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ABSTRACT  

Copula methods are spreading in finance, due to their capacity of handling co-movements in 

market factors and describe interdependent risk. Substantially, a copula is the joint 

distribution of a vector of uniform random variables. These random variables could be assets 

composing a portfolio. Copulas allow to analyse the type of dependence that exists among the 

assets, keeping individual asset characteristics separated from joint dependence. Moreover, 

copulas can be used to model joint extreme market realizations, where two assets, or more, 

jointly perform extremely well or extremely poorly. This is due to copula capacity of 

capturing assets interdependencies that are not encompassed by simple linear correlation. In 

the first part of this work we describe what a copula is and how it can be modelled, taking into 

account that different types of copulas exist, with their particular shape, behaviour and tail 

characteristics. These differences would allow us to fit empirical data to optimal copula, 

meaning the copula that best reflects data behaviour, especially behaviour in the tails. 

According to this, we are to take a set of empirical data: price time series of four financial 

traded indices: FTSE MIB, CAC All-Tradable, CDAX and IBEX35. From Eikon Reuters-

Datastream, we download 20-years weekly price time series. We want to fit these data to 

various copulas and estimate copula parameters by Inference for Margins method. In the last 

chapter, we will avail of copula method in order to deduce Value at Risk for an imaginary 

portfolio, composed of our four financial indices. In the end, we will compare Values at Risk 

obtained by portfolios with the same weights, but applying different copulas. Theoretically, 

Values at Risk will show differences according to copula behaviour and tail dependence. All 

the analysis will be conducted with the statistic software R.  
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INTRODUCTION  

According to J.F. Jouanin, G. Riboulet and T. Roncalli (2011), a copula is both a powerful 

and simple tool to describe dependent risk. By the term “copula” we mean the joint 

distribution of a vector of uniform random variables. As an example, calculating the variance 

in the returns of a risky assets portfolio entails computing both individual assets variances and 

the type of dependence that exists among them. The latter element is captured by the copula: 

it allows to analyse the joint dependence separately from the single distributions.  

In particular, S.T. Rachev, M. Stein and W. Sun (2015) suggest copulas can be useful in 

modelling extreme market events, like joint tail realizations, due to assets interdependencies 

that cannot be captured by simply using linear correlation.  

A good example of useful copula application is provided by K. Aas (2004): he considers a 

portfolio composed of a stock market index and of an exchange rate. For what concerns single 

assets distributions, he has found that the Student t-distribution could provide a reasonable fit 

both to the univariate distribution of daily stock market index, and to exchange rate return. In 

this way, the obvious solution would be to model the joint distribution by a bivariate Student 

t-distribution. However, a standard bivariate Student t-distribution would force both assets  

distributions to have the same tail heaviness, while in reality it is not like this. On the other 

hand, decomposing the multivariate distribution between assets distributions on one side, and 

copula, on the other, would allow for the fitting of better models for each individual variable.  

T. Schmidt (2006) offers an even easier explanation of the copula instrument: he proposes to 

consider two real-valued random variables,    and   , where each could be the outcome of a 

simple experiment, like throwing a dice, or a more complex one. T. Schmidt says that we 

have to enter a bet on   , based on   , that is already known. A possible copula based on    

and    would encompass the quantity of information deducible for    by knowing   : the 

interrelation or dependence of these two random variables. Each random variable is fully 

described by its cumulative distribution function (cdf)              , the so called 

marginal. In the case of throwing the dice twice we would have        . Here, we have 

an extreme case, as the two variables are independent, and the cumulative distribution 

functions give no information about the joint behaviour: in fact, the joint distribution function 

is simply the product of the marginal distributions: 

                           

However, the example is important as it shows the two ingredients to obtain a full description 

of    and    considered together: the marginal behaviours and the type of interrelation, in this 

case independence. Thanks to copulas, this kind of separation between margins and 

dependence can also be realized in a more general framework.  
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1. THE COPULA AS A DEPENDENCE FUNCTION  

T. Schmidt (2006) settles the first goal into transforming random variables    into uniformly 

distributed random variables   . In this way, every random variable X with cumulative 

distribution function F can always be represented as        , where    denotes the 

generalized inverse of F. After having transformed marginal random variables distributions 

into uniform ones, we adopt the latter as the reference case. The copula is so expressed 

according to the reference case. Retrieving the independence case that we exposed above, the 

joint distribution function can be restated, by two standard uniform random variables    and 

  , as:  

    
           

                                 

          {           } 

P. Embrechts (2009) develops last formula step by step, like:  

                        

                                

                        

                  

Where F is the joint distribution function and    and    are marginal distribution functions. 

The C above is the copula: the distribution function of the random vector        , with 

standard uniform marginal distributions on       . The formula couples the continuous 

marginal distribution functions       to the joint distribution function F via the copula C.  

 

U. Cherubini, E. Luciano and W. Vecchiato (2004) state that, defining what a copula is, two 

conditions are substantially needed: groundedness and the 2-increasing property. If fulfilled, 

these two conditions allow copulas to respect properties of distribution functions.  

Referring to a bivariate function               , J.F. Jouanin, G. Riboulet and T. Roncalli 

(2011) explain that C is 2-increasing if, for           and          , we have:  

                                                         

In order to be a copula function, the same function                must even be grounded: 

                and                 for all         

By the notation                 we can expand these considerations to the d-

dimensional copula                . In fact, according to U. Cherubini, E. Luciano and W. 

Vecchiato (2004), in the d-dimensional case, where d>2, notions of groundedness and n-

increasing property are straightforward extensions of the two dimensional case.  
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Let the function         have a domain                 , where the non-empty 

sets    have a least element   , equal to zero. The function G is said to be grounded if and 

only if it is null for every        , with at least one index k such that      :  

                                    

The marginal in component “i” is obtained by setting      for all     and, as it must be 

uniformly distributed:  

                               

Similarly,                        if at least one of the    equals zero.  

For what concerns d-increasing property, for       the probability                   

         must be non-negative: both T. Schmidt (2006) and Y. Malevergne and D. Sornette 

(2001) have efficiently defined it with the so-called rectangle inequality:   

∑ 

 

    

∑                             

 

    

 

Where                     

Every function which satisfies these properties is a copula.  

 

2. DEFINITIONS  

As a copula is substantially a dependence function, connecting random variables distribution 

functions, this relationship is condensed in Sklar’s theorem, as reported by U. Cherubini, E. 

Luciano and W. Vecchiato (2004). The theorem states not only that copulas are joint 

distribution functions, but even that joint distribution functions can always be written in terms 

of uniform marginal distributions and a unique copula to entangle them. Therefore, every time 

we have to cope with joint distribution functions, we can easily avail ourselves of a copula. 

According to Sklar’s theorem, we have to consider a probability space (Ω, ℱ , P), with Ω a 

non-empty set, ℱ  a sigma-algebra on Ω and P a probability measure on ℱ . Let    and    be 

two Borel-measurable random variables on (Ω, ℱ , P) with values in   , the extended real 

line. Let also F be a two-dimensional joint distribution function whose marginal distributions 

are    and   . Then, F admits a copula representation:  

                          

The copula C is unique if its marginal distributions are continuous. Random variables are said 

to be continuous when their distribution functions are. We therefore have a canonical 

representation of the distribution: on the one hand, the marginal distributions    and   , that is 

to say the one-dimensional directions; on the other hand, the copula, that links them. As such, 

the copula defines the dependence between the one-dimensional directions.  
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P. Embrechts (2009) extends Sklar’s theorem from 2 to d>2 dimensions. We have just to 

suppose         to be random variables with continuous distribution functions         and 

one joint distribution function F. Then, there exists a unique copula C, on       , such that for 

all             
    : 

                              

From any multivariate distribution, F, we can extract the marginal distributions,   , and the 

copula, C. It is important to underline that marginal distributions do not need to be in any way 

similar to each other, nor the choice of copula is constrained by the choice of marginal 

distributions. This flexibility makes copula a potentially useful tool for building econometric 

models to analyse financial data.   

As was stated above, marginal random variables    can be transformed into uniformly 

distributed random variables   . Knowing that        , P. Embrechts (2009) elaborates 

Sklar’s theorem for             
        :  

               
           

        

Where the   
   are the quantile functions of the marginal distributions.  

Always P. Embrechts (2009) reminds us that, if a joint bivariate distribution is continuous, it 

should even admit to a density like this:  

          (             )                

Where          is the density of the copula C.  

To clarify the equation, C. Kharoubi- Rakotomalala proposes a practical example: imagine a 

portfolio composed of two risk factors: IBM      and Google      stocks. In this case:  

          represents the joint density of the portfolio: it encompasses the simultaneous 

behaviour of the two type of stocks.  

 
      
      

} are the marginal densities  

  (             ) stays for the copula density.  

Calculating copula density in d-dimensions, A. Patton (2007) states that, if we have d>2 

marginal distributions, and if the joint distribution function is d-times differentiable, then 

taking the     cross-partial derivative of equation  

      (                      ) 

      

We obtain:      
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 ∏       

 

   

  

             
 (                      ) 

 ∏        

 

   

(                      ) 

Where  

     
            

       
 

This last equation would be further clarified if we took Schmidt (2006) version:  

     
    

           
       

  (  
      )      

       
 

Denoting the joint density by   and the marginal densities by           , joint density is 

equal to the product of marginal densities and copula density, denoted with c.  

 

Following T. Schmidt’s (2006) treatise on copulas, we should now consider Hoeffding and 

Fréchet derivation that a copula always lies in between certain bounds. The reason is given by 

the existence of some extreme cases of dependence.  

To make it more understandable, T. Schmidt (2006) proposes to start considering two uniform 

random variables, called    and   . In the case      , these two variables show extreme 

positive dependence on each other. In this case, the copula is given by:  

                                    

This copula is always attained every time    is a monotonic transformation of   . As a 

consequence, the two random variables are defined co-monotonic.  

A strongly different case would be given by independence between the two random variables. 

In case of independence, the copula is equal to               , that is just the case of the 

two dices thrown in the introduction.  

However, independence is simply an intermediate step before the extreme that is opposite to 

co-monotonicity: counter-monotonicity. With uniform random variables, this case is due to 

       . The related copula is:  

                          

                          

And zero otherwise.  

To put everything together, U. Cherubini, E. Luciano and W. Vecchiato (2004) state that 

copulas are bounded by these extreme cases of dependence and have to satisfy the following 

inequality:  
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For every point            , where A and B are non-empty subsets of I=[0,1], 

containing both 0 and 1; while the two-dimensional copula   is a real function defined on 

   .  

T. Schmidt (2006) advises that it would be even possible to draw these considerations to the 

multidimensional case, where dimensions are d>2. However, whereas a co-monotonic copula 

always exists in every d-dimension, there can be a problem with the counter-monotonic 

Hoeffding-Fréchet bound, if we consider more than two dimensions. To clarify this, consider 

three random variables:         . We are free to settle counter-monotonicity between    and 

   as well as between    and   . Although, we get some restrictions when we have to carve 

out the relation between    and   . In fact, if    decreases,    should increase, as it is 

counter-monotonic with respect to   . Even    should increase, as    is as well counter-

monotonic with respect to   . As a consequence,    cannot be counter-monotonic with 

respect to   , nor obviously vice versa. This ends to say that a perfect counter-monotonic 

copula cannot logically exists in more than two dimensions. Fortunately, the bond still holds, 

and this is all we have to care about.  

To make Hoeffding-Fréchet bounds more understandable, U. Cherubini, E. Luciano and W. 

Vecchiato (2004) offer a nice graphical representation. Every copula has to lie inside of the 

pyramid shown in figures 1 and 2.  

 

Figure  1 

In fact, the graph of each copula can be defined as a continuous surface over the unit square 

that contains the skew quadrilateral whose vertices are (0,0,0), (1,0,0), (1,1,1) and (0,1,0). 

When           , so that C becomes a copula, the bounds are copulas too.  
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Figure  2 

The surface given by the bottom and the back side of the pyramid represents the lower 

Hoeffding-Fréchet bound. The lower bound is denoted by   , and is called minimum copula: 

it is the counter-monotonicity copula             {         }.  The upper bound is 

denoted by   , and called maximum copula:                     . Both minimum and 

maximum bounds are represented in the third figure, respectively at left and at right.  

 

Figure  3 

In order to resume what we said before, copulas have to satisfy the following inequality:  

                                     

for every point          A B.  

This theorem has consequences on the so-called level curves of the copula C       : the set 

of points of    such that           , with   constant:  

{         
            } 
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The level curves of the minimum and maximum copula are respectively:  

{                        }     

{                    }     

They are represented in figure 4, by the courtesy of U. Cherubini, E. Luciano and W. 

Vecchiato (2004). In the plan         level curves of the minimum copula are characterized 

as segments parallel to the line    =   . Level curves of the maximum copula are drawn as 

kinked lines instead.  

 

Figure  4 

As   increases, the triangle is shifted upwards. The existence of the lower and upper bounds 

gives the possibility of defining a concordance order between copulas. In fact, we can say that 

the copula     is smaller than the copula    – written as       –if and only if  

                    

For every          
 .  

Naming Fréchet-Hoeffding lower and upper bound, respectively,    and   , U. Cherubini, E. 

Luciano and W. Vecchiato (2004) say that it is possible to avail oneself of Sklar’s theorem in 

order to rewrite the inequality         as:  

                                                     

Where the first member of the inequality is minimum copula, and the last is maximum one.  

T. Schmidt (2006) provides the formulation even in d-dimensions, where d>2, for Fréchet-

Hoeffding bounds: consider a copula                 . Then  

                                                 

U. Cherubini, E. Luciano and W. Vecchiato (2004) remind that, in d-dimensions, the upper 

bound still satisfies the definition of copula, and is denoted by    (the maximum copula). 

However, the lower bound never satisfies the definition of copula for d>2. Nonetheless, the 

bound is still the best possible: pointwise there always exists a copula that takes its value.  
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In order to further clarify co-monotonicity and counter-monotonicity, P. Embrechts (2009) 

translates Fréchet-Hoeffding bounds into the language of correlations. He states that, for any 

bivariate model F with       as marginal distribution functions, the corresponding linear 

correlation coefficient    satisfies:  

                   

Where all values in the closed interval             can be achieved. One always has that 

       and        but it is possible that         and/or        .      

corresponds to counter-monotonicity, while      stays for co-monotonicity.  

As co-monotonicity refers to perfect positive dependence and counter-monotonicity to perfect 

negative dependence respectively, the intermediate step of independence is to be settled 

between the extremes. The independence copula is:  

     ∏  

 

   

 

As T. Schmidt (2006) underlines, random variables are said to be independent if and only if 

their copula is the independence copula. The related copula density is simply constant.  

Families of copulas which encompass product, minimum and even maximum copulas are 

called comprehensive.  

It is worth noting that minimum and maximum copulas do not have a density as they both are 

represented by a kinked line and therefore cannot be differentiable. In the co-monotonic case, 

the distribution has mass only on the diagonal      , while in the countermonotonic case 

there is mass only on {       }. Because of this these two copulas cannot be described 

by a density.  

The last property of copulas that is worth saying is that strictly increasing transformations do 

not change the dependence structure. On first sight, this seems to be counterintuitive: 

monotone transformations do change the dependence. Although, after removing the effects of 

the monotone transformation on the marginal distributions, we end up with the same 

dependence structure in the copula.  

 

2.1 Survival copula and joint survival function  

U. Cherubini, E. Luciano and W. Vecchiato (2004) propose us to consider the probability: 

 ̅                           . It is defined as joint survival probability or joint 

survival function of the d random variables   , while the marginal survival probabilities or 

marginal survival functions are:  ̅               . Since the probability  ̅        

                 represents the joint survival probability or joint survival function of    



16 

 

and   , respectively beyond    and   , the copula which represents it in terms of the marginal 

survival probabilities or survival distribution functions of the two agents or components 

separately,  ̅      and  ̅     , is named survival copula.  

Since   is a copula, it stays within the Fréchet bounds:  

    ̅     

In addition, it can be easily verified that in the minimum, product and maximum case, copulas 

and survival copulas coincide:  

 ̅       ̅       ̅     

The copula that represents the joint survival probability in terms of the marginal survival 

probabilities of the d-components    is the survival copula. As we have seen above for 

copulas, uniqueness tout court holds true if every marginal survival probability is continuous.  

 

3. MEASURES OF ASSOCIATION  

From U. Cherubini, E. Luciano and W. Vecchiato (2004), association concepts, loosely 

speaking, aim at capturing whether the probability of having large or small values of both    

and    is higher than the probability of having large values of    together with small values 

of   , or vice versa. If we imagine it geometrically, it looks like the probability mass 

associated with the upper and lower quadrants, as opposite to the one associated with the rest 

of the Cartesian plane (x,y).  

As T. Schmidt (2006) suggests, measures of association are of common usage when we need 

to summarize a complicated dependence structure. Substantially, they are three. The most 

classic one is linear correlation. However, this is suitable just to the class of elliptical 

distributions. In terms of copulas, this means that it is good only if we have a Gaussian or a t-

Student copula, so not in the majority of cases. Outside the class of elliptical distributions, 

linear correlation causes fallacies. The second association measure is rank correlation, while 

the third is tail dependence. This last one is particularly useful in detecting dependence in the 

extremes. When it comes to rank correlation, instead, the most appropriate measures turn out 

to be Kendall’s tau and Spearman’s rho.  

In order to compute every measure of association in a copula, it is a prerequisite that all 

marginal distributions involved are continuous.  
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3.1 Linear correlation  

As T. Schmidt (2006) has said, linear correlation is a dependence measure applicable only in 

the case of elliptical distributions. An elliptical distribution can be obtained by an affine 

transformation like:       , with            .  

Taking two continuous random variables    and   , the linear correlation coefficient       is:  

      
          

√              
 

      is invariant under linear increasing transformations, but not under non-linear increasing 

transformations, like logarithmic transformations.   

      is bounded as            , where the bounds    and    are attained respectively 

when    and    are counter-monotonic and co-monotonic, so, when there is, respectively, 

perfect negative and positive dependence.  

However, both T. Schmidt (2006) and U. Cherubini, E. Luciano and W. Vecchiato (2004) 

underline certain pitfalls that occur when linear correlation coefficient is used, outside the 

class of elliptical distributions, and that can seriously undermine the validity of the analysis. 

The first pitfall is that a linear correlation of 0 would mean independence for a normal 

distribution. Although, even for a Student t-distribution this is no longer true. The second 

pitfall is that linear correlation coefficient remains invariant under linear transformations, but 

not under general transformations: two log-normal random variables have a different linear 

correlation than the underlying normal random variables. The third problem is that it is not 

possible to elaborate a joint distribution for any couple of marginal distributions, given the 

correlation coefficient ρ. It is always feasible in the class of elliptical distributions, but not in 

general. As an example,  in the case of log-normal marginal distributions, the interval of 

attainable linear correlation becomes smaller with increasing volatility. To illustrate this, 

consider two normal random variables    and   , both with zero mean and variance     . 

The linear correlation of the two log-normal random variables                  equals  

            
   

 
  

√(  
 
  )(  

 
  )

 

To make the example even more catchable, T. Schmidt (2006) provides a nice graphical 

representation in figure 5. The picture shows               where            with 

          . Note that  the smallest attained correlation is increasing with σ, so for σ=1 we 

have that                    and for σ=2 even                   .  
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Figure 5 

It is in general wrong to deduce a small degree of dependence from a small linear correlation 

as even perfectly related random variables can have zero linear correlation: consider 

          and      
 . Then:  

            (      
    )      

           

Having covariance 0 implies of course zero linear correlation, while on the other side the 

observation of    immediately yields full knowledge of   .  

S.T. Rachev, M. Stein and W. Sun (2015) even notice an additional reason for which linear 

correlation wouldn’t be a satisfactory measure of dependence. If we take as random variable 

the rate of return of a security, an index or a stock, linear correlation cannot keep track of 

higher variance in the returns, that is, when extreme events are observed more frequently than 

normal. Moreover, linear correlation coefficient only measures the degree of dependence, but 

does not clearly discover the structure of dependence.  

 

3.2.Rank correlation  

The most important rank correlation estimators are Kendall’s tau and Spearman’s rho. S.T. 

Rachev, M. Stein and W. Sun (2015) explain that the logic is to concentrate on the ranks of 

given data rather than on the data itself. Considering the ranks leads to scale invariant 

estimates, that is very pleasing when we have to work with copulas, as rank correlation 

measures allow to fit copulas to data.  

In order to elaborate Kendall’s tau, T. Schmidt (2006) suggests that we have to consider two 

random variables    and   . For a comparison we take two additional random variables   ̃ 

and   ̃ into account, both being independent of    and   , but with the same joint 

distribution. Now we plot a point in a graph from each couple of random variables, namely 

        and     ̃   ̃ , and we connect them by a line. If we have positive dependence, we 

would expect that the line is increasing, and, otherwise, if there is negative dependence, the 
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line is to be decreasing. Similarly, considering (     ̃)  (     ̃), a positive sign is 

indicative of the increasing case, while a negative sign would turn up into the decreasing case.  

As we have to express it in terms of expected value, we define Kendall’s tau by:  

           *    ((     ̃)  (     ̃))+ 

For a d-dimensional vector of random variables X and an independent copy  ̃, but with the 

same joint distribution, we define Kendall’s Tau by  

         [    (   ̃)] 

Alternatively, T. Schmidt (2006) writes the formula as:  

           ((     ̃)  (     ̃)   )   ((     ̃)  (     ̃)   ) 

In the case both probabilities are the same, this means that upward slopes are to be expected 

with the same probability as downward slopes, and     . Otherwise, if Kendall’s tau is 

positive, there is a higher probability of upward slopes to occur. Similarly, if Kendall’s tau is 

negative, we would expect rather downward sloping outcomes. As Kendall’s tau is a measure 

with possible values in the interval [-1,1], when it takes a value of 0, this means that variables 

are independent. When it takes a value of 1, variables are co-monotonic: perfect positive 

dependence; while it is equal to -1 in case of perfect negative dependence: variables are 

counter-monotonic.  

It is interesting to note that Kendall’s tau of a copula and of its associated survival copula 

coincide:      ̅.  

Now we can adapt Kendall’s tau to the scope of our discussion, by fitting a copula to it: 

according to K. Aas (2004), Kendall’s tau of two variables    and   , jointly distributed, is:  

           ∫  

 

 

∫                    

 

 

 

Where C(     ) is the copula of the bivariate distribution function of    and   .  

The double integral right above is the expected value of          where both    and     are 

standard uniforms and have joint distribution C:                 .  

It follows that                    .  

As K. Aas (2004) remembers, for elliptical copulas, like Gaussian and Student t-copulas, 

Kendall’s tau can be included in the formulation of linear correlation coefficient:  

              (
 

 
  ) 

Where “cor” stays for the linear correlation coefficient.  
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When it comes to Archimedean copulas, B. Schweizer and E. Wolff (1981) establish that  

Kendall’s tau could be related to the dependence parameter, that we will explain further. For 

the Clayton copula Kendall’s tau is given by           
 

   
. 

And for the Gumbel copula it is             
 

 
 

 

As written by K. Aas (2004), Spearman’s rho of two variables    and    with copula C is 

given by:  

            ∫  

 

 

∫                 

 

 

 

   ∫  

 

 

∫                

 

 

 

Where C(     ) is the copula of the bivariate distribution function of    and   . Let    and 

   have distribution functions    and   , respectively, Then, we have the following 

relationship between Spearman’s rho and the linear correlation coefficient:  

                           

T. Schmidt (2006) defines Spearman’s rho by: 

                       
   (             )

√                      
 

Even in this case, we note that Spearman’s rho of a copula and of its associated survival 

copula coincide:        ̅  

Also for Spearman’s rho one could demonstrate that it reaches its minimum and maximum 

bounds if and only if    and    are respectively counter-monotonic and co-monotonic 

continuous random variables:  

             

            
 

K. Aas (2004) even manages to demonstrate that, for the Gaussian and Student t-copulas, 

linear correlation coefficient and Spearman’s rho are connected, in this way:  

               (
 

 
  ) 

Both           and           may be considered as measures of the degree of monotonic 

dependence between    and   , whereas linear correlation measures the degree of linear 

dependence only. Moreover, these measures are invariant under monotone transformations, 

while the linear correlation generally isn’t. Hence, according to P. Embrechts, A.J. McNeil 
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and D. Straumann (1999) it is slightly better to use these measures than the linear correlation 

coefficient.  

 

3.3.Tail dependence  

The primary motivation for the use of copulas in finance comes from the growing empirical 

evidence that the dependence between many important assets returns is non-normal. K. Aas 

(2004) offers an evident example of this: in time of stress, correlation between assets returns 

tends to increase. One prominent example of non-normal dependence is where two assets 

returns exhibit greater correlation during market downturns than during market upturns. 

Bivariate tail dependence measures the amount of dependence in the upper and lower 

quadrant of a bivariate distribution. This is of great interest for the risk manager trying to 

guard against concurrent bad events.  

Following U. Cherubini, E. Luciano and W. Vecchiato (2004), bivariate tail dependence 

refers to concordance in the tail: where extreme values of random variables    and    

distributions are verified. These measures are independent of the univariate distributions of 

assets returns. Moreover, they are invariant under strictly increasing transformations of    

and   .  

To better understand tail dependence, T. Schmidt (2006) proposes this example: consider two 

uniform random variables    and    with copula C. Upper tail dependence means, intuitively, 

that with large values of    also large values of    are to be expected. More precisely, the 

probability that    exceeds a given threshold q, given that    has already exceeded the same 

value q for    , is considered. If this latter probability is smaller than of order q, then the 

random variables have no tail dependence, like for example in the independent case. 

Otherwise they have tail dependence. For our random variables    and    with distribution 

functions          we define the coefficient of upper tail dependence by:  

      
   

       
          

      

The coefficient of lower tail dependence is defined analogously by:  

      
   

       
          

      

U. Cherubini, E. Luciano and W. Vecchiato (2004) resume that copula C has upper tail 

dependence if and only if         , and no upper tail dependence if and only if     . If 

the coefficient of upper tail dependence is higher than 0, this means that large events tend to 

occur simultaneously. C is, otherwise, said to have lower tail dependence in the case    

     , and no lower tail dependence if     .  
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When it comes to elliptical distributions, like Gaussian copula and Student t-copula, it is 

important to remember that lower tail dependence is identical to upper tail dependence. As T. 

Schmidt (2006) formulates:                    .  

For the Gaussian copula, the coefficients of lower tail and upper tail dependence are  

                        
    

 . 
√   

√   
/    

where ρ is linear correlation coefficient and   denotes the standard Gaussian distribution 

function. Regardless of high correlation ρ we choose, extreme events appear to occur 

independently in    and   , unless ρ=1.  

For the Student t-copula, the coefficients of lower and upper tail dependence are  

                         4 √   √
   

   
5 

Where      denotes the distribution function of a univariate Student t-distribution with     

degrees of freedom. The stronger the linear correlation ρ and the fewer the degrees of freedom 

ν become, the stronger is the tail dependence. Surprisingly, perhaps, the Student t-copula 

gives asymptotic dependence in the tail, even when ρ is negative (> -1), or zero.  

Just in order to resume, in elliptical copulas the coefficient of lower and higher tail 

dependence is identical, due to the radial symmetric shape of elliptical copulas. A Gaussian 

copula has both lower and higher tail dependence coefficients equal to 0. This is stemming 

from the fact that a multivariate Gaussian distribution is the n-dimensional version of a 

Gaussian distribution, which assigns too low probabilities to extreme outcomes.  

Now T. Schmidt (2006) considers Clayton copula. The coefficient of lower tail dependence 

equals:  

         
 
 

 
        

 
     

 
              

Thus, for    , the Clayton copula has lower tail dependence. Furthermore, for     the 

coefficient converges to 1. This is because the Clayton copula tends to the co-monotonicity 

copula as α goes to infinity. The coefficient of upper tail dependence is zero.  

Following T. Schmidt (2006), it is a little more complicated to show that for the Gumbel 

copula       
 

 , thus the Gumbel copula exhibits upper tail dependence for    . The 

coefficient of lower tail dependence is zero instead.  

No matters which copula we choose, if  ̅ is the survival copula associated with C, then 

 ̅      ̅     
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In A. Patton’s (2007) opinion, the first area of application of copulas and of association 

measures in finance should be risk management. In fact, as fat tails or excess kurtosis in 

random variables distributions increase the likelihood of extreme events, the presence of 

positive tail dependence increases the likelihood of joint extreme events. To take this into 

account, risk managers need to focus on Value at Risk and other measures designed to 

estimate the probability of portfolio losses beyond a certain threshold.  

 

4.COPULAS DERIVED FROM DISTRIBUTIONS   

Generally, a bivariate copula can be represented by its distribution function, as K. Aas (2004) 

depicts, like this:  

                        ∫  

  

  

∫                        

  

  

 

Where                  is the density of the copula. Otherwise, this is a general framework. 

If we want to get more specific, we must distinguish between two parametric families of 

copulas: implicit and explicit. The so-called implicit copulas owe their name to the double 

integral at the right-hand side of equation, that is implied by a well-known distribution 

function. For explicit copulas, instead, this double integral has a simple closed form. Before 

analysing specifically distribution functions of the best known implicit and explicit copulas, 

we avail ourselves of a nice graphical representation provided by A. Patton (2007). Here 

behind level curves of some bivariate copula densities are shown, constructed using Sklar’s 

theorem. Different parametric copulas are drawn, while all have marginal distributions 

            , and linear correlation is constrained to be 0.5 in all cases. In the upper left 

there are the elliptical contours of a bivariate Normal copula, where both margins and copula 

are meant to be Normal. The scope of the figure is offering a rapid idea of what was said 

before. As an example, we can compare what was written above, about different coefficients 

of tail dependence, with corner shapes that level curves assume. As we noticed previously, 

elliptical copulas have identical lower and upper tail dependence. For both Normal and 

Student t-copulas, the shape of level curves in the upper right corner and downward left 

corners, that are respectively higher and lower tail dependence, is symmetrical, so identical. 

However, tails of Student t-copula are both much more slanted than tails of Normal copula, as 

Normal copula has zero tail dependence, apart from the case where ρ=1, while for Student t-

copula it is in both case positive. For what concerns Archimedean copulas, we easily see the 

negative tail dependence of Clayton copula and positive tail dependence of Gumbel copula. 

Archimedean copulas are, with respect to elliptical copulas, asymmetric.  
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Figure 6 

4.1.Implicit copulas   

As now we are to start exposing the best known implicit copulas, it is important to underline 

that they do not have a simple closed form, but they are implied by multivariate distribution 

functions. A multivariate normal distribution function will lead to a Gaussian copula, while a 

multivariate Student t-distribution function will lead to a t-copula. In order to state that the 

joint distribution function of a random vector         constitutes a Gaussian copula, we 

should be sure that the univariate marginal distributions are both Gaussian. These margins, 

then, must be linked by a unique Normal copula function C. J.F. Jouanin, G. Rapuch, G. 

Riboulet and T. Roncalli (2001) define the bivariate Gaussian copula C as follows:  

  
              

        
        

Where ρ is the parameter of the copula: the linear correlation coefficient in the case of a 

Normal copula. Σ is the 2x2 matrix with 1 on the diagonal and ρ otherwise.    is the joint 

bivariate distribution function with zero mean and correlation matrix Σ and        is the 

inverse of the standard univariate Gaussian distribution function.  
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Therefore,     
        

        = 

∫  

       

  

∫
 

  √       
 

   .
              

 (       
 )

/     

       

  

 

For normal and elliptical distributions independence is equivalent to zero linear correlation. 

Hence for ρ= 0, the Gaussian copula equals the independence copula. On the other side, if 

ρ=1 we obtain the co-monotonicity copula, while for ρ= -1 the counter-monotonicity copula is 

got. Gaussian copula interpolates between these three fundamental dependency structures via 

one simple parameter: correlation coefficient ρ.   

The following representation has been proved by T. Roncalli (2002) to be equivalent to the 

previous one:  

             ( 
        

      )  ∫  

(

 
              

     

√       
 

)

    

  

 

 

The density of the Gaussian copula is:  

 

√    
   .

  
    

 

 
 
         

    
 

       
/ 

Where                       

As the copula is absolutely continuous, we can integrate the density into the expression of the 

copula, obtaining this:  

           ∫  

  

 

∫
 

√       
 

    .
             

    
 

 (       
 )

 
  
    

 

 
/    

  

 

 

Where                  .  

As   is the unique parameter of the copula, and it represents linear correlation between 

marginal distributions, Y. Malevergne and D. Sornette (2001) conclude that the Gaussian 

copula is completely determined by the knowledge of the correlation matrix.  

Linear correlation is expressed as:  

            
          

√               
 

And it fully describes the dependence structure. This remains true in the whole family of 

elliptical distributions, while it is totally wrong outside this family and risks to produce many 

fallacies in the dependence analysis. Specifically, note that matrix Σ is a correlation matrix, 

obtained from the covariance matrix by scaling each component by variance.  

The covariance matrix:  
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 ̃  .
  
      

       
 / 

Leads to the correlation matrix Σ:  

  (
  
  

) 

From the bivariate case U. Cherubini, E. Luciano and W. Vecchiato (2004) easily deduce the 

multivariate case: the Gaussian copula for a correlation matrix R is given by 

  
          

        
                  

Where R is a symmetric, positive definite matrix with diagonal(R)=           and    is the 

standardized multivariate normal distribution with correlation matrix R.     is the inverse of 

the standard univariate normal distribution function  .  

As in the bivariate case, the Gaussian copula generates the standard Gaussian joint 

distribution function whenever the marginal distributions are standard normal. U. Cherubini, 

E. Luciano and W. Vecchiato (2004) advise that, for any other marginal choice, the Gaussian 

copula does not give a standard jointly normal vector. In order to have a visual representation 

of the phenomenon, and more generally of the effect of “coupling” the same copula with 

different marginal distributions, let us consider the joint density functions in the following 

figures.  Figures 7.a and 7.b show respectively density and level curves of the distribution 

obtained coupling a Gaussian copula with two standard normal marginal distributions. Figure 

8.a and figure 8.b are referred to a Gaussian copula with two three-degrees of freedom 

Student t-marginal distributions. Both for figures 7 and 8 is considered ρ=0.2. Figures 9.a and 

9.b illustrate density and level curves of a Gaussian copula with standard normal marginal 

distributions and ρ=0.9; while figures 10.a and 10.b are referred to a Gaussian copula with 

two three-degrees of freedom Student t-marginal distributions. Even in this last case ρ=0.9. It 

does not depend on the correlation coefficient we choose: in every case, the same copula, with 

different marginal distributions, presents a different graphical joint behaviour, that indicates 

that marginal choice influences the density. As we could expect, the effect of Student 

marginal distributions is increasing tail probabilities.  
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Figure 7.a Figure 7.b 
 

 

Figure 8.a Figure 8.b 
 

 

Figure 9.a Figure 9.b 
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Figure 10.a Figure 10.b 
 

Now, U. Cherubini, E. Luciano and W. Vecchiato (2004) say that it is possible to easily 

determine the density of the multivariate Gaussian copula:  

 

    
 
    

 
 

   ( 
 

 
      )    

                        ∏ 
 

√  
      

 

 
  
   

 

   

 

Where     is the determinant of R. we deduce that:  

  
  (                   )  
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∏  
 

√  
      

 
   

    
   

 

Let         , so that           . The density can be rewritten as follows:  

  
               

 

   
 
 

   ( 
 

 
          ) 

Where             
                 

 ”.  

As Gaussian copula is parametrized by linear correlation coefficient, and it respects 

concordance order, Gaussian copula can be positively ordered with respect to ρ:  

     
       

       
       

       
   

Also, Gaussian copula is comprehensive: in fact it encompasses all the range of dependence, 

starting from counter-monotonic copula till co-monotonic and passing through the 

independence copula:    

     
               

       

In addition,     
     . As we have already stated, Gaussian copula does not show tail 

dependence: the unique exception is given in the case ρ=1:  

      {
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Here behind T. Schmidt (2006) offers a nice picture of a bivariate Gaussian copula on the left, 

and of a bivariate Student t-copula on the right. Both copulas have correlation coefficient 

ρ=0.3 and the t-copula has 2 degrees of freedom. It is worth remarking that the behaviour at 

the four corners is different, while in the centre they are quite similar.  

Figure 11.a Figure 11.b 

 

Although having the same correlation, extreme cases, represented by the corners, are much 

more pronounced in the t-copula. This gets particularly evident in (0,0) and (1,1) corners, that 

refer to the possibility that two very negative or very positive events occur simultaneously. 

Student t-copula is able to describe extreme cases duly to tail dependence. Anyway, we can 

even notice that t-copula shows peaks at the (0,1) and (1,0) corners. The peaks in these 

corners stem from a negative value in    and a positive value in   , and vice versa. If we 

have an independent copula, density should rise up at all four corners symmetrically. When 

we start introducing some correlation, like 0.3 in previous figures, probabilities change and it 

is more likely having values with the same sign. As a consequence, peaks in (0,0) and (1,1) 

corners are higher than others.  

 

Now we are to pass to the Student t-copula. U. Cherubini, E. Luciano and W. Vecchiato 

(2004) start developing Student t-copula from the univariate Student t-distribution function. 

Let        be the central univariate Student t-distribution function, with ν degrees of 

freedom:   

      ∫
 (

     
 )

√   (
 
 )

.  
  

 
/

 
   
 

  

 

  

 

Where Γ is the Euler function.  

Let              be the bivariate distribution corresponding to   :  
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The bivariate Student t-copula,     , is defined as:  

                (  
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Where ρ, that is linear correlation coefficient, and ν are the parameters of the copula, and   
   

is the inverse of the standard univariate Student t-distribution with ν degrees of freedom, 

expectations 0 and variance 
 

   
.  

The Student t-dependence structure introduces an additional parameter compared with the 

Gaussian copula, namely the degrees of freedom ν. Increasing the value of v decreases the 

tendency to exhibit extreme co-movements. As Y. Malevergne and D. Sornette (2001) 

resume, since the Student t-distribution tends to the normal distribution when ν goes to 

infinity, the Student t-copula tends to the Gaussian copula as ν +∞.  

As U. Cherubini, E. Luciano and W. Vecchiato (2004) formulate, bivariate Student t-copula 

density is:  
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Where      
            

       and the copula itself is absolutely continuous.  

From the bivariate case, it is easy to expand to the multivariate Student t-copula. Let R be a 

symmetric, positive definite matrix with                     and      the standardized 

multivariate Student t-distribution with correlation matrix R and ν degrees of freedom:  
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The correlation matrix is obtained from an arbitrary covariance matrix by scaling each 

component to variance 1. The multivariate Student t-copula is then defined as follows:  
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Where   
   is the inverse of the univariate Student t-distribution function with ν degrees of 

freedom. Using the canonical representation, it turns out that the copula density for the 

multivariate Student t-case is:  

                     
 
 
 (
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Where      
      .  

 

4.2.Explicit copulas: Archimedean copulas  

T. Schmidt (2006) says that there is a class of copulas, Archimedean copulas typically, that 

can be stated directly and have quite a simple form, in contrast to copulas derived from 

distributions, known as implicit copulas. According to U. Cherubini, E. Luciano and W. 

Vecchiato (2004), Archimedean copulas can be constructed using a function        , 

continuous, decreasing, convex and such that φ(1) =0. A similar function φ is called a 

generator. It becomes a strict generator whenever φ(0) = +∞.  

The pseudo-inverse of φ is defined, as follows:  

          {
                

           
 

This pseudo-inverse is such that, if composed with the generator, it gives the identity, as 

ordinary inverses do for functions with domain and range 𝕶:  

     (     )           

In addition, it coincides with the usual inverse if φ is a strict generator.  

Revisiting examples above more closely, we can realize that the bivariate implicit copula 

itself was always in the form:  

             
        

        

Similarly, in more than 2 dimensions, with the condition that     is completely monotonic on 

[0,∞], the function                defines an implicit copula as:  

  
          

        
                  

Otherwise, Cherubini, Luciano and Vecchiato (2004) state that, given a generator and its 

pseudo-inverse, an Archimedean copula    is generated as follows:  

               (           ) 

In addition to this, R.B. Nelsen (1999) proves that level curves of an Archimedean copula are 

convex, and that the density of an Archimedean copula is:  
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    (        ) 

      
     

(  (        ))
  

For what concerns dependence, U. Cherubini, E. Luciano and W. Vecchiato (2004) say that 

Archimedean copulas can be easily related to measures of association. C. Genest and J. 

MacKay (1986) demonstrate that Kendall’s tau is given by:  

   ∫
     

      
     

 

 

 

Where        exists since the generator is convex. In addition to this, Genest and MacKay 

(1986) guarantee that conditions on the generators of two Archimedean copulas    and    

can be given, and this assures that the corresponding generated copulas are to be ordered in 

the same way as their association parameters. If we denote by    the copula that corresponds 

to         , then  

              

or, equivalently,  

                

Where   is Kendall’s tau and   is Spearman’s rho. This means that the order between copulas 

can be resumed by just an association measure like rank correlation: Kendall’s tau and 

Spearman’ rho. This result has been demonstrated by H. Joe (1997).  

Later, we will analyse specifically the best known examples of Archimedean copulas, like 

Gumbel, Clayton and Frank copulas. By now, we take the general definition of upper and 

lower tail dependence given by U. Cherubini, E. Luciano and W. Vecchiato (2004). If 

Archimedean copula C has upper tail dependence, then the coefficient of upper tail 

dependence is              
     

      
 

While coefficient of lower tail dependence is            
     

      
.  

Now, for the scope of our analysis, among Archimedean copulas, we are to choose one-

parameter copulas. By one-parameter we mean copulas that are based on a generator      , 

indexed by a unique real parameter α. By choosing the generator, one obtains a different type 

of copula.  

We will start with Gumbel copula: Gumbel family has been introduced by Gumbel in 1960. 

Since it has been analysed by P. Hougaard, it is also known as the Gumbel-Hougaard family. 

By T. Schmidt (2006), the bivariate Gumbel copula is given in the following form:  

  
             [          

         
  

 
 ] 
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Where        . For α=1 we have the product copula, while for     the Gumbel copula 

tends to co-monotonicity copula; so that Gumbel copula interpolates between independence 

and perfect positive dependence. This is a perfect example of a copula with tail dependence in 

just one corner, the one corresponding to joint extreme positive behaviour. In figure 12 we 

can take a glimpse of Gumbel copula positive tail behaviour and its level curves, in 

correspondence to α=1.5.  

 

Figure 12 

 

Passing to Clayton family, U. Cherubini, E. Luciano and W. Vecchiato (2004) remind that it 

is a comprehensive copula: it encompasses counter-monotonicity, independence and even co-

monotonicity. Product copula is due to α=0, the lower Fréchet bound to α= -1 and upper 

Fréchet bound to     . As we previously did for Gumbel copula, in figure 13 Clayton 

positive tail behaviour and corresponding level curves are presented, in correspondence of 

α=6.  

 

Figure 13 

We are to end with Frank copula. It reduces to product copula if α=0, and reaches lower and 

upper Fréchet bounds for      and     , respectively. In figure 14 we show its 

behaviour in the tail and level curves in correspondence to α=0.5.  
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Figure 14 

 

In the following table, by the courtesy of U. Cherubini, E. Luciano and W. Vecchiato (2004), 

we can resume some well-known families of bivariate Archimedean copulas and their 

respective generators:  

 

Gumbel (1960) 

              

Range for α [1, +∞) 

            ,         
         

  
 
 ⁄ - 

Clayton (1978) 

      
 

 
        

Range for α               

            [   
     

      
 
   ] 

Frank (1979) 

         
          

         
 

Range for α (-∞,0)U(0,+∞) 

          
 

 
  .  

                          

         
/ 

 

In the following table, instead, C. Kharoubi-Rakotomalala and F. Maurer (2013) give us the 

possibility to compare tail dependence of Archimedean copulas:  

 

 
Upper tail 

dependence 

Lower tail 

dependence 
Conditions 

        

Gumbel    
 
  0 Asymmetric upper dependence if     

Clayton 0   
 
  Asymmetric lower dependence if α>0 

Frank 0 0 Asymptotic independence 
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And here, finally, U. Cherubini, E. Luciano and W. Vecchiato (2004) summarize association 

measures:  

Family Kendall’s tau Spearman’s rho 

Gumbel (1960)       No closed form 

Clayton (1978) 
 

     
 Complicated expressions 

Frank (1979)    
         

 
     

               

 
 

 

U. Cherubini, E. Luciano and W. Vecchiato (2004) make us to remark that concordance 

measures of Frank copula require the so-called “Debye” function, defined as:  

      
 

  
∫

  

        
              

 

 

 

When it comes to define an Archimedean copula in more than two dimensions, we have to 

consider a strictly decreasing and continuous generator function anyway, like this:  

                 

Let   be a strict generator, C.H. Kimberling (1974) says that the function               , 

defined by:                  (                   ) is a copula if and only if 

    is completely monotonic on [0,∞]. Retrieving Gumbel copula, in the d-dimensional case, 

with d>2, the generator is given by               , hence           (  
 

 ); it is 

completely monotonic if α>1. The Gumbel d-copula is therefore:  

                 { [∑       
 

 

   

]

 
 

}                

For what concerns Clayton copula, K. Aas (2004) compares it to a Student t-copula. Even 

Student t-copula allows for joint extreme events, but it is symmetric: it gives the same 

probabilistic weight to extreme negative and extreme positive events. However, as in 

economics and finance extreme negative events are more probable than extreme positive 

events, for the scope of our further analysis, we could recur to a Clayton copula, that is 

asymmetric: it exhibits greater dependence in the negative tail than in the positive. The 

generator of the Clayton copula is given by           , hence              
 

 ; it is 

completely monotonic if α >0. The Clayton d-copula is therefore:  

              [∑  
      

 

   

]
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Last in the list, the generator of the Frank n-copula is given by        (
          

         
) hence 

        
 

 
  (           ) is completely monotonic if α>0.  

We can deduce that Frank d-copula is given by:  

               
 

 
  2  

∏           
   

          
3 

With α>0 when    .  

In order to get a graphical resume of Archimedean copulas, we will avail ourselves of the 

following picture, from T. Schmidt (2006):  

  

  
Figure 15 

 

It shows densities of Gumbel copula in upper left, Clayton copula in upper right, Frank copula 

in lower left and generalized Clayton copula in lower right. In all cases, α=2, and, for 

generalized Clayton copula, we have an additional parameter to be taken into account, that is 

δ, equal to 2. Note that for δ=1 the standard Clayton copula is attained. All copulas, with the 

exception of Frank copula, have been cut at a level of 7.  It may be spotted at first sight, that 

these copulas have different behaviours at the lower and upper corners, that are respectively 

the points (0,0) and (1,1). As we have already noticed before, Gumbel copula shows an 

extremely uprising peak at (1,1), while a less pronounced behaviour at (0,0), if compared with 
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other copulas. By this, we want to say that Gumbel copula has strong upper tail dependence. 

For what concerns Clayton copula, the situation is reversed: low tail dependence in the 

positive tail, but much more evident negative peak. For Frank copula there is no upper nor 

lower strong tail dependence. It may be glimpsed that standard Clayton copula differs quite 

dramatically from the generalized one in the behaviour at the corners: generalized Clayton 

copula shows strong tail behaviour at both corners in contrast to the standard one.  

 

5.STATISTICAL INFERENCE FOR COPULAS: ESTIMATING PARAMETERS  

As U. Cherubini, E. Luciano and W. Vecchiato (2004) advise, similarly to most multivariate 

statistical models, much of the classical statistical inference theory is not applicable for 

copulas. Fortunately, K. Aas (2004) suggests that there are mainly two ways to infer copula 

parameters: a fully parametric method and a semi-parametric method. The semi-parametric 

method is the asymptotic Maximum Likelihood Estimation (MLE). This method does not take 

into account any parametric assumption for marginal distributions. A possible expansion of 

Maximum Likelihood Estimation technique is provided by A. Patton (2007): if the model is 

such that the parameters of the marginal distributions can be separated from each other and 

from those of the copula, then Multi-Stage Likelihood (ML) estimation is an option. This 

method is the fully parametric one and can be even known as the “Inference Functions for 

Margins” (IFM) method, due to H. Joe (1997). It involves estimating all parameters of the 

marginal distributions separately one from the other in the first step, via univariate maximum 

likelihood. Then, second step corresponds to plugging each parametric margin into the copula 

likelihood function, and this likelihood function is maximized with respect to copula 

parameters. Both estimation techniques require a numerical optimization of an objective 

function, as likelihood of a multivariate model substantially involves mixed derivatives.  

 

5.1.Maximum Likelihood Estimation  

J. Myung (2002) demonstrates that Maximum Likelihood Estimation guarantees many 

optimal properties in estimation. To begin with, it is sufficient, in the sense that it gives 

complete information about parameters of interest. Secondly, it is consistent: the true value of 

the parameters is recovered asymptotically for sufficiently large samples. Thirdly, it is 

efficient: it achieves asymptotically the lowest possible variance in parameter estimation. Last 

but not least, the same Maximum Likelihood Estimation is obtained independently of the 

parametrization used. The principle of Maximum Likelihood Estimation is to find out the 

value of the parameters vector that maximizes likelihood function. In order to apply 

Maximum Likelihood Estimation techniques, we are to refer to R. Lucchetti’s instructions. He 



38 

 

starts by extracting a sample constituted of n random variables   , independently and 

identically distributed, taken from a population X with probability function       . With this 

sample, we are to build likelihood function, that represents probability function of the sample 

itself. We hypothesize that this probability function is written in function of parameters vector 

θ, while sample realizations are fixed. Analytically, we have  

                ∏       

 

   

 

Statistical function  ̂                is called maximum likelihood estimation if, in 

correspondence to every extracted sample, it assigns to one parameter vector θ a value that 

maximizes likelihood function. By symbols:  

               ̂  

Maximum likelihood estimation is defined as:  

 ̂               

in order to calculate maximum likelihood estimator we have to recur to log-likelihood 

function, that is obtained applying natural logarithm. So, it results:  

                

Given that logarithmic function is an increasing monotone transformation, when we pass to 

log-likelihood we are not going to lose        function characteristics; moreover, we get a 

simpler analytical expression to work with. If we have independently, identical distributed 

random variables, joint density function of the sample can be expressed as marginal product.  

By logarithmic properties, from this                 ∏        
 
    we can carve out log-

likelihood function as summation, in fact:  

         [∏       

 

   

]  ∑         

 

   

 

An important log-likelihood property is the following:  

       

  
           

       

  
 

Otherwise, the most important property of log-likelihood function is the one that constitutes 

principal reason to use this technique. As realizations    of n random variables are implied, 

log-likelihood is a random function of unknown parameters vector. This means that, given θ, 

log-likelihood function gives back a random variable. Alternatively, we can think that, for 

each possible sample realization, a different θ is to be associated. If this function has an 

expected value, it will be a non-stochastic function of parameters vector. Now we can observe 

the figure: dotted lines correspond to every log-likelihood function that can be observed for 
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each sample realization               , while the continue line represents function 

         . This function assumes its maximum just in correspondence of   , that is, the true 

value of x density function.  

 

Figure 16 

Looking at the figure, it comes logic to think that the maximum point of function        

could be used as estimator for   . R. Lucchetti grants us that the so obtained estimator will be 

consistent. For maximizing        estimator, R. Lucchetti sets the following first order 

conditions:  

       
       

  
   

Where function        is named score. In case we have a sample composed of n random 

variables, independent and identically distributed, score can be defined as:  

       ∑        ∑
          

  

 

   

 

   

 

The score is the gradient vector that contains partial derivatives of log-likelihood equation, 

calculated with respect to parameter θ. Being expressed in function of random samples, the 

score is a random variable itself. When     , its first and second order moments are, 

respectively:  

             

                   

Where       is Fisher information matrix, valued in correspondence of the true parameter   . 

     is defined as the opposite of log-likelihood Hessian matrix expected value, so it results 

as:  

       0
         

     
1             
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When     ,                                

In order to resume, we can say that Maximum Likelihood estimate is that value of θ for which 

score is zero and for which log-likelihood function is maximized. In the graph of figure 17, 

maximum likelihood estimation is point  ̂.  

 

Figure 17 

 

5.2.Inference for Margins Method  

However, U. Cherubini, E. Luciano and W. Vecchiato (2004) advise us that Maximum 

Likelihood method is, unfortunately, computationally intensive, especially in the case of high 

dimensions. In fact, we would have to estimate jointly marginal distributions parameters and 

joint distribution parameters. Anyway, U. Cherubini, E. Luciano and W. Vecchiato (2004) 

propose even a nicer solution. First of all, they want us to remind canonical representation for 

a multivariate density function:  

               (                      )  ∏  (  )

 

   

 

Where  (                      )  
  ( (                      ))

                      
 is the n-th mixed partial 

derivative of the copula C, c is the copula density and    is standard univariate probability 

density function. Let   {             }   
 , where t indicates the time, be the sample data 

matrix. Thus, we can redefine log-likelihood function as:  

     ∑   (                         )  ∑ 

 

   

∑    (   )

 

   

 

   

 

Where θ is the set of all parameters of both marginal distributions and the copula. If we look 

at log-likelihood function, we can notice that it is composed of two terms, both positive. The 

first involves copula density and copula parameters, while the second involves marginal 
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distributions parameters. Taking this into account, H. Joe and J.J. Xu (1996) propose to 

estimate parameters in two separate steps. In the first step, we have to estimate marginal 

parameters vector, that will be called   . We are to perform estimation of the univariate 

marginal distributions:  

 ̂           ∑ 

 

   

∑    (      )

 

   

 

In the second step, given  ̂ , we can pass to perform the estimation of the copula parameters 

vector   :  

 ̂           ∑   (                              ̂ )

 

   

 

This method is called Inference for the Margins or IFM. The IFM estimator is defined as the 

vector:  ̂    ( ̂   ̂ )
 
. Alternatively, we could say that Inference for Margins estimator is 

the solution of:  

(
   
    

 
   
    

   
   
    

 
   
   

)     

Where l is the entire log-likelihood function,    is the log-likelihood of the jth marginal, and    

the log-likelihood for the copula itself. On the other hand, Maximum Likelihood Estimation 

comes from solving:  

(
  

    
 
  

    
   

  

    
 
  

   
)     

Generally, the two estimators are not equivalent. Since it is much more easier applying 

Inference for Margins estimator, we think we would prefer it to Maximum Likelihood 

Estimator. Otherwise, before application, we need proof that IFM is asymptotic efficient with 

respect to MLE. U. Cherubini, E. Luciano and W. Vecchiato (2004) suggest to compare 

asymptotic covariance matrix of the two estimators. In IFM we use a set of inference 

equations to estimate a vector of parameters. In this case each equation is a score function: its 

left side is the partial derivative of the log-likelihood of each marginal density. As it was 

proven by H. Joe (1997), like the MLE, the IFM estimator turns out to be, under regular 

conditions, asymptotically normal:  

√ ( ̂      )   (         ) 

With       the Godambe information matrix.  

Thus, if we define a score function   

     (
   
    

 
   
    

   
   
    

 
   
   

)
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We split log-likelihood in two parts            for each margin and    for the copula. 

Godambe information matrix takes the following form:  

                 

With    *
     

  
+ and               .  

After covariance matrix estimation, H. Joe (1997) assures that Inference for Margins method 

is highly efficient with respect to Maximum Likelihood Method.  

 

6.PRACTICAL APPLICATION  

In previous pages we have described what a copula is and how it can be modelled. Moreover, 

we noticed that different types of copulas exist, with their particular shape, behaviour and tail 

characteristics. We have even underlined that these differences allow us to fit empirical data 

to optimal copula, meaning the copula that best reflects data behaviour, especially behaviour 

in the tails, and carve out a nice analysis. Now, we want to apply what we learnt and 

transform theory into practice. We are to take a set of empirical data: price time series of four 

financial traded indices. We want to fit these data to various copulas, both implicit and 

Archimedean. When estimating copula parameters, we will use Inference for Margins 

method: firstly we will estimate conditional distributions parameters of each price time series. 

Secondly, we will estimate copula parameters. In the last chapter, we will avail of copula 

method in order to deduce Value at Risk for an imaginary portfolio, composed of our four 

financial indices. For a more refined analysis, we will vary the weights in the portfolio. In the 

end, we will compare Values at Risk obtained by portfolios with the same weights, but 

applying different copulas. Theoretically, Values at Risk will show differences according to 

copula behaviour and tail dependence.  

 

6.1.First step: data collection and observation  

We are to analyse four financial indices, traded in stock markets. They are: FTSE MIB, 

Italian, CDAX, German, CAC All-Tradable, French, and IBEX35, Spanish.  

For simplicity, from now we will rename CAC All-Tradable with the simpler notation of 

CACT. From Eikon Reuters-Datastream, we download price time series for each index. We 

are to use weekly data. All time series are referred to a 20 years-time span: from December 

1997 to August 2017, resulting in something like one thousand of observations for each index. 

All the analysis will be conducted on the statistic software R. We are to start by loading on R 

our data in the form of four data frames and, then, we will convert them into four time series. 



43 

 

Before proceeding into the analysis, we think it would be nice getting a glimpse at price 

evolutions during our time span. They are shown in figure 18.a, 18.b, 18.c and 18.d.  

 

  
 

 
Figure 18 

 

However, we are not to analyse prices, but returns. The reason for this is exposed by K. Aas 

and X.K. Dimakos (2004): if we try to directly analyse financial prices, we encounter many 

difficulties, as consecutive prices are highly correlated, and the variance of prices often 

increases with time. It is much more convenient to analyse changes in prices. According to P. 

Jorion (1997), we can choose between two main type of price changes: arithmetic or 

geometric returns. He reminds us that the formula for arithmetic return is:  

  
    

               
  
    

    {      
  } 

Where    stays for price in time t, while      is price in time t-1. Geometric returns are 

instead defined by:  



44 

 

  [
  
    

]       
   

There is substantially one advantage of working with the log-scale: if geometric returns are 

normally distributed, prices will never be negative. In contrast, assuming that arithmetic 

returns are normally distributed may lead to negative prices, which is economically 

meaningless. According to this notation of K. Aas and X.K. Dimakos (2004) we elaborate 

geometric returns: firstly we apply logarithmic transformation to all our time series data. As a 

consequence, data width is much more restricted because of logarithm.  

Then, we derive returns as the difference between logarithmic price recorded in time t and 

logarithmic price recorded in the previous period. In the following figures we can get a 

glimpse at graphical representation of geometric returns. As it was expected, every return time 

series evolves around an expected value of zero.  

 

  

  
Figure 19 
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Before proceeding any further with the analysis, we dedicate to same descriptive statistics. 

For each financial index return time series we calculate mean, median, standard deviation 

(Sd), variance, asymmetry and kurtosis. The results are exposed below:  

 

 FTSE MIB CDAX CACT IBEX 

Mean -0.0001232285 0.001107212 0.0007440668 0.0003372297 

Median 0.00195045 0.004107951 0.003105453 0.002378105 

Sd 0.03349165 0.03074855 0.02901188 0.03382556 

Variance 0.001121691 0.0009454734 0.0008416894 0.001144169 

Skew -0.4030825 -0.7565778 -0.8943171 -0.4706912 

Kurtosis 4.767812 8.309947 9.339892 5.946987 

 

As we have already seen from the graphs, indices returns seem to be mean reverting and they 

should float around an expected value of zero. According to this, all means calculated in the 

previous table have small values, very next to zero. There is another thing we would like to 

take into account: kurtosis. Kurtosis is referred to the shape of a distribution, and constitutes a 

measure of tail thickness of a density function. Specifically, kurtosis coefficient measures 

how much our distribution seems to be far from a Normal distribution. If the coefficient is 

bigger than zero, our distribution is defined leptokurtic, and it is sharper, more poignant than a 

Normal distribution. If the coefficient is equal to zero, our distribution is as flat as a Normal 

distribution. Lastly, if coefficient is smaller than zero, our distribution is platikurtic: it is 

flatter than a Normal distribution. In our case, all our four indices present a strong positive 

kurtosis coefficient. This was to be expected, as time series returns tend to have ticker tails 

than a Normal distribution. As a consequence, instead of fitting empirical data to a simple 

Normal distribution, we could use a conditional t-Student distribution for each index. This 

would allow us to better take into account extreme phenomena, that are registered in negative 

tail behaviour, on which we have to focus for Value at Risk calculation. Later, we could even 

adopt a Normal conditional distribution to describe indices returns, with the aim of comparing 

results dependent of different assumptions.  

Anyway, having to work with empirical data, kurtosis coefficient by itself is not sufficient to 

assure us that conditional Normal distribution is not a good choice. In order to have an 

additional proof that we would do better adopting a conditional Student t-distribution, we will 

perform even a Jarque-Bera normality test. We will assume a significance value of 0.05. Null 

hypothesis is Normal distribution. Here are the results:  

FTSE MIB p-value = 0 

CDAX p-value = 0 

CACT p-value = 0 

IBEX p-value = 0 
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In all cases we refuse null hypothesis of normality in distribution: we may adopt a conditional 

Student t-distribution for each index considered. If possible, we would even add an 

asymmetry option, in order to take into account negative asymmetry that appear in all indices 

descriptive statics.  

 

6.2.Second step: handling autocorrelation by GARCH  

Before proceeding further with the analysis, we want to verify if our data present 

autocorrelation. In case we detect autocorrelation, there would be some additional 

consideration to be made. We are to check not only autocorrelation in return time series by 

themselves, but even in return time series in absolute value and at the square root. Firstly we 

will show some graphs, in order to get a rapid idea, and then we will perform Ljung-Box test 

for autocorrelation. Here are the autocorrelograms:  
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Figure 20 

As we can infer graphically, it seems there is no strong autocorrelation in simple time series 

returns, with the exception of IBEX, that presents autocorrelation not only in the first lag, that 

is normal, but even in second and fourth lags. As, from both theory and empirical literature, 

we would expect returns autocorrelograms not to show significant lags but the first, we could 

wander whether IBEX behaves someway unusually. A possible explanation could be due to a 

contamination of the first graph of returns by the ones of absolute returns and of square root 

returns. As it is to be expected that every index absolute and square root returns present strong 

autocorrelation even in other lags than the first, it could be that IBEX returns have been a bit 

stained by other data.  

As an additional exam, we even perform Ljung-Box test for autocorrelation. We are going to 

execute it on time series returns, on absolute value time series returns and on time series 

returns at square root. According to the null hypothesis, data are not autocorrelated. As usual, 

we take a p-value of 0.05. In the following table we report p-value for every test:  

 

 Returns 
Absolute 

Returns 

Square Root 

Returns 

FTSE MIB p-value = 0.03607 p-value = 0 p-value =0 

CDAX p-value = 0.5569 p-value = 0 p-value = 0 

CACT p-value = 0.1109 p-value = 0 p-value = 0.0001185 

IBEX p-value = 0.003236 p-value = 0 p-value = 0 

 

While we expected to refuse null hypothesis of no autocorrelation for both absolute returns 

and square root returns, we cannot ignore autocorrelation in IBEX returns. Our hope is that, 

even in Ljung- Box test, return results have been drawn by strongly autocorrelated absolute 

and square root returns. In order to prove that IBEX behaves like other indices and we can 

proceed with our analysis, we will try to fit IBEX returns dataset to an autoregressive model 
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of order four. If all autoregressive estimated coefficients turn out to be non-significant, we 

will deduce that IBEX returns are not influenced by previous four lags. Checking all 

outcomes of Ljung- Box test, we will fit an autoregressive model of order four even to FTSE 

MIB, as a p-value of 0.03607 could seem borderline between refusing or not null hypothesis. 

We will integrate autoregressive model with GARCH model, in order to take into account 

everything together. However, we are not to explain GARCH immediately, as, before, we just 

want to make it clear why autocorrelation is so important for us.  

 

It is clear that we cannot ignore autocorrelation in absolute returns and in returns at square 

root. To understand exactly what does this autocorrelation mean and why we really need to 

cope with it for the scope of our analysis, we refer to an article of P. Posedel (2005). As we 

could already know, she reminds that financial markets react nervously to stress, 

independently of the reason of the shock: political, economic, natural… During stress periods, 

prices of financial assets tend to fluctuate much more than normally. Statistically, this means 

that we have heteroscedasticity: among random variables there are sub-populations that have 

different variance from others. Posedel writes that prices have been always believed to be 

non-stationary. As a consequence, till 1940’s, economists resorted to log-returns, that were 

supposed to be stationary instead, at least in periods of time that were not too long. Log-

returns were referred to as if they represented a sequence of independent, identically 

distributed random variables. It was thought log-returns evolve like a random walk and that 

they could have been modelled in continuous time by a geometric Brownian motion. 

Discretization of such a model leads to a random walk with independent, identically 

distributed Gaussian log-returns in discrete time. However, this hypothesis was rejected in the 

1960’s, thanks to some empirical studies based on the log-return time series data of US 

stocks. They demonstrated that serial dependence is present in the data and that volatility 

changes in time. The latter point means that we have volatility clustering and, as we said 

previously, as volatility changes data present heteroscedasticity. Moreover, the same 

empirical studies demonstrated that distribution of the data is heavy tailed, asymmetric and, 

so, tricky to describe with a Gaussian. All those considerations seem to coincide with what we 

could infer from our data: even our log-return series are heavy-tailed and seem not to 

correspond so much to a Gaussian distribution. As we have already said, we could try to fit 

each of our time series to a Student t-distribution. However, for taking heteroscedasticity into 

account, we will avail ourselves of a discrete model found by R. Engle, that is both 

meticulous in description, practical to use and stationary, so the inference is possible. R. 

Engle calls this model ARCH, that stays for Autoregressive Conditional Heteroskedastic, 
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because it takes into account that conditional variance is not constant over time and shows an 

autoregressive structure, due to the clustering. Some years later, T.P. Bollerslev generalized 

the model and introduced the Generalized Autoregressive Conditionally Heteroskedastic 

model, the GARCH, that we are going to use. Generally, we can say ARCH model is 

appropriate when the error variance in a time series follows an autoregressive AR model. If 

we assume, for the error variance, an autoregressive moving average model instead, we can 

adopt GARCH.  

Now we are to give definition of a general GARCH(p,q) model, where p is the order of the 

GARCH terms   and q is the order of the GARCH terms   . To begin with, we state that our 

returns are defined as:  

         

Where    is return in time t,    is a constant, whose expected value is zero, as our returns are 

mean reverting, and    is the error term. Returns are distributed like a t-Student, with an 

expected value of zero. For what concerns variance of the returns, things get a bit more 

complicated: the variance of the returns is the variance of the error term and it is described by 

GARCH(p,q) as:  

  
               

          
        

          
  

Where    is distributed as a t-Student, with the same degrees of freedom of   .    has mean 

equal to zero and variance equal to   
 . As in our case    is equal to zero, because time series 

of index log-returns are mean reverting and expected value is zero, we could even write:  

  
               

          
        

          
  

In order to treat our data for heteroscedasticity, we think a GARCH(1,1) model would be 

sufficient. It should be done like this:  

  
               

        
  

As we need to correct all our data for GARCH(1,1), we can create a general univariate 

GARCH model specification before, and then fit each of our time series to it. Firstly, we ask 

for “rugarch” library on R and we resort to command “ugarchspec”. By ugarchspec, we can 

create our model by specifying variance, mean and shape of every conditional distribution. 

We want to conduct this marginal estimation separately for each of our return time series. We 

indicate that variance is described by a GARCH(1,1), and mean by an ARMA model. While 

we are to adopt a GARCH(1,1) for all our four indices, the choice of ARMA depends on what 

we observed previously in the autocorrelograms of simple returns. For what concerns CDAX 

and CACT we just have to tackle heteroscedasticity in the error term, that we will treat with a 

GARCH(1,1), as previously said. Apart from this, for these series we will not need to handle 
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autoregressive behaviour of returns. As a consequence, we will apply an autoregressive 

moving average model, ARMA, of order (0,0). Things get a bit more complicated for FTSE 

MIB and IBEX series of returns. As we spotted from both the graphs of autocorrelations and 

Ljung- Box tests, there seems to be autocorrelation both in FTSE MIB and IBEX returns until 

lag four. Before we suggested the hypothesis of a possible contamination of returns by 

absolute value returns and by returns at square root. We want to verify whether this 

supposition is true: if it really is, we will be able to treat these series as the others. We will 

start our check from FTSE MIB. We are to construct a model with GARCH(1,1), similar to 

the one we spoke about before. However, for FTSE MIB and IBEX, we are to add an 

ARMA(4,0) model, instead of an ARMA(0,0). According to this, software R won’t only 

estimate GARCH parameters, but even ARMA ones. If autocorrelation is to be detected into 

returns, corresponding estimated parameters will be significant. Although, whether we will be 

likely to not refuse null hypothesis, that parameters are not significant, we will finally adopt a 

GARCH(1,1) ARMA(0,0) model even for FTSE MIB and IBEX, as we did for CDAX and 

CACT. We estimate ARMA(4,0)- GARCH(1,1) FTSE MIB and IBEX parameters in 

Appendix A.  

 

As we have proved, in Appendix A,  that FTSE MIB does not need an ARMA model different 

from (0,0), we could exploit just a GARCH(1,1) ARMA(0,0) model, whose codes are 

exposed in the following:  

gspec.ru.std<- 

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)), 

mean.model=list(armaOrder=c(0,0)),distribution.model="std") 

FTSEgarch.std<-ugarchfit(gspec.ru.std,FTSE_rts) 

FTSEgarch.std 

 Estimate Std. Error t value Pr(>|t|) 

Mu 0.002183 0.000778 2.8039 0.005048 

omega 0.000015 0.000007 2.2264 0.025990 

alpha1 0.128956 0.027331 4.7183 0.000002 

beta1 0.867858 0.023854 36.3824 0.000000 

shape 6.636685 1.394077 4.7606 0.000002 

 

Here we start by fitting FTSE MIB observations by ugarchspec to a Student t-conditional 

distribution option, without taking asymmetry into account. Mind that there is no need to 

indicate degrees of freedom, as the program will estimate them: they are returned by the 

parameter “shape”. According to what we observed before, we should adopt a “std” or a 

“sstd” option in order to describe all our conditional distributions of returns. Although, we 
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decide to check all the four options for each index, in order to compare results. We will have 

the possibility to choose conditional distribution that we find more convincing and control 

whether it gets along with what we observed before: whether, empirically, a Student t-

distribution would suit data better. We are to fit our FTSE MIB returns time series to a 

GARCH(1,1)- ARMA(0,0) model, with all possible options of shape. We expose all FTSE 

MIB estimated parameters in the following table. In each cell, we put standard error under the 

estimate. Here are the parameters:  

FTSE MIB  

 Mu Omega alpha1 beta1 shape skew 

Non- asymmetric 

t- Student 

0.002183 

0.000778 

0.000015 

0.000007 

0.128956 

0.027331 

0.867858 

0.023854 

6.636685 

1.394077 
 

Asymmetric 

t- Student 

0.000996 

0.000787 

0.000017 

0.000007 

0.141791 

0.027968 

0.849844 

0.026563 

8.433522 

2.183227 

-0.208433 

0.034870 

Non- asymmetric 

Normal 

0.001246 

0.000799 

0.000019 

0.000009 

0.136018 

0.025229 

0.855609 

0.025237 
  

Asymmetric 

Normal 

0.000812 

0.000773 

0.000018 

0.000007 

0.147333 

0.025123 

0.842713 

0.024987 
 

-0.236278 

0.000000 

 

Omega, alpha1 and beta1 are the coefficients in the variance of the error term:  

  
             

       
  

All these coefficients are significant. However, what we are more interested into is degrees of 

freedom estimation: here, GARCH(1,1)- ARMA(0,0) estimates 7 degrees of freedom for t-

Student option with no asymmetry, and this estimate is significant. We want to underline that 

this result is quite important for us, as it justifies Student t-distribution as a correct choice to 

depict conditional behaviour of FTSE MIB. If we pass to second row of estimated parameters, 

we can see that, for what concerns omega, alpha1 and beta1 estimates, they are extremely 

similar in the two cases: with and without asymmetry. We can so compare the models by 

focusing on parameter shape, that indicates degrees of freedom. Shape is significant and equal 

to 8 here, not so far from 7 we got by Student t-hypothesis with no asymmetry before. 

Moreover, we have an additional parameter now, that is in fact skewness estimation: -0.21. 

Being this last parameter significant, we can infer it would be nice to take even asymmetry 

into account in FTSE MIB returns distribution. From what we could deduce till now, it seems 

legit to adopt the hypothesis of the asymmetric Student t-distribution. As a consequence, we 

will assume 8 degrees of freedom for FTSE MIB, that is the unique parameter we need to give 

to R in building copulas. Anyway, we decide to take 8 just because it is coherent with model 

choice: if we had assumed just one degree of freedom less, copula estimate would not have 

changed for that.  
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Till now, everything seems to be quite linear, and there appears to be no need to fit data even 

to normality option, neither to asymmetric normality. However, we will try even that 

possibilities, just in order to see if error term coefficients are similarly estimated. If so, we can 

deduce that the unique discriminants are degrees of freedom and asymmetry. We want to 

check if these two elements demonstrate being significant every time tested.  

From the third row of estimated parameters in the table of FTSE MIB, we check that omega, 

alpha1 and beta1 are very similar to the corresponding parameters estimates we did under t-

Student assumption, and always significant. We are not to extract one value or the other, as 

we will not need them in copula construction. However, we wanted to verify whether all these 

parameters were similarly estimated, independently of conditional distribution choice. As a 

consequence, we can discriminate by two last parameters: degrees of freedom and asymmetry. 

Obviously no normal distribution encompasses degrees of freedom, but the asymmetric one 

has a skew parameter. Being both parameters always significant in our estimates, we are to 

choose the conditional FTSE MIB distribution that allows both, so, an asymmetric Student-t 

distribution.  

Now, we will show rapidly the corresponding tables for the other three indices, based on all 

available ugarchspec options. We start with CDAX index:  

CDAX 

 mu omega alpha1 beta1 shape skew 

Non- asymmetric 

t- Student 

0.003393 

0.000758 

0.000048 

0.000018 

0.158009 

0.039073 

0.792104 

0.048652 

8.828732 

1.913535 
 

Asymmetric 

t- Student 

0.002566 

0.000774 

0.000043 

0.000015 

0.143073 

0.033132 

0.806081 

0.043135 

9.994852 

2.457459 

-0.237774 

0.036243 

Non- asymmetric 

Normal 

0.003525 

0.000744 

0.000077 

0.000022 

0.248341 

0.045070 

0.688159 

0.051397 
  

Asymmetric 

Normal 

0.003128 

0.000746 

0.000058 

0.000017 

0.201068 

0.039252 

0.736903 

0.047911 
 

-0.26019 

0.032277 

 

As we checked before for FTSE MIB, omega, alpha1 and beta1 CDAX estimates are always 

significant and display very similar values. Finally, even for degrees of freedom and 

skewness, when encompassed by distributional choice, CDAX estimated parameters are 

pretty similar to the ones of FTSE MIB. Being both degrees of freedom and skewness 

significant, we are driven to think adopting a GARCH- ARMA model allowing for both 

would be a nice match. As a conclusion, an asymmetric t-Student conditional distribution 

could be our first choice for CDAX, as it was already declared for FTSE MIB. However, even 

if these options seem the best to fit our data, we will later even try the others in copula 

construction: non-asymmetric t-Student, normal and asymmetric normal. This is to be done 
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for the sake of exploration: we would like to investigate whether and in which measure does 

Value at Risk estimation change, based on conditional distribution assumptions.  

Now we are to pass to CACT and IBEX index, respectively:  

CACT 

 mu omega alpha1 beta1 shape skew 

Non- asymmetric 

t- Student 

0.002493 

0.000685 

0.000021 

0.000012 

0.117755 

0.030341 

0.858205 

0.038195 

9.230062 

2.841978 
 

Asymmetric 

t- Student 

0.001851 

0.000707 

0.000021 

0.000009 

0.115467 

0.025739 

0.857328 

0.031515 

10.680108 

2.783579 

-0.213481 

0.036256 

Non- asymmetric 

Normal 

0.002329 

0.000716 

0.000025 

0.000011 

0.148009 

0.030104 

0.831674 

0.034963 
  

Asymmetric 

Normal 

0.001977 

0.000704 

0.000023 

0.000009 

0.129459 

0.025021 

0.843473 

0.030618 
 

-0.242361 

0.031552 

 

IBEX 

 mu omega alpha1 beta1 shape skew 

Non- asymmetric 

t- Student 

0.002610 

0.000819 

0.000019 

0.000012 

0.110307 

0.027636 

0.880349 

0.029824 

5.984010 

1.034413 
 

Asymmetric 

t- Student 

0.001555 

0.000847 

0.000021 

0.000012 

0.113048 

0.027085 

0.872798 

0.030659 

6.987641 

1.403147 

-0.167795 

0.037090 

Non- asymmetric 

Normal 

0.001543 

0.000886 

0.000074 

0.000030 

0.146449 

0.034594 

0.793014 

0.053162 
  

Asymmetric 

Normal 

0.001055 

0.000857 

0.000042 

0.000019 

0.125826 

0.027681 

0.838502 

0.039410 
 

-0.220117 

0.032029 

 

Omega, alpha1 and beta1 are significant and quite similar across all options. However, we are 

not to indulge in mu, omega, alpha1 or beta1 coefficients any more. For what concerns our 

analysis, we just wanted to check whether they were similarly estimated, across different 

marginal options attributed to each index. If all these coefficients were pretty much similar, 

we could have focused on the other two parameters: degrees of freedom and asymmetry. We 

wanted to control if both estimates were significant, in order to consider asymmetry and data 

distribution as a t-Student as two valid possibilities in describing returns behaviour. If we 

would have found out an insignificant parameter for shape, as an example, we would have 

thought about quitting t-Student hypothesis for that index. Moreover, we were even much 

interested in noticing whether shape parameters would have been similar between t-Student 

and asymmetric t-Student. On the other hand, it was important to control if asymmetric 

parameter was influenced by normal or t-Student conditional distribution adoption, or would 

have remained the same. In case we would have noticed differences in degrees of freedom 

estimation, or asymmetry, we could have thought that those differences were at least partially 

due to an interconnection between distributional choices: asymmetry or not, for what concerns 

degrees of freedom, and t-Student or normal, for asymmetry parameter, respectively. This 
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eventual interconnection could have witnessed a capacity of asymmetry to interfere in degrees 

of freedom estimation, as, in fact, there are only two models that encompass degrees of 

freedom. They assume a conditional t-Student distribution and, having extremely similar 

estimated parameters, the unique element that distinguish them is the presence or not of 

asymmetry. Similarly, there could have been an interconnection between degrees of freedom 

and asymmetry whether degrees of freedom would have been able to influence skewness. In 

this case, the same parameter of asymmetry would have changed between two models that 

present similar parameters, and just a difference in marginal distribution choice. This latter 

option is completely exhausted by the estimation of degrees of freedom, so the presence or 

not of degrees of freedom would have influence skewness in the two asymmetric model of 

ours. According to all what we have said, we can deduce that there seems to have no 

interconnection between the two: as one parameter estimation does not change, it seems not to 

be influenced by the presence of the other. As a consequence, we can cross the cases and state 

that we can assume four different models, according to the presence of both parameters, just 

one, or even none. Till now, we have said that, for all indices, we are to fall in the case where 

we have both asymmetry and degrees of freedom, as both estimates are significant. However, 

in order to estimate Value at Risk, we would like even to try other options, like assuming 

normality, as an example. We do not want to retreat our empirical deduction, that an 

asymmetric t-Student should fit all our indices observations well. It is instead for the sake of 

investigation, as we would like to check whether and in which measure could Value at Risk 

estimation change, depending on conditional distribution assumption in the model.  

After having taken heteroscedasticity into account, we are to extract, for each index, data 

representing returns distribution of that index, corrected for heteroscedasticity. According to 

what we said before, index return is given by two elements: a fixed coefficient that we called 

   and error term. As we are observing a mean reverting object,    is equal to zero, so we 

will focus on error term treated for heteroscedasticity, instead. Luckily, R offers an easy code 

to extract residual series from a GARCH model. We are to perform this code for each 

conditional distribution option of every index, in order to be able to perform further analysis. 

Here we expose the four FTSE MIB codes, corresponding to the four options in distribution 

model. Other indices codes are similarly written.  

FTSEres.std<-residuals(FTSEgarch.std,standardize=T) 

FTSEres.sstd<-residuals(FTSEgarch.sstd,standardize=T) 

FTSEres.norm<-residuals(FTSEgarch.norm,standardize=T) 

FTSEres.snorm<-residuals(FTSEgarch.snorm,standardize=T) 
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As it is possible to note from codes, residuals distributions have been standardized by the 

variance of the error term, according to the GARCH(1,1) formula, that we wrote previously. 

Before proceeding with the analysis, we would like to indulge into two series of graphs. In the 

first range we reproduce autocorrelograms we previously did for returns, absolute returns and 

returns at the square root. However, instead of returns, this time we will use standardized 

residuals, extracted from GARCH model. We want to verify whether there are significant lags 

but the first. We really expect first autocorrelogram, the one of simple residuals, to not present 

significant lags but lag zero. However, if we do not detect significant lags after the first into 

absolute residuals and square root residuals autocorrelograms, we will have the proof that 

GARCH(1,1) previously employed effectively managed to treat our rough data for 

heteroscedasticity, and we will be able to continue with our analysis. For rapidity’s sake, here 

we just show autocorrelograms referred to GARCH models with asymmetric t- Student as 

option, but with different shapes lags won’t change.  
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Figure 21 

 

6.3.Graphical representation of GARCH residuals  

Before passing to copula construction, for each index included in the analysis, we will display 

four histograms, showing density function of the corresponding standardized residuals. Each 

index has four graphs, that stay for the different residual distribution assumptions: t-Student, 

asymmetric t-Student, normal or asymmetric normal. As we have already said before, 

according to both theory and empirical analysis, an asymmetric t-Student distribution seems 

the best option to fit every index. However, just for curiosity’s sake, we are to follow the 

same analysis even for all other options. Apart from residuals histograms, we even add in 

each graph the density function of the corresponding distribution. As an example, the first 

graph represents FTSE MIB residuals, according to a non-asymmetric Student t-distribution. 

The curve we added stays for density function of a Student t-distribution, with as many 

degrees of freedom as GARCH model estimated for FTSE MIB with Student t-option, but not 

asymmetric. Similarly, in case residuals reflect normality conditional distribution option, the 

line expresses density function of a normal distribution.  

We now expose the codes to create the first picture: the one of FTSE MIB residuals, with t-

Student distribution hypothesized:  

hist(FTSEres.std,nclass=20,freq=FALSE) 

curve(dt(x,df=6.64),add=T,col="red") 

All other graphs are based on this model. Here they are:  
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We just want to stress that we generate all graphs by using not approximated degrees of 

freedom, in order to get more precision. This was only for representation sake: when it comes 

to copula construction, we will insert the approximated integer number.  

 

6.4.Third step: estimating copula parameters  

Now, finally, we are to fit data to copula models. We will fit the four indices to five copulas: 

two elliptical: Student and Gaussian, and three Archimedean: Frank, Gumbel and Clayton. 

Then, we will even calculate tail dependence coefficients, and we will check whether our 

results agree with what was previously stated in the theory.  

It is now important to stress one thing: as we said before, both financial theory and empirical 

analysis seem to agree that a t-Student asymmetric distribution should be able to fit well every 

index distribution. As a consequence, independently of which copula we choose, we should 
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always assume every conditional distribution has the shape of an asymmetric t-Student. The 

unique exception is given by normal copula, because this particular case is usually associated 

to Gaussian conditional distributions. Taking all this into account, we could now choose, for 

each index, residual distribution that was generated under t-Student asymmetric hypothesis, 

and start fitting different copulas to these four conditional distributions. After getting copula 

parameters, we could build a fictional portfolio, composed of our four indices, and, depending 

on the type of copula we decide to consider, calculating Value at Risk of that portfolio. We 

could even vary portfolio weights, in order to see whether and in which measure does Value 

at Risk calculation change. According to the different copula choice, same weights portfolios 

will probably have different Value at Risk estimation, that we will compare with what we 

previously exposed into copula theory. However, in order to enhance the deepness of our 

analysis, we want even to construct copulas on conditional distributions other than the 

asymmetric Student t-option. After having treated the case that seems to be mostly 

corroborated by our empirical analysis, we will proceed similarly even with non-asymmetric 

t-Student, normal and asymmetric normal hypothesis. We will assume all our four indices to 

follow the same conditional distribution.  

As we have anticipated, firstly we are to assume asymmetric Student t-distribution for all 

indices. We will estimate different copulas parameters and construct differently weighted 

portfolios. By copulas, we will calculate Value at Risk of these portfolios. We will estimate 

copula parameters in R. We expose progressively the commands employed, explaining their 

function.  

Residuals.sstd<- 

cbind(FTSEres.sstd,CDAXres.sstd,CACTres.sstd,IBEXres.sstd) 

To begin with, we said, we assume an asymmetric t-Student distribution for all indices. Here, 

we combine our residuals by columns: it will make the work more computationally easy. Now 

we have to create a generic Student t-copula in four dimensions, where dimension stays for 

number of distributions:  

t.cop<-tCopula(dim=4) 

Mind that this copula has not been fitted to data yet: we just selected copula model.  

m<-pobs(as.matrix(Residuals.sstd)) 

Here we are asking R to consider our data as a unique matrix, and to compute pseudo 

observations of our residuals. Now, we can finally combine Student t-copula structure to data: 

by the following code, we fit residuals matrix to the Student t-copula in four dimensions that 

we previously created:  

fitT.sstd<-fitCopula(t.cop,m,method="ml") 
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The last step is extracting copula estimated coefficients:  

coef(fitT.sstd) 

rho.1 df 

0.5731839 6.3227985 

 

Student t-copula is the unique we are going to treat that has more than one parameter: the first 

is the rho, and the second is the number of degrees of freedom. The rho indicates the degree 

of dependence between conditional distributions that compose the copula. It seems obvious, 

but we want to underline anyway that these degrees of freedom are referred to the copula, 

while before we estimated degrees of freedom for each conditional distribution: they must be 

detached.   

Now we can avail ourselves of our copula parameters estimation to carve out tail dependence 

coefficients. We take the two parameters estimated before by the copula built on our data, and 

we ask R which are tail dependence coefficients of a hypothetical copula with equal 

parameters:  

t.cop.sstd<-tCopula(0.5731839,dim=4,df=6.3227985) 

TailDep_student.sstd<-lambda(t.cop.sstd) 

TailDep_student.sstd 

lower upper 

0.1997087 0.1997087 

 

It is nice to see that the results agree with what we said before in the theory: being an elliptical 

copula, Student t-coefficients of tail dependence are identical. Moreover, they are positive, as 

a Student t-distribution, if compared with a Normal distribution, puts more probability in the 

tails.  

Now that we have disclosed the codes, we can cut it short just by exposing in a table all 

estimated parameters for our five copula choices. We will even add a second table, dedicated 

to tail coefficients, and, then, we will spend a bit of time commenting the results. By now, we 

will assume, in each copula, the same conditional distribution option for all our indices 

involved: in the first table, copula estimated parameters in the first column are referred to the 

case in which all series of residuals have been extracted from a GARCH- ARMA model with 

the same asymmetric t- Student distribution. This condition remains true into first column of 

the second table, referring to tail dependence coefficients. We will have four columns in each 

table, constituted by estimated parameters and tail coefficients respectively, according to 

homogeneous conditional choice. By now, here are estimated parameters and tail coefficients, 
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according to asymmetric t- Student, non- asymmetric t- Student, asymmetric Normal and non- 

asymmetric Normal, respectively.   

Copula parameters 

 
Asymmetric 

t- Student 

Non- asymmetric 

t- Student 

Asymmetric 

Normal 

Non- asymmetric 

Normal 

Student 

Copula 

0.5731839 (rho) 

6.3227985 (df) 

0.572762 (rho) 

6.336552 (df) 

0.5722492 (rho) 

6.5119885 (df) 

0.571760 (rho) 

6.650786 (df) 

Normal 0.563937 0.5634775 0.562976 0.5625416 

Frank 3.804465 3.798213 3.79577 3.792604 

Clayton 0.886848 0.8840733 0.8796065 0.873033 

Gumbel 1.510486 1.510046 1.50837 1.507583 

 

Upper and lower tail dependence coefficients 

 Asymmetric 

t- Student 

Non- asymmetric 

t- Student 

Asymmetric 

Normal 

Non- asymmetric 

Normal 

Student 

Copula 

0.1997087 

0.1997087 

0.1990079 

0.1990079 

0.1930753 

0.1930753 

0.1884682 

0.1884682 

Normal 

Copula 

0 

0 

0 

0 

0 

0 

0 

0 

Frank 

Copula 

0 

0 

0 

0 

0 

0 

0 

0 

Clayton 

Copula 

0 

0.45768 

0 

0.4565586 

0 

0.4547445 

0 

0.4520543 

Gumbel 

Copula 

0.4176831 

0 

0.4174715 

0 

0.4166641 

0 

0.4162843 

0 

 

We know that the case of Normal copula with asymmetric Student t-residuals distributions is 

a bit weird, as usually a Normal copula is combined with even normal marginal distributions, 

and that, assuming different options twists its shape. However, we want to add even this case 

into the analysis.  

It makes not surprise that, from Normal copula, we obtain both lower and upper tail 

dependence coefficients equal to zero, independently of marginal assumption chosen. 

Coefficients are identical, as we are treating an elliptical copula, and they are equal to zero, as 

a Normal copula does not give weight to the tails, apart from the case of perfect correlation. If 

the estimate is correct, Frank copula should demonstrate both zero lower and upper tail 

dependence: like a Normal one. As it was previously exposed in theory, Clayton copula gives 

much weight to joint negative events, as we can infer from positive lower tail dependence 

coefficient. At the same time, it is not very suitable to express probability of joint positive 

events, as upper tail dependence is equal to zero. Probably, according to what we anticipated 

in the theory, this copula would be the best to fit our portfolio, as it gets along with both our 

empirical results, and with general financial consideration that negative correlation in periods 

of stress is much stronger than positive correlation in good times. Gumbel copula parameter 



69 

 

and Gumbel tail dependence coefficients support general Gumbel shape, perfectly reversed 

with respect to Clayton copula: it assigns no weight to extreme joint negative events, while it 

does to positive.  

We know that, usually, normal margins are not the most obvious fit for a Student t-copula: 

Student margins are used, instead. Otherwise, even before we programmed a structure a bit 

heterodox: a Normal copula with Student t-margins. This is just the opposite case. As we have 

already said before, we are not only interested in checking whether Value at Risk varies only 

in a classic contest: we even want to explore what could happen if we insert a twisting case in 

the analysis, and whether it deviates results. Even being an heterodox case, we can notice that 

Student t-copula fundamental characteristics are respected: non-zero and identical lower and 

upper tail dependence.  

 

7.VALUE AT RISK DEFINITION  

Now we got all the parameters and we are finally ready to compute Value at Risk. Although, 

before getting deep into calculations, let’s revise what is exactly Value at Risk. T.J. Linsmeier 

and N.D. Pearson (1996) offer a nice, handy definition: they state that Value at Risk is no 

more than a single number, that is, a statistical resume of possible portfolio losses. Losses 

computed for Value at Risk estimation are specified to be due to normal market movements. 

In normal conditions, losses greater than Value at Risk estimation are, or at least should be, 

suffered only with a small probability, specified previously.  

Getting more specific, given a portfolio, we have to choose a confidence level p. Value at 

Risk gives a threshold of loss, over a given time horizon. This loss is expected to be exceeded 

with a probability of only (1-p)% of the time.  

Substantially, we can put it even easier: Value at Risk is a quantile in the distribution of 

profits and losses of a portfolio. It seems to be a very simple indicator as we translate all of 

the risks of a portfolio into a single number. As a consequence, it is very practical in a 

boardroom or in an annual report. Because of its practicality, according to O. Guéant, Value at 

Risk should be one of the most commonly used measures in financial risk management. 

Unfortunately, O. Guéant even says that easy work ends with Value at Risk definition: 

theoretical distribution of profits and losses of a portfolio is not observable and must be 

estimated someway. So, in order to compute Value at Risk we need to get involved in 

statistic, but not only. As our portfolios are often large and composed of a huge bunch of 

complicated financial assets, our estimate requires approximation and correct asset pricing.  

As we cannot select and take into account all risk factors, we need to take note only of the 

most relevant. Portfolio components need to be matched to these risk factors before being 
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priced. Being a statistical problem, computation of Value at Risk can be carried out using 

various methods. O. Guéant divides them into three groups:  

 Historical simulations  

 Parametric methods, also called analytical methods  

 Monte Carlo methods  

Now, we want to briefly describe each of them, then; we will expose how U. Cherubini,  E. 

Luciano and W. Vecchiato (2004) adopt historical simulation to estimate Value at Risk for a 

portfolio of two assets. Secondly, we will expose our technique for estimating in R a four 

assets portfolio Value at Risk. Our procedure will be based on Monte Carlo simulations. 

Lately, we will put our project into practice, we will show the results and we will comment 

them.  

As we are to start with generalities of historical simulations, we will say that the first step for 

estimation is choosing a certain number of relevant risk factors, relative to the portfolio. Then, 

we have to recover data from past behaviour of these risk factors. The objective is drawing a 

possible evolution of portfolio price and figuring out potential losses that would have been 

suffered if we had hold that portfolio during the period to which risk factors data are referred. 

O. Guéant reports that historical simulations are heavily used as they do not require any 

calibration concerning interdependence structure. To put it easier, it means that we have 

neither to consider eventual correlation behind variables of interest. The few hypothesis we 

have to formulate make Value at Risk based on historical simulations quite easy to elaborate.  

Lately, things started getting a bit more complex in the mid-90’s, with parametric or 

analytical methods. They are based on strong assumptions about risk factors returns 

distributions. Notwithstanding being numerous, all parametric methods share a common 

advantage: Value at Risk can be computed very easily. If we decided to apply a parametric 

method, in most of the cases we would find us resorting to a Taylor expansion to approximate 

the portfolio, and then relying on the Greeks of portfolio assets. A nice consequence of this is 

that we would not need to fully reprice our standard parametric method after every market 

movement. However, there is even an uncomfortable side: even if Delta approach has been 

enriched in order to take non-linearities into account, not all linearities can be encompassed 

by the model.  

Anyway, we do not have to care so much about this, as we are to use the latest family of 

methods: Monte-Carlo simulations. With respect to historical simulations, in Monte-Carlo 

simulations samples are not bounded to be based on past, recorded realizations of risk factors. 

Although, we have to estimate distribution parameters for the risk factors and, then, draw 

scenarios for the joint distribution. The main advantage of this method is that we can tailor a 
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proper distribution for each risk factor. The bad news is that we should have to estimate many 

parameters, actually all marginal parameters we need to depict every marginal risk factor 

distribution, and this risks to turn out to be pretty slow.  

As we have to choose one of these methods to estimate our Value at Risk, O. Guéant advises 

us that historical simulations, so, the first method exposed, are mostly non parametric and are 

therefore able to take into account structure of dependence between different risk factors 

involved. Otherwise, the adoption of this strategy would mean that we have only to avail 

ourselves of true historically recorded data. If there is lack of data, we cannot proceed with 

the analysis. Especially, if we consider we have to estimate an extreme quantile, having few 

data could seriously bias our estimate. One evolution of this first approach was given by 

parametric methods: they rely on historical data only with the purpose of fitting some 

parameters, like standard deviation, for instance. Then, given the parameters, they allow to 

proceed with the estimation of Value at Risk by both an approximation of the portfolio of 

interest and eventual distributional assumptions on the risk factors, concerning details that 

cannot be encompassed by previously estimated parameters. It is here that limitations arise: 

there can be, O. Guéant states, approximations that may be hardly adapted to extreme risk for 

certain portfolios. However, we have a main advantage in parametric method: speed of 

computation.  

Otherwise, we are mostly interested in the third family amongst methodologies: Monte-Carlo 

simulations. Following T.J. Linsmeier and N.D. Pearson (1996), the main difference between 

Monte-Carlo simulation and historical simulation is that with Monte-Carlo, rather than 

generating N hypothetical portfolio profits or losses, carrying out the simulation using last N 

periods observed changes in market factors, we have to choose a statistical distribution 

believed to fit adequately market factors. Then, we employ a pseudo-random number 

generator to generate thousands of hypothetical market factors changes. These are then used 

to elaborate thousands of hypothetical portfolio profits and losses on the current portfolio, and 

the distribution of these profits and losses. Lastly, we have to estimate the Value at Risk for 

the portfolio by estimating the corresponding quantile of the resulting distribution of profits 

and losses. With respect to historical simulations, the great advantage of Monte-Carlo is that 

the amount of data we can work with is not restricted by historical records. As we are to 

simulate values in R, we can draw as many trajectories as we want, even one billion, after 

having calibrated these draws on historical data. In order to make all this discussion more 

formal, O. Guéant resumes that we have to avail ourselves of past data to fit a distribution f to 

risk factors. Then we have to generate a large number M of new values for our risk factors. 

Theoretically, if we have to handle financial assets portfolios, O. Guéant reminds that we 
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could better use risk factors returns, instead of simple risk factors. Anyway, the general idea 

does not change. Here, O. Guéant calls the new values for the risk factors      
        

  , 

that we refer to as:  

(    
          

   )             

Then the time consuming step of Monte-Carlo simulations consists of the evaluation of the 

portfolio for these new values of the risk factors:  

      
   (    

          
   )      

      
              

Once this step has been completed, we can calculate Value at Risk by calculating the quantile 

of interest in the empirical distribution of profits and losses.  

Now that we have exposed the generalities of all three methods, we are to report how U. 

Cherubini, E. Luciano and W. Vecchiato (2004) apply copulas to historical simulation in 

order to carry out Value at Risk for a two assets portfolio. We are to explain their application 

in detail as it offers a starting point on which we work with the aim of calculating Value at 

Risk for a portfolio of four financial assets. U. Cherubini, E. Luciano and W. Vecchiato 

resume that, for a given confidence level θ, Value at Risk is the level under which returns will 

fall only with probability θ. If we denote as Z the portfolio return over a given horizon T, 

Value at Risk is the threshold such that:  

             

Consider a portfolio of two assets. Let X and Y be their continuous returns, over a common 

horizon T, and let         be the weight of X. The portfolio return is            , 

with distribution function:  

                        

 ∫   (  
 

 
  

   

 
     )       

  

  

 

Now we say that our portfolio can be represented by a copula: single assets distributions are 

the marginal distributions, while joint copula distribution encompasses every association or 

dependence relation between the two assets. We apply copula to estimate Value at Risk, given 

a confidence level θ, for the portfolio. Let    and    be our assets returns, and         the 

allocation weight, so the portfolio return is given by                  where, omitting 

the subscript t,  

                         

   (                           )                   

And by derivation we express it in terms of probability density function:  
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Hence, the cumulative density function for the portfolio return Z is given by:  
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Where upper integral limit 
 

 
    

   

 
   is obtained by putting             in function 

of   . The Value at Risk for the portfolio, at a confidence level         and for a given 

weight        , is the solution z* of the equation        . This result may be extended 

straight to a portfolio with n-assets, with the condition that all assets weights sum up to 1.  

In the beginning, our idea was to exploit this formula to calculate Value at Risk even for our 

portfolio. We had enough data, as we disposed of weekly observations for more than twenty 

years for each index. Moreover, we had already estimated conditional distributions 

parameters, according to different hypothesis. We had even estimated copula parameters, both 

for elliptical and Archimedean copulas, in order to check if our results would have changed 

depending on the copula employed. However, problems came out in developing four integrals 

in a row, one for each asset in our portfolio: this would have consistently slow down our 

proceedings. Moreover, as it is possible to check in the two assets formulation by U. 

Cherubini, E. Luciano and W. Vecchiato (2004), we would have had to write explicitly 

density functions, both for all portfolio assets conditional distributions and for the copula 

itself. In the end, this would have turned out to be too much computationally intensive, while 

we wanted to find a much faster and easier way to carve out many Values at Risk, varying 

conditional assumptions, copula choice and even portfolio weights. In order to deduce an 

easier expression, we have to consider more carefully U. Cherubini, E. Luciano and W. 

Vecchiato’s (2004) two integrals formulation. We can see that in both cases the lower bound 

is -∞, while the upper bound changes: it is on the latter we need to focus. We have to start 

considering the inner integral: its upper bound corresponds to portfolio return formulated in 

function of   , that is, the first asset. Being Value at Risk a quantile, we should find out   , as 

it indicates the level in correspondence of which θ expresses the probability that our portfolio 

return is smaller or equal than z. In fact, as argument of the first integral, we have marginal 

distribution of asset    and joint distribution of the copula. In the first integral we have 

formulated our quantile of interest in function of   , and, putting as argument both first asset 
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marginal density function and copula function, it is like we have tried to indicate how much 

first asset can determine portfolio Value at Risk. By second integral, we should, so, take into 

account how much second asset can influence quantile determination. This formulation allows 

to not neglect interdependence between assets, that is substantially the reason for which we 

use copula instrument. In fact, imagine that, while fitting into the first integral both first asset 

density function and copula density function, expressing integral upper bound in function of 

first asset, we cannot completely explain first asset yet, as in joint distribution we have still to 

express   . Only with second integral we can consider even   , so only with second integral 

we can complete joint density function with second asset conditional distribution, and in the 

end extract quantile z. We would like even to notice that, if we have a portfolio of just two 

assets, we have to write inner integral upper bound as portfolio return in function of the first 

asset, but we do not have to express second integral upper bound in function of second asset: 

we have just to write +∞. This makes things very comfortable and it is substantially due to a 

system of two equations:  

{
             

         
 

Second element seems obvious and pertains to portfolio weights, however, it assure us that we 

do not need to specify additional information in second integral upper bound, as, specifying 

first asset in first integral upper bound, we do not have to deduce additional information for 

second integral.  

Having a four assets portfolio, applying integrals like U. Cherubini E. Luciano and W. 

Vecchiato would have been really tricky, so we found out a different method, more 

computationally practical, that we are to show immediately. We just want to specify one thing 

before: as it is possible to see, U. Cherubini, E. Luciano and W. Vecchiato use historical 

simulation: they do not have to simulate data by a random generator on the basis of a 

previously fitted distribution of conditional returns. They simple resort to historical, recorded 

data. We, instead, want to apply Monte-Carlo simulation to increase precision. We have 

already estimated degrees of freedom of each Student t-asset distribution, and we do not need 

other parameters. Moreover, we have even estimated copula parameters for both Archimedean 

and elliptical copulas. As a consequence, now we choose a copula. We take as a starting point 

residual distributions, on which we estimated all the parameters of the copula. Then, by a 

random generator in R, we estimate a really high number of fictional joint distributions, that 

have all to share both marginal and copula parameters estimated previously. We build our 

portfolio selecting the weights of the assets, paying attention that all weights must sum up to 

1. In addition to this, it is extremely important to underline that, when we indicate portfolio 
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assets, we are not referring to recorded historical returns, but to random generated assets 

returns, that have been created by R when we have scattered a series of random generated 

copulas with fixed number of marginal distributions and fitted parameters for each random 

distribution. After having settled the weights of our portfolio, we are to calculate its Value at 

Risk just by extracting the corresponding quantile. Having used a copula, our result takes 

automatically into account all possible interdependences between assets.  

Getting into practice, we will start by estimating Value at Risk for a portfolio represented by a 

Student t-copula with Student t-assets returns distributions. Later, we will even calculate 

Value at Risk by a Normal copula with Student t-margins, and by a Student t-copula with 

normal margins. Maybe these latter cases could appear a bit bizarre: usually, Normal copula is 

associated with Gaussian marginal distributions, and vice versa. However, we want to apply 

all five copulas previously exposed in the analysis. The objective is checking if Value at Risk 

changes and how, according to both copula and margins choice. We will even alter the 

weights of the portfolio, to see if estimate changes. Lastly, we will control if all our results 

agree with what was stated in theory before, and we will try to indicate which could be the 

better copula to take portfolio risk into account. Now, we are to carefully depict all passages 

with Student t-copula, and later we will expose a table with all Value at Risk estimates.  

 

8.CORRELATIONS  

Before proceeding with copula fitting process, we waste a bit of time checking the correlation 

between the variables. According to what we have exposed previously, we are not to give 

linear correlation matrix, as it is not the optimal measure of association. We will show rank 

correlation instead: Kendall’s tau and Spearman’s rho coefficients. Here we expose the codes 

to associate residuals by columns and carve out matrix of Kendall’s and Spearman’s 

coefficients. We want to notice that, in the first table, we refer to all our four indices residuals 

obtained by a GARCH- ARMA model with asymmetric t- Student marginal shape option. 

Later, we will draw similar matrix even for the other marginal distribution options. We want 

to be sure the magnitude of association does not change, depending whether we choose to 

adopt one distribution or the other:  

 

Residuals.sstd<-cbind(FTSEres.sstd,CDAXres.sstd,CACTres.sstd, 

IBEXres.sstd) 

cor(Residuals.sstd,method="kendall") 

 

 



76 

 

Asymmetric t-Student residuals- Kendall 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.2077630 0.2375144 0.3500005 

CDAXres 0.2077630 1.0000000 0.7437551 0.4221804 

CACTres 0.2375144 0.7437551 1.0000000 0.4659060 

IBEXres 0.3500005 0.4221804 0.4659060 1.0000000 

 

Asymmetric t-Student residuals- Spearman 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.3071783 0.3498962 0.5040315 

CDAXres 0.3071783 1.0000000 0.9116999 0.5926453 

CACTres 0.3498962 0.9116999 1.0000000 0.6436635 

IBEXres 0.5040315 0.5926453 0.6436635 1.0000000 

 

Non- asymmetric t-Student residuals- Kendall 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.2078809 0.2375334 0.3494604 

CDAXres 0.2078809 1.0000000 0.7432378 0.4211572 

CACTres 0.2375334 0.7432378 1.0000000 0.4652023 

IBEXres 0.3494604 0.4211572 0.4652023 1.0000000 

 

Non- asymmetric t-Student residuals- Spearman 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.3072186 0.3497704 0.5029552 

CDAXres 0.3072186 1.0000000 0.9114143 0.5916194 

CACTres 0.3497704 0.9114143 1.0000000 0.6429199 

IBEXres 0.5029552 0.5916194 0.6429199 1.0000000 

 

Asymmetric Normal residuals- Kendall 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.2064204 0.2370846 0.3502477 

CDAXres 0.2064204 1.0000000 0.7402101 0.4210850 

CACTres 0.2370846 0.7402101 1.0000000 0.4651376 

IBEXres 0.3502477 0.4210850 0.4651376 1.0000000 

 

Asymmetric Normal residuals- Spearman 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.3051137 0.3494250 0.5050080 

CDAXres 0.3051137 1.0000000 0.9096571 0.5919211 

CACTres 0.3494250 0.9096571 1.0000000 0.6430488 

IBEXres 0.5050080 0.5919211 0.6430488 1.0000000 

 

Non- asymmetric Normal residuals- Kendall 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.2064889 0.2372633 0.3501488 

CDAXres 0.2064889 1.0000000 0.7413626 0.4212371 

CACTres 0.2372633 0.7413626 1.0000000 0.4657880 

IBEXres 0.3501488 0.4212371 0.4657880 1.0000000 
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Non- asymmetric Normal residuals- Spearman 

 FTSEres CDAXres CACTres IBEXres 

FTSEres 1.0000000 0.3054580 0.3496436 0.5048907 

CDAXres 0.3054580 1.0000000 0.9102985 0.5920506 

CACTres 0.3496436 0.9102985 1.0000000 0.6435536 

IBEXres 0.5048907 0.5920506 0.6435536 1.0000000 

 

It is nice to see that choice of marginal distribution shape does not alter association measures 

between indices. The adoption of Kendall’s tau rather than Spearman’s rho has an influence 

on the magnitude of the association, however, it has not on the order of the couples, if we 

dispose them from less positively related to more strongly positively related. The logic behind 

this is not just getting an idea whether two variables are strongly correlated or not. We will 

recover this table when we will have to calculate Value at Risk for portfolios constituted of 

our four indices. Theoretically, if we assigned strong weight to two assets that are even 

relatively strongly correlated, like CACT and CDAX, we would change for worse Value at 

Risk estimation, as we are making our portfolio riskier.  

 

9.VALUE AT RISK ESTIMATION  

As now we can finally pass to Value at Risk estimation, we will start by exposing and 

commenting every line of code we are to use, in order to clarify our proceedings. We will 

refer to a Student t-copula with asymmetric Student t-conditional distributions. After this 

explicative example, we will resume all Value at Risk estimates in a series of tables, 

comprehensive of every possibility given by copula choice and marginal shape option. We 

will even adopt different portfolio compositions, checking in which measure does Value at 

Risk vary, depending whether we focus more or less on relatively strongly positively 

correlated assets.  

Anyway, for all cases we need to use the following command, whose point is generating an 

object, called “r”, that is set equal to the number of random copulas we want to generate. This 

is the first step of Monte Carlo simulation: when we are to generate an extremely high number 

of objects, on which to deduce our estimate. As we are lucky and we dispose of a powerful 

software, we settle r equal to 100000, as R can perfectly handle 100000 randomly generated 

copulas, whose parameters have been previously estimated from real series of residuals.  

r<-100000 

At this point, before applying random generation and Monte Carlo simulation, we need to fit 

the copula. We do not want to start immediately with something heterodox, like a Normal 

copula with Student t-conditional distributions: we will choose a Student t-copula with 
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asymmetric Student t-margins. Maybe this will complicate a bit our codes, as, while for a 

Gaussian copula we just need a unique parameter of joint dependence, for Student t-copula we 

need two: degrees of freedom of the copula and rho, as previously said. In the following 

codes, we briefly resume how to estimate copula parameters from our matrix of residuals: we 

generate the structure of a Student t-copula in four dimensions, then we fit to it the pseudo 

matrix of residuals.  

There is one thing we would like the reader to mind: as we exposed before in the theory, we 

are to use Inference for Margins Method, that is more practical than Maximum Likelihood 

Estimation, and releases efficient results. When we ask the software to apply “ml” in 

estimating copula parameters, this “ml” is not to be confused with Maximum Likelihood 

Estimation. True maximum likelihood method would release both estimates for copula 

parameters and for conditional distribution parameters in one single step. Here, instead, the 

code that we are to use allows us to estimate separately conditional distributions parameters 

and copula parameters, as in the Inference for Margins method. By conditional distribution 

parameters we mean, for example, degrees of freedom of FTSE MIB, CDAX and other 

indices distributions, in the case we assume for GARCH-ARMA model a Student t-

distribution option. In the case we have assumed a Normal conditional distribution instead, 

we do not have to insert parameters: later we will have just to write “norm” for indicating 

marginal shape. As a conclusion, here we are with the first codes:  

t.cop<-tCopula(dim=4) 

m<-pobs(as.matrix(Residuals.sstd)) 

fitT.sstd<-fitCopula(t.cop,m,method="ml") 

coef(fit.sstd)  

Where, by last line, we ask the software to release estimated copula parameters. Now, given 

both our conditional distributions parameters and our copula parameters, we can construct a 

fictional copula of the same type, with the same number of dimensions, with both previously 

estimated copula parameters, like rho and degrees of freedom of the copula, and marginal 

parameters, like degrees of freedom of each marginal distribution, that was assumed to be a t- 

Student. By writing “t” for each conditional distribution, we even specify that we assume 

every index series of residuals to be well described by a t-Student. When we will not have 

Student t-margins, but Normal margins, we will have to insert the mean and the standard 

deviation as parameters. Moreover, it is nice to notice that we are not bound to write always 

the same type of distribution for all margins: we could even ask for a copula with two t- 

Student and two Normal conditional distributions, as an example.  

t.cop_sstd<-mvdc(tCopula(param=0.5731839,df=6,dim=4), 
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margins=c("t","t","t","t"), 

paramMargins=list(list(df=8),list(df=10),list(df=11),list(df=7))) 

We just want to specify one thing: last copula has been drawn on the basis of previously 

estimated parameters, however, it is completely disentangled from real distributions of 

indices’ residuals: it is fictional.  

At this point, we have to proceed with simulation: according to the copula structure we have 

just specified, we ask R to generate 100000 random copulas with the same characteristics:  

Sim_student_sstd<-rMvdc(r,t.cop_sstd) 

We have to specify three confidence levels (1-α), in correspondence of which calculate Value 

at Risk: returns will fall only with probability (1-α). We generate a vector alpha with our 

chosen levels. Levels usually taken corresponds to 1%, 5% and 10%, so we are to follow this 

tradition, however, even lower or higher references could be adopted.   

alfa<-c(0.01,0.05,0.1) 

Next we have to detach our marginal distributions from the copula and give them a name. 

This will be useful when we will have to build our portfolios, because the conditional 

distributions will be our assets. In order to better understand next codes, remember that we 

have 100000 copula simulations, and imagine our assets disposed into a matrix. Having 

100000 simulations of copula built on our four assets, this means that we have automatically 

even 100000 simulations for each of our conditional asset distribution. Think assets are 

disposed into a matrix by columns: with next codes we are just calling column by column, 

naming each of them as the corresponding asset.  

FTSE_student.cop_sstd<-(Sim_student_sstd[,1]) 

CDAX_student.cop_sstd<-(Sim_student_sstd[,2]) 

CACT_student.cop_sstd<-(Sim_student_sstd[,3]) 

IBEX_student.cop_sstd<-(Sim_student_sstd[,4]) 

Now we will create a portfolio with equal weights and with all the assets we dispose of:  

portfolio_N1<- 

0.25*FTSE_student.cop_sstd+0.25*CDAX_student.cop_sstd+ 

0.25*CACT_student.cop_sstd+0.25*IBEX_student.cop_sstd 

As Value at Risk is substantially a quantile of the portfolio, in order to get its estimate we 

have finally to extract the quantiles written in vector alpha from our portfolio with equal 

weights:  

quantile(portfolio_N1,alfa) 

1% 5% 10% 

-2.361328 -1.515750 -1.139032 
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Here we have quantiles of the easiest portfolio to compose : we just gave all assets the same 

weight. Although, before dedicate ourselves to other copulas than the Student with 

asymmetric Student t-margins, we would like to linger a bit on portfolio composition. In 

particular, we wonder if, changing assets weights, we would obtain strong differences in 

Value at Risk.  

 

9.1.Portfolio variance  

We hypothesize four differently weighted portfolios, more or less unbalanced, and we will 

calculate their variances. We choose portfolios with minimum, medium and high variance 

and, then, we estimate their Value at Risk. Theoretically, Value at Risk should be higher the 

stronger is the variance in the portfolio: as variance substantially expresses risk, and Value at 

Risk is a way to measure risk. Anyway, we cannot just say that the portfolio with identical 

weights is the most balanced, as we have even to take into account association measures. As 

we explained previously when we exposed association measures, we are not to refer to linear 

correlation coefficient, as it, by its name, takes into account only linear correlation. We are to 

use rank association instead: Kendall’s tau or Spearman’s rho. From association matrices we 

can check that they are quite similar, Spearman’s rho tends just to be constantly a bit higher 

than Kendall’s tau: in next calculations, we will resort to Spearman’s rho. The general 

formula to get variance for a portfolio of four assets is:  

  
    

   
    

   
    

   
    

   
                                           

                                           

With respect to traditional formulation, we are to change linear correlation coefficient with 

Spearman’s rho coefficient. This is just a brief test, in order to choose different portfolio 

weights for our Value at Risk experiment. Now we expose the code used to calculate variance 

of the same weights portfolio, where later we will just expose variances obtained from other 

more or less balanced portfolios.  

 

port_variance<-

(var(FTSEres.sstd)*0.25^2)+(var(CDAXres.sstd)*0.25^2)+ 

+(var(CACTres.sstd)*0.25^2)+(var(IBEXres.sstd)*0.25^2)+ 

+(2*0.25*0.25*sd(FTSEres.sstd)*sd(CDAXres.sstd)*0.3071783)+ 

+(2*0.25*0.25*sd(FTSEres.sstd)*sd(CACTres.sstd)*0.3498962)+ 

+(2*0.25*0.25*sd(CDAXres.sstd)*sd(CACTres.sstd)*0.9116999)+ 

+(2*0.25*0.25*sd(FTSEres.sstd)*sd(IBEXres.sstd)*0.5040315)+ 
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+(2*0.25*0.25*sd(CDAXres.sstd)*sd(IBEXres.sstd)*0.5926453)+ 

+(2*0.25*0.25*sd(CACTres.sstd)*sd(IBEXres.sstd)*0.6436635) 

And we get a variance equal to 0.6932016.  

 

Now, we will try to construct a portfolio with lower variance, taking into account that the 

couples FTSE MIB and CDAX, and FTSE MIB and CACT seem to be not strongly positively 

correlated; while couples CDAX and CACT, and CACT and IBEX seem to be more strongly 

positively correlated. When we want to reduce variance, we will try to avoid assigning high 

weights both to CDAX and CACT, or both to CACT and IBEX. Similarly, in order to 

augment variance, we will try to give much weight both to CDAX and CACT, or both to 

CACT and IBEX.  

In a few pages, we are to calculate Value at Risk of the portfolio with identical weights. In 

order to calculate another Value at risk, referred to a differently weighted  portfolio, with the 

same assets, we try to build a new portfolio, less risky. Similarly, we will create even a riskier 

one, playing with the weights. We start with the less risky: as we said that CDAX and CACT 

share strong positive dependence, we are to assign them strongly different weights: 45% and 

5% respectively. Similarly, as we observed that CACT and IBEX are positively entangled, we 

are to invest 20% of our portfolio in IBEX, only 5% in CACT and what remains in FTSE 

MIB. As a consequence, the two assets that are more strongly present in the portfolio, so that 

have the highest weight, are only weakly dependent. We obtain a variance equal to 

0.6786376, that is smaller than the one calculated with equal weights portfolio.  

In order to create a high variance portfolio, we reason in the same way: we assign much 

weight both to CACT and to CDAX, as they are positively entangled. Theoretically, we could 

have done the same with the couple CACT and IBEX, but Spearman’s coefficient is higher 

for CACT and CDAX, so we expect the effect to be stronger. We assign 5% to FTSE MIB, 

45% to CACT, 30% to CDAX and 20% to IBEX. We can use same codes as before, after 

having changed weights. We find out that variance is 0.8423955, that is the highest variance 

till now.  

Lastly, we just want to create a fourth portfolio, with intermediate weights, but different from 

the equal weights portfolio. We settle these random weights like this: 25% FTSE MIB, 25% 

CDAX, 15% CACT and 35% IBEX. Its variance is 0.6913021.  

 

Before proceeding with Value at Risk estimation, we want just to clarify a couple of things. 

We were looking for four different portfolio compositions in order to check whether and how 

much Value at Risk could be influenced by a more or less balanced choice of assets. 
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However, we are not interested in determining the lowest or highest variance portfolio: in that 

case we would have thought about a more scientific way to do it. We just wanted to have four 

portfolios from which we expected relatively different Value at Risk estimations.  

 

9.2.Our results  

Now that we have even found out assets weights balance, we can finally pass to estimate 

Value at Risk of all portfolios, assuming different conditional distributions for assets and 

different copulas entangling them. We will show some tables, in order to demonstrate all 

possible Value at Risk estimates. For each portfolio composition, we will present three tables, 

one for each confidence level at which we have to calculate Value at Risk: confidence levels 

that we previously exposed in vector alpha. In each table, we will gather Value at Risk 

estimates, with that portfolio composition and at that confidence level, with all possible 

different combinations of copula and conditional distributions of assets choice. We just have 

to add a small precision: almost all codes are similar to the one we previously exposed, with a 

Student t-copula and asymmetric Student t-margins. The unique difference is given by the 

case in which we have to specify Normal margins, instead of Student t-margins. Here, instead 

of having to insert degrees of freedom of each asset distribution, in order to define Normal 

conditional distribution we have to indicate mean and standard deviation of the corresponding 

series of asset residuals. Moreover, when now we have to specify which type of marginal 

distribution do we want for our assets, we do not have the option to include asymmetry. 

However, this constitutes no problem. Asymmetry has been already taken into consideration 

when we have calculated copula parameters: we have fitted copula structure to the matrix of 

asymmetric residuals. In the following we will parade all the tables, and then we will 

comment the results.  

 

25% FTSE MIB+ 25% CDAX+ 25% CACT+ 25% IBEX 

Alpha 1% 

 
Asymmetric 

t-Student margins 

Non- asymmetric 

t-Student margins 

Asymmetric 

Normal margins 

Non- asymmetric 

Normal margins 

Normal 

Copula 
-2.273783 -2.350577 -1.987967 -1.958898 

Student 

Copula 
-2.361328 -2.438872 -2.052793 -2.021525 

Frank 

Copula 
-1.915491 -1.962420 -1.702977 -1.690158 

Clayton 

Copula 
-2.553492 -2.638603 -2.203706 -2.172285 

Gumbel 

Copula 
-1.958684 -2.03379 -1.735223 -1.717676 
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25% FTSE MIB+ 25% CDAX+ 25% CACT+ 25% IBEX 

Alpha 5% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.517775 -1.548442 -1.428042 -1.411164 

Student  

Copula 
-1.515750 -1.546642 -1.439146 -1.422116 

Frank  

Copula 
-1.419695 -1.453029 -1.342340 -1.326182 

Clayton 

Copula 
-1.579212 -1.608470 -1.486565 -1.475454 

Gumbel 

Copula 
-1.359511 -1.39206 -1.280890 -1.272408 

 

 

25% FTSE MIB+ 25% CDAX+ 25% CACT+ 25% IBEX 

Alpha 10% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal 

Copula 
-1.153520 -1.171162 -1.125645 -1.115217 

Student 

Copula 
-1.139032 -1.156203 -1.119314 -1.109227 

Frank  

Copula 
-1.151975 -1.176161 -1.120661 -1.108886 

Clayton 

Copula 
-1.135956 -1.154255 -1.111016 -1.104799 

Gumbel 

Copula 
-1.065898 -1.08710 -1.029268 -1.031076 

 

 

30% FTSE MIB+ 45% CDAX+ 5% CACT+ 20% IBEX 

Alpha 1% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-2.345511 -2.410581 -2.053015 -2.018036 

Student 

Copula 
-2.427182 -2.498765 -2.118691 -2.082708 

Frank  

Copula 
-2.052103 -2.097778 -1.829550 -1.799066 

Clayton 

Copula 
-2.598529 -2.666584 -2.238795 -2.210347 

Gumbel 

Copula 
-2.086616 -2.148906 -1.850365 -1.821784 
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30% FTSE MIB+ 45% CDAX+ 5% CACT+ 20% IBEX 

Alpha 5% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.559266 -1.587175 -1.475301 -1.454653 

Student  

Copula 
-1.549433 -1.575947 -1.479572 -1.458572 

Frank  

Copula 
-1.485832 -1.513011 -1.406991 -1.388428 

Clayton 

Copula 
-1.612940 -1.635563 -1.531010 -1.513050 

Gumbel 

Copula 
-1.434196 -1.453878 -1.353239 -1.338759 

 

 

30% FTSE MIB+ 45% CDAX+ 5% CACT+ 20% IBEX 

Alpha 10% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.181487 -1.197403 -1.161426 -1.147828 

Student  

Copula 
-1.168136 -1.183359 -1.159004 -1.145070 

Frank  

Copula 
-1.186059 -1.196856 -1.162928 -1.141436 

Clayton 

Copula 
-1.166777 -1.181943 -1.149227 -1.138901 

Gumbel 

Copula 
-1.114176 -1.129925 -1.082104 -1.077463 

 

 

5% FTSE MIB+ 30% CDAX+ 45% CACT+ 20% IBEX 

Alpha 1% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-2.299105 -2.374271 -2.054346 -2.022287 

Student  

Copula 
-2.385680 -2.465041 -2.106974 -2.073399 

Frank  

Copula 
-2.002010 -2.068352 -1.826544 -1.796237 

Clayton 

Copula 
-2.534295 -2.634373 -2.240844 -2.212952 

Gumbel 

Copula 
-2.031732 -2.112251 -1.839434 -1.823034 

 

 



85 

 

5% FTSE MIB+ 30% CDAX+ 45% CACT+ 20% IBEX 

Alpha 5% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.539699 -1.567895 -1.472185 -1.452831 

Student  

Copula 
-1.535116 -1.564994 -1.481094 -1.461173 

Frank  

Copula 
-1.464784 -1.496408 -1.405392 -1.386017 

Clayton 

Copula 
-1.601083 -1.633087 -1.525380 -1.510051 

Gumbel 

Copula 
-1.408070 -1.441815 -1.350067 -1.339920 

 

 

5% FTSE MIB+ 30% CDAX+ 45% CACT+ 20% IBEX 

Alpha 10% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.171712 -1.190289 -1.157130 -1.145709 

Student  

Copula 
-1.158878 -1.176516 -1.154128 -1.142176 

Frank  

Copula 
-1.175686 -1.194706 -1.155186 -1.141895 

Clayton 

Copula 
-1.157674 -1.177220 -1.157611 -1.136852 

Gumbel 

Copula 
-1.093044 -1.120841 -1.080515 -1.074959 

 

 

25% FTSE MIB+ 25% CDAX+ 15% CACT+ 35% IBEX 

Alpha 1% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-2.315474 -2.400030 -1.998944 -1.970257 

Student  

Copula 
-2.405955 -2.490284 -2.062076 -2.032489 

Frank  

Copula 
-1.983487 -2.035792 -1.731719 -1.719383 

Clayton 

Copula 
-2.585115 -2.678083 -2.203174 -2.178765 

Gumbel 

Copula 
-2.018562 -2.104316 -1.761982 -1.733227 
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25% FTSE MIB+ 25% CDAX+ 15% CACT+ 35% IBEX 

Alpha 5% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.535986 -1.570112 -1.436407 -1.419988 

Student 

Copula 
-1.535072 -1.566793 -1.440916 -1.424779 

Frank  

Copula 
-1.444082 -1.476504 -1.354960 -1.336737 

Clayton 

Copula 
-1.595229 -1.626927 -1.493270 -1.479839 

Gumbel 

Copula 
-1.390298 -1.421743 -1.292169 -1.286342 

 

 

25% FTSE MIB+ 25% CDAX+ 15% CACT+ 35% IBEX 

Alpha 10% 

 Asymmetric 

t-Student margins  

Non- asymmetric  

t-Student margins  

Asymmetric  

Normal margins 

Non- asymmetric  

Normal margins 

Normal  

Copula 
-1.167411 -1.185542 -1.130209 -1.120319 

Student  

Copula 
-1.151383 -1.169316 -1.124270 -1.114445 

Frank  

Copula 
-1.165905 -1.185639 -1.126637 -1.113432 

Clayton 

Copula 
-1.147309 -1.166420 -1.118257 -1.114055 

Gumbel 

Copula 
-1.087356 -1.106299 -1.039268 -1.039306 

 

Now that we have elaborated all possible Value at Risk estimates, we can spend a couple of 

words commenting our results. In the first three tables, we refer always to the first portfolio, 

the one composed of equal weighted assets. In each table we compute Value at Risk estimates 

for each copula considered into the analysis. We have five copulas, two elliptical and three 

Archimedean. For each possible copula choice, we compute Value at Risk with four different 

options: whether all our conditional distributions are shaped like a t-Student or a Normal, and 

whether do they encompass asymmetry option or not. We get a total of twenty estimates in 

each table. The first table is referred to Value at Risk estimates of the first portfolio, adopting 

a confidence level of 1%. In the second table, referring the same first portfolio, we have a 

confidence level of 5%, and in the third table of 10%. Then, we have shown a similar 

organization for all other three portfolios we proposed, adopting for each all possible choices 

of copulas and of conditional distributions type. For each portfolio we display three tables, 

given by the three confidence levels we decided to treat. We start from the first table, of the 
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first portfolio at a confidence level of 1%. We can notice that, given the same copula, 

conditional distributions choice has an influence on portfolio Value at Risk. Generally, we can 

notice that Value at Risk computed by Student t-marginal option tends to be generally higher 

than the one computed with Normal option, independently of asymmetry. This can be 

substantially due to longer tails that Student t-distribution has, with respect to Normal 

distribution. We do not find a substantial, constant difference between Student t-margins with 

asymmetry option or not. However, we can notice that asymmetric normal conditional 

distributions, if compared with non- asymmetric normal conditional distributions, given the 

same copula, tend to give lower Value at Risk estimates. This is due to the presence of 

negative asymmetry, that drags the distribution to the left, showing a higher density function 

in the part of graph that corresponds to poor portfolio results. It is possible to check that this 

situation, that, resuming, copulas with Student t-margins release lower Value at Risk 

estimates than those with Normal margins, and that asymmetry into normal margins has an 

influence as well, is present in all tables, independently of the type of copula, portfolio or 

confidence level we choose. After having taken conditional distributions into consideration, 

we can pass to copula choice. Here, it is necessary to distinguish between confidence levels, 

as Value at Risk estimates with low confidence levels, like 1% or 5%, release results that 

confirm what we said previously into the theory, whereas estimates of every portfolio, at 

confidence level of 10%, seem to be more blurred. Given conditional distributions choice, we 

can verify that, at a confidence level of 1%, the lowest Value at Risk is always the one 

estimated with a Clayton copula. This gets along with what was written into the theory and 

with what we previously observed, that Clayton copula is the one that, among all elliptical 

and Archimedean copulas that we analysed, puts more weights on the negative tail, that 

means that it gives more probability to joint negative events. Having calculated a low 

quantile, it was to be expected that this copula estimate is dragged down by the higher 

probability that its distribution puts on the left part of the density function. After Clayton 

copula, we can check that immediately lower Value at Risk estimate is the one of Student t-

copula with Student t-conditional distributions, independently whether they are asymmetric or 

not. Mind that even for Clayton copula we referred to the case with Student t-margins. After 

Student t-copula, immediately lower Value at Risk is the one of Gumbel copula, with Student 

t-margins as well. The fact that an elliptical copula, as the t-Student is, releases lower, so 

riskier, estimates than an Archimedean copula, should be explained by the particular shape of 

a Gumbel copula. In fact, while an elliptical copula attributes the same weights both to 

positive and negative joint extreme events, with respect to Normal copula, Student t-copula 

gives a positive probability to the extremes. By contrast, a Gumbel copula is more optimistic, 
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and attributes a positive weight only to joint extreme positive events, while it has zero 

negative tail dependence. Probably, if we calculated Value at Risk at a confidence level of 

95%, this would appear in a Gumbel copula estimate higher than Clayton or Student. 

However, here we are in lowest quantiles, and the special characteristics of Gumbel copula do 

not appear. Higher than Gumbel, there is Value at Risk estimate of Frank copula that, as we 

said before, gives no additional weight neither to lower nor upper tail dependence. Last and 

highest value is the one given by Normal copula, with normal conditional distributions, 

independently whether with asymmetry or not. This is due to the conjuncture that both the 

copula and the margins give no weight to extreme events. Now, we have referred to the most 

general cases, Normal copula with Normal margins and Archimedean copula with Student 

margins, to illustrate results we got. However, if we focus on all possible combinations, like 

Archimedean copula or Student copulas with Normal margins, we can get an entire range of 

possible intermediate cases and estimates. If we refer to a confidence level of 5%, we can 

check that Clayton copula with Student t-conditional distributions remains the one that release 

lowest Value at Risk estimates. Immediately after we can find Student t-copula with Student 

t-conditional distributions. Then, however, Gumbel and Frank copula are reversed, and we 

can see that Frank copula tends to release lower Value at Risk results than Gumbel copula. 

Last, as before, is Normal copula with Normal margins. Even in case of a confidence level of 

5%, we can verify that all substantial traditional copulas assumptions are respected: Clayton 

copula, giving more weight to negative extreme, offers lower Value at Risk estimates. 

Immediately after there is Student t-copula that, while being an elliptical copula, attributes 

anyway a positive probability on both extremes. Higher estimates are to be referred to copulas 

that do not encompass joint negative extreme events and, so, whose density functions are not 

dragged forwards the left. Last, as usual, there is always traditional Normal copula with 

Normal margins, whose density function is mostly concentrated around the media. Among 

this reference case, there is a long range of intermediate levels, given by various couples 

between copula and margins. However, we wanted essentially to verify that the footholds 

follow the theory. However, when we refer to portfolio estimate of Value at Risk at a 

confidence level of 10%, all these considerations cannot be made. As we are not more into the 

negative extreme of the density function, copula characteristics do not appear strongly as 

before. Value at Risk estimate for a Clayton copula with Student t-conditional distributions is 

now higher than the one of Frank and Student copula, while Normal copula with Normal 

margins remains anyway the last. These general traits we have displayed for the first 

portfolio, the one with equal weights, remain substantially true for all portfolios we analyse. 

However, we cannot individuate a difference into Value at Risk estimates, given higher or 
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lower variance of the portfolio. Probably, this depends to the fact that portfolios variances are 

not so far between then. If we check again Spearman’s rho matrices, we can verify that many 

couples of assets have a relatively strong positive dependence. This means that, given the 

condition that we want to create a portfolio with all our four assets, we cannot reduce variance 

under a certain threshold. If we want to include all assets, there will be always a couple that 

will enhance variance. Theoretically, we could have tried to elaborate much lower or much 

higher variance portfolio by including only three, or even two assets in our portfolio. 

However, this would have been far from the scope of our analysis, as we aimed at analysing 

copula as a dependence instrument and elaborate Value at Risk of a portfolio represented by a 

copula with more than two conditional distributions. Portfolio optimization was not among 

the aims of our analysis.  
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APPENDIX A: ARMA(4,0)- GARCH(1,1) TEST  

To begin with, we expose the codes with which we create the GARCH(1,1)- ARMA(4,0) 

model for FTSE MIB, we fit it to our time series of returns and we ask for the estimated 

parameters:  

test<- 

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)), 

mean.model=list(armaOrder=c(4,0))) 

FTSE_test<-ugarchfit(test,FTSE_rts) 

FTSE_test 

 Estimate Std. Error t value Pr(>|t|) 

Mu 0.001239 0.000784 1.5792 0.114300 

ar1 -0.036978 0.033482 -1.1044 0.269410 

ar2 0.034072 0.033169 1.0272 0.304326 

ar3 0.033697 0.033097 1.0181 0.308615 

ar4 -0.051910 0.032258 -1.6092 0.107566 

omega 0.000018 0.000008 2.2330 0.025548 

alpha1 0.132290 0.025017 5.2880 0.000000 

beta1 0.859380 0.025112 34.2213 0.000000 

 

In the first command, we set the model: by “sGARCH” we ask the software to apply the 

standard GARCH model, of which we specify the order (1,1). Then we ask for an ARMA, 

where the autoregressive part is of order 4, while the moving average is 0, as previously 

specified. Lastly, we would have to choose a conditional distribution to fit our data from the 

followings, offered by R: “norm”, “std”, “snorm” and “sstd”. The first two are the classic 

ones: normal distribution and Student t-distribution respectively. “Snorm” stays for an 

asymmetric normal distribution, while “sstd” indicates, logically, an asymmetric Student t-

distribution. As we do not want that the choice of conditional distribution has some influence 

on eventual autocorrelation in returns, we are not to indicate distribution model option in this 

test. We will specify it later for GARCH(1,1)- ARMA(0,0). As it is possible to check from the 

second command, we fit FTSE MIB data to GARCH ARMA model, and then we ask the 

software to show estimated parameters, that are displayed in the table. Mu indicates the 

expected value of time series returns, that corresponds to zero with no surprise. Ar1, ar2, ar3 

and ar4 are the estimated coefficients of autoregression in returns. Ar1 says how much return 

in time t depends on return in time t-1, and so forth. As it is possible to check in the last 

column, all p-value are higher than 0,05. As a conclusion, we do not refuse null hypothesis for 
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all ARMA(4,0) parameters. As null hypothesis stands for parameter not being significant, we 

can deduce that, effectively, autocorrelograms of returns have been influenced by 

autocorrelograms of absolute returns and of returns at square root, as well as in Ljung- Box 

tests. We can conclude that there is no autocorrelation in returns: they are independently 

distributed. 

Now we perform the same test even for IBEX, proving that even IBEX returns are 

independently distributed:  

IBEX_test<-ugarchfit(test,IBEX_rts) 

IBEX_test 

 Estimate Std. Error t value Pr(>|t|) 

mu 0.001529 0.000848 1.80198 0.071548 

ar1 -0.060252 0.034600 -1.74139 0.081616 

ar2 -0.032111 0.034077 -0.94231 0.346036 

ar3 0.045248 0.033914 1.33422 0.182130 

ar4 -0.005970 0.032630 -0.18297 0.854819 

omega 0.000070 0.000030 2.33026 0.019793 

alpha1 0.140299 0.035791 3.91990 0.000089 

beta1 0.801911 0.054903 14.60596 0.000000 
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APPENDIX B: GRAPHICAL REPRESENTATIONS  

Now that we have estimated Value at Risk, we can spend last pages of this work by enjoying 

some graphical representations. While before, into the theory, we displayed copulas 

represented by other authors, now we are to choose two of our assets, like CDAX and CACT, 

as they are quite strongly entangled and so we will be able to see joint dependence more 

clearly. We will take only two assets out of four as the software cannot handle graphically 

more. We will construct copulas with these two assets, displaying for each density function, 

cumulative density function and level curves. We will refer to all five copulas we coped with 

in our analysis. For each copula we will realise both the case with Student t-conditional 

distributions and the one for Normal margins. This will be done even for the heterodox case: 

Student t-copula with Normal margins and vice versa, just for analysis and curiosity’s sake. 

Every time we will describe which copula we are to treat in the title. Finally, we are to start: 

 

Student t-copula with Student t-conditional distributions  
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Student t-copula with Normal conditional distributions  

  

  
 

 

Normal copula with Student t-conditional distributions  
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Normal copula with Student t-conditional distributions 

  
 

 

Normal copula with Normal conditional distributions  
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Frank copula with Student t-conditional distributions 

  

  
 

 

Frank copula with Normal conditional distributions  
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Frank copula with Normal conditional distributions 

  
 

 

Clayton copula with Student t-conditional distributions  

  

  
 

 

 



97 

 

Clayton copula with Normal conditional distributions  

  

  
 

 

Gumbel copula with Student t-conditional distributions  
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Gumbel copula with Student t-conditional distributions 

  
 

 

Gumbel copula with Normal conditional distributions  
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APPENDIX C: R-CODE  

# Install and charge package for reading excel file:   

install.packages("xlsx") 

library(xlsx) 

 

# Import data:   

setwd("C:/Users/HP/Desktop/Tesi/Work in progress") 

FTSE_p<- 

read.xlsx(file="Indici-dati settimanali.xlsx",sheetName="FTSE MIB") 

# As we use same commands for all indices, we are to present only 

the case of FTSE MIB, for practicality purpose.  

 

# Convert data frames into time series:  

FTSE_pts<-ts(FTSE_p[,2]) 

plot(FTSE_pts,main="FTSE MIB") 

 

# Carve out logarithmic returns and plot the graph of returns time 

series:  

LogFTSE_p<-log(FTSE_p[,2]) 

FTSE_r<-diff(LogFTSE_p,1) 

FTSE_rts<-ts(FTSE_r) 

plot(FTSE_rts,main="FTSE MIB") 

 

# Some descriptive statistics:  

mean(FTSE_r)  

median(FTSE_r) 

sd(FTSE_r) 

var(FTSE_r) 

install.packages("moments") 

library(moments) 

skewness(FTSE_r) 

kurtosis(FTSE_r) 

 

 



100 

 

# Jarque-Bera Normality test:  

install.packages("tseries") 

library(tseries) 

jarque.bera.test(FTSE_rts) # p-value < 2.2e-16 

-------------------------------------------------------------------- 

# Check auto-correlation in returns, in absolute value returns and 

in returns at square root:  

absFTSE_rts<-abs(FTSE_rts) 

expFTSE_rts<-FTSE_rts^2 

acf(FTSE_rts,main="FTSE MIB returns") 

acf(absFTSE_rts,main="Absolute FTSE MIB returns") 

acf(expFTSE_rts,main="Square root FTSE MIB returns") 

 

# Ljung-Box auto-correlation test:  

install.packages("stats") 

library(stats) 

Box.test(FTSE_rts,type="Ljung-Box") # p-value = 0.03607 

Box.test(absFTSE_rts,type="Ljung-Box") # p-value = 2.032e-14 

Box.test(expFTSE_rts,type="Ljung-Box") # p-value < 2.2e-16 

-------------------------------------------------------------------- 

# Elaborate a ARMA(4,0)- GARCH(1,1) model to test auto-regression in 

FTSE MIB:  

install.packages("rugarch") 

library(rugarch) 

test<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)), 

mean.model=list(armaOrder=c(4,0))) 

FTSE_test<-ugarchfit(test,FTSE_rts) 

FTSE_test 

# We execute the same test even for IBEX, but not for CDAX and CACT.  

-------------------------------------------------------------------- 

# Create univariate GARCH specification objects:  

gspec.ru.sstd<-

ugarchspec(variance.model=list(model="sGARCH",garchOrder=c(1,1)), 
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mean.model=list(armaOrder=c(0,0)),distribution.model="sstd") 

 

FTSEgarch.sstd<-ugarchfit(gspec.ru.sstd,FTSE_rts) 

FTSEres.sstd<-residuals(FTSEgarch.sstd,standardize=T) 

 

hist(FTSEres.sstd,nclass=20,freq=FALSE) 

curve(dt(x,df=8.43),add=T,col="red") 

-------------------------------------------------------------------- 

absFTSEres.sstd<-abs(FTSEres.sstd) 

expFTSEres.sstd<-FTSEres.sstd^2 

 

acf(FTSEres.sstd,main="FTSE MIB residuals") 

acf(absFTSEres.sstd,main="Absolute FTSE MIB residuals") 

acf(expFTSEres.sstd,main="Square root FTSE MIB residuals") 

-------------------------------------------------------------------- 

# Fit the data set to different copula models and estimate copula 

parameters.  

Here we expose the case where all conditional distributions are 

supposed to be asymmetric Student t-distributions: code for other 

conditional distributions hypothesis is similar.  

install.packages("copula") 

library(copula) 

Residuals.sstd<-

cbind(FTSEres.sstd,CDAXres.sstd,CACTres.sstd,IBEXres.sstd) 

 

t.cop<-tCopula(dim=4) 

m<-pobs(as.matrix(Residuals.sstd)) 

fitT.sstd<-fitCopula(t.cop,m,method="ml") 

coef(fitT.sstd) 

t.cop.sstd<-tCopula(0.5731839,dim=4,df=6.3227985) 

TailDep_student.sstd<-lambda(t.cop.sstd) 

TailDep_student.sstd 

 

normal.cop<-normalCopula(dim=4) 
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m<-pobs(as.matrix(Residuals.sstd)) 

fitN.sstd<-fitCopula(normal.cop,m,method="ml") 

coef(fitN.sstd) 

normal.cop.sstd<-normalCopula(0.563937,dim=4) 

TailDep_normal.sstd<-lambda(normal.cop.sstd) 

TailDep_normal.sstd 

 

frank.cop<-frankCopula(dim=4) 

m<-pobs(as.matrix(Residuals.sstd)) 

fitF.sstd<-fitCopula(frank.cop,m,method="ml") 

coef(fitF.sstd) 

frank.cop.sstd<-frankCopula(3.804465,dim=4) 

TailDep_frank.sstd<-lambda(frank.cop.sstd) 

TailDep_frank.sstd 

 

clayton.cop<-claytonCopula(dim=4) 

m<-pobs(as.matrix(Residuals.sstd)) 

fitC.sstd<-fitCopula(clayton.cop,m,method="ml") 

coef(fitC.sstd) 

clayton.cop.sstd<-claytonCopula(0.886848,dim=4) 

TailDep_clayton.sstd<-lambda(clayton.cop.sstd) 

TailDep_clayton.sstd 

 

gumbel.cop<-gumbelCopula(dim=4) 

m<-pobs(as.matrix(Residuals.sstd)) 

fitG.sstd<-fitCopula(gumbel.cop,m,method="ml") 

coef(fitG.sstd)  

gumbel.cop.sstd<-gumbelCopula(1.510486,dim=4) 

TailDep_gumbel.sstd<-lambda(gumbel.cop.sstd) 

TailDep_gumbel.sstd 

-------------------------------------------------------------------- 

Residuals.sstd<-

cbind(FTSEres.sstd,CDAXres.sstd,CACTres.sstd,IBEXres.sstd) 

cor(Residuals.sstd,method="kendall") 
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cor(Residuals.sstd,method="spearman") 

-------------------------------------------------------------------- 

# Calculate portfolio variance by Spearman’s rho:  

port_variance<-

(var(FTSEres.sstd)*0.25^2)+(var(CDAXres.sstd)*0.25^2)+ 

(var(CACTres.sstd)*0.25^2)+(var(IBEXres.sstd)*0.25^2)+ 

+(2*0.25*0.25*sd(FTSEres.sstd)*sd(CDAXres.sstd)*0.3071783)+ 

+(2*0.25*0.25*sd(FTSEres.sstd)*sd(CACTres.sstd)*0.3498962)+ 

+(2*0.25*0.25*sd(CDAXres.sstd)*sd(CACTres.sstd)*0.9116999)+ 

+(2*0.25*0.25*sd(FTSEres.sstd)*sd(IBEXres.sstd)*0.5040315)+ 

+(2*0.25*0.25*sd(CDAXres.sstd)*sd(IBEXres.sstd)*0.5926453)+ 

+(2*0.25*0.25*sd(CACTres.sstd)*sd(IBEXres.sstd)*0.6436635) 

port_variance   # 0.6932016 

# We only expose portfolio variance for the first portfolio: for the 

others it is just necessary to change coefficients.  

-------------------------------------------------------------------- 

# Calculate Value at Risk with five different copulas.  

# For practicality purpose, we only exhibit asymmetric Student t-

conditional distributions case. Cases with other conditional 

distributions are similarly coded. The unique difference is, when 

writing conditional distributions parameters in copula structure, 

that a Student t-conditional distribution requires number of degrees 

of freedom, while, in case of Normality, we have to insert mean and 

standard deviation.  

 

# Normal copula, with asymmetric Student t-marginal distributions:  

Residuals.sstd<-

cbind(FTSEres.sstd,CDAXres.sstd,CACTres.sstd,IBEXres.sstd) 

r<-100000 

set.seed(123) 

normal.cop_sstd<-

mvdc(normalCopula(param=0.563937,dim=4),margins=c("t","t","t","t"), 

paramMargins=list(list(df=8),list(10),list(df=11),list(df=7))) 
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Sim_normal_sstd<-rMvdc(r,normal.cop_sstd) 

alfa<-c(0.01,0.05,0.10) 

 

FTSE_normal.cop_sstd<-(Sim_normal_sstd[,1]) 

CDAX_normal.cop_sstd<-(Sim_normal_sstd[,2]) 

CACT_normal.cop_sstd<-(Sim_normal_sstd[,3]) 

IBEX_normal.cop_sstd<-(Sim_normal_sstd[,4]) 

 

portfolio_N1<- 

0.25*FTSE_normal.cop_sstd+0.25*CDAX_normal.cop_sstd+ 

0.25*CACT_normal.cop_sstd+0.25*IBEX_normal.cop_sstd 

quantile(portfolio_N1,alfa) 

# From now on, we show the code only for the first portfolio: for 

other portfolios it is just necessary to change weights.  

-------------------------------------------------------------------- 

# Student t-copula, with asymmetric Student t-conditional 

distributions:  

t.cop_sstd<-

mvdc(tCopula(param=0.5731839,df=6,dim=4),margins=c("t","t","t","t"), 

paramMargins=list(list(df=8),list(10),list(df=11),list(df=7))) 

 

Sim_student_sstd<-rMvdc(r,t.cop_sstd) 

alfa<-c(0.01,0.05,0.10) 

 

FTSE_student.cop_sstd<-(Sim_student_sstd[,1]) 

CDAX_student.cop_sstd<-(Sim_student_sstd[,2]) 

CACT_student.cop_sstd<-(Sim_student_sstd[,3]) 

IBEX_student.cop_sstd<-(Sim_student_sstd[,4]) 

 

portfolio_N1<- 

0.25*FTSE_student.cop_sstd+0.25*CDAX_student.cop_sstd+ 

+0.25*CACT_student.cop_sstd+0.25*IBEX_student.cop_sstd 

quantile(portfolio_N1,alfa) 

# Frank copula, with asymmetric Student t-conditional distributions:  
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frank.cop_sstd<-

mvdc(frankCopula(param=3.804465,dim=4),margins=c("t","t","t","t"), 

paramMargins=list(list(df=8),list(10),list(df=11),list(df=7))) 

 

Sim_frank_sstd<-rMvdc(r,frank.cop_sstd) 

alfa<-c(0.01,0.05,0.10) 

 

FTSE_frank.cop_sstd<-(Sim_frank_sstd[,1]) 

CDAX_frank.cop_sstd<-(Sim_frank_sstd[,2]) 

CACT_frank.cop_sstd<-(Sim_frank_sstd[,3]) 

IBEX_frank.cop_sstd<-(Sim_frank_sstd[,4]) 

 

portfolio_N1<- 

0.25*FTSE_frank.cop_sstd+0.25*CDAX_frank.cop_sstd+ 

0.25*CACT_frank.cop_sstd+0.25*IBEX_frank.cop_sstd 

quantile(portfolio_N1,alfa) 

-------------------------------------------------------------------- 

# Clayton copula, with asymmetric Student t-conditional 

distributions:  

clayton.cop_sstd<-

mvdc(claytonCopula(param=0.886848,dim=4),margins=c("t","t","t","t"), 

paramMargins=list(list(df=8),list(10),list(df=11),list(df=7))) 

 

Sim_clayton_sstd<-rMvdc(r,clayton.cop_sstd) 

alfa<-c(0.01,0.05,0.10) 

 

FTSE_clayton.cop_sstd<-(Sim_clayton_sstd[,1]) 

CDAX_clayton.cop_sstd<-(Sim_clayton_sstd[,2]) 

CACT_clayton.cop_sstd<-(Sim_clayton_sstd[,3]) 

IBEX_clayton.cop_sstd<-(Sim_clayton_sstd[,4]) 

 

portfolio_N1<- 

0.25*FTSE_clayton.cop_sstd+0.25*CDAX_clayton.cop_sstd+ 

+0.25*CACT_clayton.cop_sstd+0.25*IBEX_clayton.cop_sstd 
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quantile(portfolio_N1,alfa) 

-------------------------------------------------------------------- 

# Gumbel copula, with asymmetric Student t-conditional 

distributions:  

gumbel.cop_sstd<-

mvdc(gumbelCopula(param=1.510486,dim=4),margins=c("t","t","t","t"), 

paramMargins=list(list(df=8),list(10),list(df=11),list(df=7))) 

 

Sim_gumbel_sstd<-rMvdc(r,gumbel.cop_sstd) 

alfa<-c(0.01,0.05,0.10) 

 

FTSE_gumbel.cop_sstd<-(Sim_gumbel_sstd[,1]) 

CDAX_gumbel.cop_sstd<-(Sim_gumbel_sstd[,2]) 

CACT_gumbel.cop_sstd<-(Sim_gumbel_sstd[,3]) 

IBEX_gumbel.cop_sstd<-(Sim_gumbel_sstd[,4]) 

 

portfolio_N1<- 

0.25*FTSE_gumbel.cop_sstd+0.25*CDAX_gumbel.cop_sstd+ 

+0.25*CACT_gumbel.cop_sstd+0.25*IBEX_gumbel.cop_sstd 

quantile(portfolio_N1,alfa) 

-------------------------------------------------------------------- 

# Graphical representations of copulas built on CDAX and CACT:  

my_data1<-cbind(CDAXres.std,CACTres.std) 

var_a<-pobs(my_data1)[,1] 

var_b<-pobs(my_data1)[,2] 

 

# By fitting our data to bivariate copula structure, we estimate 

different copula parameters. We expose the case in which conditional 

distributions are t-Student: for Normal conditional distributions 

only marginal parameters change.  

 

t.cop1<-tCopula(dim=2) 

k<-pobs(as.matrix(my_data1)) 

fitT.1<-fitCopula(t.cop1,k,method="ml") 
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coef(fitT.1) 

tau(tCopula(param=0.9134227,df=12))  # 0.7331413 

 

normal.cop1<-normalCopula(dim=2) 

k<-pobs(as.matrix(my_data1)) 

fitN.1<-fitCopula(normal.cop1,k,method="ml") 

coef(fitN.1) 

tau(normalCopula(param=0.9120054))  # 0.730933 

 

frank.cop1<-frankCopula(dim=2) 

k<-pobs(as.matrix(my_data1)) 

fitF.1<-fitCopula(frank.cop1,k,method="ml") 

coef(fitF.1) 

tau(frankCopula(param=13.5122))   # 0.7400084 

 

clayton.cop1<-claytonCopula(dim=2) 

k<-pobs(as.matrix(my_data1)) 

fitC.1<-fitCopula(clayton.cop1,k,method="ml") 

coef(fitC.1) 

tau(claytonCopula(param=3.527801))  # 0.6381925 

 

gumbel.cop1<-gumbelCopula(dim=2) 

k<-pobs(as.matrix(my_data1)) 

fitG.1<-fitCopula(gumbel.cop1,k,method="ml") 

coef(fitG.1)  

tau(gumbelCopula(param=3.374522))  # 0.7036617 

-------------------------------------------------------------------- 

T_dist1<-

mvdc(tCopula(param=0.9134227,dim=2,df=12),margins=c("t","t"), 

paramMargins=list(list(df=9),list(df=9))) 

v<-rMvdc(5000,T_dist1) 

pdf_mvd<-dMvdc(v,T_dist1) 

cdf_mvd<-pMvdc(v,T_dist1) 

install.packages("scatterplot3d") 
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library(scatterplot3d) 

 

persp(T_dist1,dMvdc,xlim=c(-

4,4),ylim=c(0,3),main="Density",xlab="CDAX", ylab="CACT",zlab=" ") 

contour(T_dist1,dMvdc,xlim=c(-2.5,2.5),ylim=c(-

2.5,2.5),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

persp(T_dist1,pMvdc,xlim=c(-4,5),ylim=c(0,3),main="CDF", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(T_dist1,pMvdc,xlim=c(-2,2),ylim=c(-2,2),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

-------------------------------------------------------------------- 

N_dist1<-

mvdc(normalCopula(param=0.9120054,dim=2),margins=c("t","t"), 

paramMargins=list(list(df=9),list(df=9))) 

v<-rMvdc(5000,N_dist1) 

pdf_mvd<-dMvdc(v,N_dist1) 

cdf_mvd<-pMvdc(v,N_dist1) 

 

persp(N_dist1,dMvdc,xlim=c(-4,4),ylim=c(0,3),main="Density", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(N_dist1,dMvdc,xlim=c(-2.5,2.5),ylim=c(-

2.5,2.5),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

persp(N_dist1,pMvdc,xlim=c(-4,5),ylim=c(0,3),main="CDF", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(N_dist1,pMvdc,xlim=c(-2,2),ylim=c(-2,2),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

-------------------------------------------------------------------- 

F_dist1<-mvdc(frankCopula(param=13.5122,dim=2),margins=c("t","t"), 

paramMargins=list(list(df=9),list(df=9))) 

v<-rMvdc(5000,F_dist1) 

pdf_mvd<-dMvdc(v,F_dist1) 

cdf_mvd<-pMvdc(v,F_dist1) 
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persp(F_dist1,dMvdc,xlim=c(-4,4),ylim=c(0,3),main="Density", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(F_dist1,dMvdc,xlim=c(-2.5,2.5),ylim=c(-

2.5,2.5),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

persp(F_dist1,pMvdc,xlim=c(-4,5),ylim=c(0,3),main="CDF", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(F_dist1,pMvdc,xlim=c(-2,2),ylim=c(-2,2),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

-------------------------------------------------------------------- 

C_dist1<-

mvdc(claytonCopula(param=3.527801,dim=2),margins=c("t","t"), 

paramMargins=list(list(df=9),list(df=9))) 

v<-rMvdc(5000,C_dist1) 

pdf_mvd<-dMvdc(v,C_dist1) 

cdf_mvd<-pMvdc(v,C_dist1) 

 

persp(C_dist1,dMvdc,xlim=c(-4,4),ylim=c(0,3),main="Density", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(C_dist1,dMvdc,xlim=c(-2.5,2.5),ylim=c(-

2.5,2.5),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

persp(C_dist1,pMvdc,xlim=c(-4,5),ylim=c(0,3),main="CDF", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(C_dist1,pMvdc,xlim=c(-2,2),ylim=c(-2,2),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

-------------------------------------------------------------------- 

G_dist1<-mvdc(gumbelCopula(param=3.374522,dim=2),margins=c("t","t"), 

paramMargins=list(list(df=9),list(df=9))) 

v<-rMvdc(5000,G_dist1) 

pdf_mvd<-dMvdc(v,G_dist1) 

cdf_mvd<-pMvdc(v,G_dist1) 
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persp(G_dist1,dMvdc,xlim=c(-4,4),ylim=c(0,3),main="Density", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(G_dist1,dMvdc,xlim=c(-2.5,2.5),ylim=c(-

2.5,2.5),main="Contour plot", 

xlab="CDAX",ylab="CACT") 

persp(G_dist1,pMvdc,xlim=c(-4,5),ylim=c(0,3),main="CDF", 

xlab="CDAX",ylab="CACT",zlab=" ") 

contour(G_dist1,pMvdc,xlim=c(-2,2),ylim=c(-2,2),main="Contour plot", 

xlab="CDAX",ylab="CACT") 
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