be performed
about the same axis, causing the system to lose a degree of freedom, since we are moving
from three elementary rotations to two. For this reason, Euler angles are usually not used
for performing computations inside algorithm and programs, but they are a useful tools

4this triplet of Euler’s angles are usually referred as RPY, Roll-Pitch-Yaw angles
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Z

Figure 1.2: Roll-Pitch-Yaw Euler angles orientation representation; here it is highlight
the sequence of elementary rotations

that human can use to debug the systems and give an easy and direct representation to the
robot orientation.

1.1.2 Lie group and Lie algebra

Lie group and Lie algebra are two very important mathematical concepts strongly related
to the optimization problem that concern the localization process inside the SLAM soft-
ware architecture. In particular, the Lie theory is a mathematical tool inside the world
of abstract algebra; for this reason, an exhaustive description of its theory and methods
requires a very strong background in advanced mathematics. This part wants to give only
a general explanation of why and how the Lie theory is applied inside the SLAM pose
estimation process. Given this goal, a complete formal and rigorous treatment of such
topic is out of the scope of this thesis; if the reader is interest it can refers to advanced
mathematics book, like [11]. As previously reported, the 3D rigid body motion of a robot
is represented by means of an Euclidean transformation T ∈ SE(3) or, if no translation
takes place, through a rotation R ∈ SO(3). For sake of clarity, the two groups definition
are reported here:

SO(n) = { R ∈ Rnxn | RRT = RR−1 = I , det(R) = 1 } (1.27)

SE(n) =

{
T =

[
R t
03x1 1

]
∈ R(n+1)×(n+1)

∣∣∣∣∣ R ∈ SO(n), t ∈ Rn

}
(1.28)

At this point it is needed to give a better characterization to the group definition; let’s
consider the set orthogonal matrix with positive unitary determinant G and the matrix
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multiplication [·]. than the pair (G, ·) define the special orthogonal group SO(3) if it
satisfy four important axioms. In particular, given the elements X ,Y ,Z ∈ G, a group
needs to satisfy the following properties:

• closure under [·]: X · Y ∈ G

• identity element I: X · I = I · X = X

• inverse element: X−1 · X = X · X−1 = I

• associativity: X · (Y · Z) = (X · Y) · Z

If a group is also described as a continuous and smoothed manifold, then it takes the
name of Lie group. A manifold consists into a smooth hyper-sphere that is living in a
higher dimension. The smoothness property of the manifold implies that for each point in
the hyper-sphere it exists one and only one tangent plane. The manifold is encoding the
constraints associated to the robot pose, direct consequence of the rotations orthogonality
properties. At this point, one can notice how could be difficult to derive operation in such
space, considering the high non-linearity relation that exists between elements inside the
Lie group. The most important result about Lie theory is the fact that for each Lie group
is possible to derive a Lie algebra that has a two-way correspondence to the group. Some
of the properties associated to the Lie algebra are:

• The Lie algebra consists into the tangent space evaluated in the identity element of
the Lie group

• It is a vector space, which elements inside satisfy a non-associative operation5

• the dimension of the Lie algebra is the same as the DOFs(Degrees Of Freedom) of
the Lie algebra

• the exponential operation maps elements of the Lie algebra (tangent plane) to ele-
ments of the Lie group (manifold); the logarithmic map works in the other direction

• vectors in the tangent space can be transformed to the tangent space at the origin
by means of a linear transformation

5the operation considered here is the so called Lie brackets; however, since it will not be a crucial step
in the following discussion, the explanation of such operation will not be presented in this thesis
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Figure 1.3: Lie group SO(3), Lie algebra so(3) visual representation. courtesy of [1]

All of the above considerations allow to find a visual interpretation of these conditions,
that can be seen in image 1.3. The most important aspect is that it is possible to evaluate
operation on the Lie group manifold while performing them on the associated Lie algebra
that, as said before, consists into a vector space, namely easier to manipulate. The most
important operation in the field of robot state estimation deal with the Jacobian computa-
tion: it is used in order to find a minimization/maximization direction for a cost function
constructed over robot pose. In general, given a multivariate function f : Rm → Rn, the
Jacobian matrix J represent the matrix of first derivative of the function with respect to
its parameters:

J =
∂f(x)
∂x

=


∂f1
∂x1

. . .
∂f1
∂xm... . . . ...

∂fn
∂x1

. . .
∂fn
∂xm

 (1.29)

that is possible to define in a more compact way considering it like a sequence of horizon-

tally stacked column vectors, bringing to J = [j1, . . . , jm], where ji =
[
∂f1
∂xi

, . . . ,
∂fn
∂xi

]
.

In particular, computing the expression of a single column vector of the Jacobian, we can

18



derive a form similar to the incremental ratio, used in the one-dimensional case:

ji =
∂f(x)
∂xi

= lim
h→0

f(x+ hei)− f(x)
h

, h ∈ R (1.30)

where in the multi-dimensional case, the increment in the i-th parameter is expressed
exploiting the notion of natural basis vector ei = [0, 0, . . . , 0, 1, 0, . . . , 0]T ∈ Rm, where
the only non-zero values is associated to the i-th element of the vector. The problem
of this formulation is that the normal concept of increment cannot be applied over the
manifold, since the addition operation is not closed inside the group of rotation matrices;
this simply means that given two rotationR1,R2 ∈ SO(3) → R1+R2 ̸∈ SO(3). This can
be extended in case of T1,T2 ∈ SE(3) → T1 +T2 ̸∈ SE(3). At this point, it is needed to
find a new concept for the plus, minus operation, that in the following will be expressed
as the pair {⊕,⊖}, opposed to {+, -}. In particular, the idea is to express the increment in
the manifold as an increment in the tangent space. For the non-commutativity property of
rotation matrices (S = R1R2 ̸= R2R1) we have two different definition of such operation.
Indeed, we need to use the sequence of a Exp/Log map and composition operation; we
can use any of the two order so as to obtain the same final computation. Hence, the order
will determine two different type of operation; for the sake of simplicity, we will consider
only the right operands version. Considering two rotation matrix Y,X ∈ SO(3) and the
a vector in the tangent plane Xτ , defined with respect to the rotation matrix X on the
manifold, we have:

⊕ : Y = X⊕ Xτ = X · Exp(Xτ ), Y ∈ SO(3) (1.31)

⊖ : Xτ = X⊖ Y = Log(X−1 · Y), Xτ ∈ so(3) (1.32)

Now, Let’s consider how this operands can be used for evaluating the rotation matrix
derivative. Let’s describe the operation performed by a generic rotation R as a function
f : SO(3) → R3; f(R) = Rp,R ∈ SO(3), p ∈ R3. For the incremental ratio opera-
tion, we will consider θ ∈ so(3) as infinitesimal increment; note that this perturbation
is considered on the tangent plane and not in the manifold, where the sum operation is
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well-defined. The derivative can be evaluated as:

∂Rp
∂R

= lim
θ→0

(R⊕ θ)p⊖ Rp
θ

(1.33)

(1)
= lim

θ→0

R Exp(θ)p− Rp
θ

(1.34)

(2)
= lim

θ→0

R(I+ [θ]x)p− Rp
θ

= lim
θ→0

R[θ]xp
θ

(1.35)

(3)
= lim

θ→0

−R[p]xθ
θ

= −R[p]x (1.36)

Where:

1. from (1.31), remembering that the exponential map is wrapping elements from
so(3) to SO(3).

2. It is the first term linear approximation of the Taylor function expansion. Given
R = Exp([θ]x), [θ]x ∈ so(3) the Taylor expansion of the exponential is described
as:

Exp([θ]x) =
+∞∑
k=0

([θ]x)
k

k!
(1.37)

…considering the first term linear approximation … (1.38)

≃ I+ [θ]x (1.39)

3. application of the skew-symmetric property [a]xb = −[b]xa, a, b ∈ Rn

Following the same approach reported above, it is possible to formulate a derivativemodel
also in the case of Euclidean transformation T ∈ SE(3). Indeed, also the SE(3) group is
a Lie group, with associated Lie algebra se(3). As before, An Euclidean transformation
of a 3D point can be represented as a function g : SE(3) → R4; f(T) = Tp̃,T ∈
SE(3), p̃ ∈ R4. The variable p̃ is representing the homogeneous coordinate description
associated to p ∈ R3; furthermore, we will describe the vector ξ = [ρ,θ]T ∈ se(3), as
the vector in the Lie algebra corresponding to T. In this case the increment is a variable
δξ = [δρ, δθ]T ∈ R6, where ρ,θ ∈ R3; δ ∈ R. A complete derivation of the left-
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perturbation Jacobian is derived in [12]; here it is reported only the final results:

∂Tp̃
∂T

= lim
δξ→0

Exp([ξ]x)Exp([ξ]x)p̃− Exp([ξ]x)

δξ
(1.40)

=

[
Jl(θ) Q(ρ,θ)

0 Jl(θ)

]
(1.41)

Following the article mentioned above, Jl is the expression of the left Jacobian derivation;
this means that the operation {⊕,⊖} follow a different meaning with respect to that one
considered in 1.31. However, one can recover the right Jacobian formulation exploiting
one of the property associated to Lie theory, that can be observed in image 1.3: each
point in the manifold can be reached from different paths. In particular, this observation
is encoded in the property: Jr(ρ,θ) = Jl(−ρ,−θ). This equality turns to holds also
considering the Jacobian evaluated in the case of rotational-only component associated
to variable θ; indeed it also holds that Jr(θ) = Jl(−θ), with Jr(θ) evaluated in (1.33).
The other matrix Q(ρ,θ) is defined to be

Q(ρ,θ) =
1

2
[ρ]x +

θ − sin (θ)
θ3

([θ]x[ρ]x + [ρ]x[θ]x + [θ]x[ρ]x[θ]x) (1.42)

−
1− θ

2
− cos (θ)

θ4
([θ]2x[ρ]x + [ρ]x[θ]

2
x − 3[θ]x[ρ]x[θ]x) (1.43)

− 1

2

(1− θ2

2
− cos θ

θ4
− 3

θ − sin (θ)− θ3

6
θ5

)
(1.44)

× ([θ]x[ρ]x[θ]
2
x + [θ]2x[ρ]x[θ]x) (1.45)

In this case, θ represent the amount of rotation performed and θ the the axis versor of
the rotation. After this not-comprehensive not-rigorous discussion, we have formulate
a way of describing the Jacobian function associated to the SO(3), SE(3) group. These
computations will be useful when considering optimization problem built over the pose
estimation variables.
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1.1.3 Basics of non-linear optimization

In this subsection two algorithms regarding non-linear least-square optimization problem
will be discussed. The reason behind this specific formulation is driven by the commonly
optimization framework usually construct for the localization process. Hence, let’s con-
sider:

min
x

F(x) =
1

2
||f(x)||22 (1.46)

where x ∈ Rn is the variable to be optimized and f(·) : Rn → R the non-linear function.
At this point, if the non-linear function is not so complex, it can be derived an analytical
expression for the problem solution (as it happen in (5.11), with a linear function). How-
ever, as it will be clear in the following chapters, this usually not happen in the Visual
SLAM context. Instead of finding a global solution at first chance, one idea is to solve the
problem through iterated methods, namely algorithm which goal is not that of returning
a closed form solution but instead try to converge to the minimum desired value through
continuous local decreases along the energy function. At this point, it turns to be clear
why it was so important the discussion about the Jacobian of multi-dimensional function
of the previous subsection. Indeed, it will be useful for two important aspects:

• The Jacobian is encoding the direction ofmaximumgrowing of the function. Hence,
it is a quantity that is helpful for finding the best direction for the minimization that,
locally, corresponds to the opposite direction suggested by the Jacobian

• It allows local description of the non-linear function exploiting Taylor’s series ap-
proximation

In the last point it is recognized the passage from global to local property of the function
f . This will allow to find easier solutions concerning the optimization problem at each
iteration, but, at the same time, their validity is extended only into a neighbor of the point
considered. In the end, subsequent computation of new points and related Jacobian will
bring to lower and lower values associated to the function. Then, when the function im-
provement at each steps become very small, the algorithm reach a point near the minimum
and this will approximate the final solution. The common steps of a generic algorithmic
solution could be summarized as:

1. choose an initial point coordinates x0
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2. for i-thi iteration, find∆xi such that ||f(xi +∆xi)||2 < ||f(xi||2

3. Given a threshold T → if: ∆xi < T stop the algorithm; otherwise set xi+1 =
xi +∆xi and return to step 2

Let’s discuss two important algorithm: Gauss-Newton method and Levenberg-Marquatdt
method

Gauss-Newton method

This method directly translate the after mentioned steps in an algorithm implementation.
As already anticipated, at each iteration the algorithm has the goal of computing a decre-
ment ∆xk , that will bring to a point xk + ∆xk ∈ Rn that ideally deal with the situation
in which f(xk + ∆xk) < f(xk). In this case, k represents the current iteration number.
Remembering the principles of iterate methods, a common procedure is to find easier
representation of the function in the around of xk+∆xk , through the computation of first
order Taylor expansion:

f(x+∆x) ≃ f(x) + JT∆x (1.47)

with J(x) =
[
∂f

∂x1
. . .

∂f

∂xn

]T
∈ Rn, column vector which elements are the derivative of

the function with respect to vector x. Following the structure reported in 1.5 and from
the starting equation (1.46), at this point the aim of the algorithm is to find the decrement
∆xk such that it is minimizing

1

2
||f(x)||2. Substituting the non-linear function with its

local approximation (1.47), this problem is reformulated as:

∆∗
x = argmin

∆x

1

2
||f(x) + J(x)T∆x||2 (1.48)

that turns to be a least-square optimization problem with linear relation with respect to
the optimization variable. Computing the derivative and setting it to zero brings to

J(x)f(x) + J(x)J(x)T∆x = 0

↓

∆∗
x = −(J(x)J(x)T )−1J(x)f(x)

that will be used to obtain a new vector xk+1 = xk + ∆xk , hypothesis vector for the
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minimum value correspondent to f(xk+1).

Initialization: select a
value x0

fin increment

for the k-th iteration

stop

yes

no

Figure 1.4: block diagram description of Gauss-Newton least-square non-linear optimiza-
tion algorithm

The problem of the above formulation is that the quantity J(x)J(x)T define a semi-positive
definite. This means that KER[J(x)J(x)T ] ̸= ∅. ifKER[J(x)] ̸= ∅, then it exists a
vector v ̸= 0 ∈ KER[J(x)] such that: J(x)v = 0. Hence, the algorithm is not able to
distinguish the case in which ∆∗

x = 0 is induced by convergence or it is a consequence
of a vector belonging into the null space of J(x). Another drawback is that the steps
length is not took into account inside the update rule. In general, it is better to have:
xk+1 = xx + α∆x, since the steps along the optimization direction should be larger as
the approximation induced by the Taylor expansion is better; smaller in the opposite case.
However, also in this case, the algorithm will not show so much speed up with respect
to its classical formulation, because the approximation turns out to be a good function
description only in a very small neighbor with respect to vector x6. Starting from this
formulation, other methods were derived that try to remove these drawbacks. One of
them is the Levenberg-Marquatdt method.

6Obviously this strongly depends on the type of non-linearity that are involved into the function defini-
tion. However, from an overall perspective, this statement turns out to be true most of the time
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Levenberg-Marquatdt method

The Levenberg-Marquatdt is a slight modification of the Gauss-Newton algorithm. It
substantially introduce a factor on the optimization problem that take into account the de-
gree of approximation introduced by the Taylor approximation. In the literature, this type
of method are usually referred as trust-region. The question is: how to understand if the
approximation obtained for a certain vector x is good with respect to the real formulation?
The idea is to define a parameter ρ such that:

ρ =
f(x+∆x)− f(x)

J(x)T∆x
(1.49)

that is exactly computing the ratio between the variation in the real function over the
related function approximation. At this point, we can have three different cases:

1. f(x +∆x) − f(x) > J(x)T∆x; then the real function decrease is bigger than ex-
pected, hence we can enhance the stepsize lenght considered along the minimiza-
tion direction found

2. f(x+∆x)−f(x) < J(x)T∆x; in this case we are too much optimistic with respect
to the real behavior of the function. Hence, we need to decrease the trust region,
hence the step length used in the update rule.

3. f(x +∆x) − f(x) ≃ J(x)T∆x, then the approximation is very similar to the real
function; hence we can rely on our approximation and consider larger decrements

the optimization problem under the Levenberg-Marquatdt formulation consists in a con-
strained optimization problem:

∆∗
x = argmin

∆x

1

2
||f(x) + J(x)T∆x||2, such that: ||D∆x||2 ≤ µ (1.50)

Then, exploiting results in the field of convex optimization, we can rewrite this problem
using the so called Lagrangian multipliers λ, into an uncostrained formulation:

∆∗
x = argmin

∆x

1

2
||f(x) + J(x)T∆x||2 +

λ

2
(||D∆x||2 − µ) (1.51)

25



good  
approximation

bad 
approximation

Initialization: select a
value x0

find increment

for the k-th iteration 

compute quality of the approximation:

no

yes

yes yes

no

no
Reduce the trust region

Enlarge the trust region

stop

no

yes

Figure 1.5: block diagram description of Levenberg-Marquatdt least-square non-linear
optimization algorithm

The matrix D is the matrix expressing the shape of the trust region. It consists into a
diagonal matrix; choosing D = I means to express the trust region like an hypersphere.
However, in this context it is usually defined: D = J(x)J(x)T ; here, the region give
more trust to those direction in the multi-dimensional space that show small gradients
and viceversa. The final shape obtained here is an hyper ellipses, which axis are gov-
erned by the behavior of the Jacobian. Computing the derivative operation and setting it
to zero bring:

J(x)f(x) + (J(x)J(x)T + λDTD)∆x = 0

↓

∆∗
x = −(J(x)J(x)T + λDTD)−1J(x)f(x)
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The Lagrangian multipliers are playing an important role in this formulation; as λ grow,
as the Taylor approximation of the variation is far from the real function variation. Instead,
the approximation is good for small values of λ. In this case is also possible to notice
how the update rule is moving towards that define for the Gauss-Newton approach. That
is a straightforward consequence, because the Gauss-Newton already find the best decre-
ments assuming a good approximation. In practice, this algorithm shows more robustness
to ill-condition for the inverse operation with respect to Gauss-Newton method; however,
the convergence rate is slower. In conclusion, if the least-square non-linear problem con-
sidered is well-posed (ideallyKER[J(xk)J(xk)T ] = ∅), then the method commonly used
in SLAM is that of Gauss-newton. In the csae of ill-posed problem, Levenberg-Marquatdt
solver is preferred.

1.2 SLAM problem introduction

As already pointed out, the SLAM algorithm has the aim to make robot capable of nav-
igating autonomously within an unknown environment. In the context of this thesis, it
is also added the assumption of an indoor navigation. Doing this, it is substantially ne-
glected all the possible solution based on prior information coming from the structure of
the environment (environmental engineering solutions) or through GPS technology. In
introducing the SLAM problem and relative solution, some basic definitions are given:

• Robot: a device that moves through the environment and modify it

• State: collection of all aspects of the robot and the environment that may have some
impact on the behavior of the robot

• Localization: process which output consists into the definition of the robot location,
defined with respect to a map of the environment, in which the robot is moving

• Mapping: process of build a map given the robot location

From this statement, it is easy to understand that SLAM is a hard chicken-or-egg problem:
the localization needs amap definition and, at the same time, themap construction process
is based on a pose estimation. Since the robot does not have any prior information about
the environment, it must completely rely only on its on-board sensors. This means that it
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can use only such information in order to perform the Localization and Mapping process.
Generally speaking, the SLAM problem can be expressed in the following way:

Given :

robot’s control: u{1:T} = {u1, u2, ..., uT},
observations: z{1:T} = {z1, z2, ..., zT}
Problem :

static map of the environmentm = {m1,m2, ...,mN}
path of the robot x{0:T} = {x0, x1, ..., xT} or current pose xt

where x is representing the trajectory of the robot as a discrete sequence of locations andm
the map description of the environment through a set of landmarksm1,m2, ...,mN . The
robot’s control motion represent the angular an translation velocity of the robot as re-
sponse to the input control signal that arrive at the actuator level. The observation instead
describes the way in which the mobile robot is perceiving the environment. depending
on the type of sensor used, we can have landmarks, namely feature points that can be
recovered by a monocular camera, range scan, coming from a LiDAR, or directly a point
clouds, commonly recovered by means of RGB-D cameras or stereo cameras.

1.2.1 Evolution of SLAM

This section aims to give an overall perspective about the 30 years of research that has
interested SLAM inside the robotic community. In particular, it should be not consider
as the result of years of experience inside this research topic; it substantially consists into
a chronological summary of the most important steps that led to the current state-of-the
art SLAM architecture. The first time that SLAM was presented in a robotic conference
was in 1986, at the IEEE Robotics and Automation Conference held in San Francisco.
Here, the researchers were at the infancy of the problem formulation and they did not
talk about SLAM yet; they started to think that the pose and map of a robot could be
related together by means of probabilistic density rather than be a single output from a
deterministic model. Indeed, thanks to this description, they would have been able to
use probabilistic estimation methods and manage the uncertainty form the incomplete ac-
tion/observationmodels and noisy observations. After this conference, the work of Smith,
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Figure 1.6: SLAM problem visualization. The image is also showing the influence of the
accumulated drift error on the estimated robot trajectory

Self and Cheeseman [13], shows that given a robot moving inside an unknown environ-
ment through estimation of relative position of landmarks, than the estimated landmarks
positions are correlated. This was supported by the idea that since the locations were re-
covered with respect to a vehicle location, affected by error, then this error will influence
all the other relative estimation, making landmarks positions correlated. This observa-
tion suggests the idea of enclosing both the localization variable of the robot and that
one of the landmarks inside a unique state vector description. This would have given the
possibility to update both the robot and landmarks localization at the same time, trying
to minimize the noise influence over the measurements. Here researchers starts to think
about the paradigm of simultaneously search for robot localization and landmarks posi-
tions. However, as first attempt, they thought that the correlation between landmarks was
something to minimize, in order to decouple the vehicle position with respect to land-
marks, in order to avoid the propagation of noise from measurements to landmark pose
estimation, trying to make observations independent. The conceptual break-trough was
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brought at the 1995 International Symposium on Robotics Research, where the conver-
gence result and the coining of the acronym‘SLAM’were first presented in a robotics
survey paper [14]. After 4 years of research, in the The 1999 International Symposium
on Robotics Research it was held the first SLAM session, where the first solution to the
probabilistic SLAM formulation by means of Kalman filter method was discussed [15].
Then, the Simultaneous Localization And Mapping starts to be a hot topic of research, at-
tracting many people not only from the robotics community, but also people in the field of
artificial intelligence, computer vision, numerical optimization, algorithm design, sensor
fusion and so on. One important thing that is important to remark is that SLAM has been
formulated and solved as a theoretical problem in a number of different forms and now
it can be considered a solved problem [16]. What is lacking in the SLAM solution is a
reliable and robust algorithm implementation, able to translate such concepts already val-
idate from the theoretical perspective. Hence, when we consider a solution to the SLAM
problem, we refer on actual implementation on the real-world scenario. Starting from the
Kalman filter implementation, a lot of efforts was spent in order to extend this results in
a non-linear framework, considering also non-Guaussian error densities. This brought to
the EKF(Extended Kalman Filter)[17][18][19] and PF(Particle Filter)[20][21] implemen-
tation. In both cases, the solutions rely on the definition of the state as the composition of
localization variables (robot pose) and mapping variables (landmarks positions). How-
ever, due to their architecture, such solutions require a computational time that grows
quadratically with the number of landmarks took in consideration. A lot of research was
spent on this practical problem, like [22][23]. Since the problem was intrinsically embed-
ded in the On-line estimation approach, people starts to think to new paradigm that can
be based on a different way of solving the SLAM problem, that do not rely on filtering
method. Under this line of thinking researchers reformulate the SLAM problem as an
optimization problem, giving the foundations to the actual state-of-the art SLAM algo-
rithms: grph-SLAM. In particular, the SLAM problem is seen as a graph optimization
problem, where the variable to optimize are the densities associated to pose taken by the
robot along a trajectory; the map is constructed based on the sensors information, after the
localization process has been performed. A lot of solutions based on this new conceptual
way of thinking at the problem were proposed; for example they are worth mentioning
[24][25]. In particular, comparisons were provided between these two different paradigm
[26][27], both in agreement stating that the state of the art approach deal with graph op-
timization and full trajectory robot recovering. Indeed, state of the art filtering method
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based on EKF shows to achieve about same performances as smoothing method when the
introduced linearization turns out to well approximate the underlying non-linear function
[28].

1.2.2 General mathematical formulation of the problem

In every engineering problems, one of the crucial part is to clearly understand how is
possible to derive a mathematical formulation for a problem, whatever is its nature. This
section focus on the way of describing a SLAM problem in its general form. The idea
is to understand the basic principles applied in a general SLAM context, taking the first
steps inside this wide field of research. Following the introduction above, the question
that summarize the SLAM problem is: Given a stream of observation z1:T and control
actions u1:t, how it is possible to recover the state of the robot in a particular instant t
inside the time interval [0, T] and a map of the environment? Following one of the book
pioneer in the robotics world [29], the state of a robot is expressed under a probabilistic
framework. This means that the solution to the SLAM problem can be expressed in terms
of a density function:

P ( xt,m | u1, z1, u2, z2, ..., uT , zT ) (1.52)

Eq. (1.52) corresponds to the joint probability of estimating the landmark locations m
while the robot reach the state xt, given the observation z1:T and control inputs u1:T . This
probability takes the name of Belief or Posterior and its maximum is associated with the
optimal solution to the SLAM problem. Let’s also define a contract formulation about
the joint probability description:

P (x1:T ) = P (x1, x2, ..., xT ), this also works with z1:T , u1:T variables (1.53)

Recalling the Bayes’ rule about conditional probability over multiple variable, we obtain:

P (x1:T ,m | u1:T , z1:T )
Bayes’ rule

=
P (z1:T | x1:T ,m, u1:T ) P (x1:T ,m | u1:T )

P (z1:T | u1:T )
(1.54)

∝ P (z1:T | x1:T ,m, u1:T )︸ ︷︷ ︸
likelihood

P (x1:T ,m | u1:T )︸ ︷︷ ︸
prior

(1.55)
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That is the equation that is summarizing the SLAM problem. In particular, it is important
to highlight that here we are considering the full trajectory followed by the robot: for
this reason, this problem formulation takes the name of full-SLAM. Instead, if we are
considering only the estimation of the pose at time t, usually intended to be the current
pose of the robot, then the problem is called Online-SLAM. In this last case, the SLAM
problem is translated in:

P (xt,m | u1:T , z1:T ) ∝ P (zt | xt,m, u1:T , z1:t−1)︸ ︷︷ ︸
likelihood

P (xt,m | u1:T , z1:t−1)︸ ︷︷ ︸
prior

(1.56)

Considering the two cases, we have two different type of solution:

Xt-1 Xt Xt+1

Ut-1 Zt-1 Ut Zt Ut+1 Zt+1

M

Xt-1 Xt Xt+1

Ut-1 Zt-1 Ut Zt

M

Ut+1 Zt+1

Full-SLAM Online-SLAM

Figure 1.7: Bayesian graph representing the full-SLAM and Online-SLAM estimation
problem

• Filtering base solution: usually the Kalman filter method is applied

• Pose graph solution: non-linear optimization method are applied

As can be observed, the two solutions are reported in their chronological order. The
next section will go deeper in the description of both of these methods, considering their
application in the field of Visual SLAM.
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2
Visual SLAM

In this chapter it will be analyzed a solution for the SLAM algorithm based on image
information, called Visual SLAM. To this aim, at first the chapter focus into the definition
of the different cameras sensors, paying more attention in the case of monocular camera.
The second part will give a brief description of inner modules running in parallel in the
SLAM software architecture.

2.1 introduction to Visual SLAM

Visual SLAM represent one of themost widely studied topic inside the SLAM framework;
the principal motivation behind this fact is that cameras are very cheap sensors that, at the
same time, bring a lot of information. From a general viewpoint cameras as intended as
devices that record video stream at a specific rate, usually not below 30 Hz; the resolution
can be adapted to the specific working conditions. It is possible to classify camera devices
in three big groups: monocular camera, stereo camera and RGB-D camera. Based on
the different working principle and associated output, the Visual SLAM algorithm are
implemented in different way. However, it is possible to identify some common points
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that are sheared between the different solutions1:

• Acquisition and processing of camera images

• Visual Odometry (VO)/front-end. It corresponds to the step of extracting the ex-
isting relationship between sensors measurements and robot state. In particular,
considering visual information, this module have the purpose to find a model that
is linking images with the robot state

• back-end optimization: it receives the camera poses estimation from the front-end
at different time stamps and find an overall estimation of robot trajectory, solving
an optimization problem

• loop closing: It consists into the process of determine if the robot has already been
in a particular place, by means of feature comparison between the actual frame and
the old ones seen during robot navigation

• reconstruction: given the localization output, results of the combination of back-
end and front-end, the robot build and update a map of the environment. Consider-
ing the specific task that it need to accomplish, different type of maps can be choose
to describe the robot surroundings

2.2 Cameras and image formation

In this section it is presented a brief summary about the characteristics and working prin-
ciple of the most used type of camera: monocular camera, RGB-D camera, stereo camera.

2.2.1 monocular camera

Monocular camera sensor information consists of 2D images, outcome of various com-
plex process and combination of parameters, that dynamically change in the environment
or can be set by the user. Working in the best camera setup is a crucial purpose in a Visual
SLAM framework. The core part of a monocular camera sensor consists of an electronic
component that is able to perceive the amount of energy that hit its surface and return an

1here it is implementation of graph optimization solutions, since well-recognized state-of-the-art tech-
nology for Visual SLAM
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electric signal proportional it; essentially, it can be described as a sort of grey-scale image
sensor. Since light play the main role in the image formation process, it is needed to take
care of the type of exposure that the image sensor is subjected; this is characterized by
two important parameter:

• Aperture: namely the width of the opening of the camera lens

• shutter speed: how much time the CMOS can spend into measure the light coming
from the environment

It is possible to obtain the same amount of light hit the surface of the image sensor with
half aperture but doubling the shutter speed. This is the so called reciprocity; it is im-
portant because given the same amount of light, a different resulting output is obtained,
with subsequent different problems in the sensor image generation process. Another very
important choice that has to be maid when buying a camera is the type of light sensor. In
particular, two different type of image sensors are available on the market: CMOS (Com-
plementary Metal-Oxide Semiconductor) and CCD(Charge-Coupled Device). Among
the differences between these two solutions, one turns out to have a big influence with
respect to the type of performance achievable for Visual SLAM applications: the type
of information transmission. If the information associated to an image is sent globally,
from the sensor to the processing unit, then the sensor is described as a global shutter de-
vice. Otherwise, if the pixels information are red row-by-row, the light sensor deal with a
rolling shutter camera. Ideally, Visual SLAM algorithm should be implemented relying
only on global shutter cameras, due to its working principle. Indeed, as will be clear in
the Visual Odometry section, the localization process is directly set up on pixels intensi-
ties coming from two subsequent images; if the outcome image deal with improper pixels
readings, then the localization process can easily fail. The last remarkable characteristic
of monocular camera, that make them an appealing sensor in the SLAM field, is its ex-
tremely low price, comparing with the high amount of information that can be processed;
for example, the monocular camera used for this thesis work has a price of about 25€.
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Figure 2.1: Rolling-vs-Global shutter camera image comparison. courtesy of [2]

Geometrically speaking, the final output of a monocular camera consists into the projec-
tion of the 3D scenario in front of the camera into a 2D image. Going deeper in the image
formation process, In the following it is briefly derived the mathematical model that is
expressing the existing relationship between points in the 3D world with their correspon-
dent pixels representation in the 2D image plane. It is considered a frontal pinhole camera
model, namely the image plane, hence the image sensor, is considered to be in front of
the pinhole, as depicted in the image 2.2. For the sake of clarity, let’s define:

Q =


X

Y

Z

 ∈ FW Q =


X

Y

Z

 ∈ FC q =

[
x

y

]
∈ FC (2.1)

where Q represents a 3D point coordinate in the world reference frame; Q its 3D rep-
resentation with respect to the camera reference frame and q the 2D coordinates inside
the image plane. FC ,FW represents respectively the world and camera reference frame.
Let’s start bringing the 3D coordinates description from the world reference frame to the
camera reference frame. This consists into a roto-translation of the type Q TCW−−−→ Q,
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Figure 2.2: geometric representation of the frontal pinhole camera model

where T ∈ SE(3):

Q = RCWQ+ t −→

[
Q

1

]
=

[
RCW t

0T 1

][
Q

1

]
⇝ Q̃ = TQ̃ (2.2)

where: RCW ∈ SO(3) and t ∈ R3 are the underling components of the roto-translation
T and ”∼ ” is used to symbolize the homogeneous coordinates representation. In do-
ing this, the point coordinate is moving from a n-dimensional space to an n+1 variable
representation; here it is reported the general formulation, in case of n = 2:

R2 −→ R3 :

[
α

β

]
−→


λα

λβ

λ

 , R3 −→ R2 :


α

β

γ

 −→


α

γ

β

γ

 (2.3)

where the 3D coordinates of the higher dimensional space give a point coordinates de-
scription up to a scale factor. Indeed, it is not possible to identify a third coordinate
through this process, but only the bundle of lines that pass through the 2D points; indeed
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Figure 2.3: zoom on the triangular relationship for the frontal pinhole camera model

the following relation holds ∀γ ∈ R
x

y

1

 ,

γx

γy

γ

 −→

[
x

y

]
(2.4)

Given the coordinate in the 3D camera reference frameFC , a description of the associated
2D projection inside the image plane is needed. Following the scheme in figure 2.3, the
recognition of the similar triangles formula, allows to write the following relation:

[
x

y

]
=

fx
X

Z

fy
Y

Z

 ; then, exploiting (2.4) for finding a linear relation: (2.5)


λx

λy

λ

 =


fxX

fxY

Z

 =


fy 0 0

0 fy 0

0 0 1



X

Y

Z

 =


fx 0 0 0

0 fy 0 0

0 0 1 0



γX

γY

γZ

γ

 (2.6)

where x, y in this case represent the 2D coordinates on the image plane described with
respect to the camera reference frame and λ, γ ∈ R are two arbitrary scale factor. Then,
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combining together (2.2) and (2.5):

δ


x

y

1

 =


fx 0 0 0

0 fy 0 0

0 0 1 0


[
RCW t

0T 1

]

X

Y

Z

1

 (2.7)

=


fx 0 0

0 fy 0

0 0 1



1 0 0 0

0 1 0 0

0 0 1 0


[
RCW t

0T 1

]

X

Y

Z

1

 (2.8)

= Kf Π0 T Q̃ (2.9)

where:

• Kf ∈ R3x3: normalized intrinsic parameter matrix

• Π0 ∈ R3x4: standard projection matrix

• T ∈ SE(3) : Euclidean roto-translation, already presented above

• δ =
λ

γ

The pixel coordinate is not obtained yet, because (x, y) corresponds to the coordinate
description with respect to the camera reference frame. However, pixels information live
in a discrete world and they are describe with a rectangular dimension inside this context.
So as to take care of this, let’s define a matrix Ks ∈ R3x3 composed of:

Ks =


sx sθ Ox

0 sy Oy

0 0 1

 (2.10)

where sx, sy, sθ refer to the pixel dimension and shape, respectively. Ox, Oy are offset
with respect to x, y axes of the camera reference frame because, usually, the pixel coordi-
nates in the image plane have a reference frame placed on the top left corner of the image.
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Given such consideration, the final mathematical model of the camera can be written as:

δp̃ = Ks Kf Π0 T Q̃ (2.11)

= KΠ0 T Q̃ (2.12)

= P Q̃ (2.13)

where:

• K = Ks Kf ∈ R3x3 is the intrinsic camera parameter matrix

• P = KΠ0 T ∈ R3x4 is the camera matrix

• p̃ = [u, v, 1]T ∈ R3 is the vector of homogeneous discretized pixel coordinates in
the image plane

it is worth noting that considering the relation (2.4), the pixel in equation (2.11) is defined
up to a scale factor λ ∈ R; this mathematically describes the scale ambiguity problem
associated to the images, namely the process of encoding 3D information inside a 2D
image plane.

2.2.2 stereo cameras

The stereo camera consists substantially into the data synchronization and fusion of two
different monocular camera, placed with a known roto-translation one from each other;
for this reason, this type of camera are also called binocular camera. The idea behind
stereo camera is to overcome the depth ambiguity problem of the pinhole camera model
(2.11), using two images of the same scene took from two slightly different viewpoint.
This is the same way in which human are able to estimate depth, elaborating informa-
tion from our eyes at the brain level. Following this idea, the stereo camera is built with
one left-eye monocular camera and a right-eye monocular camera. They are constructed
to have a displacement only in one direction, enclosing them in a box case, as the one
depicted in figures 2.5, 2.4. This displacement is the so called baseline and it is of funda-
mental importance so as to recover a depth estimation. The two cameras has the aim to
reconstruct the 3D scene given only a single timestamp, that is associated to two frames;
In doing this, the depth recovered is expressed in an absolute scale. In order to derive the
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Figure 2.4: stereo camera with same
monocular CMOS sensors as raspicam V2

Figure 2.5: product of ©Stereolabs Inc.;
considered as state of the art device
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Figure 2.6: visual representation of the stereo vision geometry

working principle of this camera, let’s consider a 3D point P in the scene. Let’s define
two points pl, pr, resulting from the camera model equation (2.11), that are respectively
the projection of the 3D point P into the camera image plane of the left camera(l) and of
the right camera(r). Then, since the building case constraint the two cameras of being
positioned along a straight line(at least with a certain degree of accuracy) than the same
object in the scene will be found at the same y coordinate considering the two different
image planes; what is changing is only the z, x coordinates. This can be easily seen in the

figure 2.7, where can be also highlighted the similar relationship between triangles
△

Pplpr
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and
△

POlOr, that bring to the proportional relation:

z − f

z
=
b− (ul + ur)

b
−→ z =

fb

ul + ur
(2.14)

Where the quantity ul+ur is the so called disparity and it substantially relates the distance
of the camera from an object with the amount of pixel motion that is observed in the two
image planes when considering the same 3D point in the scene. Hence, the disparity
is inversely proportional with respect to the distance. The maximum range that can be
evaluated is that one when the left and right image observe a pixel variation equivalent to 1
pixel; so the maximum depth is set to be equivalent to fb. With these considerations, so as
to enhance the performance of the camera, one should need to raise the distance between
the two cameras. However, this turns to be a problemwhen considering the pixelmatching
process that it is needed to find correspondences between the two image plane, because
the range of the area where perform the search operation is enlarging. At this point, as
happen for a lot of engineering-related topic, a trade-off choice needs to be made, between
range of measurements and accuracy of them. another thing worth mentioning is that such
type of sensor need a lot of computation for real-time performances and for this reasons
they are usually coupled with GPU(Graphic Process Unit) or FPGA(Field Programmable
Gate Array), that are task-specific processors which aims is to focus only on algorithm
and process computation.

2.2.3 RGB-D cameras

RGB-D stays for RedGreenBlue-Depth camera; this suggest the type of output of such
type of sensor, namely an RGB image with an associated depth estimation, namely a map
associated to pixels filled with depth values. The depth estimation took into account is not
the result of an image elaboration process, as it happen for stereo cameras; indeed, RGB-D
cameras are built on another working principle. The monocular camera is coupled with an
infrared light emitter, added to the box case in which the monocular camera is placed. The
RGB-D cameras can be divided in two different class, regarding their working principle:

• cameras based on structured infrared light

• cameras that rely on infrared TOF(Time Of Flight) principle
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The idea behind the structured infrared light principle is that: given a known pattern about
the emitted infrared light, it is possible to recognize the distance and shape of objects in
front of the camera, observing how the light is distorted from the objects present in the
scene, capturing the its reflection by means of light receiver. Instead, the TOF RGB-D
cameras use avery accurate chronometer for measuring time travel of light between the
instant of emission and reception; given the constant velocity of light, then the travelled
distance is easily recovered. At the end, once that the infrared light reach the receive

Figure 2.7: two different types of RGB-D cameras; in particular they consist on the ver-
sion 1 and 2, ordered from left to right, of the Microsoft Kinect camrera; courtesy of
[3]

information and the distance estimation is completed, than the resulting values are coupled
with the color information embedded inside the image produced by themonocular camera.
The final result is a 3D point cloud, where at each spatial coordinate it has associated other
three parameters, that correspond to the three channel colors recovered from the image
formation process. Due to their working principle, both type of RGB-D cameras can work
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only in a small range of measurements and the accuracy of the measurements strongly rely
on the light condition in which the camera is used.

2.3 front-end

In a general SLAM implementation, the principle aim of the front-end is to extract rele-
vant features from sensors information in order to perform data association, namely the
process of correct matching between taken observation and control input with the state
of the robot. This substantially consists into the derivation of the motion and observation
model, related to the MAP(Maximum A Posteriori) problem described in section 1.2.2.
Considering the Visual SLAM scenario, the front-end have the aim to describe the rela-
tionship that link pixels intensity with the actual state of the robot. Unfortunately, it is
very difficult to obtain such result. However, this turns out to be true also for other type of
information sources, like LiDAR distances or point cloud generated by RGB-D cameras.
In the Visual SLAM implementation, the data association process is performed by means
of two different module:

• short-term data association: the process aims to track key-points between two con-
secutive images inside a video data stream in order to recover an estimation for the
camera pose. This process is also called Visual Odometry (VO)

• long-term data association: loop closure detection

This section will focus on two classical methods related to the pose estimation process:
feature-based and direct method. They find two different ways of finding a pose estima-
tion given a pair of monocular images. The overall idea is to recognize the variation of
pixels intensity between the two consecutive images and, based on that, recover the ex-
isting relative motion showed in the two image planes. Particular attention will be given
to the last mentioned method, since this thesis work will exploit it. After that, it will be
reported a brief explanation about the loop closure principle.

2.3.1 Multi-view geometry principle

This method use multi-view geometry principle, also called epipolar geometry, for solv-
ing the camera pose estimation problem assuming a pair of 2D pixels correspondences.
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Figure 2.8: visualization of multi-view geometry between a pair of consecutive images
in a video data stream

Hence,at first it is assumed that the algorithm have a set of pixels correspondences be-
tween two consecutive images; for a first analysis2, let’s consider a pair of correspondence
referring to the same 3D point Q: q1 ∈ I1, q2 ∈ I2. For a visual representation of this
scenario, one can refer to 2.8. The final goal is to derive the rigid body motion relation-
ship that link the two pixels coordinates. Remembering the assumption about having a
correspondence between the pair of 2D points q1, q2, let’s start to derive their relationship
in terms of rigid body motion. At first step, let’s consider the pointQ ∈ R3 as the point
expressed in the world reference frame and its associated 3D coordinates expressed in
the two different camera reference system Q1,Q2. Following the notation used for the
explanation of the camera model:

Q =


X

Y

Z

 ∈ Fw Q1 = R1WQ+ t1,∈ F1 Q2 = R2WQ+ t2,∈ F2 (2.15)

2some attention will be given to the epipolar geometry principle, because it turns out to be useful also
in the direct method case, considering the depth estimation process
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In the above equation, ”1” and ”2” describe the two frames associated to the two camera
poses. Then one can simply derive:

Q2 = R21Q1 + t21 −→

 R21 = R2RT1
T21 = −R21t1 + t2

(2.16)

Notice that in this last equation R21 and t21 represent exactly the quantity that the front-
end aim to estimate, namely the existing roto-translation from camera reference frame 1
to the reference frame of camera 2. Now, let’s suppose that the focal length is equal to
one and that the matrix Ks = I3

3. Eq.(2.5) allow to write:

λ1q̃1 = Π0Q̃1 −→ λ1q̃1 ≃ Q1 (2.17)

λ2q̃2 = Π0Q̃2 −→ λ2q̃2 ≃ Q2 (2.18)

with a little bit of abuse of notation on the right side equation,it is written an equivalence
between homogeneous and non-homogeneous coordinates. λ1, λ2 ∈ R are the scale am-
biguity factor associated to the two monocular camera models. Substituting (2.17) in
(2.16):

λ2q̃2 = λ1(R21q̃1 + t21) (2.19)

that can be manipulated a little bit with simple linear algebra tools for obtaining the so
called Languet-Higgins equation, expression of the epipolar constraint:

< q̃2, [t21]xR21q̃1 >= 0︸ ︷︷ ︸
Languet-Higgins eq.

⇐⇒ q̃T2Eq̃1 = 0︸ ︷︷ ︸
Epipolar costraint

(2.20)

where E = [t21]xR21 ∈ R3x3 is the so called Essential matrix. The equation is solved
when two points coordinates q̃2, q̃1 belong to the epipolar plane. Now, it is easy to gen-
eralize in the case whereK ̸= I3; rewriting (2.17) it is possible to obtain:λ1q̃1 ≃ K1Q1

λ2q̃2 ≃ K2Q2

(2.21)

3this assumption is taken without loss of generality; using it give to us the possibility to make simpler
derivation. The general case will be considered at the end
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and finally the epipolar constraint equation in the general form:

0 = q̃T2K−T
2 EK−1

1 q̃1 (2.22)

= q̃T2 Fq̃1 (2.23)

in which matrix F = K−T
2 EK−1

1 ∈ R3x3 is the so called Fundamental matrix. It has the
same structure of the Essential matrix; so further derivation will consider the matrix defi-
nition of equation (2.20). So far it is described the linear relation that exists between pair
of points correspondence between two images. Remembering that the final aim of visual
odometry is to recover a pose estimation from images information, it is possible to exploit
the equation derived in (2.20) in order to estimate at first a description of the matrix E and
then decompose it so as to recover its internal component, namely R21 and t21. Since the
matrix E ∈ R3×3 has 9 entries, how to estimate it by means of point correspondences?
A solution is to make usage of its internal structure, observing that it is the result of the
product of a skew-symmetric matrix by an orthonormal matrix. From this consideration,
it is possible to derive:

• the epipolar constraint defined by the Essential matrix is defined up to a scale factor,
considering the homogeneus coordinate description of the points correspondence
q̃1, q̃2

• the singular value of the matrix are in the form: [σ, σ, 0]T ; this means that the Es-
sential matrix is rank deficient.

• Since the Essential matrix is composed by two components, namely [t21]x,R21 it is
characterized by 6 Degrees Of Freedom (DOF), three for the translation and three
for the rotation. However, due to equivalence of scale, one DOF is lost and hence
the Essential matrix has only 5 DOF.

From this, the relative roto-translation between two adjacent frames can be reconstructed
up to a scale factor. Ideally, only five points should be needed to recover an estimation
for E, solving (2.20). However, since the internal property of E are non-linear, such
estimation is obtained with at least 8 different points correspondences: one example is the
so called 8-point algorithm, that use linear algebra method. It is also possible to obtain
an estimation of the essential matrix by means of an optimization problem formulation;
however, a set of points correspondences is always needed as starting point. The problem
that now needs to be addressed is: given an estimation ofE, it is not always guarantee that
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the solution found by an optimization algorithm or, for example, output from the 8 point
algorithm, satisfy all of the inner property of the Essential matrix. Hence, how to find
the Matrix inside the space of possible essential matrix that is the most similar to the one
estimated? An answer to such question is: given the SVD decomposition of the estimated
essential matrix: Ẽ = UTΣV, U.V ∈ R3x3 orthonormal matrices, very likely it should
has that the singular value inside matrix Σ are of the type[σ1, σ2, σ3]T , with σ1 ≃ σ2 and
σ3 ≃ 0. The projection on the manifold containing the most similar Essential matrix to
the one estimated is taking:

E = UT


σ1 + σ2

2
0 0

0
σ1 + σ2

2
0

0 0 0

V (2.24)

Now, given a matrix E, how to decouple it in its component, namely [t21]x and R21?

The reconstruction process of the pose starts considering the Singular Value Decom-
position (SVD) of the matrix E. According to the properties of the Essential matrix:
E = UTΣV, singular values [σ, σ, 0]T . It is possible to prove that:

[t21]x = URz
(
± π

2

)
ΣUT (2.25)

R21 = URz
(
± π

2

)TVT , (2.26)

moreover t21 = u3, the third column vector of matrix U.
summarizing, the important point discussed in this section is that: given a sufficient num-
ber of points correspondence between two consecutive images it is possible to recover a
pose estimation for the camera, up to a scale factor. So, in the next section, the attention
will be brought on how these correspondences can be found; in particular, the state-of-
the-art approach is based on feature-based matching method.

feature based points matching

Remembering that the principle aim of the front-end is to provide estimations about the
pose of the robot to the beck-end, that will refine the overall robot trajectory considering
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the different poses estimated during time. In the previous section it is shown that a set of
pairs correspondences between pixels in two consecutive frame is enough for estimating
the existing roto-translation between the two image planes. At this point the question
is: how to find pixels matches between pair of images? In the introduction part of this
chapter it is already discussed how images consists of matrices of numbers, result of
a complex process, where a lot of agent are involved, like the intrinsic parameters of
the camera (focal length, lens distortion, color aberration, ..), the aperture, the shutter
speed, the quality of the CMOS/CCD sensor, ... For this reason, the same scene took
in two consecutive timestamp can be represented with slightly different pixels intensity
values. Hence, it is not so simple to find the correct matches between pixels. For finding
a solution to this problem, Researchers thought to focus only on some particular points in
the image, that are easily distinguishable from the other and guarantee a lower matching
error. In Visual SLAM they are described as image features; in a more general SLAM
framework, they corresponds to landmarks. These points are associated with particular
numbers pattern in the image matrix description, that should guarantee more robustness
with respect to variables variation involved in the image formation process. Computer
vision researcher spent a lot of efforts looking for a good feature detector, because the
final results coming from the matching operation strongly depends on how these image
features are described. From the above consideration is simply to derive that a good
feature descriptor must be:

• stable/repeatable

• invariant to transformation (for example rotation or scale)

• insensitive to illumination change

• distinctiveness: different features have different descriptors, while similar features
have similar descriptors

• efficiency: the number of keypoints should be much smaller than the number of
pixels

• computationally efficient: trade-off between description accuracy and computa-
tional effort required

There are a lot of features descriptor in literature: SIFT (Scale Invariant Feature Trans-
form), BRIEF(Binary Robust Independent Elementary Features), FAST(Features from
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Accelerated Segment Test), ORB(Oriented FAST and Rotated BRIEF), SURF(Speeded-
Up Robust Features) to mention the most famous ones. Each of them has some advan-
tage/disadvantage. Inside the SLAM framework, themost used feature descriptor is ORB.
Although SIFT showed to achieve the best performances, ORB turns out to be more effi-
cient, better suited for real-time constraints. Indeed, ORB have a good trade-off between
computational efforts required and robustness achievable. In particular, this descriptor is
used in the state-of-the-art feature based SLAM algorithm implementation, that takes the
name as ORB-SLAM [8]. Some of well-recognized advantages/disadvantages of feature-
based matching methods are:

• the extraction of features points is time consuming. This is an important thing to
take into account inside the SLAM framework, since algorithm must be able to run
real-time

• in this method,some pixels information of the image are used, discarding the greater
part

• The camera can face some scenario where there are few features that could make
the camera unable to estimate its motion

2.3.2 direct method pose estimation

Given a pair of two consecutive images, the direct method aims to give a pose estimation
considering an image alignment problem. The overall idea is to track the motion of the
intensity map, considering that a motion of the camera will cause a variation of pixels
intensity with the same magnitude but opposite direction. This can be translated into an
optimization problem over the roto-translation DOFs, namely a rotation R ∈ SO(3) and
a translation t ∈ R3, expressing the motion of the intensity map between two consecutive
images. The scenario considered is the same as that one reported in figure 2.8. Let’s
define the roto-translation (as did before) T ∈ SE(3), composed by R and t; moreover,
from (2.6), bringing the scale ambiguity λ = Z to the right hand-side of the equation, it
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is possible to write:

p̃1 =

u1v1
1

 =
1

Z 1
KP p̃2 =

u2v2
1

 =
1

Z 2
K(RP+ t) (2.27)

=
1

Z 2
K(TP̃)1:3 (2.28)

where, without loss of generality, it is considered that the frame of the first camera co-
incide with the world reference frame. The notation (TP̃)1:3 represent the operation of
taking out the last element in the resulting 4D vector from the multiplication, since the
point coordinate P̃ is in its homogeneous form. The quantities Z1, Z2 represents the dis-
tances of the 3D point P1 ∈ F1,P2 ∈ F2 from camera reference frame 1 and 2 respec-
tively, resulting from the roto-translation of point P ∈ Fw. As already anticipated, the
direct method working principle can be summarized as a sort of image alignment prob-
lem between two consecutive images. Hence, the algorithm is not searching for a pixel
matching; instead, the pixels correspondence will be found once that the algorithm has
evaluated a roto-translation. To this aim, the method is based on direct pixels intensity
value as similarity relationship, so as to recognize the map intensity motion and, conse-
quently the camera motion that has generated such pixel intnsities variaiton. This can be
done by minimizing the so called photometric error, namely the pixel intensity error of
the two pixels p1, p2 referred to the same 3D point coordinate P = [X,Y, Z]T ∈ F1,Fw.
Given a single point coordinate P , its associated photometric error is defined as:

e = I1(p1)− I2(p2) (2.29)

At this point, the algorithm take a strong assumption: the pixel intensities associated
to the same 3D point P ∈ Fw is constant; this means that: I(p1) = I(p2). This is a
critical assumption remembering how complex is the image formation process and how
the single pixel intensity does not provide a reliable and robust statistic inside the image
comparison problem. Considering more than one 3D point P , it is possible to write a least
square problem on a set of photometric error:

min
T
E(T) =

N∑
i=1

||ei||22, ei = I1(p1,i)− I2(p2,i) (2.30)
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The optimization variable here is directly the roto-translation. So as to solve this problem,
it is needed to apply such notion of Lie Theory and least-square non-linear optimization,
discussed in the first section of the introduction chapter 1. Let’s write explicitly the vari-
able involved in the equation; for simplicity, let’s define:

q̃ = TP (2.31)

ũ =

uv
1

 =
1

Z2

K(q̃)1:3 −→ u =

[
u

v

]
= (ũ)1:2 (2.32)

where q are the homogeneous coordinate of the 3D pixels inside the second camera refer-
ence frame; u represent the 2D projected homogeneous coordinates in the image plane of
the second camera. Solving (2.30) means to evaluate the Jacobian of the energy function
E(T) and iteratively converge to a minimum value. Hence the crucial operation to evalu-
ate is the derivative of the energy function with respect to the roto-translation variable T;
since sum of least-square terms, let’s consider a generic point P with projection p1 ∈ I1

and u ∈ I2:

e(T) = I1(p1)− I2(u) −→ ∂e(T)
∂T

= −∂I2(u)
∂T

(2.33)

observing the existing relation between T ∈ SE(3) and pixel u, applying the chain rule
on the derivative operation it is possible to write:

∂I2
∂T

=
∂I2
∂u

∂u
∂q

∂TP
∂T

(2.34)

The three terms on the right-side of the equation are:

•
∂I2
∂u

is the pixel gradient at the pixel coordinate associated to u

•
∂u
∂q

is the partial derivative of the equation (2.31) with respect to the 3D point co-

ordinate q = [X Y Z]T , given u = [u v]T :

∂u
∂q

=


∂u

∂X

∂u

∂Y

∂u

∂Z

∂v

∂X

∂v

∂Y

∂v

∂Z

 =


fx
Z

0 − fxX
Z2

0
fy
Z

−
fyY
Z2

 (2.35)
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•
∂q
∂T

represent the derivative of the 3D point coordinate with respect to a roto-
translationT ∈ SE(3). In the evaluation of this derivative, one can use the equation
in (1.41); however, it is usually computed an approximation of it, using the so called
BCH(Baker-Campbell-Hausdorff) approximation4. it will not be presented here so
as to not loose the thread of discussion, but for interested readers, a simple explana-
tion of this concept can be read in [3]. A the end, the left perturbation approximated
model of the Jacobian is computed as:

∂I2
∂T

=
∂I2
∂u

∂u
∂q

∂q
∂T

−→ ∂I2
∂T

=
∂I2
∂u

∂u
∂q

∂TP
∂δξ

(2.36)

where
∂q
∂δξ

=
[
I −[q]x

]
(2.37)

and the final Jacobian can be written in the form:

J(T) =
∂I2
∂u

∂u
∂δξ

(2.38)

=
∂I2
∂u


fx
Z

0 − fxX
Z2

− fxXY
Z2

fx +
fxX2

Z2
− fxY
Z

0
fy
Z

−
fyX
Z2

−fy −
fyY 2

Z2

fyXY
Z2

fyX
Z

 (2.39)

At this point, it is possible to exploit one of the non-linear optimization method (such
as Gauss-Newton or Levenberg-Marquardt) in order to obtain a minimizer for the en-
ergy function and, consequently, an estimation of the matrix T ∈ SE(3). The alignment
working principle is substantially described by the purpose of the optimization problem
to reduce as much as it is possible the pixel map variation between the two images. The
fact of considering many pixels photometric errors is due to the local validity of image
gradient information, considering that images have not a smooth property (high convex
function). Under ideal circumstances (convex function), the error function should con-
verge to its minimum value. However, this is a far condition from the common behavior:
for this reason, when the optimization problem is considered, the pose estimation process
should consider only small motion, in order to have a good initialization for the opti-
mization problem and not so strong non-convexity property behavior of the image. The
ill-posed condition associated to the optimization problem is also mitigated considering a

4https://en.wikipedia.org/wiki/Baker-Campbell-93Hausdorff_formula
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pyramidal implementation of the algorithm, that give the possibility to find a correct so-
lution also with larger motions. The main drawback in the direct method implementation
is the computational complexity that is hidden in the map sparsity used by this type of
algorithm. Other problems related to this solution are:

• Image non-convexity property: since the direct method rely on a optimization solu-
tion above image pixels intensity, considering that the image function is a strongly
non-convex function, than the problem is usually hard to solve, causing the opti-
mization algorithm to stuck to local minima. One solution can be to slow down the
amount of motion from one frame to another or to exploit multi-level (pyramidal)
algorithm implementation

• constant brightness is a strong assumption

The advantages are substantially corresponds to the disadvantages of feature-basedmatch-
ing method:

• it save computation, since it does not need to compute feature points locations and
descriptors

• The algorithm can works also in texture-less scenario, when only a variation of
image gradient is observable

• it is possible to construct semi-dense map of the environment

2.4 Back-end

As highlighted in the previous part, the front-end module has the aim of finding a short
term trajectory and map associated to a certain robot motion.. Due to inevitable drift
errors, this process will diverge if it is considered the type of robot trajectory estimation
that is obtained on a long run. For this reason, the Visual SLAM algorithm has a back-end
module, that is not implementing new type of elaborations on sensors data or exploiting
new information sources, but it has the aim to extract a better robot trajectory, seen as a
temporal sequence of poses. In doing this, it is using the estimated robot poses evaluated
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at the front-end level. As already introduced in chapter 1, the general SLAM problem
formulation refer to eq. (1.54), reported here for simplicity:

P (x1:T ,m | u1:T , z1:T ) ∝ P (z1:T | x1:T ,m, u1:T ) P (x1:T ,m | u1:T ), full-SLAM

P (xt,m | u1:T , z1:T ) ∝ P (zt | xt,m, u1:T , z1:t−1) P (xt,m | u1:T , z1:t−1), online-SLAM

where it is also recalled the variables meanings:

• robot’s control: u{1:T} = {u1, u2, ..., uT}

• observations:z{1:T} = {z1, z2, ..., zT}

• landmark-based map descriptionm = {m1,m2, ...,mN} under static assumption

• pose of the robot x{0:T} = {x0, x1, ..., xT} where xt is the robot pose at time t ∈
[0, T ]

The final aim of the back-end is to find a solution to such equation; however, since there
are two different way of thinking at the problem, there are also two different type of
solutions:

• A filtering based solution, for the Online estimation

• A solution for the overall trajectory estimation based on an optimization problem
formulation.

Nowadays, the state-of-the-art solution is given by smoothing methods [28]. FOr this rea-
son, it will be reported a brief explanation of the filtering solution, giving more attention
to the second method listed.

2.4.1 Filtering solution

starting from the Online-SLAM problem formulation, some reasonable assumption can
be made about the mobile robot behavior:

• Markov assumption on the observation: only the actual state is influencing the
observation recovered from sensors:

P (zk | x0:k, z1:k, u1:k) −→ P (zk | xk) (2.40)
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• Markov assumption on the state: the robot state xt depends only on the last control
action ut and the previous state xt−1. This is something reasonable, since informa-
tion about sensor information cannot modify the state of a robot

P (xk | x1:k−1, z1:k, u1:k) −→ P (xk | xk−1, uk) (2.41)

• static world assumption: the environment in which the robot is moving is not
changing during time; hence the landmark based description of the map m =
{m1, ...,mN} is not a function of time

At this point, a little change of notation is needed. The variable xt that now is defining
the robot pose estimation at time t turns into a new meaning: it will represent the set of
all unknowns at time t. This new definition will enclosed both pose estimation and map
description under a unique variable definition, that is something reasonable considering
the SLAM framework.

xt = {xt,m1,m2, ...,mP} (2.42)

Note the subscript of m ”P ” ̸= ”N”, as defined in the previous page; this is caused by
the dimension of the state variable xt, that grows as time passes. It is possible to rewrite
the equation of the Online SLAM problem as:

P (xt | u1:T , z1:T ) ∝ P (zt | xt) P (xt | u1:T , z1:T−1) (2.43)

and with simpler probabilistic manipulation step on the defined equation, it is possible to
find a recursive solution to this problem:

Bel(xt) = P (xt | u1:T , z1:T ) [Belief/Posterior] (2.44)

∝ P (zt | xt)
∫
P (xt | ut, xt−1)Bel(xt−1) dxt−1 (2.45)

∝ [Observation]
∫

[Action] Bel(xt−1) dxt−1 (2.46)

The observation model define the probability to obtain an observation given the current
robot pose estimation and landmarks location:

Observation_Model = P (zt | xt)

while the action model describe the probability to obtain a state transition from the state
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xt−1 to xt, given the input ut

Action_Model = P (xt | xt−1, ut)

At the end a recursive equation associated to the MAP problem is obtained, namely the
state of the robot can be update in an online manner by means of the Observation_Model
and Action_Model. Until now, a generic probability distribution P(·) is considered, both
for the observation and action model. Let’s use a parametric uni-modal description of this
probability distribution through Gaussian density:

− Univariate: P(x) ∼ N
(
µ, σ2

)
: p(x) =

1√
2πσ

e
(x−µ)2

2
σ2 (2.47)

−Multivariate: P(x) ∼ N (µ,Σ) : p(x) =
1

(2π)d/2 | Σ1/2 |
e−

1
2
(x−µ)TΣ−1(x−µ) (2.48)

Why use Gaussian densities? The main purpose of doing this is given from the two fol-
lowing consideration:

• It is mathematical convenient: the result of a linear combination or multiplication
of Gaussian densities is still a Gaussian density. Considering the recursive solution
found in (2.44), the final pose estimation is a Gaussian distribution

• it is possible to assume that exists a lot of hidden facts under the overall model
of the robot behavior, where the sum of these individual errors behave like a zero
centered normal distribution; this is something reasonable considering the Central
Limit Theorem

What is remaining to identify is a deterministic formulation for the action and observation
model. A simple solution is a linear system of equation, that can be described as:

Action_Model

Observations_Model
⇐⇒

xt = Atxt−1 + Btut
zt = Ctxt

The description above deal with a linear, time-variant deterministic system:

• A ∈ Rnxn: evolution of robot state as no control input/noise influence its state

• C ∈ Rmxn: describe the existing relation between the state of the robot and the
observation obtained by sensors
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• B ∈ Rnxk: map the control input signal into the state space; represent the influence
of the control action at the state level

Now, following the consideration above, it is added a zero mean normally distributed
noise, in order to bring such deterministic system of equation to an associated stochastic
formulation:

Action_Model

Observations_Model
⇐⇒

xt = Atxt−1 + Btut + ϵt

zt = Ctxt + δt
⇐⇒

P (xt | ut, xt−1)

P (zt | xt)

with ϵt ∼ N (0,Rt), δ ∼ N (0,Qt), the following relations can be derived:

P (xt | ut, xt−1) ∼ N (Atxt−1 + Btut,AtΣt−1ATt + Rt), with: Σt = Cov(xt) (2.49)

P (zt | xt) ∼ N (Ctxt,Qt) (2.50)

In the case of a linear time-varying stochastic system (also for time-invariant) with Gaus-
sian noise distribution, a possible solution for finding a the maximum at posteeriori prob-
ability in an on-line manner is through the implementation of the Kalman filter algorithm.
In the SLAM scenario, more famous is its implementation for non-linear systems, namely
the Extended Kalman Filter(EKF) algorithm

2.4.2 Bundle Adjustment and Pose-graph optimization

As already pointed out in the introduction chapter, this solution deal with the full-SLAM
problem, namely that one related to the estimation of the overall trajectory followed
by the robot during time. In particular, inside the Visual SLAM implementation, it is
possible derive two different type of formulation of the SLAM problem as an optimiza-
tion problem. Let’s at first consider the Bundle Adjustment (BA) formulation and then
move to the Pose-Graph one. As before, let’s consider a landmark based implementa-
tion of the graph-SLAM, namely the map representation consists into a set of landmarks:
m = {m1,m2, ...,mk}. The landmarks can be considered as 3D points inside the envi-
ronment; hence, following the previous notation about 3D geometry:

m = {m1,m2, ...,mk} −→ p = {q1, q2, ..., qk} (2.51)
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that is only a change of notation. The idea behind Bundle Adjustment is to construct an
optimization problem over the pose variables and landmarks positions. Let’s consider a
landmark Q = [X ,Y ,Z]T ∈ Fw, summarizing the mathematical model of the image
process formulation in four steps:

1. world −→ camera: it exists R ∈ SO(3), t ∈ R3, defined by 6 DOFs (extrinsic
parameters), such that:

Q = RQ+ t = [X,Y, Z]T , Q ∈ Fc (2.52)

2. camera −→ normalized plane (f = 1): the point in the camera reference frame is
projected in the normalized plane (similar triangles equation 2.5):

Qc = [uc, vc, 1]
T =

[
X

Z
,
X

Z
, 1

]T
(2.53)

3. added distortion model: for example, here it is considered a radial distortion model{
u′c = uc(1 + k1r

2
c + k2r

4
c )

v′c = vc(1 + k1r
2
c + k2r

4
c )

(2.54)

4. pixels coordinates formation: discretization of the pixels coordinates given intrinsic
camera parameters {

us = fxu′c + cx

vs = fyv′c + cy
(2.55)

This sequence of steps identify the observation model that describe how the a sensors
measurement (in this case a camera) is related to the state of the robot. Considering that
the robot pose is represented by variable x and a landmark seen from such pose isQ ∈ SX,
then the observation model can be summarized by means of a function h(·):

z = h(x,Q) =

[
uz

vz

]
(2.56)

In the general BA framework, it is considered a trajectory of the robot x = {x1, x2, ..., xT},
where at each pose the robot will see a subset of landmarks {S(x1),S(x2), ...,S(xT )},
where S(xk) represent the set of landmarks that can be seen by the robot at location xk.
Hence zi,j represent is the data generated while observing landmark point pj at the pose
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xi. Recalling that the pose of an agent moving inside a 3D environment is represented by
6 DOFs, that can be represented by a matrix T4x4 ∈ SE(3) (see chapter 1), starting from
(2.56) it is possible to derive the following error quantity:

e = z− h(Ti,Qj) (2.57)

That express the existent shift between the model expectation with respect to the real
measurements obtained. Now, considering the observation made and prediction based on
the model built before, a least-square optimization problem can be written as follow:

x∗1:T ,S∗
1:T = argmin

{T1,...,TT },{Q1,...,QN}

1

2

T∑
i=1

N∑
j=1

||zi,j − h(Ti, pj)||2 (2.58)

Where solving this least-square problem means to adjust both the sequence of poses that
are defining the robot trajectory and the landmarks positions seen at each estimated robot
localization. The solution of this least-square problem can be derived by means of non-
linear least-square optimization like Gauss-Newton or Levenberg-Marquardt. An impor-
tant remark is that considering that the robot at each estimated pose will identify a lot
of relevant features points (landmarks) inside an image, hence the overall computational
time of the optimization process is governed by the evaluation of the derivative with
respect to defined landmarks point. At the same time, after several observation of a land-
mark, their position will converge to a certain value and it will remain almost unchanged
also considering other optimization step. For this reason researchers started to think to
completely remove the landmarks positions from the optimization formulation, deriving
a new framework that will take into account only estimated pose variables. This idea led
to the formulation of the problem as a pose-graph optimization problem, nowadays the
state-of-the-art in Visual SLAM algorithm. The idea of pose-graph is to construct a graph
with only pose variables. The nodes of this graph are the pose variables x1:T = T1:T ,
and the edges between the nodes encodes the virtual sensor measurements obtained from
the front-end, namely the relative poses between the two connected nodes. Due to the in-
evitable noise present in the obtained measurements, some constraints in the graph could
be contradictory. Hence, it is needed to describe a pose graph problem as an optimization
problem, which aims is to find the best configuration for nodes in the graph. It is easy to
understand that the pose-graph method consists in two steps:
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Pose-graph optimization
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T1j

m1 m2

. . .. . .

Figure 2.9: schematic representation of bundle adjustement and pose-graph optimization

• pose-graph construction: the nodes of the graph nk ∈ N , where N represents the
set of nodes, are represented by camera pose estimated by the front-end module,
during robot motion. The edges eij ∈ E , with E describing the set of the edges,
identify the relative roto-translations between camera poses.

• pose-graph optimization: once we have a collection of estimated pose, and defined
all the connection between nodes in the graph, an optimization problem can be
written in order to find the best configuration of the graph (since contradictory)
that translate to obtain an overall better robot trajectory against the accumulation
error

A not formal-way of deriving the pose-graph optimization problem is:

min
T ∈ SE(3)

E(T) =
∑
i,j ∈ E

= ||Ni − TijNj||2 (2.59)

That consists into finding the most likely configuration for the camera poses estimated
by the front-end. It is possible to make an analogy with a system of spring, where here
the optimization problem has the aim to converge to a final value related to a configu-
ration of the springs that achieve a minimal potential energy configuration. For a visual
representation of the problem, one can refer to 2.10, 2.9
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Figure 2.10: pose-graph problem visualization with spring system analogy

2.5 Loop closure

In parallel with the front-end, the loop closure module can be seen as an extension of
the data association process, that in this case deal with a long-term scenario. Indeed,
the principle aim of the loop closure process is to recognize a place already visited by the
robot in the past. Its presence inside the SLAM architecture is of fundamental importance
because although the back-end process is able to return an optimal trajectory estimation,
the presence of noisy observation at front-end level continuously degrades the accuracy
of the final localization. Instead, the loop closure module, thanks to the detection of
already visited places by the robot, is able to completely cancel out the accumulated drift
error. This can be done imposing long-term constraints, namely associating new data
observation with old one. This module is so important that in literature [28][3] there is a
distinction in the definition of the SLAM architectures:

front-end + back-end
front-end + back-end + loop closure

−→
Visual Odometry algorithm
SLAM algorithm

Considering the Visual SLAM context, one idea for close the loop, namely to recognize an
already seen place bymeans of image information, is to perform featurematching between
a new image and an old ones. However, it is not possible to handle such computational
complexity, because this means to compare each new image with all the images history
up to present time. One possible solution is to split the loop closure in two steps:

• Loop detection: search for possible candidate for the loop closure process
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• Loop validation: the candidates defined at first steps are analyzed bymeans of more
accurate matching operation, in order to identify if there is, or not, an actual loop
closure

For the loop detection process, the two most used approaches are:

1. odometry-based method: exploit the locations already seen by the robot to infer if
the actual location of the robot was already explored before. However, as already
highlighted, the trajectory of the robot accumulates error in time and hence we
cannot rely on this method for large loop closure, where large, in this context, means
distant in time. However, if the robot is not performing big movements, namely it
is moving inside an indoor environment, then this method can be used for loop
closure hypothesis generation

2. appearance based method: here, the loop closure evaluate the similarity between
two images in order to infer if a loop closure has take place or not; this is the
mainstream method in the SLAM architecture, since not influenced by drift error

One possible question that could arise is: How to evaluate similarity between two images?
The answer fall inside the world of tasks that are easy for human but really complex
for machine. As always, the problem that we are facing is the image interpretation as
matrix composed of pixels intensity values. Considering two images referring to the same
scenario, but took in two different timestamps, then the intensity associated to pixels can
be different enough so that simple image feature comparison5 is not robust enough to
identify the loop closure. Therefore, pixels grayscale is a too unstable statistics to use for
recognize a loop Closure between two images. A solution is found inside the Machine
Learning framework, with the Bag Of Words (BOW) method. The idea of such approach
is to describe an image by means of some extracted semantic concepts, that has an higher
meanings with respect to feature points. The overall process of feature matching of the
BOW method is:

• create a dictionary of the different concepts extracted from a set of images6

• given two images, identify for each of them which type of concepts are represented
in the images and construct a vector for describing the entire image, based on con-
cepts recognition

5here, it is referred to the extraction of feature points in both images and then perform matching by
means of descriptor comparison along a distance measurement

6Machine Learning expert will identify it as the training dataset
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• compute the similarity relationship of the two images starting from their vector
representation

This solution can brought to more stable and robust results than considering the classical
features matching operation between the two images. In order to construct a dictionary,
we need a starting set of images that we can use to extract relevant patterns and concepts.
For each image in the set, the method extracts the feature points descriptors. Then, based
on the descriptor vectors obtained, the method solve an unsupervised learning problem,
where the different vectors are clustered into sets, that corresponds to a specific concept.
Once the dictionary is built, the algorithm is ready to work in real-time for the loop closure
detection. For each new image, it extracts the associated words representation through
the concept description present inside the dictionary. Then, based on this appearance de-
scription, evaluate a similarity metric and trigger an hypothesis, hat could be positive if
a loop closure is detected, or negative otherwise. Once that the loop detection module
trigger a positive signal, than it is usually implemented a validation mechanism for en-
hance the robustness capability; here are reported two different approach that deal with
validation:

• buffering mechanism: a loop closure cannot take place if it is obtained only for
an image. The loop will producing a long-term constraints only if the detection
method returns positive matches for a sequence of consecutive images, stored in a
buffer

• consistency validation: given the detection of the new image as a possible detected
loop, than the algorithm perform a pose estimation considering the image at pre-
vious timestamp and the old image used for the loop detection. Then, if the result
is consistent with the pose-graph created until the last image considered, then the
loop closure turns to be validated
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Figure 2.11: schematic of BOW principle
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3
LSD-SLAM

This thesis work is based on a famous direct method SLAM algorithm, available as open-
source software at this github link, called LSD-SLAM: Large-Scale Direct Monocular
SLAM. Considering the discussion about SLAM implementation done in the previous
chapters, although it could be very interesting from an academic viewpoint, building a
complete new SLAM solution from scratch is very hard. This become even more chal-
lenging considering the time usually spent for a thesis work. For this reason, as it is done
in literature, i focus my work only in a module of SLAM algorithm, namely that one as-
sociated to depth estimation and map reconstruction processes. This chapter consists into
a brief description of the solution and also provide an example of a real application of
such concept related to visual SLAM explained before

3.1 Implementation details

As already reported in the introduction chapter of this thesis, the SLAM problem is the-
oretically a mature framework that, unfortunately, does not find a correspondence in the
practical field. For this reason a lot of ”tricks” are used by expert and researchers in order
to find robust and accurate solution to the SLAM problem. In particular, LSD-SLAM is
one of the first direct approach that is able to reproduce semi-dense map representation
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under the CPU computational constraints. It consists into a feature-less direct monocu-
lar SLAM algorithm which allows to build a consistent large-scale map of the environ-
ment, by means of a sparse point cloud. As all SLAM algorithms in literature do, it is
keyframe-based. This means that the camera localization and reconstruction processes
are performed at keyframe level. In particular, LSD-SLAM initialize the first frame that
arrive from the camera sensor as the first keyframe and will consider it as the world ref-
erence frame Fw. The depth map is represented by means of a set of Gaussian random
variable, initially set randomly with high variance. Furthermore, a first node is inserted
into the graph representation of the trajectory of the robot, that will be considered by the
back-end during the trajectory optimization step. The selection policy of keyframes is
based on the estimated roto-translation: if the recognized rigid body motion with respect
to the last keyframe is above a certain threshold, then the new frame is selected to be a
keyframe. in image 3.1 it is possible to observe the level of sparsity associated to the
map construction process and the pose graph constructed above the robot trajectory. The

Figure 3.1: front-view and top-view of LSD-SLAM simulation output

solution presented in [4] has four main components:

1. Tracking (front-end): camera motion estimation by means of semi-dense direct
method applied on regions with high gradients. The pose is recovered under the
direct method approach, using as initialization hypothesis the pose estimated for
the previous frame and considering also the depth map computed in the mapping
module

2. Depth map estimation: this module has the aim to associate to each selected pixel in
the image an inverse depth Gaussian distribution hypothesis, recovered by means
of disparity evaluation between the last frame and the current keyframe, analyzing
the different sources of noise involved
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3. Map optimization (back-end): pose optimization over a graph where edges express
relative transformation between keyframes inside the Lie algebra sim(3) frame-
work.

4. Loop closure: the algorithm rely on an external library (OpenFab Map) to perform
this process; its implementation is based on the BOW (Bag Of Words) algorithm,
already explained in the previous chapter. The algorithm add an additional step
based on odometry estimation for enhancing the robustness of the module

In the following sections, the characteristics of each module is described; however, the
final goal is not to report a complete and rigorous analysis of the algorithm solution, but
instead to give an overall idea of the foundation principles in which the LSD-SLAM rely

Figure 3.2: schematic representation of the software architecture of LSD-SLAM; courtesy
of [4]

3.2 Tracking module

The tracking module has the principle aim of find an estimation of the current pose of the
robot having as input the video stream coming from the camera and the keyframe-based
map description. As already pointed out in chapter 2, this identify the Visual Odometry
(VO) process. Themethod used is that one elaborated in [30], research output of the group
of people that have worked also on LSD-SLAM. The key idea is to continuously estimates
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a semi-dense inverse depth map of the current keyframe, which will be used to track
the motion of the camera as new frames arrive. The inverse depth map is continuously
propagated and refined with new stereo depth measurements, performed with per-pixel
adaptive-baseline stereo comparisons. The Visual Odometry algorithm in [30], exploit
a direct semi-dense image alignment algorithm. The sparsity is useful for two mainly
reason:

• Robustness: considering only well conditioned region of the image results in more
stable and accurate output

• Lower computational efforts required with respect to dense method

The overall tracking process is based on three informations: camera pose and depth map
of the current keyframe and the last frame arrived from the camera. In particular, the
localization estimation is given as the result of a semi-dense image alignment problem,
performed trough the minimization of the photometric error, as already seen in the appo-
site section of chapter 2. ConsideringΩ1 as the last frame arrived from the camera andΩ2,
the current keyframe, let’s consider the image representation as a mapΩ1,Ω2 : R2 −→ R.
Let’s take into account a pixel xi ∈ Ω1, where xi = [ui, vi]

T . Given the tracking process,
it would makemore sense to consider the roto-translation about the last two frames, due to
the high non-convex nature of image function and the non-linear optimization framework
construct over it. However, also the depth estimation process that is based on baseline
disparity (further description in the following section) is affected by this choice. In par-
ticular, there is a trade-off between precision and accuracy for the pixel stereo matching,
that directly depend on the amount of rigid body motion observed. Indeed, frames took
near the keyframe pose will have small-disparity, hence some difficulties arise into eval-
uating accurate motion while frames distant from the keyframe, will have large disparity
but, in this case, the algorithm could easier fail during the pixels matching step. With dif-
ferent length associated to the baseline, the system can obtain the best working condition
for the disparity evaluation. This is the reason for which the roto-translation is computed
between the last frame and current keyframe. The threshold is set heuristically when the
non-linear tracking optimization problem starts to suffer for the non-convexity behavior
of the image. The core part of the tracking process is the photometric error:

ei(xi, di, ξ) = (Ω2(ω(xi, di, ξ))− Ω1(xi)) (3.1)
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That substantially corresponds to a more specific formulation of the equation (2.30). the
function ω : R2 × R × R6 −→ R2 is the projection function, that is mapping the pixel
xi ∈ Ω1 into the coordinate pixel yi = ω(xi, di, ξ) = [u′i, v

′
i]
T ∈ Ω2. In particular,

remembering that one of the initialization step performed is to set the first keyframe as
the world reference frame, then, without loss of generality, it is possible to consider the
reference frsme of the actual keyframe as the world reference frame. Considering the
Euclidean transformation T ∈ SE(3) between Ω1 and Ω2, it is possible to write:

Ỹi
′
=


X ′
i

Y ′
i

d′i
1

 =

[
R t
0T 1

]
Xi

Yi

di

1

 = TX̃i (3.2)

Then the coordinate of the 2D pixel yi = [u′i, v
′
i]
T is obtained from (2.5), namely similar

triangle equation:

yi =

[
u′i
v′i

]
=


X ′
i

d′i

Y ′
i

d′i

 = Π(Y′
i), with: Y′

i = [Ỹi
′
][1:3] (3.3)

Π(·) can be considered as the normalized pinhole projection; it assumes fx = fy = 1,
hence: Kf = I3. Summarizing, the warping function ω that relates pixel xi ∈ Ω1 with
yi ∈ Ω2 is defined as:

yi = ω(pi, di, ξ) =

[
u′i
v′i

]
= Π([TX̃i]1:3), with: dix̃i = Xi (3.4)

The energy function considered for the minimization problem is defined as a sum of
weighted photometric errors:

E(ξ) =
∑

(xi,di)∈Ω1

∣∣∣∣∣∣∣∣ e2i (xi, di, ξ)σ2
i (xi, di, ξ)

∣∣∣∣∣∣∣∣
δ

, with: (3.5)

σ2
i (xi, di, ξ) = 2σ2

I +

(
∂ei(xi, di, ξ)

∂di

)2

Vi(xi) (3.6)
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some remarks can be done about this equation

• the added a weighting factor for each photometric error definition has the aim of
increasing the robustness to self-occlusions and moving objects. The weights are
proportional to the uncertainty associated to the depth estimation of the point con-
sidered; in particular, as the uncertainty decreased, as the weights become bigger
and the optimization problem will be driven on such pixels where the depth esti-
mation is considered more accurate

• the norm ||·||δ is the Huber norm:

||r2||δ =


r2

2δ
if |r| ≤ δ

|r| − δ

2
otherwise

(3.7)

a variation to square error function for more robustness against outlier, giving less
weights for big errors with respect to L2 norm

Figure 3.3: weights behavior associated to different norm choice

• the variance σ2
I is the Gaussian image intensity noise; it depends on the image

sensor circuitry

• Vi(xi) is the variance associated to the estimated pixels inverse depth; it will be
derived in eq. (3.11).

• the term
(
∂ei(xi, di, ξ)

∂di

)2

is derived for the general approximation of the prop-

agation of uncertainty. Indeed, considering a function f(x), assuming x to be a
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Gaussian random variable, the covariance of the f(x) can be approximated by:

Σf ≃ JfΣxJTf , where: Jf =
∂f(x)
∂x

(3.8)

The minimization of this error function is performed by means of a weighted version
of Gauss-Newton non-linear optimization, performed on the Lie algebra ξ, associated to
T ∈ SE(3), remembering the correspondence through the exp/log map.

3.3 Inverse depth map estimation

This module is triggered when it is evaluated a new 3D pose associated to a keyframe.
The depth estimation is based on the triangulation principle; the depth will be recovered
up to a scale factor. As already shown in [30], the accumulating cost function associated
to different stereo pixels baseline length can bring to better stereo matching. However, in-
stead of evaluating different baseline for the same pixel in the image,the approach exploits
the natural behavior of video frames: considering the sequence of frames that involve a
translation around a singular axis (ideal for stereo matching), frames took in timestamps
near to the keyframe will have small baseline. New frames, took after some time, will
show a bigger baseline. This idea is implemented under a probabilistic framework, where
an inverse pixel depth hypothesis is described for each pixels in the map each time that
a new keyframe is generated and it is refined as new frames are captured by the camera.
Hence, the inverse depth map estimation process is implemented by means of two steps:

1. for each pixels, considering the pose estimated with respect to the current keyframe,
apply a one-dimensional disparity search. Propagated prior knowledge is used so
as to speed up the searching process and to remove outliers.

2. the inverse depth map estimated is fused with the inverse depth map of the current
keyframe (propagation + regularization)

Now, let’s summarize briefly which type of computation is performed by these processes

3.3.1 Pixels disparity search and selection

When the algorithm is triggering this module in its sequential operation, it has already
computed a pose for the camera. This mean that it has already computed a matrix T ∈
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SE(3). recalling that roto-translation T is composed by a rotationR ∈ SO(3) and a trans-
lation t ∈ R3, we can construct in an easily way the essential matrix E = [t]xR ∈ R3x3,
that is encoding the the existing relationship between two considered images. recalling
the Epipolar constraints of equation (2.20), it is possible to recognize a plane that has as
vertices the two camera centres and the 3D considered point. It is also possible to identify
the epipolar line, namely the segment that corresponds to the projection on one camera
of the line linking the other camera centre and the 3D point. Hence considering one pixel
in one camera, if the other camera is able to recognize the pixels describing the epipolar
line, since the rays that connect the camera centre with the 3D pixel pass trough the im-
age plane, one pixel inside the line correspond to the pixel that we chose to consider. At
this point, it is possible to recognize that the pixels matching search pass from 2D search
process to one-dimensional. practically, in a 640x480 resolution image, we consider 800
pixels matches instead of 307200, considering the worst case for the orientation of the
epipolar line. The question become: how to perform the similarity between pixels?

2D disparity search 1D disparity search  
along epipolar line

Figure 3.4: 1D VS 2D disparity search computational complexity

Since we are considering a generic pixels in the image, it does not correspond to a fea-
ture point where the descriptor can be used to compute reliable matches. In this case,
we can exploit only intensity values information, that, as already discussed, have many
drawbacks, since cannot guarantee stability and reliability. Furthermore, when dealing
with such type of approach, we are assuming grayscale invariance at pixels level between
the two frames considered. So as to obtain a computationally efficient approach while
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enhancing the robustness of the matching operation, the algorithm implement a Sum of
Squared Distances (SSD) over five equidistant point centered at pixels of interest.

3.3.2 selection mechanism and depth update

Given a probabilistic description of the depth, if a pixel already have an inverse depth
hypothesis of the type d′ =

1

d
= µd′ + σ2

d′ , we can limit the searching range of the stereo
disparity. Indeed, given a pixel pi in the first image, we can consider its projection 3D
coordinate with respect to the first image camera frame as pi = [u, v, µd′ ]

T . Then, con-
sidering also the projection of the uncertainty σ2

d′ , in order to define segment of interest on
the epipolar line, we project also the inverse depth extreme of the Gaussian probability1:

[p′i,min, p′i,max] = R[pi,min, pi,max] + t = R

 u

v

[µd′ − 2σd′ , µd′ + 2σd′ ]

+ t (3.10)

this speed up the matching process and remove outlier for wrong matches. Now, it
is needed to characterize the Gaussian distribution. For the variance description, two
sources of error are considered:

• σ2
ξ,K: geometric disparity error. It represents an evaluation of how an error of the
parameters associated to the camera or to the pose can influence the final results.
In this case, given the classic equation of a line y = mx + q, it is considered an
error on the parameter q, while the angular coefficient is considered to be enough
accurate, in the general case. The influence of the positioning into the disparity
search is small when the image gradient is almost parallel to the epipolar line

• σ2
I : photometric disparity error. This error depends on the image process formation.
It will influence a lot the disparity search when considering low gradient informa-
tion: here there is not the possibility to find peaks in the similarity evaluation, hence
little variation on pixels intensity can cause big errors on the stereo matching

1if we consider that x is a Guassian random variable with x ∼ N (µ, σ), then:

Pr(µ− 2σ ≤ x ≤ µ+ 2σ) = 95.45% (3.9)
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Figure 3.5: visualization of the geometric and disparity error used for the uncertanty
estimation

In both cases, if it is recognized that the pixel coordinates is not well-conditioned, namely
does not satisfy a threshold value, the pixel is not considered anymore. In this selection
process, we are obtaining the sparsity description of the map; it will be further charac-
terized during the depth map regularization process. then it is added a normalizing term

α =
δd
δλ
, that at the numerator identify the searched range of inverse depth and at denom-

inator the lenght of the searched segment in the epipolar line. At the end, the uncertainty
associated to inverse depth is computed as:

σ2
d′ = α2(σ2

ξ,K + σ2
I ) (3.11)

At this point, since new inverse depth observation are computed as new frame are ob-
served, it is important to understand how to fuse these different random variable: this
turns out to be a probability estimation problem. Since we are considering a Gaussian
framework, one solution is to apply Kalman filter, solving the problem in an online man-
ner. In particular, given the absence of a motion model, we will exploit only the ob-
servation update equation, that, in the end, consists to multiply together two Gaussian
distribution. At first, we need to propagate the inverse depth of the previous frame to the
current frame. This depends on the type of motion performed; however, assuming small
rotation, it is possible to express the inverse depth of the last frame reported to the actual
frame as:

d′1 =

(
1

d′0
− tz

)−1

, remembering: d′ =
1

d
(3.12)

The variance is propagated considering the amount of variation bring to d′1 as variation
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of d′0:

σ2
d′1

= Jd′1σ
2
d′0
JTd′1 + σ2

p =

(
d′1
d′0

)4

σ2
d′0
+ σ2

p (3.13)

where σ2
p is the prediction uncertainty. Given a distribution d′ ∼ N (µd′ , σ

2
d′) and a new

observed random variable d′o ∼ N (µd′o , σ
2
d′o
), the new Gaussian random variable obtained

after Kalman observation equation is:

d′fusion ∼ N
(
σ2
d′µd′o + σ2

d′o
µd′

σ2
d′o
+ σ2

d′
,
σ2
d′o
σ2
d′

σ2
d′o
+ σ2

d′

)
(3.14)

3.4 pose graph optimization

Monocular SLAM is intrinsically scale ambigous; the absolute scale of the world is not
observable. The final result is that the depth map associated to pixels in images can be
reconstructed only up to a scale factor. Over long trajectories, this deal with a scale drift,
which is one o the major sources of error when considering an odometry process for esti-
mating roto-translations. Considering the reconstructed map as the fusion of pointcloud
generated by each keyframe observed, it is impossible to accurate reconstruct the map due
to the different scale associated to depth values. At the same time, the depth is influenc-
ing also the SE(3) pose estimation problem. So, how handle the back-end optimization
problem? The solution found is to scale the depth map obtained from each keyframe such
that the inverse depth is equal to one. In order to obtain a scale-aware result, the scaling
factor is brought inside the optimization problem. Indeed, The camera motion estimated
between two keyframe will consider a similarity transform T ∈ SIM(3), the Lie group of
similarity transform, instead of the classical 3D rigid body roto-translationT ∈ SE(3). As
can be derived for the SE(3) Lie group, we define the Lie-algebra as a vector ξ ∈ R7, with
an additional DOF with respect to SE(3) associated Lie algebra. Indeed, the difference
between similarity transformation in the SIM(3) group and the Euclidean transformation
associated to the SE(3) group is summarized by the scaling factor s ∈ R+, highlighted in
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the following matrix representation of such transformation

Euclidean roto-translation:

[
R t
0T 1

]
, R ∈ SO(3), t ∈ R3 (3.15)

Similarity roto-translation:

[
sR t
0T 1

]
, R ∈ SO(3), t ∈ R3, s ∈ R+ (3.16)

This choice is helpful for obtaining image alignment of two differently scaled keyframes.
So as to extend the formulation for ξ ∈ R6 to the case of similarity transformation with
ξ′ ∈ R7, to the photometric error of (3.1) it is added a depth error term, which is penalizing
deviations in inverse depth between keyframes, allowing to directly estimate the scaled
transformation between them. Considering two keyframesΩi,Ωj The total error function
minimized is:

E(ξji) =
∑

(xi,di)∈Ω1

∣∣∣∣∣∣∣∣ e2i (xi, di, ξji)σ2
i (xi, di, ξji)

+
e2d(xi, di, ξji)
σ2
i (xi, di, ξji)

∣∣∣∣∣∣∣∣
δ

(3.17)

For better clarifying the above quantity, the following variable definition are reported:

• p ∈ Ωi, p = [u, v, d′]T : inverse depth parametrization of points coordinates

• Di(p): inverse depth considered for pixel p associated to i-th keyframe

• Vi(p): uncertainty evaluated to pixel inverse depth of pixel p at the i-th keyframe

• p′ ∈ Ωj: point p reported from keyframe Ωi to Ωj , with: p′ = ω(p, ξji) warping
function.

Then, the error on the inverse depth variation is obtained as:

ed(xi, di, ξji) = [p′]3 − Dj([p1:2]) (3.18)

σ2
i (pi, ξji) = Vj([p′]1:2)

(
∂ed(p, ξji)
∂Dj([p′]1,2)

)2

+ Vi(p)
(
∂ed(p, ξji)
∂Di([p]1:2)

)2

(3.19)

the term (3.18) consider the variation of depth estimated at the previous keyframe, re-
ported at the actual keyframe by means of the estimated roto-translation, with respect to
that one obtained in the new keyframe. The second term describe how the variance is
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changing when moving from one keyframe to the other. as it can be seen, it is consid-
ered the inverse depth estimation of the previous and actual keyframe. As always, the
energy function in (3.17) is minimized by means of weighted version of Gauss-Newton
non-linear optimization approach. The Jacobian derivation, extension of SE(3) group to
the similarity group is analyzed in [31].

3.5 Loop closure

The loop closure module is based on a third-party library openFABMAP, that is applying
a BOW (Bag Of Words) model for place recognition. The derivation of the model follow
that one reported in the loop closure section of 2. After a new keyframeKi is added to the
map, a number of possible loop closure keyframeKj1, ...,Kjn is collected. The algorithm,
in particular, consider the closest nearest ten keyframes. After the loop detection hypoth-
esis for a keyframe Kjk given by 3.17, there is an added verification process that check
for the pose graph consistency between keyframe chose for the loop closure. Only if the
photometric error e(ξijk) and e(ξijk) are statistically similar, then the loop hypothesis is
recognized to be true.
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4
Experimental setup of the sensors system

In this chapter it is described the hardware sensor system and software processing archi-
tecture that I was able to use during my Erasmus+ mobility period. The physical device
consisted in a prototype built by the Université Catholique Du Louvaine (UCL), in par-
ticular the ICTEAM (Institute for Information and Communication Technologies, Elec-
tronics and Applied Mathematics) department.

4.1 Hardware description

Ideally, the sensor system should coincide with that one mounted on the AR.Drone 2.0
drone, namely the UAV chose for the launched academic project. Indeed, this can give
the opportunity to take into account all the possible variables that could influence the
final behavior of the mobile robot. However, some difficulties arise while working in
such scenario because some of the software components are not completely accessible
by the user. The main consequence of this is that if something is not working when
testing or debugging some new features, it is not completely clear where is the source of
the error; at the same time, the manufacturing companies behind the electronics of the
AR.Drone 2.0 does not give further information with respect to that ones reported on the
data sheet inside with the drone box. For this reason, following also the research trend, the
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Figure 4.1: CADmodel of the prototype ob-
tained with SolidWorks

Figure 4.2: result obtained implementing the
CAD model in a 3D printer

Universitè Cahtolique du Louvaine (UCL) have decided to construct it’s own prototype of
the drone. The choice for its design is to make all of the electronics component accessible;
a CAD model that shows the final draft obtained can be seen in 4.11. This prototype has
no actuation capabilities (no actuators are present) but have all the sensors system that
usually characterize a commercial drone.

4.1.1 Processing architecture

The core of the mobile robot is a Raspberry Pi 8GB of RAM. It can be seen as a sort of
credit-card sized computer that have the possibility to interface with peripheral devices.
Since the project thesis is developed under the ROS (Robots Operating System) frame-
work, Noetic version, the operating system that is running on the raspberry is a server
version of UBUNTU 20.04 LTS, specifically compiled for processors with ARM archi-
tecture. However, considering the computational efforts required by SLAM algorithms
combined with the sensors data stream management, the Raspberry pi processor is not
powerful enough in order to ensure real-time performances. Working in such embed-
ded framework should require an FPGA (Field Programmable Gate Array) or another
task-specific processor that can focus only on the execution of the program. Considering

1the prototype structure was constructed by last year master thesis students, using SolidWorks and a 3D
printer. If the reader would like to have further information on the construction process, he can referes to
[10]
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that the thesis consists into a research project that try to identify new features inside the
SLAM algorithm framework, a general purpose processor is needed, because the efforts
should focused on the algorithm instead of low-level processing debug. For this aim, the
raspberry is communicating with a desktop computer, that will be used as workstation;
in the end, it will have only the goal of managing and sending sensors data stream to
the desktop computer, where the informations are processed. The workstation is based
on a old Intel Core i7-3770 @ 3,4 GHz x 8, with 16 GB of RAM. For the same reason
reported above, the Operating System chose is UBUNTU 20.04 LTS (desktop version,
for x86 architecture) with ROS Noetic installed. At this point, a crucial role is played by
the router network connection. In order to guarantee real-time performances, the Wi-Fi
should be able to send new messages that arrive from the sensor system without loosing
information, caused by the slowness of the router connection. In my work setup, this did
not happen, since the router that i had was a general purpose model and it was not built
to construct fast LAN (Local Area Network). The solution that i found to this problem
is to overcome the use of the router network through a ROS feature call Rosbag, mov-
ing the data elaboration process and simulation in an offline framework while keeping
the real-time behavior of data stream. A schematic visualization of the working setup is
reported in 4.3. The overall sensor system that the robot has for perceive its surrounding
environment consists of two sensors, namely a LiDAR (Light Detection And Ranging)
and a monocular camera2. In the following two subsection, the two sensors are described
in their working principle; instead, the data fusion process will be described in chapter 5.

4.1.2 LiDAR - Light Detection And Ranging sensor

The LiDAR is a light-based sensor consisting of a light emitter and receiver. Its working
principle consists substantially into a beam of light that, starting from the sensor, is re-
flected on a surface or object in front of the robot and, based on the information received
when the electromagnetic wave returns to the sensor, it is capable of evaluate depth dis-
tances on its surroundings. Nowadays, on the market there are four different type of
LiDARs:

(a) Single beam LiDAR: it substantially consists into a light emitting diode and a sen-
2a mathematical model description of the monocular camera behavior was already introduced in chapter

2, in the apposite section
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Ideal setup

Raspberry Modem Wi-Fi PC-desktop

Working setup
online recording

Online simulation and processing

ethernet cable
for data transfer 

offline simulation and processing

Figure 4.3: schematic representation of the communication setup between the embedded
device (raspberry) and the processing unit (PC desktop)

sitive to light sensor; the depth measurement is recovered by measuring the interval
of time between the sent wave and the returned one

(b) 2D LiDAR: it can be seen as a single beam LiDAR that is moving on a rotating
platform; indeed, the working principle is the same as the Single beam LiDAR

(c) 3D LiDAR: It can be considered the extension of the 2D LiDAR in the case of a
third plane of measurements. It is not common to use this sensor inside the mobile
robot field, due to its cost and computationally efforts required for managing the
output data. It is usually exploit in the case of autonomous driving applications

(d) Solid-state Lidar: this device does not rely on a rotating platform, achieving better
accuracy in the measurements performed. However, it has a limited FOV (Field Of
View) with respect to the 360 degrees of the mechanical solution.
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(a) single beam Li-
DAR

(b) 2D LiDAR (c) 3D LiDAR (d) Solid state LiDAR

Figure 4.4: LiDAR classification

The way in which the information incorporated into the electromagnetic wave returned
at the sensor level is processed classify the LiDAR sensors in three different models:

• ToF (Time of Flight): thanks to a very precise chronometer, the sensor is able to
evaluate the interval of time between the sent and received wave. Knowing the
constant velocity of light, then the distance can be easily evaluate. It is usually
present for application that require large range of measurements and high accuracy.
Here, the uncertainty of measurements is inversely proportional to the accuracy of
the chronometer available

• phase ranging: this has a similar functionality as TOF (Time Of Flight) LiDAR; in
this case the distance is calculated on the base of the phase displacement between
the sent wave and the received ones. furthermore, we must take care about the
range of distances that we are considering, because, due to its working principle,
this sensor can measures distances that can be express inside only one period of the
electromagnetic wave.

• triangulation ranging: it is based on trigonometric formulas and on some prior
knowledge about the geometrical displacement in the space between emitter and
receiver.

A visual description of their different working principle is reported in figure 4.5. In my
setup, the LiDAR available was the RPLIDAR A3, Model A3M1, produced by Slamtec
(Shanghai Slamtec Co., Ltd. 沪 ICP备 14023268号-1). The sensor runs clockwise to
perform a 360 degree omnidirectional laser range scanning, generating a 16000 samples
per second 2D map of its surroundings, having a maximum range of 25 meters in optimal
condition. Some important performances related to the RPLIDAR A3, model A3M1 are
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Figure 4.5: visual representation of different LiDAR working principle; on the upper
left the ToF Lidar. On the bottom left the phase ranging LiDAR and on the right the
triangulation-based LiDAR

reported in the table 4.1. If the reader is interested in more information in the device spec-
ifications, he can refer to the official slamtec website, in particular in the apposite data
sheet section. In order to elaborate the data coming from the LiDAR, it is important to
understand how the output values are formatted, in particular how it is described the refer-
ence system for the distance measurements. The data sheet explain this in a clearly way,
thanks also to annotated visual contents, summarized in the image 4.8. The description
of the output data stream formatting is summarized in the table 4.2, that refers to image
4.9.
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Figure 4.6: RPLIDAR A3, model A3M1 Figure 4.7: schematic of RPLIDAR A3,
model A3M1

Item Enhanced Mode Outdoor Mode

Application
Scenarios

Performance: maximum
ranging distance and sam-
pling frequency

Reliability: reliable dis-
tance measurements with
respect to daylight

Max range
White object: 25 [m]

Black object: 10 [m]

White object: 20 [m]

Black object: TBD3

Min range 0.2 [m] 0.2 [m]

Sample Rate 16 [kHz] 16 [kHz] or 10 [kHz]

Scan Rate adjustable between 5 [Hz]
- 15 [Hz]

adjustable between 5 [Hz]
- 15 [Hz]

Angular
Resolution

0.225° 0.225° or 0.36°

Table 4.1: RPLIDAR A3M1 characteristics

4.1.3 Monocular camera

Themonocular camera is a 8megapixel Raspberry Pi Camera V2, namely a cheapmonoc-
ular rolling shutter camera that is thought to work coupled to a Raspberry Pi 4 module;
the device can be seen in image 4.10. The communication between the two devices is
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Figure 4.8: reference frame spacification
for the distance measurements

Figure 4.9: signals sequence for the output
data stream

Data type unit Description

Distance [mm] Current measured distance value between
the rotating core of the RPLIDAR and the
sampling point

Heading degree[°] Current heading angle of the measurement

Start Flag Boolean Flag of a new scan

Table 4.2: output data formatting of the Slamtect RPLIDAR A3M1

obtained by means of CSI bus, designed for extremely high data rates. This is needed be-
cause considering a working condition of 30 fps with a resolution of 640x480 than since
each image is composed by 307200 pixels and each pixel is represented by three channels
of unsigned int value (1 byte), the connection need to transmit about 9.3 Mb in less than
33 ms. Some specifications about the camera characteristics are reported in the table 4.3
In my setup i was using a 30 fps video recording in the format of 640x480. It is worth
noticing that, for the consideration did in the Visual SLAM chapter 2, it is usually sug-
gested to use the camera modality that guarantee the highest frame-rate. However, since
the thesis solution will be based on a CNN (Convolutional Neural Network), the input
image to the model should be as less distorted as possible. This is something that high
frame rate cannot ensure, because the shutter speed needs to be raised proportionally to
the frame rate and, consequently, the exposure time decreases. As the frame rate is high
as the image starts to be underexposed; this will cause a bad working condition for the
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Product name Raspberry Pi Camera Module V2

Image Sensor Sony IMX219

Resolution 8-megapixel

Still picture resolution 3280 x 2464

Supported Video Resolution 1080p30, 720p60, 640x480p90

Physical Dimensions 25mm x 23mm x 9mm

Supported Video Resolution 1080p30, 720p60, 640x480p90

Image control functions

Automatic exposure control

Automatic white balance

Automatic band filter

Automatic 50/60 Hz luminance detection

Automatic black level calibration

Table 4.3: raspicam V2 specifications

CNN, because it is not able to recognize a pattern structure in the matrix representing the
image, hence providing a wrong depth estimation. The camera working principle is sub-
stantially based on a CMOS photo-sensitive sensor plate, placed inside the camera, that
will describe the brightness of pixels as the amount of light that is hitting the elementary
cell in which is discretize the sensor. An important characteristic to highlight is the fact
that the raspicam is a rolling shutter camera. This means that a single frame is not took
globally, as a snapshot of the scene (global shutter), but instead it is took by means of a
scan, performed vertically or horizontally, of the entire scene captured. The consequence
is that the pixels that are present in a certain frame can belong to different temporal in-
stant. This can give problems when considering Visual SLAM, since it is directly relying
on pixels intensity variation between two frames.
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Figure 4.10: raspicam V2 camera module

4.2 Software description

As anticipated in the previous section, considering the choice of the operating system for
the workstation and mobile robot, the software architecture exploited is that one of ROS
(Robot Operating System). ROS provides a set of software libraries and tools for helping
developers to build their own solution to robotic’s related problem, such as hardware
abstraction, low-level device control, package management and message passed between
processes. This choice come from the different advantages brought by ROS framework:

• It allows the development of general purpose algorithm,s because the program en-
capsulation process inside its node structure easily permit the adaptation of piece
of software in various robot scenario. This also give the possibility to easily share
and reuse the code.

• The communication between nodes allow the implementation of a distributed com-
putation, that can be realized with the same machine while running various nodes
(publish-subscriber) or also when the system consists in a network of different ma-
chines

• It has a rapid debug system. In particular, it is possible to record a stream ofmultiple
sensors data and then replay back it while keeping the existing real-time relation in
the data sequence.

• It has a very wide and vibrant community. In addition, a lot of companies use
the ROS framework inside their driver interface that they are selling to the final
consumer

The third point in the above list consists in the so called rosbag feature, introduced at the
beginning of the chapter. This give me the possibility to rely on a simulated framework
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that has the same property and behavior of the real scenario, but it is reproduced offline.
Another advantage related to rosbag is that Keeping memory of the data stream allow
to identify common test bench in the research community and, at the same time, give
to the developer the possibility to test different algorithms on the same quality/type of
data. In the ROS framework, nodes are substantially process/programs, where all the
computation over sensors data is performed. In the ROS network, there is a particular
node called ROSMaster; its main task is to manage the different nodes inside the network
and put them in communication, on the base of the different type of information that
each node is interested in. Indeed, in order to exchange information, nodes publish and
subscribe to messages, that are identified by a unique topic, that can be considered like
a sort of fiscal code for a message. This will establish a peer to peer communication
through different nodes. In figure 4.11 can be seen a ROS architecture that is receiving
and processing data coming from a camera. Here it is possible to notice the modularity
aspect of ROS: the two process are separated in two different nodes, decoupling their
action and allowing a lower complexity of the overall implementation. There other type
of relation that can be described in the ROS network, like actions and services, where
nodes establish subordinate relations between each other. Another thing that has made so
famous ROS inside the robotics’s community is its integration with other libraries, like:

• Gazebo: 3D multi-robot simulator

• Point Cloud Library: library that focus on the generation and processing on 3D data

• OpenCV: a library that deal with image processing and most common computer
vision algorithm

• MoveIt!: motion planning library

• RViz: a 3D visualizer based on ROS type definition

for further readings, in the official website one can found a lot of tutorial, from beginner
to advanced user, related to the ROS environment.
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ROS Master

Camera node

request topic \image

image processing node

Raspicam V2

reply on topic \image

data

Figure 4.11: ROS structure for raspicam V2 image processing
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5
LiDAR scale recovery and dense map

reconstruction

The final aim of this thesis work is to make an UAV to be able to autonomous navigate
inside an unknown environment. So as to obtain a localization estimation of the robot
inside an environment, it is exploited the algorithm implementation of LSD-SLAM, that,
in addition, will recover a semi-dense representation of the robot surroundings. However,
this type of map description is not suitable in order to achieve the autonomously capability
that the work is aiming for. A dense map description is necessary, namely each pixels
in the image coming from the monocular camera should have a depth value associated
to it. Unfortunately, a dense monocular depth map is hard to obtain in a robust way;
this become even more challenging if we consider the real-time behavior of the robot
working condition. A possible solution found by this thesis is to use the deep learning
framework, in particular CNN (Convolutional Neural Network) model, to derive a dense
depthmap estimation based onmonocular image information. Then, coupledwith LiDAR
sensor information, a dense point cloud describing the environment is obtained. In this
chapter the overall solution found is analyzed, starting some considerations about the
depth estimation through the chose Neural Network model. Then it will be considered
the fusion process over information coming from the two different sensors mentioned
above, namely a monocular camera and a 2D LiDAR.
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5.1 CNN depth estimation

As reported in the survey [28], deep learning is a well-known method inside the computer
vision framework, that prove to be the state-of-the-art implementation in fields like object
recognition, object segmentation, scene segmentation. Given such consideration, one
idea for obtaining dense mapping is to use a Convolutional Neural Network which aim
is to estimate a depth map having as input only a monocular image. In this thesis, the
CNN model used consists in the actual state-of-the-art monocular relative inverse depth
estimation called MiDAS [32][33].

5.1.1 Basics on CNN

A neural network is a Machine Learning (ML) model based on a set of connected nodes
called artificial neurons, which roughly try to reproduce the biological structure of hu-
man’s brain. Its aim, as any ML model, is to try to learn a concept by means of a min-
imization of an error function over a set of samples, that are usually referred as training
dataset. Then, if the model is chose correctly and it has enough data for train itself, it
is able to extend the learnt concept to unseen data. Considering the Computer Vision
context we usually deal with supervised learning problem, namely: each sample in the
training dataset is associated to its correct value, usually called label: the set of labels
is called ground truth. In classic machine learning approach for computer vision appli-
cation, the final goal is that one of extracting some particular meaningful (in the sense
of the application) region inside the image. Hence, we need to specify the ground truth
concepts associated to images inside the training dataset. The features extracted should
be chose so as to make regions of the image distinguishable; some example are: Sobel
filter, Prewitt filter, Gabor filter, Gaussian filter, ... Then, if the features descriptor are
chose appropriately, the ML method is able to infer the behavior of the desired function.
Unfortunately, choosing different type of features representation led to different results
at the end. Hence, the question is: is the model able to learn the filter/weights description
by itself, in order to obtain an overall optimal results? The answer is yes and the solution
deal with Neural Network models. A simple pictorial representation of this concept is
seen in The deep learning framework is also called end-to-end learning because there is
no human intervention inside the learning process; so it can be considered to do it auto-
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Figure 5.1: ML vs DL concept comparison; courtesy of [5]

matically. In general, a Neural network is described through the composition of several
non-linear simple functions, called layers. It takes the adjective of deep if the model is
composed by several layers:

f(·) = fθl ◦ h ◦ fθl−1
◦ h · · · ◦ fθ1 ◦ h (5.1)

where:

• fθi represent the function that is implemented in one layer of the Neural Network

• h is representing the type of connection that is relating one layer to the successive
one

As can be observed in image 5.2, there is a hierarchical order in which layers are com-
municating, namely there is a direction that the input information is following in order
to reach the final output of the model. Another thing that can be observed is that layer
are composed by elementary unit, that consists into neurons. Hence the overall function
implemented in one layer level is equivalent to the composition of output obtained at
each neuron level. It can be also be highlighted that the input of the neurons in one level
consists to the output of the neurons at the previous layer. Now, going deeper into the
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Figure 5.2: deep Neural Network visualization; courtesy of [5]

description of the function oi(l):

oi(l) = g

( nl−1∑
j=1

wij(l)oj(l − 1) + bi(l)

)
(5.2)

where the quantities in the above equation corresponds to:

• g(·): is the activation function; it has the aim of making the output of the neuron as
nonlinear. Indeed, without this function definition, them the neuron simply consists
on a weighted sum of the outputs of the previous layer plus a bias factor

• nl−1: number of input connection from the previous layer to the neuron

• wij: weight associated to each given input; this is the quantity that the neural net-
work is trying to learn

• bi(l): bias factor added to the neuron. Practically it consists to a weight associated
to a unitary input to the neuron

The final aims of the Neural Network is to approximate in the best possible way an un-
known function whilerelying only into input-output samples in the training dataset and
associated ground truth. The training process is composed in 4 steps:

1. definition of a cost/error function that has to be minimized

2. propagation of data samples in the training dataset through the network
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Figure 5.3: zoom on a single neuron inside a neural network

3. evaluation of the error between the data predicted and the correct one

4. weights update based on the amounts of error observed and on the influence that a
weight had on the final output [image that is showing the process]

regarding the implementation of the deep learning algorithms inside the computer vision
context, it is needed to consider the type of input that are used by the model: the image
is a 2D matrix of numbers that represents pixels intensity. Moreover, the pixels contents
are strictly related to their neighborhood, namely it exists a spatial relationship among
pixels in an image. CNN (Convolutional Neural Network) are neural network model
that exploits the above mentioned peculiarity to enhance the approximation performance
related to the final output function. It is based on four main principle:

1. local connectivity: for each pixels is considered a receptive fields, namely only
neighbors neurons are connected

2. shared weights: neurons in a layer will share the same weights, so as to obtain a
spatially invariant output at the end

3. multiple feature maps: different type of convolutional filters are spanned into the
image at each layer function implementation
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4. subsampling: since images are very high-dimensional data structures, the network
needs to reduce its dimension so as to make the training step achievable.

Hence, basic convolutional neural network can be described as a set of convuolutional and
pooling step, namely 2D filter convolution and downsampling. More complex structure
consider the overfitting/underfitting problem and adopt methods like Dropout connection,
L2 weight decay to prevent this phenomenon. however, this subsection should be seen
as only an introduction to the CNN world. If the reader is interested, it can referes to the
handbook of deep learning [34] and to the survey [35].

5.1.2 Midas CNN

The Convolutional Neural Network employed in this thesis work is the MiDaS CNN
[32][33]. In my knowledge, it represents the state-of-the-art method for monocular depth
estimation. In general, one can observe how deep learning framework can be powerful
in this scenario; imagines that one person give you the image in figure5.4 and ask for the
depth of pixels in the image. At this point, one can give a very rough estimate based on
its perception, but very unlikely he is able to return a value close to the real one. Indeed,
CNN can extract information patterns from the image that can be hidden for the human
eyes, like the projection of shadow on a particular blurred part of an image, that it can
exploit to infer a depth estimation. The biggest problem in themonocular depth estimation
scenario is that there is a lack of large scale, dense ground truth datasets which are able to
consider different variety of visual scenario: none of the existing datasets in the literature
are suitable for train a robust deep learning model [32]. For this reasons, MiDaS is based
on a multiple dataset training process. This represent the challenging part and the impart
outcome brought in the related paper; indeed each datasets consider different working
conditions:

• indoor/outdoor scenario

• sparse/dense depth map

• absolute/relative depth estimation

• ground truth annotationmodality: human annotatiion/synthetic data/TOF sensor/Structure
From Motion(SFM)/3D LiDAR/...
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• image quality

• camera settings

Considering the training process performed on a single dataset, it will bring to a good
solution only with respect to a test dataset obtained splitting the initial input dataset, since
each samples are biased by the particular working conditions in which data information
are generated. For this reason, in this case the MiDaS network is tested on a zero-shot
cross-dataset transfer, namely the CNN is tested on samples coming from datasets that
was not took in consideration during the training process. The overall idea is that this
type of evaluation can approximate better real-world scenario, in which the user working
conditions of such type of method is not equivalent to the one used for acquire data in the
ground truth generation step. Taking into considerations these aspects, the weights are
updated over the disparity values. The loss function used for the training step is construct
to be invariant to the major sources of incompatibility between the different datasets used.
Other dataset were added with respect to that ones present in literature, that are substan-
tially based into the pixels disparity extraction from 3D films. This was recognized as a
good source of information for disparity extraction because the working condition deal
with:

• video-recording through a stereo camera

• high quality frame

• variety of scenarios: from documentary to dialog-driven scenes

• high amount of data at disposition

At the end, the implementation of the MiDaS CNN in the case of raspicam V2 is reported
in the set of figures 5.4. Here, the grayscale color information is used for representing
the 3D depth coordinates, inside the 2D image plane. In this case, the color is encoding
the different pixels inverse depth; indeed the pixels intensity is proportional with the dis-
tance of the object from the camera. Hence, brighter pixels corresponds to farther pixels.
Unfortunately, there is not an absolute scale for the inverse depth information; the model
is able only to recover relative distances among pixels in the image. In particular, the
model is returning a matrix of the size of the input image filled with floating point value,
that are then used to construct the depth maps seen in image 5.4, modifying the range of
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values between 0 - 255. In this case, we are not able to infer information about object
distances, because for example a value 32,2 associate to a pixel in the output map could
be meters, centimeters, kilometers, ... we do not know the order of magnitude which these
measurements are dealing.

Figure 5.4: examples of MiDaS implementation considering the raspicam V2 camera.
The upper part consists into the input image given to the network (in its RGB format),
and, in the associated lower part, the processed depth map, obtained ranging the output
values from 0 - 255
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5.2 Fusion method for the sensor system

Considering the inverse depth map prediction associate to the MiDaS CNN, the main
drawback is the lack of scale associate to the measurements given as output. A way to
recover an absolute scale is to rely on the absolute distance measurements given by the
LiDAR sensor, that is scanning the robot’s surrounding while the camera continuously
takes new frames. The idea is to find a way of matching the LiDAR measurements with
the camera pixels, since the scale of the measurements of the LiDAR could be extended
in the case of MiDaS depth map. Indeed, At this point, two different source of depth
information are considered, one in absolute scale and the other in an unknown scale. So
as to infer a correct scale also for the depth measurements associated to MiDaS CNN,
it is possible to setting up a least-square optimization problem, which final linear out-
put model can be used to transform relative inverse depth information to their absolute
version. Summarizing, the overall sensor fusion process consists into:

1. matching of 2D LiDAR measurements with 2D pixels information

2. given the set of matched pairs, compute a linear regression model through the so-
lution of a linear least-square optimization problem

Considering the ROS(Robot Operating System) System, it appears quite intuitive that
such type of architecture is well-suited for the task that this thesis want to perform. Hence,
in the following, it is described the mathematical model in which the solution is based. In-
stead, the overall ROS software architecture built will be reported in the following chapter

5.2.1 Camera - LiDAR measurements projection

The fusion of data information consists substantially into the projection of the 3D points
captured by the 2D Lidar inside the image plane of the monocular camera. Reminding to
the LiDAR reference system in chapter 4, we have that a 3D point in the world reference
frame P = [X ,Y ,Z] ∈ FW can be seen in the LiDAR reference frame as a 2D points
pL = [ρ, θ] ∈ FL, in polar coordinates. It is possible to represent the same point as three-
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dimensional point with Cartesian coordinate presentation through the following equation:

PL = H(pL) ⇐⇒


XL

YL

ZL

 =


ρ sin(θ)

0

ρ cos(θ)

 (5.3)

Where the values ρ, θ are given as output from the laser sensor. considering the repre-
sentation given in figure 4.8, we are considering an enhanced 3D system for the LiDAR
reference frame; the zero values of the Y axis is set at the height in which the distancemea-
surements are taken, namely in the inner core of the sensor. For this reason, from (5.3),
all 3D point measured by the LiDAR will have the Y coordinate equal to zero. Then, we
need to consider the roto-translation between the LiDAR coordinate system and the cam-
era reference system. The prototype of image 4.2 can be described by means of a system
of reference frame, as depicted in image 5.5. Here we can notice that the difference of
the camera reference frame with respect to LiDAR one consists into a composition of a
translation along bot Z and Y axis and a little rotation along Y axis. The roto-translation is
expressed through the triplets of Euler’s angles ϕ, θ, ψ, here decomposed in its elementary
rotation composition:

R = Rz(ϕ)Ry(θ)Rx(ψ) =


cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosψ − sinψ

0 sinψ cosψ


(5.4)

t = [tx, ty, tz] (5.5)

Hence, a point PL = [XL, YL, ZL]
T ∈ FL project into point pC = [Xc, Yc, Zc]

T ∈ Fc,
and in the pixel coordinate pc = [uc, vc]

T where ”L” stays for LiDAR and ”c” for camera,
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Figure 5.5: set of reference frames representing the overall sensors system as a system of
3D rigid body

with the following equation:

pC =

uc
vc

 =


[
X ′
C

Z ′
c

]
d[

Y ′
c

Z ′
c

]
d

 , where:


X ′
c

Y ′
c

Z ′
c

 = K


Xc

Yc

Zc

 , (5.6)


Xc

Yc

Zc

 =

R t

0T 1



XL

YL

ZL

 (5.7)

considering that:
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• T ∈ SE(3) is the roto-translation matrix;

• [·]d is the discretization function, that is approximating a values to its nearest integer

Given this mathematical description of the projection of 2D LiDAR point into the 2D
pixels in the image plane of the camera, then it is necessary to recover the inner parameters
inside the rigid body transformation. The method used for their extraction is a trivial trial-
and-error approach: a first possible guess is obtained exploiting a thoric level and a ruler.
Then, the parameters are adjusted considering the overall final result, obtained through
visualization of such projected points. This brought to find:

• [ϕ, θ, ψ] ≃ [0, 0,−1.8] for the rotation;

• [tx, ty, tz] ≃ [0.0,−0.07,−0.05] for the translation component.

Figure 5.6: exaple of projection of the 2D LiDAR beam over the camera image plane

the final projection obtained can be visualized in 5.6. Here, the color is used for encoding
the depth distance of the pixels. The scale for the color encoding is set from 0 to 5 me-
ters, discretizing such space in a grayscale of 256 levels, that goes from 0 to 255. Some
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considerations are needed due the nature of the measurements performed by the LiDAR.
Indeed, since this technology is based on light reflection principle, the behavior of the
sensor strongly depends on the working conditions in which it is operating. Indeed, in
some cases, the LiDAR is giving totally wrong distance measurements in ouptut. The
principle phenomenon that can cause such bad behaviors are briefly represented in image
5.7 Some consequences of these limitations are reported in 5.9. Arrived at this point, It is

Figure 5.7: causes of distortion for a ray of light; courtesy of [6]

important remark that the overall projection of LiDAR coordinates over the camera image
plane is based only on a very basic geometrical formulation; there is no calibration pro-
cess or procedure in order to obtain a more accurate roto-translation between the camera
and the LiDAR. At the same time, there is no robustness in the software implementation
that deal with the limitation case; fortunately, the LiDAR will output infinite values in
the data stream measurements when it is facing some bad working conditions. Hence,
in the elaboration process, such information can be easily excluded. As can be seen in
5.6, the perfect matching between the LiDAR measurements and the associated pixels is
not achieved and there is some margin of improvement. I considered that this could be
enough accurate to recover good matches between camera and LiDAR for performing
sensor data fusion in the following.
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Figure 5.8: some examples about bad light
reflection behavior

Figure 5.9: here are reported some images capturing the bad output coming from the
LiDAR sensor; the pixels colored in red are associated to distances >25 m, namely the
limit working condition of the sensor (usually correspond to infinity values)

5.2.2 Camera - LiDAR fusion process

At this point, given the inverse depth estimation from MiDaS CNN and the projection
of the LiDAR depth measurements over the image plane, some pixels in the image will
have a double depth estimation. Here it is recalled that the inverse depth brought from the
Neural Network is lacking of scale information. Fortunately, we can use LiDAR depth
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measurements in order to recover an absolute scale for the set of pixels with double depth
estimation. Then, since the depth map output from the CNN share the same scale, extend
this result to all pixels in the map. Following this idea, at first let’s define some useful
variables, involved during the data fusion process:

• Dcnn ∈ Rnxm: depth map associated to the CNN output; n,m corresponds to the
image width and height, respectively

• D∗ ∈ Rnxm: real depth map associated to pixels

• X ∈ Rkx1,Dcnn: set of pixels depth values in the camera image plane that found a
match with the projection LiDAR measurements

• Y ∈ Rkx1,D∗: depth measurements output from the LiDAR which have an associ-
ated coordinate projected pixel description on camera image plane

with k ≤ n; indeed only in a limit case we will have a LiDAR projection for each pixel
in a row of the image. As shown in the set of images 5.4, an estimation of the depth D̂ of
D∗ is given by the depth map output from the MiDaS CNN; unfortunately, the NN does
not identify a properly scale so as to translate pixels intensity information into metric one.
The inverse depth output has a scale, that is unknown; so there exist a value s ∈ R+ such
that:

D̂ = ŝ Dcnn −→ x̂i = ŝ xi, xi ∈ X, i ∈ [1, ..., k] (5.8)

In a machine learning model framework, the vector X is called the feature vector and it is
assumed Y to be its associated ground truth vector. This is something reasonable, given
the level of accuracy of the LiDAR in normal operative condition. Considering the linear
relation of (5.8), we can derive a linear model that link the two vector X,Y, associated
to the depth of the CNN and the Lidar, respectively. The model is obtain through the
solution to the well-known linear least square problem formulation:

ŝ = argmin
s∈R

1

2k

k∑
i=1

(s xi − yi)
2 (5.9)

that, in matrix form, using the above notation, turns to be described as:

ŝ = argmin
s∈R

(
1

2k
(sX− Y)T (sX− Y)

)
(5.10)
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hat bring to the common linear least-square solution:

ŝ = (XTX)−1XTY (5.11)

Then, given the estimation ŝ of s, the real linear relation, all the pixels in the depth map
D are scaled as consequence, referring to equation (5.8). The overall results obtained
from this theoretical framework will be reported in the following last chapter, with some
further considerations.

5.3 Pointcloud generation and map reconstruction

Given an estimation of the depth map, represented through the variable D̂, the next step
is to project such information into the 3d reference frame of the robot. This can give to
it the possibility of taking into consideration the structure of the map for plan trajectories
according to it. The first rough description is obtained by means of the direct representa-
tion of the point in the 3D space. This is the so called pointcloud, since the map consists
into a set of points, without any further data elaboration. In practice, this consist to move
the 2D pixels coordinate pi = [u, v]T associated to the image I = Ω : R2 −→ R+ to the
3D coordinates Pi = [X,Y, Z]T ∈ Fc, namely a point coordinate defined with respect
to the camera reference system. The process consists substantially to take the inverse of
equation (2.5):

u
v

 =


fx
X

Z
+ Cx

fy
Y

Z
+ Cy

 inverse−−−→


X

Y

Z

 =



(u− Cx) ·
d̂i
fx

(v − Cy) ·
d̂i
fy

d̂i


(5.12)

With this map representation, the UAV is not able to do path planning; For this reason, it
is needed another type of map description. One possibility, that represents an elaboration
of the pointcloud description, is a spatial-mapping dense representation of the robot envi-
ronment by means of 3D voxel. In particular, the most famous solution in this context is
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octomap [36]. In general, a 3D volumetric map should guarantee three important aspects:

1. Probabilistic representation: the robot sense the environment taking 3D measure-
ments that are always affected by some uncertainty. The map should fuse together
a series of robot measurements so as to obtain an overall estimation of the map
representation

2. Unmapped areas representation: in autonomous navigation task, a robot can plan
collision-free paths only for those area that are be recognized to be free by sensors
measurements. Furthermore, the definition of unknown areas is useful for explo-
ration

3. Efficiency: the memory consumption is the major bottleneck for 3D mapping sys-
tems

Given these considerations, the raw pointcloud dense map representation obtained in the
first part of this section, is not able to deal with a single of the above points in the list.
Indeed, point clouds stores a large amounts of measurements and hence are not memory
efficient. Furthermore, it does not allow a free/unknown differentiation and is based on
a deterministic approach. Conversely, the Octomap is a octrees based map description
that use probabilistic occupancy estimation for representing areas inside the 3D space.
Furthermore, it exploit 3D multi-level voxels resolution and an almost loss-less mecha-
nism for the map update and memory usage. In particular, the octrees are a hierarchical
data structure for spatial description of 3D scenario. Each node in an octree represents the
space contained in an elementary cell, called voxel. This volume is recursively subdivided
into eight sub-volumes until a minimum voxel size is reached. Given the hierarchical sub-
division, than we can establish map representation at different level of coarsity. Octomap
will identify as occupied a voxel that is recognized to not be empty for a sequence of point-
clouds. Since this thesis is using a localization process that is not communicating with the
new CNN-based mapping process, the depth used in the two modules are different; the
main consequence is that the pointcloud that will be projected considering also the mo-
tion of the robot with respect to the world reference frame will identify wrong matches
for voxels in subsequent pointclouds. Hence, this feature will represent a future work,
because the mapping module individuated should be integrated inside a single algorithm
program.

109



110



6
Final results

In this chapter is evaluated the overall software architecture described previously in the
thesis. In particular, in the first part is briefly reported the overall ROS software architec-
ture built. In the second part, the final pointcloud associated to the depth map estimation
process is evaluated. At the end, some future works regarding this solution and final
consideration will be reported

6.1 SLAM software architecture

The final software architecture can be visualized in 6.1. For each module is associated a
node inside the ROS framework. What is needed to highlight is the type of delay between
information topics inside the network. Here it is recalled that:

• the LiDAR sensor is giving as input a scan at about 13.190 Hz (average on 300
scans)

• the raspicamera is working at 30.014 Hz (average on 900 samples)

For what is concerning the generation of key-frame output of LSD-SLAM, is it not pos-
sible to identify a priori value of the frequency. However, so as to obtain good working
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Figure 6.1: ROS software architecture of the SLAM implemented solution

conditions, the motion of the robot should be not so big; Heuristically it seems that in
a normal application it can goes around 1 Hz, very far to be a bottleneck problem from
the frequency in which is working the ROS network, presented in the list below. Indeed,
the following result are achieved: The performance related to the software architecture,

Item Average time [s] n° of samples

LiDAR projection 0.019002 499

Delay LiDAR scan - image 0.008545 164

Delay LSD keyframe - Lidar/image projection 0.024291 53

CNN prediciton 0.257572 53

CNN to GPU load (initialization step) 1.347485 4

Pointcloud generation 0.025138 48

Table 6.1: computational time required for modules inside the identified ROS network
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described in the table above, suggests that no bottleneck1 is present due to ROS network
management and execution of the added nodes. However, the commputational platform
exploited for the evaluation is not anymore that reported in chapter 3 for the worksta-
tion. In this case the architecture run over a Intel Core i5-12450H supported by NVIDIA
GeForce RTX 3050 Laptop GPU(4 GB GDDR6 dedicated). Considering the CNN, some
particular attention is needed, because in the setup described, the specified graphic pro-
cessor is usually not present inside embedded devices. In this case I would recommend to
choose less computationally heavy architecture of MiDAS, like the Hybrid-MiDAS V3.0
or the smaller-Midas V2.1.

6.2 2D LiDAR-Camera Pointcloud

In this chapter it is evaluated the final result obtained combining LiDAR measurements
projected into the image plane and the CNN depth estimation. As first point it is consid-
ered the behavior of the linear regression model. In this case, following the discussion
reported in chapter 5, the variable X,Y are considered in their inverse depth represen-
tation; this have the aim of giving more weights to objects near to the camera. For the
regression validation a particular scenario is taken into account, in which the LiDAR have
a wide range of measurements. It is visualized in the image 6.2, that represent the stable
position in which measurements are taken. In particular, it is considered the condition in
which the software implementation concerning the LiDAR projection run for 10 times;
based on those output, some information are extracted. In particular, it is possible to
understand that:

• the regression problem seems to be well-posed, since the overall function express-
ing the relation between LiDAR measurements and depth estimated values coming
from the CNN is almost linear

• the regression converge after two scans, hence about 500 samples are enough for
extracting a stable estimation for the scaling factor

• the Lidar uncertainty is almost proportionally linear with the distance measured

1this is intended considering the first step of initialization, since also the LSD-SLAM implementation
need some time during the starting part for the setup of the software architecture
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Figure 6.2: scene in front of the camera Figure 6.3: Linear regression obtained

Figure 6.4: Convergence of the regressor
model as new algorithm iteration are per-
formed

Figure 6.5: plot showing the behavior of Li-
DAR measurements with respect to differ-
ent ranges of distances

From Lidar measurements analysis it is also possible to infer that the LiDAR sensor is
able to output stable measurements during time, considering different scans of the same
portion of the scene present in front of the Lidar. A visual prove of such statement is
reported in the diagrams 6.6. Then, after a first validation of the regression, it is evaluated
the accuracy of the pointcloud. So as to obtain something reliable, I considered the six
scenario reported in 5.4. The ground truth is obtained by means of a construction range
meter; An example of label registration is reported in figure 6.7. where, in such generic
scenarios as those considered, is possible to understand that:

• from image 6.8, we have that almost 50% of the points labelled have an absolute
uncertainty under 25 cm; that is something remarkable, considering that the algo-
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Figure 6.6: LiDAR measurements variation between multiple scans

rithm is not implementing any type of estimation method

• the average error in a range measurements spanned from [0-5] m is 0.24 m

• from 6.10 most of errors are concentrated in the interval [0-0.2], that in the inverse
depth scenario deal with point with larger distance. This is something that one could
aspect, since the linear regression try to give more weight on near object, that have
bigger values in inverse depth representation.

At the end, a visualization of the pointcloud obtained is reported in figures 6.11, 6.12. In
these cases, for each point in the 3D reference frame of the camera it is associated a 3D
vector of colors, RGB; it is needed to add the colors information otherwise the different
elements in the scene turns out to be not distinguishable. However, colors does not give
any type of information (at least in this setup) useful to the drone; under this line of thumb,
the computational time referred to the pointcloud generation node in 6.1 consider the case
where only the spatial 3D coordinates of pixels are defined.
In the end, in order to evaluate completely the pointcloud generated, it is compared with
pointcloud output of the Kinect V1 sensor, described in section 2.2.3. The overall setup
is visualized in image 6.13. The depth map associated to the kinect is expressed with
respect to its monocular camera. After obtaining the evaluation of the camera matrix Pk,
associated to the monocular camera of the Kinect, it is possible to project the pointcloud
into the raspicamera V2 reference frame. This give the possibility to compare the overall
pointcloud estimation, instead of only singular points in the image. However, the kinect
V1 is not giving a ground truth information about depth distance. Indeed, following the
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Figure 6.7: example of ground truth anno-
tation trough single beam construction Li-
DAR

Figure 6.8: level of accuracy given different
level of threshold considered

Figure 6.9: Evaluation of the pointcloud ac-
curacy given the set of labels

Figure 6.10: distribution of the errors along
the range of measurements

work of [37], the depth accuracy of the RGB-D camera strongly depends on the range
of distances considered. For this reason, i chose to set the overall system at three meters
from the wardrobe, in order to obtain good distance estimation from the kinect. Starting
from the pointcloud description in the kinect monocular camera reference frame as a depth
map associated to pixels in the image, it is needed to project it into the image plane of the
raspicam. hence, at first, the pointcloud information is projected from the image plane
to the kinect monocular camera reference frame. After that, a roto-translation is needed
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Figure 6.11: From the top-left to the bottom right it is reported: the first scene considered
and the obtained pointcloud in terms of its front view, side view and top view

for moving into the raspicamera reference frame and at the end it will be projected in
the image plane camera of the prototype. Mathematically, considering a pixel pi ∈ Fk

with associated depth information D̂kinect(pi) = d̂i,k ∈ R+, it is possible to obtain a point
P′
i = [X ′

c, Y
′
c , Z

′
c]
T ∈ Fc with the following equation:

P′
i =


X ′
c

Y ′
c

Z ′
c

 = RP+ t, where: P =



(uk − Cx,k) ·
d̂i,k
fx,k

(vk − Cy,k) ·
d̂i,k
fy,k

d̂i,k


, follow 5.12 (6.1)

As always, R ∈ SO(3), t ∈ R3. The rotation is expressed by means of Euler angles and
their values, together with the translation parameters, are obtained following the already
explained procedure in chapter 5, namely taking a first guess through meters and toric
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Figure 6.12: From the top-left to the bottom right it is reported: the second scene consid-
ered and the obtained pointcloud in terms of its front view, side view and top view

level and then find an estimation for the values by means of trial and error method. The
pixel coordinates p′i ∈ Fc are obtained through the already used projection equation
2.6based on the camera matrix Kc of the monocular camera:

p′i =

uc
vc

 =


[
X ′′
C

Z ′′
c

]
d[

Y ′′
c

Z ′′
c

]
d

 , considering:


X ′′
c

Y ′′
c

Z ′′
c

 = Kc


X ′
c

Y ′
c

Z ′
c

 (6.2)

The final comparison is shown in images 6.14, where on the top are reported the two
depth map images coming from the convolutional neural network and the kinect sensor.
On the bottom is reported the heatmap regarding the absolute difference in pixel depth
estimation As can be noticed, the kinect depth map has a lower dimension than that one
of the CNN; indeed, it has a resolution of 574x243. This is the result of the projection of
the depth map from the infrared reference frame to the monocular reference frame of the
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Figure 6.13: prototype-kinect setup for pointcloud comparison

camera.

6.3 future works

This thesis should be intended as a proof of concept that try to understand if there is a
possibility to substantially reproduce the output of 3D LiDAR measurements combining
together a monocular camera and a 2D LiDAR. In this work, it is implemented a very
rough solution of this principle, considering the complexity of the problem and the time
usually spent for a thesis work. For this reason, many improvements can be made for the
identified slam architecture:

• Integration of the mapping module inside the Localization framework. Indeed,
as already pointed out, the mapping process individuated is not coupled with the
localization process of LSD, since it is relying on its originally process

• improve the LiDAR projection over the camera image plane, recovering the roto-
translation between camera and LiDAR reference frame in a more accurate way

• exploit the LiDAR distances projected over the image plane also in the localization
module of the SLAM algorithm
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Figure 6.14: on the top right, it is reported the depth map associated to the CNN. On the
top left, that one estimated from the kinect. On the bottom part, on the left is reported the
raspicam monocular image considered and the final comparison between the two depth
map

• try tomerge the depthmap estimation of LSD-SLAMwith that one produced byMi-
DAS. Indeed, the CNN can bring good depth estimation when considering surfaces
in the scene. Conversely, LSD-SLAM have shown to provide good estimation with
high gradient pixels location, namely those that most of the time refers to corners
and edges. As [38] did, it is possible to write an optimization problem over depth
estimation variable that will deal with a solution that combine the advantages of
both methods.

• substitute the rolling shutter camera with a global shutter camera having a large
field of view and working at higher frame rate, as it is suggested in the LSD-SLAM
open-source github software implementation

• identify a probability framework for representing the pointcloud, make it converg-
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ing as the drone moves inside the indoor environment; one example is the work of
[9]

• construct a voxel representation of the map, that identify a probabilistic represen-
tation of the map and store data in an efficient way. One solution could be the
adaptation of the work of [36]

• Given the Voxel representation, define an exploratory policy inside the unknown
environment (for example using A* path planning algorithm).

• Improve the CNN estimation coming from MiDAS, following the work of [39]

• include in the Neural Network training process the information coming from the
LiDAR. The overall idea is to enhance the number of samples used to train the
Convolutional Neural Network while relying on low-uncertainty sensor, as it is
showed in images 6.5, 6.6

• give a semantic understanding to the extracted pointcloud, so as to make the UAV
capable to, not only to see the world, but also to understand it and foresee more
complex behavior associated to different objects recognized
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