
Università degli Studi di Padova
Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria delle Telecomunicazioni

Tesi di Laurea

Ricostruzione 3D tramite fusione
di dati stereo e ToF

Relatore: Ch.mo Prof. G.M. Cortelazzo
Correlatore: Ing. P. Zanuttigh

Laureando: Carlo Dal Mutto

29 giugno 2009

UNIVERSITÀ DEGLI STUDI DI PADOVA

Facoltà di Ingegneria
Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Specialistica

BATCH SIZE ESTIMATE

Relatore Laureando

Prof. Andrea Zanella Marco Bettiol

Matricola 586580-IF

Anno Accademico 2009-2010

Defended on 28th June, 2010
Palazzo del Bo, Padova

Author email: bettiol.marco at gmail dot com

i

Ai miei genitori e allo zio Toni. . .

iii

“ [...] sempre nella mia camicia [...]

Ho ancora la forza di chiedere anche scusa

o di incazzarmi ancora con la coscienza offesa,

di dirvi che comunque la mia parte

ve la posso garantire . . . ”

Francesco Guccini

“ E quando pensi che sia finita,

è proprio allora che comincia la salita.

Che fantastica storia è la vita. ”

Antonello Venditti

v

Abstract

In this work we analyze the main batch resolution algorithms. We particularly focus on the

tree-based class to underline how their efficiency depends on the batch size. In fact, batch size is

a critical parameter when using smart resolution strategies that take advantage this information

to improve resolution efficiency. The dissertation will continue with the analysis of noteworthy

techniques available in literature for the batch size estimate: in fact, original papers pay attention

on the resolution process and leave the estimate problem in the background. Finally we propose

and analyze GEGA, an estimate algorithm particularly good in terms of estimate accuracy over

time taken by the estimate process.

vii

Sommario

In questo lavoro sono stati analizzati i principali algoritmi per la risoluzione di insiemi di conflitto.
In particolare ci si è concentrati sugli algoritmi ad albero evidenziando come la loro efficacia
dipenda dalla taglia del problema. La cardinalità dell’insieme di collisione è infatti un parametro
critico se si desidera utilizzare strategie ottimizzate per risolvere più efficientemente i nodi. A
tal fine sono state analizzate, in primo luogo, le tecniche note in letteratura per la stima della
cardinalità di insiemi di conflitto: infatti i paper originali non presentavano un’analisi adeguata
del loro comportamento poiché l’attenzione era rivolta al processo di risoluzione dei nodi e non
direttamente alla fase di stima. Nella parte finale del lavoro, al fine di ottenere una stima
sufficientemente accurata per finalità operative, viene proposto GEGA. L’algoritmo presentato
è particolarmente valido in termini di accuratezza della stima rispetto al tempo impiegato e
permette di ottenere sempre una stima finita del numero di nodi sufficientemente vicina alla
reale cardinalità dell’insieme esaminato.

Contents

1 Introduction 1

1.1 System Model . 3

1.2 Goals . 4

1.3 Content organization . 4

2 Batch Resolution 7

2.1 Binary Tree Algorithms . 9

2.1.1 Basic Binary Tree . 10

Example . 12

Nodes id interpretation . 13

Tree traversal rules . 14

2.1.2 Modified Binary Tree . 15

2.1.3 Clipped Modified Binary Tree . 16

2.1.4 m Groups Tree Resolution . 18

2.1.5 Estimating Binary Tree . 20

2.2 Others . 21

2.2.1 IERC . 21

2.2.2 Window Based Approaches . 22

3 Batch Size Estimate Techniques 23

3.1 Clipped Binary Tree . 23

3.2 Cidon . 24

3.3 Greenberg . 26

3.3.1 Base b variant . 29

3.4 Window Based . 31

4 Estimate Performance Analysis 35

4.1 Cidon BSE . 35

ix

x CONTENTS

4.1.1 Performance . 36

4.2 Greenberg BSE . 39

4.2.1 Considerations . 41

4.3 EGA BSE . 43

4.3.1 Performance . 46

4.4 GEGA BSE . 47

4.4.1 Performance . 49

4.5 Comparison . 52

Conclusions 55

A Appendix 57

A.1 Probability . 57

A.2 Binary Trees Performance Summary . 59

A.3 Greenberg bounded m-moments . 60

A.4 CBT Estimate Experimental Distribution . 60

A.5 Greenberg Estimate Distribution . 62

A.6 GEGA . 64

Bibliography 65

List of Figures

2.1 Expected cost for tree algorithms in slotted-ALOHA scenario 12

2.2 BT : Basic binary tree example . 13

2.3 MBT : Modified binary tree example . 16

2.4 CMBT vs MBT . 18

2.5 m Groups Split: ALOHA scenario . 19

2.6 m Groups Split: CSMA scenario . 20

3.1 CBT : Example . 24

3.2 Cidon: Initial split . 25

3.3 Basic Greenberg : batch split idea . 28

4.1 Cidon: Normalized variance . 37

4.2 Cidon: Minimum pε required for error coefficient k 38

4.3 Cidon: Expected time as function of the error coefficient 39

4.4 Basic Greenberg : Small 2k sizes distribution. 40

4.5 Basic Greenberg : Large 2k sizes distribution. 41

4.6 Basic Greenberg : General batch sizes distribution. 42

4.7 Basic Greenberg : Event probability fixed p . 43

4.8 EGA: Large 2k sizes distribution. 46

4.9 EGA: Estimate distribution when varying T . 46

4.10 GEGA: Estimate Bias . 49

4.11 GEGA: Biased/unbiased absolute normalized estimate error 50

4.12 GEGA: Minimum T to achieve error coefficient lower than k with θ = 0.99 51

4.13 GEGA: Minimum T to achieve error coefficient lower than k with θ = 0.99 ,

detailed view . 51

4.14 GEGA vs Cidon: Error coefficient k as function of elapsed time 52

xi

List of Tables

3.1 Basic Greenberg : Expected estimate and bias . 29

3.2 Base b Greenberg : Bias and expected cost summary 30

3.3 Window Based Estimate: Possible estimates when L = 10 32

4.1 GEGA: Possible estimates when T = 10 and l = 10. 48

4.2 GEGA: Average bias. 50

A.1 Basic Binary Tree: Performance report . 59

A.2 Modified Binary Tree: Performance report with p = 0.5 59

A.3 Modified Binary Tree: Performance report with p = 0.4175 60

A.4 Clipped Modified Binary Tree: Performance report. 60

A.5 Experimentally computed CBT Estimate Distributon 61

A.6 Basic Greenberg : Analytically computed estimate distribution 63

A.7 GEGA: Possible estimates when T = 20 and l = 10 64

xiii

Chapter 1

Introduction

Generally speaking a set of actors contending for a common resource defines a conflicting set.

As always, limited resources require access policies to provide efficient and, hopefully, fair use.

When the system is distributed, resource access can be assimilated to a coordination problem.

In the scenario considered in this thesis the contended resource is the physical transmission

medium that is shared among several stations.

At the beginning of wired computer networks, multiple access control (MAC) was a big issue for

efficient communication. The introduction of buffered switches in LANs reduced the conflicting

set to only few stations simplifying the original problem. Switched networks, in fact, split large

collision domains into smaller pieces thus realizing ring, star or mesh structures.

In a wireless context the problem can not be easily overcome, due to the broadcast nature of

the wireless medium.

Nowadays wireless connectivity in pervasive computing has ephemeral character and can be

used for creating ad-hoc networks, sensor networks, connections with RFID (Radio Frequency

Identification) tags etc. The communication tasks in such wireless networks often involve an

inquiry over a shared channel, which can be invoked for discovery of neighboring devices in

ad-hoc networks, counting the number of RFID tags that have a certain property, estimating

the mean value contained in a group of sensors, etc. Such an inquiry solicits replies from a

possibly large number of terminals.

In particular we analyze the scenario where a reader broadcasts a query to the in-range nodes.

Once the request is received, devices with data of interest are all concerned in transmitting

the information back to the inquirer as soon as possible and, due to the shared nature of the

communication medium, collision problems come in: only one successful transmission at time

can be accomplished, concurrent transmissions result in destructive interference with waste of

1

2 CHAPTER 1. INTRODUCTION

energy/time. This data traffic shows a bursty nature which is the worst case for all shared

medium scenarios.

In the literature this problem is referred to with different names: Batch/Conflict Resolution

Problem, Reader Collision Problem, Object Identification Problem.

Algorithms trying to solve this problem are called Batch Resolution Algorithms (BRA) or

Collision Resolution Algorithms (CRA).

Batch Resolution Problem is implicitly present in many practical applications over wireless

networks such as:

• Neighbor Discovery. After being deployed, nodes generally need to discover their neighbors,

which is an information required by almost all routing protocols, medium-access control

protocols and several other topology-control algorithms, such as construction of minimum

spanning trees. Ideally, nodes should discover their neighbors as quickly as possible since

rapid discovery of neighbors often translates into energy efficiency and allows for other

tasks to quickly start their execution on the system.

• Batch Polling. It consists in collecting a possibly very large number of messages from

different devices in response to time-driven or event-driven events. Time-driven batch

polling takes place when an inquirer periodically broadcasts a request to the nodes.

Event-driven batch polling takes place when nodes send packets because triggered by the

occurrence of events of interest. The problem is not properly a Batch Resolution Problem

when the aim is to obtain only one message out of n as rapidly as possible. This case was

studied in [4].

• Object identification. Physical objects are bridged to virtual ones by attaching to each

object a sensor or an RFID tag. This allows asset tracking (e.g. libraries, animals),

automated inventory and stock-keeping, toll collecting and similar tasks. Wireless

connection allows unobtrusive management and monitoring of resources.

In these applications:

• Communications show spatially and timely correlated contention for channel access;

• In general, nodes multiplicity is time-varying. When a node wakes up it has no knowledge

of the environment around it. In particular this holds when nodes sleep for most of time

and seldom wake up to transmit.

To adapt to any scenario, BRAs can be oblivious of the batch multiplicity n: in this case,

however, the expected batch resolution time (often referred to as batch resolution interval,

1.1. SYSTEM MODEL 3

BRI) is not optimal. In fact, the knowledge of the conflict multiplicity n is the most critical

factor to optimize the batch resolution and to allow the usage of advanced resolution schemes

characterized by higher resolution efficiency. For this reason the Batch Size Estimate is pivotal.

1.1 System Model

We consider the following standard model of a multiple access channel. A large number of

geographically distributed nodes communicate through a common radio channel. Any node

generates a single packet to be transmitted over the channel. The set of nodes with a packet to

transmit constitutes the batch whose size is unknown. When not otherwise stated, we consider

a pure-slotted system where time is partitioned in units of the same length, called slots.

In pure-slotted systems nodes are synchronized at slot boundaries. Nodes can start a

transmission only at the beginning of the slot, otherwise they will stay quiet until the next slot

to come. Each transmission lasts a single slot.

A different model refers to carrier-sense multiple-access (CSMA) networks, where each node

is able to determine the beginning of a new slot by sensing the energy on the channel: when

the channel is idle a device can start transmitting its message. In our scenario we assume that

all the transmitted messages have a fixed duration. Once a node has started transmitting it

can not sense the channel so that it can not be aware of the result of its transmission until

it receives feedback. For this reason we have that a transmission always takes the same time,

whether it results in a success or a collision. On the other hand, empty slots take less time than

transmissions. Usually the duration of transmissions and idle slots are identified respectively

by Tp and Ts. An important parameter in the CSMA channel is the Carrier Sense Factor

β =
Ts
Tp

< 1.

We assume that there is no external source of interference and that a transmission fails only

in case of collision. In short, saying k nodes transmit simultaneously in a slot, the following

events may occur:

• k = 0: there are no transmissions in the slot, which is said to be empty or idle;

• k = 1: a single node transmits in the slot, which is said to be successful ;

• k ≥ 2: more than one node transmits, so that a collision occurs and the slot is said to be

4 CHAPTER 1. INTRODUCTION

collided.

Furthermore, throughout this work we assume that no new message is generated by the

system while it is running an estimate or resolution algorithm. In other words, newly generated

packets are inhibited from being transmitted while an algorithm is in progress and they will

eventually be considered only in the subsequent estimate or resolution process. This way to

manage the channel access of the nodes in the system is known as obvious-access scheme.

1.2 Goals

In this work, we will study and characterize different estimate techniques considering the relation

between the estimate accuracy and the time required to provide it.

Most works concerning estimate techniques (e.g.: [7, 8]) define the estimate algorithm but do

not analyze the “quality” of the estimate nor the time taken by the process. In fact, after

proposing an estimate scheme, the authors focus on the definition of an optimized resolution

scheme, considering perfect knowledge of the batch size n and ignoring the fact that the estimate

of n is actually error prone, unless the batch is completely resolved.

In this work we will focus on the estimate phase preferring analytical error study when possible

and using computer based simulations otherwise.

Finally, we will propose improvements to a technique in order to achieve better estimate quality

and we will compare all the considered estimate algorithms to provide a comprehensive overview

of pros and cons of each solution.

1.3 Content organization

This thesis is organized as follows.

• In Chapter 2 we will introduce the Batch Resolution Problem that motivates the study

of Batch Size Estimate Problem. We will describe in details the fundamental schemes

proposed in the literature and provide an overview of the most recent and advanced

schemes. In particular we will concentrate on binary tree algorithms.

• Chapter 3 introduces the Batch Size Estimate Problem. We describe and analyze some

noteworthy batch size estimate algorithm, both for slotted and framed scenarios.

• Chapter 4 is the core of the work. We will analytically and numerically analyze the

algorithms described in Chapter 3 to provide a comprehensive evaluation of the tecniques.

1.3. CONTENT ORGANIZATION 5

Hence, we will propose and analyze a new algorithm, namely GEGA, with the goal to

provide a good estimate as quickly as possible. Finally, we will compare the described

algorithms.

• The last Chapter draws conclusions.

Chapter 2

Batch Resolution

One of the first MAC protocols for wireless systems is the Pure-ALOHA. It is very simple:

• Nodes transmit their packets as soon as they are available

• If the transmission collides with another transmission, resend the packet in a later time.

Slotted-ALOHA is an improvement over Pure-ALOHA in which time is slotted and transmissions

can start only at the beginning of slots boundaries. ALOHA schemes assume that nodes receive

feedback after each transmission, so that all nodes know whether or not a collision occurred.

ALOHA protocols were studied under the assumption that a large number of identical sources

transmit on the channel, so that the number of new packets generated during any slot can be

modeled as a Poisson random variable with mean λ (packet/slot).

Slotted ALOHA achieves maximum throughput of 1/e ≈ 0.368 packet/slot, but it suffers

stability problems.

The attempt to obtain stable throughput random-access protocols brought to the discovery of

Collision Resolution Algorithms.

A CRA can be defined as a random-access protocol such that, whenever a collision occurs,

then at some later time all senders will simultaneously learn from the feedback information

that all packets involved in that collision have now been successfully transmitted. The crux

of collision resolution is the exploitation of the feedback information to control the “random”

retransmission process in such a way that chaotic retransmission can never occur [9].

CRAs are interesting since their are able to solve conflicts of unknown multiplicities.

Furthermore they are not tailored to solve only conflicts among packets arrivals characterized by

Poisson’s distributions but they are robust since they work for any arrival process characterized

7

8 CHAPTER 2. BATCH RESOLUTION

by an average arrival rate λ.

CRAs can also be used to solve collisions among a batch of nodes, each having a single

message to deliver. In this case CRAs are commonly called Batch Resolution Algorithms (BRAs).

In particular, the scenario we consider is the following: the reader probes a set of nodes.

In-range devices try to reply as soon as possible transmitting over the wireless medium. If two

ore more devices reply at the same time we get a collision and the delivery of the messages

fails. Consequently we require each node to run a distributed algorithm which implements

anti-collision schemes in order to resolve all the nodes.

There are many algorithms that enable batch resolution, and these, according to [3], can be

classified into two categories: (a) probabilistic, and (b) deterministic 1.

In probabilistic algorithms, a framed ALOHA2 scheme is used where the reader communicates

the frame length, and the nodes pick a particular slot in the frame to transmit. The reader

repeats this process until all nodes have transmitted at least once successfully in a slot without

collisions.

Deterministic algorithms typically use a slotted ALOHA model and try to reduce the

contending batch in the next slot based on the transmission result in the previous one. These

algorithms fall into the class of tree-based algorithms with the nodes classified on a binary tree

based on their id and the reader moving down the tree at each step to identify all nodes.

Deterministic algorithms are typically faster than probabilistic schemes in terms of actual

node response slots used, however, they suffer from reader overhead since the reader has to

specify address ranges to isolate subsets of contending nodes using a probe at the beginning of

each slot.

Deterministic schemes assume that each node can understand and respond to complex

commands from the reader, such as responding only if the id is within an address range specified

by the reader. Consequently not every device is able to support this class of algorithms. For
1Both classes of algorithms use a probabilistic approach to solve the problem. As aforementioned, CRA

were initially thought to solve Poisson-like packets arrivals. Hence, each packet is characterized by an arrival
time. CRAs are able so solve collisions respecting the first-come first-served (FCFS) policy. In Batch Resolution
Problem packets can be associated to virtual arrival times. Once the arrival time (alias node ID) is fixed each run
of the same deterministic algorithm behaves in the same way and nodes always get resolved in the same order
and time amount. On the other hand, probabilistic algorithms are not able to maintain the relative order among
resolved nodes in different runs of the algorithms even if they globally solve the same initial collision.

2framed ALOHA is a modification of slotted ALOHA where consecutive slots are grouped. Each node is
allowed to choose only one slot per group. Its transmission is allowed to take place only in the choosed slot.

2.1. BINARY TREE ALGORITHMS 9

example passive tags, which are the most dummy devices, cannot understand this kind of requests

and they will continue to transmit in every resolution cycle. This lengthens the total time needed

for the resolution process to complete. Wireless sensors, semi-active and active tags should allow

to implement tree-based algorithms: the reader can acknowledge nodes that have succeeded at

the end of each slot (immediate feedback), and hence those nodes can stay silent in subsequent

slots, reducing the probability of collisions thereby shortening the overall identification time.

Usually a node that successfully transmits its message is said resolved and stays silent until the

end of the algorithm.

Furthermore, since tree algorithms require explicit feedback about channel status, they force

devices to be always active and listening to the channel in each step of the algorithm. Moreover,

reader feedback in each slot adds overhead to the resolution.

On the other hand windows based algorithms are more energy saving since a device can sleep for

most of time in the transmission window and only wake up in the slot it has decided to transmit

on. In a windows of w slots a node will be up only for 1/w of time and wait for feedback at the

end of the window.

Most of the batch resolution algorithms were originally developed for slotted scenarios but

can be flawlessly ported to the CSMA scheme.

2.1 Binary Tree Algorithms

In ‘70s, concern over the instability of most ALOHA-like protocols led some researchers to look

for random-access schemes that were provably stable. The breakthrough in these efforts was

reached in 1977 by J. Capetanakis [12], then a MIT doctoral student working with Prof. R.

Gallager3, and independently achieved shortly thereafter by two Soviet researchers, B. Tsybakov

and V. Mihhailov [11]. Basic Binary Tree is the result of their studies.

In the following sections we will describe and analyze the Basic Binary Tree Algorithm and

some of its variants applied to the Batch Resolution Problem.

We notice that tree-based algorithms require for the nodes in the batch to be unique: without

a distinctive property it is impossible to force two nodes to behave in a different way. In this

Chapter we refer to this node uniqueness property as id, address, token: in our terminology

they are equivalent.

We also assume to operate in a slotted -ALOHA scenario, unless otherwise specified.
3FCFS splitting algorithm for Poisson’s arrivals is one of his famous contributions.

10 CHAPTER 2. BATCH RESOLUTION

2.1.1 Basic Binary Tree

Let’s consider a batch B of size n.

Initially all the nodes try to transmit and we can have, according to what expressed in Section

1.1, three different events: idle, success, collision.

The supervisor broadcasts the result of the transmission to all the nodes.

If we get idle or success events, the resolution process stops meaning respectively that there

were no nodes to resolve or there was only one node that was successfully resolved. That node

delivered its message and will no longer take part in the current batch resolution.

In case of collision we know that at least 2 nodes are present and we have to solve the collision

to obtain their messages. In this case all the n nodes run the same algorithm.

Each node chooses to transmit with probability p and not to transmit with probability 1 − p.
Nodes that transmit are said to belong to set R while the others to set S. Of course R∩S = ∅
and B = R∪ S. The two sets are then resolved recursively starting from R.
Nodes in S wait until each terminal in R transmits successfully its packet, then they transmit.

Algorithm 1 binary tree (B)
// current slot status can be idle, success, collision

Input: B batch with |B| = n
each node transmits its message
if (idle or success) then

return
else

each node flips a fair coin
R ← { nodes that flipped head}
S ← { nodes that flipped tail}
Binary tree (R)
Binary tree (S)

end if

Pseudo-code in Alg. 1 provides a very high level description of the splitting technique. The

role of the supervisor is implicit in the code.

Intuitively setting p = 1/2 can be a good choice since the algorithm is in some sense

“symmetric”: best performance are achieved when R and S are balanced.

Let LBTn be the expected running time in slots required to resolve a conflict among n nodes

using the Basic Binary Tree Algorithm (BT). Let Qi(n) =
(
n
i

)
pi(1 − p)n−i be the probability

that i among n nodes decide to transmit in a slot (probability that |R| = i). If i nodes transmit

2.1. BINARY TREE ALGORITHMS 11

we have first to solve a conflict of size |R| = i with expected time LBTi and later a conflict of

size |S| = n− i with expected time LBTn−i. L
BT
n is given by the cost of the current slot plus the

expected time to solve all the possible decompositions of the current set.

LBTn can be recursively computed (considering the factorial in Qi(n)) collecting LBTn in the

following equation:

LBTn = 1 +
n∑
i=0

Qi(n)(LBTi + LBTn−i), (2.1)

with

LBT0 = LBT1 = 1.

To obtain an upper bound on the expected time as n→∞ further analysis techniques have to

be used.

Here we want simply focus on how the algorithm behaves when n grows.

The behaviour of LBTn is presented in Figure 2.1 and was obtained evaluating equation

(2.1) for n = 0, 1, . . . , 19. LBTn grows almost linearly after the initial step from 1 to 2 which

dramatically impacts on the performance (LBT2 = 5).

Figure 2.1 also reports the results for MBT Alg. that will be introduced in following Section

2.1.2. We chose to anticipate the results for MBT to avoid inserting too many figures and, at

the same time, provide a useful performance comparison between BT and MBT.

12 CHAPTER 2. BATCH RESOLUTION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

10

15

20

25

30

35

40

45

50

Batch Size

E
xp

ec
te

d
T

im
e

in
sl

ot
s

LBT
n

LMBT
n p = 0.5

LMBT
n p = 0.4175

Figure 2.1: The plot illustrates the expected cost in slots to solve batches of size n = 0, 1, . . . , 19 in
a slotted Aloha-like scenario using all the basic variants of the tree based algorithms: BT, MBT with
sub-optimal p = 0.5, MBT with optimal p = 0.4175. All the algorithms show the same behavior: almost
linear grow for large n. Best performance are provided by MBT with optimal p.

Considering the efficiency ηn = n/LBTn (number of resolved nodes over slots) we have a

decreasing series η1 = 1, η2 = 0.40, η3 = 0.3913, . . . , η16 = 0.3542 , . . . , η31 = 0.3505. It can be

shown [10] that η∞ ≈ 0.347.

Since the algorithm is much more efficient in solving small rather than large batches we

would prefer to have (ideally) n batches of size 1 rather than 1 batch of size n.

Hence, knowing exactly the cardinality n of the initial batch B, we can split the nodes into small

groups, of approximately one node each, and resolve them faster.

This is the idea behind many improvements over the basic BT and it reveals the importance of

having an accurate estimate of n to efficiently solve a batch.

Example

In Figure 2.2 we provide an example to further investigate the behavior of the algorithm. We

notice that the instance starts with a collision in slot 1. Then nodes n1, n2, n3 decide to

proceed with a retransmission while n4, n5 remain idle. In slot 2 we see another collision, after

it n1 transmits again while n2 and n3 to stay quiet. In slot 3 we have the first resolution, n1

2.1. BINARY TREE ALGORITHMS 13

'

&

$

%

1

C

ε

2

C

3
n1

0

4

C

5
n2

0

6
n3

1

1

0

7

C

8

C

9

I

0

10

C

11
n4

0

12
n5

1

1

0

13

I

1

1

Figure 2.2: An istance of BT algorithm for n = 5 nodes. The number inside each circle identifies the
slot number. The label below identifies the event occurring: I for idle, C for collision, ni for resolution
of node i. 0/1 branches is analogous to head/tail.

.

successfully sends its message and leaves the collision resolution algorithm.

We notice that we can know the cardinality of a collision only after it has been fully resolved.

For example we know only after slot 6 that the collision in slot 2 involved 3 nodes.

Nodes id interpretation

BRAs require each node to have a unique id to solve the batch. Usually the nodes ids are random

generated at each algorithm run and can be used to identify a node inside the algorithm. There

are multiple ways to generate that the id, such as:

• flipping a coin on demand after each collision (step-by-step id generation),

• generating a ‘long enough’ random binary string at the beginning of the algorithm.

We do not want to enter in the details of these choices since there is no reason to prefer one

method to the others but device technical limitations.

We just want to introduce an interesting interpretation of the id that will be used later in

algorithms such as EBT (Section 2.1.5) and Cidon (Section 3.2).

14 CHAPTER 2. BATCH RESOLUTION

In general any infinite length binary string bi = (bi1bi2bi3 . . .), with bij ∈ {0, 1}, can be

associated to a real number ri ∈ [0, 1) by a bijective map r defined as follows:

ri = r(bi) =
∞∑
j=1

bij
2j

(2.2)

Each node ni can be associated to a point ri within the real interval [0,1) as well as to the string

bi.

For a finite length bit-string a = (a1a2 . . . aL) with length L = l(a) we adapt the definition of r

as follows:

r(a) =
L∑
j=1

aj
2j

(2.3)

In this case we have to carry L as auxiliary information to allow the map to remain bijective.

Following standard conventions, the empty string ε is prefix of any other string, it has length 0

and r(ε) = 0.

Tree traversal rules

The duality in the interpretation of nodes’ ids (bit-strings or real numbers) reflects on the duality

of the tree traversal rules.

According to the adopted approach, enabled nodes can be specified by:

• a finite length string a which matches the path from the root to the first node in the

sub-tree they belong to. In this case a is a prefix of the enabled nodes ids.

• the couple
(
r(a), l(a)

)
which enables the sub-interval r(a) ≤ x < r(a) +

1
2l(a)

To complete the overview of the algorithm we now intuitively describe the tree visit. The

following description uses the bit-string approach since a binary string can be immediately

mapped to a path in the tree starting from the root. We assume, following the standard approach,

to visit the tree in pre-order, giving precedence to left sub-trees, conventionally associated to 0

branches.

The visit starts from the root which has address ε.

Let a be the current enabled string, then the following rules apply:

• If a = ε and last the event is success or idle then the whole conflict has been resolved;

• If the last event is collision then we visit the left child of the current node (a0);

• If the last event is success or idle and aL = 0 then we visit the right sibling (aL−11) of the

current enabled node;

2.1. BINARY TREE ALGORITHMS 15

• If the last event is success or idle and aL = 1 then we look in the path back to the root for

the first node whose sibling has not yet been visited. Since we visit the tree in pre-order

the next enabled string will be in the form ak1 with k < L.

A detailed pseudo-code of an algorithm that implements the rules above (and more) can be

found in [2]. The Modified Binary Tree algorithm presented in next section gets a remarkable

performance improvement over BT by adding just one new rule.

2.1.2 Modified Binary Tree

The Modified Binary Tree (MBT) is a simple way to improve the BT algorithm.

To keep the notation simple, we will explain the idea illustrating what happens the first time

it is applied. In this case node τ is visited in slot τ . This does not holds in general, but

explanation would have required to use two different indexes for slots and nodes, and Figure

2.3 would have been less immediate to understand.

The observation is that, during the tree traversal, sometimes we know in advance if the next

slot will be collided. This happens when, after a collided slot τ , we get an idle slot (τ + 1) in the

left branch of the binary tree. In this case, visiting the right branch (τ + 2), we will certainly

get a collision .

In fact, after sensing slot τ is collided, we know that there are at least 2 nodes in the last visited

sub-tree. None of them belongs to the left-branch of that sub-tree since slot (τ + 1) is idle.

Consequently they must be in the right branch of the sub-tree, whose enabling will hence result

into a collision. This collision can be avoided by skipping node (τ + 2) and visiting its left-child

node in slot (τ + 2).

Expected time analysis is analogous to Section 2.1.1. The only difference is that after a

collision, if we get an idle slot, we will skip the “next one” (saving a slot that would certainly

be wasted otherwise). Consequently the expected slot cost is
[
1 ·
(
1−Q0(n)

)
+ 0 ·Q0(n)

]
. Let

LMBT
n be the expected cost in slots to solve a batch of size n using the MBT algorithm, then

LMBT
n =

(
1−Q0(n)

)
+

n∑
i=0

Qi(n)(LMBT
i + LMBT

n−i), (2.4)

with

LMBT
0 = LMBT

1 = 1.

Intuitively in this case, since a higher probability to stay silent reduces the expected slot cost,

16 CHAPTER 2. BATCH RESOLUTION

'

&

$

%

1

C

ε

2

C

3
n1

0

4

C

5
n2

0

6
n3

1

1

0

7

C

8

C

9

I

0

10

C

SKIP

11
n4

0

12
n5

1

1

0

13

I

1

1

Figure 2.3: Same example as in Figure 2.2 but using MBT: tree structure do not change but node 10
is skipped in the traversal.

optimal transmit probability will be no longer equal to one half. At the same time, reducing

the transmit probability will increase the number of (wasted) idle slots. Thus the new optimal

probability p will be somewhere in the interval (0,0.5).

It can be shown [9] that the best result is achieved for p = 0.4175, for which the efficiency is

asymptotically equal to η ≈ 0.381. This is +10% higher than basic BT.

In general we have

LMBT
n ≤ C · n+ 1, where C = 2.623. (2.5)

Using probability p =
1
2
results, for large n, in about 1.6% peak performance loss (C = 2.667),

which is a moderate decrease. It is important to notice that p = 0.4175 is very close to the

optimal bias for small n as well.

2.1.3 Clipped Modified Binary Tree

In this section we will show that, in some cases, partial resolution algorithms can achieve higher

efficiency than complete resolution algorithms.

The Clipped Modified Binary Tree (CMBT) is an adaptation of the CBT (see Section 3.1)

algorithm for complete batch resolution. CBT is like the MBT algorithm but it ends up after

two consecutive successful transmissions. Each CBT execution resolves at least two nodes but

2.1. BINARY TREE ALGORITHMS 17

eventually the last run. Hence, since the multiplicity of the batch to resolve decreases of at least

two units after each run, the algorithm terminates for sure.

Collisions tree visit is defined by the following rules:

• If the last run of the CBT does not resolves completely the left sub-tree of the current

root, then the next CBT starts from the same root;

• If the last run of the CBT resolves completely the left sub-tree of the current root, next

CBT run is applied to the right child of the current root, that will be considered the new

root;

• While current root left child is idle, set the root to the current root right child.

Applying the CBT starting each time from the current root makes the algorithm memoryless:

its behavior is not affected by previous algorithm runs but the trivial root update. In fact,

the root update allows to skip certain collisions and empty slots associated to already resolved

sub-sets.

Efficiency in solving very small batches is CMBT most interesting property. This is a

consequence of being memoryless. Figures 2.4 shows how in the average case, the CMBT

performs a few better than the MBT for batch sizes smaller than 5. Expected maximum

performance improvement is about 5% when batch size is 3. Nonetheless, for bigger batch sizes,

MBT performs better than CMBT and the gap between the two algorithms gets bigger and

bigger as the batch size increases.

Consequently, using CMBT is a good idea when the cardinality of the batch to solve is

less than or equal to 5 with very high probability. For this reason CMBT is used by the EBT

algorithm (following Section 2.1.5) to speed up the resolution.

18 CHAPTER 2. BATCH RESOLUTION

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Batch Size

E
xp

ec
te

d
T

im
e

in
sl

ot
s

LCM BT
n

LMBT
n p opt

(a) CMBT vs MBT : very small batch sizes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

10

15

20

25

30

35

40

45

50

Batch Size
E

xp
ec

te
d

T
im

e
in

sl
ot

s

LCM BT
n

LMBT
n p opt

(b) CMBT vs MBT : larger batch sizes

Figure 2.4: Expected resolution time in slots for the CMBT and MBT algorithms for small batch sizes.

2.1.4 m Groups Tree Resolution

More advanced algorithms for batch resolution, such as those presented in [7] and [8], share a

common idea: divide the initial batch into m groups. We will not deal here about the details of

the algorithms and the different approaches they use to choose m. Instead we will concentrate

on the common part of these algorithms: divide a batch of size n into m groups and apply a

BRA to each group.

Given m groups, the probability to have exactly i among n nodes in a group is given by

Pm(i|n) =
(
n

i

)(
1
m

)i(
1− 1

m

)n−i
. (2.6)

Let Lk be the expected cost to solve a batch of size k with a chosen BRA. Then the expected

cost to solve a batch of size n dividing it into m groups is given by

L′n(ρ) = m
n∑
i=0

LiPm(i|n), (2.7)

where ρ =
n

m
is the mean number of nodes in a group.

Figure 2.5 plots L′n(ρ), the average time to solve a batch of size n using group splitting, over Ln,

the average time without splitting. Results were obtained computing equation (2.7) for three

different batch sizes varying ρ. We plotted the results for the MBT algorithm with optimal

probability p in a slotted ALOHA scenario but considerations hold for any tree-based BRA.

2.1. BINARY TREE ALGORITHMS 19

0.511.522.533.54
0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

1.05

ρ

L
′ n
(ρ

)/
L

n

n = 10
n = 100
n = 1000

Figure 2.5: m Groups Split: ALOHA scenario. Expected performance of group splitting over trivial
batch resolution using optimum MBT for different ρ. Lower means better.

Splitting the batch into groups achieves lower average resolution time than applying the

BRA to the original batch for a wide range of ρ (when L′n(ρ)/Ln < 1).

We note that ρ ≈ 1.26 provides the best achievable performance. Furthermore we notice that

the knowledge of the batch size is critical: m can be set to the optimal value only knowing

exactly the batch size n but often we only have an estimate of n. If the estimate is smaller than

n, performances smoothly degrade but still remain better than the trivial application of the

BRA. On the other hand, overestimating n can lead to performance loss when ρ ≈ 0.5 or smaller.

In a CSMA scenario the performances depend also on β and on the ratio between the nodes

packet size (Sn) and the supervisor feedback size (Sf). Figure 2.6 was obtained considering
Sn
Sf
≈ 4. We notice that in CSMA increasing idle slots probability (ρ small) can lower the

expected cost. CSMA is also much more robust to an overestimate of n than slotted -ALOHA.

20 CHAPTER 2. BATCH RESOLUTION

00.250.511.522.533.54
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

ρ

L
′ n
(ρ

)/
L

n

n = 10
n = 100
n = 1000

Figure 2.6: m Groups Split: CSMA scenario. Expected performance of group splitting over trivial
batch resolution using optimum MBT for different ρ. Lower means better.

2.1.5 Estimating Binary Tree
NUOVA

Estimating Binary Tree (EBT) has been recently proposed in [2]. It does not work on parameters

optimization but tries to use simple heuristics to skip tree nodes that will result in collisions

with high probability.

Given a batch of size n, the keys to understand EBT are the following:

• in the luckiest scenario, running BT results in a balanced binary tree where all the leaves

are at the same level,

• consequently it seems to be a good idea to assume that nodes at levels in the tree less than

blog2 nc will likely result in collided slots.

EBT tries to skip inner nodes of the tree by visiting only nodes at levels equal or deeper

than blog2 nc. Since n is not a priori known, a dynamic estimating technique is adopted.

To effectively use this estimate tecnique each node must be able to generate values from the

standard uniform distribution on the interval [0,1) and to use that value as its unique id.

Assume that there are k nodes whose ids are in the sub-interval [0,pε) and that they have been

previously resolved: all and only the nodes with id less than pε successfully transmitted their

messages. Let n̂ express the estimate of n. When pε is greater than 0, setting n̂ to
k

pε
provides

a good estimate of n that becomes more and more accurate as the algorithm goes on. EBT uses

2.2. OTHERS 21

n̂ (as soon as it is available) to choose the right level in the tree to analyze.

The most straightforward interpretation of the EBT algorithm can be:

Algorithm 2 Estimating Binary Tree
Run the CBT algorithm
while batch is not resolved do

Update the estimate n̂
Start a new CMBT at the next node from level blog2 n̂c

end while

Here we gave only a short insight of the algorithm and the estimate technique. In particular

this estimate technique is a dynamic adaptation of that described later in Section 3.2 and

originally proposed in [7].

2.2 Others

In this section we will shortly describe non tree-based algorithms for batch resolution.

2.2.1 IERC

The Interval Estimation Conflict Resolution (IERC) [2] is an adaptation of the FCFS [5]

algorithm for Poisson’s arrivals of packets to the batch resolution.

FCFS is the fastest known algorithm to solve Poisson’s arrivals and it achieves efficiency

η = 0.4871. It assumes a priori knowledge of the arrival rate λ of the packets and works by

splitting the time in epochs of length τ .

Now we briefly describe FCFS algorithm. and then we will show how it can be translated to

the batch resolution problem.

At any time k, let T (k) be the start time of the current enabled allocation interval. Packets

generated in the enabled window (T (k), T (k) + τ] are allowed to be transmitted. When an

idle or successful event occurs enabled time window gets incremented (shifted towards current

time) by τ . On the other hand, if a collision takes place, a Clipped Binary Tree (see Section

3.1) algorithm is started. Given that CBT resolves the sub-interval (T (k), T (k) + α(k)],

then next FCFS enabled window at time k′ will be (T (k′), T (k′) + min(τ, k′ − T (k′))] where

T (k′) = T (k) + α(k).

22 CHAPTER 2. BATCH RESOLUTION

It can be shown [5] that setting τ =
1.26
λ

leads to the maximum efficiency. This means that,

on average, there are 1.26 nodes in an allocation interval of length τ .

The batch resolution problem can be adapted to be solved with an FCFS-like strategy in the

following way:

• nodes tokens can be interpreted as arrival times;

• nodes must be splitted into m =
n

1.26
groups, so that in each group we expect to have

1.26 nodes;

• apply FCFS to solve the problem.

Following these ideas, IERC achieves the same efficiency η = 0.4871 of FCFS for Poisson’s

arrivals in solving the Batch Resolution Problem: it is the asymptotically fastest know algorithm

allowed by our scenario model.

2.2.2 Window Based Approaches

Another possible approach to the batch resolution is to consider a framed -ALOHA scenario.

In framed -ALOHA, a frame (or window) is a sequence of consecutive slots. When a node in the

collision batch decides to transmit, it uniformly picks one and only one slot in the window and

transmits in that slot.

In windows based scenarios, usually we can work on the optimization of two parameters: m,

the length of the window in slots, and p, the probability that a node transmits in the current

window. Innovative approaches to the problem uses hybrid transmission scheme working by

cycles that tries to optimize operational parameters after each transmission windows.

Chapter 3

Batch Size Estimate Techniques

Here we present some noteworthy techniques for batch size estimate that can be found in the

literature. If a technique was not already identified by a name or associated to an acronym, we

used the name of one the authors as reference.

In general, we assume to have no a priori statistical knowledge about the conflict

multiplicity. Estimation techniques are thus required to provide accurate estimates for the

general zero-knowledge scenario.

3.1 Clipped Binary Tree

A simple way to obtain an estimate of the batch size is to solve a certain number of nodes and

then infer the batch size according to the time taken to solve these nodes. This can be done, for

example, by using deterministic algorithms such as the Clipped Binary Tree (CBT) Algorithm.

CBT is a partial resolution algorithm since only a fraction of the packets of the batch are

successfully transmitted. The algorithm is identical to the MBT, with p =
1
2
since we require

nodes to be uniformly distributed in the interval [0,1), except that it stops (the tree is clipped)

whenever two consecutive successful transmissions follow a conflict.

When the algorithm stops, after i collisions, we know than the last two resolved nodes belong

to the same level i of the tree (root is assumed to be at level 0). Therefore, an estimate of the

initial batch size is given by:

n̂← 2i (3.1)

23

24 CHAPTER 3. BATCH SIZE ESTIMATE TECHNIQUES

'

&

$

%

1

C

ε

2

C

3
n1

0

4

C

5
n2

0

6
n3

1

1

0

Figure 3.1: Same example as in Figure 2.2 but resolution using CBT ends up after two consecutive
successful transmissions.

Experimental results show that the variance of this estimate is extremely high and the

resulting accuracy is rather poor. This is due to the fact that the batch we use for the estimate

becomes, at each level, smaller and smaller. Using this algorithm we do not have knowledge of

a sufficiently large number of intervals but we limit to analyze only a few leafs. The resulting

estimate, even for huge sizes, depends only on very few (3-5) outer nodes (those at the most left

in the tree). Consequently estimate is quite inacurate.

From the tables A.5 reported in Appendix you can notice that the distribution probability

decreases rather slowly.

3.2 Cidon

In [7] Cidon and Sidi proposed a complete resolution algorithm based on two phases:

1. Estimate the initial batch size using a partial deterministic resolution scheme.

2. Perform an optimized complete deterministic resolution based on the results of phase 1.

Phase 1 consists in resolving a small part of the initial batch, counting the number of

successful transmissions. A node takes part either to the estimate phase or to the following

resolution phase, not both. The probability pε, which is an algorithm input parameter,

determines this choice. We called it pε to underlined that this initial choice reflects the expected

accuracy of the resulting estimate, as it will be discussed in more detail later on.

3.2. CIDON 25

As usual we consider a batch B of unknown size n. At the beginning of the algorithm each

node chooses to transmit with probability pε. Thus the n nodes are partitioned into two sets, E
and D, where E consists of those that transmitted and D the rest. Clearly, |E|+ |D| = n. If the

resulting slot is empty or contains a successful transmission, we conclude that |E| = 0 or |E| = 1,

respectively. When a conflict occurs (|E| ≥ 2), nodes in E use a complete BRA to resolve the

conflict among them. Let j be the number of resolved nodes at the end of phase 1, i.e. |E| = j.

Then the estimate n̂ is given by

n̂← j

pε
. (3.2)

When the nodes are uniformly distributed in the real interval [0,1),
j

pε
identifies also the expected

nodes density in the interval [0, 1) and the nodes in E are those whose id can be mapped to a

value belonging to the sub-interval [0, pε).

Figure 3.2 illustrates the concept with a simple example.'

&

$

%
0 1

n1 n2 n3 n4 n5 n6 n7

< pε ≤

0.3

Figure 3.2: In this example pε = 0.3. At the beginning of the algorithm each node generates its own
id from the standard uniform distribution in the interval [0,1). Nodes whose id is less than pε belongs
to E . Nodes whose id is greater or equal to pε belongs to D. Estimate of the batch returns d2/0.3e = 7
which, in this case, is the exact size of the batch.

After the first phase, nodes in E are resolved, whereas those in D have still to be counted.

An estimate k̂ of |D| can be obtained as

k̂ ← j

pε
(1− pε). (3.3)

This estimate is used as starting point for the second phase of the Cidon algorithm, whose high

level peudo-code is presented in Algorithm 3.

Complete collision resolution (E) identifies any procedure able to resolve all the nodes

in E allowing them to successfully transmit their messages.

Optimized complete collision resolution (D,k̂, pε) identifies an optimized way to

resolve the batch D that takes into account the expected multiplicity of D.

26 CHAPTER 3. BATCH SIZE ESTIMATE TECHNIQUES

Algorithm 3 Cidon(B, pε)
Input: B batch with |B| = n
Input: pε, fraction of the whole batch to solve
1: // Phase 1
2: each node flips a coin getting 0 with probability pε, 1 otherwise
3: E ← { nodes that flipped 0}
4: D ← { nodes that flipped 1}
5: Complete collision resolution (E)
6: k̂ ← |E|/pε
7: // Phase 2
8: Optimized complete collision resolution (D,k̂, pε)

The original paper proposes to use an m groups split (Section 2.1.4) approach to resolve D,
where

m = max(1, dαk̂ − βe), (3.4)

and each group is resolved by applying the MBT algorithm.

The parameter α determines the number of groups, and therefore the efficiency of the resolution

process, when n is large, while β reduces the number of groups when n is small in order to

reduce the risk of empty groups.

α = 0.786 determines ρ ≈ 1.27 which is the unique optimum nodes per group density. β and

pε depend on operational requirements: in [7] it is showed that setting β = 8 and pε = 0.1 is a

good compromise to get efficient resolution for a wide range of batch sizes.

The average cost of the estimate phase (phase 1) depends on the BRA used but in general,

for tree-based BRAs, can be considered O(pεn).

3.3 Greenberg

Basic Greenberg algorithm searches for a power of 2 that is close to n with high probability:

n̂ ≥ 2i ≈ n (3.5)

Let each of the n conflicting stations either or not transmit in accordance with the outcome

of a biased binary coin. The coin is biased to turn up 0 (transmit) with probability 2−i and

1 (do not transmit) with complementary probability 1 − 2−i. Since the expected number of

transmitters in the slot is 2−in, a conflict supports the hypothesis that n ≥ 2i.

Using this test repeatedly with i = 1, 2, 3, . . ., leads to the Greenberg base 2 estimation algorithm.

Each of the conflicting stations executes Algorithm (4), resulting in a series of collisions whose

3.3. GREENBERG 27

length determines n̂. The probability that at most one node transmits in a slot, monotonically

grows with the slot number and approaches 1 very rapidly as i increases beyond log2 n.

Consequently, we expect that the collision series stops at slot i that is close to log2 n.

Algorithm 4 Basic Greenberg (B)
// Each node performs these operations
i← 0
repeat

i← i+ 1
choose to transmit with probability p = 2−i

until no collision occurs
n̂← 2i

The idea behind Algorithm 4 appears to be quite simple: as the algorithm goes on, the initial

unknown batch (of size n) is progressively sliced into smaller pieces. Only the nodes virtually

inside the enabled slice are allowed to transmit. Slices get thinner and thinner until at most one

node is contained in a slice. Figure 3.3 illustrates the idea with an example: visually, nodes can

be thought to be uniformly distributed on a circumference. Using Greenberg algorithm we will

analyze at each slot a smaller sector (in this case the half of the previous one) of the circle and

discover when a sector contains at most 1 node. Note that no overlapping sectors are drawn

to maintain the image simple. However, in general, enabled nodes get redistributed at each

transmission test performed by the algorithm.

Expected running time is O(log2 n). In particular, since in the slotted -ALOHA model,

feedback is supposed to be transmitted at the end of each transmission slot, the expected

running time in slots can be expressed as ≈ 1 + log2 n.

An important note is that the algorithm always involves all the nodes in the batch: at each

slot, each node decides whatever or not transmit. Each choice is independent of the past. This

is of great importance and allows n̂ to have bounded statistical moments: it can be shown that,

for large n, it holds:

E[n̂] ≈ nφ, (3.6)

E[n̂2] ≈ nΦ, (3.7)

where

φ =
1

log 2

∫ ∞
0
e−x(1 + x)

∞∏
k=1

(
1− e−2kx(1 + 2kx)

)
x−2 dx = 0.91422 (3.8)

28 CHAPTER 3. BATCH SIZE ESTIMATE TECHNIQUES

π

n/2

π/2

n/4

π/4

n/8

Figure 3.3: Basic Greenberg : batch split idea

Φ =
1

log 2

∫ ∞
0
e−x(1 + x)

∞∏
k=1

(
1− e−2kx(1 + 2kx)

)
x−3 dx = 1.23278 (3.9)

φ and Φ are obtained in [8] using advanced mathematical analysis supported by Mellin integral

transform1. In general φ and Φ depend on the size of the problem. Table 3.1 shows the behavior

of the expected estimate (and, therefore of φ) as a function of n. We note that the ratio

E[n̂|n]/n monotonically decreases and gets stable at 0.9142. This shows that this estimate

technique provides biased results.

The fact that, for large n, E[n̂] ≈ nφ suggests a way for correcting the estimate bias as

n̂+ =
n̂

φ
. Due to the contribution of periodic functions, n̂+ is not an asymptotically unbiased

estimate of n, in the sense that E[n̂+]/n does not tend to 1 as n gets large. Fortunately, the

amplitude of the periodic functions turns out to be less than 2 · 10−5, so this bias is negligible

for all practical purposes.

Interestingly, a simple variant of the estimation algorithm shows really poor performance.
1In this work we only report the final results. Please, refer to the original paper for details.

3.3. GREENBERG 29

Table 3.1: Basic Greenberg : Expected estimate and bias

n E[n̂|n] E[n̂|n]/n

1 2.00 2.0000
2 2.56 1.2822
4 4.21 1.0533
8 7.89 0.9863
16 15.20 0.9498
32 29.82 0.9320
64 59.08 0.9231
128 117.59 0.9186
256 234.60 0.9164
512 468.64 0.9153
1024 936.71 0.9148
2048 1872.86 0.9145
4096 3745.14 0.9143
8192 7489.72 0.9143
16384 14978.86 0.9142
32768 29957.16 0.9142
65536 59913.74 0.9142

Consider the algorithm in which each station involved in the initial collision transmits to the

channel with probability 1/2. If this causes another collision, then those that just transmitted,

transmit again with probability 1/2. The others drop out. This process continues until there

are no collisions. Let 2i be the estimate of the conflict multiplicity, where i is the slot at which

there is no collision. It can be shown [8] that the second and all higher moments of this estimate

are infinite.

3.3.1 Base b variant

Using basic Algorithm 4, the expected value of n̂+ is likely different from n by a factor 2. In

the original work, a small generalization of the base 2 algorithm is proposed to overcome this

limitation, by simply using a base b instead of 2, with 1 < b ≤ 2.

30 CHAPTER 3. BATCH SIZE ESTIMATE TECHNIQUES

Algorithm 5 base b Greenberg (B)
i← 0
repeat

i← i+ 1
transmit with probability b−i

until no collision occurs
n̂(b)← 2i

n̂+(b)← n̂(b)/φ(b)

In Algorithm 5, the term φ(b) corrects the bias of the estimator. Table 3.2 shows how φ

and the expected cost in slots vary for different b. Expected cost (. logb n) is expressed as

a multiplicative factor for the basic Greenberg algorithm cost (. log2 n). We can notice that

smaller b results in smaller φ(b). This means that b deeply biases the estimate: if b′
< b

′′ then

E[n̂(b
′
)] < E[n̂(b

′′
)]. This follows from the fact that, decreasing b, the stop probability “shift”

towards “early slots” associated to lower estimates.

Table 3.2: Base b Greenberg : Bias and expected cost summary

b φ(b) Expected cost in slots-1

2 ≈ 0.9142 . 1 × log2 n
1.1 ≈ 0.3484 . 7.27
1.01 ≈ 0.1960 . 69.66
1.001 ≈ 0.1348 . 693.49
1.0001 ≈ 0.1027 . 6931.81

In[8], it is shown that, for all n greater than some constant n0(b), it holds∣∣∣∣E[n̂+(b)]
n

− 1
∣∣∣∣ < ε(b), (3.10)

σ
(
n̂+(b)

)
n

< ε(b), (3.11)

where ε(b)→ 0 as b→ 1.

In other words when b→ 1 and n is large the estimate becomes unbiased and its variance goes

to zero. However, our experimental results showed that the performance of base b estimator is

not ideal in practical scenarios.

3.4. WINDOW BASED 31

3.4 Window Based

Window based approaches use a framed -ALOHA transmission scheme, where the reader provides

feedback to the nodes after each frame. Framed -ALOHA is characterized by the frame length

L, whose choice is critical for the performance of the resolution process as well as the estimation

phase. Setting L large compared to the batch size increases the probability to solve all the nodes

in the current window but, on the other hand, it leads to a waste of slots and consequently

sub-optimal running time. At the same time, a large value of L allows for a very accurate

estimate of the batch size.

Setting L small increases the probability of collided slots. Since the number of nodes involved

in a collision is unknown, collisions provide poor information about the batch multiplicity. The

more collisions we have, the less accurate the estimate.

An interesting approach to the problem is presented in [3]. When the scenario allows to use

a probabilistic-framed-ALOHA2 scheme we can act on the parameter p, i.e. the probability for

a node to take part in the current transmission window. Small p value allows to keep L small

too and hence, when n is large, provides an accurate estimate of the whole batch considering

only a sub-set of it. This results in shorter estimate time.

Since when p = 1 probabilistic-framed-ALOHA reduces to simple framed-ALOHA and it is

reasonable to start any estimate algorithm with p = 1, we will show a possible approach to the

problem in a framed-ALOHA scenario.

Let n be the batch size and L the window length. The number of nodes k out of n that

choose the same slot is binomially distributed with parameters B(n, 1/L). Then, the probability

to get an idle, successful or collision slot is respectively given by:

p0(n) =
(

1− 1
L

)n
, (3.12)

p1(n) =
n

L

(
1− 1

L

)n−1

, (3.13)

p2+(n) = 1− p0(n)− p1(n). (3.14)
2Probabilistic-framed-ALOHA is an extension of the framed-ALOHA model where a node takes part to the

current contention window with probabily p or waits for the next one with probability 1− p. Nodes that decide
to transmit behave like in the standard framed-ALOHA.

32 CHAPTER 3. BATCH SIZE ESTIMATE TECHNIQUES

Considering the whole window, the outcome consists in a tuple (i, s, c), denoting the number

of idle, success, and collision slots, which satisfies i+ s+ c = L. Hence, the probability of (i,s,c)

is given by:

P (i, s, c) =
L!

i! s! c!
p0(n)i p1(n)s p2+(n)c =

L!
i! s! c!

fL(i, s, c, n). (3.15)

We note that (3.15), does not take into account the fact that a node is allowed to transmit only

once in a window: equation (3.15) is only an approximation of the distribution of the nodes

in the slots when both n and L are large. A Poisson distribution of parameter λ = n 1
L would

model better the scenario but (3.15) allows simpler numerical computation.

Once we have tried to resolve the batch using a window approach we know how many idle,

successful or collided slots there were.

Then we find the estimate n̂ as the batch size that maximizes the probability to see the tuple

(i, s, c) in a L length window:

n̂ = arg max
n

fL(i, s, c, n), (3.16)

where we discarded the factorial terms because they not contribute to identify the maximum since

L, i, s, c are fixed. Furthermore, since L, i, s, c are fixed, fL(i, s, c, n) becomes a one-variable

function which results well behaved in n, being initially monotonically increasing and then

monotonically decreasing. Therefore fL(i, s, c, n) has only one maximum.

By setting

f ′L(i, s, c, n) = 0, (3.17)

and numerically solving (3.17) we can obtain the batch size that maximizes our function. In

general the solution will not be integer-valued and a rounding operation is necessary to achieve

a real world batch estimate.

Table 3.3: Estimate given (i, c, s) when L = i+ c+ s = 10.

H
HHHHHc

s 0 1 2 3 4 5 6 7 8 9

1 3 3 4 5 6 7 8 9 10 11
2 5 6 7 8 8 10 11 12 13 -
3 7 8 9 10 11 12 13 14 - -
4 10 11 12 13 14 15 16 - - -
5 12 14 15 16 17 19 - - - -
6 16 17 19 20 22 - - - - -
7 20 22 23 25 - - - - - -
8 26 28 30 - - - - - - -
9 35 38 - - - - - - - -
10 ∞ - - - - - - - - -

Table 3.3 shows the estimate provided by the explained technique when L = 10. Cells,

3.4. WINDOW BASED 33

identified by (c, s), where c+ s > 10 cannot be associated to any estimate since their events are

impossible. The case c = 0 is trivial since the estimate is exact and is given by the number of

successful transmission.

We note also that when we see only collisions, the estimator is not able to provide a finite

estimate. The event c = 10 in the table is in fact associated to n̂ =∞. In general, when c = L

we have that (3.15) reduces to:

P (0, 0, L) = p2+(n)L =

[
1−

(
1− 1

L

)n
− n

L

(
1− 1

L

)n−1
]L

, (3.18)

which is maximized (P (0, 0, L) = 1) by n = ∞ for any L. Hence we would not to have only

collisions since they do not provide any information about the cardinality of the batch.

A larger window has to be used to get a finite estimate but its optimal length remains unknown.

Chapter 4

Estimate Performance Analysis

In this Chapter, we present a performance analysis of some of the already mentioned noteworthy

batch size estimation (BSE) algorithms. The overview will obviously consider different batch

sizes, algorithm parameters, time required and accuracy of the estimate. We want to support

reader in choosing the best estimate technique suitable for its needs.

First we will provide a detailed analytical analysis of Cidon algorithm and then, supported by

numerical computation, we will derive its features in term of time and accuracy.

We will then discuss the behavior of Greenberg with its pros and cons and try to overcome its

limitations by introducing a modification of the original algorithm to achieve better estimate.

Enhanced Greenberg Algorithm (EGA) is the middle-step in the development of our proposed

estimate algorithm: it improves the estimate in terms of “choosing the best power of 2”,

maintaining the same target estimates allowed by basic Greenberg. Then, we will describe and

analyze the Generalized Enhanced Greenberg Algorithm (GEGA), which combines Greenberg

with a further test and performs a maximum likelihood estimation to determine the “best”

estimate. Finally, the comparison between GEGA and Cidon will lead to the conclusions.

4.1 Cidon BSE

The original paper [7] describes the estimate technique but does not characterize it in details.

The interest is focused on other aspects and, therefore, no detailed analysis of the behavior of

the estimate algorithm is presented: it is only mentioned that as n grows the estimator becomes

more accurate. Hence, in this section we will provide a complete analysis of the estimate

algorithm.

Following from Section 3.2, let j denote the number of nodes in E and pε be the expected

fraction of nodes to be resolved in Cidon algorithm Phase 1. Parameter pε can be considered

35

36 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

fixed a priori since it is an input of the algorithm and, therefore, given a batch of size n, j is a

binomially distributed random variable with parameters n and pε. Hence, we have the following:

E[j|n, pε] = npε, (4.1)

var(j|n, pε) = npε(1− pε). (4.2)

By applying Chebychev’s Inequality (A.1), we have for any ε > 0

P
(
|j − npε| ≥ εn |n, pε

)
≤ pε(1− pε)

ε2n
. (4.3)

We remember that the Cidon estimate is given by n̂ =
j

pε
. Then, from the aforementioned

equations (4.1)-(4.3), it follows that:

E[n̂|n, pε] =
1
pε
E [j|n, pε] = n, ∀ pε (4.4)

and

P

(∣∣∣∣ n̂n − 1
∣∣∣∣ ≥ ε ∣∣n, pε) ≤ 1− pε

ε2npε
. (4.5)

which shows that using this estimation method we can trade off the accuracy with the

consumption of resources in terms of time or messages. Furthermore, Cidon estimate is unbiased

independently of pε, which influences the variance of the estimator. In fact, we have

var(n̂|n) =
n

pε
− n (4.6)

which reveals that as the number of resolved terminals (and therefore pε) increases the estimate

n̂ becomes more accurate.

4.1.1 Performance

Figure 4.1 shows that the variance is strict monotonically decreasing in pε. Furthermore, you

can notice that, for pε smaller than 0.1, a small increment in pε produces a large decrease

in the normalized variance which reflects in a large estimate accuracy improvement. Hence,

considering the tread-off between estimate overhead and resolution efficiency, solving up to 1
10

of the initial batch in the estimate phase is a good practical choice.

However, it is difficult to establish in what measure an estimate can be considered accurate.

The idea we adopt is to require the estimate to be “near” the real batch size with very high

probability. Given the real batch size n, let the error coefficient k ≥ 1 identify an interval

4.1. CIDON BSE 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

v
a
r
(n̂
|n

)/
n

pǫ

(1 − pǫ)/pǫ

Figure 4.1: Cidon: estimate normalized variance as function of pε.

surrounding n in the following way:
n

k
≤ n̂ ≤ kn (4.7)

We can study the algorithm behavior by considering as index for the estimate accuracy

θk = P
(n
k
≤ n̂ ≤ kn

)
(4.8)

Let θ be the minimum allowed value for θk: in other words θ is the probability we require for

constrains (4.7) to be satisfied.

If we set θ = 0.99, we can find the minimum pε, ensuring the estimate to be within interval

(4.7), by solving the following problem.

P
(n
k
≤ n̂ ≤ kn

∣∣k, n) =P
(n
k
≤ j/pε ≤ kn

∣∣k, n, pε)
=P

(npε
k
≤ j ≤ knpε

∣∣k, n, pε) (4.9)

Since j assumes positive integer values, we introduce rounding operations. In particular,

rounding effect is non neglectible when n ≤ 200.

f(k, n, pε) = P
(⌈npε

k

⌉
≤ j ≤ bknpεc

∣∣k, n, pε) ≥ θ (4.10)

38 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

Fixed k, n and θ, pε can be found by numerically solving the following equation:

f(k, n, pε) = θ (4.11)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

p
ǫ

n = 102

n = 103

n = 104

Figure 4.2: Cidon: Minimum pε as function of k when θ = 0.99.

Figure 4.2 plots the minimum fraction pε of the batch to be resolved as function of k when

θ = 0.99. As you could expect, once the batch size is fixed, the minimum pε is monotonically

decreasing in k. In the same manner, when k is fixed, the minimum fraction of the batch to

resolve to achieve the desired accuracy is lower for larger batch sizes. In Figure 4.3 we report

the expected time (in slots) required by Cidon to achieve the desired accuracy in the estimate.

We notice that initially, when k is larger than 1.5, the time required to achieve a given accuracy

is very similar for each considered batch size. For tighter accuracies the time required depends

largely on the size of the problem.

Furthermore, the time required by the largest considered batch size to achieve a given accuracy

provides an upper bound for smaller batch sizes: in the same amount of time smaller batch sizes

are expected to achieve higher accuracy.

4.2. GREENBERG BSE 39

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

1

10
2

10
3

10
4

10
5

k

L
n

p
ǫ

n = 102

n = 103

n = 104

Figure 4.3: Cidon: Expected time as function of k when θ = 0.99.

4.2 Greenberg BSE

Given a current slot transmission probability p and a batch of size n we define respectively:

1. the probability to get an empty slot (no transmissions)

q0(p, n) = (1− p)n (4.12)

2. the probability to get a successful slot (exactly one transmission)

q1(p, n) = np(1− p)n−1 (4.13)

3. the probability to get a collision (two or more transmissions)

q2+(p, n) = 1− q0(p, n)− q1(p, n) (4.14)

In basic Greenberg (algorithm 4) each slot is associated with a different probability p.

Numbering slots i from 1, 2, and so on we hence have

pi = p(i) = 2i. (4.15)

40 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

Given n nodes, the probability to terminate Greenberg algorithm in slot i is given by:

fG(n, i) =
i−1∏
k=1

q2+(pk, n) ·
(
q0(pi, n) + q1(pi, n)

)
. (4.16)

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

slot

st
op

pr
ob

ab
il
it

y

n=8
n=16
n=32

Figure 4.4: Basic Greenberg : Small 2k sizes distribution.

4.2. GREENBERG BSE 41

7 8 9 10 11 12 13 14 15 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

slot

st
op

pr
ob

ab
il
it

y

n=1024
n=2048
n=4096

Figure 4.5: Basic Greenberg : Large 2k sizes distribution.

An overview of the behavior of fG(n, i) is presented in Appendix in Table A.6 on page 63.

Equation (4.16) defines the probability for biased estimate n̂ to be equal to 2i when the batch

size is n.

Pr
(
n̂ = 2i|n

)
= fG(n, i) (4.17)

Figures 4.4 and 4.5 show how the distribution behaves respectively for small and large sizes.

We note that, for any fixed n, the distribution is well behaved with a bell-like shape. It turns

out that, for batch sizes larger than 128, the distribution is “stable” in the sense that doubling

the number of nodes produces only a shift of the stop probability of one slot to the right (see

Figure 4.5).

This is actually even for batch sizes that are not power of 2. Figure 4.6 shows the case.

4.2.1 Considerations

Greenberg method is really good in terms of running time cost, which is O
(
log2 n

)
. However it

has some non negligible drawbacks:

a) The estimation phase results in a sequence of colliding messages. These provide information

about the cardinality of the batch, but do not help to solve an even small portion of the

batch and can not carry auxiliary information. An algorithm that allows to get an estimate

42 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

slot

st
op

pr
ob

ab
il
it

y

n=555
n=597
n=640
n=683
n=725
n=768
n=811
n=853
n=896
n=939
n=981
n=1024
n=1110
n=1194
n=1280
n=1366
n=1450
n=1536
n=1622
n=1706
n=1792
n=1878
n=1962

Figure 4.6: Basic Greenberg : General batch sizes distribution.

while resolving nodes would offer some advantages when the problem is not only the pure

batch size estimation, but the batch resolution.

b) Basic Greenberg does not allow to achieve arbitrary precision in the estimate. In fact, we

have that:

i. the estimate is, by construction, a power of 2. Only a small subset of batch sizes can be

mapped without error.

ii. the estimate distribution is not sharp enough around the correct value of the batch size

but it spans over a few slots: this is shown in Figure 4.5. We notice that using Greenberg

algorithm it is difficult to discriminate between n and n
2 .

c) Base b Greenberg could be used to get a tighter estimate. Anyway, to improve the accuracy,

very small b has to be choosen which results in much worse running times (see Table 3.2):

even if theoretically it remains O(logbn) which is sublinear in n, in practice estimate time

can even overwhelm n when b is small.

4.3. EGA BSE 43

4.3 EGA BSE

The Enhanched Greenberg Algorithm (EGA) is a first improvement over the Basic Greenberg

algorithm.

Let n be a batch size and p be a given transmission probability. As expressed by (4.12)

(4.13) (4.14), varying n while p is fixed results in very different probabilities for idle, successful

and collided slots.

500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

E
ve

nt
P

ro
ba

bi
li
ty

collision

success

idle

Figure 4.7: Probability of idle, successful or collided slots varying n while p = 1/1024. q0(p, n) ≈
q1(p, n) for n = 1023

Examining Figure 4.7, it is quite immediate to see that:

• q0(p, n) ≈ q1(p, n) when p ≈ 1
n

and, obviously,

• q0(p, n)� q1(p, n) and q0(p, n)� q2+(p, n) when p� 1
n
,

• q2+(p, n)� q0(p, n) and q2+(p, n)� q0(p, n) when p� 1
n
.

The collision probability q2+(p, n) is strictly monotonic increasing, while the empty slot

probability q0(p, n) is strictly decreasing. Repeating a large number T of transmission with

probability p, we can simply use the number of collisions or idle slots to uniquely determined

the batch size. On the other hand, successful probability q1(p, n) is non-monotonic and hence

44 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

can not be used to uniquely determine the batch size.

The proposed technique to refine the estimate is the following.

Running Basic Greenberg Algorithm provides a raw estimate and the associated transmission

probability p. Then we perform T more transmissions and use aMaximum Likelihood Estimation

(MLE) to refine the estimate.

Let T be the number of slots we will use to refine the estimate and let N0, N1, N2+ be random

variables which represent the total number of idle, successful and collided slots, respectively,

observed after the T additional slots.

N0, N1, N2+ are binomial distributions with parameters B(n, q0(p, n)), B(n, q1(p, n)) and

B(n, q2+(p, n)), respectively. Of course N0 +N1 +N2+ = T and

E[N0] = Tq0(p, n),

E[N1] = Tq1(p, n),

E[N2+] = Tq2+(p, n).

Let fT (i, s, c, p′, n′) denote the probability to get i idle, s success and c collision slots:

fT (i, s, c, p′, n′) = Pr(N0 = i,N1 = s,N2+ = c|n = n′, p = p′) (4.18)

= Pr(N0 = i|n = n′, p = p′)Pr(N1 = s,N2+ = c|n = n′, p = p′, i),

when we transmit with probability p′ and the batch size is n′.

Let N be the set of the target batch sizes. Then, we can define

MLE(i, s, c, l)← arg max
n′ ∈ N

(
fT
(
i, s, c, p(l), n′) · fG

(
n′, l

))
. (4.19)

MLE(i, s, c, l) is a T × T × L matrix where L is the index of the “farthest” slot that can be

visited during the Basic Greenberg Algorithm. L depends on the maximum cardinality nmax

considered for the problem. Consequently L must be chosen so not to worse the performance of

our estimator (if nmax is smaller than the real batch size n) and not to waste too much memory.

Hence, our estimate is simply the result of a look-up in the MLE table,

n̂←−MLE(i, s, c, l). (4.20)

Is it worth mentioning that:

• For performance tuning, the MLE table can be precomputed before running the estimate

4.3. EGA BSE 45

algorithm. The computational cost to fill the whole MLE table depends on T and L and,

if trivial exhaustive search on N is performed, also on |N |. A fast way to compute the

MLE table is described in Section 4.4.

• The size of the MLE table does not depend on |N | but only on T and L.

• The estimate deeply depends on the way the elements in N are chosen.

The high level pseudo-code of the algorithm is the following:

Algorithm 6 EGA (B, T,N)
precompute or load the MLE table characterized by T , L, N
l← 0
repeat

l← l + 1
p← 1

2l
choose to transmit with probability p

until no collision occurs
(i, s, c)← events resulting from T transmissions with probability p
n̂←MLE(i, s, c, l)

Expected running time in slots follows from Greenberg expected running time and the further

used slots. Therefore expected slot cost is is ≈ log2 n+ T .

We note also that onlyMLE(i, s, c, l) is involved by the algorithm and not the wholeMLE table.

Hence, is it possible to choose wheter precomputing and storing the whole table or computing

only MLE(i, s, c, l) on-demand.

Once both the batch size n and the MLE table are fixed, the probability to estimate n̂ can be

expressed as:

Pr(n̂ = n′|n) =
∑
l

fG(n, l)
∑
i

∑
s

X̂MLE(i,s,c,l)(n
′) · fT

(
i, s, c, p(l), n

)
, (4.21)

where X̂MLE(i,s,c,l)(n′) = 1 iff MLE(i, s, c, l) = n′, X̂MLE(i,s,c,l)(n′) = 0 otherwise.

Hence the expected value of the estimate given n can be trivially computed as follows:

E[n̂|n] =
∑
n′∈N

n′ · Pr(n̂ = n′|n). (4.22)

46 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

4.3.1 Performance

7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

l og 2 n̂, (slot)

E
st

im
at

e
P

ro
b

ab
il

it
y

1024=2
10

2048=2
11

4096=2
12

Figure 4.8: EGA: Large 2k sizes distribution.

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l og 2 n̂, (slot)

E
st

im
at

e
P

ro
b

ab
il

it
y

Estimate distribution for n = 210

T=10

T=20

T=30

Figure 4.9: EGA: Estimate distribution when varying T . Plot refers to n = 1024.

4.4. GEGA BSE 47

Figures in this section were obtained by considering N = {powers of 2}. Therefore, the target

estimates are the same as for basic Greenberg algorithm.

Figure 4.8 shows that the proposed method peaks sharply near the right estimate. Comparing

to the basic Greenberg method (see Figure 4.5) you can notice that there is only one extremely

sharp peak located in a single slot, instead of a bell-like shape distributed among consecutive

slots. Furthermore, you can also notice how the probability to overestimate the batch size is a

bit higher than the probability to underestimate it.

Figure 4.9 shows how the peak behaves when varying T for a fixed batch size: increasing T the

peak becomes more and more sharp.

4.4 GEGA BSE

The Generalized Enhanced Greenberg Algorithm (GEGA) is a less restrictive form of the EGA

algorithm in the sense that we do not limit a priori the set of target estimates. This can be

simply achieved by letting N be the set of all the positive integer numbers.

N = {1, 2, 3, ...}.

In this case the algorithm can be interpreted as follows:

1. Find the transmission probability p for which the multiplicity of the activated set is 1 with

very high probability,

2. Use T consecutive slots (a “window”) to refine the estimate. The idea is similar to a window

based estimate except that a node is allowed to transmit in each slot.

Recalling (4.19), given i, s, c and l, the estimate can be found by solving:

d
(
fT
(
i, s, c, p(l), n) · fG

(
n, l
))

dn
= 0, (4.23)

which is not trivial to solve and involves numerical problems since fG(n, l) can present very small

product terms. Then we solved the problem by using bisection method on (4.19) and taking the

largest integer n for which

fT
(
i, s, c, p(l), n+ 1) · fG

(
n+ 1, l

)
− fT

(
i, s, c, p(l), n) · fG

(
n, l
)
≥ 0. (4.24)

As an example, the results of this computation when T = 10 and l = 10 are presented in Table

4.1.

48 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

H
HHHHHc

s 0 1 2 3 4 5 6 7 8 9 10

0 352 413 477 545 616 689 765 843 922 1003 1086
1 489 559 632 709 787 868 951 1036 1122 1210 -
2 650 730 812 896 983 1072 1162 1254 1347 - -
3 838 927 1017 1111 1206 1302 1401 1501 - - -
4 1055 1153 1254 1356 1461 1567 1675 - - - -
5 1307 1416 1527 1641 1757 1875 - - - - -
6 1603 1726 1851 1979 2110 - - - - - -
7 1962 2103 2248 2396 - - - - - - -
8 2416 2585 2761 - - - - - - - -
9 3044 3267 - - - - - - - - -
10 4111 - - - - - - - - - -

Table 4.1: GEGA: Possible estimates when T = 10 and l = 10.

Table 4.1 reveals that the estimate is always finite. This good feature follows from the

bounded moments of the Greenberg algorithm. In general (see Table 3.3), simple window based

MLE estimators can not achieve finite estimate when all the events are collisions.

The EGA MLE Table defined in (4.19) can be obtained as sub-case from GEGA MLE

Table. In fact, once the GEGA MLE Table has been computed, for each tuple (i,s,c,l) providing

estimate n′, the corresponding EGA estimate can be obtained by considering the closest two

EGA target estimates surrounding n′ and by taking the best between the two by using (4.19) as

usual. Even more, since extensive computation of the GEGA MLE can take really long time, it

is worth to mention that computation can be speed up looking only for solutions which satisfy

the following constrain:

max(MLE(T − s− c, s− 1, c, l),MLE(T − s− c, s, c− 1, l)) ≤MLE(i, s, c, l) (4.25)

This simply means that computing Table 4.1 cells by diagonal can benefit of 4.25 and speed

up the computation process.

4.4. GEGA BSE 49

4.4.1 Performance

The estimate provided by GEGA is biased. Figure 4.10 shows that the algorithm tends to

overestimate the real batch size. Anyway, the bias can be easily corrected since it is always really

near to the average value: the oscillations have very small amplitude. Increasing T reduces the

bias as well as the oscillations amplitude. Very small batch sizes (less than 20) show higher

oscillations compared to larger ones: this fact is negligible in practice since the oscillations are

too small to affect the estimate and are hidden by the rounding operation. Table 4.2 reports

the average bias φ(T) as a function of T .

100 500 1000 1500 2000
1.07

1.0705

1.071

1.0715

1.072

1.0725

n

E
[n̂

|n
]/

n

T = 10

100 500 1000 1500 2000
1.0405

1.041

1.0415

1.042

1.0425

1.043

1.0435

n

E
[n̂

|n
]/

n

T = 20

100 500 1000 1500 2000

1.0296

1.0298

1.03

1.0302

1.0304

1.0306

n

E
[n̂

|n
]/

n

T = 30

10
1

10
2

10
3

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

1.075

n

E
[n̂

|n
]/

n

T = 10

T = 20

T = 30

Figure 4.10: GEGA: Estimate Bias. The first tree plots show the estimate expected value over the real
batch size for different T . Right below corner plot provides a summary in a log x-scale. Data reported
were computed using formula (4.22).

50 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

The results where computed by averaging the bias estimate for batch sizes from 2 to 2000.

T φ(T)

10 0.0723
20 0.0422
30 0.0299

Table 4.2: GEGA: Average bias.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

E
xp

ec
te

d
N

or
m

al
iz

ed
A

b
so

lu
te

E
rr

or

n

T = 30, n̂
T = 30, ñ
T = 10, n̂
T = 10, ñ
T = 20, n̂
T = 20, ñ
T = 100, n̂
T = 100, ñ

Figure 4.11: GEGA: biased/unbiased absolute normalized estimate error. The plot presents e(n̂) and
e(ñ) for different T .

Estimate bias can be corrected by considering ñ =
n̂

φ(T) + 1
. We will see that in this way

we get higher quality estimate.

To measure the performance of the proposed estimation method, we define the normalized

absolute estimate error as

e(n̂) =
|n̂− n|
n

. (4.26)

In the same manner we can define e(ñ). The parameter T is implicitly present in (4.26). Figure

4.4. GEGA BSE 51

4.11 shows that the bias-corrected estimate performs better than the biased estimate for any

batch size and T . Furthermore, you can notice that the error is independent of the batch size.

0 20 40 60 80 100 120
1

2

3

4

5

6

7

T

k
Minimum T to achieve accuracy k

n = 10

n = 102

n = 103

Figure 4.12: GEGA: Minimum T to achieve error coefficient lower than k with θ = 0.99

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105110115120
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

T

k

Minimum T to achieve accuracy k : Detai l ed View

n=10

n=100

n=1000

Figure 4.13: GEGA: Minimum T to achieve error coefficient lower than k with θ = 0.99 , detailed view

Results presented in Figures 4.12 and 4.13 show that the accuracy in the estimate grows

as T increases and it is independent of the batch size when the batch size is not too small

(e.g.: n = 10). In fact, for very small batch sizes, the error coefficient k shows a descending

steps trend since the probability distribution is discrete and the adopted algorithm performs

rounding operations. Furthermore, it is important to mention that T allows the user to choose

estimate accuracy easily, without caring about the batch size. In other words, if we require a

52 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

given estimate accuracy, in terms of error coefficient k, the minimum necessary T can be easily

determined looking at Figure 4.13.

4.5 Comparison

Here we will provide the reader a comparison between the estimates obtained using Cidon and

GEGA algorithms in terms of accuracy and time. In fact, in real life scenarios, we will be

interested in getting a “tight enough” estimate of the real batch size in a reasonable time. We

must always remember that there is a trade-off between the time taken by an explicit estimate

phase and the following resolution: the goal is to minimize the total cost.

For the comparison we considered the dynamically adapting versions of the described algorithms:

• in Cidon this means that pε is not a priori fixed but, as the resolution goes on, gets

updated in accordance to the resolved interval.

• in GEGA this simply means that T grows as the elapsed time.

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

dy
dx

= −1.58

t elapsed time in slots

k
er
ro
r
co
effi

ci
en
t

Cidon n = 10

Cidon n = 102

Cidon n = 103

GEGA n = 10

GEGA n = 102

GEGA n = 103

Figure 4.14: GEGA vs Cidon: Error coefficient k as function of elapsed time

4.5. COMPARISON 53

In Figure 4.14 we try to answer the question: “When time t is elapsed, what is the accuracy

of the estimate?”. We considered the average running time for both the algorithms to provide

a meaningful and as fair as possible comparison: in GEGA t ≈ log(n) + T , in Cidon t ≈ npεC.

Figure 4.14 shows the minimum k for which θk in (4.8) is greater than or equal to 0.99. You

can notice that the GEGA algorithm, since it provides always a finite estimate, gives a bound

on the accuracy after just ≈ log2 n slots: as soon as phase 1 ends. Therefore, it results faster

than Cidon in providing the first bound for any batch size. Considering n = 10 in the Figure as

an index of the behavior for very small batch sizes, you can see that initially GEGA estimate is

more accurate than Cidon but later, for k smaller than two, Cidon takes less time. For larger

sizes (n = 100 and n = 1000) GEGA achieves accuracy k = 2 in about the half of the time

taken by Cidon , and k = 1.5 saving about 40% of time.

In general, we can say that GEGA performs great for middle-large batch sizes when we

require n̂ to be, with high probability, in the interval
n

k
≤ n̂ ≤ kn with 1.5 ≤ k ≤ 2.

Conclusions

The final goal of this work was to investigate The Batch Size Estimate Problem in order

to develop, if possible, innovative techniques to solve the problem. Hence, we studied and

characterized both the Batch Size Estimate and some of the Batch Resolution Algorithms to

understand in what measure the estimate can influence, and hopefully speedup, the resolution

process. There are two possible ways to approach the matter: on one hand you can perform

an explicit estimate phase, followed by a resolution one, on the other hand, you can choose to

combine the two together. This second option is usually the case in window based scenarios where

the result of the resolution is used to preform an estimate and where estimate and resolution

processes coincide. Window based approach is really efficient when we have a good knowledge

of the batch multiplicity but has the disadvantage that performs really poor when the batch size

is different from the expected one. In fact, communication costs are reduced due to deferred

feedback but, at the same time, a wrong estimate of the multiplicity results in really poor

resolution performance. The big open problem of this approach is how to determine the size of

the initial window. A large window results in good estimate and resolution of a possibly large

amount of nodes but suffers poor performance if the batch to solve is much smaller than the

windows size (empty slots) or much larger (collisions). Using GEGA is a great choice in this

scenario to determine the batch size in terms of operational range.

The main advantages of GEGA are:

• Speed. In fact, for a wide range of minimum required accuracies and batch sizes, it is

faster than any other estimate algorithm known to us.

• Ability to adapt to any batch size. In fact, the time required by the algorithm depends

mostly on the user required accuracy and is quite independent of the real batch size

(logarithmic addictive term).

• Estimate accuracy can be considered independent of the batch size.

However, there are also some limitation to the proposed estimate scheme:

• It is not able to achieve arbitrary precision in the estimate;

55

56 CHAPTER 4. ESTIMATE PERFORMANCE ANALYSIS

• When looking for a really tight (almost exact) estimate, other estimate techniques are

faster.

Therefore we suggest to adopt it to:

• provide an initial estimate of the batch size which can be further refined using other

techniques or that can be used to speedup dynamically estimating resolution processes.

• provide an estimate for algorithms that are “robust” in terms of resolution efficiency: their

performance degrades smoothly when estimated batch size differs, but not too much, from

the real one (e.g. m Groups Splitting).

Understanding in details how to balance the estimate overhead with the improved resolution

efficiency depends on the applied BRA and goes beyond the goals of this work. Just to provide

you an idea on how things work, referring, as an example, to the m Groups Split in the CSMA

scenario described in Section 2.1.4 we have that, following the notations used throughout this

work, if estimate is within the interval n
k ≤ n̂ ≤ kn, maximum performance loss is below 3%

when k = 1.5 and 7% when k = 2. Therefore, considering the estimate overhead and choosing

the required accuracy in function of the batch size, using GEGA results convenient compared

to oblivious resolution (MBT, no estimate performed) when the batch size is larger than 30-70.

Appendix A

A.1 Probability

This section reviews basic probability theory notions used in this work.

Chebyshev’s inequality

Let X be a random variable with expected value µ and finite variance σ2. Then for any real

number k > 0,

Pr(|X − µ| ≥ k) ≤ σ2

k2
(A.1)

Binomial Distribution

The binomial distribution is the discrete probability distribution of the number of successes in a

sequence of n independent yes/no experiments, each of which yields success with probability p.

In general, let a random variable K = B(n, p) be a binomial distribution with parameters n

and p. The probability of getting exactly k successes in n trials is given by the probability mass

function:

f(k;n, p) = Pr(K = k) =
(
n

k

)
pk(1− p)n−k (A.2)

for k = 0, 1, . . . , n, where
(
n

k

)
=

n!
k!(n− k)!

.

The cumulative distribution function can be expressed as:

F (k;n, p) = Pr(K ≤ k) =
bkc∑
i=0

(
n

i

)
pi(1− p)n−i. (A.3)

The first and second moments are respectively given by:

E[K] = np (A.4)

and

57

58 APPENDIX A. APPENDIX

V ar[K] = np(1− p). (A.5)

Normal Approximation

If n is large enough, then the skew of the distribution is not too great. In this case, if a suitable

continuity correction1 is used, then an excellent approximation to B(n, p) is given by the normal

distribution N (np, np(1− p))
The approximation generally improves as n increases and is better when p is not near to 0 or 1.

Various rules of thumb may be used to decide whether n is large enough, and p is far enough

from the extremes of zero or unity: One rule is that both np and n(1− p) must be greater than

5. However, the specific number varies from source to source, and depends on how good an

approximation one wants; some sources give 10. Another easy rule is that np(1− p) ≥ 10.

Poisson Approximation

The binomial distribution converges towards the Poisson distribution as the number of trials goes

to infinity while the product np remains fixed. Therefore the Poisson distribution with parameter

λ = np can be used as an approximation to B(n, p) of the binomial distribution if n is sufficiently

large and p is sufficiently small. According to two rules of thumb, this approximation is good if

n ≥ 20 and p ≤ 0.05, or if n ≥ 100 and np ≤ 10.

Numerical Computation

When n is large and p small, the numerical computation of the probability density function and

cumulative distribution function show to be problematic if trivially computed by definition (n!

is huge).

The following trick can be used for the computation when 0 < k < n:

f(k;n, p) = Pr(K = k) = e
log(

n!
k!(n− k)!

pk(1− p)n−k)
= eφ, (A.6)

where

φ =
n∑

i=k+1

log i−
n−k∑
i=1

log i+ k log p+ (n− k) log(1− p). (A.7)

1when approximating a discrete random variable K using a continuos one X, then Pr(K ≤ k) = Pr(K <
k + 1) ≈ Pr(X ≤ k + 1/2)

A.2. BINARY TREES PERFORMANCE SUMMARY 59

Poisson Distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution

that expresses the probability of a number of events occurring in a fixed period of time if these

events occur with a known average rate and independently of the time since the last event.

If the expected number of occurrences in this interval is λ, then the probability that there are

exactly k occurrences (k being a non-negative integer, k = 0, 1, 2, . . .) is equal to

f(k;λ) =
λke−λ

k!
(A.8)

Normal Distribution

Normal distribution is denoted as N (µ, σ2) where, as usual, µ identifies the mean and σ2 the

variance. The probability density function is defined as follows:

f(x;µ, σ2) =
1√

2πσ2
e
−(x− µ)2

2σ2 (A.9)

A.2 Binary Trees Performance Summary

The following tables report the expected cost Ln in slots to solve a batch of given size n using

BT, MBT, and CMBT. Performance reports in Chapter 2 plot these data.

Table A.1: Basic Binary Tree: Performance report

LBT2 = 5.0000 LBT3 = 7.6667 LBT4 = 10.5238 LBT5 = 13.4190 LBT6 = 16.3131
LBT7 = 19.2009 LBT8 = 22.0854 LBT9 = 24.9690 LBT10 = 27.8532 LBT11 = 30.7382
LBT12 = 33.6238 LBT13 = 36.5096 LBT14 = 39.3955 LBT15 = 42.2812 LBT16 = 45.1668
LBT17 = 48.0522 LBT18 = 50.9375 LBT19 = 53.8227 LBT20 = 56.7078 LBT21 = 59.5930
LBT22 = 62.4783 LBT23 = 65.3636 LBT24 = 68.2489 LBT25 = 71.1344 LBT26 = 74.0198

Table A.2: Modified Binary Tree: Performance report with p = 0.5

LMBT
2 = 4.5000 LMBT

3 = 7.0000 LMBT
4 = 9.6429 LMBT

5 = 12.3143 LMBT
6 = 14.9848

LMBT
7 = 17.6507 LMBT

8 = 20.3140 LMBT
9 = 22.9768 LMBT

10 = 25.6399 LMBT
11 = 28.3036

LMBT
12 = 30.9678 LMBT

13 = 33.6322 LMBT
14 = 36.2966 LMBT

15 = 38.9609 LMBT
16 = 41.6251

LMBT
17 = 44.2892 LMBT

18 = 46.9531 LMBT
19 = 49.6170 LMBT

20 = 52.2809 LMBT
21 = 54.9448

LMBT
22 = 57.6087 LMBT

23 = 60.2727 LMBT
24 = 62.9367 LMBT

25 = 65.6008 LMBT
26 = 68.2649

60 APPENDIX A. APPENDIX

Table A.3: Modified Binary Tree: Performance report with p = 0.4175

LMBT
2 = 4.4143 LMBT

3 = 6.8847 LMBT
4 = 9.4826 LMBT

5 = 12.1078 LMBT
6 = 14.7352

LMBT
7 = 17.3605 LMBT

8 = 19.9841 LMBT
9 = 22.6069 LMBT

10 = 25.2293 LMBT
11 = 27.8519

LMBT
12 = 30.4745 LMBT

13 = 33.0972 LMBT
14 = 35.7201 LMBT

15 = 38.3430 LMBT
16 = 40.9659

LMBT
17 = 43.5889 LMBT

18 = 46.2118 LMBT
19 = 48.8347 LMBT

20 = 51.4577 LMBT
21 = 54.0806

LMBT
22 = 56.7034 LMBT

23 = 59.3263 LMBT
24 = 61.9492 LMBT

25 = 64.5721 LMBT
26 = 67.1949

Table A.4: Clipped Modified Binary Tree: performance report. Experimental results obtained by
running CMBT algorithm on 10 000 random generated instances.

LCMBT
2 = 4.3423 LCMBT

3 = 6.5558 LCMBT
4 = 9.3585 LCMBT

5 = 12.1492 LCMBT
6 = 15.0521

LCMBT
7 = 17.9785 LCMBT

8 = 21.0389 LCMBT
9 = 24.1297 LCMBT

10 = 27.2045 LCMBT
11 = 30.4554

LCMBT
12 = 33.6398 LCMBT

13 = 36.9191 LCMBT
14 = 40.2243 LCMBT

15 = 43.5920 LCMBT
16 = 47.0131

LCMBT
17 = 50.4536 LCMBT

18 = 53.8787 LCMBT
19 = 57.2679 LCMBT

20 = 60.8329 LCMBT
21 = 64.3700

LCMBT
22 = 67.8123 LCMBT

23 = 71.4436 LCMBT
24 = 75.0234 LCMBT

25 = 78.7210 LCMBT
26 = 82.2599

A.3 Greenberg bounded m-moments

In general, for base b greenberg algorithm the first and second moments are bounded by:

φ(b) =
1

log b

∫ ∞
0
e−x(1 + x)

∞∏
k=1

(1− e−bkx(1 + bkx))x−2 dx (A.10)

Φ(b) =
1

log b

∫ ∞
0
e−x(1 + x)

∞∏
k=1

(1− e−bkx(1 + bkx))x−3 dx (A.11)

Even if the integral is improper, the integrand function goes fast to 0 as k grows. We found

that considering interval (0,40) for numerical integration provides good results.

A.4 CBT Estimate Experimental Distribution

Following table A.5 shows the behavior of CBT Algorithm (section 3.1) for estimation. The

simulation was implemented in matlab. The reported distribution of n̂ fixed n is the result of

averaging 100 000 runs of the CBT algorithm applied on uniformly random generated nodes id

batches.

A.4. CBT ESTIMATE EXPERIMENTAL DISTRIBUTION 61

Table A.5: Experimentally computed CBT Estimate Distributon. Table 1/3

n n̂ : 2 4 8 16 32 64 128 256 512 1024 2048
2 0.499 0.253 0.125 0.061 0.031 0.015 0.007 0.004 0.002 9e-04 4e-04
4 0.189 0.303 0.225 0.133 0.072 0.038 0.020 0.010 0.005 0.002
8 0.055 0.212 0.261 0.201 0.126 0.071 0.037 0.019 0.009 0.005

16 8e-04 0.070 0.209 0.252 0.197 0.125 0.070 0.038 0.019 0.010
32 0.003 0.075 0.213 0.249 0.195 0.123 0.069 0.037 0.018
64 0.004 0.077 0.208 0.250 0.193 0.124 0.069 0.037
128 0.005 0.081 0.208 0.247 0.191 0.123 0.069
256 2e-05 0.006 0.079 0.209 0.246 0.193 0.123
512 0.005 0.081 0.207 0.245 0.193
1024 0.005 0.080 0.208 0.245
2048 2e-05 0.005 0.080 0.209
4096 1e-05 0.006 0.082
8192 1e-05 0.006
16384 2e-05
32768

Table A.5: Experimentally computed CBT Estimate Distributon. Table 2/3

n n̂ : 4096 8192 16384 32768 216 217 218 219 220 221 222

2 2e-04 1e-04 1e-04 1e-05
4 0.001 5e-04 3e-04 1e-04 6e-05 4e-05 2e-05 1e-05
8 0.002 0.001 6e-04 3e-04 9e-05 8e-05 4e-05 1e-05

16 0.005 0.003 0.001 6e-04 3e-04 2e-04 6e-05 2e-05 2e-05
32 0.009 0.005 0.003 0.001 6e-04 3e-04 1e-04 1e-04 6e-05 1e-05 1e-05
64 0.019 0.009 0.005 0.002 0.001 7e-04 3e-04 7e-05 4e-05 2e-05
128 0.037 0.019 0.010 0.005 0.003 0.001 5e-04 4e-04 2e-04 5e-05 4e-05
256 0.068 0.038 0.019 0.009 0.005 0.002 0.001 6e-04 3e-04 6e-05 8e-05
512 0.123 0.071 0.037 0.019 0.010 0.005 0.002 0.001 6e-04 3e-04 2e-04

1024 0.193 0.122 0.070 0.037 0.019 0.010 0.005 0.002 0.001 6e-04 2e-04
2048 0.246 0.194 0.123 0.068 0.037 0.019 0.010 0.005 0.002 0.001 6e-04
4096 0.210 0.246 0.193 0.121 0.068 0.037 0.019 0.009 0.004 0.003 0.001
8192 0.080 0.208 0.247 0.192 0.123 0.070 0.037 0.019 0.009 0.005 0.002
16384 0.006 0.080 0.208 0.247 0.192 0.123 0.069 0.037 0.019 0.010 0.005
32768 0.006 0.079 0.209 0.248 0.194 0.122 0.069 0.036 0.019 0.010

62 APPENDIX A. APPENDIX

Table A.5: Experimentally computed CBT Estimate Distributon. Table 3/3

n n̂ : 223 224 225 226 227 228 229 230 231 232

2
4
8

16
32 1e-05
64 2e-05 1e-05
128 4e-05 1e-05
256 4e-05 1e-05 2e-05 1e-05
512 7e-05 2e-05 1e-05 3e-05 1e-05
1024 2e-04 1e-04 4e-05 2e-05 1e-05
2048 3e-04 1e-04 3e-05 3e-05 3e-05 3e-05
4096 6e-04 3e-04 9e-05 7e-05 1e-05
8192 0.001 8e-04 3e-04 2e-04 8e-05 7e-05 2e-05 3e-05 1e-05
16384 0.002 0.001 6e-04 3e-04 1e-04 1e-04 4e-05
32768 0.005 0.002 0.001 6e-04 3e-04 2e-04 1e-04 1e-05 2e-05 1e-05

A.5 Greenberg Estimate Distribution

In following table A.6 we report how the end up probability (equation 4.16) is distributed among

slots given a batch of size n. Column “n” lists the considered batch sizes. n̂ is the resulting

estimation (without corrections) when ending up in the underneath slot.

For sake of simplicity considered values are all powers of 2.

Datas presented were post-processed to become more accessible:

• values above 10−3 are reported in format (’%1.3f ’);

• values below 10−12 are not presented since are tight close to 0.

• other values are presented in exponential notation and rounded to the first meaningful

digit (’%1.e’)

n̂
2

4
8

16
32

64
12

8
25

6
51

2
10

24
20

48
40

96
81

92
16

38
4

32
76

8
65

53
6

n
sl
ot
:

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

1
1.
00

0
2

0.
75

0
0.
23

4
0.
01

5
2e
-0
4

1e
-0
6

9e
-1
0

4
0.
31

2
0.
50

8
0.
16

6
0.
01

4
3e
-0
4

2e
-0
6

2e
-0
9

8
0.
03

5
0.
35

4
0.
45

0
0.
14

7
0.
01

3
3e
-0
4

2e
-0
6

4e
-0
9

1e
-1
2

16
3e
-0
4

0.
06

3
0.
36

3
0.
42

2
0.
13

8
0.
01

3
3e
-0
4

2e
-0
6

4e
-0
9

2e
-1
2

32
8e
-0
9

0.
00

1
0.
07

8
0.
36

6
0.
40

9
0.
13

4
0.
01

3
3e
-0
4

2e
-0
6

4e
-0
9

2e
-1
2

64
2e
-0
7

0.
00

2
0.
08

4
0.
36

7
0.
40

2
0.
13

1
0.
01

3
3e
-0
4

2e
-0
6

4e
-0
9

2e
-1
2

12
8

7e
-0
7

0.
00

2
0.
08

8
0.
36

7
0.
39

9
0.
13

0
0.
01

3
3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

25
6

1e
-0
6

0.
00

3
0.
09

0
0.
36

8
0.
39

7
0.
13

0
0.
01

3
3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

51
2

2e
-0
6

0.
00

3
0.
09

0
0.
36

8
0.
39

7
0.
13

0
0.
01

2
3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

10
24

2e
-0
6

0.
00

3
0.
09

1
0.
36

8
0.
39

6
0.
12

9
0.
01

2
3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

n̂
12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

21
7

21
8

21
9

22
0

22
1

22
2

n
sl
ot
:

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

20
48

2e
-0
6

0.
00
3

0.
09
1

0.
36
8

0.
39
6

0.
12
9

0.
01
2

3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

40
96

2e
-0
6

0.
00
3

0.
09
1

0.
36
8

0.
39
6

0.
12
9

0.
01
2

3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

81
92

2e
-0
6

0.
00
3

0.
09
1

0.
36
8

0.
39
6

0.
12
9

0.
01
2

3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

16
38
4

2e
-0
6

0.
00
3

0.
09
1

0.
36
8

0.
39
6

0.
12
9

0.
01
2

3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

32
76
8

2e
-0
6

0.
00
3

0.
09
1

0.
36
8

0.
39
6

0.
12
9

0.
01
2

3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

65
53
6

2e
-0
6

0.
00
3

0.
09
1

0.
36
8

0.
39
6

0.
12
9

0.
01
2

3e
-0
4

2e
-0
6

5e
-0
9

2e
-1
2

T
ab

le
A

.6
:
B
as
ic

G
re
en
be
rg
:
A
na

ly
ti
ca
lly

co
m
pu

te
d
es
ti
m
at
e
di
st
ri
bu

ti
on

63

64 APPENDIX A. APPENDIX

A.6 GEGA

From the table below you can see how Table 4.1 changes when T = 20. The density of target

estimates near the “right” one increases and also the difference between the maximum and

minimum allowed value gets larger.
H

H
H

H
HH

c
s

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

0
232

265
300

336
373

411
451

491
531

573
615

658
701

744
788

832
877

922
967

1012
1058

1
304

340
378

417
457

498
539

582
625

668
712

756
801

846
892

938
984

1030
1077

1124
-

2
383

423
464

505
548

591
635

679
724

769
815

861
908

955
1002

1049
1097

1145
1193

-
-

3
471

513
556

600
645

690
736

782
829

876
924

972
1020

1069
1118

1167
1217

1266
-

-
-

4
565

610
656

702
749

796
844

892
941

990
1040

1090
1140

1190
1241

1292
1343

-
-

-
-

5
667

714
762

811
860

909
959

1009
1060

1111
1163

1215
1267

1319
1372

1425
-

-
-

-
-

6
776

826
876

927
978

1029
1082

1134
1187

1240
1294

1348
1402

1457
1511

-
-

-
-

-
-

7
893

945
997

1050
1104

1158
1212

1267
1322

1378
1434

1490
1547

1604
-

-
-

-
-

-
-

8
1018

1073
1128

1183
1239

1296
1353

1410
1468

1526
1584

1643
1703

-
-

-
-

-
-

-
-

9
1153

1210
1268

1326
1385

1444
1504

1564
1624

1686
1747

1809
-

-
-

-
-

-
-

-
-

10
1298

1358
1419

1480
1542

1605
1667

1731
1795

1859
1924

-
-

-
-

-
-

-
-

-
-

11
1455

1519
1583

1648
1714

1780
1846

1914
1981

2050
-

-
-

-
-

-
-

-
-

-
-

12
1628

1695
1763

1832
1902

1972
2044

2115
2188

-
-

-
-

-
-

-
-

-
-

-
-

13
1817

1890
1963

2037
2112

2187
2264

2342
-

-
-

-
-

-
-

-
-

-
-

-
-

14
2030

2108
2187

2267
2348

2431
2515

-
-

-
-

-
-

-
-

-
-

-
-

-
-

15
2271

2356
2443

2532
2621

2713
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

16
2551

2647
2744

2844
2945

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

17
2888

2998
3111

3227
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

18
3314

3448
3587

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

19
3907

4085
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

20
4918

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Table A.7: GEGA: Possible estimates when T = 20 and l = 10

Bibliography

[1] Wen-Tzu Chen, An Accurate Tag Estimate Method for Improving the Performance of

an RFID Anti-collision Algorithm Based on Dynamic Frame Length ALOHA, IEEE

Transactions on Automation Science and Engineering, Vol. 6, No. 1, January 2009, 9-15

[2] Peter Popovski, Frank H.P. Fitzek, Ramjee Prasad, A Class of Algorithms for Collision

Resolution with Multiplicity Estimation, Springer, Algorithmica, Vol. 49, No. 4, December

2007, 286-317

[3] Murali Kodialam, Thyaga Nandagopal, Fast and Reliable Estimation Schemes in RFID

Systems, MobiCom ’06: Proceedings of the 12th annual international conference on Mobile

computing and networking, ACM , September 2006, 322-333

[4] K. Jamieson, H. Balakrishnan, and Y. C. Tay, Sift: a MAC protocol for event-driven wireless

sensor networks, Proc. 3rd European Workshop on Wireless Sensor Networks, Zurich,

Switzerland, February 2006, 260–275

[5] Dimitri Bestekas, Robert Gallager, Data Networks, 2nd Ed., Prentice-Hall, New Jersey,

1992.

[6] Raphael Rom, Moshe Sidi, Multiple Access Protocols: Performance and analysis, Springer

Verlag, 1990. Freely available online for not commercial purposes.

[7] Israel Cidon, Moshe Sidi, Conflict Multiplicity Estimation and Batch Resolution Algorithms,

IEEE Transactions On Information Theory, Vol. 34, No. 1, January 1988, 101-110

[8] Albert G. Greenberg, Philippe Flajolet, Richard E. Ladner, Estimating the Multiplicities of

Conflicts to Speed Their Resolution in Multiple Access Channels, Journal of the Association

for Computing Machinery, Vol 34, No. 2, April 1987, 289-325

[9] J.L Massey, Collision-Resolution Algorithms and Random-Access Communications,

Springer, CISM Courses and Lectures, Vol. 265, Berlin 1981, 73–137

65

66 BIBLIOGRAPHY

[10] J.I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions On

Information Theory, Vol. 25, No. 5, September 1979, 505-515

[11] B. S. Tsybakov, V. A. Mikhailov, Slotted multiaccess packet broadcasting feedback channel,

Probl. Peredachi Inform., Vol. 13, December 1978, 32-59

[12] J.I. Capetanakis, A protocol for resolving conflicts on ALOHA channels, Abstracts of

Papers, IEEE Int. Symp. Info. Th., Ithaca, New York, October 1977, 122-123

	Introduction
	System Model
	Goals
	Content organization

	Batch Resolution
	Binary Tree Algorithms
	Basic Binary Tree
	Example
	Nodes id interpretation
	Tree traversal rules

	Modified Binary Tree
	Clipped Modified Binary Tree
	m Groups Tree Resolution
	Estimating Binary Tree

	Others
	IERC
	Window Based Approaches

	Batch Size Estimate Techniques
	Clipped Binary Tree
	Cidon
	Greenberg
	Base b variant

	Window Based

	Estimate Performance Analysis
	Cidon BSE
	Performance

	Greenberg BSE
	Considerations

	EGA BSE
	Performance

	GEGA BSE
	Performance

	Comparison

	Conclusions
	Appendix
	Probability
	Binary Trees Performance Summary
	Greenberg bounded m-moments
	CBT Estimate Experimental Distribution
	Greenberg Estimate Distribution
	GEGA

	Bibliography

