
DASH:

Dynamic Approach for Switching

Heuristics

Giovanni Di Liberto

Supervisors:

Doctor Yuri Malitsky

Professor Barry O’Sullivan

Professor Matteo Fischetti

Università degli Studi di Padova
Dipartimento di Ingegneria dell’Informazione

Laurea Magistrale in Ingegneria Informatica

c© Copyright by Giovanni Di Liberto, 2013

A mio fratello

Table of Contents

Acknowledgements . v

Abstract . vii

Chapter 1 Introduction . 1

Chapter 2 Background . 5

2.1 MIP . 5
2.1.1 Branch-and-Bound . 7
2.1.2 Branching Rules . 8

2.2 Clustering . 11
2.2.1 k-means . 12
2.2.2 g-means . 13

2.3 Feature Filtering . 13

Chapter 3 Related Work . 15

3.1 The Algorithm Selection Problem . 15

3.2 Instance-Oblivious Algorithm Selection 16

3.3 Instance-Specific Algorithm Selection 17
3.3.1 SATzilla . 17
3.3.2 CP-Hydra . 20
3.3.3 ISAC . 21
3.3.4 3S . 24
3.3.5 SATzilla 2012 . 25

3.4 Non-Model-Based Search Guidance for SPP 26

Chapter 4 DASH . 28

4.1 Feature Space . 30

iii

TABLE OF CONTENTS

4.2 Clustering the Instances . 32

4.3 Methodology and algorithm . 37

4.4 Chapter Summary . 40

Chapter 5 Experimental Setup . 41

5.1 Measurements . 41

5.2 Technology . 42
5.2.1 CPLEX . 43
5.2.2 SCIP . 44

5.3 Branching Heuristics for CPLEX experiments 45
5.3.1 Branching Heuristics for SCIP experiments 46

5.4 Dataset . 48

5.5 Chapter Summary . 52

Chapter 6 Numerical Results . 53

6.1 CPLEX . 54

6.2 SCIP . 57

6.3 Chapter Summary . 62

Chapter 7 Conclusion . 65

Appendices . 69

Appendix A Feature space analysis . 70

Bibliography . 76

iv

Acknowledgements

This master’s thesis has been carried out at Cork Constraint Computing Group (4C),

University College Cork, since January 2013, thanks to the Erasmus program which

gave me the opportunity to spend an amazing year in Ireland. A number of people

deserve thanks for their support and help.

First of all, I would like to convey my gratitude to my supervisor Professor Barry

O’Sullivan (University College Cork), who gave me the opportunity to conduct my

study in his research group and to my supervisor Professor Matteo Fischetti (Univer-

sità degli Studi di Padova), for your advice and valuable suggestions. I would like to

thank my supervisor Doctor Yuri Malitsky (University College Cork), who first pro-

posed the research topic behind this thesis and offered his research guidance. Thank

you for all of the work you put into supervising this project, for having taught me

how to live in a research environment, and that the hard work can also be fun.

At 4C, I had the opportunity to meet great people from many different places

around the world and grow as a person and master student. Therefore, I would like

to thank who, even without collaborating directly on this thesis, helped in making

the environment more relaxed and stimulating with reading groups, biscuits, and

tea-breaks.

I would also like to thank my coauthors: Serdar Kadioglu and Kevin Leo, your

suggestions and indications have given an important contribution in keeping me fo-

cused on the main goals of this work.

Besides the coauthors and the research group, I really need to thank Claire Dono-

hue, who has been so helpful in proof reading this thesis and, together with Vahid

Yazdan, has made the tea breaks even mightier. I also need to thank my family

and my friends in Italy, for having always being ready to help me, despite the many

kilometers of distance.

v

TABLE OF CONTENTS

Finally, I must thank Marco Collautti, for an awesome year together in Cork,

for pushing me in looking for a master’s thesis at UCC, and for the long discussions

about our futures that helped me to understand what I really want to do.

vi

Abstract

Complete tree search is a highly effective method for tackling MIP problems, and

over the years, a plethora of branching heuristics have been introduced to further

refine the technique for varying problems. Recently, portfolio algorithms have taken

the process a step further, trying to predict the best heuristic for each instance at

hand. However, the motivation behind algorithm selection can be taken further still,

and used to dynamically choose the most appropriate algorithm for each encountered

subproblem. This thesis identifies a feature space that captures both the evolution of

the problem in the branching tree and the similarity among subproblems of instances

from the same MIP models. A method for exploiting these features is presented here,

which decides the best time to switch the branching heuristic and it is shown how such

a system can be trained efficiently. Experiments on a highly heterogeneous collection

of MIP instances results in significant gains over the pure algorithm selection approach

that for a given instance uses only a single heuristic throughout the search.

vii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Mixed Integer Programming (MIP) is a powerful problem representation that is ubiq-

uitous in the modern world. The problem is represented as the maximisation or min-

imisation of an objective function while maintaining the specified linear inequalities

and restricting some variables to only take integer values while others are allowed to

take on any real value.

Through this abstraction, it is possible to define a wide variety of problems, rang-

ing from scheduling [1] to production planning [2] to network design [3] to auctions [4]

and many others.

The scheduling problem is an example of MIP problem which involves, among

other formulations, service and vehicle scheduling in transportation networks. An

application may be assigning buses, trains, or subways to specific routes in order to

obtain a timetable which satisfies particular conditions (for example the train schedul-

ing problem [5, 6]). Another important problem that can be expressed in the MIP

formulation, is related to production planning. This could be related, for example,

to industrial or agricultural production, where the goal is to maximise the total pro-

duction, without exceeding the available resources. An example of minimisation MIP

problem is related to the telecomminication networks, where the total cost has to be

minimised while meeting a predefined set of communication requirements.

In all the above-mentioned cases, and many others, the task of the program is to

obtain a feasible solution, which satisfies the constraints imposed by the formulation,

and optimises a specific objective function.

Consider, for example, the problem of determining the lessons timetable for a

1

CHAPTER 1. INTRODUCTION

secondary school, given:

• M subjects S = {s1, s2, ..., sM};

• K course blocks C = {c1, c2, ..., cK};

• N instructors T = {t1, t2, ..., tN};

• Q rooms R = {r1, r2, ..., rQ}.

Furthermore, each instructor ti can teach a set of Ji subjects Li = {sl1 , sl2 , ..., slJi},
li ∈ [1,M]. In order to obtain a feasible timetable, a set of constraints must be defined:

for each time-slot of a course block there can be just a single lesson; an instructor

can’t be in more than one room at the same time; each course block has a specific

number of hours for each subject; each instructor should have a minumum and a

maximum amount of hours per week. Finally, what makes this problem a suitable

example to our case is the objective function, which targets to produce a compact

timetable. These are just some of the many variables and constraints that are possible

to identify, but they are enough to make the problem very difficult to solve without

a methodological approach, even having small values of M , N , K, and Q.

A quite natural way to solve this problem could be to iteratively assign an in-

structor to a course, a room, and a subject, aiming to reduce the problem domain,

and therefore obtaining a simpler problem. Good choices reduce the problem domain

but still permit an optimal solution. On the contrary, a bad choice could limit the

solutions domain to an area where just sub-optimal solutions can be found, or worse,

no feasible solution at all. When this happens, it is possible to go back and reconsider

some of the previous choices. The latter is called backtracking.

The approach presented above is generally referred to as branch-and-bound (B&B),

and represented with the help of a tree. The latter gives the opportunity to remember

past choices and to perform a backtrack and correct past mistakes. In practice, the

main idea is to perform deterministic and inductive reasoning to lower the domains

of the variables at each node. When this is no longer possible, a variable is selected

and assigned a value based on some guiding heuristic, thereby obtaining a new subin-

stance, which is a child of the previous node. Once such a decision is made the search

2

CHAPTER 1. INTRODUCTION

proceeds to function deterministically. If or when it is later found that a decision

led to an infeasible or sub-optimal solution, the search backtracks, returning to the

parent node to try an alternate assignment.

The key behind the success or failure of this complete search approach is the order

in which the variables are selected and the values assigned to them. Choosing certain

variables can significantly reduce the domains of all others, allowing the deterministic

analysis to quickly find a contradiction or determine that no improving solution can

exist in the subproblem. Alternatively, choosing the wrong variables can lead to

exponentially longer run times.

Due to the critical importance of the selection of the branching variable and value,

there have been a number of heuristics presented [7, 8, 9]. Several of these are based

on simple rules, for example, Most/Least Infeasible Branching base their decisions on

the variable’s fractionality, i.e., a value which indicates how far the current variable

is from its nearest integer value for a linear relaxation. Other heuristics, like Pseudo

cost Branching, can adapt over time while others, like Strong Branching, test which

of the fractional candidates gives the best progress before actually committing to any

of them. Finally, there are also hybrid techniques, like Reliability Branching, that

put together the positive aspects of Strong Branching and Pseudo cost Branching. A

good overview of these and other heuristics can be found in [9].

Typically, the available MIP solvers offer many parameters that define which

general solution approach to be applied. In particular, some of these values define

which heuristics are active. Often, selecting a set of heuristics enables the selection of

several other parameters, that allow users to adapt the algorithm to their particular

scenario. As an example, consider CPLEX [10], the most widely used commercial

optimisation tool for solving MIP problems. Its version 12.5, used in this thesis,

has more than 80 parameters that affect the solver’s search mechanism and can be

configured by the user.

Work with portfolios, where solvers with many configurations of these parame-

ters can be employed, has shown that there is often no single solver or approach

that works optimally on every instance [11, 12, 13]. Therefore, there are techniques

that try to simulate an oracle which returns an optimal assignment of values for the

3

CHAPTER 1. INTRODUCTION

solver’s parameters. This field of study is called algorithm configuration or algorithm

selection [14, 15], depending on whether the focus is, respectively, on choosing the

configuration of a single parameterised solver or choosing a solver among a portfo-

lio of available ones. In both cases, the choice is critical and could determine huge

differences in the solving time and in the solution quality.

Generally, the majority of the solvers tend to only use one set of heuristics through-

out the search. However, throughout the branching process, as certain variables get

assigned and the domains of others are changed, the underlying structure of the sub-

problems changes. A possible consequence of having a different problem structure

is that the heuristic with the best performance, for the current subproblem, may be

not the same one that was used in the beginning of the solving process. Therefore,

efficiency of the search can be much improved using the correct heuristic at the cor-

rect time in the search. This thesis shows how to identify changes in the problem

structure and therefore how to make a decision of when it is the best time to switch

the employed guiding heuristic.

While a similar approach was recently introduced in [16], this work expands the

research from the set partitioning problem with problem dependent heuristics, to the

much more general problem of MIP. A detailed analysis of how the problem structure

changes over time and a demonstration of the effectiveness of the proposed approach

is also provided.

This thesis is organised as follows. The second chapter gives basic definitions

and a brief introduction into MIP, branch-and-bound (B&B), and several heuristics.

The third chapter introduces the related works, with a particular focus on algorithm

selection approaches. The fourth and the fifth chapters present the motivations be-

hind this work and the procedure that realises it, divided in offline procedure and

online algorithm. Next, the implementation details and the computational results

are presented and discussed.

4

CHAPTER 2. BACKGROUND

Chapter 2

Background

The following chapters will present a dynamic algorithm selection approach. This will

be applied using solvers that differ in the selection mechanism of the MIP branch-

ing rule. In order to motivate this work, we will introduce the concept of MIP, of

branch-and-bound, and of branching heuristic, giving a description of the most used

ones. Next, this dissertation presents related works about algorithm selection, which

helps to define the state-of-the-art context that we aim to improve. Furthermore,

we will describe and analyse our working space assisted by pictures obtained using

dimensionality reduction techniques. Finally, we will present the set of MIP instances

on which we performed tests and observations on the obtained results.

2.1 MIP

This section provides definitions of the most important terms used in this thesis. For

a detailed description into linear and integer programming see [17, 18, 19].

Definition 2.1. Let m,n ∈ R, A ∈ Rm∗n, b ∈ Rm, c ∈ Rn, l, u ∈ Rn ∪ {±∞}, and

I = {1, ..., n}, I ⊆ N.

maximise : cTx

subject to : Ax ≤ b

l ≤ x ≤ u

xj ∈ Z, ∀j ∈ I

is called a mixed integer program (MIP).

5

CHAPTER 2. BACKGROUND

The function that has to be maximised, cTx, is called the objective function.

l and u are called the lower and upper bounds of the variables x. The constraints

l ≤ x ≤ u are called the variables bounds, and the last line of Definition 2.1 represents

the integrality constraints of the MIP problem. A row Ai of the matrix A is often

identified with the linear constraint Aix ≤ bi. Let B := {j ∈ I | lj = 0, uj = 1}. We

call {xj | j ∈ I} the set of integer variables, {xj | j ∈ B} the set of binary variables,

{xj | j ∈ I − B} the set of general integer variables, and {xj | j ∈ N − I} the set of

continuous variables.

Definition 2.2. A MIP given in the form of Definition 2.1 is called:

a linear program (LP) if I = ∅,
an integer program (IP) if I = N,

a binary program (BP) if B = I = N,

a mixed binary program (MBP) if B = I.

Definition 2.3. Let x̂ ∈ Rn. Referring to Definition 2.1, we call x̂:

LP-feasible if Ax̂ ≤ b and l ≤ x̂ ≤ u,

integer feasible if x̂j ∈ Z ∀j ∈ I,
a feasible solution if x̂ is LP-feasible and integer feasible,

an optimal solution if x̂ is a feasible solution and cT x̂ ≤ cTx

for all other feasible solutions x.

The terms LP-infeasible, integer infeasible, and infeasible solution vector are de-

fined analogously. If a MIP is given, the LP which arises by omitting the integrality

constraints is called the LP-relaxation of the MIP.

Definition 2.4. Let x ∈ Rn and I the index set of integer values of a given MIP.

We call f(xj) := |xj − bxj + 0.5c| the fractionality of the variable xj, j ∈ I and

f(x) :=
∑
j∈I

f(xj) the fractionality of the vector x.

Obviously, a vector x is integer feasible if and only if f(x) = 0. A variable xj, j ∈ I,

with f(xj) 6= 0 is called fractional.

6

CHAPTER 2. BACKGROUND

2.1.1 Branch-and-Bound

Linear programming based branch-and-bound (B&B) algorithms are currently among

the most successful methods to solve MIPs. The B&B is a general algorithm for

finding optimal solutions of several kinds of optimisation problems. The idea is to

partition the original problem into many simple subsets. This process is commonly

represented using a tree structure, where each non-root node represents one of the

obtained subproblems. This approach is strongly related to the divide-and-conquer

principle. In particular, B&B algorithms have two main choices: how to split a

problem (branching) and which subproblem to select next.

This dissertation uses the following notation: XMIP denotes the set of feasible

solutions of a MIP problem P , as it is introduced in Definition 2.1. The linear

programming relaxation of P is obtained by removing the integrality constraints:

c̄PLP
= max{cTx | x ∈ PLP}, where PLP = {x ∈ Rn | Ax ≤ b}. Furthermore,

if PLP = ∅ then c̄PLP
= ∞. Trivially, c̄PLP

≥ c∗, where c∗ = max{cTx}, since

PLP ⊇ XMIP .

The ideas behind divide-and-conquer and branch-and-bound can be summarised

as follows:

• Divide-and-conquer:

– Divide a large problem into several smaller ones;

– Conquer by working on the smaller problems and combine their solution.

• Branch-and-bound:

– Solve the continuous relaxation of the original problem;

– Divide (Branch): given the problem P0, choose an integer infeasible vari-

able xp. Then, create two subproblems, P1 and P2, with added constraints

xp ≤ bxpc and xp ≥ dxpe, respectively;

– Conquer (Bound/Fathom): if the optimal solution of the continuous re-

laxation of Pi is worse than any known feasible solution for the original

7

CHAPTER 2. BACKGROUND

problem P0, then Pi is discarded since the MIP subproblem Pi can’t have

a better solution than its relaxation [18].

2.1.2 Branching Rules

MIP problems are commonly solved with linear programming based branch-and-

bound (B&B) algorithms. These algorithms leave two choices: how to split a problem

(branching) and which subproblem to select next. The success of the solver strongly

depends on the strategy used to select the variable to branch on, that is called branch-

ing strategy or variable selection heuristic. For this reason, we focus on the branching

strategy.

In order to split a problem P within a LP based B&B algorithm, the technique

that split the feasible interval of a singleton variable. To be more precise, if i is a

variable with fractional value x̄i in the current optimal LP solution, two subproblems

can be obtained, one by adding the trivial inequality xi ≤ bx̄ic and one by adding

xi ≥ dx̄ie, called respectively left and right subproblems or children. The two partial

fractionality values are defined as fi
+ = dx̄ie−x̄i and fi

− = x̄i−bx̄ic. The fractionality

of the variable x̄i, as introduced in Definition 2.4, can also be computed as fi =

min{fi+, fi−}. This branching rule is also called branching on variables, because it

only requires to change the bounds of variable i. This is the approach chosen by most

of the available MIP solvers.

As discussed in detail in [7], Algorithm 1 represents the general algorithm for

variable selection. Let Q be the current subproblem with an optimal LP solution

Algorithm 1 Generic variable selection

1: function variableSelection(Q, x̄)

2: C ← getCandidatesIdx(Q, x̄)

3: for all i ∈ C do

4: si ← scoreEval(Q, xi)

5: end for

6: return argmaxi∈C{si}
7: end function

8

CHAPTER 2. BACKGROUND

x̄ /∈ XMIP (recall that XMIP is the set of feasible solutions). Given a set of branching

candidates C = {i ∈ I | x̄i /∈ Z}, the idea is to compute on each one of its elements

a score value (function scoreEval), for which a higher value indicates a better choice.

The function returns the index i of the variable with the maximum score si.

In the following, the focus is on the most common variable selection rules, which

are variants of Algorithm 1. The difference relies mainly in how the function scoreEval

is realised. The common goal of these strategies is to solve an instance minimising,

on average, the evaluation time. Therefore, as described below, it is inevitable to deal

with the trade-off between the computational complexity of the function scoreEval

and the number of nodes visited. In fact, usually a score function easy to be computed

brings to a wider and more complete exploration. Instead, a more complex and slow

to compute score function should bring to a more precise choice that permits a quick

diving, with a reduced “horizontal exploration” of the tree.

The following are the most common branching techniques. The general ideas in-

troduced here are described together with the implementation details in the following

chapters.

Least/Most fractional rounding

This is very simple set of branching techniques consists of choosing the variable with

fractional part closest to 0.5. The heuristic reason behind this choice is that this

selects a variable where the least tendency can be recognized to which “side” (up or

down) the variable should be rounded. Another possibility is to choose the variable

with fractional part closest to 0, and in this case the idea is to select a variable that

is “almost integer”.

Pseudo costs based branching

This is a sophisticated rule that keeps the history of the variables on which branching

has been performed. For each variable i, this information is stored in the two values

ψ+
i and ψ−i , called pseudo costs, and derives mainly from the objective gain variation

at each step of the B&B process [7]. The pseudo costs are then combined using a score

9

CHAPTER 2. BACKGROUND

function that returns a numeric value for each branching candidate variable. The idea

is to continue the B&B choosing the variable that maximises this score function. The

behaviour of this branching heuristic adapts to the specific solving process, in fact the

information on the past branching is used in the score evaluation. Therefore, if the

root node’s depth is zero, the nodes at higher depths of the solving tree have more

collected history, therefore the heuristic choice is more reliable.

Strong branching

The idea of strong branching is to test which of the branching candidates gives the

most progress before actually executing any branching operation. If the chosen can-

didate set C is the full set C = {i ∈ I | x̄i /∈ Z} and if the resulting LPs has to be

solved to optimality, this strategy is named full strong branching. Unfortunately, this

look ahead operation requires high computation times per node. One possibility to

speed-up this technique, is to restrict the candidate set in some way. Furthermore,

often only a few simplex iterations are performed, because the change of the objective

function in the simplex algorithm usually decreases with the iterations [7].

Hybrid Strong/Pseudo cost Branching

The computation times per node of full strong branching is high. The speed-up

provided by the techniques indicated in Section 2.1.2 can be relevant, but the trade-off

between speed-up and decisions precision greatly limits this approach. On the other

hand, pseudo costs branching is weak at the very beginning of the solving process,

since the decisions are taken with respect to pseudo cost values that, at the start,

contain no relevant information. To circumvent these drawbacks, the positive aspects

of pseudo cost branching and strong branching are put together in the combination

hybrid strong/pseudo cost branching, where strong branching is the upper part of the

solving tree and, from a given depth d, pseudo costs branching is used. Alternatively,

strong branching can be used just for variables with uninitialised pseudo costs. In this

case, the resulting strong branching estimates are used to initialise the pseudo costs.

10

CHAPTER 2. BACKGROUND

Reliability branching

The idea described in Section 2.1.2 can be generalised by not only applying strong

branching on variables with uninitialised pseudo cost values, but also on variables with

unreliable pseudo cost values. A variable i has unreliable pseudo cost values if the

condition min{η+i , η−i } < ηrel is true, where ηrel is a threshold parameter and the two

values η+i and η−i count how many times, in the overall solving process, respectively

the upward and downward branching on the variable i has already been solved and

was feasible. This technique relies on the assumptions that strong branching tends

to make the variables’ pseudo costs reliable and pseudo costs branching performs

effective choices, when they are based on reliable pseudo costs.

Inference History Branching

The inference history of a variable is a record of how many inferences have been

discovered as a result of branching on this variable in the past. These inferences

take the form of variables counters, whose domains have been effected by LP bounds

propagation or domain propagation that might have happened during pre-solving /

insolving. These values can be used instead of the pseudo costs in order to evaluate

a score function.

Random Branching

When developing a new branching technique, the results are often compared with the

execution times while using a random branching rule. The trivial idea is to branch, at

each step, on a variable selected randomly among the infeasible ones, using a uniform

probability distribution.

2.2 Clustering

Cluster analysis or clustering is a general concept that can be defined as the task of

grouping a set of elements according to a similarity measure. Each resulting group is

11

CHAPTER 2. BACKGROUND

called a cluster and its elements are more similar to each other than to those in other

groups. Furthermore, the clusterisation is defined in a n-dimensional working space

which uses a specific a distance metric. In this space, each cluster is associated to a

specific point, called center

Clustering is a common technique for statistical data analysis and data mining.

It does not refer to a specific algorithm, but to the general task to be solved. In this

dissertation, clustering refers to the unsupervised learning approach that works on

MIP problems, where every instance is represented by its feature vector. The latter

refers to an n-dimensional feature space that describes structural information of an

instance. In the case of MIP problems, the same feature space can be used for any

MIP problem. Some examples of features specific to the MIP problem set could be

the number of variables in the objective function, the percentage of integer infeasible

variables (i.e., variables that don’t satisfy the integrality constraint, as introduced in

Section 2.1), or the number of constraints.

The features have to capture the differences between distinct instances. Therefore,

a distance metric that represents a similarity measure is defined. For this purpose,

the Euclidean distance between instances is commonly used [20].

From the many clustering techniques available, this dissertation presents two al-

gorithms: k-means, an algorithm that has shown to offer good results for algorithm

selection problems [11], and g-means, a clustering approach based on k-means with a

higher level of automation.

2.2.1 k-means

One of the most straightforward clustering algorithms is Lloyds k-means [21]. The

algorithm first selects k random points in the feature space, where k is a given param-

eter. It then alternates between two steps until some termination criterion is reached.

The first step assigns each instance to a cluster according to the shortest distance to

one of the k points that were chosen. The next step then updates the k points to

the centers of the current clusters. While this clustering approach is very intuitive

and easy to implement, the problem with k-means clustering is that it requires the

user to specify the number of clusters k explicitly. If k is too low, this means that

12

CHAPTER 2. BACKGROUND

some of the potential is lost to tune parameters more precisely for different parts of

the instance feature space. On the other hand, if there are too many clusters, the

robustness and generality of the parameter sets that are optimized for these clusters

is sacrificed. Furthermore, for most training sets, it is unreasonable to assume that

the value of k is known.

2.2.2 g-means

g-means [22] is a clustering technique proposed by Hamerly and Elkan in 2003. This

approach has the purpose of solving the problem of k-means related on the choice

of the parameter k. In fact, the algorithm automatically returns the clustered space,

without taking as a parameter the interested number of clusters.

This work proposes that a good cluster exhibits a Gaussian distribution around

the cluster’s center. g-means starts considering all the instances as forming one large

cluster. In each iteration, one of the current clusters is picked and is assessed whether

it is already sufficiently Gaussian. To this end, g-means splits the cluster in two by

running 2-means clustering. All points in the cluster can then be projected onto the

line that runs through the centers of the two sub-clusters, obtaining a one-dimensional

distribution of points. g-means now checks whether this distribution is normal using

the widely accepted statistical Anderson-Darling test [23]. If the current cluster does

not pass the test, it is split into the two previously computed clusters, and the process

is continued with the next cluster.

Among the many clustering techniques, g-means offers consistent results and per-

mits the automation of the process, that is particularly important for our purposes.

2.3 Feature Filtering

It is well established that the success of a machine learning algorithm depends on

the quality of its features. In fact, it is essential to have enough features to capture

the differences between distinct instances, but too many features could introduce

several problems. In particular, even when resources are not an issue, it is preferable

13

CHAPTER 2. BACKGROUND

to remove unneeded features because they might degrade the quality of discovered

patterns, for the following reasons:

• Some features are noisy or redundant. This noise makes the discovery of mean-

ingful patterns from the data more difficult;

• To discover quality patterns, most data mining algorithms require much larger

training data on high-dimensional data set. But the training data is very small

in some applications. Therefore, having less dimensions enables to obtain qual-

ity results, even with a small amount of training data.

For example, imagine a large feature set of 1,000 values where only 10 of them are

needed in order to completely describe a problem. In such a scenario, it is likely that

the remaining 990 features are just random noise. Statistically, a noisy feature could

accidently correlate to the output. Furthermore, reducing the feature set, therefore,

requires less data to be stored and of fewer computations on it.

If only a subset of the feature set has useful information for building a model, it is

possible to leave the remaining features out of the model. Feature selection techniques

help in finding a quality solution which uses a small amount of data.

The idea of feature selection is to find a way to filter out features that have little

chance of being useful in analysis of data. Generally these kind of filters are based on

some kind of performance evaluation metric calculated directly from the data. In this

case, the filter is based on a function that returns a relevance index J(S | D) that

estimates, given the data D, how relevant a given feature subset S is for the task Y .

Through the computation of the relevance index for each individual feature Xi, i =

1, ..., N , it is possible to obtain a ranking order J(Xi1) ≤ J(Xi2) ≤ ... ≤ J(XiN). The

latter permits to filter out the features with the lowest ranks. In order to obtain a

“good” ranking order, it is essential to define what relevant means.

Definition 2.5. A feature X is relevant in the process of distinguishing class Y = y

from others if and only if ∃X = x | P (X = x) > 0∧P (Y = y | X = x) 6= P (Y = y).

There are many state-of-the-art feature filtering techniques available. This the-

sis, which works with the R package FSelector [24], employes the information gain

technique, that is based on information theory.

14

CHAPTER 3. RELATED WORK

Chapter 3

Related Work

Given an optimisation problem and a portfolio of available solvers, algorithm selection

is the problem of choosing a solver with optimal performance on the given instances.

The outcome could be a solver of the initial portfolio (for example, the best single

solver, that is the solver performing best in a training set of MIP instances), or it

could be an algorithm which combines the available solvers in such a way to improve

the performance of the best available solver in the portfolio. This chapter introduces

different techniques at the state-of-the-art that aim to obtain a solving algorithm

which improves the performance of the best solver in the portfolio.

3.1 The Algorithm Selection Problem

Many optimisation problems can be solved using several algorithms usually with

different performance. Considering the set of all possible instances of a problem type,

it has long been recognised that there is no single algorithm or system that will

achieve the best performance in all cases [25]. This phenomenon is of great relevance

among algorithms for solving NP-Hard problems, because the high variability between

instances of a particular problem type [26, 27]. This is especially the case for MIP

problems, which are the core of this thesis.

In this context, the ideal solution would be to consult an oracle that knows the

amount of time that each algorithm would take to solve a given problem instance,

and select the one with the best performance. In the last decades this issue has been

referred to as the Algorithm Selection Problem [14, 15].

15

CHAPTER 3. RELATED WORK

This problem, as first described by John R.Rice in 1976 [14] and presented by [15],

has three main aspects that must be tackled:

• The selection of the set of features of the problem that might be indicative of

the performance of the algorithm;

• The selection of the set of algorithms (often referred to as solvers) that together

allow solving of the largest number of instances of the problem with the highest

performance;

• The selection of an efficient mapping mechanism that permits to select the best

algorithm to maximise the performance measure.

The features definition must be unique for all the instances of the same problem

set. Furthermore, it is of extreme importance that they highlight the differences

between distinct instances.

The set of algorithms (often referred to as a portfolio) can be exploited using

several techniques that can be grouped into instance-oblivious and instance-specific

algorithm selection.

3.2 Instance-Oblivious Algorithm Selection

Given a representative set of problem instances (training set), instance-oblivious algo-

rithm selection attempts to identify the solver or the combination of solvers resulting

in the best average performance on all the training data. After the training phase,

for each approach in this group the execution follows the same rules independently

of the particular instance being solved.

A trivial solution is to measure the solving time on the training set, and then to

use the algorithm that offered the best performance (e.g. arithmetic mean, geometric

mean, or median). As was shown in SNNAP [20], using this approach, simply called

winner-takes-all, the single best solver might not be best on any instance.

A more elaborate solution consists of trying to solve each new instance with a

sequence of algorithms, each one with a particular time-limit. The training phase

16

CHAPTER 3. RELATED WORK

aims to identify this sequence of solvers and to assign an execution time-limit to

each one of them. This approach is called sequential portfolio [28]. At least since

the invention of CP-Hydra [12] and SatPlan [29], sequential portfolios also schedule

solvers. That is, they may select more than just one constituent solver and assign

each one a portion of the time available for solving the given instance.

3.3 Instance-Specific Algorithm Selection

One of the main drawbacks of instance-oblivious algorithm selection is to ignore the

specific instances, solving each new one in the same way. As already claimed, there

is no single algorithm or system that will achieve the best performance in all the in-

stances of a certain problem [25]. Therefore, selecting the solver that performs better

on the specific instance could result in a technique that performs significantly better

than any of the algorithms in the portfolio. The latter, that is called Virtual Best

Solver (VBS), is an oracle-based portfolio approach, in fact it assumes the existence

of an oracle which chooses the fastest solver for each instance.

Several different techniques of instance-specific algorithm selection have been de-

veloped to simulate this oracle, all based on the common assumption that instances

prefer different solvers due to the variation in their structure. Therefore, it is possible

to construct a vector of features that aims to represent these structural differences and

permits the realization of a mapping mechanism between instances and best solving

algorithm.

3.3.1 SATzilla

SATzilla [30] is an example of an algorithm portfolio approach applied to the proposi-

tional satisfiability problem (SAT). SAT is the problem of determining if there exists

an assignment of values that satisfies a given Boolean formula. Obviously, it is equally

important to determine whether no such assignment exists, which would imply that

the result of the formula is FALSE for all possible variable assignments.

17

CHAPTER 3. RELATED WORK

SAT is one of the most fundamental problems in computer science. This NP -

complete problem is interesting both for its own sake and because other NP -complete

problems can be encoded into SAT in polynomial time and solved by the same solvers.

Since it is conceptually simple, significant research efforts have been put in developing

sophisticated algorithms with highly-optimised implementations. Furthermore, the

SAT competition benchmark [31] incentivises further work on this problem offering

visibility to the best solvers. Overall, since its initial introduction in 2007, SATzilla

has won medals at the 2007 and 2009 SAT Competitions.

The approach is based on a simple idea: given a new instance, the runtime of each

solver in the portfolio A is forecasted using ridge regression. It is then possible to run

the algorithm with the best predicted performance. Therefore, SATzilla uses a well-

defined set of features specific for the SAT problem. The approach can be divided in

two phases: training process and testing process, respectively called SATzilla-Learn

and SATzilla-Run in Algorithm 2.

In the first part, the features F are filtered using forward selection (that tries to

select the most important features), then they are expanded using all the quadratic

combinations of the reduced feature set, and finally the forward selection is per-

formed again. In Algorithm 2, this group of operations is executed by the function

FeatureChanges(F). The training phase also finds the two algorithms (pre1 and pre2)

that solve the most number of instances if each is given a 30 seconds time-out (pre-

Timeout). The identified algorithms will be used as pre-solvers, with the goal of

solving quickly the easy instances, reducing the risk of doing a bad choice for them

while introducing a limited overhead (this approach has shown to improve the average

result). Finally a ridge regression model is trained on the training instances T and

the best subset of solvers to use in the final portfolio is determined, using a validation

dataset V.

The testing process consists of executing the SATzilla strategy on each instance

x in the testing set. In particular, the pre-solvers are executed sequentially. When

an instance is unsolved, its features are computed and then SATzilla predicts the

expected runtime of each solver. Finally, it runs the solver with the lowest predicted

runtime.

18

CHAPTER 3. RELATED WORK

Algorithm 2 SATzilla

1: function SATzilla-Learn(T, V, F,A)

2: (F̄)← FeatureChanges(F)

3: (pre1, pre2)← FindBestSolvers(T, 30s)

4: for all i = 1, . . . , length(A) do

5: modelsi ← RidgeRegression(T, F̄ , Ai)

6: end for

7: (Ā)← PortfolioF iltering(A, V)

8: return ((pre1, pre2), Ā,models)

9: end function

10:

1: function SATzilla-Run(x, Ā, pre1, pre2,models, preT imeout)

2: execT ime← ExecuteSolver(x, pre1, preT imeout)

3: if execT ime ≥ preT imeout then

4: execT ime← ExecuteSolver(x, pre2, preT imeout)

5: if execT ime ≥ preT imeout then

6: F ← FeaturesComputation(x)

7: times[]← PredictRuntime(x, Ā,models)

8: return ExecuteSolver(x, Āargmin(times))

9: end if

10: end if

11: end function

19

CHAPTER 3. RELATED WORK

An issue of this approach is that it requires prior knowledge about the relationship

between features and performance. It can be therefore effective when the studied

instances are of a specific problem type, for which a wide dataset has already been

provided and modelled. Since the prediction is on the solving time, the task of

defining a feature set of high quality for a very general problem type could be very

difficult. Furthermore, the time predictions are not accurate, but in the case of the

SAT competition they were accurate enough to distinguish between good and bad

solvers.

3.3.2 CP-Hydra

CP-Hydra [12] is an algorithm portfolio approach for Constraint Satisfaction Prob-

lems (CSP). It is well-known that in constraint programming, as for SAT problems,

different solvers are better at solving different problem instances, even within the

same problem class [15]. The idea is to manage the solving process with a scheduler,

that defines the active solvers and the portion of time to assign to each one of them.

In order to build the scheduler, CP-Hydra uses a Case-Based Reasoning (CBR) ap-

proach instead of building an explicit model of the problem domain. The idea is to

store a set of past examples called cases, each one made up of a description of the

past experience and its respective solution. The full set of past examples is called the

case base.

In CBR problems are solved by using or adapting solutions of old problems [32].

This approach has a number of advantages. In particular, there is no need to detect

and model general patterns over the entire problem space. Moreover, CBR has proven

to be successful in solving weak-theory problems [12], in which the problem domain

could be complex and not provide much information about its structure. For these

reasons, CBR may be a good candidate for algorithm selection.

In the original dissertation [12], different kinds of schedule are presented:

• Split schedule: schedule giving each solver an equal portion of the total time

(note that this is an instance-oblivious approach);

• Static schedule: schedule generated using the entire case base;

20

CHAPTER 3. RELATED WORK

• Dynamic schedule: schedule generated using the k=10 nearest neighbours.

The core of CP-Hydra is the computation of the solver schedule, that is a function

f : S 7→ < mapping an amount of CPU-time to each element of a set of solvers S.

In the static schedule approach, CP-Hydra works with the whole case base. While

using the dynamic schedule, instead, given a new instance a set C of k similar cases

is extracted from the case base. This operation is executed by the case base reasoner.

The idea is to obtain the schedule which maximises the number of cases in C that

would be solved. Formally, given a set C of similar cases, a solver s ∈ S, and a time

value t ∈ [0..1800], The subset C(s, T) is defined as C(s, t) ⊆ C, where ∀c ∈ C(s, t),

c is solved by s if given at least time t. The schedule f can be computed using the

following constraint program:

max |
⋃
s∈S

C(s, f(s)) |; (3.1)

∑
s∈S

f(s) ≤ 1800. (3.2)

Expression 3.1 can be refined by weighting the cases according to their similarity

to the new instance. Let d(c) be the distance of case c ∈ C to the analysed instance,

the objective function could become:

max
∑

c∈
⋃

s∈S C(s,f(s))

1

d(c) + 1
. (3.3)

This problem is NP-hard as a generalisation of the knapsack problem. There-

fore, the main drawback is that, even if it works well restricting the approach to 5

solvers and up to 50 neighbours, solving this problem to optimality could become

very inefficient while using a larger solvers portfolio.

3.3.3 ISAC

ISAC, Instance-Specific Algorithm Configuration [11], combines a configuration method

and unsupervised learning obtaining a high performance algorithm selection method.

21

CHAPTER 3. RELATED WORK

Algorithm 3 ISAC

1: function ISAC-Learn(T, F,A)

2: (F̄)← Normalise(F)

3: (k, C, S)← Cluster(T, F̄)

4: for all i = 1, . . . , k do

5: BSi ← FindBestSolver(T, Si, A)

6: end for

7: return (k, C,BS)

8: end function

9:

1: function ISAC-Run(x, k, C,BS)

2: f ← FeaturesComputation(x)

3: f̄ ← Normalise(f)

4: return BSj(x)

5: j ← FindClosestCluster(k, f̄ , C)

6: end function

Most algorithms have several parameters that affect the performance. In order to

have a fast execution, these parameters need to be tuned. Therefore, the goal is to

find an assignment of values that guarantees the best performance possible. ISAC

does that by exploiting the genetic algorithm GGA (Genetic Gender-based Algo-

rithm) [33]. The motivation behind ISAC is that by having a portfolio algorithm it

is also possible to tune it, so that it can classify a new instance by itself and choose

the most promising parameters for that specific input automatically.

The portfolio algorithm that ISAC propose is based on clustering the inputs. As

described in Algorithm 3, the overall process is divided into 2 phases: the learning

(ISAC-Learn) and the runtime phase (ISAC-Run). In the learning phase, the input

consists of a set of training instances T, their corresponding feature vectors F, and the

parameterised algorithm A (that can be seen as a collection of solvers, if only a limited

combination of values is admitted). First, the features are linearly normalised in order

to have values that span the interval [-1,1], memorising the scaling and translation

22

CHAPTER 3. RELATED WORK

values (s,t) for each feature. Then, a clusterisation on the set of normalised feature

vectors is performed. The algorithm used is g-means [22], which returns a set of k

clusters Si represented by their centres Ci in the normalised feature space. The final

step consists in computing favorable parameters for the parameterised solver A. For

this purpose, the instance-oblivious tuning algorithm GGA [33] has been selected. In

this scenario, unlike alternate approaches like k-nearest neighbour, clustering allows

us to tune solvers offline since, given a training set of instances, it works on a specific

grouping of instances which does not depend on the instance to be solved.

In the second phase, given a new input instance, its features are computed and

then normalised, using the values (s,t) previously stored. Then, for this normalised

feature vector x the cluster with the nearest centre is determined. This step is realised

using the Euclidean distance as distance metric. Finally, the algorithm A is executed

using the parameters for the identified cluster.

Instance-Specific Algorithm Configuration (ISAC), is a general approach that can

tackle several kind of problems. In our context, in order to do algorithm selection, the

parameterised algorithm A is the portfolio algorithm, which takes as parameters a

value for each cluster that identify the solver to use for the input instances that belong

to it. Each solver could be identified by a single parameter (e.g. solver 1, solver 2), or

by a set of parameters (that could express, for example, the solver identifier followed

by its parameters).

One of the major drawbacks of ISAC, however, is its dependence on the feature

vector it uses to differentiate the problem instances. The success of the feature vector

hinges on its ability of correctly grouping instances that are likely to behave similarly

under the same solver. Another issue is that once the clusters are defined the approach

is committed to them. Therefore, if the features were erroneous or, given new input

data, if it is shown that there could be a better clusterisation, ISAC will have sub-

optimal performance. A new approach that tackle these issues has been recently

proposed in [34].

23

CHAPTER 3. RELATED WORK

3.3.4 3S

3S, SAT Solver Selector, has been the best-performing sequential dynamic portfolio

at the SAT Competition 2011 [28, 31]. 3S extends ideas behind ISAC by combine-

ing solver scheduling and dynamic clustering. The latter is realised using a nearest

neighbour methodology. In particular, it is defined a working space that, together

with a distance metric (in this case the Euclidean distance), aims to offer a measure

of similarity between instances. For this purpose, 3S uses the same 48 core features

as SATzilla in 2009 [30].

3S works in two phases: an offline learning phase, and an online execution phase.

• At Runtime: In the execution phase, 3S first computes the feature vector of the

given problem instance. Given k ∈ N, computed offline, 3S selects k instances

that are most “similar” to the given one in a training set of SAT instances. It

then selects the solver that can solve most of these k instances within the given

time limit. Finally, 3S runs a fixed schedule of solvers for 10% of the time limit

and then it runs the selected solver for the remaining 90% of the available time.

• Offline: Given a training set of SAT instances, for each one of them 3S com-

putes the correspondent feature vector and it executes each solver, storing their

execution times. Using cross validation by random subsampling, 3S repeatedly

splits the training set into a base and a validation set and it determines which

size of k results in the best average performance on the validation set, when

using only the base set to determine the optimal solver. Finally, 3S computes

the fixed schedule of solvers that run for 10% of the time-out. The goal is to

maximise the number of instances that can be solved within a reduced time

limit, in this case given by the SAT Competition. This maximisation problem

can be modelled and solved as an Integer Problem (IP). In particular it can be

solved as a Set Covering Problem (SCP).

A main issue of this approach is that the solvers in the scheduler pre-solver (10%

of the solving time-out) work independently, without passing information. Another

problem regards the choice of the long running solver, that can’t be corrected if it

turns out to be sub-optimal during the solving process.

24

CHAPTER 3. RELATED WORK

In 2012 a work that generalises the 3S technology for development of parallel SAT

solver portfolios was published [28].

3.3.5 SATzilla 2012

SATzilla2012 [13] is an improved version of SATzilla that performs algorithm se-

lection based on cost-sensitive classification models [35]. The main improvement is

the new algorithm selection procedure. The previous version uses empirical hardness

models [36, 37] in order to predict the time required for an algorithm to solve a given

instance. This was an intuitive way to compare solvers in an instance-specific con-

text. The idea behind SATzilla2012 is to compare every pair of solvers predicting

which one will be better for the current instance, and finally select the solver with

the majority vote.

SATzilla2012 constructs a classification model (decision forest, DF) offline for

predicting whether the cost of computing the feature vector is too expensive, given

the number of variables and clauses in an instance. Moreover, it constructs a cost-

sensitive classification model (DF) for every pair of solvers in the portfolio, predicting

which solver performs better on a given instance based on the feature vectors. Then,

in order to solve a given instance, SATzilla2012 predicts online the feature vector

computation time. If the latter is too costly then the backup solver is executed, which

is the algorithm that achieves the best performance on the training set. Otherwise,

SATzilla2012 performs a pre-solving phase and, if the instance is not solved yet,

computes the features’ values and selects the algorithm to run. In particular, for

every pair of solvers, it predicts which one performs better using the DF trained

offline, and it casts a vote for it. Finally, the selected solver is the one that receives

the highest number of votes.

The main drawback of this methodology is that it is not sustainable once the

number of solvers continues to grow, because it trains a model for every pair of

solvers in the portfolio.

25

CHAPTER 3. RELATED WORK

3.4 Non-Model-Based Search Guidance for SPP

The idea behind of Instance-Specific Algorithm Configuration (ISAC) is combined

in [16] with a dynamic branching scheme that bases the branching decision on the

features of the current subinstance to be solved. This approach uses a set of solvers,

that differs just in the parameter that identifies the applied branching heuristic. Hav-

ing a set of features that are representative of the specific MIP problem SPP (Set

Partitioning Problem), the idea is essentially an extension of the ISAC approach: the

feature space is clustered based on a set of training instances. Given a new instance

and its feature vector, it is possible to identify which cluster it belongs to. Having an

assignment of solvers for the clusterisation, the one assigned to the identified cluster

is applied. This approach applies this selection before the solver execution and also

during the solving process.

The idea to adapt the search dynamically during the solving process takes inspi-

ration from [38, 39]. In particular, in [38] a value selection heuristic for Knapsack

was studied and it was found that accuracy of search guidance may depend heavily

on decisions higher in the search tree, since they can have effects on the distribution

of subinstances that are encountered deeper in the tree. The latter clearly creates

a serious chicken-and-egg problem for statistical learning approaches: the distribu-

tion of instances that requires search guidance affects the choice of heuristic but the

latter then affects the distribution of subinstances that are encountered deeper in the

tree. In [39] a method for adaptive search guidance for QBF solvers (the satisfiabil-

ity problem of Quantified Boolean Formula) was based on logistic regression. The

issue of subproblem distributions was addressed by adding subinstances that were

encountered during previous runs to the training set.

Non-Model-Based Search Guidance boosts the CPLEX MIP solver to solve set

partitioning problems faster. In particular, the following approach is proposed:

• First, the normalised feature space is clustered using the training instances;

• The CPLEX solver is parameterised, by leaving open the assignment of branch-

ing heuristic to cluster; It is then possible to consider each different configuration

of the parameterised solver as a distinct solver;

26

CHAPTER 3. RELATED WORK

• At runtime, whenever the solver reaches a new search node (or at selected

nodes), the features of the subinstance are computed;

• The current cluster is identified and the next branching heuristic is selected.

The problem is then reduced to finding a good assignment of heuristics to the

clusterisation. For this goal, a standard instance-oblivious algorithm configuration

system is used, the algorithm GGA (Gender-based Genetic Algorithm) [33].

The results have proved the effectiveness of this approach. The main issue is

that it is applied just to a single subset of MIP problems. In order to generalise

this idea and build a solver that works with a wider set of problems, several issues

need to be tackled, for example the identification of a new set of instances and a new

set of features are essential. Moreover, other issues that need a solution are: which

behaviour has to be studied in order to find an optimal approach, and which allows

a clusterisation to be obtained that describes the data well. This thesis analyses and

tackles these problems, introducing a dynamical methodology that works on the much

wider MIP problem set.

27

CHAPTER 4. DASH

Chapter 4

DASH

The objective motivating this work is to create a solver that dynamically adjusts its

search strategy, selecting the most appropriate heuristic for the subinstance at hand.

In a high-level overview, the solver performs a standard branch-and-bound procedure

that, before choosing the next branching variable and value, analyses the structure

of the current subinstance using a set of representative features. Working with this

structural information, the solver would be able to predict that a specific heuristic has

better performance than the alternatives, and employ it to make the next decision.

We refer to such a strategy as Dynamic Approach for Switching Heuristics (DASH).

A number of MIP problems has been collected by selecting instances of different

datasets, obtaining a large and heterogeneous set (see Section 5.4). Using structural

information of the studied problems, a set of values, which captures as many aspects

of a MIP problem as possible, has been selected. This set is called feature space.

Employing Principal Component Analysis [40] (PCA) as dimensionality reduction

technique, it is possible to visualise the dataset in either 2D or 3D representations.

Figure 4.1 shows these representations with additional information: each plot employs

a colouring scheme where red indicates an instance solved quickly (in less that 10 times

of the best available solver execution time on the same instance), grey a slower solving

performance, and black indicates that the algorithm timed-out. In each of the four

pictures, the colours refer to the performance obtained using a specific branching rule,

respectively least fractional and highest objective rounding (LFHO), most fractional

and highest objective rounding (MFHO), pseudo cost branching weighted score (PW),

and pseudo cost branching product score (P). The other heuristics available in the

CPLEX implementation (see Section 5.3) do not help in this analysis because of their

28

CHAPTER 4. DASH

(a) Branching rule: LFHO (b) Branching rule: MFHO

(c) Branching rule: PW (d) Branching rule: P

Figure 4.1: PCA of the instances (at the root node) in the dataset. The colour scheme
refers to the solving time using CPLEX with a single branching rule. Each instance
is represented by a point, which can be black, if the solver timed-out, red if it was
solved quickly (in less than 10 times of the best available solver), or grey otherwise.

29

CHAPTER 4. DASH

low performance, therefore they are not presented here.

Figure 4.1 shows, using green lines, that instances solved quickly with the same

branching rule can be easily grouped in the 2D space. The bidimensional represen-

tation, that is a simplification of the data since it is produced with a dimensionality

reduction technique, allows us to immediately see a possible space partitioning pat-

tern. In fact, with the exception of a few overlappings, the groups highlighted in

Figure 4.1 are complementary. Employing all the dimensions available and the al-

gorithm g-means, some of these overlappings disappear and it is possible to obtain

a good clusterisation. The latter is a partition of the space for which is possible to

obtain a relative assignment of solvers. Therefore, the defined feature space, together

with the Euclidean distance, could be a good map between problem structure and

performance. Consequently, through the definition of a similarity measure as the

combination of this feature space and a distance metric, it is possible to execute un-

supervised learning on the data, grouping the instances in such a way that instances

of the same cluster prefer the same algorithm.

From the results presented in the following chapters, it emerges that, having a

clusterisation, an instance often changes clusters during the solving process. More-

over, the branching rule preferred by the clusters are often different. Therefore, if the

feature space together with the distance metric, represents a good map from prob-

lem structure to solving performance, switching the branching rule when the instance

changes cluster may give a significant improvement to the overall solving time.

4.1 Feature Space

The feature set captures the structural difference between distinct MIP problems

and also between subproblems of the same instance. Likewise, it is essential that

these features don’t become too expensive to compute. To do this, the collected

information is composed of statistic values related to the current subproblem, as was

similarly done in [16]. Specifically, the features are:

• Percentage of variables in the subinstance;

30

CHAPTER 4. DASH

Feature number Feature description
1 % of vars in OBJ
2 % of C vars
3 % of I vars
4 % of B vars
5 % of C vars in OBJ
6 % of I vars in OBJ
7 % of B vars in OBJ
8 % of equality constraints
9 % of inequality constraints

10..13 nVars in each constraint: Average, Std, Min, and Max
14..17 nVars C in each constraint: Average, Std, Min, and Max
18..21 nVars I in each constraint: Average, Std, Min, and Max
22..25 nVars B in each constraint: Average, Std, Min, and Max
26..29 In how many constr is each variable:

Average, Std, Min, and Max
30..33 In how many equality constr is each variable:

Average, Std, Min, and Max
34 nVars current problem / original problem
35 nVars in OBJ current problem / original problem

36..39 Average, Std, Min, and Max infeasibility value
40 Depth at the current node

Table 4.1: Features description. The letters C, I, and B refers respectively to con-
tinuous, integer, and binary. OBJ indicates the objective function. nVars means
“number of variables”. Constr means “constraint”.

31

CHAPTER 4. DASH

• Percentage of variables in the objective function of the subinstance;

• Percentage of equality and inequality constraints;

• Statistics (min, max, avg, std) of how many variables are in each constraint;

• Statistics of the number of constraints in which each variable is used;

• Depth in the branch-and-bound tree.

Wherever a feature has to do with the problem variables, it is separately computed

for each type of variable: i.e., continuous, general integer, and binary. Therefore, the

resulting set is composed of 40 features. Table 4.1 shows the complete list of features.

4.2 Clustering the Instances

The feature space together with the Euclidean distance metric offers a measure of

“similarity” between instances. Using this information, it is possible to exploit un-

supervised learning techniques in order to group our data. In particular, having a

representative set of MIP instances, equally partitioned in training and testing set, a

clusterisation of the feature space is obtained from the training instances. The idea

is that similar instances, that belongs to the same cluster, are likely to “prefer” the

same solver [16]. Since the goal is to obtain a spatial representation that describes

the possible evolutions of the instances during the solving problem, the clusterisation

is performed, as previously proposed in [16], using an extended dataset (extDataset)

that contains the original instances and a sample of their subinstances. A subin-

stance is represented by the feature vector computed at a (non-root) node during the

branch-and-bound solving process. The considerations and results presented in this

section refer to the dataset exhaustively described in Section 5.4. In particular, the

three employed sets of instances are collected from our training set using, respectively,

the commercial software IBM CPLEX [10], extDatasetC, and using the open-source

software SCIP [9], extDatasetS and extDatasetSr.

32

CHAPTER 4. DASH

(a) instance: airland5 R3 (b) instance: p56

(c) instance: pmedcap p3 (d) instance: regions-goods200-bids1000

Figure 4.2: Evolution of the ISAC solving process using CPLEX on four distinct
instances. PCA of the clusterised feature space. For each instance, ISAC selects the
solver assigned to its original cluster.

33

CHAPTER 4. DASH

(a) instance: regions-goods100-bids500 (b) instance: regions-goods200-bids1000

(c) instance: mik.250-1-100.2 (d) instance: p51

Figure 4.3: Evolution of the ISAC solving process using SCIP on four distinct in-
stances. PCA of the clusterised feature space. For each instance, ISAC selects the
solver assigned to its original cluster.

34

CHAPTER 4. DASH

Dataset % subinstances
extDatasetC 56.7%
extDatasetS 51.9%
extDatasetSr 57.6%

Table 4.2: Percentage of subinstances that are in a different cluster from the one
of their original instance. This information is computed on the extended datasets
(instances + subinstances): extDatasetC, extDatasetS, and extDatasetSr, the first
realised using CPLEX and the others using SCIP, and using respectively 6, 8, and 5
branching heuristics

A subinstance could have a significant distance from its original problem (the root

node of the solving process). Therefore, there is a relevant chance that the branch-

and-bound process moves an instance enough to change cluster. In fact, according

to Table 4.2, more than 50% of the collected subinstances are in a different cluster

than their root node. Figure 4.2 and Figure 4.3 show the solving evolution of ISAC

in the feature space of a few representative instances, using respectively CPLEX and

SCIP. In the pictures, the lines represent the cluster bounds, each point an instance

at a specific depth of the solving tree, and each blue symbol indicates a cluster centre

and the heuristic assigned to it. From these figures, we can deduce that the solving

process moves the problem to a different cluster with a high probability. Furthermore,

Figure 4.2 and Figure 4.3 show that the solving process usually brings a gradual

change. There are a few exceptions, probably because of the effect of feature filtering

and of operations like restart or backtrack, for which the change could be drastic. In

this case, the structure of the problem obtained could be very different from the one

of the previous one. For example, Figure 4.2 (b) and Figure 4.3 (d) have a few outliers

that have a relevant distance from the other points. Even if the experiments show

that this anomaly doesn’t affect the approach introduced here, a better understanding

of its causes could be an interesting direction for future research.

Given a subinstance, the general idea is to determine to which cluster it belongs

and, having an assignment of heuristics for the clusterisation, to apply the relative

solver. Knowing that the evolution in the branch-and-bound tree is usually gradual,

this idea can be relaxed in practice, checking the current position and cluster just at

35

CHAPTER 4. DASH

extDatasetC 1 2 3 4 5 6 7 8 9 10
inst+subinst 19 6 5 4 4 26 19 7 5 5

inst 13 15 - - 8 48 - 16 - -

extDatasetS 1 2 3 4 5 6 7 8 9 10 11 12 13 14
inst+subinst 11 2 9 2 24 25 2 7 7 2 2 3 2 2

inst 10 - 15 - - 55 - 7 12 - 1 - - -

extDatasetSr 1 2 3 4 5 6 7 8 9 10 11 12
inst+subinst 11 13 29 17 2 3 3 1 6 1 1 12

inst 10 - 70 - - - - - - - - 20

Table 4.3: Distribution of instances and subinstances in the clusterisation, expressed
in percentage values. This information is computed for each extended dataset, using
the clusterisation obtained with g-means.

selected depths, while for the other nodes the solver assigned to their parents can be

applied.

Table 4.3 shows the distribution of instances and subinstances for each clusteri-

sation, given the corresponding extended dataset. It is important to underline that

there is no relation between clusters of different extended dataset (for example, cluster

6 on extDatasetC and cluster 6 on extDatasetS have a void intersections). For each

extended dataset the distribution of all its elements (instances and subinstances) is

shown among the clusters and in which clusters the original instances are contained.

From the information in Table 4.3 it emerges that the extended datasets tend to

partition the space also describing the dynamic aspects of the MIP solving process.

For example, cluster 7 of extDatasetC contains 19% of the whole data, but none of the

original instances belongs to it. This means that the subinstances in cluster 7, that

are “similar” since they are grouped together, could prefer a certain solver different

from the one selected for the original instances. Furthermore, the subinstances of

cluster 7 derives from instances that belong to several other clusters, therefore, in

general, with a different preferred solver. The same considerations can be made on

cluster 5 of extDatasetS and on cluster 4 of extDataserSr, that contains respectively

the 24% and the 17% of the whole data but they have no original instance inside

them.

36

CHAPTER 4. DASH

The information discussed about Table 4.3 is further represented in Appendix A.

The presented figures are bidimensional projections of the feature space, similarly to

Figure 4.2 and 4.3. In particular, for each one of the studied extended datasets, the

distribution of the instances and subinstances that “starts from the same cluster”. A

set of subinstances satisfies this condition if the root nodes of their elements belong

to the same cluster. These figures show that in almost every case there is a relevant

number of subinstances that belong to a cluster different from their original one, i.e.,

the cluster which contains their original instance, root node of the branch-and-bound

solving process, giving a further proof of the high frequency of this event. Therefore,

the idea of switching heuristics has reasons for being applied several times during the

solving process, giving the opportunity to use the optimal heuristics for a specific

subinstance, with the goal of obtaining a relevant speed-up.

4.3 Methodology and algorithm

The specifics of DASH (Dynamic Approach for Switching Heuristics) are described in

Figure 4.4 and Algorithm 4. Modelled after the ISAC (Instance-Specific Algorithm

Configuration) approach [11], DASH assumes that instances with similar features

share the same structure and so will yield to the same algorithm. Therefore, these

groups of instances are identified during an offline clustering procedure. DASH is

provided with the current subinstance, the heuristic employed by the parent node, the

centres of the known clusters, and the list of available heuristics. Because determining

the features can be computationally expensive and because switching heuristics at

lower depths of the search tree has a smaller impact on the quality of the search,

DASH only chooses to switch the guiding heuristic up to a certain depth and only

at predetermined intervals, employing the parent’s heuristic in all other cases. When

a decision needs to be made, the approach computes the features of the provided

subinstance and determines the nearest cluster based on the Euclidean distance. In

theory, any distance metric can be used here, but in practice the Euclidean works

well in the general case. In the end, DASH, employs the heuristic that has been

determined best for that cluster.

37

CHAPTER 4. DASH

Train dataset

Collecting subinstances

extDataset

Clustering

Set of k
clusters

Tuning DASH solver

Assignment
of heuristics

pure MIP solver

g-means

GGA

Figure 4.4: Offline part of the Dynamic Approach for Switching Heuristics (DASH),
that outputs the information needed in the online part by the DASH solver.

As can be inferred from this algorithm, which describes the online part of the

whole approach, the key component that determines the success or failure of DASH

is the correct assignment of heuristics to the clusterisation. The offline procedure

shown in Figure 4.4, similar to the one first described in [16], aims to find an optimal

assignment of heuristics. For each instance in the training set, an assortment of

subinstances is computed. These are observed when using each single heuristic in a

solving process without any switch. This extended problem set (extDataset) allows

us to get a better overview of the type of subinstances DASH will be encountering,

as opposed to just using the original training instances. Computing the features of

38

CHAPTER 4. DASH

Algorithm 4 DASH solver - called before branching

1: procedure DASH(subinstance, parent, centres, heuristics)

2: if depth < maxDepth and depth % interval == 0 then

3: x← featuresComputation(subinstance)

4: for all c in centres do

5: distancei ← EuclideanDistance(x, c)

6: end for

7: cluster ← argmin(distance)

8: heuristic← heuristicscluster

9: else

10: heuristic← parent.heuristic

11: end if

12: ExecuteBranching(subinstance, heuristic)

13: end procedure

the extended problem set, it is possible to cluster the instances using g-means [22], a

general clustering approach that automatically determines the best number of clusters

for the dataset in question (see Section 2.2.2).

Once all the subinstances are clustered, it must be determined which heuristic is

best in which scenario. However, an important caveat to this is that the decision of

using a heuristic for a certain cluster also affects all other decisions. This is because

DASH can switch heuristics several times, and the types of subinstances observed

after applying one heuristic will likely be different than when another one has been

applied. Therefore, the parameter tuner GGA (Gender-based Genetic Algorithm) [33]

is employed to simultaneously assign heuristics to all clusters, using the original in-

stances as the training set. GGA performs several parallel executions of the DASH

solver, employing different parameterisation. These parameters are:

• Assignment of heuristics for the clusterisation;

• Maximum depth value for the application of DASH (maxDepth);

39

CHAPTER 4. DASH

• Interval of application of DASH. This parameter indicates at which depths a

heuristic switch is enabled to occur.

Furthermore, this tuner permits to specify one or more random seeds for each of the

training instances. Therefore, in order to have more possible training combinations,

three different seeds have been randomly chosen for each instance. The final output

of this offline procedure consists of a clusterisation of the feature space, represented

by the cluster centres, and an assignment of solvers, one for each cluster. This data

is then used in the online part of DASH, as shown in Algorithm 4, with the goal of

determining which solver should be applied for the current subinstance.

4.4 Chapter Summary

This chapter presented motivations and components of the proposed dynamic ap-

proach for switching heuristics, DASH. The approach is divided in an offline part and

an online algorithm. Firstly, it defines a feature space for MIP problems. Secondly,

a heterogeneous dataset is built, collecting instances of several MIP datasets. Then,

a portfolio of solving heuristics is selected and used for extending the dataset with

a sample of subinstances. Next, the extended dataset is clustered into groups of in-

stances that have similar features. Finally, an automatic parameter tuner is used for

selecting a solver for each cluster and parameters related to the activation of DASH

during the online part of the execution.

40

CHAPTER 5. EXPERIMENTAL SETUP

Chapter 5

Experimental Setup

In order to set the stage for DASH, three things are necessary. Firstly, there must

be a descriptive feature set that can correctly distinguish between different classes

of instances, while doing so with a minimal overhead. Secondly, we must have a

diverse set of heuristics each of which performs well on different kinds of instances.

Finally, there must be a heterogeneous domain, with a large number of benchmark

instances. Since the feature set has already been introduced, this chapter touches on

the remaining two components, together with the description of the machines used

and the definitions related to the numerical analysis.

5.1 Measurements

The presented experiments commonly aim to compare different heuristics and to state

how good they are “on average”. The arithmetic mean is a comparison indicator

which is easy to compute. However, since the values for comparison differ heavily in

their magnitude (they usually lie in a range of 0 to 1,800 seconds), the arithmetic

mean would only depend on the largest values. Therefore, a measurement more

appropriate for this case is the shifted geometric mean (setting 10 seconds of shifting).

In competitions, the time-out value usually lies in a range of 0 to 5,000 seconds.

Therefore, the experiments have a time-out value of 1,800 seconds, which lies in the

same interval and is also large enough to let at least one solver finish its process before

having reached the time limit.

Since the experiments have a finite time-out value, it is useful to measure the

41

CHAPTER 5. EXPERIMENTAL SETUP

results also with an alternative comparison indicator, which takes into account that

an instance could remain unsolved. This measurement, called Par10, is the standard

penalised average measurement where when a solver times-out it is penalised as having

taken 10 times the time-out value. Furthermore, the presented data includes the

percentage of instances solved.

The results are evaluated comparing them to several benchmark values:

• Virtual Best Solver (VBS): the lower bound of what is achievable with a per-

fect portfolio that for every instance always chooses the solver that results in

the best performance. In particular, VBS chooses from the available solvers

those that use each single branching heuristic (pure solvers), in addition to

this VBS RAND uses the available random switched solvers, and VBS DASH

chooses from the pure solvers and our DASH solver. A random switched solver

is an algorithm that, using an uniform probability distribution, at each node of

the branch-and-bound tree selects a random heuristic from the available port-

folio.

• Best Single Solver (BSS): the desired upper bound, obtained by solving each

instance with the solver based on a single branching heuristic, whose average

running time is the lowest on all the dataset.

• Instance-Specic Algorithm Conguration (ISAC): this is the pure ISAC method-

ology obtained with the set of features and clustering described in Section 3.3.3.

5.2 Technology

In order to realise DASH (Dynamic Approach for Switching Heuristics) and to show

its effectiveness, the chosen strategy is based on a customisable MIP solver, a scripting

language that provides libraries for statistical and graphical analysis, and a scripting

language that permits automation of tests and analysis.

The chosen MIP solvers are the state-of-the-art commercial software CPLEX ver-

sion 12.5 [10] and the open-source software SCIP version 3.0.1 [9, 41]. These solvers

42

CHAPTER 5. EXPERIMENTAL SETUP

are competitive with other free solvers like CBC [42], GLPK [43], MINTO [44], and

SYMPHONY [45] and also with commercial solvers like XPRESS [46]. CPLEX and

SCIP, to the best of our knowledge, are considered the best available, respectively,

commercial and open-source solvers.

In order to obtain reliable results, CPLEX and SCIP have been executed in the

single core mode. The experiments were run on dual Intel Xeon E5430 quad-core

processors (2.66Ghz) computers with 12GB of DDR-2 FB-DIMM 667MHz memory.

The languages used for the solver implementation are Python and C and the

scripts that execute multiple tests and collect the output data of the solvers have

been written using Bash scripting. Moreover, the graphical and numerical analysis,

have been done using the scripting language R.

5.2.1 CPLEX

In the CPLEX implementation, the only modified part is the built-in branching strat-

egy, by implementing a branch callback function based on Algorithm 4. CPLEX does

not give access to its source code, but it offers the opportunity to implement new

heuristics through a callback, that is a function executed regularly at a specific point

of the solving process (for example, before the selection of the variable for the branch-

ing operation). Because all the tested approaches require this branch callback to be

enabled, the comparability of the results is guaranteed1. To the best of our knowl-

edge, CPLEX does not offer the opportunity to change among its own heuristics

during the solving process (the parameter that set the branching heuristic to apply is

mip.strategy.variableselect). An alternative idea is to create a copy of the subproblem

and to solve it with the new configuration. However, this approach slows down the

solving process considerably, with the additional drawback of changing the solving

path in a random way, even when disabling all the relevant pre-solving and heuristics.

The employed solution is to implement all the branching heuristics in the same

callback function, with the main advantage of having comparable results. This func-

tion implements both Algorithm 4 and the branching heuristics described in the

1Note that CPLEX switches off certain heuristics as soon as branch callbacks, even empty ones,
are being used so that the entire search behaviour could be different from the default version.

43

CHAPTER 5. EXPERIMENTAL SETUP

following section. The major drawback of using the callback is that CPLEX changes

its parameter configuration automatically and it does not allow the use of the same

heuristics of its default version. Moreover, the branch callback does not disable the

CPLEX branching variable selection. In this way, CPLEX offers in the callback the

choice to change strategy or to apply a new one, with the drawback of executing ev-

erytime the native CPLEX branching heuristic selected once at the beginning of the

solving process. In order to minimise the overhead, the selected heuristic is the one

with minimum computation time (Least Fractional Rounding (LF)). Even if it is not

possible to compare the numerical results of the CPLEX default execution, the exper-

iments show that DASH gives a relevant improvement on the heuristics implemented

in the branch callback.

5.2.2 SCIP

SCIP [9, 41] is an open-source framework created to solve Constraint Integer Programs

(CIPs) [9], which denotes an integration of Constraint Programming and Mixed In-

teger Programming. Since MIPs are a sub-category of CIPs, and since this thesis is

related to MIP-solving, SCIP will be referred to as a MIP-solver.

SCIP was developed by Achtelrberg et al. [9]. It is structured as a framework

that works mainly with external plugins. Its current version offers a bundle of MIP-

solving plugins, e.g., pre-solvers, cut separators, and primal heuristics. Furthermore,

the structure of the software easily allows the creation of a new plugin, in fact among

the “native” plugins there are example source codes that are very helpful in the

realisation of a new source file. The software is implemented in C, therefore the

plugin that realises DASH has also been written in this language. The main source

file, which manages the execution of the solver with the configuration of interest and

organises the output properly, is instead written in C++.

While CPLEX has several limitations about the implementation, the open-source

solver SCIP offers much more flexibility. In particular, SCIP assigns to each one of its

built-in branching heuristics (called branching rules) a priority. Then, it selects the

branching rule with the highest priority just before each branching operation. If it

44

CHAPTER 5. EXPERIMENTAL SETUP

fails, e.g. if it has reached the depth limit, the heuristic with the second highest prior-

ity (and so on) is applied. Furthermore, it is possible to change the priorities during

the solving process and therefore to dynamically switch between native branching

rules. While for CPLEX DASH is realised as a branching heuristic that changes its

behaviour depending on the features of each studied node, in the case of SCIP, it is

implemented as a new heuristic that decides if and when a branching rule switch will

occur, setting properly their priority values.

5.3 Branching Heuristics for CPLEX experiments

In order to realise and test the Dynamic Approach for Switching Heuristics, a portfolio

of six branching rules has been implemented for CPLEX. These heuristics are specific

implementations of the generic branching rules described in Section 2.1.2.

Most Fractional Rounding (MF) One of the simplest MIP branching ideas is

to select the variable that has a relaxed LP solution whose fractional part is

largest, and to round it first. The driving reason behind this is to make decisions

on variables that deterministic analysis is least certain about. Therefore, this

heuristic strives to find infeasible solutions as quickly as possible.

Least Fractional Rounding (LF) Alternatively to MF, this technique selects the

variable that has a relaxed LP solution whose fractional part is closest to an

integer value, and it rounds it first. This is done to gently nudge the determin-

istic reasoning in whatever direction it is currently pursuing, with a smallest

chance of making a mistake.

Least Fractional and Highest Objective Rounding (LFHO) This heuristic is

based on the same motivation behind the Less Fractional branching. The idea

is to branch on a variable with a small fractionality (fr) and a high objective

value (obj). Such a variable can be found by an iteration that looks for the

minimum value of fr, but updating the variable only if obj does not decrease.

This means that, when branching on a variable k in [1,n], the following property

45

CHAPTER 5. EXPERIMENTAL SETUP

is guaranteed:

∀i ∈ [1, n], frk ≤ fri or objk ≥ obji (5.1)

Most Fractional and Highest Objective Rounding (MFHO) A modification

of the previous approach is also used, but this time the focus is on the most

fractional variables. In this case the guaranteed property is:

∀i ∈ [1, n], frk ≥ fri or objk ≥ obji (5.2)

Pseudo Cost Branching Weighted Score (PW) This heuristic is based on the

pseudo costs, numerical values that estimate the variation in objective value for

rounding up or rounding down, called respectively up-pseudocost and down-

pseudocost. The pseudo costs of a variable can be combined in a score func-

tion (5.3) that returns a numeric value. This result is used to guide the branch-

ing, for which the variable that maximises this score is chosen. Further details

can be found in [7].

score(q−, q+) = (1− µ) ∗min(q−, q+) + (µ) ∗max(q−, q+), µ = 1/6. (5.3)

Pseudo Cost Branching Product Score (P) This approach is based on the same

idea as PW. The difference lies in the score function, that is now the product

of the two pseudo costs:

score(q−, q+) = q− ∗ q+. (5.4)

5.3.1 Branching Heuristics for SCIP experiments

The software SCIP supports a dynamic switch among the built-in branching rules

during the solving process. Therefore, the portfolio of heuristics chosen for this set

of experiments consists of the SCIP native branching rules. Among the eight pure

46

CHAPTER 5. EXPERIMENTAL SETUP

heuristics, three realise the same ones previously described for CPLEX: Most Frac-

tional Rounding (MF), Least Fractional Rounding (LF), and Pseudo Cost Branching

(P). The others are presented above.

Reliability Branching (RP) The pseudo cost of a variable is considered to be

unreliable until it has been updated a number of times. With this heuristic,

“unreliable” variables are selected for strong branching to initialise the pseudo

costs with enough updates to make them more reliable. This technique, de-

scribed in Section 2.1.2, is implemented using η = 8 as reliability parameter.

The latter is a default parameter which is commonly chosen for this branching

heuristic (see [7]).

Inference History Branching (I) The inference history of a variable is a record

of how many inferences have been discovered as a result of branching on this

variable in the past. These inferences take the form of counts of variables whose

domains have been effected by LP bounds propagation or domain propagation

that might have happened during pre-solving / insolving.

Full Strong Branching (S) In Full Strong Branching each variable of several (by

default: 8) most promising variables have branches created for them, each

branch’s LP relaxation is solved and the branches of the variable which results

in the best objective is proceeded with.

Full Strong Branching on all Variables (AS) In Full Strong Branching on all

Variables a more exhaustive approach is taken where all possible branches are

explored as before. This should find the best possible branch at each node but

is very expensive.

Random Variable Branching (RV) This Random Variable heuristic involves choos-

ing the branching variable randomly among the candidates at the current node,

using a uniform probability distribution.

47

CHAPTER 5. EXPERIMENTAL SETUP

Figure 5.1: PCA of the whole dataset (training and testing sets), after a clustering
operation using g-means. The resulting number of clusters (k) is 5. Each instance is
represented as a point and coloured after its cluster.

5.4 Dataset

The analysis and the numerical results presented in this thesis refer to a single dataset,

that consists of several different groups of problems. This dataset is made up of 341

instances, divided in 180 instances for the training set and 161 for the testing set.

These instances have been collected using the following datasets: miplib2010 [47],

fc [48], lotSizing [49], mik [50], nexp [51], region [52], and pmedcapv, airland, genAs-

signment, scp, SSCFLP were originally downloaded from [53]. Each of the selected

instances can be solved by at least one of the available pure heuristics in less than the

1,800 seconds of time-out. Furthermore, the dataset doesn’t include instances that

48

CHAPTER 5. EXPERIMENTAL SETUP

1 2 3 4 5 6 7 8 9 10 11 12
Cluster 1 20 - - 25 - 25 - 30 - - - -
Cluster 2 - 45 - - - 14 41 - - - - -
Cluster 3 - - - - 1 5 - - 18 62 14 -
Cluster 4 - - 49 - - 7 - - - - - 44
Cluster 5 - - - - 98 2 - - - - - -

Table 5.1: Given the clusterisation obtained using g-means and the whole instances
dataset, the table shows the distribution (percentage) of the instances in the clusters.
The problem types are: 1: airland, 2: fc, 3:GenAssignment, 4: LotSizing, 5: mik, 6:
miplib2010, 7: nexp, 8: pmedcap, 9: region100, 10: region200, 11: scp, 12: SSCFLP

can be solved too easily; therefore:

• each instance will not be solved completely in the preprocessing phase;

• an instance solving time will be greater than 1s for at least one of the available

heuristics.

Figure 5.1 shows a bidimensional projection of the training set. The latter is

clustered using g-means, and the obtained distribution of instances per cluster is

shown in Table 5.1. Each row is normalised to sum to 100%. Thus for Cluster 1, 20%

of the instances are from the airland dataset. From this table, a first observation

is that there are not enough clusters to perfectly separate the different datasets into

unique groups. However, this is not a problem as it is not the desired result. Instead

the focus is in capturing similarities between instances, not splitting benchmarks.

Looking at Table 5.1, the region100 and region200 instances are grouped together.

Furthermore, Cluster 4 logically groups the LotSizing and the SSCFLP instances

together. Finally, the instances from the miplib, those instances that are supposed

to be an overview of all problem types, are spread across all clusters. This clustering

therefore demonstrates that the dataset both has a diverse set of instances and that

the employed features are representative enough to automatically notice interesting

groupings.

49

CHAPTER 5. EXPERIMENTAL SETUP

(a) Dataset: extDatasetC

(b) Dataset: extDatasetS (c) Dataset: extDatasetSr

Figure 5.2: Clustering obtained using g-means on, respectively, extDatasetC, ext-
DatasetS, extDatasetSr. These datasets contain all the training instances and a collec-
tion of their subinstances, obtained using CPLEX or SCIP, as described in Section 5.4.
The figures show also the cluster centres and the cluster identification numbers.

50

CHAPTER 5. EXPERIMENTAL SETUP

Using the procedure described in Section 4.3, given a set of branching heuristics

and the instances dataset, it is possible to collect a sample of subinstances and to

build an extended dataset. In particular, this thesis employs three extended datasets:

• extDatasetC : this extended dataset consists in all the original training instances,

together with a subsample of subinstances collected using CPLEX and all the

8 branching heuristics (6 pure heuristics and 2 random switched) implemented

in the branch callback, for a total of about 16,000 feature vectors.

• extDatasetS : it contains the original training instances and a subsample of subin-

stances collected using SCIP and all the 8 available branching rules, for a total

of about 45,000 feature vectors.

• extDatasetSr : similar to the previous one, with the only difference of having

used just 5 heuristics for collecting the subinstances. In particular the heuristics

removed are the 2 that performed best on the training set, using the geomet-

ric mean as performance measure: reliability branching (RP) and pseudo cost

branching (P). Moreover, the random variable branching rule has also been

removed. The dataset obtained is of about 30,000 feature vectors.

Finally the three datasets have been reduced to 10,000 feature vectors each, be-

cause of memory limitations that the chosen implementation of g-means doesn’t cover.

The subsampling performed is mainly a random sampling operation with the con-

straint, given an instance, to keep the feature vectors at depth 0 and 1 and to keep,

if possible, at least one other element for each branching rule applied.

The reason behind having distinct extended datasets relies on the fact that the

two DASH implementations for CPLEX and SCIP use a different set of heuristics.

Therefore, the behaviour of an instance during the solving process is probably dif-

ferent. In particular, the distribution of subinstances could change in such a way as

to result in a different clusterisation. As it is shown in Figure 5.2, the SCIP and

the CPLEX versions have completely different clusterisations. On the contrary, it is

clear that the two groupings obtained for the SCIP versions are very similar. How-

ever, small difference in the clustering could cause significant variations in the overall

51

CHAPTER 5. EXPERIMENTAL SETUP

performance. In fact just turning off 3 heuristics, 2 small clusters are not identified

anymore and the overall structure slightly changes, and this could lead to totally

different path in the solving tree.

Next, the three obtained clusterisations are studied in order to obtain information

about the feature space. In particular, the features are ranked using the information

gain ratio [54, 55], obtaining a possible features importance index. From this analysis,

the most important variables seem to be the statistics on the number of constraints

and of the number of variables in each constraint (in Section 4.1 these are indicated

as features 10..13, 26..29, 30..33). On the contrary, features specific to continuous,

integer, or binary variables seem to be less important. An interesting result regards

the feature depth, that turns out to be one of the least important. Assuming that

the information gain ratio is a good choice for ranking the features in this case,

this result means that it is not important at which depth a subproblem is, but the

similarity with the other instances can be measured just using the other features,

that are related on the subproblem structure. In fact, it is reasonable to think that

two distinct solving processes, on the same original problem, could arrive sometimes

at the same subproblem pr, but at different depths. The conclusion is that pr should

be solved in the same way in both cases, without considering the difference in depth.

5.5 Chapter Summary

This chapter presented the implementation-specific details of DASH and introduced

the technology and measurements employed for the experiments. The analysis and

results have been performed on a heterogeneous dataset. Because of the different

magnitude of the results on this dataset and because of the presence of a time-out

value for the solvers, each of the chosen measurements for the comparisons puts the

focus on a distinct aspect of the analysis. Finally, this chapter described also how the

heuristics employed in the experiments are implemented, and it defined the distinct

portfolios used.

52

CHAPTER 6. NUMERICAL RESULTS

Chapter 6

Numerical Results

With the described methodology, the main question that needs to be addressed is

whether switching heuristics can indeed be beneficial to the performance of the solver.

To test this, each of the implemented heuristics was run without allowing any switch-

ing (pure solvers), for each of the instances in our test set. Moreover, the random

switched branching heuristics, specific to CPLEX and SCIP, were run in order to

show what kind of advantages there are for the employed dataset. The numerical and

graphical results of the DASH solver are then shown and analysed.

In the CPLEX case, the random switched solvers have been realised in the branch

callback. The first one switches between all heuristics (RAND 1), while the sec-

ond (RAND 2) switches only among the top four best heuristics (MFHO, MF, PW,

and P). Instead the solver SCIP offers a native random branching rule, which selects

the branching variable using a uniform probability distribution (RANDvar). Since

the focus is on the branching rule switching, an additional random switched heuristic

(RANDheur) has been implemented that randomly changes the branching rule, choos-

ing from all the native non-random heuristics at every node of the branch-and-bound

solving process. The results are summarised in Table 6.1, Table 6.3, and Table 6.4.

It can be observed that neither of the random switching heuristics described above

perform very well by themselves, compared to the best single solver (BSS), that is

the solver that performs best on average sticking to a single branching heuristic.

However, observing the solving times of the virtual best solver (VBS), i.e., the solver

that for each instance applies the heuristic that results in the best performance in

the portfolio, and of VBS Rand, i.e., the virtual best solver that includes the random

switched heuristics, it emerges that VBS Rand has better performance than VBS.

53

CHAPTER 6. NUMERICAL RESULTS

Thus, the performance can be further improved beyond what is possible when always

sticking to the same heuristic. The question therefore now, becomes, if we can get

improved performance just by switching between heuristics randomly, can we do even

better if we do so intelligently?

6.1 CPLEX

In order to find out if the described DASH approach can improve a simple random

switching heuristic, it is essential to set a few parameters of our solver and explore

this parameter space, with the goal to determine an optimal assignment which max-

imises the performance. Particularly, the two main parameters specify until what

depth (maxDepth) and with which frequency (interval) the heuristic switching will

be enabled (for example, maxDepth=20 and interval=3 means that DASH will be

active just for the nodes at the following depths: 1, 4, 7, 10, 13, 16, 19). Next, the

dataset extDatasetC, that includes both the original training instances and the possi-

ble observed subinstances, is clustered. Using g-means, there are a total of 10 clusters

formed, represented in Figure 6.1 projecting the feature space into two dimensions

using Principal Component Analysis (PCA) [40]. Here, the cluster boundaries are

represented by the solid lines, and the best heuristic for each cluster is identified by a

unique symbol at its centre (see Section 5.3. These figures also show the typical way

in which features change as the problem is solved with a particular heuristic. The

nodes are coloured based on the depth of the tree, with (a) showing all the observed

Solver Par10 Avg GeoMean %Solved
BSS 1321 315 54 93.8
RAND 1 4414 590 139 77.0
RAND 2 5137 609 135 72.7
VBS 326 225 42 99.4
VBS Rand 217 217 41 100

Table 6.1: Solving times on the testing set using CPLEX with the branching heuristics
implemented using the callback methodology.

54

CHAPTER 6. NUMERICAL RESULTS

(a) Multi-path evolution (b) Single-path evolution

Figure 6.1: Position of a subinstance in the feature space based on depth using
CPLEX. The solved instance is taken from the dataset Airland.

subinstances and (b) that of a single branch.

What this figure shows is that the features change gradually. This means that

there is no need to check the features at every decision node. Therefore, the subin-

stance features are checked at every 3rd node. Similarly, the figure and those like it,

show that using a depth of 10 is reasonable, as in most cases the nodes don’t span

more than two clusters.

GGA is the algorithm used to tune the parameters of DASH, computing the best

heuristic for each cluster. The tuning algorithm runs the DASH solver several times,

therefore each execution has a time-out value. Similarly to other genetic algorithms,

GGA works with a population that evolves from one generation to another. When

a new generation is reached, the algorithm returns the best results obtained in the

previous one, that is a possible complete parameter set for the DASH solver. The time

needed for the tuning phase is very sensitive to the time-out value, therefore the latter

can’t be too large. The chosen value for the CPLEX DASH solver is 300 seconds.

55

CHAPTER 6. NUMERICAL RESULTS

Table 6.2 presents the results, with the comparison to the best single solver (BSS),

to the virtual best solver (VBS), and to a vanilla ISAC approach that, for a given

instance, chooses the single best heuristic and then does not allow any switching. The

comparison is performed using the arithmetic mean, the shifted geometric mean, and

the Par10 average value, i.e., an arithmetic mean where the timed-out solving times

are penalised as having taken 10 times the time-out value. Moreover, the percentage

value of solved instances is also presented. From this data the observation is that

DASH is able to perform much better than its more rigid counterpart. However,

there is the possibility that switching heuristics might not be the best strategy for

every instance. The proposed solution is called DASH+, which first clusters the

original instances using ISAC and then allows each cluster to independently decide if

it wants to use dynamic heuristic switching. The idea is to let ISAC decide for which

instances DASH has to be executed. Ideally, it will choose the instances that will

benefit from the proposed approach, giving an improvement that should be relevant

on average. The effectiveness of this idea is proven by the numerical results shown in

Table 6.2, in fact DASH+ offers a significant speed-up compared to DASH.

Taking a lesson from [56], which shows that often the features are not equally im-

portant, an additional idea to achieve better overall performance is to perform a fea-

ture selection operation. This thesis utilises the information gain filtering technique,

often used in decision trees. In particular, this method is based on the calculation

of entropy of the data as a whole and for each class. The feature filtering is applied

to ISAC and DASH+. The two alternative techniques are referred to, respectively,

Solver Par10 Avg GeoMean %Solved
BSS 1321 315 54.0 93.8
ISAC 1107 302 51.7 95.0
ISAC filt 892 289 50.8 96.3
DASH 956 251 46.2 95.7
DASH+ 858 255 45.6 96.3
DASH+filt 643 241 44.9 98.1
VBS 326 225 41.7 99.4
VBS DASH 286 185 36.2 99.4

Table 6.2: Solving times on the testing set using the DASH solver on CPLEX.

56

CHAPTER 6. NUMERICAL RESULTS

as ISAC filt and DASH+filt, and they both improve the results. In particular, the

resulting solver DASH+filt performs considerably better than everything else.

Finally, Table 6.2 shows the performance of a virtual best solver if allowed to use

DASH (VBS DASH). Even though the current implementation cannot overtake VBS,

future refinements to the portfolio techniques will be able to achieve performances

much better than techniques that rely purely on sticking to a single heuristic.

6.2 SCIP

The positive results obtained using the MIP-solver CPLEX motivate the implementa-

tion of DASH as a SCIP plugin, aiming to give further proofs about the effectiveness

of DASH. The idea is to show that the improvement is implementation-independent

and that it is still relevant with a different set of branching rules. In particular, SCIP

offers the opportunity to work directly on the native heuristics, giving the opportu-

nity to show the improvement on a state-of-the-art solver, using its default version

without any significant change.

According to Table 6.3 and Table 6.4 there is a very small gap between virtual

best solver (VBS) and best single solver (BSS), i.e., respectively what is achievable

switching among single branching heuristics and what is obtained using the best single

branching heuristic. In this case, the reason relies on a branching heuristic, reliability

branching on pseudo cost values, which has results that considerably outperform the

others. It is then much more difficult to improve this BSS and prove the effectiveness

of DASH, since it is likely to give better improvement when distinct clusters prefer

Solver Par10 Avg GeoMean %Solved
BSS 1296 187 32 93.1
RANDvar 5333 603 106 70.8
RANDheur 3791 480 76 79.6
VBS 986.6 158.9 25.9 94.9
VBS Rand 986.5 158.7 25.8 94.9

Table 6.3: Solving times on the testing set using SCIP in the allBranch case (using
all the native branching rules).

57

CHAPTER 6. NUMERICAL RESULTS

Solver Par10 Avg GeoMean %Solved
BSS 3055 392 67.6 83.6
VBS 1596 265 40.4 91.7

Table 6.4: Solving times on the testing set using SCIP in the no2BSS case (without
using the random heuristics and the two solvers that perform best on the training
set).

different heuristics. With the values shown in Table 6.3, it is probable that almost

all the clusters prefer the BSS, that essentially means no switching at all.

In order to provide more results that can prove the strength of the new approach

introduced in this thesis, the analysis for the SCIP cases is divided in 2 parts:

• allBranch: it uses a portfolio that contains all the native branching rules of

SCIP. In this case the BSS and VBS have similar performance (see Figure 6.3);

• no2BSS : it uses all the branching rules, except the random one and the two

that perform best on the training set, i.e., respectively Reliability Branching

(RP) and Pseudo Cost Branching (P). In the remaining portfolio, the gap be-

tween BSS and VBS is much larger than in the allBranch case. The employed

heuristics are then Inference History Branching (I), Most Fractional Rounding

(MF), Least Fractional Rounding (LF), Full Strong Branching (S), Full Strong

Branching on all Variable (AS), and Random Variable Branching (RV).

As already done while using CPLEX, a clustering operation is performed on the

extended datasets, i.e., extDatasetS and extDatasetSr. The obtained clusterisations

have, respectively, 14 and 12 clusters formed, as shown in Figure 5.2.

Figure 6.2 shows the evolution of the solving process using the version allBranch of

DASH, representing each subinstance as a coloured point, and using a colour scheme

that indicates the depth of the subinstance in the solving tree. The representation is a

projection obtained using the principal component analysis (PCA) as a dimensionality

reduction technique in a clustered space, where the solid lines represent the cluster

boundaries and the blue symbols refers both to a cluster centre and to its assigned

solving heuristic (described in Section 5.3.1). Similarly to Figure 6.1, Figure 6.2(a)

58

CHAPTER 6. NUMERICAL RESULTS

(a) Multi-path evolution (b) Single-path evolution

Figure 6.2: Position of a subinstance in the feature space based on depth using
SCIP, version based on extDatasetS. The solved instance is taken from the dataset
Miplib2010 : bienst2.

shows all the observed subinstances and Figure 6.2(b) shows a single branch. In both

cases the selected depth limit is 20. The solving process gradually moves the instance

to other clusters, in particular from a cluster assigned to Reliability Branching (RP) to

ones assigned to Full Strong Branching (S) and Pseudo Cost Branching Product Score

(P). Another observation is that the direction of the spatial evolution is not unique,

but the single branch is likely to continue in a single direction. It is also important

to underline the presence of groups of subproblems that are in a different position

(each group of a same branch), probably because of the application of preprocessing,

backtrack, or restart techniques. Since their depth is between 4 and 10 and the

solution has been found deeper in the branch-and-bound tree, those branches have

been pruned.

In the CPLEX case, the max depth value and the depth interval of application

(maxDepth and interval) have been set arbitrarily. In this case these two parameters

are included among the configuration values determined by GGA during the tuning

59

CHAPTER 6. NUMERICAL RESULTS

Solver Par10 Avg GeoMean %Solved
BSS 1242.8 178.6 30.2 93.1
ISAC 1242.8 178.6 30.2 93.1
ISAC filt 1242.8 178.6 30.2 93.1
DASH 1142.1 182.1 31.4 94.1
DASH+ 1241.8 177.6 30.1 93.4
DASH+filt 1373.3 190.8 30.7 92.7
VBS 986.6 158.2 25.9 94.9
VBS DASH 862.8 153.3 25.0 95.6

Table 6.5: Solving times on the testing set using the DASH solver on SCIP using the
portfolio allBranch.

operation, with the drawback of increasing the search space, and then to make the

tuning process longer. However, these two parameters are strongly related to the

performance, it could be therefore important to explore reasonable values in order to

find a better solution.

The time-out values assigned to the tuning algorithm are 300, 600, and 900 sec-

onds, however the presented data are related to the 600 seconds version, since it

returned the optimal solutions in both cases. The genetic tuning algorithm GGA re-

turns an assignment of parameters for each of the obtained generations, i.e., branching

rules assigned to the clusterisation, maxDepth and interval control the activation of

the DASH algorithm. In particular, the best DASH solver obtained for the portfolio

allBranch uses maxDepth = 14 and interval = 7, while for the portfolio no2BSS

the obtained best solver has maxDepth = 12 and interval = 6. Both these settings

enables an heuristic switch just at the root node and at other two depths, differently

from the configuration used for CPLEX, which enables DASH more frequently. The

result obtained in this Section confirms that the movement of an instance during

the solving process is gradual, therefore a more frequent application of DASH could

increase the overhead without offering a significant speed-up.

Similarly to what was already done for CPLEX, Table 6.5 and Table 6.6 presents

the results, with the comparison BSS, VBS, and ISAC, respectively using the portfo-

lio of heuristics allBranch and no2BSS. Among the presented data, VBS represents

60

CHAPTER 6. NUMERICAL RESULTS

Solver Par10 Avg GeoMean %Solved
BSS 3119.2 399.5 68.4 83.6
ISAC 2558.2 339.1 49.7 86.3
ISAC filt 2426.1 318.3 46.7 87.0
DASH 2415.2 309.4 45.4 87.0
DASH+ 2171.4 306.7 45.2 88.5
DASH+filt 2164.7 300.0 44.2 88.5
VBS 1596.3 265.4 40.4 91.7
VBS DASH 1540.2 258.2 38.9 92.1

Table 6.6: Solving times on the testing set using the DASH solver on SCIP using the
portfolio no2BSS.

a lower bound that ideally can be improved using new approaches, VBS DASH rep-

resents the lower bound using DASH, and BSS and ISAC are the solving times to

improve. According to the reported values, using the portfolio allBranch DASH does

improve the results in terms of percentage of instances solved, therefore in terms of

Par10 average value. This is reasonable, since there is not a significant gap between

BSS and VBS. Using instead the portfolio no2BSS there is a relevant improvement

regarding both the number of instances solved and in terms of solving times. These

results are confirmed by Figure 6.3 and Figure 6.4, where the evolution of perfor-

mance while tuning is represented, executing the different tuned version of DASH on

the testing set, compared to the best single solver (BSS) and to the virtual best solver

(VBS) solving times. In particular, the two horizontal lines, green and blue, represent

respectively the BSS and the VBS average solving time. As already shown by Ta-

ble 6.2, Table 6.5, and Table 6.6, while using the portfolio allBranch the improvement

regards mainly the number of solved instances, therefore the effect is captured by the

Par10 average value, while using the portfolio no2BSS there is also a speed-up in

terms of geometric mean. Furthermore, Figure 6.3 and Figure 6.4 show that, using

600 seconds of time-out, the tuning operation does reach its lower-bound before the

20th/25th generation.

61

CHAPTER 6. NUMERICAL RESULTS

6.3 Chapter Summary

This chapter showed the possible enhancements that can be achieved by employing

DASH on MIP problems. An improved version of DASH is also introduced, that uses

a vanilla ISAC approach (Instance-Specific Algorithm Configuration) with the aim of

applying the proposed approach just on the instances that will benefit from it. The

experiments were done using three different portfolios of branching rules and using

the two state-of-the-art MIP-solvers CPLEX and SCIP. In all cases, solvers trained

using the DASH or DASH+ approaches outperformed both the algorithm in the

portfolio and ISAC. It is then shown that, having just a few solvers that outperform

the others on the whole dataset, there will be a less diverse assignment of heuristics

to the clusterisation, therefore low chance of switching and of having a speed-up. On

the contrary, when the portfolio has many solvers with performances similar in their

magnitude, then the tuning will return a diverse assignment of heuristics and the

switch will be possible. In this case, the average solving time can be significantly

improved.

62

CHAPTER 6. NUMERICAL RESULTS

Figure 6.3: Evolution of the solving time of DASH while the tuning operation evolves
using the portfolio allBranch. The solving time is expressed both as geometric mean
and Par10 average.

63

CHAPTER 6. NUMERICAL RESULTS

Figure 6.4: Evolution of the solving time of DASH while the tuning operation evolves
using the portfolio no2BSS. The solving time is expressed both as geometric mean
and Par10 average.

64

CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

This thesis introduces a Dynamic Approach for Switching Heuristics (DASH). Using

MIP as the running example, it is shown how to automatically determine when a

subproblem observed during a branch-and-bound search is significantly different from

what has been observed before, and therefore warrants a change of tactics used while

solving it. Employing a diverse set of instances, the dissertation demonstrates that

significant performance improvements are possible if a solver does not use the same

guiding heuristic for the whole solving process.

This work expands the approach recently introduced in [16] from the set partition-

ing problem with problem dependent heuristics, to the much more general problem

of MIP. As already done in [16], the introduced methodology is based on ISAC,

Instance-Specific Algorithm Configuration [11], a high performance algorithm selec-

tion method.

The dissertation gives definitions and a brief introduction into MIP and branch-

and-bound (B&B). Furthermore, the several heuristics employed are introduced in the

second chapter and described with the implementation details in the fourth chapter.

Moreover, several related works are presented, first about algorithm selection and

then about unsupervised learning.

The DASH methodology realisation is motivated by a phase of data analysis,

mainly exposed in chapter four. The first task was to identify a set of features that

best describes the structure of a MIP problem. In particular, in the chosen feature

space it is possible to distinguish between distinct instances, and also between two

subinstances of a same original problem. Furthermore, the features can be easily com-

puted, since they are based on structural information that doesn’t require a relevant

65

CHAPTER 7. CONCLUSION

computational effort. This is a very important aspect since the overhead introduced

by DASH depends mainly on the features’ computation. It is then showed that there

is a relation between the feature space and the preferred branching heuristic. This

relation has been determined using the clustering algorithm g-means on large and

heterogeneous datasets. These datasets are composed by instances of many different

MIP datasets, together with a subsample of their subinstances obtained using each

one of the available heuristics. Since there are three employed algorithm portfolios,

one using the MIP solver CPLEX and the other two using SCIP, there are three

datasets.

This approach has been shown to be beneficial especially for two of the three

employed datasets. In particular, DASH can offer a significant speed-up to the solving

process when there is a large gap between the Best Single Solver (BSS) and the Virtual

Best Solver (VBS), i.e., respectively the solver based on single branching heuristics,

whose average running time is the lowest on all the dataset, and the lower bound of

what is achievable with a perfect portfolio that for every instance always chooses the

one that results in the best performance. In both situations, DASH gives a highly

relevant speed-up both compared to the BSS and to ISAC. The results obtained using

DASH+ and DASH+filt shows a further improvement that brings the performance

nearer to that of the VBS. The third dataset, instead, has a small gap between BSS

and VBS. Since this gap is an indicative value of how much it is possible to improve,

even assuming that DASH does not make mistakes, the possible speed-up is even

smaller because of the overhead. However, the outcome is a further proof of the

effectiveness of DASH. In fact, the performances are very similar to the BSS but with

a larger number of solved instances, that is very close to what is achievable with VBS.

In its entirety, this thesis showed that DASH is an effective methodology, demon-

strating that it is possible to train a model that dynamically adapts to the structural

changes of an instance during the solving process, switching the applied heuristic

when needed. Furthermore, this approach is further improved through the combi-

nation of ISAC and DASH (DASH+), and finally the application of feature filtering

techniques (DASH+filt). Finally, the methodology has also been realised as a SCIP

plugin, with the goal of making it easily available to the community.

66

CHAPTER 7. CONCLUSION

This thesis introduces a new methodology and it shows its effectiveness for MIP

problems. Indeed, there are many remaining opportunities for future work. First,

among all the available heuristics, this dissertation works just with the branching

heuristic, that is directly related to the branch-and-bound process. However, there

could be other heuristics suitable for DASH. Therefore, the portfolio of solvers could

be expanded using combinations of different heuristics, with the risk, however, of

increasing the search space of the tuning algorithm GGA too much, obtaining much

longer times for the tuning.

A second direction for further research could be extending the approach to other

problem spaces, with the final goal of obtaining an even more general methodology.

This probably requires much more effort, since changing the problem space means

collecting instances for a new dataset and to perform analysis on its structure in order

to motivate further studies. Furthermore, the coding work could be much greater than

for the previous proposal, since changing the problem space could mean having to

also change the general solver (recall that this thesis relies on results obtained with

the MIP-solvers CPLEX and SCIP). DASH is here described as strictly related to the

branch-and-bound (B&B) methodology, so it could be a good idea to try extending

it to problem domains that can be solved using the same technique (like non-linear

programming and Max-SAT). However, it could be possible to apply the same idea

in other ways.

Further research could also be done for the instance-oblivious tuning. In partic-

ular, the time-out value set for the tuning operation using GGA has always been

smaller than the time-out value used for the tests, mainly because the tuning op-

eration requires huge amount of CPU time. It is therefore important to investigate

new techniques that can find usable parameterisations within a reasonable timeframe.

Another future task would be the automation of the whole offline training process.

At the moment, gathering the solving times, the clustering, and the tuning opera-

tions are automated, but still independent parts of DASH. In order to make this new

appoach easy to use for a normal user, it would be important to automate the whole

process and to group it in a single command.

In summary, this dissertation improves the currently available algorithm selection

67

CHAPTER 7. CONCLUSION

methodology, applied to the MIP problem space, and hopefully further research will

enhance and expand its applicability.

68

Appendices

69

APPENDIX A. FEATURE SPACE ANALYSIS

Appendix A

Feature space analysis

The presented figures are bidimensional projections of the feature space, obtained

using Principal Component Analysis (PCA) [40]. In particular, for each of the em-

ployed portfolio of solvers an extended dataset has been collected. As presented in

Section 4.2, the available extended datasets are extDatasetC, extDatasetS, and ext-

DatasetSr. For each of these datasets, the distribution of instances and subinstances

that “starts from the same cluster” is shown in the following figures. A set of subin-

stances satisfies this condition if the root nodes of their elements belong to the same

cluster. For example, Figure A.1(a) shows all the instances in extDatasetC, while

Figure A.1(b) represents all the instances that have their root node in cluster 1 (for

the clusterisation indexes see Figure 5.2).

These figures show that in almost every case there is a relevant number of subin-

stances which belong to a cluster different from their original one (i.e., the cluster

which contains their original instance, the root node of the branch-and-bound solv-

ing process), giving further proof of the high frequency of this event. Therefore, the

idea of switching heuristics has reasons for being applied several times during the

solving process, giving the opportunity of using the optimal heuristic for a specific

subinstance, with the goal of obtaining a significant speed-up.

70

APPENDIX A. FEATURE SPACE ANALYSIS

(a) Complete dataset (b) Root cluster: 1

(c) Root cluster: 2 (d) Root cluster: 5

71

APPENDIX A. FEATURE SPACE ANALYSIS

(e) Root cluster: 6 (f) Root cluster: 8

Figure A.1: extDatasetC distribution in the clustered feature space. The representa-
tion is a PCA bidimensional projection. Figure (a) represent the whole dataset, the
others the instances whose root node is in a specific cluster.

72

APPENDIX A. FEATURE SPACE ANALYSIS

(a) Complete dataset (b) Root cluster: 1

(c) Root cluster: 3 (d) Root cluster: 6

73

APPENDIX A. FEATURE SPACE ANALYSIS

(e) Root cluster: 8 (f) Root cluster: 9

(g) Root cluster: 11

Figure A.2: extDatasetS distribution in the clustered feature space. The representa-
tion is a PCA bidimensional projection. Figure (a) represent the whole dataset, the
others the instances whose root node is in a specific cluster.

74

APPENDIX A. FEATURE SPACE ANALYSIS

(a) Complete dataset (b) Root cluster: 1

(c) Root cluster: 3 (d) Root cluster: 12

Figure A.3: extDatasetSr distribution in the clustered feature space. The representa-
tion is a PCA bidimensional projection. Figure (a) represent the whole dataset, the
others the instances whose root node is in a specific cluster.

75

Bibliography

[1] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Algorithm
selection and scheduling, CP (2011) 454–469.

[2] L. A. Wolsey, Y. Pochet, Production Planning by Mixed Integer Programming,
Springer, Berlin, 2006.

[3] A. Balakrishnan, T. Magnanti, P. Mirchandani, Annotated Bibliographies in
Combinatorial Optimization, Wiley, New York, 1997, Ch. Network Design, pp.
311–334.

[4] E. Zurel, N. Nisan, An efficient approximate allocation algorithm for combinato-
rial auctions, Proceedings of the 3rd ACM conference on Electronic Commerce
(2001) 125–136.

[5] A. Caprara, M. Fischetti, P. Toth, Modeling and solving the train timetabling
problem., Operations Research 50 (5) (2002) 851–861.

[6] X. Cai, C. J. Goh, A fast heuristic for the train scheduling problem., Computers
& OR 21 (5) (1994) 499–510.

[7] T. Achterberg, T. Koch, A. Martin, Branching rules revisited, Operations Re-
search Letters 33 (2004) 42–54.

[8] J. T. Linderoth, M. W. P. Savelsbergh, A computational study of search strate-
gies for mixed integer programming, INFORMS Journal on Computing 11 (1997)
173–187.

[9] T. Achterberg, Constraint Integer Programming, Ph.D. thesis, Technische Uni-
versität Berlin (2007).

[10] IBM, IBM CPLEX v12.5, http://www14.software.ibm.com/webapp/

download/preconfig.jsp?id=2010-07-23+03%3A35%3A42.559321R&S TACT=

1&S CMP= (2013).

[11] S. Kadioglu, Y. Malitsky, M. Sellmann, K. Tierney, Isac –instance-specific algo-
rithm configuration, ECAI (2010) 751–756.

76

BIBLIOGRAPHY

[12] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, B. O’Sullivan, Using case-
based reasoning in an algorithm portfolio for constraint solving, AICS.

[13] L. Xu, F. Hutter, J. Shen, H. H. Hoos, K. Leyton-Brown, Satzilla2012: Improved
algorithm selection based on cost-sensitive classification models, sAT Competi-
tion (2012).

[14] J. R. Rice, The algorithm selection problem, Advances in Computers 15 (1976)
65–118.

[15] C. P. Gomes, B. Selman, Algorithm portfolios, Artif. Intell. 126 (1-2) (2001)
43–62.

[16] S. Kadioglu, Y. Malitsky, M. Sellmann, Non-model-based search guidance for set
partitioning problems, AAAI.

[17] A. Schrijver, Theory of linear and integer programming, John Wiley & Sons,
Inc., New York, NY, USA, 1986.

[18] G. L. Nemhauser, L. A. Wolsey, Integer and combinatorial optimization, Wiley-
Interscience, New York, NY, USA, 1988.

[19] L. Wolsey, Integer Programming, Wiley Series in Discrete Mathematics and Op-
timization, Wiley, 1998.

[20] M. Collautti, Y. Malitsky, D. Mehta, B. O’Sullivan, Snnap: Solver-based nearest
neighbor for algorithm portfolios, ECML/PKDD (2013) 435–450.

[21] S. P. Lloyd, Least squares quantization in pcm, IEEE Transactions on Informa-
tion Theory 28 (2) (1982) 129–136.

[22] G. Hamerly, C. Elkan, Learning the k in k-means, NIPS.

[23] T. W. Anderson, D. A. Darling, Asymptotic theory of certain goodness of fit cri-
teria based on stochastic processes, Annals of Mathematical Statistics 23 (1952)
193–212.

[24] Fselector r package, http://cran.r-project.org/web/packages/

FSelector/index.html.

[25] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE
Transactions on Evolutionary Computation 1 (1) (1997) 67–82.

77

BIBLIOGRAPHY

[26] K. Leyton-Brown, E. Nudelman, G. Andrew, J. Mcfadden, Y. Shoham, A port-
folio approach to algorithm selection, IJCAI (2003) 1542–1543.

[27] L.-B. Kevin, N. Eugene, A. Galen, M. Jim, S. Yoav, Boosting as a metaphor
for algorithm design, in: R. Francesca (Ed.), Principles and Practice of Con-
straint Programming CP 2003, Vol. 2833 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2003, pp. 899–903.

[28] Y. Malitsky, A. Sabharwal, H. Samulowitz, M. Sellmann, Parallel sat solver
selection and scheduling, in: CP, 2012, pp. 512–526.

[29] M. J. Streeter, S. F. Smith, New techniques for algorithm portfolio design,
Robotics 10 (2008) 519–527.

[30] L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, Satzilla: Portfolio-based algo-
rithm selection for sat, J. Artif. Intell. Res. (JAIR) 32 (2008) 565–606.

[31] Sat competitions, http://www.satcompetition.org/.

[32] R. Riesbeck, C. Schank, Inside Case-Based Reasoning, Lawrence Erlbaum, 1989.

[33] C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for
the automatic configuration of algorithms, CP (2009) 142–157.

[34] M. Yuri, M. Deepak, O. Barry, Evolving instance specific algorithm configura-
tion., in: M. Helmert, G. Rger (Eds.), SOCS, AAAI Press, 2013.

[35] K. M. Ting, An instance-weighting method to induce cost-sensitive trees, IEEE
Trans. on Knowl. and Data Eng. 14 (3) (2002) 659–665.

[36] E. Nudelman, K. Leyton-Brown, H. H. A. Devkar, Y. Shoham, Understanding
random sat: Beyond the clauses-to-variables ratio, in: Proceedings of CP, 2004.

[37] E. Nudelman, K. L. Brown, H. H. Hoos, A. Devkar, Y. Shoham, Understand-
ing random SAT: Beyond the Clauses-to-Variables ratio, in: M. Wallace (Ed.),
Principles and Practice of Constraint Programming - CP, 10th International
Conference, Toronto, Canada, Vol. 3258 of Lecture Notes in Computer Science,
Springer, 2004, pp. 438–452.

[38] D. H. Leventhal, M. Sellmann, The accuracy of search heuristics: An empirical
study on knapsack problems., in: P. Laurent, T. M. A. (Eds.), CPAIOR, Vol.
5015 of Lecture Notes in Computer Science, Springer, 2008, pp. 142–157.

78

BIBLIOGRAPHY

[39] H. Samulowitz, R. Memisevic, Learning to solve qbf, in: AAAI, 2007, pp. 255–
260.

[40] H. Abdi, L. J. Williams, Principal component analysis (2010).

[41] SCIP version 3.0.1, http://scip.zib.de/doc/html devel/index.shtml

(2013).

[42] I. COIN-OR Foundation, CBC : Coin-or branch and cut,
https://projects.coin-or.org/Cbc.

[43] F. S. Foundation, GLPK : Gnu linear programming kit,
http://www.gnu.org/software/glpk/glpk.html.

[44] MINTO : Mixed integer optimizer, http://coral.ie.lehigh.edu/∼
minto/index.html.

[45] C. L. at Lehigh University, SYMPHONY, https://projects.

coin-or.org/SYMPHONY/.

[46] F. F. I. Corporation), XPRESS solver engine, http://www.fico.com/en/

Products/DMTools/Pages/FICO-Xpress-Optimization-Suite.aspx.

[47] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann,
T. Ralphs, D. Salvagnin, D. E. Steffy, K. Wolter, MIPLIB 2010 - Mixed Integer
Programming Library version 5, Mathematical Programming Computation 3
(2011) 103–163.

[48] A. Atamturk, Flow pack facets of the single node fixed-charge flow polytope,
Operations Research Letters 29 (2001) 107–114.

[49] A. Atamturk, J. C. Munoz, A study of the lot-sizing polytope, Mathematical
Programming 99 (2004) 443–465.

[50] A. Atamturk, On the facets of the mixed–integer knapsack polyhedron, Mathe-
matical Programming 98 (2003) 145–175.

[51] A. Atamturk, G. L. Nemhauser, M. W. P. Savelsbergh, Valid inequalities for
problems with additive variable upper bounds, Mathematical Programming 91
(2001) 145–162.

79

BIBLIOGRAPHY

[52] K. Leyton-Brown, M. Pearson, Y. Shoham, Towards a universal test suite for
combinatorial auction algorithms, ACM Conference on Electronic Commerce
(EC-00).

[53] A. Saxena, Mip benchmark instances, http://www.andrew.cmu.edu/

user/anureets/mpsInstances.htm (2010).

[54] T. Mori, M. Kikuchi, K. Yoshida, Term weighting method based on information
gain ratio for summarizing documents retrieved by ir systems, in: Journal of
Natural Language Processing, 9(4):3–32, 2001.

[55] T. Mori, Information gain ratio as term weight: the case of summarization of ir
results, in: Proceedings of the 19th international conference on Computational
linguistics - Volume 1, COLING ’02, Association for Computational Linguistics,
Stroudsburg, PA, USA, 2002, pp. 1–7.

[56] C. Kroer, Y. Malitsky, Feature filtering for instance-specific algorithm configu-
ration, ICTAI (2011) 849–855.

80

