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Chapter 1

Introduction

Artificial Neural Networks (ANN) are information processing archetypes that draw
inspiration from the biological networks of neurons. ANN are systems that learn by
example, and whose main purpose, among others, is solving pattern recognition and
data classification tasks.
The seminal work of McCulloch (a neuro-physiologist) and Walter Pits (a logician),
first laid the foundations for the artificial neurons and ANN. During the eighties,
many scientists saw the real potential of neural networks, after having tried different
models for the understanding of the human brain. [2] At that time, the available tech-
nology imposed a serious hindrance to the success and the usability of those models.
[2] After a span of discredit, the ANN field has again started to attract attention, spe-
cially thanks to the landmark work done by the psychologist and computer scientist
Geoffrey Hinton. [2] Currently, neural networks offer a valid alternative approach
to classical algorithmic computing. They do not need to be programmed for specific
tasks, and therein lies their strength. Indeed, neural networks work under a parallel
processing framework in order to solve problems, as opposed to the conventional
sequential approach of computer programs. They also show an exceptional ability
to detect trends and recognize patterns from sophisticated and defected data. Recent
develops in ANN have been achieved by exploiting tools and ideas from interact-
ing particle models rooted in Statistical Physics (Ising Model, Boltzmann Machines,
etc..). ANNs have been successfully applied to a vast spectrum of fields and opera-
tions. They are currently used in finance, in medical diagnosis, in industrial process
control, in chemistry and physics, in biological systems analysis, in data mining and
classification tasks, and also in some fringe applications such as auto-driving cars
designing and sports betting. [11] [16]
Our thesis wants to illustrate recent developments in ANN, and study the topolog-
ical properties of a specific type of ANN using tools from graph theory. The work
is divided in two main parts. First, it presents useful concepts and models such as
Bayesian probability, Ising models, Monte Carlo methods, and simpler neural net-
works such as the single neuron and Boltzmann Machines. We then focus on under-
standing the mode of operation of a Deep Belief Network (DBN), a multi-layer neu-
ral network that works under the unsupervised learning framework (i.e., the ANN
learns features of the training data without the need of labeled data that would ’di-
rect’ the learning process).
The second part of this work analyzes a trained DBN (qualified on reading digits
images from the popular MNIST database [10] ) from a network perspective. We in-
spect the topological properties of the DBN, making use of graph theory. The goal of
this unprecedented analysis is to seek a deeper knowledge of the topological modi-
fications that the DBN experiences during the training.
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Chapter 2

Basics

2.1 Bayesian Inference

2.1.1 Bayesian probability and Conditional Dependence

We will use probability in the Bayesian meaning: a probability is a degree of belief in
propositions that do not involve random variables. It’s the meaning used, for exam-
ple, in the sentence ’The probability that Mr. S. was the murderer of Mrs. S., given
the evidence’.
A ’good’ (satisfying the Cox probability axioms) set of beliefs can be mapped onto

Figure 2.1:
Let the event A be ’I
have a new car’;
event B be ’I have a
new watch’; and
event C be ’I am
happy’. C occurs - ’I
am happy’. Now if a
third person sees my
new watch, he/she
will attribute this
reason to my
happiness. In
his/her view the
probability of the
event A (’I have a
new car’) to have
been the cause of the
event C (’I am
happy’) will decrease
as the event C has
been explained away
by the event B.

probabilities satisfying the properties: P (false) = 0, P (true) = 1, 0 ≤ P (x) ≤ 1,
P (x) = 1− P (x̄), P (x, y) = P (x|y)P (y). [13]
In probability theory, conditional dependence is a relationship between two or more
events that are dependent when a third event occurs. For example, if A and B are
two events that individually affect the happening of a third event C, and do not
directly affect each other, then, when the event C has not occurred, A and B are inde-
pendent. Eventually the event C occurs, and now if event A occurs, the probability of
occurrence of the event B will decrease. Hence, now the two events A and B become
conditionally dependent.

2.1.2 Likelihood, Prior, Posterior and Model Comparison

If θ denotes the unknown parameters, D denotes the data, andH denotes the overall
hypothesis space, we can write the general equation from Bayes theorem:

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
(2.1)

that can also be read as: posterior =
likelihood×prior

evidence .
Bayes theorem provides the correct language for describing the inference process
(understanding a model from data, or improving a pre-existing model with the help
of the data).

If we have two theories H1 and H2 whose credibility we intend to compare, we
can use Bayes theorem. We can compute how probable the two theories are, given
the data:

P (H1|D) =
P (D|H1)P (H1)

P (D)
P (H2|D) =

P (D|H2)P (H2)

P (D)



Chapter 2. Basics 3

We first need to assign prior probabilities to each of them (we could assign the same
value if we have no prior knowledge at all). If we have a way of computing the terms
P (D|H1), P (D|H2), we will be able to compute the posterior probability ratio of model
H1 to model H2. (A quantity that gives our degree of belief in one explanation for
the data rather then the other.)

P (H1|D)

P (H2|D)

This idea can lead somehow to the hypothesis - hypothesis that is actually being
studied in Neuroscience field - that the human cognitive system works in a similar
way, by trying to attribute the most likely interpretation to the sensorial input data.
[7] [6] [3]

2.1.3 Maximum Likelihood

When we need to find an explanation for something, we could perform exact infer-
ence by enumerating all possible hypothesis regarding our problem, and evaluate
the corresponding probabilities. This approach is unfeasible most of the times as the
space of all possible solutions is too big.
An approximate approach is homing in on one good hypothesis that fits the data
well. This leads to the maximum likelihood method: finding the set of parameters θ of
a theory that maximize the likelihood P (D|θ,H). We will see in the next chapter that
this is the model that our neural networks will follow: 1) read input data; 2) build an
internal generative model that could explain data; 3) try to maximize the likelihood
(or "minimize the energy") of the data to improve the model.

2.2 Monte Carlo methods

Monte Carlo methods are computational techniques that make use of random num-
bers. The aims of Monte Carlo methods are to solve one or both of the following
problems:

Sampling To generate samples {xr}Rr=1 from a given probability distribution P (x).

Expectations To estimate expectations of functions under distribution, for example

〈Φ(x)〉P :=
∫
P (x)Φ(x) dNx.

We call the probability distribution P (x) target density. In our case it will be
the posterior probability of a model’s parameters given some observed data.
Simple examples of Φ could be the first and second momentum of quantities
that we wish to predict.

2.2.1 Gibbs Sampling

We will focus on sampling. Monte Carlo methods provide many sampling algo-
rithms for different purposes. One possible algorithm to sample from multidimen-
sional distributions is Gibbs Sampling (also known as heat bath method). We will make
use of it.
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Be x ourK-dimensional random variable, distributed according to P (x). We assume
that P (x) is too complex to draw samples from directly, but its 1 dimensional condi-
tional distributions P (xi|{xj}j 6=i) are most of the time tractable, i.e, random number
can be easily be numerically sampled from it. Let’s assume we have a data point x,
and we want to sample a new point y from P (x). We denote by xi the i-th compo-
nent of the vector x, and by x>j the (K − j)-dimensional vector whose components
are {xi}i=j,...,K . Similarly, we define the symbol x<j . We also use (u, v) to denote
the vector whose components are the components of the vectors u and v, placed one
after the other.

Gibbs algorithm

Figure 2.2:
Gibbs sampling for a
2D variable.
a) A point x(t) is
used to start
b) The first
component x(t+1)

1 of
a new point is
sampled from
P (x1|x(t)

2 ), given the
old component 2 of
x(t)

c) The new second
component x(t+1)

2 is
sampled from
P (x2|x(t+1)

1 ), given
the new component 1
of the point.

1 Using x, we sample the first component of y: y1 from P (y1| x>1).

2 Using x AND the just calculated y1, we sample y2 from P (y2| (y1, x>2)).

. . . Sample yi from P (yi| (y<i, x>i)).

K Sample yK from P (yK | y<K).

Essentially, what we are doing is ’upgrading’ the data vector x to a new vector y step
by step, sampling and ’updating’ one component at a time, using, as prior knowl-
edge to compute the i-th conditional distribution, the semi-updated vector (y<i, x>i)
instead of the old x.
Gibbs is slow - because it explores the space state by a random walk -, unless a fortu-
itous parameterization has been chosen that makes the probability distribution P (x)
separable. Indeed, if some or all the components of our random variables are con-
ditionally independent, the probability distribution from which it will be sampled
will not depend on the previous values of the other components of the vector. This
means that, if for example all the components of x are independent, we would be
able to sample all the components of a new vector y in one very single step. [13]
Luckily, this will be our case.

2.2.2 Monte Carlo methods as Markov Chains

Gibbs and other sampling methods are based on the theory of Markov Chains.
A Markov Chain is a process that can be specified by an initial probability distribu-
tion p0(x) and a transition probability density T (x′;x) (the probability of going from
the state x to the state x′). [13]
The probability distribution of the state at the (t+1)-th iteration of the Markov chain,
pt+1(x), is given by

pt+1(x′) =

∫
T (x′;x)pt(x)dNx (2.2)

Required properties
For our purposes, we require the following properties:

Equilibrium The desired distribution P (x) is invariant under the chain. That is, P (x) is such
that

P (x′) =

∫
T (x′;x)P (x)dNx. (2.3)
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Ergodicity pt(x) → P (x) as t → ∞, for any ’starting distribution’ p0(x). Also known as
"there aren’t unreachable states".

2.3 Ising Models

2.3.1 Boltzmann Equilibrium Distribution of Binary Arrays

Figure 2.3:
Example of array of
spins with binary
states (Up or Down).

An Ising model is an array of binary variables (e.g., atomic spins, or artificial neu-
rons, that can take states ±1, or {0, 1}) that are ’magnetically’ coupled to each other.
If one atom is, say, in the +1 state (or equivalently a neuron is in the ’ON’ state) then
it is energetically favorable for its immediate neighbors to be in the same state.
This can be mathematically represented by assigning an energy function to the state
of the whole array x (∈ RK), given the coupling constants Jmn = J if m and n are
neighbors and Jmn = 0, and the ’external magnetic field’ H :

E(x; J,H) = −
(

1

2

∑
m,n

Jmnxmxn +
∑
n

Hxn

)
(2.4)

This energy is useful to define the Boltzmann probability distribution of the system.
We state that, at equilibrium the stationary state distribution for the spin system at
the temperature T is (β = 1

kBT
):

P (x|β, J,H) =
1

Z(β, J,H)
e−βE(x;J,H) (2.5)

Where Z(β, J,H) :=
∑
x
e−βE(x;J,H) is the normalization known as partition function.

By studying Ising models we can find out phase transitions in many systems that
can be described within this model.
If we generalize the energy function to:

E(x; J, h) = −
(

1

2

∑
m,n

Jmnxmxn +
∑
n

hnxn

)
(2.6)

we obtain a family of models known as ’spin glasses’, or as ’Hopfield networks’ or
’Boltzmann Machines’ to the neural network community. Those models are useful
for describing how the associative memory could work.

2.3.2 Monte Carlo simulations in Ising Models

Monte Carlo sampling methods (like Gibbs sampling) can be used to simulate an
’artificial dynamic’ of the Ising array. Basically, in each step of the Markov chain,
we flip, according to a transition probability that satisfies the detailed balance, the
state of one unit at random. The transition probability is chosen in such a way that
the system tends to change state so that it can lower its energy. This method brings,

Figure 2.4:
Example of the
dynamic of the array
of spins under a
Monte Carlo
simulation. Each
step may flip a spin
state.

after several steps, the system state distribution to the equilibrium distribution, from
which we can for example sample values or compute expectations of functions of the
state.
This is the same mechanism implemented in a Hopfield neural network. [13] Simply
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replace ’spin state’ with ’neuron state’, ’energy’ with ’likelihood of the parameters of
the internal model that explains input data’, ’ minimization of energy’ with ’maxi-
mization of likelihood’, and ’local magnetic field’ with ’bias of a neuron’ (its tendency
to remain on or off).

2.4 Latent Variable Models

In statistics, latent variables, are variables that are not directly observed but are rather
inferred, through a mathematical model, from other variables that are directly ob-
served. Mathematical models that aim to explain observed variables in terms of
latent variables are called latent variable models.
Sometimes latent variables correspond to aspects of physical reality, which could in
principle be measured, but may not be for practical reasons. In this situation, the
term hidden variables is commonly used (the variables are "really there", but hidden).
One advantage of using latent variables is that this reduces the dimensionality of
data. A large number of observable variables can be aggregated in a model to repre-
sent an underlying concept, making it easier to understand the data.
Examples of latent variable models include mixture models, probabilistic models in
which the observables are assumed to come from a superposed mixture of simple
probability distributions. [5]

An example - Mixture of Gaussians
We now briefly discuss the example of a mixture of Gaussians [8] problem, to show

Figure 2.5:
A visual example of
a Mixture of
Gaussians. We
initially have
unlabeled data (all
the points are the
same color), then, we
make a model and
compute extimations
of the parameters of
this model (in this
case, the label of each
data point, and the
shape of the
underlying
Gaussians we
suppose the data
come from). This
image shows the
outcome of the
model for a
particular data set,
assuming the data
can be assumed as
generated from 3
Gaussians. Each data
was colored with a
color from among
the 3 possible colors
(1 for each Gaussian).

an example of usage of latent variables.
Suppose that we are given a data set D = {xn}Nn=1, each of them coming with a hid-
den label tn (each of them being a integer in {1, ..., k}). Our model posits that each
xn was generated by randomly choosing tn from {1, ..., k}, and then xn was drawn
from one of k Gaussians depending on tn. The random variables tn indicate which
of the k Gaussians each xn had come from. This is called the mixture of Gaussians
model. Also, note that the tn’s are latent random variables, meaning that they’re hid-
den/unobserved.
We wish to model the data by specifying a joint distribution p(xn, tn) = p(xn|tn)p(tn).

Here, z ∼ Multinomial(φ), where φj ≥ 0,
k∑
j=1

φj = 1, and the parameter φj gives

p(tn = j), and xn|tn = j ∼ N (µj , σj).
The parameters of our model are thus φ (probabilities of the hidden labels), µ and
σ (means and standard deviations of the Gaussians). The aim in this problem is to
estimate them. We can succeed by writing down the likelihood of our data, and
then trying to maximize it to find the best fitting parameters (usually with the use
of an approximate iterative algorithm, since it is not possible to find the maximum
likelihood estimates of the parameters in closed form). [4]
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Chapter 3

Neural Networks

3.1 Basic Concepts

Figure 3.1:
Structure of an
artificial neuron.

Figure 3.2:
Structure of a
biological neuron,
from which the
artificial one derives.
The dendrites (the
thin branches on the
left) are the inputs,
the cell body (the
blob on the left) is
the ’computation
center’, the axon (the
long slender
projection that goes
from the body to the
right) is the output.

3.1.1 The Single Neuron

Many neural network models are built out of single neurons.The single neuron (also
called Perceptron) is a feedforward device - it is a network with a specific architecture
that can perform the activity of taking input values and using them to compute and
then ’fire’ an output value, based on some inner rule (= the Activity rule). A single
neuron is itself capable of ’learning’ - indeed it can provide the simplest model for
supervised learning. Therefore it is good to understand them in detail. [13]

Definition of a single neuron

Architecture A single artificial neuron is a unit that has I inputs xi and one output y. Associ-
ated with each input is a weight wi (see 1st Figure). There may be an additional
parameter w0 called the bias, which may be seen as the weight associated with
an input x0 that is permanently set to 1 and that reaches all neurons. The bias
is not necessary, but it can be useful in certain situations in which we want to
impose an ’default tendency’ in the activation of the neuron.

Activity rule The activity rule has two steps.

1 First, in response to the imposed input x ∈ RI , the activation of the neuron
is computed,

a =
I∑
i=0

wixi = w · x (3.1)

2 The output is set as a function f(a) of the activation. The output is also
called the activity of the neuron (6= activation!).
There are several possible activation functions that can be used. The most

Figure 3.3:
Several different
activation functions
are available. In the
figure: threshold,
linear, threshold
logic, and sigmoid.

popular are:

a) Deterministic Sigmoids

y(a) =
1

1 + e−a
or y(a) = th(a) (3.2)

b) Stochastic activation functions:
y is stochastically selected from ±1 for example with
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y(a) =

{
1 with probability (1 + e−a)−1

−1 otherwise
(3.3)

3.1.2 Supervised Learning - Example of a Binary Classifier

Figure 3.4:
The purpose of the
single neuron is to
become able to
discern between
different kinds of
data (for example to
distinguish between
blue and red data
points in the figure).

We are given this problem: assume we have I-dimensional data that could be binary
classified (each data point could belong to the ’0’ class or the ’1’ class). We would like
to use an artificial neuron to perform the classification task. But the neuron doesn’t
know how to distinguish between data types, we must first train it!
What does exactly mean to ’learn a task’? In this context, it means becoming pro-
gressively better at doing something, proceeding by trial and error, with the help of
a teacher. This way of learning is called supervised learning.
How do we translate all of this in a simple algorithm that makes use of our neuron?
We can be the teachers for our neuron, and provide a training data set {x(n)}Nn=1

(x(n) ∈ RI ∀ n) with a corresponding set of binary labels {t(n)}Nn=1. The labels
are values ∈ {0, 1} specifying the correct class of each input x(n).
Activity rule - The neuron could take an input x(n) and perform its activity rule to
guess an answer. It could use the sigmoid function y(x,w) = (1 + e−x·w)−1 to com-
pute an output y (bonded between 0 and 1). This output might be viewed as stating
the probability, according to the neuron, that the given input is in class 1 rather than
class 0.
But if we don’t ’teach’ the neuron about the correctness of its response, it will never
learn and improve. Its attempts will always be random.
We then write down an error function:

G(w) = −
∑
n

(
t(n) ln(y(x(n);w)) + (1− t(n)) ln(1− y(x(n);w))

)
(3.4)

that can be viewed as the relative Shannon entropy between the empirical probability
distribution constructed from the vector (t(n), 1 − t(n)) and the probability distribu-
tion obtained by the output of the neuron (y, 1−y). This function quantifies the error
in the answer given by the neuron.
’Learning’, for the neuron, will mean to modify, after having seen and tried to clas-
sify an input, its weights w, in such a way that the error (function) between the real
label and the guessed one is decreased in value.
We can now define a learning rule for the neuron:
Learning rule - The error signal is computed as the difference from the supplied target
value t and the output y

e = t− y

Then the weights are adjusted in a direction that would reduce the magnitude of the
error function

w(new)
i := w(old)

i + ∆wi = w(old)
i + η e xi

where η is the learning rate.The training consists then in repeating the activity rule
and the learning rule for each input/target pair (x, t) that is presented.
This algorithm is called backpropagation algorithm, and it basically performs a gradi-
ent descent on the function G to approach its minimums, step after step. The fact
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that it works it’s easy to prove, since ∂G
∂wj

=
N∑
n=1
−(t(n) − y(n))x(n)j .

At the end of the training, the neuron will have the information about its inner clas-
sification model stored in the values of its input weights. [13]

3.1.3 Generative Learning VS Discriminative Learning

Consider a classification problem in which we want to learn to distinguish between
elephants (t = 1) and dogs (t = 0), based on some features of an animal. Given a train-
ing set, an algorithm like the perceptron algorithm tries to find a straight line (that
is, a decision boundary) that separates the elephants and dogs. Then, to classify a
new animal as either an elephant or a dog, it checks on which side of the decision
boundary it falls, and makes its prediction accordingly.
Here’s a different approach. First, looking at elephants, we can build a model of
what elephants look like. Then, looking at dogs, we can build a separate model of
what dogs look like. Finally, to classify a new animal, we can match the new animal
against the elephant model, and match it against the dog model, to see whether the
new animal looks more like the elephants or more like the dogs we had seen in the
training set.
Algorithms that try to learn p(t|x) directly, or algorithms that try to learn mappings
directly from the space of inputs X to the labels 0, 1, (such as the Perceptron algo-
rithm) are called discriminative learning algorithms.
A different approach is the one of the generative learning [9] algorithms, that instead
try to model p(x|t) (and p(t)). For instance, if t indicates whether an example is a
dog (0) or an elephant (1), then p(x|t = 0) models the distribution of dogs’ features,
and p(x|t = 1) models the distribution of elephants’ features. [15]
The distribution p(t|x) is the natural distribution for classifying a given example x
into a class t, which is why algorithms that model this directly are called discrimina-
tive algorithms. Generative algorithms model p(x, t), which can be tranformed into
p(t|x) by applying Bayes rule and then used for classification. However, the distri-
bution p(x, t) can also be used for other purposes. For example you could use p(x, t)
to generate likely (x,t) pairs. [15]
Unsupervised learning is the machine learning task of inferring a function to describe
hidden structure from unlabeled data. Usually, the term unsupervised learning is used
to describe most generative models, since in this case we don’t need conditional
probabilities (supervision), but it suffices to observe variables (full joint distribution).
Hereafter, we begin to see a new meaning of ’learning’ as opposed to the supervised
case. ’Learning’ can be, for example, the process of building memories of the data
and links between them (as we will see in the next section), or the process of trying to
reproduce a seen input. All of this can be achieved without the need of a teacher that
repeatedly corrects us. As you can imagine, this can be a much more efficient way of
learning, because you don’t always have the availability of large sets of labeled data.

3.2 Hopfield Networks

Figure 3.5:
Example of a 5
neurons-fully
connected Hopfield
network. Each
neuron’s output
serves as input for
the others.

What we are going to do after having defined a single neuron, is attempting to con-
nect multiple neurons together, making the output of one neuron be the input to



Chapter 3. Neural Networks 10

another, so as to make neural networks. A neural network will form a graph struc-
ture (or a network, in physical language).
A Hopfield network is a fully connected graph (each neuron takes the output of each
other neuron as input), with the constraint that all the weights are symmetric (wji
from i to j unit is equal to wij from j to i). Hopfield networks have two applica-
tions. First, they can act as associative memories. Second, they can be used to solve
optimization problems. [13] Here we focus on associative memories.

3.2.1 Associative memories

Hopfield networks as associative memories are fully connected networks of units
(single neurons) with:

Activity Rule Each neuron updates its state with a threshold activation function. Since each
neuron has a feedback, we must choose if the updates are all synchronous or
asynchronous.

Learning rule The weights are set using the so called Hebb rule: wij = η
N∑
n=1

x
(n)
i x

(n)
j , where η

is the learning rate, and x(n)i is the i-th component of the x(n) input data.

The learning rule captures the idea of associative memory, because it modifies the
weights between units according to the correlation between those units. Let’s imag-
ine that when stimulus i is present (for example, the smell of a banana), the activity
of neuron i increases. Be the neuron j associated with another stimulus (the sight
of a yellow object). If these two stimuli co-occur in the same environment, then the
learning rule will increase the weights wij and wji. This means that when, on later
occasion, stimulus i occurs in isolation, the positive weights wij will cause the neu-
ron j also to be activated.
By training a Hopfield network with a data set {x(n)}, we make those patterns stable
states of the Hopfield network’s activity rule (i.e. they become favorable states in
which the network could settle due to the dynamic of a training). [13]
The purpose of associative memory models is to be able to take a partial or corrupted
memory (i.e. a grainy image, an incomplete word) and perform pattern completion
or error correction to restore the original memory.

3.3 Boltzmann Machines

Figure 3.6:
A Boltzmann
machine is a
Hopfield network
that updates its
states stochastically.
The network is made
to have its state
follow a Boltzmann
distribution.

Boltzmann machines are stochastic Hopfield networks. Each global state of the net-
work can be assigned a single number called the energy of that state. The individual
units can be made to act so as to minimize the global energy. The energy can be inter-
preted as the extent to which that combination of hypothesis violates the constraints
implicit in the problem domain. The system then evolves towards ’interpretations’
of that input that increasingly satisfy the constraints. The energy of a Hopfield net-
work/Boltzmann machine for a configuration x is

E(x) = −1

2
xTWx (3.5)

where W is the weight matrix: (W )ij = wij .
A Boltzmann machine implements activity and learning rules that try to bring the
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system configuration to an absolute minimum.

Activity Rule After computing the activation ai, set xi =

{
1 with probability (1 + e−2ai)−1

−1 otherwise
The noise introduce with the stochastic process helps the system to avoid get-
ting stuck in local minima. [1] A system obeying this rule for changing its state
will eventually reach a Boltzmann equilibrium distribution [18]

P (x|W ) =
1

Z(W )
e−E(x) (3.6)

Learning Rule Given a set of examples {x(n)}N1 we would like to adjust the weights W such
that the model of the Boltzmann distribution is well matched by those exam-
ples. We can derive a learning algorithm by using maximum likelihood: we

should maximize L(W ) =
N∏
n=1

P (x(n)|W ). This process brings to the rule: [13]

∆wij = η

N∑
n=1

(
x
(n)
i x

(n)
j − 〈xixj〉P (x|W )

)
= η N

(
〈xixj〉Data − 〈xixj〉P (x|W )

)

This models thus learns by comparing the empirical correlation between units (com-
puted from data) and the correlation between units under the current theoretical
generative model. To estimate this second correlation we could use Monte Carlo
methods. This is the step where the algorithm really slows down in computational
time.
The two steps in which the calculation of the two correlations is made are picturesquely
called wake and sleep phase. While the network is ’awake’ it measures the correlation
between the real xi and xj . While the network is ’asleep’, it ’dreams’ about the world
using the generative model, and measures the correlations according to it. Finally,
the weights are increased and decreased respectively in proportion to the ’awake’
and the ’asleep’ correlations. [1]

3.3.1 Boltzmann Machines with Hidden Units

Figure 3.7:
A Boltzmann
machine with visible
and hidden units is a
classic Boltzmann
machine, in which
only one group of
neurons takes the
role of ’input
neurons’. We start to
see the presence of
two different
functional groups of
neurons in a
network.

We now add hidden neurons to our model. These are neurons that do not correspond
to observed variables. They usually take on interpretable roles, performing ’feature
extraction’. We can identify two functional groups of neurons in this new network
architecture: one group of visible units (input neurons), and one group of hidden units
(feature extractors).The activity rule is identical to that of the original Boltzmann ma-
chine.
The learning rule can again be derived by maximum likelihood by taking into ac-
count the fact that the states of the hidden units are unknown. Be the state of the
hidden units h (h ∈ {−1, 1}J if the network has J hidden neurons), and the total
state y(n) = (x(n),h) ∈ {−1, 1}I × {−1, 1}J ∀ n if the network has I visible units
and J hidden units. [13]
We can get to the learning rule, (analogous to the previous one):

∆wij =
∑
n

(
〈yiyj〉P (h|x(n),W ) − 〈yiyj〉P (x,h|W )

)
(3.7)
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Here the first term in the sum is the correlation between yi and yj when the Boltz-
mann machine is simulated with the visible variables clamped to x(n) and the hidden
variables freely sampling from their conditional distribution. The second term is the
correlation between yi and yj when the Boltzmann machine generates samples from
its model distribution.
The learning rule is still time-consuming to simulate because it depends on taking
the difference of two gradients both found by Monte Carlo methods.

3.3.2 Restricted Boltzmann Machine

Figure 3.8:
A Restricted
Boltzmann Machine
is a Boltzmann
Machine with visible
and hidden units, in
which there are no
connections between
the neurons of a
same group. (No
hidden-hidden links,
nor visible-visible
links.)

A Restricted Boltzmann Machine (or RBM) is a variant of the Boltzmann machine
with visible and hidden units, obtained by removing within-layer lateral connections
to form a bipartite graph. This little change allows to perform efficient inference and
learning. Block Gibbs sampling can be used to efficiently sample the probabilities
and to update the neurons of an entire layer in a single step, instead of updating
one neuron at a time, thanks to the absence of within-layer connections that would
otherwise make the neurons in a layer conditionally dependent. [18]

3.3.3 Improvements - Contrastive Divergence

The use of Boltzmann machines was strongly discouraged by the very high com-
putational demand of the learning algorithm, until the recent development of con-
trastive divergence learning (developed by Hinton in 2002). The original algorithm
(with a data-driven positive phase and a model-driven negative phase) is slow because
it implies running a Markov chain until convergence. The breakthrough that led to
contrastive divergence is the finding that the negative phase does not need to be run
until full equilibrium. If sampling starts from the hidden unit state computed in the
positive phase (data-driven phase), correlations computed after a fixed number of
steps in the Markov chain are sufficient to drive the weights toward a state in which
the input data will be accurately reconstructed. Contrastive divergence gives good
results even with a single step. [18]

3.4 Multilayer Networks

We can stack multiple layers of neurons to obtain systems capable of doing more
complicated tasks (extracting high-order correlations between data or more complex
features and patterns, improving binary and multi-class classification tasks, etc.).
[13]

3.4.1 Deep Belief Network

Figure 3.9:
Structure of a Deep
Belief Network (or
Deep Boltzmann
Machine - DBM). It is
made of several
RBNs stacked. Only
links from one layer
to another exist.

A case of interest is the Deep Belief Net (DBN), a multilayer network built by stack-
ing RBMs. The network is therefore composed of a visible layer of input neurons,
and multiple hidden layers. Each layer takes the layer below as input.
Each RBM can be trained in an unsupervised ’greedy’ way (they are trained one at a
time, starting from the lowest, and going up). [18]
Using such a network architecture we can perform deep learning: the machine learn-
ing framework that exploits multiple layers of hidden units to build hierarchical rep-
resentations of the input data. Indeed, by training a generative model at level l, using
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as input the hidden causes discovered at level l − 1, the network will progressively
build more structured and abstract representations of the input data. The discovered
representations are not tied to a particular discriminative task, because the aim of
learning is only to model the hidden causes of the data. However, once the system

Figure 3.10:
Training scheme of a
DBN. The first RBM
is first trained (left).
Then a second RBM
is trained by using as
inputs the states of
the first hidden layer
that has just been
trained (center).
Then a third RBM is
trained onto the
second, and so on
(right).

has developed expressive abstract representations, possible supervised tasks can be
carried out by introducing additional modules to perform a variety of supervised-
fashion tasks. [18] For example, we could use a DBN, trained on just ’reading’ and
reconstructing images of digits, to recognize digits and classify them.
For the following thesis work we used DBNs that were trained on reading and re-
producing handwritten digits.

3.4.2 Training a Deep Belief Net

For our work, we trained DBNs composed of various layers. The main architecture
we focused on was a network with a visible layer of 784 units (the input layer is
this big because each neuron is responsible for the state of a pixel of an input image
28×28 pixels big), surmounted by 3 hidden layers (500-500-2000 hidden units respec-
tively, for a total of about 1.6 million connections), trained on digits image reading
task, using one-step contrastive divergence. The task of learning word perception
can be seen as a stochastic inference problem where the goal is to estimate the poste-
rior distribution over latent variables given the image of a word as input. [18]

Training Set
The training data set was the popular MNIST dataset [10] , that contains handwritten
digits encoded as 28×28-pixel graylevel images. The dataset contains 60,000 training
images.

Training Implementation
For the implementation of the algorithm we used MATLAB. The algorithm can work

Figure 3.11:
Some images from
the MNIST digits
data set.

on the graphic processor unit (GPU) of a normal laptop, speeding up the process a
lot (the training can take minutes instead of hours!), thanks to CUDA, a massive par-
allel computing framework for GPUs presented by NVIDIA. For this purpose, we
exploited the high-level wrappers of CUDA provided by MATLAB via the Parallel-
Computing Toolbox. [17] The use of such high-level functions greatly simplifies the
parallelization, only requiring to work on gpu array data types.
The entire data set was divided into subsets called mini-batches. Rather than updat-
ing the network weights with the gradient computed on each training data pattern,
the gradient in mini-batch learning is averaged over the patterns of the mini-batch.
This improves convergence and learning speed.
Each RBM of the network is trained separately. First we train the RBM composed of
visible layer + 1st hidden layer, then 1st hidden + 2nd hidden, and so on. Every time
using the states of the higher layer obtained in the previous training as base input
for the training of the next, upper RBM.

Training Algorithm
Now we will explain the skeleton of the training algorithm. (The actual code we re-
fer to can be found in the appendix A).
The variable data_GPU is a ’parallepiped’ (3D matrix) containing the data of the
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entire training set (60,000 images). We can think of it as a parallepiped made of rect-
angular ’slices’ (each ’slice’ is a mini-batch). There are 480 slices (number of batches),
and each of them is a matrix of which each row contains a ’vectorized’ input de-
scribing the state of the lower layer of the RBM. For example, in training the first
RMB, each row of each batch matrix has 784 elements, containing the information on
each pixel of one training image. Each matrix has 125 rows (dimension of the batch).
Each batch then contains information about 125 possible inputs. (480 batches × 125
images-per-batch = 60,000 images).
First, the biases (visbiases_GPU and hidbiases_GPU) are initialized to zero. The
weights of the RBM that is going to be trained are instead initialized with random
numbers sampled from a Gaussian with mean 0 and standard deviation 0.1:

Figure 3.12:
For the first RBM’s
training, each
MNIST image is
reduced to a vector
of values in [0,1],
then each of these
vectors is put into a
matrix (the
mini-batch) as a
row). 480 of these
matrices form the
whole data set:
data_GPU.

W i
j sampled from G(w; 0, 0.1) =

1

0.1
√

2π
e−

1
2

(w−0)2

0.12 (3.8)

The algorithm loops through the batches, and compute the activations for the neurons
of the upper layer (poshidprobs_GPU) with a sigmoid, including biases. BeW i

j the
weight matrix for the RBM that is being trained (i for the lower units and j for the
upper units), be Dk

i the mini-batch matrix (k is the indice for the k-th input image,
and i is the indice for the i-th unit of the lower layer), and bkj the biases of the upper
layer units (each bkj is equal to the others, when j is fixed), then the activations are
(using Einstein summation notation):

akj = (1 + exp(−Dk
iW

i
j − bkj))−1 (3.9)

Then posprods_GPU (P ij = data-driven correlation term between the i-th unit from
the lower layer and the j-th unit from the upper layer) are computed. They are the
positive-phase (’P’ stands for ’positive’) correlation terms.

P ij = (DTA)ij = Di
k a

k
j (3.10)

The states, or activities, of the upper level units (poshidstates_GPU - that we will
denote as hkj - for the unit j of the upper layer and the input image k) are stochasti-
cally set to 1 with probability given from the activities

hkj =

{
1 with probability akj
0 otherwise

(3.11)

In the negative phase, the neural network tries to recreate the data: negdata_GPU,
that we will denote as D̂k

i (D-hat), as opposed to Dk
i (D-without-hat), the real data

batch matrix. A sigmoid is used to choose the ’dreamed’ states for the lower layer
units

D̂k
i = (1 + exp(−Hk

j W
j
i − b̂

k
i))
−1 (3.12)

where W j
i is the transpose of W i

j and b̂ki are the biases for the i-th units of the lower
layer.
Then, model-driven activities (neghidprobs_GPU alias âkj ) are again computed,
starting from the generated input

âkj = (1 + exp(−D̂k
iW

i
j − bkj))−1 (3.13)
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Figure 3.13:
i = ’below’
j = ’above’
k = ’training loop
stage’
Indices notation:
In this paragraph we
use the indices i, j, k
with precise,
different meanings:
(i) The letter i is used
to denote the i-th
unit of a lower layer
of an RBM. [Black in
figure] (e.g. if we are
considering the first,
lowest trained RBM,
i will refer to a unit
of the visible layer. If
we consider the
second RBM, the
lower layer will
instead be the first
hidden layer of the
whole network.)
(j) j is used to refer
to the j-th unit of the
upper layer of the
RBM. [Blue in figure]
(k) The k indice
refers to the training
image that is
currently been used
for the training. [Red
in figure] We can say
for example: ’The
k-th initial state of
the lower RBM’s
layer’, or ’The k-th
row of a mini-batch
matrix’. A ’training
image’ is an actual
image (MNIST digit)
only when training
the lowest RBM of
the network. From
the second RBM on,
a ’training image’ is
just the final state of
the last trained
RBM’s upper layer.

The correlations (negprods_GPU alias N i
j - ’N’ is for ’negative’ as opposed to

P ij) for the model-driven (negative) phase are computed

N i
j = (D̂T Â)ij = D̂i

k â
k
j (3.14)

The error of the reconstruction is gathered as the sum of all the L2 distances between
the real data and the reproduced data of each batch. This will come in handy to
monitor the quality of the ongoing reconstruction.
Weights and biases are finally updated. The update for the weights is

∆W i
j =

η

125
(P ij −N i

j) + µW i
j − λW i

j (3.15)

This is almost the same update rule of a classical Boltzmann machine, with two slight
differences:

1) The momentum µ: a parameter whose value is empirically set, and whose pur-
pose is to help the process avoiding getting stuck in local minima of the energy;

2) The decay rate λ, which is there to avoid overfitting, that is: to curb an excessive
growth of the weight values.

This algorithm is repeated many times. Each of these ’big training loops’ is called an
epoch.
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Chapter 4

Network Architecture

Figure 4.1:
Directed graph (links
are arrows)

Figure 4.2:
Undirected graph

Figure 4.3:
Simple graph (all
links are equals)

Figure 4.4:
Weighted graph
(links can be small or
big)

Figure 4.5:
Bipartite graph

4.1 Types of Networks

A network (or a graph, in mathematical language), is a set of items, which we will
call nodes, with connections between them, called edges or links. A link is said to be
directed if it runs only in one direction, and undirected if it runs in both directions.
Directed links can be thought as arrows indicating their orientation.
Systems taking the form of networks abound in the world. Examples include the
Internet, social networks, networks of business relations between companies or peo-
ple, food webs, postal delivery routes, and last but not least, neural networks. [14]
In this part of the thesis, we introduce tools to analyze the structure and function of
networked systems. These tools and properties that we are going to introduce will
come in handy to make a network analysis of the DBNs we have trained and talked
about in the previous chapter.
There are different types of networks or graphs, depending on their topological struc-
ture and their links properties. Here are some of them:

Directed A graph is directed (digraph) if all of its links are directed.

Undirected A graph is undirected if all of its links are undirected.

Simple/Weighted A graph can have simple links (either the link exist or doesn’t exist), or can be a
weighted graph, in which each link has a weight value that states the strength of
the connection between two nodes. The latter is the case of our DBNs.

Bipartite Bipartite graphs are graphs containing nodes of two distinct types, with links
running only between nodes of different types. This is the case of an RBM.

Acyclic An acyclic graph is a directed graph that shows no loops.

Random A random graph is a graph which is built by connecting nodes (originally not
connected) with a random process (e.g. each link is built with a probability p).

Hypergraph A hyperedge is an edge joining more than two nodes together. Hypergraphs
are graphs containing such edges.

4.2 Network Properties

Given a graph, one can define mathematically several network properties:
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Degree In a simple graph, the degree of a node is the number of links connected to it.
For a directed graph we must define both in-degree and out-degree for each node,
which are the numbers of incoming and outgoing links respectively.

Figure 4.6:
Illustration of degree
’k’. Green nodes
have k = 4, blue
nodes have k = 2,
and red node has
k = 6.

Strength In a weighted graph, we use the strength of a node in place of the degree. The
strength is the total of the weights of the links connected to a node. In-strength
and out-strength are defined as well.

Simplification To simplify a weighted graph means to transform it to a somehow ’equivalent’
simple graph, using some algorithm.
For example, one way of simplifying a graph would be using the rule: "a weight
whose absolute value is greater than a certain threshold, becomes a link, whilst
a weight whose absolute value is too little, implies that the link is removed".

Length of a path In simple graphs, the length of a path is the number of links which that path is
made of. In a weighted graph instead we have a plethora of ways to define
’how long is a path’.
For example, one way would be to simplify the graph by making it a simple
graph as described above. In this way, we obtain a ’discrete’ version of the
weighted graph, and we then can compute the lengths in the original simple
way.

Figure 4.7:
Red path is a
geodesic linking two
faraway nodes.

Geodesic A geodesic path from a node to another is the shortest path through the network
between them.

APL Average Path Length is the mean of the geodesic paths in all the network.

Component The component to which a node belong is that set of nodes that can be reached
from it by paths running along links of the graph. In a digraph a node has both
an in-component and a out-component.

Figure 4.8:
Example of graph
with 3 separate
connected
components.

Weight matrix For a bipartite graph, the weight matrix (sometimes called biadjacency matrix)
is the one we have seen before when talking about RBMs. It is the matrix W
whose elements Wij are the weights between the unit i of the ’lower’ group of
nodes (the lower layer, in a RBM) and the unit j of the ’upper’ group of the
graph (the upper layer of neurons). If the two parts of the bipartite graph have
I and J nodes respectively, W is a I × J matrix.

Adjacency matrix For a simple graph with node set V, the adjacency matrix (sometimes called con-
nection/connectivity matrix) is a square |V | × |V |matrix A such that its element
Aij is 1 when there is an edge from node i to node j, and 0 when there is no
edge. The diagonal elements of the matrix are all zero, since edges from a node
to itself are not allowed in simple graphs.
In a weighted graph, the weighted adjacency matrix has elements Aij that are
taken to be the weights between node i and j.
A is symmetric in an undirected graph.
The adjacency matrix A of a bipartite graph whose two parts have I and J
nodes can be written in the form(

0I×I W
W T 0J×J

)
(4.1)
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Where W is the weight matrix of the bipartite graph.
An adjacency matrix A of a graph which shows instead strong communities (a
strong community is a subgraph in which each node is only linked with other
nodes of the community it belongs), would be the exact opposite.

4.3 Network Analysis of a Trained Deep Belief Net

Figure 4.9:
Structure of the
analyzed DBN. The
input layer gets one
28× 28 (=784) pixels
image at a time.
Then, three hidden
layers extracts
abstract features on
top of it.

Now we have all the necessary tools in order to analyze and describe a trained neural
network. Here, we examine the DBN whose training algorithm we have described in
detail before. This is a multilayer neural network trained on digits images, and that
is composed of 3 stacked RBMs (see architecture in Figure). The analysis of the net-
work properties can be performed both on the DBN seen as a whole graph, and on
the separate 3 RBMs that make the network. We in particular focused on analyzing
the properties at different times in the training process - nominally, the beginning of
the training (that we labeled as ’t0’, or ’time=0’), and the end of the training. Some
specification must be made on what is ’the end of the training’: we trained the net-
work for 50 epochs (50 entire loops of training for all the 3 RBMs), and for 100 epochs.
We could see the ’50 epochs’ (labeled as ’t50’ or ’time=50’) situation as an interme-
diate step in the training that leads to ’100 epochs’ (’t100’ or ’time=100’), but, as we
will see, 50 epochs are more than enough to obtain a full satisfactory trained net-
work. Hence, we took as the ’ending’ situation of the training the ’t50’ state of the
DBN in most cases. (’t100’ and ’t50’ situations only differ slightly in network prop-
erties, therefore we can easily refer only to the ’t50’ case as the ’end of the training’
state.).
An ’alternative’ ending case is instead what we will call ’t50 sparse’, that is, we also
trained the network with a sparsity constraint [18] , for 50 epochs. The sparsity im-
position is a further step in the learning algorithm that can lead to a tweaked (often
higher quality) trained network. This tweaked algorithm only affects the third hid-
den layer of the network, and calls for the following steps:

Figure 4.10:
The DBN is made of
3 RBMs. Each
’upper’ layer to an
RBM serves as
’lower’ (input) layer
to the RBM above.
Those 3 RBMs can be
analyzed separately
as bipartited graphs,
each with its own
properties.

(1) Inside each batch loop (i.e. once per batch), we compute the ’total’ activations
for each neuron in the last, third hidden layer of the network, that is we sum
the activations ak j over the ’training image’ index k:

Aj =
∑
k

akj (4.2)

(2) Then we ’normalize’ with respect to the batch size, and then compute the mean
of this ’normalized total activities’:

Qj = Aj/batchsize = Aj/125 , q =
∑
j

Qj (4.3)

(3) Lastly, if q exceeds a certain threshold r, then we update the biases bj of the
neurons of the 3rd hidden layer so that they are lowered.

bj = bj − η(q − r) (4.4)
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This will make the neurons less prone to become activated in the following
contrastive divergence training steps, and as a overall process should bring to
a more sparse representation in the 3rd hidden layer of the hidden features in
the data.

We will see later on the effects on the network properties that the sparsity brings.

Receptive Field

It is useful to first introduce the concept of receptive field [18] a neuron in order to
have a powerful, straightforward visual tool for explaining our analysis results.
A neuron’s receptive field is a visual representation of ’what neurons in the visual
layer that specific neuron is responsible for’. Of course, since neurons in the visual
layer are not linked, we can define the concept of receptive field only for neurons that
live in upper, hidden layers.
The receptive field for a neuron of the first hidden layer is just the visual representation
of the weights of its links toward the neurons in the visual, below layer. To plot the
receptive field of the j-th neuron in the hidden layer 1 we just take the weight matrix
of the 1st RBM: W (1)

ij (’1’ stands for RBM 1), and extract the weights of the links that

start from j and arrive to the below layer, i.e. the vector W (1)
ij (j is fixed). We then

reshape this vector to its ’original’ square matrix form (we transform the vectorW (1)
ij ,

whose dimension in 784, back to a matrix of 28 × 28 pixels, with the exact opposite
process we used to ’vectorize’ the input digits images during the training). Each i-th
pixel will be wither or blacker in proportion to the value of the i-th weight value
(white = positive, black = negative). By plotting this matrix we can obtain images
like these: Clearly, these are impactful images that can give us a quick idea about

Figure 4.11: Some receptive fields

what parts and features of the training images a neuron has tied more. For example,
a neuron could have been specialized in recognizing a straight vertical line to the left
of the digits images, while completely having negative-valued links with an analo-
gous straight line at the right side of the image (e.g. the first of the 4 images). Or
it could have been able to strongly link with a circular-ish ring shape, while being
anti-correlated with the space inside this ellipse (see 4th receptive field). Or further
it could have assumed a distribution of weights that makes its receptive field a fuzzy
blurred blob (as in the cases of the 2nd and 3rd images above). (A brief remarkable
note on the first and second kind of receptive fields described: they show an aston-
ishing similarity with the Gabor and Gaussian filters, which are filters vastly used in
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the field of image processing to enhance images or detect edges and similar features).
How can we define a receptive field for a neuron that lives in the second or third hid-

Figure 4.12:
Receptive field of a
hidden layer 2
neuron.

Figure 4.13:
Receptive of a
hidden layer 3
neuron.

den layer, since they are not directly connected to any of the neurons in the visible
layer? In this case We define the receptive field in an indirect way (since there is no
direct linkage or responsibility of higher neurons over the lowest ones). For a hid-
den layer 2 neuron (say, l), we first make a weighted average of the receptive fields
of the neurons in the hidden layer 1, using the weights W (2)

jl that leave from the l-th
neuron and link it with the below neurons. Then, reshape as a matrix and then plot
the vector that we have obtained. Shortly, we plot

∑
j
W

(1)
ij W

(2)
jl (l is fixed), obtaining

an image of what pixels our l-th neuron in the second hidden layer is responsible
for. For a neuron in the third layer we plot in a like manner:

∑
j,l

W
(1)
ij W

(2)
jl W

(3)
lm . We

obtain images similar to a hidden layer 1 receptive field, but they are often more
’structured’ images (see side Figures).

Weights Distribution

We took the weight values of each of the 3 RBMs of the network, and plotted their
distributions at the beginning (t0) and at the end (t50) of the training. The next plots
show these distributions. (The horizontal scales are equal for the plots in the same
row, while they could be slightly different for plots in column).

(a) W distribution, RBM 1, t0 (b) W distribution, RBM 1, t50

(c) W distribution, RBM 2, t0 (d) W distribution, RBM 2, t50

(e) W distribution, RBM 3, t0 (f) W distribution, RBM 3, t50

Figure 4.14: Weights distribution, separate RBMs

It is clear from the plots that the weights at ’t0’ (left column) follow a perfect
Gaussian distribution (as we impose at the initialization step in the training algo-
rithm). In the end (right column), the weights distributions are quite different. In all
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the cases (RBM 1, 2, and 3), we can see a spreading of the tails of the distributions, in
both directions (there appear some very positive-valued and some negative-valued
values as well). In all the cases, the distributions tend to move leftward (this effect
is stronger in the RBM 1 and RBM 3). What do we observe is therefore that many
weights settle their values to a negative one. This could be explained by looking at
the receptive fields of the neurons. Indeed, we observe that the neurons tend to spe-
cialize in ’describing’ very narrow zones of the input layer. They usually becomes
heavily positively linked with only a small part of the outstanding neurons, while
becoming negatively linked with all the rest. This can be seen by the preponderance
of darker pixels in the receptive field images. The network ’adopts’ the strategy of
training neurons of a layer so that they become able to describe small, localized fea-
tures. They are taught to ’activate’ in response to a very particular stimulus (stimuli
of this kind could be, if we look for example at the receptive fields of the hidden layer
1 neurons, spots or straight bars in the input image), while keeping themselves anti-
correlated with the rest of the inputs they can receive. An overall negative weight
distribution is therefore plausible, at all the DBN’s levels.
A second relevant information that can be drawn from the distributions is the highly-
peaked shape of the RBM 3 distribution. To what can we attribute this outcome? We
shall give a look to a sample of receptive fields of the neurons picked at random from
the third layer.
There is no need to stare at the details of those pictures. Indeed, there is one thing

Figure 4.15: Some receptive fields of the 3rd hidden layer

that can be easily observed and that stands out: many receptive fields are the same.
We notice a redundancy in the highest level features representations. Maybe a third
hidden layer of 2000 units is too big for learning the series of features in the second
hidden layer. Thus, we detected a lack of proficiency in the usage of the highest hid-
den layer.
The weight distributions reached after 100 epochs are almost the same of the ones
reached at 50 epochs of training, then we will omit those additional superfluous
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plots.
Actually, an interesting result is instead the one of the distributions reached with the
sparsity constraint. Here we show the comparison between the ’t50’ distribution and
the ’t50 sparse’ distribution for the third hidden layer (the one affected by the spar-
sity imposition). It can be seen that the direct effect of the sparsity constraint is the

(a) W distribution, RBM 3, t50 (b) W distribution, RBM 3, t50 sparse

Figure 4.16: Weights distribution 3rd hidden with sparsity

lowering of the high peak in the weight distribution. The whole final distribution
has still a negative overall offset, but it is much more regular. It kind of resemble
a Gaussian in its right part, while its left part is more irregular and it is higher on
average than its right counterpart. As we can see by plotting some of the recep-
tive fields, we have obtained a reduction of redundancy, and a more diverse set of
images. Moreover, the structural complexity of these receptive fields suggests that
this higher-layer of the network combines simpler features from the layers below in
order to produce more useful, abstract representations of the input digits. [12]

Figure 4.17: Some receptive fields of the 3rd hidden layer - with sparsity

Strengths Distribution

In this part of the analysis we focused on plotting the distributions of the undirected
strengths, for each layer of each RBM of the DBN, taken separately. That is, we
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considered one RBM at a time, and plotted the distributions of the strengths for each
of the two layers of the DBN, only considering the links between those two layers.
We end up then with 6 different distributions: one for the visible layer (lower layer
of the RBM 1), one for the first hidden layer considered as the upper layer of the
RBM 1, one for the first hidden layer this time considered as the lower layer of the
RBM 2, two distributions for the hidden layer 2 considered as part of the RBM 2 and
as part of RBM 3, and a final distribution of the neurons of the hidden layer 3 (that
can be only considered as the upper layer of RBM 3). If we call the visible layer for
a moment: ’layer 0’, we could the identification numbers of each layer (0, 1, 2, 3) to
label those 6 distributions as ’0 to 1’, ’1 to 0’, ’1 to 2’, ’2 to 1’, ’2 to 3, and ’3 to 2’.

From the strengths distributions we can see that the initial distributions are still
Gaussian. We expected this, since the strength is just the sum of the random weights
of the links that leave or arrive from or to a particular neuron. Therefore, for the
central limit theorem, the strength values follow a Gaussian distribution. As we can
see, the final distributions are quite different. After the training, the neurons have
an overall negative strength toward their closest layers. This reflects what we have
already seen in the weight distribution analysis, since most negative weights give a
negative strength when summed up. At the side of negative distributions’ ’bulks’
we can also see small, elongated positive tails, specially in the distributions ’1 to 0’,
’1 to 2’, ’2 to 1’. Those distributions rapidly fall down near the 0, and then continue
in the positive range of strengths with a long tail, reaching also very high values (up
to S ≈ 30 or S ≈ 40). The first distribution (’0 to 1’, or the distribution of the visible
layer) is all negative. This tells us that the visible layer neurons have an ’average
influence’ on the first hidden layer’s neurons that is always negative. Neurons in
the visible layer are more strongly anti-correlated with the upper layer’s neurons
than they are correlated, and this could be due to the same reasons we addressed be-
fore when analyzing weights: the type of images used in training is very particular
- black digits on a solid white background are very high contrast images, and they
present ’something’ (the digits lines) in only a small fraction of the whole picture.
In the last distribution we can see the high peak of alike values of strengths among
the neurons of the hidden layer 3. This is even a stronger hint than the ones we had
before about the strong redundancy present in the last layer’s neurons. Many units
tend to fall, with the training, into an almost identical set of properties. This effects
does not disappear with a longer training (read: 100 epochs). The ’t100’ strength dis-
tributions are almost identical to the ’t50’ ones, so we do not report the plots here. If
we introduce the sparsity in the training, the third hidden layer strength distribution
becomes more flattened, as we were expecting. Here the comparison between the
’t50’ and ’t50 sparse’ scenarios. The sparse case (at right) shows a more regular dis-
tribution, as we already saw in the weight distributions case. The new distribution
resembles a Gaussian with a strong negative effect (the center of the bell is at about
S = −10. Also, a small group of strongly negative values appears (S ≈ −80), while
in the normal ’t50’ case the negative tail of the distribution ends at S = −30.

Visual Representation of Weighted Matrices

In this section we shall show some visual representations of the weighted matrices
of the 3 RBMs of the trained DBN. What we do here is first simplifying the whole
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(a) 0 to 1 - S distribution, RBM 1, layer 0, t0 (b) 0 to 1 - S distribution, RBM 1, layer 0, t50

(c) 1 to 0 - S distribution, RBM 1, layer 1, t0 (d) 1 to 0 - S distribution, RBM 1, layer 1, t50

(e) 1 to 2 - S distribution, RBM 2, layer 1, t0 (f) 1 to 2 - S distribution, RBM 2, layer 1, t50

(g) 2 to 1 - S distribution, RBM 2, layer 2, t0 (h) 2 to 1 - S distribution, RBM 2, layer 2, t50

(i) 2 to 3 - S distribution, RBM 3, layer 2, t0 (j) 2 to 3 - S distribution, RBM 3, layer 2, t50

(k) 3 to 2 - S distribution, RBM 3, layer 3, t0 (l) 3 to 2 - S distribution, RBM 3, layer 3, t50

Figure 4.18: Strengths distribution, separate RBMs

network transforming it in a simple graph. The purpose for this is that, since we are
going to show the weighted matrices as a whole, we want to keep the information
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(a) 3 to 2 - S distribution, RBM 3, layer 3, t50
(b) 3 to 2 - S distribution, RBM 3, layer 3, t50
sparse

Figure 4.19: Strengths distribution 3rd hidden with sparsity

contained in these plots as simple and direct as possible. By simplifying the graph we
make the weighted matrices binarized (they will contain, from now on, just zeros and
ones). What we use here is the method described in the section Network Properties
when we wrote about the Simplification process. We choose a threshold (after having
tried empirically, the choice fell on a threshold of 0.2), and we transform weight
values Wij into 1 (if |Wij | > threshold) or 0 (if the absolute value of the weight was
lesser than the threshold). We choose this particular value because we have seen that
the network architecture is simplified, but not enough to lose too much information
about what neuron was linked to whom. We select only the ’strongest’ weights, and
we just look at their absolute value for this part of the analysis (the sign of the weight
values is more of a functional property than a topological -i.e. about the structure of
the linkage- one). See side figure for a picture of the simplified network. For this part

Figure 4.20:
Representation of the
simplified DBN.
Threshold: 1.5

of analysis we divide the DBN in the same way as we did in the previous one: we are
going to look at the properties for each layer of each RBM. What we need is therefore
6 weight matrices, 1 for each layer, seen as the lower or the upper layer of an RBM.
Each of those matrices has its rows (each row stands for a neuron in the layer we are
considering) reordered with the strength value as a criterion. That is, we compute
the total sums of values of each row, and then we put the highest valued rows on
top, and the lowest at the bottom. Then, we plot the matrices as images, with a white
pixel where the element’s value was 1, black otherwise. We also make the surface
plot of this image, adding a height to the white pixels (black pixels remain on the
floor). Here are the results. As usual, we plot the matrix and its surface plot for the
’t0’ case (left) and the ’t50’ case (right), for each layer in each RBM, considering only
the weights of the links in that RBM.
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(a) 0 to 1 - Weight matrix and
surface plot, RBM 1, layer 0, t0

(b) 0 to 1 - Weight matrix and
surface plot, RBM 1, layer 0, t50

(c) 1 to 0 - Weight matrix and
surface plot, RBM 1, layer 1, t0

(d) 1 to 0 - Weight matrix and
surface plot, RBM 1, layer 1, t50

Figure 4.21: Visual reordered weight matrices, RBM 1

(a) 1 to 2 - Weight matrix and
surface plot, RBM 2, layer 1, t0

(b) 1 to 2 - Weight matrix and
surface plot, RBM 2, layer 1, t50

(c) 2 to 1 - Weight matrix and
surface plot, RBM 2, layer 2, t0

(d) 2 to 1 - Weight matrix and
surface plot, RBM 2, layer 2, t50

Figure 4.22: Visual reordered weight matrices, RBM 2
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(a) 2 to 3 - Weight matrix and
surface plot, RBM 3, layer 2, t0

(b) 2 to 3 - Weight matrix and
surface plot, RBM 3, layer 2, t50

(c) 3 to 2 - Weight matrix and
surface plot, RBM 3, layer 3, t0

(d) 3 to 2 - Weight matrix and
surface plot, RBM 3, layer 3, t50

Figure 4.23: Visual reordered weight matrices, RBM 3

It can be seen that the initial states are quite randomized. Even after having re-
ordered the rows based on strength, the pixels in the matrices do not appear to have
an interesting structure. What we see in the trained weighted matrices is instead dif-
ferent. While the matrices relative to the RBM 2 do not have a particular structure,
in the matrices of the RBM 1 and 3 we see something else. If we look at plot ’0 to 1 -
Weighted matrix and surface plot, RBM 1, layer 0, t50’, it appears that a fair amount
of neurons do not present strong enough connections with all the neurons in the hid-
den layer 1. Indeed, there are many solid black lines at the bottom of the represented
matrix (as we can better see in the surface plot, that shows a sharp step). Those were
neurons that have too little weights in its links toward the neurons of the other layer.
What could be the reason for this? We think that this is another consequence of the
type of input images that were used. The digits images have a huge amount of pix-
els that are actually never used, like the pixels in the borders of the images. Those
pixels are always part of the background, for all digits from 0 to 9. Therefore, the
neurons that represent those pixels in the input are almost disconnected from the
above hidden layer 1. They never play a major role in the learning of features for
any of the input images. The plot ’1 to 0 - Weighted matrix and surface plot, RBM 1,
layer 1, t50’ kind of confirms this thesis, since it shows a particular pattern of vertical
black stripes (the white pixels are not uniformly mixed as in the other cases). Since
in this matrix the columns represent the neurons of the visible layer (while the rows
represent the neurons of the first hidden layer), we might conclude that the neurons
to whom the first hidden layer’s neurons are little or no linked at all are always the
same (a vertical black i-th column gives us the information that all the neurons in
the hidden layer 1 -i.e. all the rows- are not connected with the i-th neuron that that
column represent in the visible layer). We can notice that the presence of black verti-
cal stripes is more consistent in the first and in the last column positions -they could
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be the highest and the lowest picture in the training images, that are always part of
the background, and are therefore unused. The last weighted matrix (the one of the
third hidden layer neurons) shows an analogous sharp step as in the first one. This
is attributable to the fact that there are a lot of neurons in the highest hidden layer
that ’do nothing’ (they are poorly linked with the entire below layer. This reinforces
the thesis of the redundancy in the representations of the data features by the neu-
rons in the last (too?) big layer. Indeed, in the sparse case, this effect (the sharp step)
disappears (we do not show the plot for brevity).

Components, Average Path Length, and Resilience

We lastly analyzed the size of the simplified network’s components, and the average
path length of the network, for different choices of simplification threshold. Raising
the threshold means cutting more links off, while lowering it (to a minimum of 0)
means keeping almost or all the links among all the neurons in close layers. Thus
we used the threshold as a parameter for the ’destruction’ of the network’s structure.
Even if this method doesn’t provide a random removal of the network’s links, it still
gives us a good tool to study the resilience of the network. If we think of the links
between neurons as something that tells us that the information can travel from one
to another, then the removal of links could mean a damage to the network, since it
could imply that the information that starts from a certain neuron in the visible layer
is not able any more to reach neurons in the highest layer (and therefore the capacity
of learning the features in the data could be ruined). We then analyzed the distribu-
tions of the sizes of the components in the simplified network, at different thresholds
of simplification. What we discovered is that, at low thresholds, the distribution is al-
ways composed of a unique bin (all the neurons are part of a unique giant component),
while at higher thresholds the distribution becomes always uniform (all the neurons
start becoming disconnected, and many little isolated components arise) - this is the
case of the completely spoiled network. The situation in between is usually made
of a giant component, and a very low uniform tail of components of other sizes. The
majority of the neurons still are part of a unique enormous connected component,
and we can conclude that in this case the network is still ’healthy’, since the infor-
mation could travel virtually from any unit to any unit. The average path length is
intimately related to the presence of the giant component. At threshold 0 the aver-
age path length tends to about 2 (since, for example, a neuron in the visible layer will
be 1 link apart from the hidden layer 1’s neurons, 2 links from the hidden layer 2’s
neurons, and 3 from the third, for a mean distance of approximately 2). At higher
thresholds, we break almost all the links in the networks, and therefore the average
path length goes to infinite (or it goes to 0, if we ignore in the computation the neu-
rons who are not in the same component -each neuron will make its own component
when they are all disconnected). Here we show the size of the giant component and
the average path length as functions of the threshold. As usually, we show the ’t0’
randomly initialized case, and the ’t50’ trained case, for comparison.

The two cases are different. In the ’t0’ case (we could see this as a random graph),
the whole network forms a unique giant component when all the links are present,
while it sharply breaks down to a multitude of paltry sized separate components.
The presence of the giant component (that we associate with a healthy quality of the
information travels through the network) suddenly disappears at the breaking of a
small part of random links. This is also reflected in the average path length of the



Chapter 4. Network Architecture 29

(a) Giant Component’s size VS threshold, t0 (b) Giant Component’s size VS th., t50

(c) Average path length VS th., t0 (d) Average path length VS th., t50

Figure 4.24: Giant component’s size and APL as functions of threshold

network (image below), that rapidly increases and then it falls to 0 (or infinite, as
we said before), meaning that the network was dismantled into small pieces. This
transitions happen at about the same threshold, meaning that the two properties are
inherent the same property that evolves in the network. The ’t50’ case shows that the
network has trained itself to become more resilient. Indeed, while the ’low threshold’
situation is the same as the random case -the network is a unique component-, this
giant component doesn’t dissolves immediately, but it gently decreases its size, until
it fades altogether, leaving the network in the ’lots of isolated components’ state.
This transition happens at a highest threshold (and this is reflected by the average
path length plot, in this case too) than in the random case. The trained network is
therefore much more resistant to disruptions of its structure. The redundancy in the
features representations that we notice in the previous sections could be a key factor
in the high resilience of the network. Indeed, if a neuron is cut off from the network,
the trained DBN could still perform well, because of the other neurons that, having
the same combination of links of the cut off neuron, can still play the role of the
departed one, without interrupting the information flux.
The ’t100’ and ’t50 sparse’ cases show analogous properties, with the only difference
that the ’breaking transition’ happens a bit later, at a threshold of 2 instead of 1.5 as
in the ’t50’ normal case. The remarkable factor here is that the sparsity constraint
helps the network reaching a highest resilience (comparable to a network trained in
double the normal time).
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4.4 Conclusions

This work is a first step to achieve the comprehension of the relation between an
artificial neural network’s topological (structural) properties and its functionality.
Notably, from this first study many questions have risen: does the weight distributions
depend on the type of input data? We suspect that the overall negative distribution
for the weights in the first RBM could become less negative if the DBN were to be
trained with images that don’t show such a high contrast and such definite lines as
in the digits case. We are talking about, for example, natural landscapes images, in
which the texture is more mixed. Another interesting question is: what if we change
the initial distribution of the weights? For example, a further step in the analysis of these
networks could be analyzing a DBN trained whose weights are initialized at t = 0
with values sampled from a weight distribution taken from an already trained case.
Would this help the training or would it hinder its quality and its efficiency? Suspicion
falls on the second hypothesis, since a ’less neutral’ initialization might prove hard
to smooth and reshape during the training. Some questions arise from the strength
distribution analysis, most of them in common with the open questions we asked
in the former analysis section. Would the ’zero’ layer (visible layer) distribution be much
more different if the DBN were trained with images of different kind? Would the distribution
differ if we initialized the weights in a different manner? What could be the purpose of those
highly negative strength valued neurons that arise in the sparse distribution? And a more
general purpose question we have already touched on: how do training results depend
on the type of the training input?
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Appendix A

%%%%%%%%% INITIALIZE WEIGHTS AND BIASES %%%%%%%%%
numhid = DN. l a y e r s i z e ( l a y e r ) ;
[ numcases numdims numbatches ] = s i z e ( data_GPU ) ;
numcases_GPU = gpuArray ( numcases ) ;
vishid_GPU = gpuArray ( 0 . 1∗ randn (numdims , numhid , ’ s ing le ’ ) ) ;
hidbiases_GPU = gpuArray ( zeros ( 1 , numhid , ’ s ing le ’ ) ) ;
visbiases_GPU = gpuArray ( zeros ( 1 , numdims , ’ s ing le ’ ) ) ;

%%%%%%%%% GET ALL DATA %%%%%%%%%
i f l a y e r == 1 data_GPU = gpuArray ( s i n g l e ( batchdata ) ) ;
e l s e data_GPU = batchposhidprobs ;

%%%%%%%%% FOR EACH BATCH . . . %%%%%%%%%
f o r mb = 1 : numbatches

data_mb = data_GPU ( : , : , mb ) ;
%%%%%%%%% TRAIN AN RBM WITH CD−1 %%%%%%%%%
initialmomentum = 0 . 5 ;
finalmomentum = 0 . 9 ;
momentum_GPU = gpuArray ( initialmomentum ) ;
%%%%%%%%% POSITIVE PHASE %%%%%%%%%
poshidprobs_GPU = 1 . / ( 1 + exp(−data_mb ∗ vishid_GPU . . .

− repmat ( hidbiases_GPU , numcases , 1 ) ) ) ;
posprods_GPU = data_mb ’ ∗ poshidprobs_GPU ;
poshidact_GPU = sum( poshidprobs_GPU ) ;
posvisact_GPU = sum( data_mb ) ;
poshidstates_GPU = poshidprobs_GPU > . . .

rand ( numcases , numhid ) ;
%%%%%%%%% NEGATIVE PHASE %%%%%%%%%
negdata_GPU = 1 . / ( 1 + exp(−poshidstates_GPU∗vishid_GPU ’ . . .

− repmat ( visbiases_GPU , numcases , 1 ) ) ) ;
neghidprobs_GPU = 1 . / ( 1 + exp(−negdata_GPU∗vishid_GPU . . .

− repmat ( hidbiases_GPU , numcases , 1 ) ) ) ;
negprods_GPU = negdata_GPU ’ ∗ neghidprobs_GPU ;
neghidact_GPU = sum( neghidprobs_GPU ) ;
negvisact_GPU = sum( negdata_GPU ) ;

%%%%%%%%% GET ERROR %%%%%%%%%
e r r = gather ( s q r t (sum(sum ( ( data_mb − negdata_GPU ) . ^ 2 ) ) ) ) ;
i f epoch > 5 ,

momentum_GPU = gpuArray ( finalmomentum ) ;
end
%%%%%%%%% UPDATE WEIGHTS, BIASES , AND ERROR %%%%%%%%%
vishidinc_GPU = momentum_GPU ∗ vishidinc_GPU + epsilonw_GPU ∗ . . .

( ( posprods_GPU−negprods_GPU)/numcases_GPU − . . .
weightcost_GPU ∗ vishid_GPU ) ;

visbiasinc_GPU = momentum_GPU ∗ visbiasinc_GPU + . . .
( epsilonvb_GPU/numcases_GPU ) ∗ ( posvisact_GPU−negvisact_GPU ) ;

hidbiasinc_GPU = momentum_GPU ∗ hidbiasinc_GPU + . . .
( epsilonhb_GPU/numcases_GPU ) ∗ ( poshidact_GPU−neghidact_GPU ) ;

vishid_GPU = vishid_GPU + vishidinc_GPU ;
visbiases_GPU = visbiases_GPU + visbiasinc_GPU ;
hidbiases_GPU = hidbiases_GPU + hidbiasinc_GPU ;
errsum = errsum + e r r ;
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