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Abstract

Electroencephalography signal is an important resource for the analy-

sis of the brain. However, due to its complexity and non-stationarity,

its analysis has often been a challenging task for physicians. Machine

learning and deep learning have shown attractive results in different

scenarios, and they could be effective means to help clinicians to di-

agnose abnormal conditions and to speed up the diagnosis process.

However, the complexity of these models prevents from fully under-

standing what really happens inside them, and the way input informa-

tion is used. Attention, one of the most recent developments in the DL

őeld, allows the models to learn which input information is useful to

perform classiőcation. In this thesis, we compare two commonly used

DL models, namely CNN and LSTM, with their attention-enhanced

counterparts. These models are tested on three different datasets, re-

lated to three different challenges in EEG research, which are abnor-

malities detection, artifact detection, and seizure classiőcation. We

achieved the state of the art in all classiőcation problems, regardless

of the large variability of the datasets and the simple employed ar-

chitecture. Moreover, the use of attention provides an increase in the

őnal accuracy, highlighting a promising strategy to identify the rele-

vant information in the EEG signal.
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Introduction

Electroencephalography (EEG) has been widely used through the

years to detect abnormalities in the brain [1]. However, the evalu-

ation of EEG traces by clinicians is often a time-consuming process,

and it requires years of training and experience to recognize patho-

logical patterns. Moreover, the diagnosis accuracy depends on the

experts’ training and experience [2]. The use of machine learning

(ML) and deep learning (DL) methods allows to extract features and

detect patterns that can’t be recognized by humans, enhancing the

accuracy of clinicians’ work. Moreover, these techniques can learn a

new task in just a few hours, making diagnosis faster.

Starting from the simplest and oldest neural network (NN) model

[3], which was inspired by the brain structure, several other advanced

architectures have been proposed through the years, making the learn-

ing process more and more efficient. Convolutional Neural Networks

(CNN) [4], inspired by the visual cortex, take into account the idea of

spatial correlation. Then, Recurrent Neural Network (RNN) imple-

ments the idea of predictive processing where each current decision

is driven by past information, modeling the temporal dependencies

[5]. Finally, the attention mechanism aims to focus on certain inputs,

ignoring the rest [6]. All these models are used in the analysis of com-

plex signals such as EEG leading to very impressive results.

In this thesis we compare two commonly used DL models, namely

CNN and LSTM, with and without the attention mechanisms en-

hancement, to evaluate their impact on the classiőcation performances.
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Three different datasets are selected from the TUH EEG corpus which

are related to three different challenges in EEG research. The TUH

Abnormal EEG Corpus (TUAB) [7], contains generic abnormal EEG

trials and normal EEG traces, the TUH Artifact EEG Corpus (TUAR)

[8] provides clean EEG signals, and signals corrupted by 5 different

kinds of artifacts, the TUH Seizure EEG Corpus (TUSZ) [9] consists

of EEG trials affected by different types of epileptic seizures. For all

datasets a binary classiőcation problem is approached, thus we test

the ability of the network to correctly classify abnormal and normal

data in the őrst case, signals affected by artifact and clean segments

in the second, and to discriminate among focal and global seizure in

the last.

The classiőcation performances are measured through the commonly

used metrics: accuracy, recall, precision and F1-score.

The attention mechanism leads to an increase in the average accuracy

in almost all the datasets for both models. In the CNN-based one,

the accuracy increased from 71.41% to 74.24% in the TUAB dataset,

from 84.36% to 87.83% in the TUAR, and from 84.96% to 86.92% in

the TUSZ. Instead, the LSTM-based network accuracy increases from

72.94% to 74.03% in the TUAB dataset, and from 87.52% to 89.36% in

the TUAR. The TUSZ dataset is the least affected by the attention

mechanism improvement, and the őnal accuracy slightly overtakes

that obtained in the simple LSTM (without attention) from 88.11%

to 88.22%.

The rest of the thesis is organized as follows. Chapter 1 introduces

the theoretical background on which the thesis is based. First, it de-

scribes how EEG signal originates and propagates, how it is recorded,

and the most common preprocessing step. Then the traditional ML

algorithms and the more advanced DL models are introduced. Fi-

nally, a literature review of the most recent attention mechanisms

implementation is presented. In Chapter 2 the used datasets are in-
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troduced, together with all the processing steps, i.e. the preprocessing

pipeline, the features extraction, and the features selection. Finally,

the used models, the training pipeline, and the classiőcation metrics

are described. Chapter 3 is dedicated to results and discussion. The

thesis is concluded by highlighting the main take-home messages of

this work and the introduction of some promising future perspectives.





Chapter 1

Background

1.1 Brain physiology

1.1.1 The nervous system

The nervous system is a complex structure of nerves, cells, and or-

gans that allow messages transmission around the brain and the rest

of the body [10]. Signals from the outside are captured by special-

ized sense receptors, encoded, and transmitted to the brain through

nerves. Here, the stimulus is processed, the appropriate response is

produced, and transmitted back to control muscles, glands, and or-

gans. The nervous system is divided into two parts: the Central

Nervous System (CNS) which is made up of the brain and the spinal

cord, and the Peripheral Nervous System (PNS) consisting of all the

nerves transmitting the response signal from the brain to all the rest

of the body. PNS could be in turn divided into two parts: the somatic

nervous system, which acquires information from the sensory systems

and controls the voluntary body movements, and the autonomic ner-

vous system which governs the unconscious activity of the organs and

glands. The core of the CNS, and also the most complex part of the

human body is the brain. Encased in the skull and protected by the

meninges, it is divided into three parts: the cerebrum, the cerebel-

lum, and the brainstem [11]. The cerebrum is the most important

1
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Figure 1.1: Lateral view of the cerebrum lobes.

part. It is split into two hemispheres, connected through a bundle of

nerve őbers which ensures the communication between the two areas.

Although the two parts look symmetrical, they are dominant in the

control of different functions. Two different kinds of tissues are found

in the brain. The gray matter is the external part, that is the cere-

bral cortex. It is mainly composed of neurons and glia cells and it is

involved in information processing tasks. Then, the white matter is

mainly composed of axons and it is responsible for transmitting sig-

nals between the gray matter and the rest of the nervous system. The

cortex surface is characterized by many folds which allow increasing

the effective surface area of the grey matter, and consequently the

amount of information that could be processed. Each hemisphere is

divided into four lobes as shown in Figure 1.1.

Each lobe has a different function [12]:

- frontal lobe: located in the forward part, at the front of the

central sulcus, it is involved in motor functions, problem solving,

reasoning and planning, language and emotion regulation;

- parietal lobe: it is just behind the frontal lobe, and it is respon-

sible of processes information coming from the different parts of

the body;

- temporal lobe: located at the bottom of the brain, under the
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lateral őssure. It is the location of the primary auditory cortex,

thus its main function is to process auditory sounds. It is also

involved with memory and new information processing;

- occipital lobe: it is in the back of the brain and it is employed

in processing visual information.

1.1.2 Signal generation

The brain can be seen as a complex network whose fundamental unit is

the neuron. A human brain consists of 1011 neurons, with 104 neurons

mm3 on average. Neurons are specialized cells made up by three parts

as shown in Figure 1.8: the body (soma), which is the central part

that contains the nucleus, the dendrites, branched ramiőcation that

receives signals from other neurons, and propagate toward the soma,

and the axon, a single, tail-like ramiőcation that transmits signals

toward other neurons through the axon terminal. Axons are coated

by a fatty substance called myelin that helps axons to conduct an

electrical signal. At the end of the axon, the synapses manage the

signal transmission from one neuron to another.

Figure 1.2: The neuron and the action potential transmission [13]

Information is transmitted as action potentials, which are tempo-

rary changes in the polarization of the cell membrane. The latter acts

as a capacitor, separating the electrically charged particles of the ex-

ternal environment from the ions inside the cell. In normal conditions,
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Figure 1.3: The signal propagation [15].

the resting state voltage is around -70 mV. When a stimulus comes

and it exceeds a critical threshold (typically 15 mV), the membrane

depolarizes very quickly [14]. Then, the action potential is propagated

through the axon via local currents which induce depolarization of the

adjacent part of the axon membrane. Transmission between two neu-

rons instead, occurs through junctions called synapses. When the

signal arrives at the axon terminal, it depolarizes the presynaptic

membrane activating the stored neurotransmitters, both chemical or

electrical. In turn, the postsynaptic membrane contains receptors for

neurotransmitters. When they bind the receptors, a new action po-

tential propagates in the postsynaptic cell.

1.1.3 Signal propagation

The burst of a single neuron can’t be detected without a direct contact

with it. However, when speciőc information has to be processed or

transmitted, several neurons in the same area activate synchronously.

Thus, the summation of all the inhibitory or excitatory postsynaptic

potentials from pyramidal neurons, generate the electrical potentials

which, passing through tissues, bone, and skull, can be measured

from the head surface [15]. Since the signal has to ŕow through many

different layers, the recording can be interpreted as the superposition
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of several components [16]:

EEGsignal = extLFP + propagationeffects+ artifact+ noise

where extLFP is the signal of interest, produced by the neurons,

propagation effects are all the modiőcations introduced on the signal

and related to the transmission along all the layers, and artifact and

noise are other sources independent from the signal of interest. In the

same way, the signal power suffers from the same attenuation effects.

1.2 The electroencephalogram

1.2.1 Signal characterization

The EEG signal is characterized by an oscillating behavior with an

amplitude in the order of µV. It changes with time and it is strictly

related to brain activity. A signal with high amplitude and low fre-

quency represents the coordinated activity of a large brain area, while

a low amplitude and high frequency stand for a desynchronized ac-

tivity of neurons involved in different tasks [17]. On frequency con-

tent, brain activity covers the range [0.5-500] Hz. However, EEG

can capture frequencies in the range [1.5-80] Hz, while for lower or

higher frequencies techniques like Magnetoencephalography (MEG),

Functional magnetic resonance imaging (fMRI), Electrocorticography

(ECoG), or Local Field Potentials (LFP) could be used [18]. The őve

brain rhythms are [19]:

- Delta [0.1-4] Hz: it corresponds to the lowest possible fre-

quencies but it is characterized by the highest amplitude. They

constitute the dominant rhythm in infants and during sleep (es-

pecially stages 3 and 4), while they are abnormal in awake adults.

- Theta [4-8] Hz: is related to subconscious activity, deep relax-

ation, and meditation. Common in children, it is abnormal in
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Figure 1.4: The fundamental EEG waves.

waking adults.

- Alpha [8-12] Hz: it is commonly found in healthy adults in

relaxing conditions. It can be measured on both sides of the

head, with a predominance on the nondominant side, and mainly

on the occipital and parietal lobes.

- Beta [12-30] Hz: it occurs during the conscious state, and they

are linked to action and concentration. It can be found in the

frontal and parietal lobes on both sides.

- Gamma [30-100] Hz: it is related to simultaneous processing

of information. An altered gamma activity can be related to

many cognitive disorders.

1.2.2 Signal acquisition

EEG signal is acquired through electrodes placed on the scalp. Their

location is őxed, and one of the most common acquisition models

is given by the International 10-20 System (Figure 1.5). It provides
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Figure 1.5: The International 10/20 system [21].

21 electrodes 2 of which act as references. Starting from some well-

established points, namely nasion, inion, and peculiar points, the őrst

electrodes are placed at a distance that is 10% the length of the scalp,

while all the others are at a distance of 20% among them. Moreover,

electrodes are marked with a letter and a number: the former derives

from the lobe over which they are placed, and the latter identiőes the

position: odd electrodes are placed on the left hemisphere, while even

ones on the right [20]. Three different kinds of modes can be used

to record the signal [21]: differential, referential, or reference-free.

The őrst measures the potential difference between pairs of electrodes

(which are in input to each differential ampliőer). The second com-

putes the difference between an active electrode and a reference point.

Reference electrodes could be Cz or others placed on the earlobes or

mastoids. In the last mode, the reference comes from the average sig-

nal recorded by all the electrodes. Since the EEG signal amplitude is

in the order of µV, it should be ampliőed. Finally, it is converted to

digital with a sampling frequency at least of 250, and from 12 to 24

quantization bits. At this point, it is ready for further preprocessing

steps like őltering, artifact removal or correction, and segmentation.
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Figure 1.6: The spatial őlters from [22].

1.2.3 Signal preprocessing

Preprocessing is an important step when working with EEG. It allows

to clean raw data from artifacts or corrupted channels, to have a sig-

nal which contains for the most only useful information.

The őrst class of techniques is about őlters. Through them, noise can

be reduced or the SNR increased [22]. Two kinds of őlters can be

used: spatial and temporal ones. In the former (Figure 1.6), the am-

plitude of the signal coming from each electrode is changed according

to the combination (weighted or not) of the voltages recorded at one

or more (up to all) site locations. Four are the most commonly used

techniques, that change with each other for the number or the location

of the selected electrodes. In the ear reference technique, all channels

are all referenced to an electrode placed out of the scalp, in general

at the earlobe. In common average references (CAR), the average of

the signal is subtracted from all the channels. In small Laplacian, for

each electrode, the weighted sum of the four surrounding electrodes is

considered, while in large Laplacian the same idea is followed but the

used electrodes are those one electrode apart from the site of interest.

On the other side, temporal őlters allow to delete speciőc bands of

frequency that don’t contain signals of interest. A high pass őlter can

be used to delete baseline drifts, characterized by low frequency com-

ponents, while a low pass one to remove electromagnetic interference
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or muscle contractions events. These two can also be combined in a

band pass őlter. Finally, a notch őlter can be used to delete a speciőc

frequency, like the power line noise at 50 Hz (or 60 Hz).

Segmentation is another preprocessing technique, which consists in

dividing the whole signal into adjacent or overlapping segments. In

this way, the EEG signal which is characterized by a non-stationary

trend is segmented into chunks with similar time and frequency dis-

tributions. Moreover, portions corrupted by any kind of artifact can

be removed without discarding the entire trace.

Once the signal is cleaned, informative features can be extracted.

Many of them can be computed, like time domain, frequency domain,

or time-frequency domain, then also more complex ones such as non-

linear features, entropies, or complex network [23]. In this thesis, the

following features are used:

- Mean: it is the average value of all the N samples in the con-

sidered segment

µ = 1
N

N
∑

i=0

xi

- Variance: it measures the spread of the samples around mean

s2 =
N
∑

i=0

(xi − µ)2

- Zero crossing: it is not a statistical feature, but it measures

how many times the signal changes its sign.

zc =
N−1
∑

i=0

1R<0(xi,xi−1)

- Area under the curve (AUC): is the integral of the EEG
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trace

AUC =

∫ b

a

|f(x)| dx

- Peak to peak: it measures the difference between the maximum

and minimum amplitude found in the segment

p2p = max(x)−min(x)

- Skewness: it measures the asymmetry of the distribution. It

can be positive, zero, negative, or undeőned. In the case of

unimodal distribution, negative skew indicates a left-sided tail,

while a positive skew a right-sided tail.

skew =
∑N

i=0(xi−µ)3

(N−1)×σ3

- Kurtosis: it is another measure of shape and expresses the heav-

iness of a distribution’s tails relative to a normal distribution.

kurt =
∑N

i=0(xi−µ)4

(N−1)×σ4

- Spectral power: it measures the frequency content of the sig-

nal. It is computed using Welch.

Pi =
1
π

∫ w2

w1

Sx(w) dw

1.2.4 Clinical applications

EEG is widely used for clinical applications. It allows distinguishing

between normal and abnormal acquisition, provides excellent tem-

poral resolution to other techniques (in the order of ms), and could
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be used for continuous monitoring of patients. Finally, it is a non-

invasive, and low-cost technique. The őrst őeld of application was

epilepsy. In this case, EEG allows to identify the epileptic events, and

the epileptogenic zone, and to asses if the therapy is good [24]. Other

őelds of application are the diagnosis of sleep disorder. Since each

phase of sleep is characterized by a speciőc brain rhythm, EEG could

be a useful tool in the diagnosis of sleep quality and related disorders

[25]. It can also be used as a supplement to diagnose many different

psychiatric disorders such as AHDH [26], depression [27], Alzheimer’s

disease [28], and schizophrenia [29]. Another emerging őeld of inter-

est is brain computer interfaces (BCI). These devices could provide

tetraplegic, post-stroke, or spinal-cord injured patients a way to com-

municate and interact with the outside world. In this case, the EEG

signal could be translated into commands to control a machine and

perform some actions [30].

1.3 Models for EEG analysis

EEG is an indispensable tool both for clinical purposes and to un-

derstand how it works [31]. However, it is often difficult to interpret,

due to its high dimensionality, and non-stationarity. Moreover, its

low SNR makes it difficult to discriminate between the signal and any

other kind of noise or artifacts. Moreover, the evaluation of an EEG

trace depends also on the training experience of the clinician [2]. In

last years, machine learning (ML) and deep learning (DL) techniques

have been introduced in the neuroscience őeld, providing an auto-

mated tool that could support clinicians in decoding the signal.

1.3.1 Traditional machine learning approaches

ML techniques rely on the extraction of handcrafted features. This

means that some preprocessing steps should be performed on raw



12 Background

data. This means that different kinds of features have to be extracted

and then fed in input to the classiőer. However, this implies that

researchers should have some a priori knowledge of which feature set

is more suitable to investigate a speciőc task since the algorithm’s

őnal performances are strictly related to the selected features.

K-Nearest Neighbours (KNN)

K-Nearest Neighbours (KNN) is one of the simplest ML algorithms.

It is nonparametric, thus it doesn’t make any assumption on the map-

ping function between input and output data, but it just stores train-

ing data which will be used to classify new data points. It is based on

the idea of similarity, which is that similar samples are near to each

other, while samples originating by different distribution are in a dif-

ferent cluster. When a new data point is given as input, it is assigned

to a class based on the similarity with the K nearest training data

point around it. The classiőcation function is based on the distance.

An example is given by the following [32]:

w(i) =







d(k)−d(i)
d(k)−d(1)

ifd(k) ̸= d(1)

1ifd(k) = d(1)

where d1 is the distance between the input data and the nearest neigh-

bor, dk the distance to the further, and di is that of the i-th neighbor.

This kind of model can be used to discriminate abnormal brain ac-

tivity as in [33], to detect seizure precursors. The idea is that brain

features coming from normal signals should be more similar to each

other than features coming from abnormal signals, thus the use of

KNN could help to associate a new EEG sample to one of the two

classes. In another work [34], an adaptive KNN algorithm is used to

detect the onset of epileptic events using discrete wavelet transform

(DWT) as input features.
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Figure 1.7: Example of SVM with the kernel trick.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised algorithm that aims

to őnd a separating hyperplane between samples of two classes, in

such a way that the margin between the samples is maximized. The

algorithm in its basic formulation works well for linearly separable

data, while no good solution could be found in the case of not lin-

early separable data. To overcome this problem, data are mapped

in a higher dimensional space, so that they become linearly separable

(Figure 1.7). This step is crucial, and the choice of an incorrect kernel

could lead to very poor outcomes. Then the decision boundaries are

mapped back to the original feature dimension space. The learning

process involves the minimization of a cost function, while the used

loss is the Hinge loss which allows the maximum margin classiőcation

[35]:

l(x, y, f(x)) = max{0, 1− yf(x)}

Despite the development of DL models, SVM is still widely used, due

to its low complexity and adaptability in solving classiőcation problem

as brain disorder diagnosis [31], artifact [36] or seizure detection [37].

In [38] SVM is used to discriminate among signals coming from

different cognitive conditions. Discrete wavelet-based features are ex-

tracted, normalized, and then selected to delete nonrelevant features.
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Depending on the classiőcation problem, the SVM algorithm resulted

in an accuracy up to 99.11%. In [36] a novel approach to detect and

remove artifacts is presented. Through the combined use of wavelet-

ICA and SVM, artifacts have been removed with minimal distortion

of the signal and without the need for visual inspection or manually

deőned thresholds. Results show an accuracy of 99.1%.

Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a simple and computationally

efficient classiőer. Similar to SVM, it was originally implemented

to work with binary data and linear data. Moreover, if SVM tries

to learn a hyperplane that divides data by maximizing the margin,

LDA tries to divide data into two classes by maximizing the distance

among different classes and minimizing the distance between points

in the same class. LDA could be extended to multiclass problems,

where multiple hyperplanes are learned. This algorithm has been

implemented in BCI applications as in [39] and [40] leading to good

results. However, the linearity of the model prevents competitive

results on nonlinear EEG data [31].

Bayesian classiőer

Bayesian classiőer belongs to the probabilistic classiőers family. It

aims to assign samples to the class to which they are more likely

to belong, using Bayes’s rule to compute the a posterior probability

P (y|x). For binary classiőcation problems, that probability is com-

puted as follows [41]:

(y|x) = P (y)P (x|y)
P (x) = P (y)P (x|y)

P (A)P (x|A)+P (B)P (x|B) =
P (x|y)

P (x|A)+P (x|B)

where A and B are the two different classes and x is the vector repre-

senting the two independent variables. The a priori probability can
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be computed as a weighted mixture of Gaussian functions:

P (x|y) =N
i=01 wiP (x|ci)

where wi is the weight of each Gaussian function and N the total

number of them. The main advantage of this method is that, even

with a small number of training points, it can successfully estimate

the learning parameters, and reach an accuracy comparable with SVM

ones [42]. However, it considers all feature vectors as independent

regardless of any actual correlation. Bayes classiőers are successfully

used in [38] for cognitive condition classiőcation, while in [43] author

used a novel parallel classiőer, Parallel Genetic Naive Bayes Seizure

Classiőer (PGNBSZ) to classify the epileptic seizure.

1.3.2 Deep learning models

Artiőcial neural network (ANN) is a model which comes to the atten-

tion of researchers quite recently. Despite the őrst model was intro-

duced back in ’40 [3], the limitation in computational power and the

lack of sufficiently large datasets for training prevent them to be used

in practice.

The computation model is inspired by the structure of the brain net-

work, and the learning process tries to mimic the generalization ca-

pabilities of the human brain. The basic computing unit of an ANN

is the neuron (Figure 1.8. It receives information from input con-

nections. Every connection is characterized by a weight that controls

how much information should be considered. Then the computational

units apply a nonlinear activation function to the weighted input.

Then the output is propagated to the next unit.

An ANN is composed of several layers of these neurons, hierarchi-

cally organized, which receive as input the output of the previous layer

and forward the processed output to the subsequent layer. Learning
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Figure 1.8: The basic ANN unit.

is the procedure through which the weights are iteratively adjusted

to learn the function which maps the input into the output. At the

end of the forward propagation, the loss is computed as a function of

the learned weight. This loss is feeding backward (backward propa-

gation) to őne-tune the weights. Optimization is then based on the

Stochastic Gradient Descent (SGD) [44], an optimization algorithm

that tries to minimize the error by moving in the opposite direction

to the gradient of the loss function.

Neural networks are considered universal approximators. This

means that every network with at least one hidden layer of nonlinear

units can approximate any continuous function, provided the network

has enough hidden units [45]. However, there is no guarantee that NN

can learn the function since there is no theoretical proof of the SGD

convergence [46]. Moreover, it could require an exponentially large

number of units or computational time which is infeasible in practice.

In the last years, ANNs have started to be used in medical applica-

tions [47]. Differently from the previously described ML models, they

allow an end-to-end decoding procedure, which accepts as input raw

or minimally processed data, avoiding the feature extraction process.

The network itself can learn the informative features [2]. Moreover,

the digitization of healthcare data provides more efficient data col-

lection and sharing among multiple hospitals and research centers,
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Figure 1.9: The convolution between input and kernel.

allowing for huge databases for network training.

Convolutional neural network (CNN)

Convolutional Neural Network (CNN) architectures were proposed to

solve some issues found in the NN models. Inspired by the visual cor-

tex and the fact that cortical neurons respond to a stimulus only in a

restricted portion of the whole visual őeld [48], they introduce the idea

of local correlation on the NN, which means that closer input samples

are more related than other farther ones. This was particularly rele-

vant for image processing, where a pixel in an image is more related

to the close ones than to those far apart, and CNN become one of the

most used algorithms in computer vision. Moreover, connecting only

neighbor neurons allows for reducing the number of connections and

so the number of weights to tune.

Learning on CNN is based on convolution (Figure 1.9). Each convo-

lution layer consists of a set of őlters (or kernels), which are convolved

with the input. Each kernel is a matrix of trainable weights that will

be optimized during the training procedure. Different kernels generate

different feature maps starting from the same input. In the lower lay-

ers, őlters start encoding basic features, like for example edges, while

proceeding deeper and deeper features increase their complexity to

uniquely identify the input object. On the top of the last convolu-

tional layer, a fully connected (dense) layer performs the classiőcation.
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At őrst used for image classiőcation, it was then introduced in

other areas, such as for time sequence classiőcation. In [49] authors

proposed the őrst CNN-based framework with transfer learning for

multi-class seizure type classiőcation, considering a dataset with 8

different kinds of epileptic events. They successfully end with a clas-

siőcation accuracy of 88.30% with the Inceptionv3 pretrained network.

In [50] a 13-layer CNN is implemented to detect normal, preictal, and

seizure classes. The model obtains a őnal accuracy of 88.67%, with

a speciőcity of 90.00% and a sensitivity of 95.00%. In [51] they pro-

posed a three 1D convolutional layer network to detect the level of

consciousness in comatose patients. The problem stated as binary

classiőcation between two states (i.e. low consciousness and high con-

sciousness) leads to a őnal accuracy of 83.3%. A method based on

CNN with 2 1D convolutional layers to remove eye blink artifacts is

proposed in [52]. The őnal results outperform those obtained with

the well-known independent component analysis (ICA) and regres-

sion. In [53] a CNN for binary artifact detection leads to a classiő-

cation accuracy of 99.20%. A CNN-based models, i.e. DynamicNet,

[54], outperformed the current state of the art in motor imagery (MI)

classiőcation task. In [55], a CNN is used to classify hand movements

from low frequency EEG. Results are compared with two standard

ML approaches, i.e. linear discriminant analysis (LDA) and random

forest (RF), obtaining comparable or superior results.

Recurrent neural network (RNN)

If NNs try to emulate the brain structure, the recurrent neural net-

works RNNs try to implement the idea that each sensory state is

strongly correlated with the previous ones. The human brain is con-

stantly involved in predictive processing, where past information is

used to drive current decisions. In this way, past contextual infor-

mation can be used during learning. In RNNs, the input is no more
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Figure 1.10: The LSTM unit.

static, but it is given by a time series of vectors, and past information

is stored in the hidden layer using time-delayed connections. At each

time step t, the activation of the hidden layer depends on the current

input and on the context layer, which stores the information coming

from the previous time step. Then the current hidden unit is used to

obtain the output.






ht = f(Wixi +Wcht−1)

ot = g(Woht)

The main drawback of this model is when learning long-term de-

pendencies. As the time sequence starts increasing, the gradient

becomes lower and lower resulting in the so called vanishing gradi-

ent problem. To overcome this problem, Long Short Term Memory

(LSTM) networks [56] have been introduced (Figure 1.10. In this net-

work, a series of gated units learn which and how much information

should be retained.

Automatic detection of epileptic events based on LSTM is pro-

posed in [57]. The network, composed of an LSTM layer, a fully

connected layer, and a őnal softmax obtains a detection accuracy of

100%. Moreover, it proves to maintain high detection capabilities also

in presence of artifacts. Classiőcation of healthy, ictal, and interictal
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states is performed in [58]. The use of a two-layer LSTM leads to a

őnal accuracy of 78%. Again. a two-layer LSTM is used in [59]. Clas-

siőcation of three kinds of EEG signal, namely pre-ictal, inter-ictal

(seizure-free epileptic), and ictal (epileptic with seizure), leads to an

accuracy of 95% while reframing the problem as binary classiőcation

(inter-ictal or ictal only detection), the accuracy increases to 98%.

1.3.3 Attention mechanisms in deep learning

The attention mechanism was initially introduced to őx the LSTM

troubles in encoding long-term dependencies [6] due to the őxed length

of the context vector. The idea is to assign a weight to each encoded

hidden state, allowing the decoder to use only the most important one

(e.g. that with the highest weight). By identifying some information

as more relevant, the őxed length memory space can be optimized.

The proposed method is organized into three steps. In the őrst part,

the encoder processes the input and passes to the decoder all the hid-

den states. Then a score is given to each of them. Each hidden state is

multiplied with the correspondent softmaxed score, thus hidden states

with a higher score are highlighted. Finally, at each time step, the

decoder receives as input a context vector computed as the weighted

sum of all the encoded hidden states.

Different kinds of attention mechanisms have been proposed to im-

prove the performances of the existing DL models. In [60] a Con-

volutional Block Attention Model (CBAM) is proposed. This model

aims to emphasize channel and spatial dimension, through the sequen-

tial application of a spatial attention module and a channel attention

one, to capture what is important in the input and where it is placed.

An LSTM network with attention is proposed in [61] to learn EEG

time-series information. Here attention is placed on the top of a 3

LSTM layer network and provides a weight to each LSTM output

hidden state. The model, developed for hand movement classiőca-
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tion, achieves an accuracy of 83.2%. A transformer model for epilepsy

detection is proposed in [62]. The developed model allows detecting

the seizure events in 73% of the cases, using only 4 EEG channels.

In [63] a Spatiotemporal Attention Network (STAnet) is proposed to

decode auditory spatial attention from EEG. The network is com-

posed of three different components: a spatial feature representation,

a temporal feature, and a őnal classiőcation module. Attention is

here used to learn which channel and temporal pattern pay atten-

tion to. Another novel attention-based architecture (AttnSleep) is

proposed in [64] for sleep stage classiőcation. The Temporal Context

encoder (TCE) is implemented in the second stage of the proposed

architecture and aims to capture the temporal dependencies of the

input. In all the tested datasets, they achieved an accuracy higher

than 80%. A hierarchical attention block is appended on the top of

a CNN to classify epileptic seizure [65]. It is made up of two stages

and produces in output a hierarchical attention feature map obtained

by multiplying the extracted feature with some attention weights.

The outcome achieves an accuracy of 98.33% when discriminating be-

tween healthy and ictal subjects, and an accuracy of 95.56% when

considering health and interictal classes. In another work, three dif-

ferent attention-based models are tested and compared with two DL

approaches on three classiőcation scenarios: neurodegenerative dis-

orders, neurological status, and seizure type [66]. In all three cases,

attention-based architectures achieved better results than those ob-

tained with CNN or LSTM only networks.





Chapter 2

Methods

In this chapter, tools, and software employed for this thesis are pre-

sented. First, the used datasets are introduced, highlighting the sub-

jects’ statistics and the considered classes for the classiőcation. Then

the PyEEGLab library [67], the preprocessing pipeline used to process

the data and the feature selection process are presented. Finally, the

neural network architectures and the metrics employed to evaluate

the classiőcation performances are described.

2.1 The datasets

Temple University Hospital EEG (TUH EEG) Corpus is one of the

main and largest publicly available databases of clinical EEG data

collected from 2002 [8], data that are continuously updated and inte-

grated with new recordings. It aims to provide a huge collection of

high quality data for machine learning or deep learning applications,

helping researchers solve the lack of data or data generation issues.

Moreover, TUH datasets are not only simple EEG collections, but

also a neurologist’s report including the patient’s clinical history, the

treatments, the recording description, and impressions is associated

with each signal, giving this corpus its uniqueness.

Among all provided datasets three of them are selected, related to

three different challenges in EEG research. The őrst, TUH Abnormal

23
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EEG Corpus (TUAB), contains generic abnormal EEG trials collected

from patients, and normal EEG traces from normal subjects [7], the

second, TUH Artifact EEG Corpus (TUAR) [8] provides clean EEG

signals, and signals corrupted by 5 different kinds of artifacts, the

last, TUH Seizure EEG Corpus (TUSZ) [9] consists of EEG trials of

patients affected by different types of epileptic seizures.

The vast majority of signals are acquired using the original stan-

dard 10/20 system with 21 channels divided into 6 brain regions:

prefrontal (Fp), frontal (F), temporal (T), central (C), parietal (P),

and occipital (O). Then two reference electrodes (A) are placed on

the mastoids. Since data are collected from different hospital units,

some recordings could have a higher number of EEG channels, as

when high-resolution recording systems are used, or additional elec-

trodes like ECG or EMG for cardiac and muscle activity monitoring.

However, not all of those channels will be considered in the following

analysis.

Signals are recorded using a bipolar montage to reduce noise, due to

the common reference point, and to highlight the events of interest

such as epileptic bursts or spiky artifacts [68]. For this purpose a

bipolar temporal central parasagittal (TCP) montage is used, com-

puting voltage difference between adjacent electrodes in the longitu-

dinal or transverse direction (known as double-banana). Then, two

different kinds of references are considered in the datasets: the aver-

age reference (AR), where the reference is given by the average of the

electrodes, and the linked ears reference (LE), in which a link between

ears is used to create a more stable reference point. However, in this

study, just only őles acquired with AR montage are used. A visual

explanation of the AR and TCP montage is given in Fig. 2.1.

Finally, the used sampling frequency could vary from 250 Hz to 1000

Hz, including intermediate values such as 256 Hz or 400 Hz, but stan-

dardization is performed during preprocessing steps, and for all EEG



2.1 The datasets 25

(a) TCP montage
(b) AR montage

Figure 2.1: AR and TCP montage used for all TUH EEG corpus [68].

signals a 16-bit A/D converter is used.

2.1.1 TUH Abnormal EEG Corpus

The TUH Abnormal dataset (TUAB) [7] contains signals related to

normal subjects and several kinds of patients (abnormal samples).

Data are collected from a total of 2329 unique subjects. However,

54 of them appear both in normal and abnormal classes, leading to

a total of 2383 subjects in the dataset. Moreover, some patients can

have multiple sessions, recorded after some months or years, and the

total number of recordings is 2993. Differently from the subjects, each

session belongs to just only one class. The distribution of subjects and

sessions among classes is shown in Table 2.1.

Abnormal Abnormal

(%)

Normal Normal

(%)

Both Both (%) Total

No.

subjects

944 40.53 1331 57.15 54 2.32 2329

No.

sessions

1472 49.18 1521 50.82 0 0 2993

Table 2.1: TUAB subjects and sessions distribution among classes. White
columns contain the number of subjects or sessions in the two
classes. Grey columns express the rate of the items in the classes
on the whole dataset.

Gender and age distributions are shown in Fig. 2.2 and Fig. 2.3.

Sessions are used for this őgure since for some patients these can be
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separated in time by many years, and two recordings of the same

subject could belong to two different age groups. Subjects are dis-

Figure 2.2: TUAB dataset age distribution.

tributed among all ages from 0 to 100 years, with a higher number

of them in the central ages (20-80). Patients are mainly distributed

in the range between 40 and 70 years, while normal subjects are in

the range of 20-60 years. Regarding gender, the patients’ class shows

a similar number of female and male subjects, while for the normal

class females are higher than males.

Figure 2.3: TUAB dataset gender distribution.



2.1 The datasets 27

2.1.2 TUH Artifact EEG Corpus

The TUH Artifact dataset (TUAR) [8] contains both normal and arti-

factual EEG signals. There are 5 different types of artifacts: chewing

artifacts (chew), eye movements (eyem), muscle events (musc), shiv-

ering artifacts (shiv), and artifact caused by medical equipment like

electrode pop (elpp) or electrode artifact (elec). Moreover, they can

occur simultaneously: e.g., eyem-musc, musc-elec, eyem-elec, eyem-

chew, chew-musc, chew-elec, eyem-shiv, shiv-elec. Despite the differ-

ences among the artifact types, we decided to reduce the classiőcation

problem into a binary one: thus we formed an "artifactual" class in-

cluding all kinds of artifactual samples and a "clean" class with just

only clean signals.

The dataset contains EEG signals from 201 unique subjects, 191 of

whom appear in both classes. The remaining 10 subjects belong to

the artifact class, while there are no subjects only in the clean class.

As in the previous dataset, some patients have multiple sessions. In

this case, the same session could belong to both classes since part of

the signal could be clean and another corrupted by artifacts. The dis-

tribution of subjects and sessions among the artifact and clean classes

is shown in Table 2.2.

Artifact Artifact

(%)

Clean Clean (%) Both Both (%) Total

No.

subjects

10 4.97 0 0 191 95.03 201

No.

sessions

16 4.73 1 0.39 241 94.88 254

Table 2.2: TUAR subjects and sessions distribution among classes. White
columns contain the number of subjects or sessions in the two
classes. Grey columns express the rate of the items in the classes
on the whole dataset.

Gender and age distribution are shown in Fig. 2.4 and Fig. 2.5

and as for the previous case, they are related to the sessions. Subjects
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Figure 2.4: TUAR dataset age distribution.

are distributed among all age groups from 10 to 100 years old, in

particular in the central classes from 30 to 70 years, and being quite

all subjects in both groups, the two distributions are similar. Also

Figure 2.5: TUAB dataset gender distribution.

for gender distribution, artifacts and clean classes show a very similar

number of individuals and the number of females is slightly higher

than the males.

2.1.3 TUH Seizure EEG Corpus

The TUH Seizure dataset (TUSZ) [9] contains different kinds of events

such as absence seizure (absz), clonic seizure (cpsz), focal non-speciőc

events (fnsz), generalized non-speciőc events (gnsz), simple partial
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seizure (spsz), tonic-clonic seizure (tcsz), and tonic seizure (tnsz).

However, for this study only focal non-speciőc and global non-speciőc

seizures are considered as classes for our binary classiőcation.

The EEG recordings come from 153 subjects, 72 of which contribute

to the focal class, 38 to the global, and 43 produce samples for both

classes, (as reported in 2.3). In some sessions, events from both classes

could be recorded. The distribution of subjects and sessions among

the focal and global is shown in Table 2.3.

Focal Focal (%) Global Global(%) Both Both (%) Total

No.

subjects

72 47.06 38 24.84 43 28.10 153

No.

sessions

161 55.52 86 29.65 43 14.83 290

Table 2.3: TUSZ subjects and sessions distribution among classes. White
columns contain the number of subjects or sessions in the two
classes. Grey columns express the rate of the items in the classes
on the whole dataset.

Unlike the previous two datasets, here there is an unbalance in the

number of patients, and sessions with the focal class including almost

twice the number of samples of the global class.

Gender and age distribution are shown if Fig. 2.6 and Fig. 2.7.

Patients are distributed among all the ages from 0 to 100, predomi-

Figure 2.6: TUSZ dataset age distribution.

nantly grouped around the central ages (40-70). Regarding ages, both
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males and females focal subjects are higher than global ones.

Figure 2.7: TUSZ dataset gender distribution.

2.2 Preprocessing pipeline

Preprocessing steps and data preparation are performed using the Py-

EEGLab library, relying on a modiőed version of the pipeline deőned

in [69]. Despite the three datasets share the same basic steps, the

TUAB pipeline is slightly different from that in TUAR and TUSZ. In

the former, each session could belong to just one class, while in the

latter each recording can contain multiple chunks of the two classes,

and the signal has to be divided into the two parts.

Moreover, some different pipelines that differ just only for the normal-

ization step were tested and described in the next sections. However,

only one of them has been used as input to the DL models (see next

chapters).

2.2.1 Pre-processing pipeline for the TUAB dataset

Data őles are őrstly indexed to a cache őle and the useful informa-

tion on the signal characteristics is saved in a SQL database. Such
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information comprises elements like the list of all channels, the sam-

pling frequency, the label, the minimum and maximum values for each

channel, the subject ID, and the speciőc session number which are re-

quired to perform the preprocessing steps.

Then, for each signal, a 60s chunk is cropped between 60s and 120s,

in line with [69]. Next, to have as homogeneous data as possible,

common channel selection and resampling are performed. In the őrst

step, only channels in common to all subjects are kept and reordered.

Also, all signals are resampled to the lowest possible frequency. For

this dataset, the common channel set is made of 21 channels: 2 ref-

erence electrodes (A1 and A2), 3 central channels (C3, C4, and CZ),

7 frontal channels (F3, F4, F7, F8, FP1, FP2, and FZ), 2 occipital

electrodes (O1 and O2), 3 parietal nodes (P3, P4, and PZ), and 4

temporal sites (T3, T4, T5, and T6), while the lowest found sam-

pling frequency is 250 Hz. After that, a bandpass őlter with cut-off

frequencies of 0.1 Hz and 58 Hz is applied to exclude baseline shift,

higher nonrelevant frequencies, and the power line noise. Finally, data

are transformed into a Pandas dataframe to make them more easily

handled, and z-score within-subject is performed. An example of the

60s signals with the corresponding labels is shown in Fig. 2.8.

(a) Abnormal signal (b) Normal signal

Figure 2.8: Patient and normal subject 60s signals extracted from the
TUAB dataset [7].

The last step of the pipeline is segmentation. Each 60s signal is di-
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vided into 30 non-overlapping 2s frames using a sliding window ap-

proach. The segment distribution among different subjects and classes

is shown in Table 2.4.

subject ID Abnormal Abnormal (%) Normal Normal (%) Total

00000016 60 100 0 0 60

00000019 30 100 0 0 30

00000021 0 0 30 100 30

00000039 0 0 30 100 30

00000068 90 100 0 0 90
...

...
...

...
...

...

00000906 60 100 0 0 60

00000929 30 33.33 60 66.67 90

00000930 30 100 0 0 30
...

...
...

...
...

...

00010832 0 0 30 100 30

00010839 0 0 30 100 30

Total 44160 49.18 45630 50.82 89790

Table 2.4: TUAB segment distribution among classes. White columns con-
tain the number of extracted segments for each subject in the
two classes. Grey columns express the rate of the segments in a
class among all the segments for a subject.

Most of the subjects have frames in just one of the two classes,

even if there are some of them with segments in both. There is no big

difference between the total number of segments among different sub-

jects, and for each of them there are, in general, 30 60, or 90 segments.

Also the total number of segments in the two classes is similar. In

total there are 44160 abnormal segments which correspond to 49.18%

of the total and 45630 normal ones corresponding to 50.82%.

2.2.2 Pre-processing pipeline for the TUAR and TUSZ datasets

These two datasets differ from the previous one because on the same

signal there are chucks belonging to both classes, and a predeőned

portion of the signal can’t be extracted as before. Thus, to the pre-

viously stated information, the chunk intervals corresponding to the

two classes are stored in the SQL.

Then, the signals are loaded, and again, common channel selection
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and subsampling are performed. The resampling frequency is 250 Hz

for both datasets. The common channel set of TUAR is made up of

23 electrodes: 2 reference electrodes (A1 and A2), 3 central channels

(C3, C4, and CZ), 7 frontal channels (F3, F4, F7, F8, FP1, FP2, and

FZ), 2 occipital electrodes (O1 and O2), 3 parietal nodes (P3, P4, and

PZ), and 6 temporal sites (T1, T2, T3, T4, T5, and T6), while for

TUSZ there are 19 channels: 2 reference electrodes (A1 and A2), 3

central channels (C3, C4, and CZ), 6 frontal channels (F3, F4, F7, F8,

FP1, and FP2), 2 occipital electrodes (O1 and O2), 2 parietal nodes

(P3, and P4), and 4 temporal sites (T3, T4, T5, and T6). Next, ől-

tering is carried out. A wider passband őlter with cutoff frequencies

of 0.1 Hz and 80 Hz is employed because, by visually inspecting the

signals, some interesting components after the 60 Hz are found. A

notch őlter is then applied at 60 Hz to cut off the power line noise.

After that, the signal is cropped and, if more than one interval of the

same class is present, the extracted chunks are merged. Finally, data

are transformed into a Pandas dataframe, and z-score within-subject

is applied. The pipeline ends with segmentation, and each cropped

signal is divided into 2s non-overlapping frames. Since signals length

are different, from each of them a different number of segments is ob-

tained.

Table 2.5 and Table 2.6 show the segment distribution for classes

and subjects for TUAR and TUSZ datasets, respectively.

TUAR dataset has a high variability in the number of segments among

subjects: for some of them, the number of artifact segments is very

small compared to the clean ones, and for some others is the inverse.

Moreover, the total number of extracted segments for each subject

span a range between a few hundred and more than one thousand.

Also the total number of segments in the two classes is not perfectly

balanced. Artifact samples are 40.4% while clean ones are 59.6%.
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subject ID Artifact Artifact (%) Clean Clean (%) Total

00000254 507 37.81 834 62.19 1341

00000297 4 0.55 720 99.45 724

00000458 45 7.27 574 92.73 619

00000630 274 100 0 0 274

00000647 26 4.33 574 95. 67 600
...

...
...

...
...

...

00005458 103 17,14 498 82.86 601

00005462 1241 99.36 8 0.64 1249

00005649 180 13,12 1192 86.80 1372
...

...
...

...
...

...

00010591 41 5.44 712 94.56 753

00010748 421 56.89 319 43.11 740

Total 66928 40.4 98750 59.6 165678

Table 2.5: TUAR segment distribution among classes. White columns con-
tain the number of extracted segments for each subject in the
two classes. Grey columns express the rate of the segments in a
class among all the segments for a subject. Red text highlights
subjects for which there is a signiőcant unbalance in the number
of samples between classes.

subject ID Focal Focal (%) Global Global (%) Total

00000016 227 100 0 0 227

00000258 174 32.04 369 67.96 543

00000458 31 40.79 45 59.21 76

00000492 0 0 158 100 158

00001278 14 100 0 0 14
...

...
...

...
...

...

00009232 0 0 51 100 51

00000930 0 0 247 100 247

00009540 0 0 560 100 560
...

...
...

...
...

...

00013095 23 100 0 0 23

00013145 134 100 0 0 134

Total 34000 54.26 28666 45.74 62666

Table 2.6: TUSZ segment distribution among classes. White columns con-
tain the number of extracted segments for each subject in the
two classes. Grey columns express the rate of the segments in a
class among all the segments for a subject. Red text highlights
subjects for which there is a signiőcant unbalance in the number
of samples between classes.

Also for the TUSZ dataset, variability in the number of segments

appears both among different subjects and in the őnal number of

frames per class. Focal segments are 54.26% of the total while global
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ones the 45.74%.

2.2.3 On normalization step

Normalization is a common step in EEG preprocessing pipeline [70].

It allows standardizing data among subjects by removing variable,

subject dependent, recording effects. Several different normalization

techniques could be used like min-max [71], which rescales all the

data on the range, the z-score [72] which removes the mean and set

the standard deviation to one, or the common average [73] which

removes from all the channels the average mean of the signal. In this

case, the normalization aim is to reduce the variability introduced by

the subjects and to prevent the őnal classiőcation to be driven by

subjects and not by classes.

We try three different normalization techniques, and we report all

of them in detail. In the őrst attempt, min-max centralized normal-

ization is applied. Minimum and maximum values are extracted from

each channel of every signal, and then normalization is applied by

subject, class, and channels. This means that, for every subject, 21

pairs of minimum and maximum values are extracted (one couple for

each channel) as the minimum and the maximum among all the ses-

sions, separately for the two classes, of that subject. Then all these

sessions are rescaled with the same pairs of values in the range [-1, 1]

according to the formula:

datanormijk
=

dataijk−
maxijk+minijk

2
maxijk−minijk

2

(2.1)

where i is the class, j the subject and k the channel. However, this

normalization could lead to some issues. Normalizing the two classes

separately could reduce the original differences between them. In

fact, in TUAB and TUAR datasets mainly, abnormal and artifact

class samples could be characterized by events with higher amplitude
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(as a spike) that are not found in normal and clean classes. But,

when normalizing the two classes separately the amplitude of a spike

is rescaled to the same level as the events of the normal trace, which

are lower.

The second approach is made up of two steps. First, the common

average reference (CAR) is applied [73]: an average of all channels is

computed and then subtracted from each channel. Then the z-score

normalization considering just only 20% of the subjects. This means

that the mean and the standard deviation are computed from a pool of

subjects and these values are used to normalize all the other subjects

in the dataset according to the following formula:

datanormi
=

datai−meanpooli

stdpooli
(2.2)

where pooli is the subset of subjects randomly considered for each of

the two classes. Also in this case there is an issue related to the CAR

step. An abnormal event in one channel (e.g. in frontal or posterior,

in case of artifactual signal) could affect the őnal mean value, which

is then used to normalize all the channels (e.g. a central channel).

In this way, the event is just only moved between channels but not

normalized.

In the last normalization, within-subject z-score is performed. In this

approach, the mean and standard deviation are computed for each

subject considering all his/her sessions, with no distinction among

classes. Then every session of the subject is normalized with mean and

standard deviation. In this way, only the variability of the subject is

balanced without affecting the variability between classes. Therefore,

in the following, we decided to apply this normalization approach.

Table 2.7 summarizes the pipeline steps more compactly.
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TUAB TUAR-TUSZ
1) 60s segment extraction
2) common channel selection 1) common channel selection
3) resampling 2) resampling
4) őltering (bandpass) 3) őltering (notch + bandpass)
5) within-subject z-score 4) within-subject z-score
6) 2s segmentation 5) single class segment division

6) 2s segmentation

Table 2.7: Pre-processing pipeline steps for the considered datasets.

2.3 Feature extraction

Once data are processed 11 well-established feature types, both in

time and frequency domain, are extracted from each channel of each

segment [23]. In the time domain mean, variance, zero-crossings, area

under the curve, skewness, kurtosis, and peak-to-peak distance are

considered. In the frequency domain, the spectral power using Welch

in the four clinically relevant frequency bands, which are delta band

(0.5-4) Hz, theta band (4-8) Hz, alpha band (8-12) Hz, and beta band

(12-30) Hz are computed.

The őnal output is a 4D NumPy matrix An×m×f×c where n is the

number of subjects, m the number of segments per subject, f the

feature types, and c the channels. Because of the high number of

values in the matrix, a visual and statistical inspection of the extracted

features is performed to have a preliminary idea of their goodness, and

for each feature and each channel separately, the results of the two

classes are compared. A visual representation of feature distribution

and variability is carried out using the boxplot representation (as it

will be reported in Section 4.1), while the two-sided t-test is used to

determine whether the two classes’ means are signiőcantly different.
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2.4 Feature selection

Feature selection is a common step in machine learning. Reducing

the number of input variables could be a good solution to reduce the

computational cost of the further models as well as to improve their

performances, by removing non-informative features [74].

First of all, correlation among all pairs of features is computed.

Then a wrapper feature selection method, namely Sequential Feature

Selector (SFS) [75] with a Support Vector Machine (SVM) [76] es-

timator is applied to select the subset of features that leads to the

higher classiőcation accuracy. The SVM algorithm is chosen to have

a traditional machine learning model with whom to compare the re-

sults carried by the new proposed DL architectures.

From the implementation point of view, starting from a 4D matrix is

now reshaped into a 2D one to provide a suitable input to compute

the correlation and to apply the SVM algorithm. The features set

is given by the feature types and the channels, thus each segment of

each subject is characterized by a vector:

xs(t) = [f11(t), f12(t), ..., fFC(t)] (2.3)

where fij is the combination of the i-th feature with the j-th channel,

with i = {1, 2, ..., F} the feature types, and j = {1, 2, ..., C} the chan-

nels for TUAB, TUAR, and TUSZ dataset respectively, t = 1, 2, ..., T

the segment and s = 1, 2, ..., S the subject. The őnal matrix is then

obtained by stacking the features vectors of each trial and subject:

M =













f1111, f1211, . . . fFC 11

f1112, f1212, . . . fFC 12

...
... . . .

...

f11NM , f12NM , . . . fFCNM













(2.4)

where F and C are the features types and channel as in Eq. 2.3,
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N the number of subject and M the trials.

In Table 2.8 the sizes of the 2D matrices for the three datasets are

given.

Feature types Channels Subject Segments Final matrix size
TUAB 11 19 2993 30 89790× 209
TUAR 11 21 254 variable 165749× 231
TUSZ 11 17 290 variable 62672× 187

Table 2.8: 2D input for the correlation and the SVM-SFS algorithm.

2.5 EEG models based on machine learning and

deep learning

Four different models are used to perform classiőcation. Two are

based on a CNN structure, with and without attention mechanisms,

and the others on an LSTM architecture, with and without attention.

All the models share a similar architecture that differs in the őrst

layer, where the input information is processed. In CNN and CNN

with attention models, a 1D convolution is performed on the input,

while in LSTM and LSTM with attention architecture the LSTM

layer is used to process the time related information in the input

data. The shared structure is made up of an LSTM layer, a dropout,

and a dense layer. The classiőcation is performed using the softmax

function, which produces a probability distribution for the two output

values.

2.5.1 CNN (without attention)

In this őrst model, data are loaded in batches of size n × f where n

is the number of frames and f the features. Then a lambda layer is

used to slice the n frames and each of them is processed with a 1D

convolutional layer and then ŕattened. The n outputs of the ŕatten

layers are all combined and then reshaped. Then the output of this
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part is passed as input to the structure described before, common to

all architectures.

Figure 2.9: CNN architecture.

2.5.2 CNN+Att (with attention)

This model shares the same structure of the previous one with the

addition of the attention mechanism, which is placed just after the

1D convolutional layers. The attention layer is based on the Convo-

lutional Block Attention Module (CBAM) [77], designed ad hoc for

CNN. It is made up of two attention sub modules: channel and spa-

tial. The former deőnes the relevant part of the input which is useful,

the latter where it is placed. The coefficients matrix is computed us-

ing shared Multi Layer Perceptron (MLP) for channel attention, while

convolution is used for spatial attention. Then the two sub modules

are applied sequentially. The outputs of all the n attention layers

are ŕattened, combined all together, and then passed as input to the

structure made up of the LSTM, dropout, dense, and classiőcation

layer.
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Figure 2.10: CNN+Attention architecture.

2.5.3 LSTM (without attention)

Data are loaded as for the previous models, in a batch of size n× f .

A dropout is applied just after the input layer. Then, there are two

LSTM layers with dropout. The output of the last layer is fed in input

to the dense layer, which performs classiőcation.

Figure 2.11: LSTM architecture.

2.5.4 LSTM+Att (with attention)

As before, this model shares the same structure of the base LSTM

architecture, and the attention layer taken from [78] is placed after

the second LSTM layer, just before the dense layer. The LSTM layer

builts, for each one of the n input frames, its own representation,

then the attention layer assigns a weight to each one of them, giving

higher importance to the time step (e.g. the frame) with the most
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informative content.

Figure 2.12: LSTM+Attention architecture.

2.6 Training pipeline

The three datasets are split into two parts: training set (90% of the

data) and test set (10%). Then, gridsearch is used to optimize the hy-

perparameters. The considered parameters for the 4 architectures are

shown in Table 2.9 for CNN and CNN with attention, and in Table

2.10 for LSTM and LSTM with attention. Each network is trained

for 50 epochs, with a batch size of 32, and Adam [79] is used as opti-

mizer.

To increase the reliability of the model, and to obtain a more ro-

bust error estimation, a stratiőed 10-fold cross validation is applied.

Moreover, to avoid overőtting early stopping is implemented during

training. Validation loss is taken as a reference, interrupting learning

after 10 epochs without any improvement in the loss.

Parameters Values
Learning rate [0.001, 0.0001]
LSTM hidden units [32, 64, 128]
Filters [8, 16]
Kernel size [3, 5]
Dropout [0.0, 0.2, 0.4]
Reduction ratio [8, 16]
Spatial kernel [5, 7]

Table 2.9: CNN and CNN with attention hyperparameters. Reduction ratio
and spatial kernel are optimized just only for the last.
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Parameters Values
Leaning rate [0.001, 0.0001]
LSTM hidden units [64, 128]
Dropout input layer [0.0, 0.2]
Dropout LSTM layer 1 [0.0, 0.2, 0.5]
Dropout LSTM layer 2 [0.0, 0.2]
L2 regularization [0.01, 0.001]

Table 2.10: LSTM and LSTM with attention hyperparameters.

2.7 Evaluation metrics

Performances are evaluated using the following classiőcation metrics:

- Accuracy: it measures the fraction of the corrected classiőed

samples over all the data. It is not very reliable in case of unbal-

anced data:

Accuracy = TP+TN
TP+FP+TN+FN

- Precision: it measures the rate of positive samples that are

correctly classiőed and all the samples which are classiőed as

positive. It is the rate of false detection of positive samples:

Precision = TP
TP+FP

- Recall: it measures the ability of the model to correctly identify

the true positive samples. It expresses the rate of correct detec-

tion of positive samples:

Recall = TP
TP+FN

- F1-score: it is the harmonic mean of the precision and recall. It

allows taking into account both type I (false positive) and type

II (false negative) errors:

F1score = 2× precision×recall
precision+recall

= TP

TP+
FP+FN

2





Chapter 3

Results and Discussion

In this chapter, we present the obtained results. First, we display the

statistical analysis carried out on the datasets, then the results of the

feature selection procedure. Finally, we summarize the performances

obtained with the considered models, and we compare them with those

obtained with the SVM algorithm.

3.1 Datasets statistics

Among all possible extracted features, we report in this section the

statistical analysis outcomes only for two of them, namely peak-to-

peak for the time domain, and delta band spectral power for the

frequency domain. We select these two because they show the clearest

and most effective results. However, satisfactory results are obtained

also for the other features. In the following, we present őrst the results

obtained for the peak-to-peak feature on the three datasets, and then

the outcomes for the delta band spectral power feature.

For each dataset, we show the boxplot őgures, together with a table

holding the number of outliers for each channel and class, and then

the p-value. An outlier is a data point that differs signiőcantly from

the others. In this thesis, we consider outlier every sample outside the

range ±k × IQR where k = 1.5 and IQR = Q3 − Q1 the difference

between the upper and the lower quantile. The two-sided t-test is

45
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performed considering, for each channel separately, the samples of

the two classes, and it is used to determine if the means of the two

classes are different or not. This is expressed by the p-value and the

considered signiőcance level α is set to 0.05.

Fig. 3.1 and Fig. 3.2, together with Table 3.1 show results obtained

for the TUAB dataset on the peak-to-peak feature.

Figure 3.1: TUAB peak-to-peak feature with outliers.

Figure 3.2: TUAB peak-to-peak feature without outliers.

As we can see from the graph and the table, in both classes there

are outliers, in a variable percentage from 1% up to 6%, and with
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more or less the same rate among the two classes. Looking at the

distributions of the two classes, they differ except for the O1 and O2

channels, which are characterized by a very similar sample distribu-

tion.

Labels Normal Normal (%) Abnormal Abnormal (%) p-value
C3 1606 3.52 1636 3.70 < 0.001
C4 1494 3.27 1318 2.98 < 0.001
CZ 2112 4.63 2645 5.99 < 0.001
F3 1097 2.40 1197 2.71 < 0.001
F4 1170 2.56 1079 2.44 < 0.001
F7 1641 3.60 1446 3.27 < 0.001
F8 1546 3.39 1273 2.88 < 0.001

FP1 2828 6.20 2207 5.00 < 0.001
FP2 2702 5.92 2073 4.69 < 0.001
FZ 890 1.95 1089 2.47 < 0.001
O1 1000 2.19 1025 2.32 n.s.
O2 947 2.08 937 2.12 n.s.
P3 938 2.06 1091 2.47 < 0.001
P4 913 2.00 964 2.18 < 0.001
PZ 988 2.17 1197 2.71 < 0.001
T3 1551 3.40 1385 3.14 < 0.001
T4 1184 2.59 1186 2.69 < 0.001
T5 1199 2.63 1161 2.63 < 0.001
T6 959 2.10 951 2.15 < 0.001

Table 3.1: TUAB outliers and p-values with α = 0.05. The withe columns
display the channels’ names, the number of outliers for each
class, and the p-value for the t-test. Grey columns show the rate
of the outliers on all the samples of a class.

Results for the same feature for the TUAR dataset are shown in

Fig. 3.3 and Fig. 3.4, together with Table 3.2. As before, the two

class distributions are different, with a wider interquartile range for

all channels in the artifact class. In particular, peak-to-peak distances

reach higher values for the artifact class.

Outliers span in a range between 4% and 10%, with higher per-

centage values in artifact class as expected because an artifact could

by characterized by a very higher amplitude if compared to a normal

sample, and therefore a high peak-to-peak value which can exceed

the range of the expected variation. However, an outlier in this class

could be not an abnormal value, but just a sample related to an arti-

fact itself, thus characterized by a very high or low amplitude value.

Again p-values show that the mean distributions are different.

Finally, the TUSZ dataset results are shown in Fig. 3.5 and Fig.
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Figure 3.3: TUAR peak-to-peak feature with outliers.

Figure 3.4: TUAR peak-to-peak feature without outliers.
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Labels Clean Clean (%) Artifact Artifact (%) p-value
C3 3183 3.22 5093 7.61 < 0.001
C4 3267 3.31 4922 7.35 < 0.001
CZ 6934 7.02 4726 7.06 < 0.001
F3 2268 2.30 3216 4.81 < 0.001
F4 1579 1.60 4398 6.57 < 0.001
F7 2382 2.41 4692 7.01 < 0.001
F8 1718 1.80 3782 5.65 < 0.001

FP1 2947 2.98 3981 5.95 < 0.001
FP2 2512 2.54 3655 5.46 < 0.001
FZ 2957 2.99 3620 5.41 < 0.001
O1 3379 3.42 3421 5.11 < 0.001
O2 3535 3.58 3266 4.88 < 0.001
P3 3202 3.24 3892 5.82 < 0.001
P4 3584 3.63 3833 5.73 < 0.001
PZ 4702 4.76 4463 6.67 < 0.001
T1 2686 2.72 4426 6.61 < 0.001
T2 2001 2.03 3811 5.69 < 0.001
T3 3045 3.08 5369 8.02 < 0.001
T4 2090 2.12 4883 7.30 < 0.001
T5 3707 3.75 3788 5.66 < 0.001
T6 2749 2.78 3219 4.81 < 0.001

Table 3.2: TUAR outliers and p-values with α = 0.05. The withe columns
display the channels’ names, the number of outliers for each
class, and the p-value for the t-test. Grey columns show the rate
of the outliers on all the samples of a class.

3.6, and Table 3.3.

Figure 3.5: TUSZ peak-to-peak feature with outliers.

Outliers are in the range between 1% and 10% with higher value

in global class than focal. Boxplot distributions differ as in the two

previous cases, meaning that a statistical difference could be found

between the two classes. In particular, global samples span a wider

range than focal ones. About p-values, they show a value smaller
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Figure 3.6: TUSZ peak-to-peak feature without outliers.

than 0.001 for all channels and the same considerations done in the

previous case can be drawn.

Labels Focal Focal (%) Global Global (%) p-values
C3 1519 4.47 2832 9.88 < 0.001
C4 1878 5.52 1487 5.19 < 0.001
CZ 2208 6.49 2762 9.64 < 0.001
F3 2036 5.99 1808 6.31 < 0.001
F4 1192 3.51 2433 8.49 < 0.001
F7 518 1.52 2005 6.99 < 0.001
F8 979 2.88 2430 8.48 < 0.001

FP1 958 2.82 1108 3.87 < 0.001
FP2 1005 2.96 966 3.37 < 0.001
O1 1126 3.31 597 2.08 < 0.001
O2 1493 4.39 553 1.93 < 0.001
P3 1502 4.42 1165 4.06 < 0.001
P4 2312 6.80 926 3.23 < 0.001
T3 581 1.71 1511 5.27 < 0.001
T4 1159 3.41 1856 5.53 < 0.001
T5 989 2.91 730 2.55 < 0.001
T6 1830 5.38 617 2.15 < 0.001

Table 3.3: TUSZ outliers and p-values with α = 0.05. The withe columns
display the channels’ names, the number of outliers for each
class, and the p-value for the t-test. Grey columns show the rate
of the outliers on all the samples of a class.

Then we show the results obtained for the delta band power spec-

trum feature. Fig. 3.7 and Fig. 3.8 show results obtained for the

TUAB dataset.

Differently from the previous cases, and in general from all time

domain features, here boxplots show very few outliers. In particular,

no outliers are found in the abnormal class, and few of them (less

than 1%) on some normal channels (O2, T5, and T6). The sample
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Figure 3.7: TUAB delta feature with outliers.

Figure 3.8: TUAB delta feature without outliers.
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distributions for the two classes differ in all channels.

Results for the same feature for the TUAR dataset are shown in

Fig. 3.9 and Fig. 3.10.

Figure 3.9: TUAR delta feature feature with outliers.

Figure 3.10: TUAR delta feature without outliers.

Also in this case distribution among channels shows some differences,

and no outliers are found in either of the two classes.

The last result we report is the TUSZ dataset. Boxplot with and

without outliers are reported in Fig. 3.11 and Fig. 3.12 respectively,

while outliers number are in Table 3.4.
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Figure 3.11: TUSZ delta feature with outliers.

Figure 3.12: TUSZ delta feature without outliers.
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As for the TUAB dataset, the outliers number is small, lower than

1%, and they are only in the focal class. No outliers are found in the

global class. Then, as before, distributions differ among classes.

Labels Focal Focal (%)
C3 0 0
C4 61 0.18
CZ 105 0.31
F3 65 0.19
F4 206 0.61
F7 304 0.89
F8 200 0.59

FP1 131 0.39
FP2 152 0.45
O1 0 0
O2 0 0
P3 0 0
P4 22 0.06
T3 30 0.09
T4 42 0.12
T5 0 0
T6 0 0

Table 3.4: TUSZ focal class outliers. The withe columns display the chan-
nels’ names and the number of outliers for the focal class. Grey
columns show the rate of the outliers on all the focal class sam-
ples. The global class has no outliers in all channels.

Single subject distributions

Then, we want to ensure that the mean distributions previously ob-

tained don’t depend on a single subject, or a small group of them.

To do this, we select some channels from the previously displayed

features, and we plot for each subject a boxplot with only its sam-

ples. We keep separated individuals belonging to the two classes and

individuals with no outliers and those with at least 5% of outliers.

Fig. 3.13 shows the comparison between the mean distribution and

the samples’ distributions of some randomly selected subjects in the

abnormal class for the channels C3, C4, and CZ of the delta band

power spectrum feature. Figure 3.13a refers to results for subjects

with no outliers while őgure 3.13b shows outcomes for subjects with

at least 5% od outliers. As we can see, there are no big differences
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between the mean boxplot (in green) and the single subject ones (in

yellow), thus each individual contributes in a similar way to the őnal

output, whether there are outliers or not.

(a) Comparison between mean distribution
(in green) and single subject distributions
(in yellow) for random subjects with no
outliers.

(b) Comparison between mean distribution
(in green) and single subject distribu-
tions (in yellow) for random subjects
with 5% of outliers.

Figure 3.13: Mean distribution and single subject distributions comparison
for the abnormal class.

Results for the normal class are shown in Fig. 3.14, and the con-

siderations done for the previous class are still valid.

Fig.3.15 and Fig.3.16 show the results obtained for focal and global

subjects when considering the peak-to-peak feature and the F7 and

F8 channels. Differently from the TUAB dataset, the subject distri-

butions are not always similar to the mean one, and in some cases,

they could differ a lot. The same considerations could be done for the

global class as we can see in Fig. 3.16.
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(a) Comparison between mean distribution
(in green) and single subject distributions
(in yellow) for random subjects with no
outliers.

.
(b) Comparison between mean distribution

(in green) and single subject distribu-
tions (in yellow) for random subjects
with 5% of outliers.

Figure 3.14: Mean distribution and single subject distributions comparison
for the normal class.

(a) Comparison between mean distribution
(in green) and single subject distributions
(in yellow) for random subjects with no
outliers.

(b) Comparison between mean distribution
(in green) and single subject distribu-
tions (in yellow) for random subjects
with 5% of outliers.

Figure 3.15: Mean distribution and single subject distributions comparison
for the focal class.
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(a) Comparison between mean distribution
(in green) and single subject distributions
(in yellow) for random subjects with no
outliers.

(b) Comparison between mean distribution
(in green) and single subject distribu-
tions (in yellow) for random subjects
with 5% of outliers.

Figure 3.16: Mean distribution and single subject distributions comparison
for the global class.

In general, TUSZ and TUAR datasets show higher variability in

the single subject distribution if compared to the mean one, and this

is more evident in the time domain features than in the frequency

domain ones.

For this analysis, we decide to report these two features because

they are the most representative among all the others. Peak-to-peak

outcomes are very similar to those obtained with other time domain

features, both for the outliers rate among classes and for how the

distributions of the two classes vary between each other. Delta band

power spectrum feature is selected because it is the only feature with

such a low outliers values, still maintaining a difference in distributions

between classes
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3.2 Feature selection

3.2.1 Feature correlation

Correlation is computed among all pairs of extracted features. Start-

ing from these last, we create vectors that contain the samples of a

speciőc pair feature type-channel of all the subjects. Then we cor-

relate all these vectors to understand if there are some features that

carry redundant information.

Correlation results are reported through a 2D grid heatmap of pixels

(as for example Figure 3.17). The two dimensions represent the fea-

ture set, while the color is the correlation value. Thus, each pixel of

the matrix shows the correlation between a speciőc couple of features.

Because the correlation heatmap is symmetric, we display just only

its lower triangular part. In the following, őrst, we display the whole

correlation matrix, then the zoom on some of its portions to highlight

the peculiar aspects.

Figure 3.17 shows the correlation results obtained for TUAB dataset.

The correlation matrix is organized as follows:

- pixels on the main diagonals represent the correlation values com-

puted between the same feature.

- triangular submatrices keep the correlation between features char-

acterized by the same feature types and different channels

- elements on the main diagonal of the inner square submatrices

refer to correlations computed by features with different types

but the same channel

- all other pixels shows the values computed among features with

both different types and channels
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Figure 3.17: TUAB dataset correlation heatmap.

Then, Figure 3.22 shows some zoomed portion of the whole cor-

relation matrix. The őrst thing we can notice on 3.18a is that the

pixels on the main diagonal are blue, corresponding to a correlation

value of 1. This is true because values on that line refer to the cor-

relation computed between the same feature. Then, all the other

correlation values, are in general higher than 0.4. The same happens

in every triangular matrix of the diagonal, thus features that share

the same feature type are characterized by higher values. A similar

trend could be observed on the main diagonal of the inner square

submatrices, which correspond to correlation values between features

with the same channel. Regarding all the other values in the matrix,

there are some features that are more correlated, such as AUC with

variance (Figure 3.18b), peak to peak with variance, and AUC with

peak to peak. On the other side, there are many features that have

very low correlation values as the mean with all other features (Fig-

ure 3.18c), but also skewness and peak-to-peak (except with variance
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(a) Variance - Variance
correlation

(b) AUC - Variance corre-
lation

(c) Mean - Beta [12-30] Hz
correlation

Figure 3.18: TUAB matrix correlation heatmap.

and AUC). Finally, the correlations among frequency domain features

show higher values than those between time-frequency pairs.
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Figure 3.19 shows results for the TUAR dataset. As in the previ-

Figure 3.19: TUAR dataset correlation heatmap.

ous case, the correlations on the main diagonal of the matrix have all

values to 1. Triangular submatrices show an even higher correlation

if compared with the same elements in the TUAB dataset. As we can

see from Figure 3.20a, correlation values are higher than 0.6 in quite

all the matrices, and this is true for most of the other matrices on

the main diagonal. Correlation between AUC and peak-to-peak (Fig-

ure 3.20b), AUC and variance, peak-to-peak and variance show again

high values in quite all the pixels, while correlations with mean and

with skewness show the lowest value. Regarding correlations between

frequency domain features type, they show higher values than those

obtained for frequency domain - time domain pairs (Figure 3.20c),

but in general lower than 0.5.

Lately, in Figure 3.21 we found results for the TUSZ dataset.

Similarly to previous results, triangular submatrices show higher

correlation values (Figure 3.22c). Squared submatrices between time
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(a) Beta [12-30] Hz - Beta
[12-30] Hz correlation

(b) AUC - Peak to peak
correlation

(c) Skewness - Theta [4 - 8]
Hz correlation

Figure 3.20: TUAR matrix correlation heatmap.

Figure 3.21: TUSZ dataset correlation heatmap.
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(a) Delta [0.5-4] Hz - Delta
[0.5-4] Hz correlation

(b) Beta [12-30] Hz - Skew-
ness correlation

(c) Alpha [8-12] Hz - Delta
correlation

Figure 3.22: TUAR matrix correlation heatmap.

domain features, or time domain - frequency domain ones have low

correlation values (Figure 3.22b), apart from AUC with variance,

peak-to-peak with variance, and AUC with peak-to-peak. Again cor-

relations among features in the frequency domain are higher than

those in the time domain (Figure 3.22c), excluding the correlation of

beta with theta.

3.2.2 SVM-SFS algorithm

The SFS algorithm selects the subset of features that lead to the best

accuracy results starting from an empty set and adding one feature at

a time. This algorithm uses the SVM as estimator to perform binary

classiőcation on the three datasets. The őrst classiőcation problem

refers to abnormalities detection, the second to artifact detection, and

the least to seizure type classiőcation.

For the TUAB dataset, we obtain the best results across 24 SVM-SFS

iterations, i.e. with 24 selected features (red circle), which corresponds

to an accuracy of 73.49% as we can see in Figure 3.23. Then, after

adding 5 more features the őnal accuracy ends to increase signiő-

cantly thus we stop the algorithm procedure. However, an accuracy

of 73.14% is reached already with 15 features (green circle).

The selected features after 15 SFS iterations are: Delta [0.5-4] Hz
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Figure 3.23: TUAB dataset SVM-SFS outcomes. The best classiőcation
accuracy is obtained after 24 algorithm iterations.

- O2, Theta [4-8] Hz - O2, Beta [12-30] Hz - P4, Variance - FP1,

Variance - F3, Variance - T3, Theta [4-8] Hz - PZ, Variance - C4,

Beta [12-30] Hz - O2, Theta [4-8] Hz - FZ, Peak to Peak - FP1, Peak

to Peak - F3, Alpha [8-12] Hz - T5, Theta [4-8] Hz - F3, while the

conőguration which leads to the best performance contains also the

following features: Variance - O2, Theta [4-8] Hz - F8, Theta [4-8] Hz

- FP1, Alpha [8-12] Hz - C3, Alpha [8-12] Hz - T6, Theta [4-8] Hz -

F7, Skewness - F3, Beta [12-30] Hz - FZ, AUC - C4, Peak to Peak -

F7.

The results are in line with the literature. In fact, the classiőcation

of normal and abnormal EEG could be based on frequencies [80]. The

main characteristics of normal EEG in adults include the presence of

alpha rhythm, theta activity on frontal and frontocentral region, and

a little delta activity [7], [12]. Among the 24 selected features, 14

of them include a frequency band, in particular some alpha rhythms,

typical of normal subjects, theta activity, and delta rhythms, that can

be found in patients. Moreover, peak-to-peak features, which measure
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the amplitudes of the signal, are found in the frontal region and can

help to discriminate between a normal and abnormal signal, which

may include spiky events. Finally, skewness measures the asymmetry

in the data, thus the distance from a normal distribution that char-

acterizes the normal traces.

In the TUAR dataset the best őnal accuracy, that is 75.01%, is

reached with 18 selected features (Figure 3.24, red circle.). However,

an accuracy of 74.55% is already reached with 12 selected features

(green circle). Then, if we increase the features number (up to 5) the

őnal accuracy doesn’t increase. Thus, the addition of more informa-

tion is useless for the classiőcation outcomes.

Figure 3.24: TUAR dataset SVM-SFS.

The őrst 12 selected features are: Peak to Peak - FP2, ZeroCrossing -

F8, Delta [0.5-4] Hz - PZ, Skewness - FP1, Delta [0.5-4] Hz - T1, Delta

[0.5-4] Hz - FP1, Kurtosis - P4, Beta [12-30] Hz - CZ, Delta [0.5-4]

Hz - O1, Peak to Peak - FP1, Beta [12-30] Hz - F4, Peak to Peak

- FZ, while the conőguration which leads to the best performance

contains also the following features: Kurtosis - C4, Beta [12-30] Hz -

T6, ZeroCrossing - T3, Variance - F8, Beta [12-30] Hz - T3, Skewness
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- F7.

Muscle movements are one of the most common artifacts together

with eye movements. The former are characterized by high frequency

bursts while the latter show spikes. In addition, both can be found in

the frontal region and, only for muscle movement, in the posterior one.

Chewing and shivering are similar to muscular artifacts, and they are

considered a subclass of them. Instead, electrode pop is characterized

by a sudden spike that could generate at any electrode location [81].

In the selected features, we can őnd 11 of them coming from frontal

and frontocentral regions, or posterior ones where muscular and eye

movement artifacts are mostly recorded. Then peak-to-peak and zero

crossing can capture features characterized by rapid spikes or bursts.

Lastly, Figure 3.25 shows results for the TUSZ dataset.

Figure 3.25: TUSZ dataset SVM-SFS.

We found the best accuracy of 67.77% after 20 iterations. However

in this case the results are less stable as we can see from the wider

standard deviation (the grey area) for each iteration. The selected

features are: Peak to Peak - C4, Delta [0.5-4] Hz - C4, Peak to Peak -

F4, Peak to Peak - O1, Mean - F4, Delta [0.5-4] Hz - F7, Alpha [8-12]
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Hz - P3 Delta [0.5-4] Hz - F3, AUC - F4, Variance - F8, Mean - P4,

Delta [0.5-4] Hz - O1, Mean - T3, Kurtosis - P4, Peak to Peak - T5,

Skewness - F3, Variance - FP1, Beta [12-30] Hz - P3, AUC - FP2,

Mean - F8.

Finally, we run the SVM taking as input all the available features

in the datasets to have a traditional ML algorithm as a baseline with

which compare the results we will obtain with the DL models. We

report the classiőcation metrics, with mean and standard deviation,

in Table 3.5.

Model Accuracy (%) Recall (%) Precision (%) F1-score (%) No. features
Mean Std Mean Std Mean Std Mean Std

TUAB 72.33 1.55 73.69 9.64 73.19 4.58 72.78 3.57 209
TUAR 72.80 4.69 84.37 6.36 73.87 3.64 78.65 4.00 231
TUSZ 66.25 2.44 71.57 1.95 61.15 1.19 65.98 2.66 187

Table 3.5: SVM classiőcation results (mean and standard deviation re-
ported for each metric).

3.3 Models performances

In the last part of this thesis work, we show the results obtained

for the DL models, and we compare them with the SVM ones. For

each model, we report the distribution of the values among all the

cross-validation runs for the four considered metrics, namely accuracy,

precision, recall, and F1-score. Then the őnal performances of the

model are given by averaging all the values among the folds.

3.3.1 CNN (without attention)

The average results among all the cross validation run for the three

datasets are reported in Table 3.6.

Then, the distributions of the accuracy values among all runs are

displayed in Figure 3.26

The TUAR and the TUSZ datasets reach good results, with a clas-

siőcation accuracy of 84.36% and 84.96% respectively. On the TUAB
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Model Accuracy (%) Recall (%) Precision (%) F1-score (%)
Mean Std Mean Std Mean Std Mean Std

TUAB 71.41 1.54 82.94 2.53 77.40 2.59 72.45 1.67
TUAR 84.36 1.96 92.19 0.74 87.44 1.29 87.18 1.57
TUSZ 84.96 2.44 89.72 1.95 93.25 1.19 82.98 2.66

Table 3.6: CNN classiőcation results (mean and standard deviation re-
ported for each metric).

(a) TUAB accuracy distri-
bution

(b) TUAR accuracy distri-
bution

(c) TUSZ accuracy distri-
bution

Figure 3.26: Accuracy distributions for the cross validation run.

dataset, accuracy stop at 71.41%.

Similar results are obtained in [82]. They compare many different

models, such as SVM, kSVM, and 2 different CNN variants (i.e. shal-

low CNN, and deep CNN) using the TUH corpus dataset. They

reached a őnal accuracy between 65% and 73%. In another work

[83] they try to classify 4 different kinds of artifacts using the TUAR

dataset. They found an accuracy of 67.59%, obtained by combining

classiőcation results coming from three DL models (i.e. CNN, LSTM,

and deep CNN). In [84], accuracy values in the range between 62.57%

and 71.43% are obtained on the TUAR dataset using different ML

algorithms.

3.3.2 CNN+Att (with attention)

In the same way, classiőcation results and the accuracy distributions

are reported for the CNN with the addition of speciőc attention mod-

ules (as detailed in Sec. 2.5.2) in Table 3.7 and Figure 3.27.
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Model Accuracy (%) Recall (%) Precision (%) F1-score (%)
Mean Std Mean Std Mean Std Mean Std

TUAB 74.24 2.11 87.02 1.40 83.78 1.59 75.53 2.49
TUAR 87.83 2.11 95.00 0.52 91.84 0.76 89.85 1.81
TUSZ 86.92 2.67 87.18 2.40 89.10 1.52 88.65 3.19

Table 3.7: CNN+Att classiőcation results (mean and standard deviation
reported for each metric).

(a) TUAB accuracy distri-
bution

(b) TUAR accuracy distri-
bution

(c) TUSZ accuracy distri-
bution

Figure 3.27: Accuracy distributions for the cross validation run.

For this second DL model, the őnal accuracy increases on all datasets,

leading to an average value of 74.24% for the TUAB dataset, 87.83%

for the TUAR one, and 86.92% in the TUSZ. Also F1-score values, re-

call, and precision metrics show an increased value (except for TUSZ

precision).

3.3.3 LSTM (without attention)

The LSTM model performances are reported below. Table 3.8 shows

the average results among all the cross validation runs for the three

datasets, while the accuracy distributions are shown in Figure 3.28.

Model Accuracy (%) Recall (%) Precision (%) F1-score (%)
Mean Std Mean Std Mean Std Mean Std

TUAB 72.94 3.97 80.14 0.74 68.31 1.30 74.45 4.07
TUAR 87.52 2.34 92.15 0.63 87.35 1.10 90.24 1.62
TUSZ 88.11 2.10 85.17 2.16 91.88 1.51 86.90 2.33

Table 3.8: LSTM classiőcation results (mean and standard deviation re-
ported for each metric).

As in the previous case, the TUAB dataset is the less performing

one, with a őnal accuracy of 72.94%. Moreover, if we look at the stan-
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(a) TUAB accuracy distri-
bution

(b) TUAR accuracy distri-
bution

(c) TUSZ accuracy distri-
bution

Figure 3.28: Accuracy distributions for the cross validation run.

dard deviation it comes almost to 4% highlighting a high variability

during the various runs. This behavior is expressed also by looking at

the F1-score. Learning on the TUAR and the TUSZ datasets instead

is more stable and lead to an average accuracy of 87.52% and 88.11%

respectively.

TUSZ dataset is analyzed in [85]. They used a bi-directional long

short-term memory (BiLSTM) reaching a őnal accuracy of 84.43%.

In [86], they achieved accuracy values in the range between 79% and

92%. This last with a novel seizure detection framework, namely

channel-embedding spectral-temporal squeeze-and-excitation network

(CE-stSENet).

3.3.4 LSTM+Att (without attention)

For this last model, classiőcation results and the accuracy distribu-

tions are reported in Table 3.9 and Figure 3.29. Then we compared

the results obtained with the simple LSTM (without attention).

Model Accuracy (%) Recall (%) Precision (%) F1-score (%)
Mean Std Mean Std Mean Std Mean Std

TUAB 74.03 3.33 78.84 1.17 68.36 1.67 74.45 2.28
TUAR 89.36 0.19 92.68 0.58 87.89 0.77 91.50 1.39
TUSZ 88.22 3.03 86.56 1.90 90.63 1.01 87.15 3.00

Table 3.9: LSTM+Att classiőcation results (mean and standard deviation
reported for each metric).

Also in this case there is a slight improvement when using the

LSTM with attention network for the TUAB and TUSZ datasets.
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(a) TUAB accuracy distri-
bution

(b) TUAR accuracy distri-
bution

(c) TUSZ accuracy distri-
bution

Figure 3.29: Accuracy distributions for the cross validation run.

The accuracies increase up to 74.03% and 89.36% respectively. The

TUSZ dataset is the least affected by the attention mechanism im-

provement and the őnal accuracy slightly overtakes that obtained in

the simple LSTM (without attention). This might be explained con-

sidering that focal and global seizures differ just only for location and

duration, while for the other two cases (clean vs artifact, and normal

vs abnormal) also the signal amplitude differs a lot. Thus, the atten-

tion layer doesn’t provide the highest weight to the time steps with

the most informative content.





Conclusions and future perspectives

This thesis aimed to compare two DL models, namely CNN and LSTM

with their counterparts with attention enhancement. We tested them

on three different public EEG datasets which are related to three

different challenges in EEG research, i.e. abnormalities detection,

artifact detection, and seizure type classiőcation.

In the TUH Abnormal dataset (TUAB), we reach an accuracy up

to 74% for the two models with attention, increasing what we have

obtained with the counterparts without attention (71.41% and 72.94%

for CNN and LSTM).

In the TUH Artifact dataset, the two models with attention outper-

formed their counterparts without attention, too. Particularly, CNN

with attention achieved a őnal accuracy of 87.83% (84,36% without

attention), while the LSTM with attention reached an accuracy of

89.36% (87.52% without attention). These results outperform the

models proposed in [83],[84], which provided an accuracy up to 71%.

In the TUH Seizure dataset (TUSZ), the introduction of attention

leads to an enhancement only in the CNN-based network, where őnal

performance increases from 84.96% to 86.92%, while for the LSTM-

based one, both accuracy values stop at 88% (88.11% for the simple

LSTM and 88.22% for the attention-enhanced one). However, the

results are in line with the literature. The same dataset is analyzed

in [86], where they achieved accuracy values in the range between

79% and 92%. This last value was obtained with a novel seizure

detection framework, namely channel-embedding spectral-temporal

73
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squeeze-and-excitation network (CE-stSENet) that őrst integrates multi-

level spectral and multi-scale temporal analysis, then captures hierar-

chical multi-domain representations with a mechanism based on the

squeeze-and-excitation block.

In the future perspective, a third kind of model, namely a Graph

Neural Network (GNN) will be introduced, with and without atten-

tion [87]. This includes the idea, based on biological evidence, that

multiple brain regions are involved during a task. In this way, the in-

teraction between brain areas (i.e. electrodes pair) can be used to ex-

tract meaningful features. The strength of this interaction, computed

as e.g., the Pearson’s correlation between the EEG of two nodes, can

be mapped into a graph: each node is an electrode, and each edge is

the connection between pairs of electrodes, which is added only if the

correlation is strong enough. The attention-enhanced model architec-

ture assigns a relevance coefficient to each feature for a node, allowing

it to capture both the relevant network topology and the temporal de-

pendence of the EEG signal, discarding useless information.
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