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It takes 20 years to build a reputation and few minutes of cyber-incident to ruin it.
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Abstract

In recent decades, Industrial Control Systems (ICS) have been affected by a wide
range of cyberattacks that had a huge impact on the real world and people’s safety.
These cyberattacks can compromise Critical Infrastructure (CI) in all countries and all
fields, like agriculture, water supply, and transportation systems. For this reason, CI
protection became an important concept related to the defense against cyberattacks.
In the last few years, one of the main technique to protect these systems are Intrusion
Detection Systems (IDSs), which allow to efficiently detect potential anomalies and
cyberattacks, while being easy to deploy on existing networks.
Nowadays, the techniques implemented inside industrial IDS to achieve the best
performance in the detection of cyber anomalies are based on Machine Learning
(ML) and Deep Learning (DL). However, proposed approaches mostly include black
box methods, with a lack of generalization, and explainability and they require big
computing power. Furthermore, these complex techniques may be specialized in the
detection of well-defined cyberattacks, leaving the door open for other zero-days attacks.
Some recent results show how simpler approaches based on static rules are comparable,
sometimes better, than more complex algorithms.
In this thesis, we propose a Distributed Intrusion Detection System (DIDS) using
transparent and straightforward detectors. The detector is distributed because it
includes all the heterogeneous types of data that characterize the ICS: physical and
network. Network detectors are applied at different points inside the ICS to monitor
the traffic, while the physical detector leverages the information from the Supervisory
Control and Data Acquisition (SCADA) devices as input to find anomalies in the field
devices processes. Indeed, most of the modern industrial IDS focus only on a single
type of data, with the consequences of missing meaningful information. Moreover, our
DIDS is compatible with the majority of industrial protocols.
We tested the proposed methodology on two digital twin scenarios, each one including
six different cyber attacks. The distributed approach demonstrates effectiveness in
correctly identifying all attacks, as opposed to an approach that considers only one
source of information. As a matter of fact, during our experiments, the distributed
detector was able to identify six out of six attacks with zero false detections in both
scenarios.
Finally, after having identified the anomalies, we propose a method based on Random
Forest which allows us to assign the type of attack to each anomaly. This approach
obtains 83% Macro-averaged Precision, 85% Macro-averaged Recall, and 84% Macro-
averaged F1 score.
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Chapter 1

Introduction

In today’s society, critical activities are carried out using sophisticated infrastructures.
The Industrial Control System (ICS) is one of these, which is a class of automation
systems used in manufacturing and industrial facilities to provide control and moni-
toring functions. Different types of ICS exist, such as Supervisory Control and Data
Acquisition (SCADA), Distributed Control System (DCS), or even Programmable
Logic Controller (PLC).
These infrastructures are classified as critical assets to protect services not only in
the physical but also in the digital world. At the national and EU levels, Critical
Infrastructure (CI) protection has become a high priority due to numerous threats.
There are two major types of ICSs: the Operational Technology (OT) part, which
includes hardware and software used for monitoring and managing industrial equipment
(such as PLCs, sensors, and actuators), and the traditional Information Technology
(IT). Their objective is to effectively control the underlying physical processes.
Due to the so-called IT/OT Convergence [1], the two infrastructures have been inter-
connected to facilitate the digitization of processes. The connection of ICSs to the
internet and the incorporation of protocols such as TCP/IP has expanded the attack
surface and made CI vulnerable to a wider range of attacks, leading to successful
and unsuccessful attempts to compromise the behavior of ICSs. However, legacy ICS
devices were usually not designed to implement adequate network security and are
rarely replaced due to high costs and long device lifetimes. Consequently, ICSs are
increasingly targeted by cyberattacks with potentially severe damage. To alleviate this
situation, security mechanisms must be retrofitted for Internet-connected ICS devices.
ICS is considered an instance of Cyber-Physical Systems (CPS). This latter is a
computer system in which a mechanism is controlled or monitored by computer-based
algorithms. In this field, the classical CIA triad (Confidentiality, Integrity, Availability)
is reversed in order of importance: Availability, Integrity, and Confidentiality. Indeed,
reliability becomes the most important goal since, differently from IT systems, for an
ICS it can guarantee human safety and fault tolerance, and so availability does too.
For instance, in a nuclear plant environment, data availability, like the temperature of
the core, is more important than its confidentiality.
Recent examples of attacks include the attempted poisoning of a Florida city’s water
supply by increasing its sodium hydroxide concentration [2]. Given the potential harms
of attacks on ICS, detecting and preventing them promptly is critical. For this reason,
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CHAPTER 1. INTRODUCTION 2

the research has seen a rising interest in detecting intrusions into industrial networks.
Such an Industrial Intrusion Detection System (IIDS) passively monitors processes
to alert about anomalous behavior before any real damage can occur and promises
to provide a non-intrusive, retrofittable, and easily deployable security solution. In
contrast to traditional IDSs known from office or data center environments, IIDSs have
the unique advantage that they can leverage the predictability and repetitiveness of
ICSs to identify even advanced and stealthy attacks.
A promising approach for IIDS is the application of Machine Learning (ML) algorithms.
They can be trained on historic ICS data, thereby learning properties of the physical
system and the attacks that can be performed on it. Hence, ML algorithms supersede
the manual crafting of system models in anomaly detection and signatures in signature-
based detection. Furthermore, the ability of ML to generalize and abstract patterns
allows even operating on new unseen data.
However, classifying ML-based IDSs as a signature or anomaly-based, i.e., determining
whether an IDS learns normal behavior, attack signatures, or both, is non-trivial due
to the not-transparency of the learning process within ML. The powerful underlying
IIDS methodologies yield promising detection performances, however, at the cost
of complexity, requiring resource-intensive operations and hindering generalizability
[3]. Furthermore, the alarms raised by, e.g., artificial neural networks, are often not
explainable, making it challenging to derive concrete actions for mitigating attacks [4].
Therefore, we pose two questions:

1. Is it possible to obtain a transparent, lightweight, and reliable system that is
comparable in terms of performance to black box approaches?

2. Does a distributed IIDS monitoring both the network and physical processes
work better than a sectorized one installed in a single point between these two?

To answer these questions, we developed a Distributed Intrusion Detection System
(DIDS) composed of a network IDS and a physical IDS that both leverage simple
metrics to detect attacks (e.g., maximum and minimum sensor values, whether a
sensor/actuator does not change its value for a shorter or longer time, and so on).
Indeed, with this simple approach, we avoid many of the drawbacks of complex solutions
and we show that they are sufficient to detect most of the attacks employing lightweight
computational operations. With the distributed approach it is possible to combine the
multiple opinions from the network and physical detectors, in this way allowing a wide
overview of the ICS.
Moreover, we implemented another detector to perform attack classification. This latter
uses Random Forest (RF) predictor. We tested each detector on two ICS scenarios
reproduced by a state-of-the-art Digital Twin (DT) which allows us to achieve a high
degree of fidelity in the experiments. Finally, we compared the DIDS with Bidirectional
Long Short Term Memory (BLSTM) model, since, by what Wolsing et al. [5] report in
their paper, BLSTM is one of the detectors with the best performance on the dataset
they used.

1.1 Contributions

The main contributions of this thesis are:
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· The development of a DIDS that leverages multiple IIDSs over a simulated ICS
network and the information from the SCADA devices. Each IIDS conducts
a simple detection task, is “transparent” and anomaly-based, to guarantee a
fast detection time, an explainable detection process, and the possible detection
of zero-days attacks respectively. The DIDS takes in input abstracted ICS
network packets using Industrial Protocol Abstraction Layer (IPAL) [31] to deal
with different types of protocols and, more in general, different types of ICS
infrastructures. These characteristics solve parts of the problems related to the
IIDS: high complexity, not transparency, and sometimes limited detection to a
specific class of attacks and/or ICS.

· Testing of the DIDS on the data produced by two DT scenarios implemented by
Digital HydrAuLic SIMulator (DHALSIM) with high-fidelity and reproducibility
features.

· Evaluation and comparison between the developed distributed detector and
another state-of-the-art not-distributed supervised approach, called Bidirectional
Long Short Term Memory (BLSTM). The performances are measured in terms of
correctly detected attacks and correctly ignored normal executions. The results
show that DIDS has excellent outcomes on the examined attacks and zero false
detected normal executions compared to BLSTM detector.

· The development and performance evaluation of a method to classify the attack(s)
in action on the ICS network. This approach uses RF to fingerprint the traffic
shape and identify occurring attacks. The identification of the ongoing attack
may be useful in performing mitigation strategies against the attacker(s).

1.2 Thesis Organization

This thesis is organized as follows. In Chapter 2, an overview about ICS security,
Inter-Arrival Mean (IAM) and Inter-Arrival Range (IAR) is given. Furthermore, the
ML and Random Forest (RF) that are used in this work are also described. The related
works composed by different Intrusion Detection Systems applied to the ICS field are
presented in Chapter 3. In Chapter 4, an overview of the general architecture of the
implemented Distributed Intrusion Detection System (DIDS) is presented, while the
specific components, jointly with the testbed and launched cyber-attacks, are going to
be discussed in Chapter 5. In Chapter 6 we present the two datasets used to conduct
the experiments, the experimental setup of the DIDS and the classifier, and the data
analysis together with the results of the performed experiments. Chapter 7 concludes
the thesis and proposes future works.



Chapter 2

Background Knowledge

2.1 Industrial System Security

For the purpose of this work, the general understanding of what an Industrial Control
System (ICS) is, what are its basic constituents and the possible cyber-attacks that
can be performed on it, is the base needed to implement an IIDS.

Figure 2.1: ICS general infrascture.

4



CHAPTER 2. BACKGROUND KNOWLEDGE 5

The reference architecture of the ICS, visible in Figure 2.1, is divided into logical
segments with similar functions or similar requirements [6]:

· Enterprise Zone, or IT network, includes the traditional IT devices and systems
such as the logistic business systems and the enterprise network.

· Demilitarized Zone (DMZ) controls the exchange of data between the Control
Zone and the Enterprise Zone, managing the connection between the IT and the
OT networks in a secure way.

· Control Zone, sometimes also referred to as OT network, includes systems and
equipment for monitoring, controlling, and maintaining the automated operation
of the logistic and physical processes.

· Safety Zone includes devices and systems for managing ICS security by monitoring
for anomalies and avoiding dangerous failures.

ICS Devices An ICS include heterogeneous hardware and software components such
as sensors, actuators, physical systems and processes being controlled or monitored,
computational nodes, communication protocols, SCADA systems, and controllers.
These systems are composed of standard network traffic over TCP/IP stack and data
from physical processes and low-level components.
Control can be fully automated or may include a human in the loop that interacts via
a Human Machine Interface (HMI). ICSs are widespread in modern industries (e.g.,
gas pipeline, water treatments) and CIs (e.g., power plant and railway) [6].
Industrial protocols are specifically designed to deal with real-time constraints and
legacy devices in an air-gap environment. Many protocols do not implement any
encryption or authentication mechanism due to these constraints, opening several
vulnerabilities surfaces.
ICS is composed of a wide range of heterogeneous devices and components with a
specific role in the system. Between the main classic ones, i.e., routers and switches,
other specific devices may be used, that can be divided into two main groups:

· Field components, such as sensors, actuators, motor drives and gauges.

· Control system components, such as PLCs, Remote Terminal Units (RTUs),
Intelligent Electronic Devices (IEDs), etc.

PLC is a specialized industrial computer used to automate functions within manufac-
turing facilities. It reads input signals from sensors, executes programmed instructions
using these inputs and orders from supervisory controllers, and creates output signals
that may change switch settings or move actuators. May be specialized for specific
industrial uses with multiple specific inputs and outputs. Processing overhead and
delay in the execution of the PLC functioning may impair a whole production process.
These components are generally connected to the local network to communicate with
supervisory processes.
SCADA devices are used to monitor and control centralized data acquired from different
field sites. Furthermore, they manage the communication between the various devices
and represent the remote connection point for the remote operators with the OT
network. Over the year, SCADA systems protocols moved from proprietary standards
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towards open international standards, resulting in attackers knowing precisely the
protocols. That is why there is a gain of interest in reinforcing industrial control
systems security.
The HMI is a software installed on dedicated flat panel screens that permit operators
to check and monitor the automation processes such as process values, alarms, and
data trends. An operator can use the HMI to send manual commands to controllers,
for instance, to change some values in the production chain.
A Data Historian is a software application used to collect real-time data from the
processes and aggregate them into a database for analysis.
To sum up, controllers such as PLC are mainly used to interact with the Field Devices
that can instead directly operate on the processes. HMI and Data Historian are used
to control and manage the system data. Instead, SCADAs are used to set up all the
connections between different components.

ICS Protocols Several new protocols have been developed to support the specific
requirements of the OT environment, like fault tolerance and reliability. The majority
of these protocols were designed to operate in an air-gapped environment. Therefore
originally, less importance was given to the security aspects with respect to the real-time
constraint. The main industrial protocols are Modbus, DNP3, S7Comm, PROFINET,
IEC 60870, Common Industrial Protocol (CIP) and Open Platform Communications
(OPC).
The communication between the master device and field devices relies on SCADA-
specific protocols built upon different communication technologies like serial communi-
cation and TCP/IP. Between all the existing protocols, we can cite:

· CIP is supported by ODVA. CIP encompasses a comprehensive suite of messages
and services for the collection of manufacturing automation applications – control,
safety, synchronization, motion, configuration and information. It allows users
to integrate these manufacturing applications with enterprise-level Ethernet
networks and the Internet. It is supported by hundreds of vendors around
the world and is media-independent. CIP provides a unified communication
architecture throughout the manufacturing enterprise. It is used in EtherNet/IP,
DeviceNet, CompoNet, and ControlNet.

· There are several Modbus protocols: Modbus RTU and Modbus ASCII are
used in serial communication, often RS232. Modbus TCP is used for TCP
communication. The Modbus protocol uses a synchronous request-response
communication mode. The SCADA master initiates requests/commands stating
the request type and starting address. The field device then responds by sending
the requested data.

· IEC 60870 is a standardized application layer protocol built upon TCP/IP stack.
The protocol allows balanced/unbalanced communications. In the unbalanced
mode, only the master can initiate communications to field devices. On the
contrary, both the master and field devices can initiate communications in
the balanced mode. This protocol allows both synchronous and asynchronous
messages. The field devices can send Spontaneous and Periodic messages from
predefined addresses, called Information Object Address (IOA).
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ICS Cyber-attacks In a CPS scenario there are two possible attack vector surfaces
on the system:

· Network-based attacks, targeting packets, protocols or routing policies. The
most common examples are Reconnaissance Attack, Man-In-The-Middle (MITM)
Attack, Injection Attack, Replay Attack, and Denial of Service (DoS).

· Physical-based attacks, aimed at corrupting the physical process of the devices.
To achieve these attacks, the attacker could have previously obtained access
to the system with one or more of the network attacks previously described.
An example is Device Manumission which physically tamper the field device to
compromise the data recorded to induce wrong measurements in the system.

Sometimes, these two attack categories’ goals may also converge or combine to reach a
specific target.

ICS Digital Twin A Digital Twin (DT) is a virtual model designed to accurately
reflect a physical object. As explained by Alcaraz et al. [39], the purpose of a
DT is to use specification-based techniques, mathematical models, and application
programming interfaces to represent physical assets through digital assets. In our thesis,
the considered assets are the ones inside an ICS. The main aim is to anticipate errors,
variations, and relevant deviations that may change a system’s natural behavior. All
the DT components run on servers and/or virtualized resources. In turn, these servers
are connected to the physical world in order to interact with real-world components.
A common subdivision of a DT is provided by Grieves [51] and Alcaraz et al. [39]:

· Physical space: comprises the real-world ICSs composed of sensors, actuators,
and controllers.

· Digital space: simulates physical assets using digital assets capable of representing
states, conditions, and configurations, and making decisions regarding those
assets.

· Communication space: creates the connection between the digital and the physical
spaces. The DT is able to interfere in the production operations using information
flows and processes.

Data from physical assets is processed by digital assets, which create new useful
information that may be sent back to physical assets. As a result, the virtual and
physical worlds are connected thanks to a digital thread.

Intrusion Detection System The Intrusion Detection System (IDS)s aim is to
identify malware, malicious access, or any kind of attack to defend internal networks.
They represent one major research problem in cyber security and as there are several
risks concerning networks there are different systems built to secure an environment
from external attacks. The IDSs provide a wall of defense as they can be used to detect
and analyze types of malicious network communications and computer systems usage,
whereas conventional firewalls cannot perform this task.
The IDS specialized in the detection of intrusions inside an ICS are called Industrial
Intrusion Detection System (IIDS). In contrast to traditional IDSs known from office
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or data center environments, IIDSs have the unique advantage that they can leverage
the predictability and repetitiveness of ICSs to identify even advanced and stealthy
attacks. IIDS can be classified as:

· Network Intrusion Detection System (NIDS) analyzes incoming network traffic.

· Physics-based Intrusion Detection System (PIDS), in OT world, monitors ab-
normal behaviors at the process level controlling the reported values of different
field devices, like sensors and actuators.

· Distributed Intrusion Detection System (DIDS) combines some of the previous
types of IDSs to have detectors at multiple points and to improve the performance.

It is also possible to classify IDS by detection approach: signature-based IDSs, which
detect attacks using pre-configured signatures, e.g., a specific sequence of network
packets, and anomaly-based IDSs that attempt to model the expected behavior of a
system and consider deviations as potential intrusion, e.g., a control parameter outside
physical bounds. Thus, while signature-based IDSs can only identify known attacks,
anomaly-based IDSs promise to also detect novel attacks.
Hybrid IDS is a technique that combines signature-based and anomaly-based IDSs
to resolve the disadvantages of the two legacy IDSs. Indeed, signature-based IDS
performance is inaccurate when applied to zero-day attacks. Furthermore, a small
modification to an attack would change its signature, thus making it difficult to identify
an attack by a signature-based IDS. In the case of anomaly-based IDSs, a ML algorithm
models the normal behavior of the network and identifies everything outside of the
learned model as an anomaly.

2.2 Machine Learning

Since this research makes use of RF, a supervised ML algorithm, it is required to have
a basic knowledge of what ML is and to discuss some of its basic elements.
Machine Learning is a branch of Artificial Intelligence (AI) with the aim of creating
systems that learn and improve performance based on the data they use. It is used for
solving problems by helping machines ’discover’ their ’own’ algorithms, without the
help of any human-developed algorithms. The development of these kind of algorithms
by human programmers would be cost-prohibitive.
The main goal of ML is, given a collection of samples, called training data, to be able
to make predictions about novel, but incomplete, samples. Based on the learning
paradigms, ML algorithms can be classified into different categories:

· Supervised Learning uses labeled data to train the predictors. In labeled data,
the output is given with the sample. The model just needs to map the inputs to
the respective outputs.

· Unsupervised Learning uses unlabeled data to train the predictors. Unlabeled
data doesn’t have a fixed output variable. The model learns from the data,
discovers the patterns and features in the data, and returns the output.

· Reinforcement Learning trains a machine to take suitable actions and maximize
its rewards in a particular situation. It uses an agent and an environment to



CHAPTER 2. BACKGROUND KNOWLEDGE 9

produce actions and rewards. The agent has a start and an end state. However,
there might be different paths to reaching the end state, like a maze. In this
learning technique, there is no predefined target variable.

To establish how good our ML is for a certain task we use the loss function. There
are different loss functions based on the task we want the ML model to conduct. To
compute the loss function we would go over each training example in our dataset,
compute the output y for that sample, and then compute the specific loss. If this loss
is big, then our network doesn’t perform very well.
We speak about overfitting when a predictor has excellent performance on the training
set, but has very poor performance on the true “world”. Intuitively, overfitting occurs
when our model fits the training data “too well”.
As stated above, in general, the best performing and state-of-art models in the ML
and Deep Learning (DL) fields are highly resource-consuming, complex, and black-box.
For the purpose of this work, the research and use of light and explainable models
are fundamentals to efficiently deploy them on cheap and low power consumption
devices and have a better understanding of why the detectors found an ongoing attack,
respectively.

2.2.1 SMOTE

Imbalanced classification involves developing predictive models on classification datasets
that have a severe class imbalance, that is, a lot of samples for some categories, and
very few samples for some others categories. Most ML techniques will have poor
performance on the minority class, although typically its performance on the minority
class is important. That is our case when we are going to deal with the Attack
Classification task: we have a lot of samples related to normal network traffic, and not
so many network traffic samples related to attacks.
Synthetic Minority Over-sampling TEchnique (SMOTE) is a type of data augmentation
for the minority class that synthesizes new examples from the existing ones described
for the first time by Chawla et al. [38]. This is a type of data augmentation for tabular
data and can be very effective. SMOTE works by selecting examples that are close
in the feature space, drawing a line between the examples in the feature space, and
drawing a new sample at a point along that line [37].
Specifically, a random example from the minority class is first chosen. Then, k of
the nearest neighbors for that example are found. A randomly selected neighbor is
chosen and a synthetic example is created at a randomly selected point between the
two examples in feature space. This procedure can be used to create as many synthetic
examples for the minority class as are required.

2.2.2 Decision Tree

Digital Twin (DT) is a non-parametric supervised learning tree-like model that is
mostly used for classification and regression problems. It is a predictor that predicts
the label associated with an instance x by traveling from a root node of a tree to a
leaf. At each node on the root-to-leaf path, the successor child is chosen on the basis
of a splitting of the input space. Usually, the splitting is based on one of the features
of x or on a predefined set of splitting rules. A leaf contains a specific label.
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A popular splitting rule at internal nodes of the tree is based on thresholding the value
of a single feature. In such cases, we can think of a Decision Tree as a splitting of the
instance space into cells, where each leaf of the tree corresponds to one cell. So, a tree
with k leaves can shatter a set of k instances.
To avoid overfitting in Decision Tree, we aim at learning a decision tree that on one
hand fits the data well while on the other hand is not too large. So, we should prefer
smaller trees over larger trees.
Decision Tree learning algorithms are based on heuristics such as a greedy approach,
where the tree is constructed gradually, and locally optimal decisions are made at the
construction of each node. Such algorithms cannot guarantee to return the globally
optimal Decision Tree but tend to work reasonably well in practice.
A general framework for growing a Decision Tree is as follows. We start with a tree
with a single leaf (the root) and assign this leaf a label according to a majority vote
among all labels over the training set. We now perform a series of iterations. On
each iteration, we examine the effect of splitting a single leaf. We define some “gain”
measure that quantifies the improvement due to this split. Then, among all possible
splits, we either choose the one that maximizes the gain and perform it, or choose not
to split the leaf at all.
The training procedure of a Decision Tree uses a gain function which given a training
set and feature, evaluates the gain of a split of the tree according to the feature. There
are several gain measures:

· The simplest definition of gain is the decrease in training error.

· Another popular gain measure is the Information Gain or Entropy, that is, the
difference between the entropy of the label before and after the split: −

∑︁
i p

2
i ·

log2(pi), where pi is the probability of class i. The Entropy depicts the disorder
of the features with the target. The focus is on purity and impurity in a node.

· The Gini Index measures the probability of a random instance being misclassified
when chosen randomly: 1−

∑︁
i p

2
i , where pi is the probability of class i. The Gini

Index varies between 0 and 1, where 0 represents the purity of the classification
and 1 denotes the random distribution of elements among various classes. A Gini
Index of 0.5 shows that there is an equal distribution of elements across some
classes.

2.2.3 Deep Learning

Deep Learning (DL) is the branch of ML which is based on Artificial Neural Networks
(ANN) architecture. An ANN uses layers of interconnected nodes called neurons that
work together to process and learn from the input data.
Deep feedforward networks are the quintessential DL models. The goal of a feedforward
network is to approximate some function f∗ [46]. A feedforward network defines a
mapping y = f(x, θ) and learns the values of the parameters θ that result in the best
function approximation. These models are called feedforward because information flows
through the function being evaluated from x, through the intermediate computations
used to define f , and finally to the output y. There are no feedback connections in
which the outputs of the model are feedback into itself. When feedforward neural
networks are extended to include feedback connections, they are called Recurrent
Neural Networks (RNN), and we are going to present it in subsection 2.2.4.
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ANNs are built on the principles of the structure and operation of human neurons.
ANN’s input layer, which is the first layer, receives input from external sources and
passes it on to the hidden layer, which is the second layer. Each neuron in the hidden
layer gets information from the neurons in the previous layer, computes the weighted
total, and then transfers it to the neurons in the next layer. These connections are
weighted, which means that the impacts of the inputs from the preceding layer are
more or less optimized by giving each input a distinct weight. These weights are then
adjusted during the training process to enhance the performance of the model.
The whole ANN is composed of artificial neurons, also known as units, which are
arranged in a series of layers. The complexities of neural networks will depend on the
complexities of the underlying patterns in the dataset whether a layer has a dozen
units or millions of units. Commonly, ANN has an input layer, an output layer as well
as hidden layers.
Each neuron receives input from the previous layer neurons or the input layer. The
output of one neuron becomes the input to other neurons in the next layer of the network,
and this process continues until the final layer produces the output of the network.
Then, after passing through one or more hidden layers, this data is transformed into
valuable data for the output layer. Finally, the output layer provides an output in the
form of an ANN’s response to the data that comes in.

Figure 2.2: Fully Connected ANN [47].

Units are linked to one another from one layer to another in the bulk of Neural Networks.
Each of these links has weights that control how much one unit influences another.
The Neural Network learns more and more about the data as it moves from one unit to
another, ultimately producing an output from the output layer. The Figure 2.2 shows
a fully connected ANN example.
In the process of training an ANN, we want to start with a bad-performing neural
network and wind up with a network with high accuracy. In terms of loss function, we
want our loss function to be much lower at the end of training. Improving the network
is possible because we can change its function by adjusting weights. The problem of
training is equivalent to the problem of minimizing the loss function.
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One of the simplest algorithms that optimize loss functions is called Stochastic Gradient
Descent. All the algorithms that optimize loss functions in neural networks are based
on backpropagation. Backpropagation is a gradient-based algorithm that performs
feedforward and backward passes to adjust a neural network model’s parameters, aiming
to minimize the loss function called Mean Squared Error (MSE). Gradient-based means
that it is not only using the information provided by the function but also by its
gradient. The MSE is equal to:

1

n

n∑︂
i=1

(Yi − Ŷ i)
2. (2.1)

Where Yi and Ŷ i are the correct label and predicted label related to the sample Xi,
respectively.

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a family of neural networks for processing
sequential data, that is, a sequence of values x1, ..., xn. RNN can scale to much longer
sequences than would be practical for networks without sequence-based specialization.
Most RNNs can also process sequences of variable length.
Parameter sharing makes it possible to extend and apply the model to examples of
different lengths and generalize across them. Such sharing is particularly important
when a specific piece of information can occur at multiple positions within the sequence.
A related idea is the use of convolution across a 1-D temporal sequence. This con-
volutional approach is the basis for time-delay neural networks. The convolution
operation allows a network to share parameters across time but is shallow. The output
of convolution is a sequence where each member of the output is a function of a small
number of neighboring members of the input. The idea of parameter sharing manifests
in the application of the same convolution kernel at each time step. Recurrent networks
share parameters in a different way. Each member of the output is a function of the
previous members of the output. Each member of the output is produced using the
same update rule applied to the previous outputs. This recurrent formulation results
in the sharing of parameters through a very deep computational graph.
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Figure 2.3: RNN that produce an output at each time step and have recurrent connections
between hidden units [46].

Figure 2.4: RNN that produce an output at each time step and have recurrent connections
only from the output at one time step to the hidden units at the next time step
[46].
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Figure 2.5: RNN with recurrent connections between hidden units, that read an entire
sequence and then produce a single output [46].

There are a wide variety of RNN. Here we give some examples:

· Recurrent networks that produce an output at each time step and have recurrent
connections between hidden units, illustrated in Figure 2.3.

· Recurrent networks that produce an output at each time step and have recurrent
connections only from the output at one time step to the hidden units at the
next time step, as shown in Figure 2.4.

· Recurrent networks with recurrent connections between hidden units, that read
an entire sequence and then produce a single output, visible in Figure 2.5.

The computation in most RNNs can be decomposed into three blocks of parameters
and associated transformations:

1. From the input to the hidden state.

2. From the previous hidden state to the next hidden state.

3. From the hidden state to the output.

It is also possible to introduce depth in each of these three blocks, creating a Deep RNN.
We can think of the lower layers in the hierarchy inside the RNN graph as playing a
role in transforming the raw input into a representation that is more appropriate, at
the higher levels of the hidden state.
Also RNN uses backpropagation and the information about the gradient to minimize
the MSE during the training phase.
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Figure 2.6: Computation of a typical bidirectional RNN [46].

Bidirectional RNNs All of the recurrent networks we have considered up to now
have a “causal” structure, meaning that the state at time t only captures information
from the past, x1, ..., xt−1, and the present input xt. However, in many applications,
we want to output a prediction of yt which may depend on the whole input sequence.
Bidirectional RNN were invented to address that need.
As the name suggests, bidirectional RNNs combine a RNN that moves forward through
time beginning from the start of the sequence with another RNN that moves backward
through time beginning from the end of the sequence. Figure 2.6 illustrates the typical
bidirectional RNN. The output units compute a representation that depends on both
the past and the future.

Long Short-Term Memory When training a vanilla RNN using backpropagation,
gradients propagated over many stages tend to either vanish (most of the time) or
explode (rarely, but with much damage to the optimization). This is known as the
mathematical challenge of learning long-term dependencies in RNN. Even if we assume
that the parameters are such that the recurrent network is stable, the difficulty with
long-term dependencies arises from the exponentially smaller weights given to long-term
interactions compared to short-term ones.
Long Short Term Memory (LSTM) network is a RNN, aimed to deal with the vanishing
gradient problem. It aims to provide a short-term memory for RNN that can last
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thousands of timesteps.
As visible in Figure 2.7, a common LSTM unit is composed of a cell, an input gate, an
output gate, and a forget gate. The cell remembers values over arbitrary time intervals
and the three gates regulate the flow of information into and out of the cell:

· Forget gates decide what information to discard from a previous state by assigning
a value between 0 and 1.

· Input gates decide which pieces of new information to store in the current state,
using the same system as forget gates.

· Output gates control which pieces of information in the current state to output
by assigning a value from 0 to 1 to the information, considering the previous and
current states.

Selectively outputting relevant information from the current state allows the LSTM
network to maintain useful, long-term dependencies to make predictions, both in
current and future time steps.

Figure 2.7: Block diagram of the LSTM recurrent network “cell.” [46].

2.3 Detection Approaches

In this section, we are going to describe the specific math and detection models that
are the basic knowledge to understand each detector used inside the DIDS.

2.3.1 Inter-Arrival Mean and Range Models

Sampling distribution of the sample mean and sample range are two metrics widely
used in statistical process control to monitor the stability of a production process. In
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this work, the implemented NIDSs used these two concepts inside the metrics called
Inter-Arrival Mean (IAM) and Inter-Arrival Range (IAR).
As explained by Lin et al. [30], assume to take a few sample sets of a certain attribute
from W items, e.g., height of students, as X = {x1, ..., xW }. The sample mean is
defined as:

X̄ =

W∑︂
i=1

xi

W
. (2.2)

It can provide a measure of central tendency. The distribution of X̄ is called the
sampling distribution of the sample mean. For a finite number of sample means X̄j ,
j = 1, ..., k, it is possible to compute their center of distribution as

X̂ =

k∑︂
j=1

X̄j

k
. (2.3)

Based on CLT, for any population with mean µ and standard deviation σ, the sampling
distribution of the sample mean X̄ tends toward being normally distributed when the
sample size increases, with:

µX̄ = µ. (2.4)

σX̄ =
σ

W
. (2.5)

Where σX̄ is the standard deviation of the population when the sample size increases.
The sample range can state the natural variation in a process, and it is computed as:

Rj = max(Xj)−min(Xj). (2.6)

The distribution of Rj for finite sets of Xj is called sampling distribution of the sample
range. The center of this distribution is:

R̄ =

k∑︂
j=1

Rj

k
. (2.7)

People in this area usually assume the population they take samples from follows a
normal distribution. Under this assumption, one can estimate the standard deviation
σR with R̄ and sample size. However, we do not make any specific assumption on the
distribution of the population, but instead we try to estimate it.
Sample mean and sample range display variations from their historical distribution
when the process is stable. If the variations exceed predefined thresholds, Upper
Limitation (UL) and Lower Limitation (LL), it means the system conditions changed.
In this work, we use mean and range to model the message inter-arrival times. For the
sake of simplicity, we refer to the sampling distribution of the sample mean and the
sample range as the mean model and the range model in the rest of the paper.
For every event set E = {e1, ..., em+1}, there exists a corresponding set of inter-arrival
times T = {t1, ..., tm + 1} in the dataset. Now, we show how to build mean model and
range model.
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Mean model Instead of computing the center of the sampling distribution of the
sample mean X̂ as in equation 2.3, we use CLT to construct the mean model based
on equations 2.4 and 2.5. Since the µ and σ are unknown, we estimate them with the
mean and standard deviation of the subpopulation T with size m:

µ ≈ T̄ =
1

m

m∑︂
i=1

ti. (2.8)

σ ≈ ST =

⌜⃓⃓⎷ 1

m− 1

m∑︂
i=1

(ti − T̄ )2. (2.9)

We set detection thresholds UL as µX̄ +NσX̄ , while LL as µX̄ −NσX̄ , where N is a
performance parameter called threshold level. Note that the LL needs to be positive
to provide detection capability since all the inter-arrival times are positive.

µX̄ −NσX̄ > 0. (2.10)

Equations 2.9, 2.8 and 2.10 imply that the LL is positive when the sample set size
W > (Nσ

µ )2.

Range model We continue to use the selected sample size W and event set E.
For every W + 1 events, there exists a set of inter-arrival times T j = {tj1, ..., t

j
W },

j = 1, ..., ⌊m+1
W+1⌋. We calculate the sample range Rj using equation 2.6, the center of

the sampling distribution of the sample range R̄ is computed using equation 2.7 and
using the equation 2.9 with R̄ instead of T̄ we estimate σR. The detection threshold
UL is defined as R̄+NσR, while we set LL as the smallest event inter-arrival time in
the learning period since the range model can be asymmetric.

2.3.2 Random Forest

Another way to reduce the danger of overfitting in Decision Tree is by constructing an
ensemble of trees called Random Forest (RF). It is a supervised ML model that, as
Decision Tree, is widely used in classification and regression tasks. RF is a classifier
consisting of a collection of Decision Trees, where each tree is constructed by applying
an algorithm on the training set and an additional random vector sampled i.i.d. from
some distribution. The prediction of the random forest is obtained by a majority vote
over the predictions of the individual trees [7], as visible in Figure 2.8.
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Figure 2.8: RF’s voting outcome example [41].

A Random Forest is based on an ensemble technique called Bootstrap Aggregation (or
Bagging). The algorithm consists on repeatedly taking (with replacement) a number
of random records from the dataset where individual decision trees are constructed for
each sample. Each decision tree will generate an output and the final result consists on
majority voting or averaging, for classification and regression respectively. Due to the
fact that Random Forest is an ensemble method composed of a multitude of individual
classifiers, it is slower than a single decision tree but better avoids overfitting and in
general, is a more stable model.

2.3.3 Bidirectional Long Short-Term Memory

The Bidirectional Long Short Term Memory (BLSTM) basically is a bidirectional RNN
in which its units are LSTM units, as visible in Figure 2.9.

Figure 2.9: Example bidirectional LSTM network [48].

BLSTM is usually composed of an embedding layer, a bidirectional LSTM, a dropout
layer, the REctified Linear Unit (RELU), a dropout layer, and sigmoid activation
functions. The main purpose of the embedding layer is to represent the input so it can
be incorporated into the model and be better adapted to the corresponding tasks. The
dropout layer is used for regularization on DL which prevents model overfitting, while
RELU and sigmoid are two well-known activation functions.
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Literature Review

Intrusion detection is a well-formed problem for IT and OT systems. The area of
anomaly and intrusion detection in ICS has been widely studied. Extensive surveys
are devoted to classifying research in this field [6] [8] [9]. Our review of related works
focuses on NIDS, PIDS, and DIDS to detect cyber-attacks.

3.1 Physics-based Intrusion Detection System

Some approaches are based on the operational data from the physical system. Based
on the data collected, a model is trained on the normal and abnormal behavior of the
process. The trained model is then placed in the knowledge base of IDS. It is later
used by the detector to detect intrusions.
Traditional PIDS rely on statistical techniques [16], such as the mean and standard
deviation of sensor readings. Lately, ML techniques are being used extensively as
physics-based approaches to secure ICS. To develop a PIDS, some studies used au-
toregressive models [11], [12] or linear dynamical system modeling [13], [14], [15] for
system state prediction. Unfortunately, both approaches’ assumptions include linearity
of the modeled system which is not typically fulfilled in ICSs. Goh et al. [22] used an
unsupervised learning approach based on Recurrent Neural Networks (RNNs) and the
Cumulative Sum method to identify anomalies in a replicate of a water treatment plant.
Junejo et al. [24] proposed a behavior-based ML approach for intrusion detection that
models the physical process of the CPS to detect any anomalous behavior or attack.
Raman et al. [28] presents a SCADA specific Probabilistic Neural Network (PNN)-
based anomaly detector using a supervised approach to detect anomalies possibly
resulting from attacks. Wolsing et al. [5], considering the repetitive nature of physical
processes in IIDSs, propose simpler detection methods, like checking the value of the
processes is between a maximum and minimum range, as an alternative of complex
models with all their disadvantages.

3.2 Network-based Intrusion Detection System

Anthi et al. [17], Anton et al. [18] and Colelli et al. [19] present some IDSs which
uses different supervised approach, like Support Vector Machine (SVM), to map all

20
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features into a vector space and derive decision boundaries to separate individual
classes, and RF to split a dataset’s features into similar classes to detect cyber-attacks
in industrial control systems networks. Lai et al. [20], Feng et al. [21] used Neural
Networks (NNs) to classify the features of network packets as benign or malicious.
Indeed, ML-based approaches increase utility compared to deterministic signature-
based intrusion detection through (i) generalizability across domains and (ii) the ability
to identify novel, not previously seen, anomalies. Kharitonov et al. [25] implement
a semi-supervised algorithm allowing to train models without any knowledge about
future attacks. The periodic behavior of industrial plants allows the building of a
normal model of the communication of network participants. Perez et al. [26] assesses
the performances of ML techniques such as SVM, RF and BLSTM. Grammatikis et
al. [27] implements a decision tree classifier responsible for recognizing specific DNP3
cyberattacks, and an autoencoder DNN capable of detecting DNP3 anomalies either
due to a potential security violation or an electricity disturbance. Lin et al. [30] note
that SCADA traffic exhibits persistent and stable communication patterns, so studied
three attack scenarios formed by valid requests only and then proposed an anomaly
detection system, which uses sampling distribution of sample mean and sample range
to model the timing of repeated events.

3.3 Distributed Intrusion Detection System

Homayouni et al. [23] developed an LSTM-Autoencoder-based approach to finding
anomalies in multivariate time-series data. Nevertheless, their approach is supervised,
and this means that it works with a strict set of well-defined attacks. In [34], a security
vendor presents a commercial solution able to monitor IT traffic, OT traffic and process
state, combining behavior and signature detection. The implementation details were
not disclosed to the scientific community, which made it difficult to study and compare.
KingFisher, an IDS architecture implemented by Bernieri et al. [35], uses unsupervised
learning detection combined with VAE, that is the probabilistic version of the classic
Autoencoder. However, there is still too much gap with a realistic scenario in which
more attacks can be in place, and deep studies were not conducted to prove the real
effectiveness of KingFisher.
Our work combines more simple and understandable metrics used by Wolsing et al.
[5] and Lin et al. [30] to detect the presence of cyber-attacks in both the network
traffic and operational data source. This allows the creation of a not-too-complex,
transparent, and high-reliability anomaly detector, and thanks to a RF model, it is
also possible to classify the well-known attacks on the network. Table 3.1 shows the
different features and data sources used in all the previously mentioned works, and the
features implemented in each work. We can see that our DIDS is the only one that
considers two sources of information for the detection, identifies the ongoing attack by
fingerprinting it, and uses simple detection methods.
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Table 3.1: Papers comparison on the features implemented: network traffic or operational
data source and Fingerprint of the ongoing Attacks (FA).

Papers
Features Network Operational FA

Ye et al. [16] x D x
Hadžiosmanović et al. [11] x D x
Mashima et al. [12] x D x
Mishra et al. [13] x D x
Murguia and Ruths [14] x D x
Mo et al. [15] x D x
Goh et al. [22] x D x
Junejo et al. [24] x D x
Raman et al. [28] x D x
Wolsing et al. [5] x D x

Anthi et al. [17] D x x
Anton et al. [18] D x x
Colelli et al. [19] D x x
Lai et al. [20] D x x
Feng et al. [21] D x x
Kharitonov et al. [25] D x x
Perez et al. [26] D x x
Grammatikis et al. [27] D x x
Lin et al. [30] D x x

Homayouni et al. [23] D D x
Nozomi Networks [34] D D x
Bernieri et al. [35] D D x

Our DIDS D D D



Chapter 4

Project Overview

In this chapter, we are going to give a general overview of the components implemented
for our thesis.
The purpose of this thesis is to prove that a DIDS that monitors different points in
the network and considers both physical and network data, has an advantage over the
traditional state-of-the-art detector specialized in a single type of data in a single point.
For this reason, the DIDS developed checks all of these two sources of data. The DIDS
consists of the following modules:

· Attack Detector, this module is used to detect anomalies caused by cyberattacks.
It is composed of the following subcomponents:

1. Preprocessor, is responsible for preprocessing operational and network data
coming from the sensors, actuators, and network devices to convert them
into a common format that is acceptable by the IIDSs.

2. Network Detector, it consists of two or more NIDSs scattered in the network
to detect if the system is under attack.

3. Physical Detector, it uses four PIDS to detect if the system is under attack.

4. Combiner, it combines the results of NIDS and PIDS to decide whether to
raise an alarm.

· Attack Identifier, this component fingerprints the attacks’ patterns with the
goal of classifying them. It is composed of the following subcomponents:

1. Preprocessor, collects traffic and splits it into bi-directional streams. It
starts after the Attack Detector raises an alarm. It also cleans the data to
give them in input to a ML model.

2. Attack Classifier, identifies the specific attack that is in action given the
statistical network traffic features.

23
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Figure 4.1: DIDS architecture and execution flow divided into the different modules.

In Figure 4.1 it is possible to see the pipeline of our thesis project and the order of the
steps taken from the detector preprocessing phase to the classification phase. After
the Attack Detector Preprocessor gets the network traffic and the operational data, it
does its job and passes them in a JSON format to the Physical and Network Detectors,
which look for the presence of attack(s). Their results are passed to the Combiner,
which has to decide whether to raise an alarm effectively. If the alarm is raised, then the
Combiner wakes up the Attack Identifier Preprocessor, which preprocesses the network
traffic another time. The cleaned data are given in input to the Attack Classifier, which
finds what is the identifier of the ongoing attack. Notice that the Network Detector
and Physical Detector may run in parallel to optimize the work.
In the following section, we overview each module in detail. Except for the Attack
Classifier, all the detection techniques used inside the DIDS are unsupervised.

4.1 Attack Detector

When an attack is happening inside the ICS, the Attack Detector module’s goal is to
recognize that something ambiguous is happening. In the following paragraphs, we are
going to explain how each subcomponent contributes to reaching this objective.

Preprocessor The responsibility of the Preprocessor is to preprocess operational
and network data so that it is possible to give them in input to the detectors contained
in the DIDS. For this reason, the Preprocessor is composed of two subcomponents:
IPAL Transcriber and Physical Preprocessor.
Industrial Protocol Abstraction Layer (IPAL) Transcriber is a tool developed by Wols-
ing et al. [31] which allows a common representation for many industrial protocols to
uniform the preprocessing. Concerning the PIDS, the Physical Preprocessor prepro-
cesses the information about the sensors and actuators with the same purpose as IPAL
Transcriber.
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During the conversion, the data are cleaned, to correct or remove corrupted/inaccurate
records from the dataset, and labeled.

Network Detector After the preprocessing phase, we have common formatted files.
So, to detect the presence of attacks in the ICS, we give in input the converted files
from the network traffic data to two NIDSs using two detection techniques: IAM and
IAR. They are going to be better explained in section 5.3.2.

Physical Detector Other than NIDSs, we want to monitor the physical processes
to have a better estimate of what is happening in the system. To do that, we used
four detection techniques for PIDS: MinMax, ST, GT, HM.
The preprocessed information that contains, for each iteration, all the actual values
of all the sensors and actuators, are given in input to physical detectors, which apply
their detection techniques and they will say if there is the presence of attacks or not
examining each record of values. They are going to be better explained in section 5.3.3.

Combiner To combine the results from all the IIDSs inside the DIDS, a methodology
is needed. To tackle this task, the Combiner assigns a weight to each detector. The
weights of the IIDSs which found an attack during the detection phase are summed
all together, and the final sum is compared with a threshold. If it is greater than the
threshold, an alarm is raised and the Attack Identifier module starts its execution,
otherwise, nothing happens.

4.2 Attack Identifier

Each attack leaves traces inside the ICS, which the Attack Identifier module captures
to fingerprint and identify it. In the following paragraphs, we are going to explain how
each subcomponent contributes to reaching this objective.

Preprocessor The first step to classify the ongoing attack is to use CICFlowMeter
[40]. Formerly known as ISCXFlowMeter, it is an Ethernet traffic Bi-flow generator
and analyzer for anomaly detection that has been used in many Cybersecurity datasets.
In this project, CICFlowMeter is used to create a file containing statistical features of
bidirectional flows in the network traffic. After the features are obtained, this component
is responsible for cleaning the data to correct or remove corrupt or inaccurate records
from the dataset. Finally, the data are labeled.

Attack Classifier This module takes in input the preprocessed statistical network
traffic features to discriminate the traffic. This thesis makes use of RF to classify the
network traffic as under a specific attack or not.



Chapter 5

Implementation

As stated by Conti et al. [6], there are different possible classifications of a testbed:
physical, virtual, or hybrid testbed.
Both the network and physical layers may be configured using real hardware and soft-
ware with physical testbeds. Researchers can use them to collect realistic measurement
variation and latencies. However, physical testbeds are expensive both in construction
and maintenance. They generally have a long building time, and they may not provide
a safe execution of dangerous physical processes (e.g., the nuclear sector).
For this reason, we opted to use a DT (i.e., virtual testbed) to achieve a high-fidelity
simulation. As opposed to physical testbeds, virtual testbeds use software simulations
and emulation to reproduce the entire network and all its components. Due to the
virtualized environment, it is difficult to simulate high-fidelity physical processes with a
virtual testbed, other than using DTs. However, dangerous processes can be simulated
in a laboratory. Furthermore, they are easy to update and upgrade, making them
flexible and extensible.
In the next sections, we are going to discuss the used virtual testbed DHALSIM, the
conducted cyber-attacks on it, and the implementation details of each module seen in
chapter 4.

5.1 DHALSIM

The testbed used for the experiment is Digital HydrAuLic SIMulator (DHALSIM). As
stated by Murillo et al. [33], DHALSIM is a cyber-physical simulation and emulation
tool for smart Water Distribution System networks. The choice of this emulator is
motivated by the fact that it provides realistic ICS traffic corresponding to high-fidelity
simulation of physical processes, effects of network traffic faults, and cyber-attacks
on distributed control and physical processes. The virtual testbed provides a way to
generate different network topologies and offers a modeling platform on which Digital
Twin (DT) of both physical and cyber layers could be developed.
As explained by Murillo et al. [33], the physical simulation tool used by DHALSIM is
EPANET [42], while the network emulation tools are MiniCPS [43] and Mininet [44].
EPANET is used to model the physical layer of a smart water network, while Mininet
and MiniCPS are used to create virtual networks. Mininet is a platform to create
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virtual networks inside a single host machine. These virtual networks can connect
virtualized guests. MiniCPS is built on top of Mininet and provides an implementation
of two popular industrial communication protocols: ENIP/CIP and Modbus.
The experiments we performed were applied on two different ICS infrastructures
reproduced with DHALSIM: Anytown and KY15. These latter two are examples
of water distribution systems chosen by the authors of the simulator. They have in
common the general structure of the network, as visible in Figure 5.1, which consists
always of a star topology with one central router (Router0) and a variable number of
subnetworks connected to it. Each subnetwork is composed of a router connected to
the central router and to a switch, this latter connected to a PLC, that is connected to
a variable number of sensors and actuators. Also, the number of iterations used in each
execution and the kind of attacks launched to the ICS are constantly used on both
topologies. However, KY15 is more complex than Anytown: this latter architecture has
four subnetworks, and uses three PLCs, two actuators, and two sensors; while KY15
architecture has seven subnetworks, uses six PLCs, seven actuators and seven sensors.
DHALSIM uses iterations as an atom for the timestamp. We have analyzed the
iteration time to give an estimate of how many seconds it requires since Murillo et
al. [33] work doesn’t specify it. We found the mean and standard deviation of the
difference between the next iteration’s initial timestamp and the actual iteration’s
initial timestamp, which we’ll call “iteration time” from now on, for each run simulation.
For what concern the Anytown topology, the mean iteration time is 3.646060 seconds
and the standard deviation iteration time is 1.433604 seconds, while for the KY15
topology, the mean iteration time is 18.177534 seconds and standard deviation iteration
time is 55.581810 seconds. However, the iteration time depends not only on the ICS
topology but also on the computer used to run the simulation. For this reason, this
mapping between iteration and seconds is purely indicative, and for the sake of the
comparison that is going to be discussed in sections 6.5 and 6.6.
What changes between the specific infrastructures is the number of subnetworks,
sensors, and actuators, but also the demand pattern and the sensors and actuators
allowable values. There is always one PLC, one router, and one switch inside each
subnetwork.
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Figure 5.1: ICS base topology used in all the runned simulations.

The outputs of the testbed are PCAP files containing the network packets, one PCAP
for each interface in the network except for the central router (Router0), the SCADA
operational data that contains for each iteration all the values of each sensor and
actuator, and the ground truth file, useful for the labeling process.

5.2 Cyberattacks

During the simulation, DHALSIM allows to launch a set of pre-defined and configurable
attacks. The attacks used to create our dataset are:

· Device attack, is performed at the PLC itself to manipulate actuators value,
which can be opened or closed. The attacker has physical access to the PLC
being attacked.

· Naive Man-In-The-Middle (NITM) is an attack where the attacker will sit in
between a PLC and its connected switch. The attacker will then modify the
values of all CIP packet payload fields directed towards the other PLCs and
SCADA device.

· Man-In-The-Middle (MITM) consists of an attacker sitting in between a PLC
and its connected switch. This is the most simple attack, it will manipulate
all CIP packets going through a network link, regardless of the tag (value of
sensor/actuator) that the package includes.
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· Server Man-In-The-Middle (SITM) are attacks where the attacker will sit in
between a PLC and its connected switch. This attack causes the attacker to
launch a CIP server and then serve the target using that server. It will create a
new TCP connection and ENIP session between the attacker and the victim.

· During Concealment Man-in-the-Middle (CITM) attack, the traffic going towards
a PLC and towards the SCADA is differentiated. For the PLC, it will manipulate
the tag values with the attack values. For the SCADA, it will manipulate the
tag values with the concealment values.

· Simple Denial of Service (DoS) attack interrupts the flow of CIP messages
containing data between PLCs. This attack first performs an ARP Spoofing
attack into the target and then stops forwarding the CIP messages. This will
cause the PLCs to be unable to update their cache with new system state
information, possibly taking wrong control action decisions.

As described a bit by Alcaraz et al. [39] survey, our MITM attacks launched to
the virtual testbed compromise legitimate devices and consequently interfere with
communication channels. The MITM performs and causes the following actions:

· It launches routing attacks to play with the DT traffic from the physical space.

· It creates deviations that could deteriorate the Quality of Service.

· Injects false data and modifies control packets.

The simple DoS used in this thesis is a particular type of selective forwarding attack.
The targeted PLC doesn’t receive new system state information since the attacker
stops forwarding CIP packets. Indeed, as explained by Khan et al. [50], in one form of
the selective forwarding attack, the malicious nodes can selectively drop the packets
coming from a particular node or a group of nodes. This behavior causes a DoS attack.

5.3 Attack Detector Implementation

In this section, we are going to describe the implementation details of all the Attack
Detector subcomponents, visible in Figure 4.1.

5.3.1 Preprocessor

The Preprocessor is composed of two subcomponents: IPAL Transcriber and Physical
Preprocessor. IPAL Transcriber allows the conversion of every packet inside a PCAP
file into a JSON-formatted record composed of the following fields:

· Meta Data: packet’s timestamp, length, a unique Identifier (ID), and a label to
say if the packet is a malicious one.

· Addressing Information: source and the destination of a single packet represented
as an IP-port combination, that can be extended, e.g., by adding Modbus’s unit
identifier field, to further disambiguate devices. The destination can remain
empty for broadcast protocols.
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· Message Identification: protocol, generic activity (one between requests, com-
mands, and their respective answers), and the “responds to” field that lists the
IDs of all IPAL packets a given message is a response to.

· Process Data: collects all process variables and their current values taken from
the packet’s payload.

In this way, our subcomponent preprocesses the PCAP files containing all the exchanged
packets in the ICS to a format accepted by our NIDSs and that is equal for all the
industrial network protocols.
Concerning the PIDS input, we must preprocess the information about the SCADA
physical processes. Indeed, DHALSIM stores this information inside a CSV file which
contains, for each iteration, all the actual values of all the field devices. However,
since our PIDS takes in input a JSON file formatted in a specific way, the Physical
Preprocessor must convert the CSV into a common JSON format consisting of the
following fields:

· Meta Data: a timestamp, an ID, and a label to say if the record is a malicious
one.

· Process Data: name of the actuator/sensor and its current value. It can be
repeated a number of times equal to the number of sensors and actuators inside
the ICS topology.

5.3.2 Network Detectors

A way to detect the occurrence of previously described cyber-attacks is to monitor the
network to notice something anomalous. The two detection techniques included in
the Attack Detector module to understand what traffic can be considered normal and
what instead is suspicious are IAM and IAR.
As explained by Lin et al. [30] and as we saw in section 2.3.1, due to the use of request-
response communication in polling, SCADA traffic exhibits stable and predictable
communication patterns identifiable using a timing-based anomaly detection that
monitors statistical attributes of traffic periodicity. Specifically, IAM and IAR use
sampling distribution of the mean and the range to model the inter-arrival times of
repeated messages. This method has been widely used for its easiness and efficacy in
statistical process control areas to monitor the stability of processes.
Using the IPAL transcriber in the preprocessing phase all the network packets are
converted to a JSON format which is independent of the protocol. In this way, it is
possible to create the mean and range models of inter-arrival times events setting
detection thresholds as previously described in section 2.3.1 and explained in the
following. For the IAM, the mean model is computed in the following way:

· Calcule T̄ , that is the mean µ of the subpopulation T with m inter-arrival times,
and it is estimated using equation 2.8, where ti is the i-th inter-arrival time.

· Calculate ST , that is the standard deviation σ of the subpopulation T with m
inter-arrival times, and it is estimated using equation 2.9, where ti is the i-th
inter-arrival time.
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· Use CLT as in equation 2.4, that states the mean model of the inter-arrival times
tends toward being equal to the mean µ of the subpopulation T when the sample
size increases.

· Use CLT as in equation 2.5, that states the standard deviation when the sample
size increases of the inter-arrival times tend toward being equal to the standard
deviation σ of the subpopulation T divided by the sample size W .

· Set the detection thresholds UL as µX̄ +NσX̄ , while LL as µX̄ −NσX̄ , where
N is a performance parameter called threshold level.

For the IAR, the range model is computed in this way:

· Calcule the sample ranges as in equation 2.6 for each sample window with size
W .

· Compute the center of the sampling distribution of the sample range R̄ with
equation 2.7.

· Applying the equation 2.9 with R̄ instead of T̄ , it is possible to estimate the
standard deviation σ of the subpopulation T with size m.

· UL is set to R̄ +NσR, where N is the threshold level, while we set LL as the
smallest event inter-arrival time in the learning period.

During the training phase, the UL-LL interval is computed for each window composed
of the packets with few common packet fields. Indeed, in Listing 1, it is possible to
see that UL and LL are computed using µ and σ related to the sample mean of the
differences between consecutive messages timestamps related to specific IPs, type of
communication, i.e., interrogate or inform, and field device. For example in line 11,
UL, LL, µ and σ are computed only for all the packets inside a window of length two
with source IP 10.0.2.1 that interrogates 192.168.1.1 to know the value of the T42
sensor. Notice that it is not true to say inter-arrival methods consider the timestamps
differences between the interrogate-inform pair of messages to build the sample mean
and sample range model, as one wrongly can think, but they consider the packets with
the same IPs, type of communication, and targeted field device.
During the detection phase, the module uses a sliding window which has the same
window size as the sample size W . The module calculates the sample mean and sample
range in each window containing the packets with the same source and destination IPs,
the same type of communication, and the same involved field device as the ones found
by the models. The Network Detector launches an alarm if the mean or the standard
deviation is outside the UL-LL interval.
For example, assume to use the Linux epoch timestamps format, and consider UL
= 6.2, LL = 3.8 and the W = 3 consecutive timestamps of all the interrogate
messages from 10.0.1.1 to 192.168.1.1 that ask for the value of the sensor T42
are 1688139274.232246, 1688139277.448214 and 1688139287.73056. The differences
between the couples of consecutive messages are 3.215968 and 10.282346, so their
average is 6.749157 and the standard deviation is 3.581114615. In the case of IAM,
6.749157 > UL = 6.2, while for IAR we have that 3.581114615 < LL = 3.8, and this
means that all the two detectors find an attack.
In this way, IAM and IAR check for temporal variations related to the transmitted
messages of the same type in order to detect anomalies inside the ICS.
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1 {
2 "_name": "inter-arrival-mean",
3 "settings": {
4 "_type": "inter-arrival-mean",
5 ...
6 "N": 5,
7 "W": 2,
8 ...
9 },

10 "mean_model": {
11 "10.0.2.1-192.168.1.1-interrogate-76-T42": {
12 "ll": 0.047261748369725964,
13 "ul": 4.330687277659088,
14 "mu": 2.188974513014407,
15 "sigma": 0.4283425529289362
16 },
17 "192.168.1.1-10.0.2.1-inform-76-T42": {
18 "ll": 0.060901387488802694,
19 "ul": 4.317092888411967,
20 "mu": 2.188997137950385,
21 "sigma": 0.4256191500923165
22 },
23 "10.0.1.1-192.168.1.1-interrogate-76-T42": {
24 "ll": 2.3608530834133963,
25 "ul": 7.165241443373931,
26 "mu": 4.763047263393664,
27 "sigma": 0.48043883599605347
28 },
29 "192.168.1.1-10.0.1.1-inform-76-T42": {
30 "ll": 2.389048313560807,
31 "ul": 7.137232639572137,
32 "mu": 4.7631404765664715,
33 "sigma": 0.47481843260113293
34 }
35 }
36 }

Listing 1: JSON example of the UL-LL interval computed for each time window by the
training of IAM using window size 2 and threshold level 5.



CHAPTER 5. IMPLEMENTATION 33

5.3.3 Physical Detectors

The implemented DIDS comprise also four PIDSs evaluated and implemented by
Wolsing et al. [5] in their work. They are also used inside the Attack Detector module:

· The MinMax approach detects whether a sensor’s/actuator’s current value exceeds
the range observed in the training data and raises an alarm if any observation
falls outside that range (± error margin). This approach is motivated by the
intuition that process values of industrial systems relate to physical measurements
or setpoints and thus usually obey certain limits.

· The GT approach detects whether a sensor’s/actuator’s slope exceeds the mini-
mum and maximum observed during training (± error margin). While MinMax
observes global changes, more subtle attacks occurring within these limits may
remain unnoticed. Hence, the GT approach assumes that ICSs have continual
character, i.e., physical values such as temperatures cannot change at arbitrary
speed.

· Focusing on another temporal aspect, the ST approach detects whether a sen-
sor/actuator remains static, i.e., does not change its value, for a shorter or longer
time than seen during training (± error margin). This approach is motivated
by the observation that some attacks may freeze a sensor/actuator such as a
pressure relief valve. Since a steady state is difficult to define for noisy sensor
data, Steadytime takes only process values into account if the number of distinct
values during training is sufficiently small (≤ 10).

· Specifically targeting the occurrence of values, the HM approach tracks their
distribution within a fixed-sized window and tests whether it is in line with
a histogram seen during training (± error margin). The underlying intuition
expects a similar distribution of reoccurring values between process cycles. This
approach can detect the existence and absence of frequent value changes. The
histograms are created by counting the number of times each distinct value
appears in a sliding window. We merge them into a single histogram that
covers each value’s minimum and maximum occurrences across all distinct fixed-
sized windows. The window size should match the duration of a process cycle,
which could be automatically determined in an additional run over the dataset
before training the histograms. Like Steadytime, Histogram only applies for
process values with a few distinct values (≤ 10), as comparing two histograms
value-by-value is unfeasible for noisy sensor data.

5.3.4 Combiner

All the outputs of the detectors included in our DIDS need to be considered in a certain
way. It is here that the Combiner joins the game.
Given some weights, the Combiner first normalizes them in order to be between 0
and 1 using the preprocessing tool offered by sklearn, then it assigns them to each
detector. These weights help to sort by importance each detector: the higher they
are, the more important the output of the assigned detectors are. After each detector
inside the DIDS ends its detection process, if it finds an anomalous behavior, its weight
is considered inside a summation. So, this summation contains the value of all the
weights assigned to the detectors that find an anomalous behavior.
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Finally, the value of this sum is compared with a given threshold, and if it is greater,
then the DIDS identify an attack, otherwise, nothing happens.

5.4 Attack Identifier Implementation

Now, we are going to discuss the implementation of all the Attack Identifier subcom-
ponents, visible in Figure 4.1.

5.4.1 Preprocessor

This subcomponent has the role of preprocessing the network traffic so it is possible to
input some features to the Attack Classifier module. It makes use of CICFlowMeter
[40] and of the sklearn class called Pipeline [45].
Formerly known as ISCXFlowMeter, CICFlowMeter is an Ethernet traffic Bi-flow
generator and analyzer for anomaly detection. In this project, it is used to create
a CSV file containing statistical features of bidirectional network traffic flows. Each
bidirectional flow is composed of forward (source to destination) and backward (desti-
nation to source) directions during the exchange of network packets [40]. In this way,
using CICFlowMeter it is possible to extract more than 80 network traffic analysis
features: duration of the flow, total packets in the forward direction, total packets in
the backward direction, the total size of the packet in the forward direction, the total
size of the packet in the backward direction, the mean size of packet in forward, and
so on, that are calculated separately in the forward and backward directions. These
features can be the input of a ML model.
Then, labeling and feature selection processes are needed since we give these features
in input to a supervised ML model. Later, the Preprocessor splits the samples into
train and test sets. Since the support of samples labeled as under an attack is low,
the Preprocessor uses SMOTE to synthesize new examples from the existing ones, as
explained in the subsection 2.2.1.
After that, the obtained data are “cleaned” to correct or remove corrupt or inaccurate
records from the dataset, so identifying incomplete, incorrect, inaccurate, or irrelevant
parts of the data and then replacing, modifying, or deleting the dirty or coarse data.
To do all the required operations sequentially, we use Pipelines. They are useful
for transforming and training data quickly. It is a way to codify and automate the
workflow using multiple sequential steps that do everything from data extraction and
preprocessing to model training and deployment. We used the component Pipeline
offered by the sklearn library to do that. The purpose of the Pipeline is to assemble
several steps that can be cross-validated together while setting different parameters
[45].

5.4.2 Attack Classifier

The Attack Classifier module contains a RF model described in section 2.2. It takes in
input cleaned, preprocessed statistical features of network traffic flows obtained thanks
to CICFlowMeter.
Each attack has its pattern of impact on the network traffic. The idea of this module is
to fingerprint each attack and train a model in such a way that once the anomaly has
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been identified, we are also able to recognize the attack that generates it. Looking at
these features, we found that the Decision Tree can do it by determining the conditions
to fulfill to classify the bidirectional traffic flow features. Then, to avoid overfitting, we
decided to use RF.
We take the RF classifier from the sklearn.ensemble module, which includes ensemble-
based methods for classification, regression, and anomaly detection.



Chapter 6

Experiments

In this chapter, we are going to discuss the experimental setup used to conduct our
experiments, an analysis of the network traffic and operational data values during an
ongoing attack, and the final results of each detector and classifier trained, discussing
them in the meantime. The optimal results and hyper-parameters are obtained by
performing a grid search on each detector.
When we are going to discuss the results, we’ll introduce the detection time of each
detector. Before we proceed, it is necessary to clarify that we consider the attacks
officially started according to the timestamps reported by the ground truth file. This
is one of the files produced by DHALSIM. However, the labeling may not be accurate:
there may be side-operations not related to the attack, which may take a while to start
too. So, we have to little rely on the found detection time and see it as an indicative
approximation useful for comparing the various detectors included in the DIDS.

6.1 Dataset

We used DHALSIM virtual testbed to create the network traffic data and operational
data. As explained in section 5.1, there are a total of two datasets, one is called
Anytown, and the other is KY15. They refer to different ICS architectures, KY15 is
more complex than Anytown.
Notice that all the attacks launched on the testbed for each topology contain different
targets and triggering times to make the attacks more variable so the models can
generalize better. Now we are going to discuss the data used by NIDS and PIDS.

Network Dataset The network traffic data consists of one PCAP file for each
network device interface, except for the central router due to testbed limitations.
For the Anytown topology, the generated PCAP files are eight since there are three
PLCs, four routers, and one SCADA device; while for the KY15 topology, the PCAP
files are fourteen (six PLCs, seven routers, and one SCADA device). These files are
generated for each simulated scenario inside every topology and later are converted
by the Preprocessor module into JSON files to give them in input to the detectors.
The Listing 6.1 shows an example of a JSON file preprocessed from a message inside
a PCAP file. Notice that for the training and testing, we only used effectively the
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PCAP/JSON of the PLCs inside the network.
Since we place each NIDS between each PLC and its respective switch, as we can see
from Figure 6.15, we train and test each NIDS using the collected traffic related to
its reference PLC. The unsupervised NIDSs, that are IAM and IAR, are all trained
using the JSON network traffic data obtained from the normal execution lasted 500
iterations without attacks.

Physical Process Dataset The physical operational data consists of one SCADA
CSV file with the values of all actuators and sensors at each iteration for each topology
and scenario.
The unsupervised PIDSs, that are MinMax, GT, HM, and ST, are all trained with
the operational data in JSON format obtained from the normal execution lasted 500
iterations without attacks.
In the Listing 6.2 there is the JSON preprocessed from one record of operational data.
This latter contains also the integer part of a field device value, indicated with the
“_int” suffix, since ST and HM work on a number space of a maximum of ten values.
As we can see, the JSON fields are the same as the one described in paragraph 4.1.

Listing 6.1: Preprocessed JSON from a
PCAP

{
"id": 106,
"timestamp ":

1688396107.286207 ,
"protocol ": "cip",
"malicious ": true ,
"src": "10.0.2.1:47214" ,
"dest": "10.0.4.1:44818" ,
"length ": 42,
"crc": false ,
"type": 76,
"activity ":" interrogate",
"responds to": [],
"data": {

"T42": null
}

} �

Listing 6.2: Preprocessed JSON from a
CSV

{
"id": 21,
"timestamp ":

1688403303.574755 ,
"malicious ": true ,
"P78": 0.0,
"P78_int": 0,
"P79": 0.0,
"P79_int": 0,
"T41": 8.809667587280273 ,
"T41_int": 8,
"T42": 8.165063858032227 ,
"T42_int": 8

} �
Test Data We know that the NIDSs test set always comprises JSON files converted
from the PCAPs of network traffic, while the PIDSs and BLSTM test set includes
JSON files converted from the CSV file of operational data. Both operational data
and network traffic inside the test set are obtained from:

· The normal execution lasted 50, 80, and 200 iterations without attacks.

· The Execution lasted 50 iterations in which the DoS attack starts at iteration 14
until iteration 36.

· The Execution lasted 50 iterations in which the MITM attack starts at iteration
15 until iteration 46.
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· The Execution lasted 50 iterations in which the NITM attack starts at iteration
11 until iteration 38.

· The Execution lasted 50 iterations in which the CITM attack starts at iteration
14 until iteration 38.

· The Execution lasted 50 iterations in which the SITM attack starts at iteration
13 until iteration 38.

· The Execution lasted 50 iterations in which the device attack starts at iteration
3 until iteration 30.

Attack Classifier Dataset The attack classifier used, that is RF, takes in input the
preprocessed statistical network traffic features inside a CSV format file to discriminate
the attack looking at the network traffic. As discussed in the subsection 5.4.1, these
features are extracted using CICFlowMeter. Indeed, it can extract more than 80
features, that later are cleaned and preprocessed using a standard ML Pipeline proposed
by the tool scikit-learn [36].
Since the goal of the thesis is to prove the efficiency of DIDS even when there are
few attack samples, we produce a specific type of dataset focused on this kind of
attack detection. However, at the same time, from the point of view of the Attack
Classification task, the dataset generated contains a lot more normal samples than
attack samples. This causes that, for the Attack Classification task, there is a high-class
imbalance that we try to solve using the SMOTE data augmentation method.
The training set contains 957036 samples, while the test set size is 64674, both with
mixed MITM, DoS, device attacks, and normal samples. Since CITM, SITM, NITM
and MITM at the end are all MITM attacks, only for the Attack Classification
task we decided to fuse these attacks into one single acronym, that is MITM, and
consider just this label during the training and testing of the model. Indeed, we are
interested in understanding that a MITM is occurring, and not necessarily which
specific implementation of MITM is in progress.

6.2 Preliminary Data Analysis

The cyber-attacks described in section 5.2 cause some “anomalies” inside the network
and in the processes themself. We now see some of these strange behaviors on the
Anytown infrastructure.
At the process level, we can see in Figure 6.1 for example, the application of the device
attack on the P79 actuator. P79 is a pump, and it was closed earlier than expected
so the control rule is not respected. This can cause the level of water inside a tank
to be lower than the desired value. In a real scenario, a device attack can be a huge
economic loss considering for example a big Water Distribution System, because it can
risk not having enough water to distribute.
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Figure 6.1: P79 actuator values during ICS normal operation (black) and under device
attack (red).

Figure 6.2 shows the NITM attacking the PLC3 directly connected to the T42 sensor.
The sensor value rises to ten at a certain iteration and stays there for a certain amount
of time. After the attack, the values are a bit decreased with respect to the ones of the
ICS during normal operation.
The NITM can change the payload of all the CIP packets directed towards the other
control devices, differently from the standard MITM, which only modifies the payload
of specific CIP packets directed towards other control devices. The attacker is placed
in the middle between the PLC3 and the related switch connected to it, so he/she can
sniff and spoof the messages.
The attacker’s goal is to confuse the control devices making them believe that all the
tanks connected to PLC3 (in this case only T42) reach their maximum water level. In
this way, the control rules will lower the water level of the tanks by closing the pumps.
The consequence is that the control rules are broken and the real water level becomes
lower than the desired one, as we can see after the attack execution in Figure 6.2. As
said before, in a real scenario it can be a huge economic loss.
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Figure 6.2: T42 sensor values during ICS normal operation (black) and under NITM attack
(red).

Figure 6.3 shows the MITM in action on the T41 sensor. The sensor value drops
suddenly to zero at a certain iteration and stays there for a certain amount of time.
After the attack, the values are a bit increased with respect to the ones of the ICS
during normal operation.
The purpose of the attack is to confuse the control devices, that will believe the tank
T42 water level is the minimum. In this way, the control rules will increase it, putting
the real water level above the normal one, as visible in Figure 6.3 after the attack is
completed. This can cause serious problems, like a water flood if there is so much
water inside the tank that exceeds the limit and if there are no devices, like our DIDS,
able to prevent it. In a real scenario, it can be a great economic loss.
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Figure 6.3: T41 sensor values during ICS normal operation (black) and under MITM attack
(red).
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The Figure 6.4 shows the SITM attacking the T41 sensor. The effects are almost equal
to the previous MITM attack. Indeed, as before, the sensor value drops to zero at a
certain iteration and stays there for a certain amount of time. After the attack, the
values are a bit increased with respect to the ones of the ICS during normal operation.
The SITM causes the attacker to launch a CIP server and then serve the PLC connected
to T41 using that server. It will create a new TCP connection and ENIP session
between the attacker and the victim. In this way, the attacker can respond to the CIP
requests coming from the PLC, sniffing and spoofing messages. The consequences are
the same as the previous MITM attack.
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Figure 6.4: T41 sensor values during ICS normal operation (black) and under SITM attack
(red).

In Figure 6.5 instead, we can see the application of the CITM on the T41 sensor. The
sensor value drops gradually to zero at a certain iteration and stays there for a short
amount of time. After the attack, the values return to be equal to the ones of the ICS
during normal operation, differently from the previous MITM attacks. Probably, it
depends on the short attack duration which doesn’t destabilize too much the sensor
value.
In Concealment Man-in-the-Middle (CITM), for a short time, the attacker will differ-
entiate between traffic with a specific PLC as a destination and traffic with a SCADA
server as a destination. If the destination is a PLC, the attacker will modify the packet
payload field values with the configured attack values. If the destination is a SCADA
server, the attacker will modify the CIP packet payload field values with the configured
concealment values. In this way, the attacker can remain undetected for a bit of time.
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Figure 6.5: T41 sensor values during ICS normal operation (black) and under CITM attack
(red).

Sometimes the attacks don’t show a concrete effect on the physical process data, but
instead are more “visible” on the network, or vice versa. That’s the case of the DoS
attack. In Figure 6.6 we can see the absence of repercussions on the T42 sensor during
a DoS on the PLC3, directly connected to T42.
The Denial of Service (DoS) attack used by the attacker interrupts the flow of CIP
messages containing data between PLCs. This attack first performs an ARP Spoofing
attack into the target and then stops forwarding the CIP messages. This will cause the
PLCs to be unable to update their cache with new system state information, possibly
taking wrong control action decisions that could lead to wrong actions on the water
level inside the tanks. It can cause a substantial economic loss in a real scenario.
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Figure 6.6: T42 sensor values during ICS normal operation (black) and under DoS attack
(red).
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Discussing about the network side, Figures from 6.7 to 6.14 show the number of packets
in a time window of 5 seconds detected inside PLC1, PLC2 and PLC3 under normal
ICS operation, NITM, MITM, CITM, SITM and DoS attack. As we can see, the
number of packets is really variable. However, during an attack at a certain timestamp,
it becomes lower than the number of packets during normal operation. This happens
since the MITM attacks slow the network speed, so the packets are sent and received
slowly, while DoS attack performs an ARP Spoofing attack into the target that stops
forwarding the CIP messages, and this causes that fewer packets are effectively received
and then sent.
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Figure 6.7: PLC1 number of packets in a time window of 5 seconds during ICS normal
operation and under NITM attack (blue).
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Figure 6.8: PLC1 number of packets in a time window of 5 seconds during ICS normal
operation and under MITM attack (blue).
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Figure 6.9: PLC1 number of packets in a time window of 5 seconds during ICS normal
operation and under CITM attack (blue).
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Figure 6.10: PLC1 number of packets in a time window of 5 seconds during ICS normal
operation and under DoS attack (blue).
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Figure 6.11: PLC2 number of packets in a time window of 5 seconds during ICS normal
operation and under CITM attack (blue).
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Figure 6.12: PLC2 number of packets in a time window of 5 seconds during ICS normal
operation and under SITM attack (blue).
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Figure 6.13: PLC3 number of packets in a time window of 5 seconds during ICS normal
operation and under CITM attack (blue).
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Figure 6.14: PLC3 number of packets in a time window of 5 seconds during ICS normal
operation and under DoS attack (blue).

We can conclude from this analysis that some attacks, like the device attack, impact
more the physical level than the network level, while other attacks, like DoS, impact
more the network level than the physical level. This strengthens our thesis: a DIDS
that considers both the data sources is better than an IIDS only specialized in the
detection of the attacks using one single source of data.
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6.3 Experimental Setup

The DIDS and the Attack Classifier module need to be set up in a certain way to work
properly on our specific environment and dataset. So, to find the optimal parameters
for our DIDS, we perform parameter tuning using a particular type of grid search for
each detector inside the DIDS.

DIDS Grid Seach The grid search performed on each detector contained in the
DIDS tries to maximize the number of correctly classified scenarios. At the same time,
this grid search considers only the parameter settings that correctly do not classify
as under attack at least two out of three normal testbed executions not under attack.
This is done because of the low number of normal scenarios, indeed three out of nine
scenarios are not under attack inside each dataset.
Suppose not using the condition on the number of scenarios with no attacks correctly
ignored. The absence of this condition makes a dumb detector that always finds the
presence of an attack, even if there aren’t any, have better performance than another
detector that correctly doesn’t identify attacks during normal scenarios. However, it
detects fewer attacks than the previous detector. So, to not have dumb detectors inside
the DIDS, we insert these two conditions inside our grid search.

Network Detectors Configuration One issue that we addressed is the following:
Where do the NIDSs need to be placed inside the ICS network? As we can see from
Figure 6.15, we decided to place the NIDSs between the PLCs and the switches, to
get all the packets directed towards and from them. Indeed, by testing each network
detector on different positions, we found that more attacks are detected when the
DIDSs are placed between the switches and the PLCs with respect to when they are
placed between other devices, like between the switches and the routers or between
the switch and the SCADA device.
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Figure 6.15: NIDSs location inside the ICS network.

The parameters selected and discovered using grid search on the NIDSs are summarized
inside Table 6.1 grouped for the dataset, IIDS and, when necessary, for PLC. There
are two tunable parameters in IAM and IAR, sample/window size (W) and threshold
level (N).

Physical Detectors Configuration The parameters selected and discovered using
grid search on the PIDSs instead are summarized inside Table 6.2 grouped for the
dataset and IIDS. The PIDSs have one tunable parameter, that is the Error Margin
(EM), with an exception for the HM detector, which uses the window size (WH) too.

Combiner Configuration The combiner, described in the subsection 5.3.4, uses the
weights manually assigned to each detector based on the relevance of their detection, to
decide whether there is an attack or not. These weights are normalized to be between
zero and one, and they can be seen in Table 6.4. Each weight is considered inside
the summation of the weights only if the respective IIDS detects an attack, that is
when this latter detects at least one malicious record/message. Then, the summation
is compared with a threshold. If it is higher than the threshold, the combiner launches
an alarm.
We found that using 0.7 as the threshold for Anytown, while 1.1 for KY15 is a good
choice that can avoid launching false alarms in the presence of noise, at the same time
detecting all the proposed attacks.
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Table 6.1: Parameters selected for IAM and IAR on all the PLCs and datasets.

Dataset → Anytown KY15

Params.
IDS IAM IAR IAM IAR

PLC1-W 26 20 8 100
PLC1-N 1 2 19 17
PLC2-W 3 25 8 130
PLC2-N 2 2 19 15
PLC3-W 5 40 8 100
PLC3-N 2 3 36 60
PLC4-W - - 8 130
PLC4-N - - 19 15
PLC5-W - - 8 8
PLC5-N - - 19 12
PLC6-W - - 8 90
PLC6-N - - 19 15

Table 6.2: Parameters selected for the Physical detectors on both datasets

Params.
IDS MinMax ST GT HM

EM 0.4 0.5 0.06 9.0
WH - - - 21

Table 6.3: Parameters selected for RF model on both the datasets

NoE Criterion MS

76 gini 2

Table 6.4: Weights selected for the Combiner of the PIDSs and NIDSs for each dataset

IAM IAR MinMax ST GT HM

0.14 0.14 0.58 0.29 0.44 0.57

Attack Classifier Configuration The optimal configuration for the Attack Clas-
sifier used, that is the RF, is found performing parameter tuning with grid search
that maximizes the Macro-averaged F1 score (6.9). Indeed, since the dataset used
for Attack Classification is imbalanced, the accuracy is not a reliable statistic in this
case. At the same time, the Macro-averaged F1 score considers both the Precision and
Recall statistics of each class, independently by its support.
Table 6.3 shows the parameters found thanks to the grid search on the RF model.
Between the parameters used for RF classifier, the most relevant, and the ones that
are tuned in our grid search, are the Number of Estimators (NoE), Criterion, and
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Minimum number of samples required to Split a node (MS).

6.4 Evaluation Metrics

Classic metrics, like f1 score, precision, and so on, are not exhaustive to represent the
results when they have to deal with our DIDS. This is because we want to identify
whether the attack was detected or not, how late, and how many normal executions
are falsely detected as attacks.
Regards the Attack Classifier component, we used all the standard metrics usually
used to define its performance. However, due to the imbalanced dataset, we found
some metrics more useful than others. In particular, the most useful metrics are
Precision, Recall, F1 score, Macro-averaged Precision, Macro-averaged Recall, and
Macro-averaged F1 score. Indeed, these last metrics evaluate the performance of the
RF model considering that some classes have a low support inside the dataset.
For this reason, we propose new metrics for evaluating the PIDSs and NIDSs and use
the standard classification metrics to show the results of the RF model. All the metrics
are detailed in the following paragraph.

Attack Detector Metrics The following metrics are used to evaluate the attack
detector modules. In general, we are interested in understanding if an attack is detected
instead of how many malicious instances (e.g., packets or sensor measurements) are
identified. This is because we believe that the primary goal of a detector is to flag
ongoing attacks instead of classifying process instances:

· True Detection (TD) measures how many attack scenarios are correctly detected.

· False Detection (FD) measures how many normal scenarios are identified as
attack scenarios.

· True NOrmal (TNO) measures how many normal scenarios are correctly not
detected as an attack.

· False NOrmal (FSO) measures how many attack scenarios are not detected.

· Detection Delay (DD) measures the attack detection delay in terms of iteration.
It may be positive or negative if it is detected after or before the first “true” label
assigned by the labeling process. In section 5.1 we saw that an iteration for the
Anytown topology is more or less 3.65 seconds, while for the KY15 topology is
about 18.18 seconds, so DD can be used to measure approximately the detection
time.

· Mean Detection Delay (MDD) measures the mean DD of all attack scenarios in
a dataset.

· Standard deviation of the Detection Delays (SDD) measures the DD standard
deviation of all attack scenarios in a dataset.

· Best Detection Delay (BDD) refers to the best DD found between all attack
scenarios in a dataset.

· Worst Detection Delay (WDD) refers to the worst DD found between all attack
scenarios in a dataset.
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Table 6.5: Parameters used in the metrics.

Classification Description

True Positiveclass (TPclass) Number of class samples predicted correctly

True Positiveclass (TNclass) Number of non-class samples predicted correctly

False Positiveclass (FPclass) Number of non-class samples predicted wrongly

False Negativeclass (FNclass) Number of class samples predicted wrongly

Attack Identifier Metrics When we are going to present the Attack Classification
results in section 6.8, we use different standard metrics to evaluate the performance of
the RF model. In this section, we briefly summarise them. For the sake of completeness,
Table 6.5 clarifies the terms used in the metrics. When these measures are applied to a
specific class, we use the subscript style to specify the class, e.g. TPMITM to indicate
the number of MITMs attack samples predicted correctly.

· Accuracy: the total number of class and non-class samples that have been
classified correctly. This metric is the same for all the classes.

Accuracyclass =
TPclass + TNclass

TPclass + TNclass + FPclass + FNclass
. (6.1)

· Precision: represents the ratio of class samples correctly classified among the
total number of class samples.

Precisionclass =
TPclass

TPclass + FPclass
. (6.2)

· Recall: also known as sensitivity, represents the ratio of class samples correctly
identified among the total number of class samples. Both Precision and Recall
are therefore based on relevance.

Recallclass =
TPclass

TPclass + FNclass
. (6.3)

· F1 Score: the harmonic mean of the Precision and Recall.

F1class =
2 · Precisionclass ·Recallclass
Precisionclass +Recallclass

. (6.4)

· Macro-averaged Precision: calculated as an average of Precisions of all classes.
So, all classes equally contribute to the final averaged metric:∑︁k

j=1 Precisionsj

k
. (6.5)

· Weighted-averaged Precision: it is also calculated based on Precision per class
but takes into account the number of samples of each class, indicated as Nj for
class j, in the data. So, each class’s contribution to the average is weighted by
its size: ∑︁k

j=1 Nj ∗ Precisionsj∑︁k
j=1 Nj

. (6.6)



CHAPTER 6. EXPERIMENTS 52

· Macro-averaged Recall: as before, but considering the Recall:∑︁k
j=1 Recallj

k
. (6.7)

· Weighted-averaged Recall: as before, but considering the Recall:∑︁k
j=1 Nj ∗Recallj∑︁k

j=1 Nj

. (6.8)

· Macro-averaged F1 score: as before, but considering the F1 score:∑︁k
j=1 F1j

k
. (6.9)

· Weighted-averaged F1 score: as before, but considering the F1 score:∑︁k
j=1 Nj ∗ F1j∑︁k

j=1 Nj

. (6.10)

6.5 Network Detector Results

To have a better comparison between our Physical and Network detectors, we start to
analyze the results of each technique and then see the results of the combination of
the two detectors, showing the correctly identified and not identified attacks on the
datasets by each detector using the metrics explained in section 6.4. Tables 6.6 and
6.7 show IAM and IAR results on Anytown and KY15 topologies respectively.

Anytown Both IAM and IAR have really good results on Anytown, with at most
one FSO or FD, as visible in Table 6.6. Clearly, the most difficult attack to detect is
device one, since the attacker physically tampers an actuator, not producing too much
anomalous traffic. However, IAR and IAM, when configured on specific PLCs, seem
able to detect also that attack. When IAM is placed between PLC2 and its related
switch, it has the maximum TDs and TNOs.

KY15 On KY15 topology instead, the TDs are lower than Anytown, as visible in
Table 6.7. NITM and Device attacks are the most difficult to detect: just one IAR can
detect one of these attacks, and one another IAR placed in a different position can
detect the other attack. Intuitively, DoS is detected, jointly with MITM. However, all
the detectors have on average three TDs, with the IAR placed before PLC5 having
four TDs at most, even if it has one FD.
The normal traffic with 50 iterations is FD by five detectors, as visible in Table 6.7.
In general, all the detectors when applied on the KY15 topology are less accurate,
maybe because it is a more complex topology than Anytown and so the anomalous
network traffic is more noisy and concentrated in a few zones with respect to Anytown
architecture. Indeed, if an attack targets a specific PLC or field device, most of the
consequences on the network are visible just by the subnetwork of the device targeted
by the attack, and so by the specific NIDS placed in that subnetwork.
At first sight, it seems that the inter-arrivals have better performance on the Anytown
topology than the KY15 topology.
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Table 6.6: Correctly detected attacks and ignored normal executions by IAM and IAR
applied on each PLC inside the Anytown topology. The prefix “C” stays for
a normal dataset with no attacks, while the numerical suffix is the number of
iterations used. All the attacks run on a 50-iteration simulation.

IDS
DS C50 C80 C200 MITM NITM SITM CITM DoS Dev Atks

PLC1-IAM D D D D D D D D x 5/6
PLC1-IAR D x D D D D D D D 6/6
PLC2-IAM D D D D D D D D D 6/6
PLC2-IAR D x D D D D D D D 6/6
PLC3-IAM D D D D D D D D x 5/6
PLC3-IAR D D D D D D D D x 5/6

Table 6.7: Correctly detected attacks and ignored normal executions by IAM and IAR
applied on each PLC inside the KY15 topology. The prefix “C” stays for a normal
dataset with no attacks, while the numerical suffix is the number of iterations
used. All the attacks run on a 50-iteration simulation.

IDS
DS C50 C80 C200 MITM NITM SITM CITM DoS Dev Atks

PLC1-IAM D D D D x x x D x 2/6
PLC1-IAR x D D D x x x x x 1/6
PLC2-IAM D D D D x D x D x 3/6
PLC2-IAR x D D D x D x x x 2/6
PLC3-IAM D D D x x x x D x 1/6
PLC3-IAR D x D x x D x D x 2/6
PLC4-IAM D D D D x x x D x 2/6
PLC4-IAR x D D D D x x x x 2/6
PLC5-IAM D D D D x x D D x 3/6
PLC5-IAR x D D D x x D D D 4/6
PLC6-IAM D D D D x x D D x 3/6
PLC6-IAR x D D D x x D x x 2/6

Detection time Tables 6.8 and 6.9 contain the Mean Detection Delay (MDD),
Standard deviation of the Detection Delays (SDD), Best Detection Delay (BDD)
and Worst Detection Delay (WDD) for each NIDS and PLC on Anytown and KY15
topologies, respectively.
In the case of Anytown, the WDD is 46 when IAR is mounted on PLC2, the BDD
instead is -5 obtained by various NIDSs. In general, the worst and best MDD is 8, by
IAR on PLC3, and -2.4, by IAM on PLC3, as visible by Tables 6.8, respectively. The
SDD is between 1.5 and 17.56. Some attacks are detected before they are launched.
This happens because some attacks, especially MITM, do some side operations on the
network during a pre-attacking phase with variable duration according to the topology,
and these are captured by our detectors.
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Table 6.8: IAM and IAR DD metrics for each PLC on Anytown topology.

IDS
DS MDD SDD BDD WDD

PLC1-IAM 12 15.39 -1 35
PLC1-IAR 1.83 10.02 -5 24
PLC2-IAM 3.67 13.63 -5 34
PLC2-IAR 6.83 17.56 -3 46
PLC3-IAM -2.4 1.5 -5 -1
PLC3-IAR 8 1.67 5 10

Table 6.9: IAM and IAR DD metrics for each PLC on KY15.

IDS
DS MDD SDD BDD WDD

PLC1-IAM -6.5 8.5 -15 2
PLC1-IAR -15 0 -15 -15
PLC2-IAM -4.67 7.41 -15 2
PLC2-IAR -8 7 -15 -1
PLC3-IAM 19 0 19 19
PLC3-IAR 26 4 22 30
PLC4-IAM -6.5 8.5 -15 2
PLC4-IAR 4 19.0 -15 23
PLC5-IAM -3.67 8.01 -15 2
PLC5-IAR 4 16.32 -15 30
PLC6-IAM -3.67 8.01 -15 2
PLC6-IAR -6.5 8.5 -15 2

Concearning KY15 topology, Table 6.9 shows DD statistics. In terms of iterations,
KY15 BDD and WDD are -15 and 30, respectively. The best and worst mean Mean
Detection Delay (MDD) are -8 and 26, while the SDD is variable between 0 and 19 in
general. The fastest detector seems to be IAR on PLC2. Notice that Table 6.9 shows
the KY15 BDD is pretty much the same for almost all the NIDSs: -15. This is the DD
related to the MITM attack, and we suppose that it is detected before it is launched
because of the side operations on the network during the pre-attack phase, that don’t
pass unnoticed by the network detectors.

6.6 Phyisical Detector Results

Regarding the Physical detectors, Table 6.10 and 6.11 shows the PIDSs results on
Anytown and KY15 topologies respectively, applying the model parameters described
in section 6.3. At first glance, it seems that KY15 and Anytown are very similar in
terms of results.
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Anytown Specifically, Table 6.10 regards Anytown topology and shows that in this
case the most difficult attack to detect isn’t only the Device one, but the DoS attack
too, since DoS operates more at the network traffic level, while a physical detector can
only see the consequences. The best detector seems to be ST, even if it has one FD.

KY15 The results on the KY15 topology visible in Table 6.11 show that ST becomes
the worst detector, followed by HM. MinMax and GT instead have the maximum TD
and TNO. The most detected attacks are the Device one and SITM.
In general, the PIDS detectors detect on average 4/6 attacks considering both Anytown
and KY15 topologies.

Table 6.10: Correctly detected attacks and ignored normal executions by Physical detectors
on Anytown topology. The prefix “C” stays for a normal dataset with no attacks,
while the numerical suffix is the number of iterations used. All the attacks run
on a 50-iteration simulation.

IDS
DS C50 C80 C200 MITM NITM SITM CITM DoS Dev Atks

MinMax D D D D D D D x x 4/6
ST D x D D D D D D D 6/6
GT D D D D D D D x x 4/6
HM D D D D D D D x x 4/6

Table 6.11: Correctly detected attacks and ignored normal executions by Physical detectors
on KY15 topology. The prefix “C” stays for normal dataset with no attacks,
while the numerical suffix is the number of iterations used. All the attacks run
on a 50-iteration simulation.

IDS
DS C50 C80 C200 MITM NITM SITM CITM DoS Dev Atks

MinMax D D D D D D D D D 6/6
ST D D D D x D x x D 3/6
GT D D D D D D D D D 6/6
HM D D D x x D x x D 4/6

Table 6.12: PIDSs DD metrics on Anytown.

IDS
DS MDD SDD BDD WDD

MinMax 0 0.71 -1 0
ST 14 14.52 0 34
GT -0.25 0.43 -1 0
HM 0 0.71 -1 1
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Table 6.13: PIDSs DD metrics on KY15.

IDS
DS MDD SDD BDD WDD

MinMax -0.33 0.47 -1 0
ST -0.33 0.47 -1 0
GT 7.83 10.64 -1 26
HM -0.33 0.47 -1 0

Detection Time Tables 6.12 and 6.13 contain the MDD, SDD, BDD and WDD for
each PIDS on Anytown and KY15 topologies, respectively.
ST in a case is the slowest PIDS on Anytown topology, requiring 34 DD as visible by
Table 6.12. Except ST, all the other detectors on Anytown show a similar DD metrics,
with an MDD and SDD around 0. On KY15 instead, they show the same detection
time statistics except for GT, which in one case detects an attack after 26 iterations,
as visible by Table 6.13

6.7 DIDS vs BLSTM Results

To make a better analysis of the DIDS results, we compare them with the ones obtained
from the implementation of BLSTM detector implemented by Wolsing et al. [31]. We
chose BLSTM since, by what Wolsing et al. [5] report in their paper, BLSTM is one of
the detectors with the best performance on the dataset they used. Wolsing et al. [31]
implementation of BLSTM uses the components offered by the TensorFlow library [49].
Since BLSTM is a supervised model, it has been trained on a mix of normal simulator
executions without and with attacks. These latters were launched two times during
the simulation, producing a total of twelve attacks. This dataset generation process is
applied for both KY15 and Anytown topologies. Notice that BLSTM takes in input the
preprocessed physical data of the physical processes obtained by the SCADA device,
and so it is considered a PIDS.
Moving to discuss the DIDS, combining all the previous results, the final DIDS is able
to reach the maximum TD and the maximum TNO. Indeed, assigning the weights
to all the IIDS with the parameters discussed in section 6.3, using the threshold 0.7
for Anytown and 1.1 for KY15, Tables 6.14 and 6.15 show the scores assigned by the
combiner doing the weighted sum of the detections for each scenario and the final
results of DIDS and BLSTM.
We can see that on Anytown topology BLSTM has one FD and one FSO, while on
KY15 topology BLSTM has two FSO. So, the TD is five and four for Anytown and
KY15 topologies respectively.
We proved that DIDS overcame BLSTM, one of the most used DL models based on
RNN in the IDS field. We also show that in general, all the single detectors work well.
However, they reach the maximum performances when combined into a single detector,
so, based on the results, we recommend using them jointly. Indeed, the IAR and IAM
are really good in detecting DoS attacks and the standard MITM (Tables 6.6, 6.7),
while the PIDSs have good performances in detecting all the types of MITM and the
Device attack (Tables 6.10, 6.11).
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Table 6.14: Correctly detected attacks and ignored normal executions by BLSTM and our
DIDS on Anytown topology, and the scores assigned by combination algorithm.
The prefix “C” stays for a normal dataset with no attacks, while the numerical
suffix is the number of iterations used. All the attacks run on a 50-iteration
simulation. The threshold is 0.7.

IDS
DS C50 C80 C200 MITM NITM SITM CITM DoS Dev Atks

Score 0.0 0.59 0.0 2.78 2.78 2.78 2.78 0.88 0.74 -
DIDS D D D D D D D D D 6/6
BLSTM D x D D D D D x D 5/6

Table 6.15: Correctly detected attacks and ignored normal executions by BLSTM and our
DIDS on KY15 topology, and the scores assigned by combination algorithm.
The prefix “C” stays for a normal dataset with no attacks, while the numerical
suffix is the number of iterations used. All the attacks run on a 50-iteration
simulation. The threshold is 1.1.

IDS
DS C50 C80 C200 MITM NITM SITM CITM DoS Dev Atks

Score 0.74 0.15 0.0 3.37 1.18 2.34 1.62 2.21 2.04 -
DIDS D D D D D D D D D 6/6
BLSTM D D D D D x D D x 4/6

However, even if they complement each other, we decided to give low values to the
weights of IAR and IAM, as visible by Table 6.4. Indeed, as we can see in Tables 6.6
and especially 6.7, they have a total of eight FD when the number of iterations is equal
to twenty and eighty. While, as visible by Tables 6.10 and 6.11, ST is the only PIDS
with one FD on the Anytown topology. Also, the network detectors are many more,
especially in KY15 topology, and so an error of one NIDS could cause the echo of all
the others. For this reason, we decided to give more “decisional power” to the PIDSs,
and low weights to the NIDSs.
However, why did the NIDSs have this great number of FD? These can be explained
by the variable frequency of transmission time. Indeed, all the networks can be subject
to latency, and in a real scenario noise disturbance too. So, it may happen that these
factors confuse our network detectors, which are based on inter-arrival times.

Table 6.16: BLSTM and DIDS DD metrics on Anytown.

IDS
DS MDD SDD BDD WDD

DIDS middle-case 1.83 10.02 -5 24
DIDS worst-case 12 15.39 -1 35
BLSTM 15.4 4.84 12 25
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Table 6.17: BLSTM and DIDS DD metrics on KY15.

IDS
DS MDD SDD BDD WDD

DIDS middle-case -0.33 0.47 -1 0
DIDS worst-case 26 4 22 39
BLSTM 9.5 8.44 3 24

Detection Time Tables 6.16 and 6.17 show all the DD metrics related to BLSTM
and DIDS. Since the Combiner module needs to wait for all the detectors to finish their
execution in order to compute the weighted sum of all the detections, we reported in
both the Tables the DIDS worst-case related to the MDD metric and DIDS middle-case
related to the MDD metric. On Anytown, it seems that DIDS MDD and BDD are
better than BLSTM in all cases, while the WDD related to the worst-case is much
higher than the WDD of BLSTM, as visible in Table 6.16. So, we can conclude that
on Anytown topology, DIDS is faster than BLSTM the majority of times in detecting
the attacks.
On KY15 instead, Table 6.17 shows that all the DD metrics of DIDS worst-case
are much greater in comparison to the ones of the BLSTM. The DIDS middle-case
instead, shows that DD metrics are better than BLSTM and the previous topology
too. However, it is not sufficient. So, in this topology, we have that the fastest method
in detecting the attacks is BLSTM the majority of times.
However, it is reasonable to think that BLSTM is faster than our DIDS in general.
Indeed, our DIDS uses from 10 to 16 detectors in the two topologies analyzed, and it
may require also more NIDSs in more complex topologies. While the BLSTM doesn’t
require other detectors than itself. This causes the probability of late detections by the
DIDS to increase a lot with the increasing number of detectors, as visible in Anytown
and KY15 topology. Indeed, on Anytown, the DIDS has a faster detection on average
than BLSTM, while on KY15 topology this is not true.

6.8 Attack Classification Results

The attack classification module has the goal of identifying the specific attack occurring,
if any. To do this, we implemented a RF model that takes in input statistical features
of bidirectional flows inside the ICS network traffic. Now we are going to discuss its
results using the statistics described in section 6.4. We recall that, since CITM, SITM,
NITM and MITM at the end are all MITM attacks, only for the Attack Classification
task we decided to fuse these attacks into one single acronym, that is MITM, and
consider just this label during the training and testing of the model. Indeed, we are
interested in understanding that a MITM is occurring, and not necessarily which
specific implementation of MITM is in progress.
In Figure 6.16 it is possible to see the confusion matrix of the test set related to the
RF model trained with the parameters discussed in section 6.3. Maybe for the large
support of MITM samples, normal examples are often misunderstood with them. Also,
enough normal samples are classified as DoS samples and vice versa.
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Figure 6.16: Confusion matrix related to the RF model. 0 refers to the normal sample, 1
refers to MITM, 2 refers to Device attack, 3 refers to DoS.

Table 6.18 shows instead the statistics obtained by the predictor. As we can see,
normal samples have really good Precision, Recall, and F1 score, probably for the high
support. Instead, between the three attacks, the MITM is the one with the highest
Recall and F1 score, even if there isn’t a big difference. Surprisingly, DoS have the
lowest performance jointly with Device attack, around 0.73 and 0.82 for all the three
metrics. This can be explained by the low support of DoS and Device attacks, and the
labeling process not properly precise: indeed, we just label the packets as malicious
when they are between the timestamp of the first and the last iterations related to
the attacks. However, some packets between these may belong to the normal traffic
flow, because reasonably even if there is an attack ongoing, not all the packets are
considered malicious. So, better labeling should have been done. Nevertheless, this is
out of the scope of this thesis, which is to prove the efficiency of DIDS in detecting
attacks in an ICS. Indeed, better labeling would need to be created from scratch with
ad-hoc techniques.
The Accuracy, as shown by Table 6.18, is 0.97, so really good. However, due to the
high-class imbalance in the dataset, this statistic is not useful since it just says that
a lot of normal samples are correctly classified, and a small part of attack samples
too. The model shows around 0.83 Macro-average Precision, Macro-average Recall,
and Macro-average F1 score, and 0.97 Weighted-average Precision, Weighted-average
Recall, and Weighted-average F1 score, by what is reported in Table 6.18. However,
these last three metrics are not so reliable in our case of the imbalanced dataset, since
they consider too much the support of each class in the final result. So, the number
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of normal samples predominates the statistics, while the low support of the attack
samples causes their statistical value to be little considered.

Table 6.18: Statistics related to the trained RF model. “Normal” refers to the normal data
without attacks.

Statistics → Precision Recall F1 score Support

Normal 0.99 0.98 0.99 59815
MITM 0.78 0.89 0.83 3312
Device atk 0.82 0.75 0.78 407
DoS 0.73 0.76 0.74 1139

Accuracy - - 0.97 64673
Macro avg 0.83 0.85 0.84 64673
Weighted avg 0.97 0.97 0.97 64673



Chapter 7

Conclusions

In this work, a DIDS for ICS security is described and implemented, jointly with the
performance assessment of its constituents unsupervised IIDSs, that are, IAM, IAR,
MinMax, ST, GT, HM, their combination, and the supervised ML Attack Classifier
model RF. The DIDS results are compared with the ones obtained by the supervised
RNN algorithm called BLSTM. All the detectors and the classifier are tested on a
dataset containing six kinds of attacks and three normal operation executions with no
attacks running. The optimal parameters of the models are obtained using specific types
of grid search algorithms focused on the task we want to perform. The performance of
all the detectors has been measured in terms TD, FD, TNO, FSO, MDD, SDD, BDD,
and WDD, while for what concern the RF model, Precision, Recall, F1 score, Accuracy,
Macro-averaged and Weighted-averaged for Precision, Recall, and F1 score are used.
We showed that the detectors sometimes achieve good results when detecting attacks
on network traffic and operational data of the field devices. However, the combination
of these detectors shows their potential, and it is, therefore, a suitable choice for
building an IIDS since it reaches the optimal results on each dataset even surpassing
BLSTM, one of the detectors with the best performance in Wolsing et al. [5] work.
So, DIDS turned out to be very useful in CI, where the consequences of a failure can
be really serious. The unsupervised nature of our detectors allows us to detect with
enough probability also non-targeted zero-days attacks, while their transparency and
non-complexity make them alternative choices to more complex black box methods, like
DNN and RNN. Furthermore, our DIDS abstracts each network message by converting
it into a common format for each different protocol, in this way allowing its operation
on a wide range of heterogeneous ICS network traffic.
Regarding the Attack Classification task, we show that the CICFlowMeter and RF
model work reasonably well in order to have network traffic flow features and to classify
them, respectively. However, the imbalanced dataset (partially solved using SMOTE)
and the non-properly accurate labeling process probably caused some results to be a
bit too lower than others. This doesn’t mean that RF is not good, but that maybe it
mistakes the classification of some classes related to the attacks because they are not
100% correctly labeled and/or because such classes have low support. So, there is a
percentage of doubt on the RF worst results, which could improve or keep unchanged
these letters.
Combining the final detection results with the output of the Attack Classifier model, it
is possible not only to have a better understanding of the type of the ongoing attack,
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but also to have another reliable source that introduces an additional layer of security
against malicious attacks.
By deploying the NIDSs between the PLCs and their respective switch we have got
good results. Nevertheless, at the cost of having one detector for each PLC: this can
cause late detection, since the number of detectors is proportional to the detection
time, and it is not economically cheap for small manufacturing enterprises. So, further
work should be done in order to test the results of just a single NIDS sniffing the traffic
directed towards and from the central router (Router0 in Figure 6.15) instead. Before
that, a labeling improvement task is needed, maybe considering the IPs involved in the
attacks, accompanied by an attack data augmentation to solve the dataset imbalance
in the Attack Classification task. Furthermore, since the tested attacks are only six,
it may be useful to test other kinds of attacks. Also, conducting some stress tests
injecting noises and latencies on the simulated control network and see if the detectors
are able to ignore them or not could be a possible future work, since these issues may
normally happen in a real scenario ICS.



References

[1] C. Alcaraz, “Secure interconnection of IT-OT networks in industry 4.0,” in
Critical Infrastructure Security and Resilience. Cham, Switzerland: Springer, 2019, pp.
201–217.

[2] Margolin, J.: Outdated Computer System Exploited in Water Treatment Plant
Hack (2021), accessed: 2022–04-24. URL:
www.abc7news.com/story/10328196/

[3] Kus, D., et al.: A False Sense of Security? ACM CPSS, revisiting the state of
machine learning-based industrial intrusion detection. In (2022).

[4] Etalle, S.: From intrusion detection to software design. In: ESORICS (2017).

[5] Wolsing, K., Thiemt, L., Sloun, C.v., Wagner, E., Wehrle, K., Henze, M. (2022).
Can Industrial Intrusion Detection Be SIMPLE?. In: Atluri, V., Di Pietro, R., Jensen,
C.D., Meng, W. (eds) Computer Security – ESORICS 2022. ESORICS 2022. Lecture
Notes in Computer Science, vol 13556. Springer, Cham. URL:
https://doi.org/10.1007/978-3-031-17143-7_28

[6] Conti, Mauro & Donadel, Denis & Turrin, Federico. (2021). A Survey on
Industrial Control System Testbeds and Datasets for Security Research.

[7] Understanding Machine Learning: From Theory to Algorithms, 2014, Shai Shalev-
Shwartz and Shai Ben-David. URL:
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

[8] Muhammad Azmi Umer, Khurum Nazir Junejo, Muhammad Taha Jilani, Aditya
P. Mathur, Machine learning for intrusion detection in industrial control systems:
Applications, challenges, and recommendations, International Journal of Critical In-
frastructure Protection, Volume 38, 2022, 100516, ISSN 1874-5482. URL:
https://doi.org/10.1016/j.ijcip.2022.100516

[9] Pinto, A.; Herrera, L.-C.; Donoso, Y.; Gutierrez, J.A. Survey on Intrusion
Detection Systems Based on Machine Learning Techniques for the Protection of Critical
Infrastructure. Sensors 2023, 23, 2415.. URL:
https://doi.org/10.3390/s23052415

63

 www.abc7news.com/story/10328196/
https://doi.org/10.1007/978-3-031-17143-7_28
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
https://doi.org/10.1016/j.ijcip.2022.100516
https://doi.org/10.3390/s23052415


REFERENCES 64

[10] J. Giraldo et al., “A survey of physics-based attack detection in cyber-physical
systems,” ACM Comput. Surv., vol. 51, no. 4, 2018, Art. no. 76.

[11] Dina Hadžiosmanović, Robin Sommer, Emmanuele Zambon, and Pieter H. Har-
tel. 2014. Through the eye of the PLC: semantic security monitoring for industrial
processes. In Proceedings of the 30th Annual Computer Security Applications Con-
ference (ACSAC ’14). Association for Computing Machinery, New York, NY, USA,
126–135.. URL:
https://doi.org/10.1145/2664243.2664277

[12] D. Mashima and A. A. Cárdenas, “Evaluating electricity theft detectors in smart
grid networks,” in Proc. Int. Workshop Recent Advances Intrusion Detection, 2012,
pp. 210–229..

[13] S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, and P. Tabuada,
“Secure state estimation against sensor attacks in the presence of noise,” IEEE Trans.
Control Netw. Syst., vol. 4, no. 1, pp. 49–59, Mar. 2017.

[14] C. Murguia and J. Ruths, “Characterization of a cusum modelbased sensor attack
detector,” in Proc. IEEE 55th Conf. Decis. Control, 2016, pp. 1303–1309.

[15] Y. Mo, S. Weerakkody, and B. Sinopoli, “Physical authentication of control
systems: Designing watermarked control inputs to detect counterfeit sensor outputs,”
IEEE Control Syst. Magazine, vol. 35, no. 1, pp. 93–109, Feb. 2015.

[16] Nong Ye, Syed Masum Emran, Qiang Chen, Sean Vilbert, Multivariate statistical
analysis of audit trails for host-based intrusion detection, Comput. IEEE Trans. 51
(7) (2002) 810–820.

[17] Eirini Anthi and others, A three-tiered intrusion detection system for industrial
control systems, Journal of Cybersecurity, Volume 7, Issue 1, 2021, tyab006. URL:
https://doi.org/10.1093/cybsec/tyab006

[18] Duque Anton, Simon & Sinha, Sapna & Schotten, Hans. (2019). Anomaly-
based Intrusion Detection in Industrial Data with SVM and Random Forests. 1-6.
10.23919/SOFTCOM.2019.8903672.

[19] Colelli, Riccardo & Magri, Filippo & Panzieri, Stefano & Pascucci, Federica.
(2021). Anomaly-Based Intrusion Detection System for Cyber-Physical System Security.
428-434. 10.1109/MED51440.2021.9480182.

[20] Ankang Chu, Yingxu Lai, Jing Liu, and Clemente Galdi. 2019. Industrial
Control Intrusion Detection Approach Based on Multiclassification GoogLeNet-LSTM
Model. Sec. and Commun. Netw. 2019 (2019). URL:
https://doi.org/10.1155/2019/6757685

https://doi.org/10.1145/2664243.2664277
https://doi.org/10.1093/cybsec/tyab006
https://doi.org/10.1155/2019/6757685


REFERENCES 65

[21] Feng, Cheng & Li, Tingting & Chana, Deeph. (2017). Multi-level Anomaly
Detection in Industrial Control Systems via Package Signatures and LSTM Networks.
10.1109/DSN.2017.34.

[22] Goh, Jonathan & Adepu, Sridhar & Tan, Yi Xiang Marcus & Lee, Zi. (2017).
Anomaly Detection in Cyber Physical Systems Using Recurrent Neural Networks. 140-
145. 10.1109/HASE.2017.36.

[23] Homayouni, Hajar & Ghosh, Sudipto & Ray, Indrakshi & Gondalia, Shlok & Dug-
gan, Jerry & Kahn, Michael. (2020). An Autocorrelation-based LSTM-Autoencoder for
Anomaly Detection on Time-Series Data. 5068-5077. 10.1109/BigData50022.2020.9378192.

[24] Khurum Nazir Junejo and Jonathan Goh. 2016. Behaviour-Based Attack
Detection and Classification in Cyber Physical Systems Using Machine Learning. In
Proceedings of the 2nd ACM International Workshop on Cyber-Physical System Security
(CPSS ’16). Association for Computing Machinery, New York, NY, USA, 34–43. URL:
https://doi.org/10.1145/2899015.2899016

[25] Aleksei Kharitonov and Axel Zimmermann. 2019. Intrusion Detection Using
Growing Hierarchical Self-Organizing Maps and Comparison with other Intrusion
Detection Techniques. In Proceedings of the 5th on Cyber-Physical System Security
Workshop (CPSS ’19). Association for Computing Machinery, New York, NY, USA,
13–23. URL:
https://doi.org/10.1145/3327961.3329531

[26] Perez, Rocio & Adamsky, Florian & Soua, Ridha & Engel, Thomas. (2018).
Machine Learning for Reliable Network Attack Detection in SCADA Systems. 633-638.
10.1109/TrustCom/BigDataSE.2018.00094.

[27] Radoglou Grammatikis, Panagiotis & Sarigiannidis, Panagiotis & Efstathopou-
los, George & Karipidis, Paris & Sarigiannidis, Antonios. (2020). DIDEROT: an
intrusion detection and prevention system for DNP3-based SCADA systems. 1-8.
10.1145/3407023.3409314.

[28] Raman, Maitreyi & Somu, Nivethitha & Mathur, Aditya. 2019. Anomaly
Detection in Critical Infrastructure Using Probabilistic Neural Network.

[30] Lin, CY., Nadjm-Tehrani, S., Asplund, M. (2018). Timing-Based Anomaly De-
tection in SCADA Networks. In: D’Agostino, G., Scala, A. (eds) Critical Information
Infrastructures Security. CRITIS 2017. Lecture Notes in Computer Science(), vol
10707. Springer, Cham. URL:
https://doi.org/10.1007/978-3-319-99843-5_5

[31] Konrad Wolsing, Eric Wagner, Antoine Saillard, and Martin Henze. 2022.
IPAL: Breaking up Silos of Protocol-dependent and Domain-specific Industrial Intrusion
Detection Systems. In Proceedings of the 25th International Symposium on Research in

https://doi.org/10.1145/2899015.2899016
https://doi.org/10.1145/3327961.3329531
https://doi.org/10.1007/978-3-319-99843-5_5


REFERENCES 66

Attacks, Intrusions and Defenses (RAID ’22). Association for Computing Machinery,
New York, NY, USA, 510–525.
https://doi.org/10.1145/3545948.3545968

[33] Murillo, Andrés & Taormina, Riccardo & Tippenhauer, Nils Ole & Salaorni,
Davide & Dijk, Robert & Jonker, Luc & Vos, Simcha & Weyns, Maarten & Galelli,
Stefano. (2022). High-fidelity Cyber and Physical Simulation of Water Distribution
Systems. Part 1: Models and Data.

[34] Nozomi Networks. June 2018. Advancing ICS Visibility and Cybersecurity with
the Nozomi Networks Solution.

[35] Giuseppe Bernieri, Mauro Conti, and Federico Turrin. 2019. KingFisher: an
Industrial Security Framework based on Variational Autoencoders. In Proceedings of
the 1st Workshop on Machine Learning on Edge in Sensor Systems (SenSys-ML 2019).
Association for Computing Machinery, New York, NY, USA, 7–12. URL:
https://doi.org/10.1145/3362743.3362961

[36] James Ho. Step by Step Tutorial of Sci-kit Learn Pipeline, Published in Towards
Data Science. URL:
https://towardsdatascience.com/step-by-step-tutorial-of-sci-kit-learn-pipeline-62402d5629b6

[37] SMOTE for Imbalanced Classification with Python by Jason Brownlee on Jan-
uary 17, 2020 in Imbalanced Classification URL:
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification

[38] Chawla, Nitesh & Bowyer, Kevin & Hall, Lawrence & Kegelmeyer, W.. (2002).
SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. (JAIR).
16. 321-357. 10.1613/jair.953.

[39] C. Alcaraz and J. Lopez, “Digital Twin: A Comprehensive Survey of Security
Threats,” in IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1475-1503,
third quarter 2022, doi: 10.1109/COMST.2022.3171465.

[40] CICFlowMeter (formerly ISCXFlowMeter) Applications. URL:
https://www.unb.ca/cic/research/applications.html#CICFlowMeter

[41] S. B. Mathieu Guillame-Bert and J. P. Josh Gordon, “Introducing TensorFlow
decision forests.” [Online]. URL:
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.
html

[42] Rossman, L. A. 2000. EPANET 2: Users manual. Cincinnati: Water Supply
and Water Resources Division, National Risk Management Research Laboratory.

https://doi.org/10.1145/3545948.3545968
https://doi.org/10.1145/3362743.3362961
https://towardsdatascience.com/step-by-step-tutorial-of-sci-kit-learn-pipeline-62402d5629b6
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification
https://www.unb.ca/cic/research/applications.html#CICFlowMeter
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html


REFERENCES 67

[43] Antonioli, D., and N. O. Tippenhauer. 2015. “MiniCPS: A toolkit for security
research on CPS networks.” In Proc., 1st ACM Workshop on Cyber-Physical Systems-
Security and/or PrivaCy, CPS-SPC ’15, 91–100. New York: Association for Computing
Machinery.

[44] Lantz, B., B. Heller, and N. McKeown. 2010. “A network in a laptop: Rapid
prototyping for software-defined networks.” In Proc., 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, Hotnets-IX. New York: Association for Computing Machinery.

[45] Sklearn Pipeline. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.
html

[46] Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville, MIT
Press, 2016. URL:
https://www.deeplearningbook.org/

[47] Introduction to Deep Learning, GeeksForGeeks URL:
https://www.geeksforgeeks.org/introduction-deep-learning/

[48] Su, Tongtong & Sun, Huazhi & Zhu, Jinqi & Wang, Sheng & Li, Yabo. (2020).
BAT: Deep Learning Methods on Network Intrusion Detection using NSL-KDD dataset.
IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.2972627.

[49] TensorFlow Website. URL:
https://www.tensorflow.org/

[50] Khan, Wazir & Xiang, Yang & Aalsalem, Mohammed & Arshad, Quratulain.
(2012). The Selective Forwarding Attack in Sensor Networks: Detections and Counter-
measures. International Journal of Wireless and Microwave Technologies. 2. 33-44.
10.5815/ijwmt.2012.02.06.

[51] M. Grieves, “Digital twin: Manufacturing excellence through VirtualFactory
replication,” Dassault Systèmes’ DELMIA, Digital Twin White Paper, vol. 1, pp. 1–7,
2014. [Online]. URL:
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.
pdf

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://www.deeplearningbook.org/
https://www.geeksforgeeks.org/introduction-deep-learning/
https://www.tensorflow.org/
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf


Acronyms and Abbreviations

ANN Artificial Neural Networks. 10, 11

BDD Best Detection Delay. 50, 53, 54, 56, 58, 61

BLSTM Bidirectional Long Short Term Memory. 2, 3, 19, 21, 37, 56–58, 61

CI Critical Infrastructure. 1, 5, 61

CIP Common Industrial Protocol. 6, 28, 29, 39, 41, 42

CITM Concealment Man-in-the-Middle. 29, 38, 41–46, 58

CLT Central Limit Theorem. 17, 18, 31

CPS Cyber-Physical Systems. 1, 7, 20

DD Detection Delay. 50, 54–58

DHALSIM Digital HydrAuLic SIMulator. 3, 26–28, 30, 36

DIDS Distributed Intrusion Detection System. 2, 3, 8, 16, 20, 21, 23–25, 33, 34, 36,
38, 40, 46, 47, 50, 56–59, 61

DL Deep Learning. 9, 10, 19, 56

DNN Deep Neural Networks. 21, 61

DoS Denial of Service. 7, 29, 37, 38, 42–44, 46, 52, 55, 56, 58, 59

DT Digital Twin. 2, 3, 7, 9, 26, 29

FD False Detection. 50, 52, 55–57, 61

FSO False NOrmal. 50, 52, 56, 61

GT Gradient. 25, 33, 37, 55, 56, 61

HM Histogram. 25, 33, 37, 48, 55, 61

HMI Human Machine Interface. 5, 6

IAM Inter-Arrival Mean. 3, 17, 25, 30–32, 37, 48, 49, 52–54, 56, 57, 61

68



Acronyms and Abbreviations 69

IAR Inter-Arrival Range. 3, 17, 25, 30, 31, 37, 48, 49, 52–54, 56, 57, 61

ICS Industrial Control System. 1–5, 7, 8, 20, 24–28, 30, 31, 33, 36, 39–48, 58, 59, 61,
62

IDS Intrusion Detection System. 2, 7, 8, 20, 21, 56

IIDS Industrial Intrusion Detection System. 2–4, 7, 8, 20, 23, 25, 46, 48, 56, 61

IPAL Industrial Protocol Abstraction Layer. 3, 24, 29, 30

IT Information Technology. 1, 5, 20, 21

LL Lower Limitation. 17, 18, 31, 32

LSTM Long Short Term Memory. 15, 16, 19, 21

MDD Mean Detection Delay. 50, 53, 54, 56, 58, 61

MinMax Minimum and Maximum. 25, 33, 37, 55, 61

MITM Man-In-The-Middle. 7, 28, 29, 37–41, 43, 51–54, 56, 58, 59

ML Machine Learning. 2, 3, 8–10, 18, 20, 21, 23, 34, 38, 61

MSE Mean Squared Error. 12, 14

NIDS Network Intrusion Detection System. 8, 17, 20, 23, 25, 30, 36, 37, 47–50, 52–54,
57, 58, 62

NITM Naive Man-In-The-Middle. 28, 38–40, 43, 52, 58

OT Operational Technology. 1, 5, 6, 8, 20, 21

PIDS Physics-based Intrusion Detection System. 8, 20, 23–25, 30, 33, 36, 37, 48–50,
54–57

PLC Programmable Logic Controller. 1, 5, 6, 27–29, 36, 37, 39, 41–49, 52–54, 62

RF Random Forest. 2, 3, 8, 18, 19, 21, 25, 34, 35, 38, 49–51, 58–61

RNN Recurrent Neural Networks. 10, 12–15, 19, 56, 61

SCADA Supervisory Control and Data Acquisition. 1, 3, 5, 6, 20, 21, 28–30, 36, 37,
41, 47, 56

SDD Standard deviation of the Detection Delays. 50, 53, 54, 56, 61

SITM Server Man-In-The-Middle. 29, 38, 41, 43, 45, 55, 58

SMOTE Synthetic Minority Over-sampling TEchnique. 9, 34, 38, 61

ST SteadyTime. 25, 33, 37, 55–57, 61

SVM Support Vector Machine. 20, 21



Acronyms and Abbreviations 70

TD True Detection. 50, 52, 55, 56, 61

TNO True NOrmal. 50, 52, 55, 56, 61

UL Upper Limitation. 17, 18, 31, 32

VAE Variational Autoencoder. 21

WDD Worst Detection Delay. 50, 53, 54, 56, 58, 61


	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Thesis Organization

	2 Background Knowledge
	2.1 Industrial System Security
	2.2 Machine Learning
	2.2.1 SMOTE
	2.2.2 Decision Tree
	2.2.3 Deep Learning
	2.2.4 Recurrent Neural Networks

	2.3 Detection Approaches
	2.3.1 Inter-Arrival Mean and Range Models
	2.3.2 Random Forest
	2.3.3 Bidirectional Long Short-Term Memory


	3 Literature Review
	3.1 Physics-based Intrusion Detection System
	3.2 Network-based Intrusion Detection System
	3.3 Distributed Intrusion Detection System

	4 Project Overview
	4.1 Attack Detector
	4.2 Attack Identifier

	5 Implementation
	5.1 DHALSIM
	5.2 Cyberattacks
	5.3 Attack Detector Implementation
	5.3.1 Preprocessor
	5.3.2 Network Detectors
	5.3.3 Physical Detectors
	5.3.4 Combiner

	5.4 Attack Identifier Implementation
	5.4.1 Preprocessor
	5.4.2 Attack Classifier


	6 Experiments
	6.1 Dataset
	6.2 Preliminary Data Analysis
	6.3 Experimental Setup
	6.4 Evaluation Metrics
	6.5 Network Detector Results
	6.6 Phyisical Detector Results
	6.7 DIDS vs BLSTM Results
	6.8 Attack Classification Results

	7 Conclusions
	References
	Acronyms and Abbreviations

