Mineral composition of fault rocks from the Koyna deep drilling project (India)

Composizione mineralogica di rocce di faglia dal progetto di perforazione profonda di Koyna (India)

ALESSIO CHIESURIN

Tesi triennale

23.7.2020

at the time of the covid-19 Supervisor: **Giulio Di Toro**

Università degli Studi di Padova

Outline of the thesis

- 1. Motivations and goals
- 2. Geological setting of Koyna area
- 3. Methods
- 4. Results
 - 4.1 Possible deformation events
 - 4.2 Mineralogy of fault zone rocks
- 5. Conclusions
- 6. References

1. Motivations & goals

- Koyna area: dam for hydroelectric power & agriculture & flood hazards.
- Seismicity: started after the lake impoundment in 1962.

- Human-induced earthquakes associated with Koyna water reservoir operations in intraplate areas.
- World's largest humaninduced earthquake (M 6.3, 1967).
- World's largest scientific drilling project of induced seismicity area from 2015.

Seismicity in phase with reservoir water level variations.

- Seismic activity is restricted within in an area of 20 x 30 km.
- Seismicity is mostly in the range of 3-10 km depth. Host rock temperature 50-150°C.

Koyna river

Faults dip subvertically. Top Koyna reservoir BASALT GRANITE 10 cm [Arora et al., 2017 JGSI]

Drilling project to study the granitic basement and the fault rocks from 2015.

Koyna area

- This repository contains about 25 km length of cores.
- Boreholes seismometers installed in the wells.
- Geological, geochronological, geophysical and microbiological studies.

My goal: determination of fault zone rocks mineral assemblage.

2. Geological setting of Koyna area

Koyna region:

- Deccan Traps (68-65Ma): basalts Thickness: 500-2000m
- Granitic Basement (Proterozoic): granite-gneiss, granite, migmatiticgneiss, amphibolites.

3. Methods

1. 15 samples pulverized in an agate mortar.

2. Assembly on sample holders.

3. Semi-quantitative analysis through powder diffraction.

4. Interpretation of diffractograms with the HighScore Plus software®.

[Stefano Baldo's thesis, Unipd]

4.1 Possible deformation events

1. Late Archean to Cretaceous: Indian crystalline (2.7 Ga) basement formation. HT shear zone and later hydrothermal epidote + chlorite precipitation.

- 2. Cretaceous: Deccan intrusion (68-65 Ma), intense geothermal anomaly and possible chlorite filling of the joints.
- 3. Post-Cretaceous to today: quartz + calcite precipitation in fractures. Formation of brittle faults with gouges, breccia, cataclasite.

1. Archean to Cretaceous: Indian crystalline (2.7 Ga) basement formation. HT shear zone and later hydrothermal

epidote +

chlorite

precipitation.

2. Cretaceous: **Deccan** intrusion (68-65 Ma), intense geothermal anomaly and possible chlorite filling of the joints. Possible reactivated faults by human-induced earthquakes.

Chlorite filling of the joints

3. Cenozoic: quartz + calcite precipitation in fractures, formation of brittle faults with gouges, breccia, cataclasite. **Possible reactivated** faults by humaninduced earthquakes.

4.2 Mineralogy of fault zone rocks

00

Bot

KBH6-73 Granitic basement

10 cm

KBH6-69 Chlorite rich shear zone exploited by brittle fault

10 cm

KBH7-594 fibers at the basement

KBH6-71 Quartz + chlorite veins cutting damage zone

10 cm

Bottom

KBH1-346 Calcite and quartz latevein filling chlorite vein

10 cm

KBH6-71 Quartz Chlorite Titanite Calcite Possible fluoroapatite	wt.% 64 31 4 1 e 1	Quartz +/- chlorite veins cutting damage zone	KBH6 1300 H 1350 H 1400 1450
	Counts 4 Quartz +/- chlo veins	COCCO DiT-Chiesurin-6-71 01-079-1910; Quartz 01-079-1270; Clinochlore 98-015-9340; Titanite 00-015-0876; Fluorapatite, syn 98-015-8257; Calcite	
Bottom	<u>10 cm</u>		

KBH7-594	wt.%			
Calcite	56			
Cr-chlorite	18			
Quartz	15			
Na-chlorite (possible				
glagolevite)	9			
Garnet (possible uvarovite)	1			
Smectite (possible	1			
montmorillonite or corrensite)				
Zeolite (possible laumontite) <1				
Тор	40			

5. Conclusions

• Koyna: human-induced earthquakes occurred since dam building.

Scientific drilling project (17 samples in Padua)

- Based on the study of borehole cores and XRPD analysis we propose the following deformation sequence:
 - 1. Formation of Indian crystalline basement, HT shear zones and later hydrothermal alteration including epidote + chlorite precipitation (Late Archean to Cretaceous)
 - 2. Deccan Traps, intense geothermal anomaly and possible chlorite filling of the joints (68-65 Ma)
 - 3. Quartz + calcite filling of fractures/faults (Cenozoic).

Possible reactivated faults by human-induced earthquakes

 This preliminary study of the fault rocks from the Koyna drilling project suggests that chlorite-filled and <u>quartz+calcite-filled</u> fractures/faults are reactivated by the human-induced EQs.

Thanks for your attention

6. References

- Arora, K. et al. (2017), Lineament Fabric from Airborne LiDAR and its Influence on Triggered Earthquakes in the Koyna-Warna Region, Western India, JGSI Vol. 90, December 2017, pp. 670-677.
- Goswami, D. et al. (2017), Rock strength measurements on Archaean basement granitoids recovered from scientific drilling in the active Koyna seismogenic zone, western India, Tectonophysics Vol. 712–713, 21 August 2017, pp.182-192.
- Gupta, H.K. (2002), A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India, Earth-Science Reviews Vol. 58, (2002), pp. 279–310.
- Gupta, H.K. et al. (2015), Investigations related to scientific deep drilling to study reservoir-triggered earthquakes at Koyna, India, Int J Earth Sci (Geol Rundsch) Vol.104, (2015),pp. 1511–1522.
- Gupta, H.K. (2017), Koyna, India, an Ideal site for Near Field Earthquake Observations, JGSI Vol.90, December 2017, pp.645-652.
- Misra, S. et al. (2017), Granite-gneiss Basement below Deccan Traps in the Koyna Region, Western India: Outcome from Scientific Drilling, JGSI Vol.90, December 2017, pp.776-782.