

Abstract

Simultaneous Localization And Mapping (SLAM) is a system that allows a robot, or

generic mobile device, to construct a map of its surroundings and at the same time

define its pose (position and rotation), without a priori information. In particular,

when this process is performed solely through the use of cameras, it is called Visual-

SLAM. In this thesis, the Visual-SLAM ORB-SLAM2 system is implemented with

the ultimate goal of demonstrating the validity of employing virtual simulations as a

testing environment. Two constituent blocks can be identified in the paper. The first

part focuses first on the introduction of the SLAM problem, from its probabilistic

formulation to the general characteristics of a method based on vision systems, and

then moves on to a detailed description of the used implementation of the ORB-

SLAM2 system. The intention is to provide a complete and in-depth map of the

algorithm: from input image processing to loop closure recognition and subsequent

optimization. The second part shows how the framework was prepared to carry

out the simulations and what results were obtained. A series of tests demonstrate

the usefulness of this tool for quantifying the effect of some typical conditions to

which a Visual-SLAM system is subjected, such as the presence of dynamic objects,

adverse lighting conditions, and high speed of the camera motion. A comparison is

then presented between the outcome of the test performed using the KITTI public

dataset and the outcome of the tests done in the virtual environments.

Sommario

La localizzazione e mappatura simultanea (Simultaneous Localization And Mapping,

SLAM) è un sistema che permette ad un robot, o generico dispositivo mobile, di

costruire una mappa dell’ambiente circostante e allo stesso tempo di definire la

propria posa (posizione e rotazione), senza informazioni a priori. In particolare,

quando questo processo viene realizzato solamente mediante l’uso di telecamere,

esso prende il nome di Visual-SLAM. In questa tesi viene implementato il sistema

Visual-SLAM ORB-SLAM2 con lo scopo ultimo di dimostrare la validità di impiego

di simulazioni virtuali come ambiente di testing. Possono essere individuati due

blocchi costituitivi nell’elaborato. La prima parte si concentra prima sull’introdurre

il problema SLAM, dalla sua formulazione probabilistica alle caratteristiche generali

di un metodo basato su sistemi di visione, per poi spostarsi ad una descrizione

dettagliata della implementazione utilizzata del sistema ORB-SLAM2. L’intenzione

è di fornire una completa e approfondita mappa dell’algoritmo: dalla elaborazione

delle immagini in input fino al riconoscimento della chiusura del loop e successiva

ottimizzazione. La seconda parte illustra come è stato preparato il framework per

effettuare le simulazioni e quali sono i risultati ottenuti. Una serie di test dimostra

l’utilità di questo strumento per quantificare l’effetto di alcune condizioni tipiche

a cui è soggetto un sistema Visual-SLAM, quali la presenza di oggetti dinamici,

condizioni di illuminazione ed elevata velocità del moto delle telecamere. Viene poi

presentato un confronto tra l’esito del test sostenuto utilizzando il dataset pubblico

KITTI e l’esito dei test fatti negli ambienti virtuali.

Contents

Contents i

1 Introduction 1

1.1 What is SLAM? . 1

1.2 A bit of history . 2

1.3 The SLAM Problem . 4

1.4 Probabilistic SLAM Formulation . 8

1.4.1 Fundamental Equations . 8

1.4.2 Batch State Estimation . 11

1.4.3 Least Square Formulation . 12

1.5 Factor Graph and Landmarks Correlation 16

1.6 Visual SLAM . 19

1.6.1 Cameras . 19

1.6.2 Pinhole Camera Model . 20

1.6.3 Image Distortion . 22

1.7 Purpose of the Thesis and Outline . 24

2 ORB-SLAM2 Matlab Implementation 25

2.1 ORB-SLAM Series Systems . 25

2.2 Matlab System Implementation Overview 26

2.3 Map Initialization . 28

2.3.1 Preliminary Operations . 28

2.3.2 Detection and extraction of ORB features 31

2.3.3 Feature Matching and 3D World Positions 34

2.4 Data Management and Visualization 37

2.5 Tracking . 39

ii Contents

2.5.1 Camera Pose Estimation and Refinement 40

2.5.2 Key Frame Detection . 46

2.6 Local Mapping . 48

2.6.1 New Map Points From Triangulation 49

2.6.2 Local Bundle Adjustment . 51

2.7 Loop Closure and Pose Graph Optimization 55

2.7.1 Place Recognition Database Initialization 55

2.7.2 Loop Closure . 56

2.7.3 Pose Graph Optimization . 59

3 Simulation Set Up 61

3.1 Why a Virtual Environment? . 61

3.2 KITTI Vision Benchmark Suite . 63

3.3 Simulation Software and Hardware 65

3.3.1 Software . 65

3.3.2 Hardware . 68

3.4 Virtual Simulation . 69

3.4.1 Unreal Engine Scenario . 70

3.5 Coordinate Systems . 74

3.6 Simulink Model for UAV Stereo Visual SLAM 76

3.7 Recording Platform and Virtual Cameras 78

3.8 Trajectory and Orientation Definition 80

3.8.1 Waypoints Selection on a Top-Down Map of the Scene 80

3.8.2 Unreal Engine frame-by-frame pose 82

4 Tests Description and Results 86

4.1 KITTI dataset Test Setup . 86

4.1.1 ORB-SLAM2 parameters . 86

4.1.2 Ground Truth . 89

4.1.3 Camera Projection Matrix . 90

4.1.4 Results . 92

4.2 Virtual Scenario Performance Evaluation Tests 100

4.2.1 Standard Condition . 102

4.2.2 Impact of the Speed of Motion 104

4.2.3 Impact of dynamic objects on SLAM system performance . . . 109

4.2.4 Impact of lighting conditions on SLAM system performance . 120

4.3 Scenario Modeled after KITTI’s Sequence 07 126

Contents iii

5 Conclusions and Future Developments 132

5.1 Matlab implementation of the ORB-SLAM2 system 132

5.2 Simulation Framework . 133

5.3 Simulation results . 135

Bibliography 138

Appendices 142

A Visual Basic Sub-Routines 143

Chapter 1

Introduction

1.1 What is SLAM?

Simultaneous Localization and Mapping (SLAM) allows a robot, or a generic

moving rigid body, to build a model of the surrounding environment while at the

same time define within that environment its pose, without a priori information.

Different types of sensors can be relied upon to do this, each with its own advantages

and disadvantages. SLAM therefore aspires to simultaneously solve two complex and

heavily interrelated aspects, resulting in a chicken-and-egg situation: a map of the

surrounding environment is needed for accurate localization, however a pose esti-

mate is needed for accurate mapping.

Conceptually, this problem is not at all difficult for a human being to understand

and perform; it is something we learn to do from the moment of birth. Take for

example the case when we enter a room unfamiliar to us for the first time. To orient

and move around in this new environment we are unconsciously performing some

kind of SLAM, where our eyes are the sensors and the information they provide is

interpreted by the brain in such a way that allows us to know our position, what

direction we are facing and even at what speed we are moving. Thanks to these

information, we can not only know our pose at any given instant, but we can also

safely navigate the room without bumping into something as well as interact with

objects around us. At the same time, depending on our position, we are also un-

derstanding the surroundings and creating a mental image, a map, of the place that

is then stored in our memory. A blind person cannot rely on his own eyes, yet has

other senses available to perform the same function. A white cane can be used to

probe the surroundings and provide the person with information somewhat com-

parable to that delivered by the eyes. In some even more astonishing cases, some

2 1.2. A bit of history

people are able to effectively orient themselves through sounds, and even precisely

reconstruct an environment by exploiting the reflection of acoustic waves emitted

by themselves, just like a bat echolocation or the SONAR of a submarine [37].

These abilities are what SLAM is about. The great challenge that an ever-growing

number of scientists and researchers around the world have been trying to overcome

for almost four decades is to be able to transport these capabilities to inanimate ob-

jects, robots and vehicles. In other words, how can we equip and program a machine

in such a way that we can get it to ultimately perform these tasks? Just as for a

human being, even in the case of man-made devices there are a variety of ways to do

it. However, the problem turned out to be of great difficulty. Its resolution requires

the use of a wide range of algorithms and computations, as well as good under-

standing and processing of signals provided by sensors. Only in more recent times,

with the development of increasingly high-performance, low-cost compact hardware

combined with the development of new and efficient approaches, this technology is

becoming of extreme practical interest.

While there is still great room for improvement, constant development has made

SLAM now mature enough to find many real-world applications. Mobile robots,

self-driving cars, Unmanned Aerial Vehicles (UAVs) and rovers for planetary explo-

ration ([9]) are some examples of application on vehicles where SLAM can play a

crucial role. There are actually even more peculiar uses. Many of the most recent

Augmented Reality (AR) and Virtual Reality (VR) implementations, such as the

HP Reverb ([22]), rely on SLAM to allow the user to conduct his movements in

the virtual environment. Applications in the medical field are also very promising.

Minimally invasive surgery can be effectively performed with the aid of a real-time

SLAM, so as to provide the surgeon with accurate understanding of the hidden area

to be operated on ([32]).

1.2 A bit of history

Cesar Cadena et al. [1] identifies three ages in the development of the SLAM

problem:

1. Classical Age (1986-2004);

2. Algorithmic-analysis Age (2004-2015);

3. Robust-perception Age (2015-present).

Chapter 1. Introduction 3

According to Durrant-Whyte et al. [5], the true genesis of the probabilistic SLAM

problem occurred at the 1986 IEEE Robotics and Automation Conference held in

San Francisco. This event marks the beginning of the Classical Age, in which was

recognized the need to address the issue of consistent and probabilistic mapping,

both from a conceptual and computational point of view.

Within a few years, a major paper from R. Smith et al. [16] addressed the scenario

of a vehicle moving in an unknown environment while acquiring relative observations

of landmarks (a landmark is a feature of the environment that is taken as a refer-

ence to estimate the vehicle pose). From this work emerged that the estimates in

the location of these landmarks necessarily all had to be correlated with each other

because of the common error in estimating vehicle location. Consequently they con-

cluded that to simultaneously solve the problem of localization and mapping it was

necessary to repeatedly update a joint state, composed of the robot pose and every

landmark position, following each landmark observation. This resulted in the need

for a prohibitively large state vector, which increases the computational cost with

the square of the number of landmarks. What led to difficulties in research was that

the convergence problem was misjudged: at the time it was a widespread opinion

that the uncertainty of the estimated state (state of the map plus location of the

vehicle) obtained from a increasing number of observations would not converge. As

a result, given the the excessive computational complexity of the mapping problem,

the researchers’ efforts shifted to minimize the number of correlations between land-

marks, even coming down to address the problems of localization and mapping as

separate.

The breakthrough came later, when it was realized that localization and mapping,

when formulated as a single estimation problem, have actually a convergent solution.

In particular, the importance of correlation between landmarks was reevaluated:

contrary to what was believed, the solution improves as the number of correlations

increases. Following these findings, great collective interest arose in solving the two

problems simultaneously, so much so that in 1995 the acronym SLAM was coined.

The later years of this first period led to the development of the main probabilistic

formulations for SLAM, based first on Extended Kalman Filters and subsequently

on Rao-Blackwellised Particle Filters and Maximum Likelihood estimation.

Between the late 1990s and the beginning of the new millennium, research in SLAM

became increasingly popular and widespread, growing from conventions involving a

few dozen researchers to full-fledged summer schools such as those held in Stockholm,

Toulouse and Oxford. It is in this climate of driven research that the Algorithmic-

analysis Age takes place. Some of the most important topics of discussion and

4 1.3. The SLAM Problem

development that have been prominent as of these years (such as observability, con-

vergence and consistency), are covered in the paper by Dissanayake G et al. [4].

The third and current era of SLAM development is the Robust-perception Age, and

aims at solving four key requirements needed to push SLAM technology to more

complex and larger-scale applications. (1) Robust performance: low failure rate for

extended period of time and in a wide set of environments; (2) High-level under-

standing: understanding of the environment beyond basic geometric reconstruction

(high-level geometry, semantics, physics and affordances); (3) Resource awareness:

have systems tailored to use -and even adjust to- the available sensing and com-

putational resources; (4) Task driven perception: have systems capable of selecting

which information are relevant for the task it has to achieve.

In order to accomplish these goals, modern SLAM is now confirmed to be a mul-

tidisciplinary subject that combines many areas of research, such as sensor fusion,

optimization, computer vision, machine learning and much more.

1.3 The SLAM Problem

A good introduction to the topic can be provided by answering two important

questions that Cesar Cadena et al. [1] offered an answer to:

1. Do autonomous robots need SLAM?

2. Is SLAM solved as an academic research endeavor?

To answer the first question it is necessary to better understand what are the distin-

guishing features of a SLAM system and why odometry methods are not sufficient

to meet certain operational requirements. Odometry can be defined as the use of

data obtained from a motion sensor to estimate the change in position over time,

and dates back to ancient times with the earliest forms of wheel odometers [35].

Although the technology to address odometry has been refined considerably over

nearly two millennia, it has inherent restrictions that can not be fully resolved.

All sensors, no matter how expensive, are subject to errors in performing measure-

ment due to technological limitation in the manufacturing process, but also due to

changes in the characteristics of their surroundings (temperature, magnetic fields,

etc.). This causes drifts in the pose estimate that accumulates over time, hence a

satisfying estimate becomes unachievable for long paths. It is possible to rely on

apposite external landmarks or auxiliary systems (such as the GPS) that update the

pose periodically to reduce drift, however, it is clear how in these cases the system is

no longer autonomous in determining its state. State-of-the-art odometry exploits

Chapter 1. Introduction 5

both visual and inertial information to obtain very small errors, in the order of

< 0.5% the trajectory length, but it is still unable to perform some required crucial

tasks that can instead be tackled with SLAM.

A robot that relies solely on odometry sees the world as an “endless corridor” in

which subjects and places never recur even if they have in fact been encountered be-

fore ((Figure 1.1)). This inability to recognize two successive passages through the

same place is resolved in SLAM with the introduction of a new module called loop

closure, which is specially dedicated to periodically checking whether the trajectory

intersects or closes itself. In addition, the problem of minimizing the accumulated

error is addressed with a dedicated back-end optimization module: odometry data

are provided to the back-end to be optimized with methods that are relevant to the

state estimation research area.

Figure 1.1: Through simple odometry the robot does not realize that points A and B
are actually close to each other. Loop Closure allows to reconstruct the real topology of

the environment.

The main three improvements that SLAM brings to an odometry algorithm are

therefore:

• Error minimization techniques can be exploited to reduce the overall deviation

in trajectory reconstruction, thereby achieving much greater accuracy than

those provided by odometry alone;

• The capability to create a map that correctly describes the navigated space

and the relative position between its features, and that furthermore can be

exploited to predict and validate future measurements. This aspect makes the

map of much greater practical utility;

6 1.3. The SLAM Problem

• The combination of metric information and place recognition makes SLAM

much simpler and more robust, avoiding wrong data association and perceptual

aliasing.

Another aspect that makes SLAM of interest is indeed its contribution to the

improvement of the odometry algorithms themselves. In fact, odometry consti-

tutes an important block (front-end) in the framework of a generic SLAM method,

and for this reason occupies a substantial share in the research environment. Not

surprisingly, the previously mentioned methods that combine visual and inertial in-

formation ([14] [10]) arose in the very contest of SLAM development and can be

treated as reduced SLAM systems in which the loop closure module is disabled.

So, is SLAM necessary? The reader should have guessed that the answer depends

on the context, but in general it is clear how it brings very important capabilities

that otherwise would not be obtainable. All those contexts that require a system

that can locate itself accurately and create a descriptive map of the environment

must rely on SLAM.

A final remark should be made about the definition of map. Depending on the ap-

plications for which the method is being developed in fact, different types of maps

can be generated.

Figure 1.2: Different types of maps.

A topological map that only consider the connectivity between nodes might be

enough. Or, we may only be interested in satisfying a basic function of a map,

such that it allows spatial location of the vehicle. In this case, a sparse metric map

that stores only some landmarks position and does not express all the objects is

sufficient to accomplish the purpose. In other cases, however, we may be inter-

ested in carrying out navigation, obstacle avoidance or even scene reconstruction,

for which is necessary to create a dense metric map. Dense maps are way more

complex and expansive to produce since they aim to model all the objects that

appear in the scene. Finally, in order to fulfill more advanced purposes such as

interaction between people/robots and objects in the environment, it is necessary to

Chapter 1. Introduction 7

generate a semantic map where subjects are entities that are defined and recognized.

Let’s now address the second question: is SLAM solved as an academic research

endeavor?

Again, it is not appropriate to give a sharp answer. In order to assess the maturity

of the SLAM technology, one must consider the scope of application, particularly

with reference to the following three aspects:

• Vehicle/Robot.

– Sensors: what sensors are being used and what are their characteristics

(sampling rate, resolution, accuracy, etc.)?

– Type of motion: what are the vehicle dynamics and its maximum lin-

ear/angular velocity?

– Available computational resources: is the algorithm able to run in the

hardware that is at disposal?

• Environment. What characteristics does the environment in which SLAM is

performed have? Presence of dynamic objects, presence of natural or artificial

landmarks, scale, illumination conditions, etc.;

• Performance. What is the required accuracy in the estimate of the state of

the robot and in the representation of the environment? What is the success

rate, map typology, maximum operation time, estimation latency etc. that we

want to achieve?

Relatively simple problems such as accurately (errors< 10cm) map a two-dimensional

indoor environment by means of a robot equipped with a laser scanner and a wheel

encoder, or perform visual SLAM in a controlled environment with slowly moving

robots can be considered largely solved. On the other hand, many scenarios that

result from the combination of Vehicle/Environment/Performance still have to cope

with the four key requirements that define the Robust-perception Age. As of today,

it is for example still difficult to have methods capable of operating at high speeds

or in highly dynamic environments, or to face some of the strict performance speci-

fications mentioned above.

Although the past twenty years have defined this technology and elevated it from the

research environment alone, for many real-world applications SLAM is not solved

yet. To achieve truly robust methods that can meet the requirements sought, more

work is needed.

8 1.4. Probabilistic SLAM Formulation

1.4 Probabilistic SLAM Formulation

This section aims to introduce the meaning of the two fundamental equations

that summarize the SLAM process and tackles what considerations must be made

to arrive at their resolution.

1.4.1 Fundamental Equations

Consider a generic robot equipped with sensors to perform SLAM. These sen-

sors make a series of measurements in time steps denoted with 1, . . . , k, therefore the

problem must be addressed as discrete and is concerned only with the locations and

the map at these moments. Regarding the locations, denote the pose (position plus

orientation) of the robot with x so that the trajectory can be written as x1, . . . ,xk.

As already seen, the concept of map is very broad in SLAM and depends on the

context of application. Sticking to its most general definition, which sees it as a

description of the environment within which the robot moves, we can express the

map with the set of landmarks y1, . . . ,yj−1,yj,yj+1, . . . ,yN that are observed by

the sensors during their operation.

The process seeks on the one side to describe how x varies from time step k − 1 to

k, while on the other wants to correctly associate a specific landmark yj with the

pose xk in which the sensors detected it.

The robot’s pose xk at time step k depends on three terms: the previous pose

value xk−1, the input commands uk provided by its control systems or by the pilot

and finally the noise wk, which forces the introduction of a stochastic model. A

mathematical expression, to which we refer as motion equation, that establishes the

motion of the system can then be of the form

xk = f(xk−1,uk,wk), (1.1)

where f(·) is a general function that allows the problem to be expanded to any

motion input.

Similarly, a second equation called observation equation is defined to describe the

process in which the robot sees a landmark yj at xk and generates an observation

data zk,j

zk,j = h(yj,xk,vk,j), (1.2)

Chapter 1. Introduction 9

where again, vk,j is the noise in this observation and h(·) is a general abstract

function since there are many different sensors available to perform SLAM and their

characteristics define the shape of z and h(·).

The set of these two equations:xk = f(xk−1,uk,wk), k = 1, . . . K

zk,j = h(yj,xk,vk,j), (k, j) ∈ O
(1.3)

is thus representative of the entire SLAM problem [18]. Notice that generally only

a very small part of all landmarks can be seen in one location and an observation

equation is formulated only when xk sees yj. Moreover, we will see that in a Visual

SLAM method there can be several thousand landmarks (or features), therefore the

number of observation equation will be much larger than that of motion equations.

Indeed, there may not even be motion equations if the robot is not equipped with

motion measuring instruments. In such a situation, the problem is still solvable by

making certain assumptions, such as imposing that the sensor is not moving or that

it is moving at a constant speed, or again simply ignoring the presence of that set

of equations. In the latter case, the entire optimization consists of only observa-

tion equations and it becomes similar to the Structure from Motion (SfM) problem,

where a set of data (for example images) is employed to reconstruct the motion and

structure. The difference between SLAM and SfM lies in the fact that in the first

case the images are acquired in chronological order, while in the second one they

may also be unrelated to each other and in no particular order.

Once it is recognized how to express the pose and how to parameterize the obser-

vation equation (these aspects will be dealt with in the next chapter when discussing

Visual SLAM), the state estimation problem can be addressed.

As said, every measurement is affected by noise, so x and y are here regarded as

random variables that obey a certain probability distribution. Solving the SLAM

problem then involves answering the questions: how do we estimate x and y distri-

bution by means of the control input u and the sensor reading z data? How do we

update the estimation if new data is acquired?

The answers to these questions vary according to the nature of the two above equa-

tions, the precision required and the computational capabilities of the system. Gen-

erally, there are two ways to deal with the state estimation problem: the incremental

method and the batch estimation method.

10 1.4. Probabilistic SLAM Formulation

In the incremental method, also referred to as filtering, the current state is only

determined by the previous one and the estimate is progressively constructed by

ignoring observations and poses prior to the last one acquired. In the batch estima-

tion method instead, the collected data is stored and consulted for every iteration to

construct the best trajectory and map. Adding to this, during back-end optimiza-

tion such nonlinear optimization approach can be used to use future information to

update past values for x and y.

In the most simplistic case the solution for a linear system subject to Gaussian

noise can be nimbly obtained with the Kalman Filter (KF). However, in real-world

applications we are more often dealing with nonlinear non-Gaussian (NLNG) sys-

tems, for which it is necessary to resort to other more complex means, such as the

Extended Kalman Filter (EKF) if we assume the noise to be Gaussian, or more

advanced particle filters (such as the Rao-Blackwellised filter) and batch estimation

techniques like graph optimization.

It is appropriate to point out that EKF-based methods have been the mainstream

choice in SLAM applications up until the first decade of the 2000s, however their

theoretical and practical limitations have made them of less and less interest for

state-of-the-art applications [18]:

1. The noise is assumed to always have a Gaussian distribution thanks to a

linearization of the motion and observation equations around the working

point;

2. The k-th state is only related to k − 1 (Markov property). This makes it

difficult to recognize a return to the same place and to perform loop closure;

3. EKF SLAM is generally not suitable for large scale scenarios since the space

required to accommodate the numerous state variable’s mean and variance

increases squarely;

4. It has no outlier detection mechanism, causing the system to diverge in their

presence.

Because of these shortcoming, nonlinear batch optimization is deemed able to

offer better results in terms of accuracy and robustness. In addition, the availability

of more performing and compact hardware have made this more recent technique

the most employed.

Chapter 1. Introduction 11

1.4.2 Batch State Estimation

For the reasons just mentioned, the SLAM implementation used in the simula-

tions of this thesis makes use of batch estimation during optimization, both within

bundle adjustment and pose graph for the back-end.

Considering all the instances 1, . . . , N and assuming M map points it is possible to

regroup all poses and map coordinates as

x = {x1, . . . ,xN}, y = {y1, . . . ,yM}. (1.4)

Similarly, all input and observation values are collected in u and z.

The conditional probability distribution can then be written as

P (x,y|z,u), (1.5)

and expresses the problem from a probabilistic point of view: finding the most

probable estimate for the x, y state of the robot when it is subject to u and observes

z. Using Bayes’ theorem the variables are rearranged as follows

P (x,y|z,u) = P (z,u|x,y)P (x,y)
P (z,u)

∝ P (z,u|x,y)P (x,y), (1.6)

where P (x,y|z,u) is the posterior probability, P (z,u|x,y) is the likelihood and

P (x,y) the prior. Generally posterior probability can not be easily found directly

in a nonlinear system, but from this expression we can formulate the search for an

optimal point that maximizes the posterior probability, also known as Maximum a

Posteriori (MAP) estimation:

(x,y)∗MAP = arg maxP (x,y|z,u) = arg maxP (z,u|x,y)P (x,y). (1.7)

Moreover, in case the priori information is not known -i.e. it is not known x and

y- the problem to be solved is that of Maximum Likelihood Estimation (MLE):

(x,y)∗MLE = arg maxP (z,u|x,y). (1.8)

The meaning of this expression is then the search for the state (z,u) that is most

12 1.4. Probabilistic SLAM Formulation

likely to produce the data (x,y). To address this matter and express it in a form

that allows its resolution, it is formulated in terms of least-square problem.

1.4.3 Least Square Formulation

To introduce this topic, assume that the two noise terms wk, vk,j affecting the

data satisfy a Gaussian distribution with zero mean:

wk ∼ N (0,Rk), vk ∼ N (0,Qk,j) (1.9)

where Rk and Qk,j are the covariance matrices.

Referring again to the fundamental equations 1.3, the conditional probability of the

motion and observation data for a single time step are:P (xk|uk,xk−1) = N (f(xk−1,uk),Rk,j)

P (zj,k|xk,yj) = N (h(yj,xk),Qk,j)
. (1.10)

The MLE problem associated with each of them can be solved by converting it into

a minimum of negative logarithm problem. This is done for convenience since the

logarithm function is monotonically increasing: maximizing the original function is

equivalent to minimizing its negative logarithm. It can be shown, by considering the

negative logarithm of the probability density function expansion form and inserting

the observation model, that the MLE form can be rewritten like this:

(x,y)∗ = arg maxN (h(yj,xk),Qk,j))

= arg min

(
(zk,j − h(xk,yj))

T Q−1
k,j (zk,j − h(xk,yj))

)
.

(1.11)

As long as the quadratic term (the square root of which is named Mahalanobis

distance) inside the parenthesis is minimized, the state’s maximum likelihood is ob-

tained. Solving this equation allows minimizing the noise term inherently present

in the observations. For brevity’s sake, the expression for the motion model is not

given, but it can be derived in a completely analogous way.

Equation 1.11 is limited to a single instance, but there is obviously interest in mini-

mizing noise for the whole set of observations and poses. Assuming that the inputs

u and observations z are all independent from each other, it is possible to factorize

the joint distribution as:

Chapter 1. Introduction 13

P (z,u|x,y) =
∏
k

P (uk|xk−1,xk)
∏
k,j

P (zk,j|xk,yj), (1.12)

in which the contribution of both fundamental equations is included.

Rewriting now the noise as the error between the model and the real data,

eu,k = xk − f(xk−1,uk),

ez,j,k = zk,j − h(xk,yj),
(1.13)

using the Mahalanobis distance and turning the product into a summation thanks

to the property of the logarithm, Equation 1.12 becomes the objective function of

the least-squares:

minJ(x,y) =
∑
k

eTu,k R
−1
k eu,k +

∑
k

∑
j

eTz,k,j Q
−1
k,j ez,k,j. (1.14)

Notice that each error term is weighted by the inverse of the Gaussian covariance

matrix R−1
k and Q−1

k,j (also called information matrix). This implies that if an ob-

servation is accurate then the covariance matrix will be “small” and the information

matrix will be “large”: the error associated with this observation will weight more

than the others in solving the least-squares problem.

In addition, despite the potentially very large number of state variables (which can

easily exceed several thousand), each error quadratic form is only related to a few of

them. This sparse structure is crucial for making the system of incremental linear

equations solvable in practice since the inversion of a high-dimensional dense coef-

ficients matrix is prohibitively expensive for most systems.

One final question now remains to be answered regarding the least-squares problem:

how to solve it?

The Levenberg-Marquardt method

The resolution of nonlinear least-square problems is a well covered topic in many

numerical analysis textbooks, and a detailed description of it is beyond the scope of

this thesis. For an in-depth discussion it is recommended the consultation of such

works, however, it was still deemed important to quickly refresh here the Levenberg-

Marquardt (L-M) method since it is the most widely used method in Visual SLAM

and has been applied recurrently in the implementation described in Chapter 2.

The L-M method, also called Damped Newton (DN) method, is an advanced algo-

14 1.4. Probabilistic SLAM Formulation

rithm used to solve nonlinear least-squares problems by interpolating between the

Gauss-Newton (G-N) approach and the steepest descent method. This makes it

more robust and accurate than the simple G-N, albeit generally slower.

Consider a generic least-square problem expressed by

min
∆x

F (x) =
1

2
∥f(x)∥22 , x ∈ ℜn (1.15)

with f(x):ℜn 7→ ℜ, a generic scalar nonlinear function and its first-order Taylor

expansion:

f(x+∆x) ≈ f(x) + J(xT∆x), (1.16)

where J(x) = ∂f(x)
∂x

is the Jacobian. The objective is to find the increment ∆x such

that ∥f(x + ∆x)∥2 reaches the minimum, or, in other words, to solve the linear

least-square problem:

∆x∗ = arg min
∆x

1

2
∥f(x) + J(xT)∆x∥2. (1.17)

By expanding the square term and setting its derivative with respect to ∆x equal

to zero, the important normal equation is obtained:

J(x)JT (x)∆x = −J(x)f(x),

H∆x = g
(1.18)

where H = J(x)JT (x) approximates the Hessian matrix, which is the second-order

derivative of f(x) with respect to x.

Equation 1.18 is the core of the Gauss-Newton method and its resolution returns the

increment ∆x to be used for the next iteration, until it is minor than a predetermined

threshold value.

The convergence of G-N may encounter difficulties in some cases, for example if the

positive semi-definite matrix H is singular or ill-conditioned, or if ∆x is so large

that the linear approximation becomes inaccurate. To address these shortcomings

we then consider the Levenberg-Marquardt method.

We introduce a trust-region for ∆x around the expansion point that defines where

the second-order approximation is valid. To quantify the scope of this region it is

necessary to understand the degree of approximation by means of the indicator ρ:

ρ =
f(x+∆x)− f(x)

J(x)T∆x
(1.19)

Chapter 1. Introduction 15

where the numerator is the decreasing value of the real object function, and the

denominator is the decreasing value of the approximation. The closer ρ is to 1, the

better is the approximation and is appropriate to enlarge the trust-region radius µ.

The solving procedure for L-M can be summarized as follows.

1. Set the initial value x0 and the initial trust-region radius µ;

2. For the k-th iteration, calculate J(xk) and the residual f(xk);

3. Solve the linear equation:

(H+ λDTD)∆xk = g (1.20)

to calculate the increment;

4. Compute ρ with equation 1.19;

5. If ρ > a, set higher value for µ. Otherwise, if ρ < a, set lower value for µ;

6. If ρ > b, where b > a, set xk+1 = xk +∆xk;

7. Repeat from step 2 if solution did not converge, i.e. if ∆xk is not below the

chosen threshold.

Here, a, b and the factor for increasing/decreasing µ are empirical values chosen

by the user.

Let’s now focus on how Equation 1.20 was obtained. Consider a linear problem based

on the G-N method added with the trust-region, Equation 1.17 then becomes:

∆x∗
k = argmin

∆xk

1

2
∥f(xk) + J(xk)

T ∆xk∥2, s.t. ∥D∆xk∥2 ≤ µ; (1.21)

so that the increment is limited within a region with radius µ. The coefficient matrix

D is in the simplest case the identity matrix I, hence the region in a sphere. In more

general cases, D is instead a non-negative diagonal matrix (typically the square root

of the diagonal elements of H = J(x)JT (x)), so that the sphere becomes an ellipsoid

and the constraint range is larger on the dimensions with small gradient.

In brief, to solve the optimization problem expressed by Equation 1.21 it is necessary

to form a Lagrangian function that involves the radius constrain into the objective

16 1.5. Factor Graph and Landmarks Correlation

function:

L(∆xk, λ) =
1

2
∥f(xk) + J(xk)

T∆xk∥2 +
λ

2
(∥D∆xk∥2 − µ), (1.22)

where λ is the Lagrange multiplier and serves as a damping factor that can be

adjusted for each iteration.

Similarly to what was done with G-N, by posing the derivative made with respect to

∆xk of this expression equal to 0 we finally obtain Equation 1.20, which is analogous

to Equation 1.18 but with the additional term λDTD. Small values of λ cause H to

dominate the equation and make the quadratic approximation model predominant

(i.e. the method becomes similar to G-N). Higher values of λ, on the other hand,

make the search for the solution expand beyond the quadratic model and the method

becomes therefore closer to the steepest descent approach.

1.5 Factor Graph and Landmarks Correlation

The problem so far described can be better understood in terms of inference

over a factor graph [18]. This representation makes it possible to visualize at the

same time all the main actors that characterize a SLAM system and to see what

relationships are established among them. The variables xk, yj and K are the nodes

in the graph. In particular, K is the variable associated with the sensor intrinsic

calibration parameters and in the case of a camera describes the camera to image

/ image to pixel transformations. The likelihood P (z,u|x,y) and the prior P (x,y)

are here called factors, and they encode probabilistic constraints over a subset of

nodes.

A factor graph is then a graphical model that explicates the dependence between

the factors and the corresponding nodes and expresses the nonlinear least-squares

optimization problem.

Figure 1.3: Example of a factor graph.

Chapter 1. Introduction 17

Consider Figure 1.3. The circles represent variables: pose (blue), landmark po-

sitions (green), intrinsic calibration parameters (red). The squares indicate instead

the factors : denoted with u are the factors that correspond to odometry constraints

while z correspond instead to camera observations. p denotes prior factors and c1

denotes one instance of loop closure. Although this is a simple example, it does not

differ conceptually from the graph that is established for a real case. The sparse

nature of the problem can also be appreciated, whereby variables generally inter-

connect only in smaller groups.

As understood, simultaneous estimation of the robot pose and landmark loca-

tions is being pursued, but their true values are never known or measured directly.

Errors in knowledge of the pose when the landmarks observations are made cause

much of the error between true and estimated landmarks location. This aspect en-

tails a high correlation among the errors in landmarks location estimate: the relative

location between any two landmarks yi and yj can be obtained with high accuracy,

even when the absolute location of yi and yj is not well known. In probabilistic

terms it means that the joint probability density P (yi,yj) is highly peaked even

if the marginal densities P (yi) and P (yj) are quite disperse. The crucial turning

point mentioned in Section 1.2 that made the SLAM problem solvable as we know

it today concerns this very aspect: it has been proven that correlations between

landmark estimates increase monotonically with the number of observations made,

namely the joint probability density on all landmarks P (y) becomes more peaked

as more observations are made. This characteristic is justified by the fact that the

observations can be regarded as ”nearly independent” readings of the relative loca-

tion between landmarks (”nearly” in the sense that, as we will see in an instant, the

observation errors will actually be correlated through successive robot motions).

Figure 1.4: The essential SLAM problem.

18 1.5. Factor Graph and Landmarks Correlation

Refer now to the representation of the essential SLAM problem shown in Figure

1.4. The relative location of the observed landmarks yi and yj is measured from a

certain location with pose xk. As the vehicle moves to xk+1, it sees again yj and

updates the estimated location -both of the landmark and its own- with respect to

its previous pose xk. Now, since the relative location of yi and yj is well known,

the position of yi is also updated, even though this landmark is not observed form

xk+1. In addition, the correlation between these two landmarks increases even more

because the same observation is used to update their position. While the robot is in

xk+1, then, it also sees two new landmarks whose position is determined relatively

to yj and therefore are immediately linked to the rest of the map. As the vehicle

advances, it is clear how this process repeats itself creating a network of relative

correlations whose precision increases with every new step.

Figure 1.5 helps to visualize this fact by means of the spring network analogy.

Figure 1.5: Spring network analogy. The thickness of the red lines represents the
stiffness.

All landmarks encountered up to a certain time-step can be imagined forming

a network with connections running between them, the pose of the robot and a

global reference system (which can be taken for example from an assigned initial

pose value). These connections act like springs whose stiffness depends on the level

of correlation achieved: as the vehicle moves within the environment and performs

new observations, the springs become increasingly stiffer due to the phenomenon of

correlation propagation previously described. The greater the stiffness, the better is

the estimate found and subsequent observations will make these acquired positions

vary less and less toward convergence to the true value. A lower stiffness, on the

other hand, indicates that the estimate has low confidence and the position can be

readjusted “with little effort” by subsequent observations.

Chapter 1. Introduction 19

1.6 Visual SLAM

As mentioned, there is a variety of ways to perform SLAM, depending on the

scope of application. LIDARs (Light Detection and Ranging), SONAR (Sound Nav-

igation and Ranging) and cameras, have all been applied successfully in this field.

Moreover, systems that combine two or more different sensors are very often con-

sidered to increase the robustness and accuracy. A widely used coupling is that

between cameras and IMUs (Inertial Measurement Units) as these two technologies

are in many ways complementary and when combined offer significantly superior

performance and stability. Interesting discussions on the topic of Visual-Inertial

Odometry can be found in [3] [15]. On top of these more popular sensors, there

is also interest in making use of less conventional means, such as particular types

of cameras (Light-Field Camera and Event-Based Camera) or even magnetic, olfac-

tion, and thermal sensors [1].

This thesis focuses solely on Visual-SLAM (V-SLAM), which makes exclusive

use of cameras as sensors to solve localization and mapping. V-SLAM has been a

hot topic since the early 2000s and it is proving to be an effective and reasonably

inexpensive approach for many scenarios. It is, however, also showing to be one of

the most sophisticated embedded vision technologies to date.

1.6.1 Cameras

The cameras that are mounted on board of vehicles and robots to perform SLAM

can be of the most diverse nature, each with its own advantages and disadvantages.

The three most widely used configurations are:

• Monocular Camera: a single conventional camera is the most simple, com-

pact and inexpensive solution. It generates as output a video captured at a

certain number of frames per second that is provided as input to the SLAM

algorithm. However, since a single image is just a 2D projection of a 3D space,

the depth information is lost. This quantity is essential to perform SLAM, and

its relative value can only be recovered here with the pixel disparity calculated

from translational movements of the camera. Consequently, in monocular

SLAM there is also the problem of scale ambiguity: the map can drift in one

additional DoF other than the six pose values, namely the scale.

• Stereo Camera: two synchronized monocular cameras disposed with a cer-

tain distance from each other (baseline) constitute a stereo configuration.

20 1.6. Visual SLAM

Stereo cameras can estimate the depth solely from the difference between the

image pair, thus overcoming the limitations of a single monocular camera.

A larger baseline generates a larger parallax and allows to measure further

distances. Depending on the application, a lot of space may be required to ac-

commodate an effective configuration. Another disadvantage is that the set-up

and calibration process is more complicated.

• RGB-D Camera: also known as depth cameras, RGB-D cameras became

popular in more recent years, especially following the launch of Microsoft

Kinect [33] in 2010. They can simultaneously collect color images and depth

images, and directly gain depth maps mainly by actively emitting infrared

structured light or calculating time-of-flight of the pulses. Because of this

direct measurement, they require less computational resources than a stereo

camera, but are subject to restrictions that make them suitable only for par-

ticular environments. As of today, depth cameras still suffer from small field

of view, noisy data, narrow measurement range and high sensitivity to light

sources. For these reasons they are essentially only used in indoor environ-

ments.

It must then be considered that, in any case, it is not just the technical spec-

ifications that dictate the choice, but weight/size and cost can become the main

driver parameters. A small mass-produced UAV will not be able to accommodate a

payload consisting of a large stereo configuration or expensive sensors and quality

lenses. This can result in having a sub-optimal set-up, that relies on cameras that

generate distorted images of modest quality, with low resolution and plagued by a

good amount of noise. Fortunately, the capacity of modern V-SLAM algorithms is

such that they can handle even this type of data, so it is indeed possible to use

low-cost equipment with satisfactory results.

In light of the considerations just made, a stereo set-up was chosen to be used

in this thesis, the characteristics of which were directly taken from the reference

KITTI dataset that will be introduced in Section 3.2.

1.6.2 Pinhole Camera Model

The geometric model that most simply describes the operation of projecting 3D

space points (in meters) into a 2D image plane (in pixels) is that of the pinhole

camera. This representation will be employed to model the cameras, therefore is

Chapter 1. Introduction 21

here briefly introduced [18].

Consider Figure 1.6, the camera coordinate system is given by O−XY Z, where O
is the optical center and coincides with the “hole” in the camera plane of the pinhole

model. The 3D world point P with camera coordinates [X, Y, Z]T is projected

through O and reaches the physical imaging plane O′ −X ′Y ′Z ′ to define the image

point P ′ defined by [X ′, Y ′, Z ′]T . Considering that the focal length f sets the physical

distance O − O′ between the imaging plane and the camera plane, the following

relationship applies:
Z

f
=
X

X ′ =
Y

Y ′ , (1.23)

which describes the spatial relationship between P and its image. It is necessary to

point out that, to be precise, in Eq. 1.23 the second and third term should have a

“−” sign in front because the image is projected inverted. If the imaging plane is

arbitrarily moved to the front however, this expression results correct.

Figure 1.6: Pinhole Camera Model.

Since the camera sensor consists of pixels, within the imaging plane is also defined

the pixel plane o − uv in relation to which P ′ has coordinates puv = [u, v]T . By

referring again to Equation 1.23, the relationship between the coordinates of P and

the pixel coordinates are: u = fx
X
Z
+ cx

v = fy
Y
Z
+ cy

, (1.24)

where [cx, cy]
T are the principal point offset and fx = α f , fy = β f are the scaled

focal lengths, all expressed in pixels.

Putting Z to the left side and using homogeneous coordinates for puv, the matrix

22 1.6. Visual SLAM

form becomes:

Zpuv = Z

uv
1

 =

fx 0 cx

0 fy cy

0 0 1

XY
Z

 =
∆
KP, (1.25)

with K the intrinsics matrix. Eq. 1.25 describes the projective 3D to 2D trans-

formation from the camera coordinates to the pixel coordinates. To express the

relationship between pixel coordinates puv and world coordinates Pw it is necessary

to introduce the rotation matrix R and translation vector t that define the camera

pose:

Zpuv = Z

uv
1

 = K(RPw + t) = KTPw. (1.26)

where the third equation implies a conversion from homogeneous to non-homogeneous

coordinates, with T ∈ SE(3).

1.6.3 Image Distortion

In order to describe the entire projection process, it is necessary to add to the

pinhole camera model the effect of distortion. Real cameras are equipped with a

number of lenses for the purpose of controlling the image characteristics. In SLAM,

it may be of interest to make use of lenses that widen the Field-of-View so that there

are more subjects in the scene and more features can be detected. Their presence,

however, can also negatively affect the way light propagates toward the Imaging

Plane in essentially two ways: (1) the shape of the lens itself affects how the light is

conveyed, (2) due to dimensional tolerances of the components and their mechanical

assembly, the Imaging Plane and the lens are not perfectly aligned and parallel. As

a result, two typical kinds of distortion arise:

• Radial distortion. Since typically the lenses are center-symmetrical, the

distortion they cause will be radially symmetrical. In particular, this class is

divided into two main categories: Barrel distortion, where the radius of pixels

decreases as the optical axis-s distance increases; Pincushion distortion, which

is the opposite of the previous one. In both cases, the line that intersects the

center of the image and the optical axis remains the same.

Chapter 1. Introduction 23

Figure 1.7: Radial Distortion (image from Mathworks documentation).

These effects can be modeled by a polynomial expression:

xDistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (1.27)

yDistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (1.28)

Where xDistorted and yDistorted are the normalized image coordinates of the

point after distortion, x and y are the normalized coordinates before distortion,

k1, k2, k3 are the radial distortion coefficients of the lens and r is the distance

between a point p on the normalized plane and the origin of the coordinate

system in the plane, therefore r2 = x2 + y2.

• Tangential distortion. Because of the technological limitation in the con-

struction and assembly of the optical devices, the lens and the imaging sur-

face cannot be perfectly parallel, thus introducing a distortion that tilts and

stretches the image.

Figure 1.8: Tangential Distortion (image from Mathworks documentation).

Similarly to above, the expressions for tangential distortion are of the type:

xDistorted = x+ 2p1xy + p2(r
2 + 2x2) (1.29)

yDistorted = y + p1(r
2 + 2y2) + 2p2xy (1.30)

24 1.7. Purpose of the Thesis and Outline

where p1, p2 are the tangential distortion coefficients of the lens.

The number of coefficients can be chosen depending on the severity of the effect,

and their value can be provided by the manufacturer or be estimated through the

calibration process.

1.7 Purpose of the Thesis and Outline

The following thesis aspires to accomplish three goals:

1. Present a detailed analysis and description of the Matlab implementation of

the Visual-SLAM ORB-SLAM2 system;

2. Implement a comprehensive and self-sufficient framework for performing SLAM

testing in a virtual environment, with possibilities for great customization of

the scene, sensors and trajectory;

3. Demonstrate the validity of a virtual environment as an alternative to a dataset

for testing purposes.

Specifically, the structure of the work is as follows:

Chapter 2. Describes the ORB-SLAM2 system as it has been implemented

in Matlab, showing for each thread a detailed block diagram of the operations

that take place and focusing on certain aspects considered crucial for this and

other similar SLAM systems.

Chapter 3. After justifying the interest in using a virtual environment, the

framework built for performing the tests is described, paying particular atten-

tion to describing how the different software was used.

Chapter 4. Presents how the tests have been prepared and performed, both

on images taken from a real scene and on images generated in a virtual envi-

ronment. A discussion of the results obtained follows.

Chapter 5. Encapsulates final considerations on the results and how the work

can be expanded or improved in future developments.

Chapter 2

ORB-SLAM2 Matlab
Implementation

2.1 ORB-SLAM Series Systems

ORB-SLAM [11] is a feature-based monocular SLAM system presented in 2015

that is capable of operating in real time, both in small and large outdoor/indoor

environments. It became very popular for its qualities as a complete and easy-to-use

system (at least, simpler than other methods), so much so that it is still often the

preferred choice in the world of open-source feature-based methods. In 2017 was

introduced ORB-SLAM2 as a result of the work carried out by Raùl Mur-Artal and

Juan D. Tardòs [12], improving on the capabilities of the predecessor and, most

importantly, allowing the method to be extended to include binocular and RGB-D

applications. Some of the characteristics that make these systems of great interest

are:

• Highly versatile and compatible with a wide array of sensors;

• The exclusive use of ORB features, which offer an excellent trade-off between

computational speed and accuracy;

• An innovative three tread structure consisting of Tracking, Local Mapping and

Loop Closure;

• An highly effective loop detection algorithm to mitigate accumulated drift;

• High use of optimizations around feature points that makes the system par-

ticularly robust.

26 2.2. Matlab System Implementation Overview

The map that is generated consists of sparse feature points, therefore can only

be employed to satisfy the localization needs, but not navigation, obstacle avoid-

ance, interaction etc. Given its characteristics, ORB-SLAM (ORB-SLAM2) is still

a very valid method today and is among those that constitute the state of the art

in Visual-SLAM.

It must be noted that in 2021 has also been made public ORB-SLAM3 [2],

which introduced further improvements and expansions for the system. The two

most impactful new features are: (1) the capability of performing visual-inertial

SLAM that relies on Maximum-a-Posteriori estimation. This significantly increases

the versatility and the robustness of the system, with an increase in accuracy of

up to 10 times; (2) the introduction of a multiple map system that relies on a new

place recognition method with improved recall. In case tracking is lost, a new map

is initialized and will then be seamlessly merged with previous maps when revisiting

mapped areas.

Unfortunately, there are no Matlab implementations yet for ORB-SLAM3, but this

does not prevent the achievement of the goals set for this thesis.

2.2 Matlab System Implementation Overview

This Chapter provides a comprehensive insight on the entire ORB-SLAM2 sys-

tem as implemented by MathWorks in Matlab. This is a closely related version to

the one originally proposed by Raùl Mur-Artal and Juan D. Tardòs, to which some

variations were applied. It is a very recent release (it makes use of functions intro-

duced only in Matlab R2022b), and it has been confirmed that an updated version

will be made available in the future. The full original code can be downloaded from

the MathWorks documentation [25], while the changes that have been made to the

parameters of interest so that it could satisfy the purposes of this thesis can be

found in Chapter 4.

A complete and detailed description of the entire method in all its facets would

certainly be prohibitively long given its complexity, therefore the following focuses

on what have been considered the crucial and characteristic aspects, while covering

all sub-routines of the system. In particular, the intent of this work is to provide a

novel introspective on a V-SLAM system, in which its structure and logical process

that led to its formation are well defined.

The entire pipeline can be condensed into four macro blocks (Fig.2.1):

Chapter 2. ORB-SLAM2 Matlab Implementation 27

1. Map Initialization: The first pair of stereo images is used to initialize the

map of 3D points using the disparity map. The left image is stored as first

key frame;

2. Tracking: For each stereo pair, the pose of the camera is estimated by match-

ing features between subsequent frames. The estimate is improved by tracking

the local map and each frame is evaluated to establish if it is a key frame to

forward to Local Mapping;

3. Local Mapping: New 3D map points are computed from the disparity of the

stereo pair and by triangulating feature points in the current Key Frame and

its connected Key Frames. A local bundle adjustment minimizes reprojection

errors by adjusting simultaneously the camera pose and the 3D points;

4. Loop Closure: Each Key Frame is evaluated to find a possible loop closure

candidate by comparing it against all previous Key Frames using a bag-of-

features approach. Once the loop is detected, pose graph optimization refines

the camera pose for the entire trajectory.

Each of these threads will be expanded and described in the subsequent sections

with the help of block diagrams built directly by consulting the code.

Figure 2.1: System Threads and Modules.

28 2.3. Map Initialization

2.3 Map Initialization

The process that initialize the map is the first to take place and has important

implications on the subsequent operations of the method. It uses only the first

stereo pair to find the ORB feature points in each image and reconstruct the ini-

tial 3D world points form the disparity map. The feature points of the two images

are then associated with each other and identified in the 3D world map. All the

crucial steps that occur in this thread are summarized in the flow chart in Figure 2.2.

Figure 2.2: Map Initialization can be subdivided in three sections: Preliminary
Operations, Detection and Extraction of ORB Features, Feature Matching and 3D World

Position.

2.3.1 Preliminary Operations

Before the actual SLAM can begin, it is necessary to prepare the images properly

so that they can then be used by the system’s algorithms.

Image Distortion

Section 1.6.3 introduced distortion and how it can affect the shape of the image.

V-SLAM algorithms require images provided free of distortion to interpret correctly

the three-dimensional space they are depicting. The images from the dataset that

will be used in this work are for this reason given to the users already distortion-free.

Accordingly, to maintain the same framework, the virtual cameras will also be set up

to generate distortion-free images. In the more general case however, it is possible to

Chapter 2. ORB-SLAM2 Matlab Implementation 29

remove distortion through the undistortImage function from the computer vision

Toolbox in Matlab. Once the intrinsic parameters of the camera and the values of

the distortion coefficients are provided, it returns the undistorted images.

Image Rectification

A second operation that generally needs to be performed when dealing with

stereo images is that of rectification, which is a transformation used to project

images into a common image plane. To match a pixel of one image of a stereo

pair with the other it is necessary to move along the epipolar line, which is generally

slanted since there is a relative rotation between the two cameras or there is an offset

in the direction of the z axis. Rectification is performed to simplify the resolution

of the correspondence problem: it warps both images so that they appear coplanar,

that is, as if they had been captured with two cameras having only a horizontal

offset. As a result, the obtained images satisfy these two properties:

1. All epipolar lines are parallel and horizontal;

2. Corresponding points have identical vertical coordinates.

Ideally, the cameras in a stereo SLAM system are installed coplanar, however this

condition is not guaranteed as it is impossible to maintain in a practical implementa-

tion, much less if the vehicle is in motion and subjected to vibrations. Consequently

it is always a good practice to perform the rectification operation when dealing with

real cameras. As in the case of distortion, this has already been performed in the

dataset images (in fact, the two actions are typically performed one after the other,

sometimes enclosed in a single action) and therefore they are provided to the users

ready for use, together with the Reprojection Matrix Q.

Q =

1 0 0 −cx
0 1 0 −cy
0 0 0 f

0 0 1/b 0

 (2.1)

This is a 4× 4 matrix containing the focal length f , the reciprocal of the baseline b

of the fictitious rectified stereo camera, and the coordinates [cx, cy] of the Principal

Point of the rectified left camera. It will be used later to reconstruct, starting

from the image-diparity coordinates, the coordinates of the three-dimensional point

expressed in the left camera rectified reference system.

If the images are not already rectified, this operation can also be easily performed

30 2.3. Map Initialization

within Matlab with the rectifyStereoImages function by applying two projective

transformations. The output consists in the two adjusted images and also the newly

obtained Reprojection Matrix Q.

Figure 2.3: Epipolar line on two coplanar
image planes.

What about the images obtained by

the virtual stereo configuration? The

problems inherent the relative position-

ing of cameras that afflict the real world

do not arise here if the cameras are

placed with only an horizontal offset and

their relative position remains constant

throughout the simulation. Figure 2.3

shows the two image plane of the vir-

tual stereo pair, onto which the point

M of the scene is projected in P and

P ′, respectively. O and O′ are the opti-

cal centers and in yellow is the epipolar

line. For the epipolar line to be hori-

zontal, i.e. to establish the coplanarity of the image planes, these two relationships

must be satisfied:

R = I =

1 0 0

0 1 0

0 0 1

 (2.2)

t = (T, 0, 0) (2.3)

Where R is the 3×3 rotation matrix and t is the translation vector that defines the

relative position between the cameras. The cross product between these two objects

define the Essential Matrix E, that relates corresponding points in stereo images

and here is

E = t∧R =

0 0 0

0 0 −T
0 T 0

 (2.4)

Considering now the normalized coordinates for the matched points P and P ′, which

are x = [u, v, 1]T and x′ = [u′, v′, 1]T , the Longuet-Higgins equation imposes

(u′, v′, 1)

0 0 0

0 0 −T
0 T 0

uv
1

 = 0 (2.5)

Chapter 2. ORB-SLAM2 Matlab Implementation 31

and by developing the product

Tv = Tv′ (2.6)

which means that the y coordinate does not change, therefore the image of the 3D

point M in the two planes belongs to the same horizontal line.

Figure 2.4: Undistorted and rectified stereo images obtained from the first frame of a
simulation. The red epipolar line is horizontal and passes through the same points in

both images.

The stereo pair is now ready to be used in the detection and extraction of the

features.

2.3.2 Detection and extraction of ORB features

ORB-SLAM2 is a system of the feature method type. In this category the goal

is to identify some representative points from the images in such a way that they are

tracked even after small changes in camera pose. These unambiguous points -also

called image features in VO- can therefore be found in a sequence of frames and will

be used later to identify their 3D position in space and to address the problem of

camera pose estimation. The choice of these points is not trivial, since they should

be able to meet the following goals [18]:

• Repeatability: Different images will present the same feature;

• Distinctiveness: Different features have different expressions;

• Efficiency: The number of feature points in the image is much smaller than

the total number of pixels;

• Locality: The feature is only related to a small image area.

Consequently, individual pixels and even corner and edges are typically not suitable

for SLAM applications since a variation of the pose or of the illumination conditions

could instantly change the appearance of the feature. Over the years there has been

significant research to find points that could satisfy the previous list, and among the

best achievements is the ORB feature.

32 2.3. Map Initialization

ORB Feature

The typology of image feature used by ORB-SLAM2 is called ORB (Oriented

FAST and Rotated BRIEF). Today it is a favorite when there is the need to perform

real-time image feature extraction since it is a good trade off between quality and

performance: from a comparison [13] with other popular and more precise feature

types such as SURF and SIFT, extracting 1000 points in the same image takes about

15.3ms for ORB, about 14 times more for SURF and about 342 times more for

SIFT. It uses an improved version of the FAST (Features from Accelerated Segment

Test) key point and of the BRIEF (Binary Robust Independent Elementary Feature)

descriptor, and it is because of these components that it can achieve impressive

computational speeds while maintaining scale and rotation invariance during image

transformation.

Oriented FAST Key Point

FAST is a type of corner point that is achieved by evaluating on a grayscale

image the brightness distribution in a cluster of pixels. The sequence of operations

is as follows:

1. Takes the brightness Ip of a pixel p in the image;

2. Sets a threshold T that can be chosen by the user (here 20%);

3. Selects 16 pixels on a Bresenham circle of radius 3 around the pixel p;

4. Evaluates if the central pixel p is a feature point by checking if there are enough

consecutive points of the circle that have a brightness greater than Ip + T or

lower than Ip − T ;

5. Repeats the previous four steps for each pixel in the image.

Since it only compares the pixels’ brightness it is extremely fast, but has subop-

timal repeatability and uneven distribution. Also, the FAST key point only provides

the 2D position of the point. To address these limitations, ORB uses the improved

Oriented FAST key point, which adds the description of both scale and rotation.

The scale invariance is obtained by means of an image pyramid, as shown in Figure

2.5. The image is downsampled numLevels times with a certain scaleFactor so

that different resolutions are achieved. This operation allows the same feature point

to be identified even when the camera moves away from or closer to it.

Chapter 2. ORB-SLAM2 Matlab Implementation 33

The scale value at each level of decomposition is scaleFactor(level−1), where scaleFactor

must be within the range [0, numLevels− 1]. Given an input image with raw reso-

lution of M ×N , the size at each level or decomposition becomes

M

scaleFactor(level−1)
× N

scaleFactor(level−1)
. (2.7)

Figure 2.5: Pyramids for two subsequent images where numLevels = 8 and
scaleFactor = 1.2. During the feature matching, images on different layers can be

matched to obtain scale invariance.

The rotation of features is instead determined by the intensity centroid method.

The gray centroid is the equivalent to the concept of center of mass, but instead of

mass, pixel intensity is used.

The moment of a small image block B is defined as

mpq =
∑
x,y∈B

xpyqI(x, y), p, q = {0, 1} (2.8)

from which it is possible to calculate the centroid of the image block

C =

(
m10

m00

,
m01

m00

)
. (2.9)

The vector O⃗C, where O is the geometric center of the image, has therefore direction

θ = arctan

(
m01

m10

)
. (2.10)

34 2.3. Map Initialization

BRIEF Descriptor

To completely characterize the feature it is now needed the descriptor compo-

nent, which is derived from pixels surrounding a key point. Descriptors -also known

as feature vectors- are necessary to describe and match features that are specified

by a single point location.

The binary BRIEF descriptor is calculated for all key points and gathered in a m×n
matrix, where m is the number of descriptors and n is the number of elements in the

binary vector. This vector encloses the size relationship between two random pixels

p and q near the key point: if p > q then returns the value 1, otherwise, if p < q

it returns 0. The use of random pixels and binary encoding greatly increases the

speed of this operation. Since the original BRIEF does not have rotation invariance,

ORB uses an improved version where the direction information is retrieved from the

Oriented FAST key point to calculate the Steer BRIEF feature after the rotation.

Thanks to the combination of the FAST and BRIEF components, ORB features

are very efficient and well behaved under translation, rotation and scaling.

Matlab allows to detect ORB features through the function detectORBFeatures,

while the descriptors are extracted through extractFeatures. A final expedient

that is made is to use selectUniform to take a number of feature points numPoints

- typically between 500 and 2500, depending on the resolution of the image - with the

strongest metrics approximately distributed throughout the image. This prevents

all points from being assembled in a limited region.

2.3.3 Feature Matching and 3D World Positions

Now that the feature points for the first couple of stereo images have been ob-

tained, they are matched to find their 3D world locations. This operation can be

divided into three steps:

1. Reconstruction of the 3D scene from the disparity map;

2. Feature matching between the stereo pair;

3. Localization of the ORB feature points in the 3D world map.

Reconstruction of the 3D scene from the disparity map

The disparity map is a greyscale image representing the apparent motion of the

pixels between a pair of rectified stereo images due to the different position of the

cameras in space (Fig. 2.7). Before generating this map, it is appropriate to first

Chapter 2. ORB-SLAM2 Matlab Implementation 35

estimate the maximum disparity, which can be obtained from a red-cyan anaglyph,

as shown in Figure 2.6. The rectified stereo images are superimposed with each

other to compute the distance between the same pixels. The closer the object is to

the camera, the greater the disparity will be. The measured value is used to define

the disparity range disparityRange = [MinDisparity,MaxDisparity].

Figure 2.6: Red-cyan anaglyph of the stereo pair in figure 2.4 with the measure of the
disparity for two generic points. The road line in the lower left corner was chosen to

measure the maximum value, where the distance of coincident points corresponds to 47
pixels.

Figure 2.7: Geometric model for a stereo
configuration, where d = uL − uR is the

disparity and the depth z = f b/d.

Next, the census transform (CT) of

the image pair is performed and the bi-

nary strings associated with each pixel

are used to evaluate the Hamming dis-

tance. This quantity refers to the num-

ber of different digits in two binary vec-

tors and measures the minimum num-

ber of substitutions required to change

one string into the other. The Matching

Cost Matrix that stores the Hamming

distance for each pixel pair is therefore

obtained as a result. Finally, the pixel-

wise disparity is computed from this

matrix using the Semi-Global Matching

(SGM) method in disparitySGM and the map is derived.

The newly obtained disparity map (Fig 2.8), together with the reprojection matrix,

is employed in the function reconstructScene to reconstruct the 3D scene in terms

of [X, Y, Z] point coordinates corresponding to all the pixels of the image. These

coordinates are relative to the optical center of the left camera and are stored in a

M ×N × 3 matrix, where M ×N is the resolution of the rectified images.

36 2.3. Map Initialization

Figure 2.8: Disparity map obtained from the stereo pair and scaled for a value of
disparityRange = [0, 48] (it must be a multiple of 8).

Feature matching between the stereo pair

The ORB features in the stereo pair are matched so that they can be associated

with the corresponding world points. The two sets of features are compared by

means of an exhaustive method that computes the pair-wise distance between the

BRIEF descriptors and it was set so that a pair of features is matched only if the

distance between them is less than 40% from a perfect correspondence. Candidate

matches are then evaluated to isolate only those pairs that are sufficiently close

to the same epipolar line, meet the disparity range requirements and have nearly

identical scale.

Figure 2.9: Matched features in the first grayscale stereo pair.

Localization of the ORB feature points in the 3D world map

Since there is only interest in the 3D points that correspond to the ORB features,

two filtering operation extract from the map only the points that have the same pixel

locations as the features and keep only those within a 200 × baseline range in the

z direction: this second passage excludes points that can not be valid features since

their disparity is zero and their associated distance is set to infinity.

These points are finally projected on the initial camera pose so that they are placed

correctly in the global map that will be updated to host also the points for the

subsequent frames:

pglobal,in = p ·Rin + tin (2.11)

Chapter 2. ORB-SLAM2 Matlab Implementation 37

where p is the vector with the [X, Y, Z] point coordinates of the ORB features, Rin

and tin are respectively the rotation matrix and the translation values for the initial

pose, and pglobal,in is the point coordinates vector transformed for the global map.

2.4 Data Management and Visualization

Once the map has been initialized, it is necessary to manage data and allow

visualization of the 3D map points and pose of the camera in the global map. Mat-

lab makes use of two objects, imageviewset and worldpointset, to perform these

tasks. They serve as a database to store all information associated with current and

previous observations and they set the SLAM problem as factor graph. Understand-

ing these two objects is critical to knowing how the data stream is managed and how

subsequent observations are connected to improve pose estimation. Some concepts

that will be explored in more detail as we progress with the description of the SLAM

system are mentioned here, therefore please continue reading the following sections

to have an appropriate insight.

imageviewset handles view attributes and pairwise connections between views

of data. It encloses four properties:

– A scalar counter that keeps track of the number of views, i.e. number of key

frames that have been identified;

– A scalar counter that keeps track of the number of pairwise connections be-

tween views;

– A three column table with the absolute pose of the camera, the feature vec-

tor with numPoints rows, and the feature points properties (location, metric,

count, scale and orientation) for each key frame;

– A five column table where each row is descriptive of a connection. Column 1

and 2 identify which views are connected with each other, column 3 gives the

relative pose of the second view with respect to the first one, column 4 encloses

the information matrix that expresses the uncertainty of the measurement

error, and finally column 5 holds a numPoints× 2 matrix with the indices of

matched feature points between two views.

worldpointset stores correspondences between 3-D world points and 2-D image

points across camera views. It encloses eight properties:

38 2.4. Data Management and Visualization

– A M × 3 matrix with the coordinates for all 3D world points, where M is the

number of world points;

– A row vector that identifies the views associated with the world points;

– A three column table that specifies the 3D to 2D point correspondences. For

each world point are specified which views see that point and, within a view,

what is the corresponding feature point;

– A M × 2 matrix with the minimum and maximum distances from which a

world point is observed;

– A M × 3 matrix with the mean viewing direction of each world point (Fig.

2.10). Each row defines the vector that provides an estimate of the viewing

angle from which that specific 3D point can be observed, mediated for all views

that see that point. When a new view is introduced, the 3D points that can

potentially be observed can be predicted based on this mean viewing direction

and the distance range limits (see below);

Figure 2.10: Mean viewing direction for n views. The two blue circles represent the
distance range limits.

– A M column vector with the ID of the representative feature (given by the

medoid of all the feature descriptors associated with the world point) descriptor

index for each point;

– A M column vector with the ID of the representative views for each point. A

representative view is a view that contains the representative feature for each

world point;

– A scalar that counts the number of world points.

Both of these objects grow in dimensions as the cameras move within the environ-

ment by adding new key frames. The previously existing values are also updated to

improve the poses and map thanks to the numerous bundle adjustments that will be

performed during Tracking and Local Mapping and during pose graph optimization.

Chapter 2. ORB-SLAM2 Matlab Implementation 39

2.5 Tracking

Tracking is at the core, together with the subsequent Local Mapping and Loop

Closure, of the main loop of the system. It is an iterative process that is performed

on each stereo pair provided, therefore takes place from when the map is initialized

until when the frame that allows loop closure has been found. Figure 2.11 shows a

summary diagram that encapsulates all the major steps necessary to reach its final

goal, which is to identify if a frame is a key frame to be forwarded to the Local

Mapping thread.

Figure 2.11: Summary diagram of all the main operations that take place during
Tracking.

The first step of Tracking is similar to what was done during Map Initialization,

but with a new pair of stereo frames at each iteration. Therefore, please refer to the

previous section for details concerning the Preliminary Operations and the Detec-

tion and Extraction of ORB features.

The following is a description of the steps required to perform Camera Pose Esti-

mation and Refinement, and Key Frame Detection.

40 2.5. Tracking

2.5.1 Camera Pose Estimation and Refinement

In order to obtain a first estimation of the camera pose at a given instant, it is

first necessary to match corresponding features from two consecutive frames. Fea-

ture matching is therefore now performed between two successive frames of the left

camera instead of between frames of the stereo pair. The findWorldPointsInView

function is used to return the indices of world points observed in the previous view

and of the associated features. These features indices are then matched with the

corresponding indices in the current frame, so that the same feature, associated with

the same 3D point, is recognized. As expected, only some of the features that were

found in the first frame will find a match with those in the second view because of

the pose variation that occurred. The criteria by which matching takes place are the

same as those seen during Map Initialization, with a 40% match threshold and an

high ratio threshold for rejecting ambiguous matches. Now that the matched image

points and matched world points are known, there is everything needed to estimate

the camera pose.

3D-2D Perspective-n-Point (PnP)

The estimation of camera motion and pose is a classic problem in visual odometry

that can be solved with many different approaches, depending on the set of infor-

mation that are available. In this implementation, we tracked a set of 3D points in

world coordinates and their corresponding 2D projection on the image plane, there-

fore we are dealing with a Perspective-n-Point (PnP) problem.

The goal that wants to be achieved can be better understood by considering the

perspective projection model of the camera:

si puv, i = [R|t]Pw, i, (2.12)

si

uivi
1

 =

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

Xi

Yi

Zi

1

 (2.13)

where Pw, i is the point in homogeneous world coordinates, puv, i is the corresponding

homogeneous image point, R ∈ SO(3) and t ∈ R3 compose the projection matrix

C and are the unknowns rotation matrix and translation vector (camera extrinsics).

Finally, s is the scale factor for the image point. In this expression puw, i uses

normalized plane coordinates and neglects the influence of the known intrinsic matrix

Chapter 2. ORB-SLAM2 Matlab Implementation 41

K.

The system can be solved with the Direct Linear Transformation (DLT) method by

solving the linear equations as:

PT
w,1 0 −u1PT

w,1

0 PT
w,1 −v1PT

w,1
...

...
...

PT
w,n 0 −unPT

w,n

0 PT
w,n −vnPT

w,n

r11

r12
...

r33

t3

= 0 , (2.14)

where [R|t] has been expresses as a vector of dimension 12 and a total of n feature

points are being considered. Explicating ui and vi it can be easily shown that each

feature point provides two linear constraints on the vector in Equation 2.14, there-

fore the linear solution can be achieved by at least six pairs of matching points.

The precision of this method can therefore be increased increasing the number of

points and searching for a lest-square solution of the overdetermined equation. In-

terestingly, DLT also allows to estimate the matrix K if it is not know but this

comes at the expense of reduced accuracy. On the downside, the elements in [R|t]
are treated as 12 unrelated unknowns, therefore this solution may not satisfy the

SO(3) constrain on the rotation matrix and it becomes necessary to look for the

best approximation by means of QR decomposition.

Perspective-three-Point (P3P)

Figure 2.12: The P3P Problem.

If n = 3, a popular alternative method to

the DLT for solving the PnP problem is given by

the Perspective-three-Point (P3P) algorithm [7].

It exploits only three pairs of 3D-2D matching

points and establishes their geometric relation-

ship. This algorithm is often chosen in V-SLAM

to pair with a subsequent least-square optimiza-

tion to improve the pose. Since it uses less input

data and offers a more efficient solving proce-

dure, the P3P followed by a bundle adjustment

has been used in this implementation.

Consider Figure 2.12: let O be the principal camera point; A, B, C the 3D points in

world coordinates while a, b, c the projections of those points on the camera image

plane.

42 2.5. Tracking

Using the law of cosines on the triangles AOB, AOC, BOC, the P3P equation

system is:

|ŌB|2 + |ŌC|2 − |ŌB||ŌC| 2cos(α)− |B̄C| = 0

|ŌC|2 + |ŌA|2 − |ŌA||ŌC| 2cos(β)− |ĀC| = 0

|ŌA|2 + |ŌB|2 − |ŌA||ŌB| 2cos(γ)− |ĀB| = 0

(2.15)

where ŌA, ŌB, ŌC are the distances of the 3D world points from the principal

camera point -i.e. the coordinates of the 3D points in the camera coordinate system-

and are the unknowns to be found.

These equations can be easily reformulated to make explicit the quadratic nature of

the problem as shown in [7], obtaining the following

 (1− u) y2 − ux2 − 2cos(α) y + 2uxy cos(γ) + 1 = 0

(1− w)x2 − wy2 − 2cos(β)x+ 2wxy cos(γ) + 1 = 0
(2.16)

Since the position of the 2D points in the image are known, the three cosine angles

can be calculated by exploiting the relationship between the triangles aOb-AOB,

bOc-BOC and aOc-AOC. u = |B̄C|2/|ĀB|2 and w = |ĀC|2/|ĀB|2 can instead be

calculated by the known world coordinates of A, B, C. The two unknown values are

therefore x = |ŌA|/|ŌC| and y = |ŌB|/|ŌC| and the resolution of these equations

allows to derive the position of the 3D world points in the camera reference system.

It should be noted that the analytical solution of these equations is not straightfor-

ward and can be obtained with Wu’s elimination method. Also, the P3P problem

as presented here has at most four physical solutions and the one that estimates the

correct position of the points with higher probability can be extracted by means of

a fourth verification point.

Once x and y are known, the problem becomes a 3D-3D pose estimation problem

with matching information, which can be easily solved with the Iterative Closest

Point (ICP) approach to find the desired value of the pose in terms of R and t.

Since there are many more ORB features than those needed for a single iteration

of the P3P method, the robustness of the solution is increased by eliminating outlier

correspondences using the M-estimator Sample Consensus (MSAC) algorithm [17].

MSAC uses the same sampling strategy as the popular RANSAC algorithm, but

chooses the solution that maximize the likelihood function rather than just the

number of inliers, allowing to obtain equal or superior results to those of RANSAC.

Chapter 2. ORB-SLAM2 Matlab Implementation 43

By setting the total number of trials (dependent on the number of 2D and 3D

points, confidence for finding the maximum number of inliers and the reprojection

error threshold) it eliminates outlier correspondences and use only the inliers points

to compute the camera pose. What has been described in this section is implemented

in the subroutine estworldpose.

As a result of this operation, the first estimate of the matrix [R|t] is obtained.

Motion-only Bundle Adjustment

Bundle adjustment is a popular iterative method used to solve batch state es-

timation problems with a non linear least-squares approach. In general, it refines

simultaneously both the camera poses and the 3D world points positions by mini-

mizing the reprojection errors so that the projected 2D features match the detected

results. In contrast to the more general case of bundle adjustment that will be ad-

dressed in Section 2.6.2, however, it is accomplished in this Tracking thread using a

variation of the Levenberg-Marquardt optimization algorithm in which the 3D world

points are fixed, therefore only the camera pose is improved and an initial improve-

ment in the values of R and t is returned. The estimate for the pose obtained from

the P3P algorithm (which serves now as optimized initial value), together with the

matched world points Pw ,i, the corresponding matched image points puv i and the

intrinsics matrix K are all considered together to perform this pose refinement.

According to the pinhole camera model described in Section 1.6.2, the relationship

between the 2D pixel position and the 3D world position is here:

si puv, i = K(RPw, i + t) = KTPw, i, (2.17)

Due to the unrefined value of T and the noise of the observation points, there is

a residual in each i − th equation which can be sum up to construct a nonlinear

least-square problem to minimize to find the most possible camera pose:

T∗ = arg min
T

n∑
i=1

ρ
(
∥puv i − πs(TPw ,i)∥2Q

)
(2.18)

where ρ is the robust Huber cost function, Q is the covariance matrix associated to

the scale of the point and πs is the projection function for the rectified stereo pair,

defined as:

44 2.5. Tracking

πs

XY
Z

 =

 fx
X
Z
+ cx

fy
Y
Z
+ cy

fx
X−b
Z

+ cx

 (2.19)

The residual term in Equation 2.18 is the reprojection error e(x), defined as the

distance between the detected and the reprojected point.

The presence of the robust Huber kernel ρ is aimed at mitigating an important

limitation with the minimization of the sole L2 loss function given by the square of

the reprojection error.

Figure 2.13: L2 loss in blue and
Huber kernel in green, with δ = 1
(Image courtesy of Wikipedia).

Despite the efforts in performing a correct

matching between feature points, mismatches

are possible and are associated with large errors

that are treated no differently from any other er-

ror term. In graph terms, it is as if wrong edges

were added. Because of these large errors, the

optimization algorithm tends to adjust the es-

timated values of the nodes connected by this

edge to make them comply with the incorrect

match. This detrimental behavior is heavily ac-

centuated by the fact that the L2 norm grows

quadratically. The Huber kernel ρ is therefore

introduced to guarantee that the error of each edge can not affect too severely the

other edges.

ρ(e) =

 1
2
e2 when |e| ≤ δ,

δ(|e| − 1
2
δ) otherwise

(2.20)

where e is the residual term. As illustrated in Fig 2.13, if the error is grater than

the threshold δ, then the function grows linearly instead of quadratically, thereby

limiting its influence.

Returning to Equation 2.18, in order to apply the Levenber-Marquardt method,

it is necessary to calculate the derivative of each error term with respect to the

optimization variable knowing that the first-order Taylor expansion is:

e(x+∆x) ≈ e(x) + JT∆x, (2.21)

Chapter 2. ORB-SLAM2 Matlab Implementation 45

where the Jacobian JT is a 2 × 6 matrix since the reprojection error e(x) has

only two dimensions in non-homogeneous coordinates and the camera pose x has

six dimensions.

Since this is a motion-only bundle adjustment, only the pose variable derivative

within JT must be obtained. It can be found with the perturbation model consid-

ering the derivative of the change of e with respect to δξ. For the i− th equation,

by using the chain rule:

∂e

∂δξ
= lim

δξ→0

e(δξ ⊕ ξ)− e(ξ)

δξ
=

∂e

∂P′
i

∂P′
i

∂δξ
, (2.22)

where the first term on the right side is the derivative of the error with respect to

the projection point and the second term is the derivative of the transformed point

with respect to the perturbation. It can be shown that by developing the two terms

and multiplying them together, the Jacobian matrix JT becomes:

∂e

∂δξ
= −

[
fx
Z′ 0 −fx X′

Z′2 −fx X′ Y ′

Z′2 fx +
fx X′2

Z′2 −fx Y ′

Z′

0 fy
Z′ −fy Y ′

Z′2 −fy − fy Y ′2

Z′2
fy X′ Y ′

Z′2
fx X′

Z′

]
. (2.23)

This expression describes the first-order derivative of e with respect to the left

perturbation model and the negative sign in front is because it is defined as the

observed value minus the predicted value.

Further Refinement Using Subsequent Frames and Stereo Pairs

The camera pose estimation process continues with a series of optimizations and

filters aimed at further reducing the error in T.

The newly obtained camera extrinsics values are used to project again the world

points on the current frame with world2img and search for additional matches with

the map points in the previous key frame. Note that in the first iteration of Track-

ing the keyframe considered is simply the first one, being the one used for Map

Initialization, while later this operation is done for only the frames identified as key

frames in the previous iteration. The additional matches are found by performing

feature matching within a scaled radius centered on the projected points. In this

way the matching is more efficient because not all descriptors have to be compared

with each other, but only those of the points close to the projections found are taken

into account. These new matches are then filtered again so that only those that have

the correct scale are added to the list.

46 2.5. Tracking

In much the same way as before, now takes place the second motion-only bundle

adjustment that further refines the pose and outputs a new, improved value for R

and t.

So far only the ORB Features of the current left frame have been employed

during Tracking. Since a stereo configuration is being used, the right frame is also

available and can be exploited to identify additional new 3D points. This is done

with a feature matching between the current stereo pair similar to the one seen

during Map Initialization. The 3D points that correspond to the ORB features

here matched are then compared with those previously extracted with the match

between two consecutive frames. If they are indeed new points they are added to

the 3D points set to be forwarded to Local Mapping. Although this operation is not

necessary (consider the case of mono SLAM), it helps to increase the robustness of

the Tracking process by providing more points to be used during bundle adjustment.

Camera Pose Refinement by Tracking the Local Map

A third refinement of the camera pose in the current view is performed only if the

frame has been identified as a key frame. This operation employs the imageviewset

and worldpointset objects that have been updated during Local Mapping for the

previous iteration, as well as the matched world and image points from the current

view. First of all, all 3D points are projected to the current frame and are discarded

if: (1) they fall outside the view; (2) the angle between the mean viewing direction

and the current viewing direction for the 3D point is above a certain threshold; (3)

the distance from the map point to the camera center is out of its scale invariance

region. If the point passes these checks, its scale in the view is computed and the

descriptor is compared with the still unmatched ORB features, at the predicted

scale and within a certain radius from the projection on the pixel plane. The best

correspondence is thus associated with the map point. The resulting matched world

and image points are employed to evaluate if the current frame is a key frame. In

the event of a negative outcome, the tracking operation starts again with the next

frame, while if the key frame is recognized the third motion-only bundle adjustment

takes place.

2.5.2 Key Frame Detection

There is now to determine under which conditions the currently analyzed frame

can become a key frame. This step is very important and can be considered the

Chapter 2. ORB-SLAM2 Matlab Implementation 47

ultimate goal of the entire Tracking process since only the key frames will take part

in the Local Mapping.

For a frame to become a key frame, the following two conditions must be met:

1. numSkipFrames frames have passed since the last key frame or the current

frame tracks fewer than numPointsKeyFrame map points;

2. The map points tracked by the current frame are fewer than 90% of points

tracked by the reference key frame.

The correct choice of the parameters numSkipFrames and numPointsKeyFrame

in the first condition is critical to the proper functioning of the entire method: if

too many frames are skipped there is a risk that important frames will be lost and

not enough matches will be found during the subsequent tracking process; on the

other hand, a too low value will significantly reduce the real-time capabilities of the

SLAM method. In addition, there is also the possibility that even if a very low

value of numSkipFrames is chosen, the accuracy in recreating the camera trajectory

does not increase or even decreases. Figure 2.14 is intended to intuitively show this

fact: notice how with numSkipFrames = 2 more key frames are selected, but they

are not the same as those taken for numSkipFrames = 3. Frame 5 and 9 may have

features more relevant to the SLAM algorithm than those present in frames 4, 7 or

10, therefore, although counterintuitively, accuracy can be adversely affected by too

low a value for numSkipFrames.

Figure 2.14: Evaluation of numSkipFrames for the choice of key frames.

In my experience with the simulations done, the condition on numSkipFrames is

met most of the time and more rarely the procedure resorts to numPointsKeyFrame.

A first criterion for choosing numSkipFrames lies in knowing the frame rate at which

the footage is captured: in the case of the KITTI dataset, and thus also the virtual

simulations that I conducted, the videos are shot at the only 10 fps, therefore the

optimal values for numSkipFrames found were all low, between 2 and 5. Higher

values result in the loss of crucial key frames.

48 2.6. Local Mapping

2.6 Local Mapping

The iterative process that constitutes the main loop continues with Local Map-

ping (Fig. 2.15). Local Mapping is responsible for updating the two imageviewset

and worldpointset objects with the views and map points that are refined starting

from the key frames. The pose and map that result form this operation will define

the estimated trajectory for the entire route taken by the cameras before loop clo-

sure and the final optimization.

When a new key frame has been recognized during Tracking, it is forwarded to the

Local Mapping thread where it is immediately added to the two imageviewset and

worldpointset objects to update the properties within. The indices of the map

points observed in this new key frame are then compared with those of the previous

key frames during a culling operation to ensure that worldpointset contains as few

outliers as possible due to spurious data association: if a map point is not observed

in at least three key frames it is discarded. Also, the map points that had been cre-

ated by matching the features in the stereo pair during the final stages of Tracking

are now added to the list and create new 3D to 2D correspondences. Notice that

to minimize outliers a check is made with all map points available obtained from

sequence tracking, stereo disparity and triangulation from the previous key frames.

The connection property within imageviewset returns all connections that have

been identified up to the current key frame, i.e. all key frames that have at least

one pair of matched feature points. This covisibility information can be expressed

as a covisibility graph where each node is a key frame and an edge between two key

frames exists if they share observation of the same map point. The weight of an edge

is the number of shared map points. A table with these connected views is generated

by specifying the parameter MinNumMatches that defines the minimum number of

matched feature points for a connection to be valid. If MinNumMatches = 0 then

all connections are valid, while for higher values the weakest connections are not

considered. By comparing the current view with those connected with it, new map

points are extracted. To do this, an iterative process for each connected view is

initiated to triangulate the features in two views (yellow box in Figure 2.15).

In order to keep contained the number of key frames, a local culling operation

is performed to detect and eliminate redundant key frames. All key frames in the

covisibility graph whose 90% of the map points have been in at least other three

key frames in the same or finer scale are discarded. This expedient has a double

advantage on the functioning of the algorithm: firstly, bundle adjustment is lightened

since there are less key frames it has to process; secondly, lifelong operation in the

Chapter 2. ORB-SLAM2 Matlab Implementation 49

same environment can be achieved since the number of key frames will not grow

unbounded, unless the visual content of the scene changes.

Figure 2.15: Summary diagram of all the main operations that take place during Local
Mapping.

2.6.1 New Map Points From Triangulation

To estimate the spatial position of the feature points it is possible to use the

camera motion: the same point observed from two different views can provide the

distance from the optical center of the cameras. Consider Figure 2.16, referring to

the camera motion [R|t] from the connected frame (left) to the current key frame

(right), the relationship between the normalized coordinates of two feature points

pc, 1 and pc, 2 is made explicit:

50 2.6. Local Mapping

s2pc, 2 = s1Rpc, 1 + t. (2.24)

[R|t] and the normalized coordinates are known form Tracking, therefore the

unknowns are the depth s1 and s2 of the feature points which yields the 3D location

of the respective world point P .

Figure 2.16: Use of
triangulation to estimate the

depth of point P .

Triangulate finds the position of the 3D points

referred to the world coordinate system given by the

the projection matrices C1 and C2 derived from

the poses of the two views, which map P in ho-

mogeneous coordinates onto the corresponding im-

age points. The obtained world points are deemed

valid if the resulting scale factors are positive. Mat-

lab documentation does not specify which method

is used here to accomplish triangulation, however a

generic method to perform triangulation can be de-

scribed with Equation 2.25, where ∼ specifies that

the result must be satisfied minus a multiplicative constant since homogeneous co-

ordinates are being used, and P is the homogeneous representation of the 3D point.

P ∼ f (pc, 1,pc, 2,C1,C2). (2.25)

In the ORB-SLAM2 system, a map point can be classified as “close” or “far”

depending on its depth with respect to the baseline of the configuration. Close points

can be effectively triangulated as depth is accurately estimated and and provide

scale, translation and rotation information. Far points, on the other hand, can

provide good rotation information but not so good scale and translation information.

For this reason, far points are triangulated when they are supported by multiple

views.

Figure 2.17: The contradiction
of triangulation.

Another aspect that must be paid attention to

when performing triangulation is the so-called tri-

angulation contradiction (Fig. 2.17). Triangulation

is only possible because of relative translation be-

tween two views. When translation is small, the

uncertainty in depth estimation is higher because

of the higher sight angle variation associated with

the change in position of the world point. For this

reason, by comparing the pose for the two views it

Chapter 2. ORB-SLAM2 Matlab Implementation 51

is established if the change of view is too small (< baseline) and if the frames

are to skip before they take part in triangulation. On the other hand, very large

translations could cause significant variations in the image’s appearance, which will

in turn make feature matching more difficult. A check on parallax and the epipolar

constraint allow for better control on the matched pairs. The epipolar constraint

can be expressed in a compact form as:

pT
c2Epc1 = pT

2Fp1 = 0, (2.26)

where E = t∧R is the essential matrix, F = K−TEK−1 is the fundamental ma-

trix, p1 = Kpc1 and p2 = Kpc2. This equation states that O1, O2, P all belong to

the epipolar plane. Due to noise this condition is not perfectly met, therefore it is

checked that the image points in the connected frame are sufficiently close to the

epipolar line and far from the current key frame epipole.

After triangulation, there is a further check on the newly obtained 3D points to

verify that they are within view for both frames and, if they are, they take part

in a filtering operation to extract the final inlier world points resulting from local

mapping. A point is recognized as inlier if belongs to both views, the reprojection

errors are below a certain threshold proportional to the scale and if the scale is valid.

In Figure 2.15 can also be seen an orange box within the yellow one. It encloses

a process similar to the one just described but instead of using the points obtained

from triangulation it is dedicated to the 3D stereo world points extracted from

disparity of the stereo images. After computing the reprojection errors for these

points they are filtered with the same subroutine used for triangulated points and

they are also used to update the imageviewset and worldpointset objects.

2.6.2 Local Bundle Adjustment

Bundle Adjustment has already been introduced in Section 2.5.1 for the particu-

lar case in which only the camera pose is improved. During Local Mapping however,

it is used to refine both the pose and the map to derive the final estimate of these

values before loop closure is detected.

Global (or Standard) Bundle Adjustment (GBA) uses all map points and poses that

have been obtained up to the current key frame to form the objective function. This

allows for greater accuracy in the reconstruction of the scene, but it can quickly

become unsuitable for real-time applications because of the computational cost as-

sociated with the fast growing number of variables typical of a real-world SLAM

52 2.6. Local Mapping

problem.

For this reason, a Local Bundle Adjustment (LBA) is performed as an alternative,

where the estimated parameters are the poses of only a limited number of frames

and the world points that have at least one detected projection into these frames

(Fig. 2.18). As a result, the computational load is significantly lightened, at the

slight expense of estimation accuracy.

Figure 2.18: Example of BA. Both the camera poses and points location are optimized.
(Image courtesy of Mathworks.)

Referring to the probabilistic SLAM problem described in Chapter 1, the obser-

vation equation can be written here as a non linear function:

zij = h(Ti,Pw, j), (2.27)

and states that the observation data given by the pixel coordinate zij =
∆

[us, vs]
T

is generated by observing the space point Pw, j at the pose Ti. In terms of least-

squares, the error of this observation:

eij = zij − h(Ti,Pw, j), (2.28)

expresses the overall cost function:

1

2

m∑
i=1

n∑
j=1

∥eij∥2 =
1

2

m∑
i=1

n∑
j=1

∥zij − h(Ti,Pw, j)∥2. (2.29)

The solution of this least-squares problem, again with the Levenberg-Marquardt al-

gorithm, corresponds to the realization of bundle adjustment.

Chapter 2. ORB-SLAM2 Matlab Implementation 53

The LBA in ORB-SLAM2 optimizes a set of covisible key frames KL and all points

PL seen within them. All other key frames KF that also see those points but are

not connected to the current key frame are included in the optimization but remain

fixed. If XK is the set of matches between points in PL and key points in the k-th

key frame, then the nonlinear least-squares problem to minimize is given by:

{Pi,Rl, tl|i ∈ PL, l ∈ KL} = arg min
Pi,Rl, tl

∑
k∈KL∪KF

∑
j∈Xk

ρ
(
∥pc, j − πs(RkPw, j + tk)∥2Q

)
(2.30)

It can be seen that the problem becomes significantly more complex than the one

described by Equation 2.18 for the motion-only BA. For convenience of expression,

here the pose is formulated with {R ∈ SO(3), t ∈ R3} rather than {T ∈ R4×4}, but
it expresses the same quantity.

The specific form for the partial derivative of the entire cost function for the i-th

pose has been shown in Equation 2.23, however the partial derivative of the function

to the j-th point was not derived since the spatial position of the feature points was

not to be optimized before. For the j-th space point, the derivative of e with respect

to P can be decomposed with the chain rule and can easily be demonstrated that:

∂e

∂P
=

∂e

∂P′
∂P′

∂P
= −

[
fx
Z′ 0 −fx X′

Z′2

0 fy
Z′ −fy Y ′

Z′2

]
R. (2.31)

Known these two derivatives, it is possible to solve the normal equation Eq. 1.20

of the L-M method, reported here for convenience:

(H+ λDTD)∆x = g (2.32)

where ∆x is the increment of x = [T1, . . . ,Tm,Pw, 1, . . . ,Pw, n]
T , which encloses all

variables together, and H = JTJ+ λI.

Sparsity of the Hessian matrix

Given the shape of the Hessian matrix H, the dimension of the linear equation

system to solve within the L-M algorithm can become extremely high considering

the number of poses and especially points that are involved. This characteristic

would preclude the real-time use of the V-SLAM system, however, one of the major

54 2.6. Local Mapping

breakthroughs of this field was the very realization that H has a sparse structure,

and it can explicitly be represented by a graph (Figure 2.19).

Physically this means that each camera view only observes a small part of 3D points.

The eij error term within J(x) describes only the residual about the j-th point Pj

in the i-th pose Ti, that is, the corresponding Jacobian is zero except for two blocks:

Jij(x) =

(
02×6, . . . , 02×6,

∂eij
∂Ti

, 02×6, . . . , 02×3, . . . , 02×3,
∂eij
∂Pw, j

, 02×3, . . . , 02×3

)
,

(2.33)

where the derivatives have been made explicit in Equations 2.23 and 2.31. Each

error term is therefore dependent only on the variables directly involved: in terms

of graph optimization, this observation edge is only related to two vertices. When

considering the summation of all variables, the Hessian matrix can be expressed as:

H =
∑
i,j

JT
ijJij =

[
H11 H12

H21 H22

]
. (2.34)

H11 is only concerned with camera poses and H22 only with feature points, and

they are both always block-diagonal matrices. H12 and H21 instead may have a

sparse or dense structure, depending on the data being observed and are in general

unpredictable.

Figure 2.19: Example depicting the factor graph and the corresponding Hessian
matrix, where m = 3 and n = 8. In real V-SLAM applications this matrix has several

thousands of elements, most of which are due to the points variables.

This structure can be exploited to accelerate the calculations, in particular, Mat-

lab’s bundleAdjustment function uses as solver for the systems of linear equations

characterized by high sparsity the preconditioned-conjugate-gradient method, as it

better fits the resolution of systems that are too large for direct resolution.

Chapter 2. ORB-SLAM2 Matlab Implementation 55

With the implementation of the LBA and subsequent updates of the imageviewset

and worldpointset objects, the Local Mapping thread is completed.

2.7 Loop Closure and Pose Graph Optimization

This last section covers the concluding part of the system, where the loop closure

is identified and the a posteriori optimization operation is performed to correct the

drift. Before dissecting the Loop Closure thread, the bag-of-words approach used

for image retrieval is briefly introduced.

2.7.1 Place Recognition Database Initialization

In the workflow presented so far, the module devoted to the Place Recognition

Database Initialization was deliberately skipped. It was chosen to discuss it here

as it is closely related to Loop Closure, although it is actually necessary to insert it

before the main loop begins since the database will be updated for every key frame.

Loop Closure is achieved when the system realizes that two frames, acquired at a

sufficient distance from each other, are similar enough to establish that the camera

is framing a scene that was previously seen. Direct feature matching is not a viable

strategy since it becomes very time intensive if performed for every iteration with

every previous key frame to detect the closure. Also, since some time has passed

between the two potential similar frames, it is possible that conditions in the scene

have changed such that the match is not recognized. To address this problem, ORB-

SLAM2 utilizes a content-based image retrieval (CBIR) system to retrieve similar

images from a database. In particular, this system uses a bag-of-words, which is a

collection of image descriptors that represent the data set of images. The workflow

is as follows:

1. An object to manage the image data is first created. In this object are uploaded

the images to train the bag-of-words dictionary. In the case of the KITTI

dataset have been used the 1101 frames from the left camera of Sequence 07,

while in the case of the virtual simulation, have been used the same number

of frames but taken from a random route within the scenario. This allowed to

generate a visual vocabulary that is tailored to the search set;

2. The bag-of-words is generated offline using a custom ORB feature extractor

function. The features are thus of the same type of those used during the

SLAM algorithm, with the only difference that here only 1000 points for each

56 2.7. Loop Closure and Pose Graph Optimization

image are extracted (in the tests that will be presented, 2000 features are

instead extracted during the operation of the system).

The dictionary is expressed with a tree

structure (Fig. 2.20) created by clus-

tering, where numLevels = 3 is the

number of levels (or depth) of the tree,

while branchingFactor = 10 defines the

amount the vocabulary can grow at suc-

cessive levels. The maximum number

of words that are generated is therefore

branchingFactornumLevels = 1000. This is

a relatively small number of words, but

was deemed sufficient for the characteris-

tics of the images;

Figure 2.20: Tree structure of the
dictionary.

3. A search index that maps the visual words to the images is established. This

index is incrementally updated with new features during the Loop Closure

thread (see step 4);

4. The database is searched for similar images to the query one (i.e. the current

key frame being evaluated). If no suitable matches are found (see 2.7.2), then

the features are added to the database, otherwise a connection between the

query image and the most similar is created to establish the loop closure.

2.7.2 Loop Closure

The last thread of the main loop is Loop Closure. Loop Closure tries to detect

and close the loop by comparing the current key frame processed by the Local

Mapping process with images in the place recognition database that are visually

similar to it. To optimize the detection process, a scalar value determines the

threshold below which the current key frame is not considered as a possible candidate

to close the loop, and its features are directly added to the database. This value

is chosen based on how many key frames are extracted during the entire run: if

taken too low the system could be better optimized to save computational time,

but if taken too high there is a risk of skipping the frame that properly closes the

loop. When a key frame is forwarded through the thread, it undergoes a sequence

of operations to assess whether it is a possible candidate for loop closure. First, all

key frames visually similar to the current one are retrieved with the bag-of-words

approach. Their similarity score is extracted, which ranks the image retrieval results

Chapter 2. ORB-SLAM2 Matlab Implementation 57

in a scale from 0 to 1 (where 1 is a perfect match) based on the metric parameter

of the ORB features.

Figure 2.21: Summary diagram of all the main operations that take place during Loop
Closure.

58 2.7. Loop Closure and Pose Graph Optimization

To guarantee that the candidates are not connected to the current key frame,

a filtering operation takes place that excludes from the list of visually similar key

frames those who are also connected. Then, the similarity is computed also between

the current key frame and its strongly connected key frames, that are connected

frames with at least loopEdgeNumMatches matched feature points. The resultant

minimum similarity score from the top 10 similar connected frames is used as a base-

line to find loop closure candidates. In particular, the conditions on the similarity

scores from these two set of images are imposed as follows: the score of the candidate

frame must be higher than both the baseline from the connected key frames and a

value equal to 75% of the best score found from the non connected key frames.

Before using these frames to add a loop closure connection, it must be verified that

at least three loop candidates are consecutively detected to avoid false associations.

If this condition is not met the thread is interrupted and the current features are

added to the place recognition database, otherwise a second check follows. Indeed,

a condition on the distance between two views must also be satisfied: if the current

view and the candidate view are less then 100 key frames apart, then the thread is

interrupted also in this case. This is aimed at avoiding the possibility of incorrect

closure being recognized if after many key frames the camera sees the same features.

At this point a set of valid candidates has been found and the process for creating

the connections is initialized.

From the current key frame and the k-th valid candidate are extracted the world

points and associated features obtained from the LBA in Local Mapping. These

ORB features are matched in an analogous way to what was often done in previous

threads and, after a check on the consistency of the orientation property, it is evalu-

ated if there are enough matches to satisfy the strong connection condition imposed

by loopEdgeNumMatches. Finally, it is performed an estimation of the relative pose

between the current key frame with respect to the candidate frame with the highest

similarity score, which will be used to add the loop connection. The imageviewset

and worldpointset objects are updated as consequence to store this information.

In this implementation of the ORB-SLAM2 method, the main loop ends when the

available video frames are terminated or when the loop closure is recognized. In both

cases the final pose graph optimization is initiated to correct for the accumulated

drift, but only when the loop is closed there is a significant improvement of the

estimate.

Chapter 2. ORB-SLAM2 Matlab Implementation 59

2.7.3 Pose Graph Optimization

It is possible to exploit the new connections from the passage of the camera

through the same location to perform an overall optimization for the entire trajec-

tory. As seen in Section 2.6.2, the world points are by far the most demanding

variables to optimize as they are much larger in number than the poses, and it can

easily become prohibitive to perform GBA when seeking for real-time SLAM. A

strategy that allows to solve the problem of global optimization is given by the use

of a pose graph. Pose graph is a widely used optimization approach that is partic-

ularly valuable in problems with large scale given its speed and better convergence:

only the connections between the camera poses are considered and the world points

are only regarded as constraints of pose estimation. Indeed, it must be considered

that the position of the world points have already been gradually refined during

LBA, and a further refinement would yield not so significant improvements.

Figure 2.22: Pose Graph requires a much reduced calculation scale since the world
points are no longer optimized. The set of co-visible points define the edges between

poses.

Moreover, ORB-SLAM2 does not use the previously built Covisibility Graph

for the global optimization as in many cases it can be very dense because of all

the shared feature points that are observed. An Essential Graph that retains all

the nodes (key frames) but that discards the edges with lower weight is instead

employed. This graph is created internally within the imageviewset object by

removing connections with fewer than minNumMatches opt matches in the Covisi-

bility Graph. Despite this reduction of the optimization problem, as demonstrated

for ORB-SLAM in [11], pose graph optimization can obtain results accurate enough

that an additional full BA would improve the solution only slightly. To be pre-

cise, the improved ORB-SLAM2 presented in [12], incorporates a full BA after pose

graph optimization that runs in a different thread and allows to achieve the optimal

solution. This expedient, however, was not included in the Matlab implementation

of the method.

Given the pose graph of binary edges (each edge is between two poses and it es-

timates the relative motion between them), the least-squares error is then of the

60 2.7. Loop Closure and Pose Graph Optimization

following type:

ei,j = log(T−1
i,j T

−1
i Tj)

∨, (2.35)

where Ti and Tj represent the camera pose for a node and Ti,j = T−1
i Tj represents

their relative motion in SE(3). ∨ is the operator that turns a skew-symmetric matrix

in a vector. Once the Jacobians have been derived, the least-squares problem where

the optimization variable is the pose from each key frame is defined by the objective

function:

min
∑
i,j∈ε

(
eTi,jΛi,jei,j

)
. (2.36)

ε is the set of all edges and Λij is the information matrix of the edge, which has

been set to the identity. Pose graph optimization is thus based on rigid body trans-

formations, and it uses the Levenberg-Marquardt algorithm with sparse Cholesky

factorization from the g2o library.

After optimization, the new poses are used to update the locations of the 3D

world points so that the definitive values for both the entire trajectory and the

map are finally obtained. To verify the accuracy of the estimate just obtained, a

comparison can be made with the trajectory obtained by GPS/IMU in the case of

a dataset or with the exact trajectory in the case of virtual simulation.

Chapter 3

Simulation Set Up
This chapter discusses the steps followed to set up the virtual environment simu-

lations that will make use of the ORB-SLAM2 method just described. The goal is to

prepare a versatile framework that can be employed to perform simulations faithful

to a real-world scenario and that returns comparable accuracy in pose determination.

For this purpose, the KITTI dataset was taken as a reference to define character-

istics such as camera intrinsics, vehicle dynamics and environment features, as well

as to quantify the order of magnitude of the errors obtained with this particular

ORB-SLAM2 implementation.

3.1 Why a Virtual Environment?

Suppose, for example, that we want to evaluate the quality of the V-SLAM

method being developed. There are basically three approaches that can be followed

to supply the images to be given as input: we can use personally acquired images,

a dataset or a virtual environment. The first option allows for more freedom and

control of the variables involved, thus making it possible to build a tailored set up.

The problem, however, is that this path can be very cumbersome and expansive to

put into practice. Personally acquiring the images involves setting up a vehicle with

the chosen calibrated sensors to make it navigate a suitable environment. Moreover,

to verify the correctness in location estimation, it is desirable to have the actual

pose -or a precise approximation- of the vehicle during the entire duration of image

acquisition, for example by using a GPS receiver or other sensors to perform odome-

try. Preparing all of this can be a non-trivial challenge for small research groups due

to the costs and time required, and for this reason it is mostly used in laboratories

for tests of limited range, for example with small UAVs or ground vehicles moving

62 3.1. Why a Virtual Environment?

in confined spaces or even by moving the camera by hand. Besides, what if we

want to evaluate the results with a different set of cameras? Or change the testing

scenario from an indoor environment to a park full of vegetation, rather than a road

traveled by other vehicles? It is entirely reasonable that one would want to make

these changes, in fact, lighting conditions, scale, orientation and texture of the scene

subjects, as well as the motion of the cameras and their intrinsics are some of the

determining conditions affecting the proper functioning of the method. Extensive

evaluation therefore requires numerous tests that could involve substantial changes

to the set up.

One widely used alternative is thus that given by the datasets. Datasets are in-

tended to provide users with everything they need to be able to effectively test the

algorithm. Teams of researchers devoted themselves to capture video sequences and

describe in detail the process they followed: what sensors are used and what their

characteristics are, how they are mounted on the vehicle, what is the ground truth

trajectory and the precision with which it was estimated, and so forth. This op-

eration is usually repeated for different environments or conditions so that a wide

range of situations of interest in applying one’s method is covered. It is clear, then,

how this second approach is much easier and faster for the users to follow than the

first one, and can provide scenarios that otherwise would not be possible to experi-

ence. Another important advantage of datasets is the fact that they are the same

for everyone. This means that they can be employed to make comparisons between

different algorithms and see which one best behaves in those particular conditions.

Finally, the third alternative is presented. Simulations consist of reproducing in a

virtual environment a scenario that can be exploited to generate video sequences to

be used to carry out, in our case, SLAM. By means of dedicated software, the 3D

environment is modeled and rendered, inside which is inserted a virtual camera that

replicates the characteristics of the real one that is to be simulated. This camera is

then moved following the desired trajectory while recording the footage.

The traits of such an approach are the following:

• Potentially any scenery can be recreated: a urban setting, the interior of a

building, the surface of Mars can be all replicated with a high level of detail

and fidelity. Today’s hardware and software make it possible to achieve photo-

realistic graphics, with high resolution textures and advanced illumination. It

should be noted, however, that creating a scenario form scratch can be very

complex and time-consuming, depending on the level of detail desired. In

addition, the computational resources required can be very high. For these

reasons, a trade-off should be made between realism and performance;

Chapter 3. Simulation Set Up 63

• Many sensors, including conventional cameras, can be reproduced and if nec-

essary easily modified. This allows to evaluate different configurations very

quickly by simply changing parameters such as intrinsic, resolution, frame

rate, etc.;

• Vehicle dynamics can also be faithfully simulated if necessary, and any desired

trajectory can be plotted. Unlike the previous cases, here the exact pose of the

camera is known frame by frame. This simplifies and improves the accuracy

of comparing estimated and actual data;

• As with datasets, the set up can be shared with the research community so

that everyone can perform test under the same conditions;

From these characteristics it is clear that there are significant advantages in making

use of a virtual environment and that it has the potential to be a viable alternative

to the more conventional methods previously described.

Before moving on to the description of the simulation set up, the KITTI dataset

is introduced.

3.2 KITTI Vision Benchmark Suite

The KITTI Vision Benchmark Suite [23] is a project developed by the Karl-

sruhe Institute of Technology and Toyota Technological Institute at Chicago that

offers a wide array of real-world computer vision benchmarks. A station wagon

equipped with two pairs of high-resolution cameras, one capturing grayscale images

and the other RGB images, was driven around the German city of Karlsruhe and its

surroundings to capture numerous datasets in different settings. An accurate esti-

mation of the ground truth is provided by a laser scanner and an inertial navigation

system (GPS/IMU), also mounted on the vehicle. Sequences of various lengths set

in the city, residential areas, highways, and campus were thus obtained, with both

static and dynamic subjects. The entire suite provides data and images that can be

used in several tasks of interest, such as stereo vision, optical flow, visual odometry,

3D object detection and 3D tracking.

Given the variety of scenarios it offers and the rigor with which the data were ac-

quired, KITTI is very popular in these areas of research and is often chosen to test

new algorithms and implementations or to compare the validity of other bench-

marks. For these reasons, it was also chosen by me to run the ORB-SLAM2 method

64 3.2. KITTI Vision Benchmark Suite

and use the results as a reference to test the validity of the subsequent simulations

in the virtual environment.

Visual Odometry / SLAM Evaluation Dataset

Sensor Setup

Figure 3.1 shows the configuration of the fully equipped vehicle employed to

record the dataset. The sensors used are:

□ 1 Inertial Navigation System (GPS/IMU): OXTS RT 3003 ;

□ 1 Laser scanner: Velodyne HDL-64E ;

□ 2 Grayscale cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3M-C);

□ 2 Color cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3C-C);

□ 4 Varifocal lenses, 4-8 mm: Edmund Optics NT59-917.

In particular, the cameras are mounted with a stereo baseline of 0.54m, approx-

imately level with the ground plane at a height of 1.65m and the captured raw

(distorted and unrectified) images have a size of 1392 × 512 pixels. The cameras

operate at a frame rate of 10 fps as they have been synchronized with the laserscan-

ner, which also spins at 10 fps. Users are further provided with the images already

undistorted and rectified, that have been cropped to 1242 × 375 pixels and which

can be used directly as input. Additional information about the sensor setup and

how the dataset were obtained can be found in the presentation document of the

KITTI Dataset [8].

Figure 3.1: KITTI’s full sensor setup (courtesy of the KITTI website [23]).

The dataset that was downloaded consists of 22 stereo sequences shot with the

stereo color cameras and saved in a lossless .png format. Of these 22 sequences,

Chapter 3. Simulation Set Up 65

only the first 11 are intended for method training and provided with the ground

truth trajectories. The test here conducted makes use of the sequence 07 (Figure

3.2), which was obtained in a sunny day in a suburban neighborhood by following

at modest speed a closed route of slightly less than 700 meters in length.

Figure 3.2: Some significant frames
captured by the left camera during

Sequence 07.

Recurrent features are: the presence of nu-

merous cars parked along the road and some

sporadic ones moving in directions parallel or

normal to the direction the camera is fac-

ing, the almost constant presence of two-story

buildings on both the right and left sides of

the street, the presence of some vegetation el-

ements.

In addition to the stereo image sequence, two

files were also downloaded: one containing the

pose of the GPS/IMU unit synchronized for

each frame, and the other containing the pro-

jection matrices of the cameras. Their de-

scription and use will be discussed in Chapter

4.

3.3 Simulation Software and Hardware

3.3.1 Software

The next paragraphs will introduce the software that were used for the realization

of this thesis, specifying the role they played.

Matlab (Ver. R2022b)

Matlab [26] is a programming platform based on the matrix-based Matlab lan-

guage, that allows to easily express computational mathematics expressions and

elaborate them. It debuted in a commercial version in 1984, and has since been

confirmed over the years as a reference tool for engineers and scientists interested

in developing algorithms, analyzing data, and creating models and applications.

Some of its strengths are the ease of use, at least compared to other programming

languages, the possibility to expand its capabilities with packages and toolboxes

specific to certain fields of interest (see 3.3.1), and the support of a community that

is particularly active in forums and other platforms. These aspects have also made

66 3.3. Simulation Software and Hardware

it of great interest for academic use; in fact, the University of Padua provides its

students with a Campus-Wide license that can be installed on one’s personal com-

puter.

The choice to use this software stems from the advantages just mentioned, as well

as the fact that it is a suitable tool for dealing with Simultaneous Localization And

Mapping. The set of algorithms needed to solve the SLAM problem are therefore

implemented in Matlab, to which the other software will interface.

Simulink (Ver. 10.6)

Simulink [27] is a graphical programming environment also developed by Math-

works and employed for modeling, simulating and analyzing multidomain dynamical

systems. It is widely used in both the academic and the industrial environment in

that it allows complex models to be simulated with a scaling level of detail, at user’s

discretion. Depending on the scope of the project or the stage of development that

is being addressed, a system can be modelled accordingly, from a preliminary study

case to the detailed definition and construction of a particular subsystem. Since

Simulink is strictly integrated within the Matlab suite, it was natural to use it to

set-up a simulation where the SLAM algorithm can be tested. Thanks to this direct

interface, it has been possible to build an integrated system describing the problem

as a whole with greater ease.

Unreal Engine (Ver. 4.26)

Unreal Engine (UE) [38] is a popular open source 3D computer graphics engine

developed by Epic Games that made its first appearance in 1998 with the video

game Unreal. Since then it has found wide applications not only in the video game

industry but also in film, architecture, automotive and all those contexts that require

major applications of 3D creation tools. UE can be used to generate large and

intricate static or dynamic environments with exceptional level of detail, as well

as interactive scenarios with accurate simulation of physical interaction between

the various actors within the world. These characteristics have made it in more

recent times also of great interest in the field of simulations when paired with other

software. Mathworks gives the possibility to interface Matlab/Simulink with Unreal

Engine in a fairly simple way, thus creating a set of three software programs that are

well interconnected and that manage to cover almost completely the needs required

by the development of this thesis.

Chapter 3. Simulation Set Up 67

This program is used here to load, customize and setup an arbitrary scene within

which the simulation is performed.

Matlab/Simulink/Unreal Engine Add-ons

As mentioned, the capabilities of Matlab and Simulink can be extended by down-

loading packages and add-ons that integrate new features specific to a certain area

of interest. Below is a brief description of those that were used for this work:

• UAV Toolbox : provides tools and reference applications for designing, sim-

ulating, testing, and deploying unmanned aerial vehicle (UAV) and drone ap-

plications.

• UAV Toolbox Interface for Unreal Engine Projects : framework that

allows to use custom scenes to co-simulate in both Simulink and Unreal Engine.

• Computer Vision Toolbox : provides algorithms, functions, and apps for

designing and testing computer vision, 3D vision, and video processing sys-

tems. Contains the set of functions that were used to implement the V-SLAM

method.

• Image Processing Toolbox : provides a comprehensive set of reference-

standard algorithms and workflow apps for image processing, analysis, visual-

ization, and algorithm development.

• Automated Driving Toolbox : provides algorithms and tools for designing,

simulating, and testing ADAS and autonomous driving systems. Contains the

set of functions that were used to obtain a 2D map of the scene and track on

it the path that the drone has to follow.

• Unreal Engine plug-ins : it is necessary to install and enable them to

complete the interface operation betweenMatlab/Simulink and Unreal Engine.

– MathWorks Interface : enables connectivity between the two soft-

ware;

– MathWorks Automotive Content : adds automotive vehicle meshes

and materials;

– MathWorks UAV Content : adds UAV vehicle meshes and materials.

68 3.3. Simulation Software and Hardware

Microsoft Excel

Microsoft Excel [34] is a spreadsheet part of Microsoft Office, to date probably

the most common productivity software suite in use around the world. Its popularity

makes further introduction unnecessary. It was used here to properly format the

pose data exported from UE so that it could be processed by Matlab/Simulink.

FFmpeg

FFmpeg [20] is a free open-source command-line program to record, convert and

stream audio and video. It allowed to manage the videos obtained as output from

Simulink, specifically to break them down into frames and eventually reduce their

frame rate to 10fps (same value as the KITTI dataset). In addition, it allowed the

reverse operation to be performed with the images in the KITTI dataset: from the

frames, the video was reconstructed. This was useful to verify the correctness in

the orientation of the vehicle and to identify at what instant some significant events

occur during the recording.

3.3.2 Hardware

The simulations were carried out on my personal computer, the relevant charac-

teristics of which are given in the table below.

Central Processing Unit
(CPU)

AMD Ryzen 5 5600X

Random Access Memory
(RAM)

Crucial Ballistix DRAM
DDR4 3600MHz, 32GB

Graphic Processing Unit
(GPU)

GIGABYTE RTX 3060
VISION OC R2, 12GB

Solid State Drive (SSD) Samsung 980 PRO, 1TB

Table 3.1: PC’s Hardware specifications.

It proved to be a suitable configuration, given the high computational require-

ments for UE to work with a large high-resolution scenario and detailed lighting.

As for V-SLAM algorithm, it definitely exceeds what are the capabilities of a typical

hardware embedded on a commercial robot, drone or generic vehicle. In this work,

there has been no particular concern about the management of computational re-

sources, however, there has always been attention in seeking a compromise between

accuracy and speed by not overloading the algorithm with excessive parameters

values.

Chapter 3. Simulation Set Up 69

3.4 Virtual Simulation

The framework that was built to perform the simulations is summarized in Figure

3.3. As will be described later, a different alternative to the one shown here was

explored and implemented, however this one was found to be the most effective and

the one that allowed for greater customization and control of variables.

Figure 3.3: System Diagram for the Simulation Framework.

First, the desired virtual environment is generated in Unreal Engine. Next,

Simulink is interfaced with UE and the recording platform is modelled. A step-

by-step guide of the process for interfacing these two software is available in the

Mathworks documentation [29], in particular, the procedure making use of the UAV

Toolbox Interface for Unreal Engine Projects was followed. As a result of this oper-

ation, it becomes possible to initialize a co-simulation in custom scenes by adding

sensors and vehicles in the Simulink model and making them appear in the vir-

tual environment managed by UE. To plot the trajectory for the vehicle to follow,

two alternative methods are presented: the first uses waypoints set in Matlab on

a top-down map of the scenario, the second extracts the pose, frame-by-frame, of

a generic three-dimensional path chosen by the user within UE. The output of the

simulation are the two videos recorded by the stereo cameras, and are then pro-

cessed by FFmpeg. ORB-SLAM2 is implemented entirely within Matlab and uses

the freshly generated images and ground truth as input.

70 3.4. Virtual Simulation

3.4.1 Unreal Engine Scenario

A great deal of time and expertise is required to create a complex virtual scenario

from scratch considering that each object has to be drawn, modeled, textured and

eventually animated. The task can be sped up dramatically by resorting to down-

loadable assets, made by professionals or amateurs, that are suitable for the scene

one wants to represent. For this project, I prepared a scenario that makes use of the

AutoVrtlEnv [28] UE project made available by Mathworks. The AutoVrtlEnv file

is part of the Vehicle Dynamics Blockset Interface for Unreal Engine 4 Projects and

includes editable versions of prebuilt 3D scenes. In particular, the US City Block

3D Environment was taken as reference to then be customized. It reproduces an

urban environment spanning about 450m × 300m meters that consists of a dense

grid of streets surrounded by multi-story buildings. It was deemed a good starting

point but lacking several features found in the KITTI sequence, which is why the

following changes have been brought:

• Numerous static objects of various kinds enrich the scenery. Parked vehi-

cles, vegetation, street signs and more provide new elements from which ORB

Features can be extracted;

• Dynamic vehicles have been introduced that move according to a predeter-

mined path and are encountered at certain intersections and road sections;

• The location of some buildings has been changed;

• Lighting conditions were also imported from the AutoVrtlEnv project, but

then modified to better simulate those sought.

Figure 3.4: Some screenshots taken from the virtual scenario.

Chapter 3. Simulation Set Up 71

Being able to faithfully reproduce the conditions under which the images in the

dataset were recorded is complicated. An optimal comparison would have required

the creation of a scenario with dedicated assets that reproduce the road and sur-

roundings and then provide as input the IMU/GPS pose to be followed frame by

frame. It is clear how this approach would become extremely complex and time-

consuming, also going against what should be one of the main advantages in adopting

a virtual environment: speed and flexibility of use. For this reason, the modifica-

tions made are considered good for representing the characteristics of a real urban

area reminiscent of the KITTI sequence, but are not intended to perfectly replicate

it.

Dynamic Vehicles

To introduce moving vehicles in these scenarios it was necessary to start from

two new actors, one that represents the vehicle on which the desired static mesh can

be applied, and one that represents the path to be followed. A Timeline associated

with the Move Car01 Event (see Fig. 3.5) allows to define a profile for the motion.

Here was used a float curve that increases linearly from 0 to 1 over a certain amount

of time to set the speed, so that the length of the path is entirely covered within

that time interval. In order to do this, the variable Alpha is introduced and set

to update with the value of the float curve. Alpha then linearly interpolates the

location of the car along the length of the spline through a float Lerp.

Figure 3.5: Unreal Engine Event Graph built for the dynamic vehicles.

72 3.4. Virtual Simulation

The result is a car moving at the chosen constant speed along the spline that is

drawn on the scenery. Once the end of the path is reached, the process starts over

again. For sequences in which the cameras are stationary at an intersection and

several vehicles pass in quick succession, it is sufficient to add actors to the same

spline and set an offset that distances them from each other.

Figure 3.6: Unreal Engine interface during the process of creating dynamic vehicles.
The bottom window shows the timeline editor to adjust the speed profile.

In Figure 3.6, the two red cars will proceed in a straight line one after the other

until the end of the road. The recording platform will arrive from the road on the

right and turn to flank oncoming traffic. In this way, the cars will be seen first with

motion orthogonal and then parallel to the direction toward which the cameras are

pointing.

Lighting Conditions

Lighting conditions can significantly affect the performance of a SLAM method.

Shaded subjects may not be clearly visible, while subjects directly lit by the sun may

be overexposed and completely lose detail or cause important reflections. Moreover,

the interaction of light with the lens is cause of unwanted artifacts on the image.

These features have been reproduced by tweaking three different actors in Unreal

Engine so that the conditions were more similar to those in the dataset sequence:

1. A Directional Light actor simulates sunlight and allows to control the charac-

teristic of this light source. In particular, by editing the Light Intensity and

Chapter 3. Simulation Set Up 73

Shadow Amount parameters, a bright scenery with dark shadows was obtained.

The temperature was also adjusted to make it more like the one desired;

2. The actor Sky Light was used to regulate the sky’s appearance and its light-

ing/reflections in the world;

3. The actor Post Process Volume allowed to introduce some lighting artifacts

on the image.

Figure 3.7: Environment and lighting similarities between KITTI and the virtual
scenario.

Figure 3.7 shows two similar stretches of road, on the left taken from the KITTI

sequence and on the right from the virtual scenario. In both cases one can recognize

chromatic aberration, bloom effect from reflective surfaces, high amount of shadows,

and overexposure resulting in loss of detail. Lens flare have also been replicated

and is slightly visible when the camera moves toward the sun or very reflective

surfaces, such as cars with metallic bodywork. Motion blur was not introduced as

it is negligible in the sequence of real images.

Light have been rendered at production quality, which is the highest achievable but

requires more time to compute.

Graphics Quality

Figure 3.8: Engine
Scalability Settings.

It is important to provide sufficient graphics qual-

ity to give the scenario a certain level of realism. In

general it is possible to have extremely high resolutions

even for smaller objects, however it must be considered

that here the cameras are rarely found in close range

with the assets, and when this happens such assets

are not considered to track the ORB features. Fur-

thermore, the resolution of the images captured here

to perform SLAM is not high enough to appreciate

74 3.5. Coordinate Systems

the use of more detailed textures. The textures packages that I used go up to 4K

resolution for the larger objects, and, given the previous considerations, were found

to be suitable for the purpose of this project.

The graphics quality and Material Quality Level has instead been set to the maxi-

mum within Unreal Engine (Figure 3.8).

3.5 Coordinate Systems

There are four reference systems that must be taken into account when using

this framework:

1. Simulink Earth-Fixed Coordinate System:

The Earth-fixed coordinate system (XE, YE, ZE) defined within the UAV Tool-

box has its axes fixed in an inertial reference frame and has no linear or angular

acceleration and no angular velocity. It follows the Right Hand rule and its

axes are oriented as follows:

• XE: points in the initial forward direction of the UAV and parallel to the

ground plane;

• YE: orthogonal to the XE-axis and parallel to the ground plane, to com-

plete the tern;

• ZE: points upward, normal to the ground plane.

2. Unreal Engine World Coordinate System:

The World Coordinate System (X, Y, Z) defined in Unreal Engine is also an

inertial reference frame, but follows the Left Hand rule. Its origin is located

in the center of the scenario and the axes are defined similarly to those in

Simulink, except for the difference in convention.

Figure 3.9: Differences between the Unreal Engine (left) and Simulink (right) Inertial
Coordiante Systems.

Chapter 3. Simulation Set Up 75

3. Body Reference System:

The Body Reference system, also defined in the UAV Toolbox, is non-inertial

and fixed in both origin and orientation to the rigid body of the UAV.

(a) Translational DoFs (b) Rotational DoFs

Figure 3.10: Body Coordinates (Courtesy of Mathworks documentation).

• x-axis: points through the nose of the vehicle;

• y-axis: points towards the right (with respect to the camera’s direction

of view), perpendicular to the x-axis;

• z-axis: points down, perpendicular to the x-y plane and completing the

Right Hand rule.

The rotational degrees of freedom available to the rigid body are defined as

follows:

• ψ: Yaw angle about the z-axis;

• θ: Pitch angle about the y-axis;

• ϕ: Roll angle about the x-axis;

4. Camera(s) Reference System:

In all simulations, the stereo cameras are attached to the vehicle body, and

share its reference system but they are translated along the y-axis by + baseline/2

and − baseline/2 respectively.

The opposite convention used by the reference systems must be taken into ac-

count to avoid discrepancies between the desired and actual motion of the UAV

within the scenario. In the transition from one software to another, it is therefore

necessary to change the sign of the y-coordinate and ψ angle.

76 3.6. Simulink Model for UAV Stereo Visual SLAM

3.6 Simulink Model for UAV Stereo Visual SLAM

The model built in Simulink to describe a vehicle equipped with a stereo camera

to realize V-SLAM is depicted in Figure 3.11.

Figure 3.11: UAV Stereo Visual SLAM Simulink Model.

It has been organized into four macro blocks separated by different colors:

• Cyan Block: contains the Simulation 3D Scene Configuration block, which

configures the 3D simulation environment that was rendered in Unreal Engine.

It allows to select the directory path of the UE project in which we want the

simulation to take place and to set two scene parameters: the Scene View,

here set to the vehicle, and the Sample Time that will also be adopted by the

other blocks. The Sample Time sets the fps of the cameras. It is also possible

to quickly override the scene weather with a series of sliders that change the

sun altitude and azimuth, as well as cloud, fog and rain properties. Unreal

Engine must be initiated from here to enable it to interface with Simulink.

• Green Block: segment used to represent a quadcopter UAV within the scene

and define its pose for each instance of the simulation. It was chosen to use

a UAV instead of an automobile because it enables a six-degree-of-freedom

motion for the cameras, thus covering the most general case for the definition

Chapter 3. Simulation Set Up 77

of the pose. The Simulation 3D UAV Vehicle block has in fact as input

the (XE, YE, ZE) position and (ψ, θ, ϕ) attitude values, and is paired with a

Sim3dQuadRotor actor in Unreal Engine. The vectors can be obtained with

one of the two methods that will be described in section 3.8. This segment

could be further expanded by adding a drone dynamic model and a drone flight

control model to appropriately represent the flight of the UAV. Since the goal

here is to evaluate the SLAM method, this step was not deemed necessary for

our purposes.

• Yellow Block: here are enclosed the models for the cameras. The left and

right cameras are associated with two Sim3dCamera actors created in Unreal

Engine and attached to the UAV with a given offset. A Video Viewer opens a

window showing real-time images captured by both cameras, useful for viewing

the actual images that will be processed by the SLAM method. At the end

of the simulation the two videos in .avi format are generated by means of two

To Multimedia File blocks, and will then be processed using FFmpeg.

• Violet Block: introduces a camera associated with a Sim3dCamera actor

that follows the vehicle during its motion, and whose output is displayed in a

dedicated video display. The images captured have a resolution of 1920×1080

pixels and a horizontal field of view of 60 degrees. The Simulation 3D Actor

Transform Set block defines its pose.

An alternative to the approach shown here was also implemented but then aban-

doned. The yellow block can be configured to accommodate Matlab’s SLAM algo-

rithm within Simulink to run in real time as images are generated in the virtual

environment (Fig. 3.12).

Figure 3.12: Alternative framework to implement the SLAM algorithm within
Simulink.

The images captured by the cameras are in this case directly provided as input

to the ORB-SLAM2 system, which estimates the trajectory and creates the map to

78 3.7. Recording Platform and Virtual Cameras

be visualized in a 3D graph while the simulation is still running. The simulation

stops when it reaches the end of the predetermined path, the stop time, or a loop is

closed.

This integrated implementation of the method is more streamlined and immediate to

set up, however, it has some limitations that have been found to be not negligible.

First, it is more complicated to access and modify the SLAM algorithm. While

using the same algorithm described in Chapter 2, the code has been written to call

directly on Simulink ’s model and therefore cannot be separated from it. Second, the

user has no direct access to the recorded videos before they are input to the Matlab

System block. The possibility of processing video with FFmpeg has been found to

be very valuable. For example, the frame rate can be decreased and the resolution

changed (downscales are feasible but upscales can be problematic since new pixels

are obtained by interpolation), so that it is not necessary to repeat the simulation

to experiment with new video parameters. Finally, I wanted it to be possible to

use the exact same approach in both the dataset and simulation cases. Following

the scheme in Figure 3.3 resulted in a universal method in which it is convenient to

change the parameters as needed and accommodates any type of input: in the case

of images from a dataset it is sufficient to use only the final step, in which the stereo

frames and ground truth data are given to the ORB-SLAM2 system that has been

set accordingly.

3.7 Recording Platform and Virtual Cameras

The recording platform is co-simulated through Simulink and Unreal Engine.

Thanks to the plugins previously installed in UE, it is possible to introduce into the

scenario new actors managed by the Simulink model. In this case, three actors have

been added: one Sim3dQuadRotor to simulate the vehicle and two Sim3dCamera to

simulate the sensors. Figure 3.13 shows a depiction of the recording platform used

in the virtual scenario. The word “depiction” was used because it is immaterial

where the actors are placed within the scene, their location is always overridden by

the parameters in the Simulink model. The Simulation 3D UAV Vehicle is in fact

responsible for determining the initial pose of the vehicle, which is in turn taken

from the first position vector [X, Y, Z] and rotation vector [ψ, θ, ϕ] defined during

the trajectory tracking process. Another peculiarity is the fact that the mesh of

a sedan car was used instead of a UAV. Again, it is irrelevant for the purpose of

simulation which mesh is used: it was deemed more appropriate to show here a set

up similar to that seen in the case of KITTI since it is the one we want to compare.

Chapter 3. Simulation Set Up 79

Figure 3.13: Recording Platform used in the virtual scenario.

The characteristics of the sensors, where they are mounted and their intrinsics

parameters, are managed by the block Simulation 3D Camera. This block models

a conventional camera through the pinhole camera model plus a lens in front of

it. They are thus both attached to the UAV actor and arranged with only an offset

along the y-axis equal to the baseline of 0.54m. The intrinsics parameters and image

size are exactly the same from the KITTI dataset, and the distortion coefficients

have been set to zero so even in this case there is no need to undistort the images

and rectify them.

Figure 3.14: Parameters for Simulink ’s Simulation 3D UAV Vehicle block (left) and
Simulation 3D Camera block (right).

80 3.8. Trajectory and Orientation Definition

Figure 3.14 shows the parameters imposed for the Simulation 3D UAV Vehicle

block and the Simulation 3D Camera block for the left camera. The only difference

from the right one is in the relative translation with respect to the vehicle.

3.8 Trajectory and Orientation Definition

To make the framework suitable for use with a generic vehicle it is necessary to be

able to control its 6 DoF. There is no interest here in correctly modeling the flight

dynamics of a quadcopter, and it is sufficient to define the position and attitude

values we want the vehicle to follow during the course of the simulation. Since the

reference systems of the cameras are fixed with respect to that of the vehicle, it is

immediate to switch from one to the other.

3.8.1 Waypoints Selection on a Top-Down Map of the Scene

Matlab provides an algorithm [30] that allows you to select a sequence of way-

points from a Top-Down map of the scene and visualize the path of the vehicle

following these waypoints in the 3D simulation environment. Since this mapping

method was designed for a ground-moving vehicle, some modifications had to be

made to adapt it to a flying object.

A high resolution screenshot of an orthographic top view (Figure 3.15) of the

scene is converted to a map thanks to the imref2d object, that associates the pixels

of the image to the world coordinates. The distance along the X and Y coordinates

from the center of the scene to the extremes of the map must be carefully measured

and expressed in meters. In this way the figure will be centered and the trajectory

that is tracked will physically coincide with the coordinates on the scenario in Unreal

Engine.

Through a series of clicks, the path is imposed and a polyline is drawn on the map.

Waypoints and Yaw angles are then exported to the workspace as anM -by-3 matrix

of the poses (X,Y,ψ), where ψ must be defined within the range [−π,+π]. A cubic

spline function is then used to transform the sequence of poses in a continuous path,

as shown in figure 3.15.

Chapter 3. Simulation Set Up 81

Figure 3.15: Top-Down map of the US City Block scene. In blue is plotted the
segmented path defined by the waypoints, and in green is the path smoothed using the

spline function.

Finally, in order to introduce the poses in the Simulation 3D UAV Vehicle block,

it is necessary to decompose the matrix into column vectors and associate them with

a time vector proportional to the cumulative path length.

This strategy, while very convenient to use once set up, has obvious limitations:

• Since it uses a spline function, it is not possible to precisely define the path

point by point; potentially causing a collision with the assets in the environ-

ment;

• The use of a screenshot as a map prevents its application in enclosed locations

(technically it is still possible, but you cannot see where the route is being

plotted without having to hide assets that obstruct the view), and significantly

limits the accuracy with which coordinates are chosen. Passages in tight areas

are therefore difficult to obtain;

• Only 3 of the 6 DoF are imposed, leaving the Z coordinate and the Pitch

and Roll angles undefined. This means that they must be added later as a

constant or a function, limiting the possible poses and lengthening the path

preparation process;

In order to address these issues, it was decided to develop the novel approach de-

scribed in the next section.

82 3.8. Trajectory and Orientation Definition

3.8.2 Unreal Engine frame-by-frame pose

A method that easily allows an arbitrary path to be plotted in Unreal Engine and

whose position and orientation values can be imported into Matlab would be ideal

for quickly tailoring the simulation. No description of such a method was found in

the literature, and the approach implemented to solve this problem is described here.

Figure 3.16: Mappings to set keys and axis
to input behavior.

A camera that can be moved at

the user’s will is placed within the

scene, and controlled with a series

of inputs similarly to what is done

in many videogames. To do so, the

camera actor must be programmed to

perform the desired set of tasks, so

that there is total freedom of move-

ment.

First of all, Action Mappings are

used to bind keys to input behaviour,

defining the commands to enable

camera rotation and to increase or

decrease the speed of motion. Axis

Mappings set instead the inputs to

move along the axes and to rotate the

camera (Fig. 3.16). Unreal Engine

allows you to choose from a variety

of peripheral devices and for conve-

nience mouse and keyboard were em-

ployed, however for better control it

is suggested to use a joystick.

Next, the blueprint for the camera actor is compiled. An event graph is built around

each input so that it responds as desired during path tracking. Figure 3.17 shows

the construct for the Forward and Backwards, Left and Right, Up and Down trans-

lations as well as for the three rotations: a Boolean variable causes the command

to be activated only when the right mouse button is pressed, thus allowing to look

up, down, left and right. The roll angle can instead be modified using the keyboard.

Each rectangle is a variable, an information storage container that stores a value or

reference to an object. Those in red are Events that provide the current value of

the associated input axis once per frame when input is enabled for the containing

Chapter 3. Simulation Set Up 83

actor. In green are the Float variables, a floating-point data type, while in blue are

object variables that add a delta to the location of the component in world space.

Figure 3.17: Blueprint with the commands desired to move and rotate the camera.

The Actions that allow to adjust within a defined interval the speed at which

the camera moves are instead shown in Figure 3.18.

Figure 3.18: Blueprint with the commands necessary to change the speed of the
camera.

84 3.8. Trajectory and Orientation Definition

Finally, an Event Tick is called every frame to print two strings, both to the

log and on the screen. These strings contain the location and the rotation of the

component in world space (Figure 3.19).

Figure 3.19: Blueprint with the commands necessary to print the pose.

Figure 3.20: Pose values printed
during the definition of the camera

movement.

At this point everything is properly set up

to generate the data that must then be en-

tered into the Simulink model to define the

pose, during the simulation. The moment the

level is started, it is possible to move and plot

the path that we want the vehicle to follow.

The log is compiled in real time frame-by-frame

with the coordinates (X, Y, Z) in centimeters

and the (Pitch, Y aw,Roll) attitude values in de-

grees within the range [−180,+180]. These same values are also shown in screen,

as depicted in Figure 3.20 where the 6 DoF are listed for three frames.

Once the motion has been fully outlined, the log output is copied into Excel

to format it in such a way that can be used in Matlab. Proper formatting was

achieved by a dedicated set of sub-routines written in Visual Basic (see Appendix

A). The Excel .xlsx file obtained is then imported in Matlab and converted in a

table, which is in turn decomposed into its columns, finally obtaining the desired

pose vectors. Once the appropriate dimensional conversions have been made, the

vectors are paired with a time vector, as in the case of paragraph 3.8.1, that pro-

gresses by a certain ∆t for each frame. The resultingM -by-2 matrix associated with

each DoF is the input required by the Simulation 3D UAV Vehicle block in Simulink.

It is important to point out that the operation just described, in which the level

in UE is started to draw the path, must be undertaken in a second project copy of

the one that is interfaced to Simulink, but without the Mathworks plug-ins. This is

because once a project has those plug-ins installed, it can only be started from the

Chapter 3. Simulation Set Up 85

Simulation 3D Scene Configuration block. As a result, it is not possible to command

actors other than those defined within Simulink.

Chapter 4

Tests Description and
Results

This chapter presents by what criteria the tests were conducted and what the

respective results are. Once the parameters used are defined, five tests are shown:

one with the KITTI dataset Sequence 07, and four within the virtual environment.

Specifically, of the four simulations, three are devoted to evaluating the effect of

some features encountered in the KITTI scenario, while the last one aims to bring

together all reproducible traits to compare whether the results are similar to those

derived from real images.

4.1 KITTI dataset Test Setup

Resuming from Section 3.2, it is now presented in detail how the ORB-SLAM2

algorithm was set up, how the KITTI dataset was used and what errors were ob-

tained in the pose estimation.

4.1.1 ORB-SLAM2 parameters

The role of most of the parameters given here has already been discussed during

the description of the ORB-SLAM2 system. Therefore, please refer to Chapter 2

for the appropriate insights. Excerpts are given directly from the Matlab code [25],

which has been modified to suit the needs of this test.

% Intrinsics parameters , stereo pair distance (baseline) and image

size.

focalLength = [707.0912 707.0912]; % spec in pixels

Chapter 4. Tests Description and Results 87

principalPoint = [601.8873 183.1104]; % spec in pixels [x, y]

baseline = 0.54; % spec in meters

imageSize = size(currILeft ,[1 ,2]); % [1242 ,375] pixels

% Number of downsamples (numLevels) and scale factor to achieve

scale invariance of the ORB features from the rectified stereo

pair.

scaleFactor = 1.2;

numLevels = 8;

% Disparity range for 3D scene reconstruction

disparityRange = [0 48]; % spec in pixels

% Number of ORB features points uniformly distributed throughout

each image

numPoints = 2000;

scaleFactor and numLevels are the default values of the algorithm, and they have

been proven to offer the best performance compromise. The disparity range was

taken by following the procedure in Section 2.3.3. numPoints is appropriate for the

resolution of the images, and corresponds to the number also used by Raùl Mur-

Artal & Juan D. Tardòs [12] for the same sequence.

% Offline creation of the bag -of-features

imds = imageDatastore ("C:\Path"," FileExtensions ",[".png "])

bag = bagOfFeatures(imds ,CustomExtractor=

@helperORBFeatureExtractorFunction ,TreeProperties =[3, 10],

StrongestFeatures =1);

% Load the bag of features

bofData = load(" BoF_KITTI_07.mat");

The bag of features specific for the scenario was created offline and uploaded in the

system as a .mat file.

% Number of frames skipped n and minimum number of map points m

tracked to identify a key frame

numSkipFrames = 4;

numPointsKeyFrame = 120;

numSkipFrames heavily affects the speed and result of the method. A rather low

value was chosen because of the small number of frames per second. The optimal

value was found by trial and error, making 10 runs, each time increasing by 1 the

parameter. The considerations made in section 2.5.2 apply.

% Creation of new map points by triangulation

88 4.1. KITTI dataset Test Setup

minNumMatches = 30; % Minimum number of matched feature points for

a connection between views to be valid.

This minNumMatches value was deemed appropriate with the number of feature

points being matched.

AbsoluteTolerance =1e-7 % termination tolerance of mean squared

reprojection error in pixels.

RelativeTolerance =1e-16 % termination tolerance of relative

reduction in reprojection error between iterations.

Solver=’preconditioned -conjugate -gradient ’ % Because of high

sparsity

MaxIteration =150 % Default value =50

During refinement of local key frames and map points through bundle adjustment,

the maximum number of iterations before Levenberg-Marquardt algorithm stops has

been incremented.

if currKeyFrameId > 250 % Start looking for closure after key

frame 250

loopEdgeNumMatches = 50; % Minimum number of feature matches

of loop edges

[...]

end

This value for currKeyFrameId allows the search to begin just a few key frames

before the vehicle returns to the starting position. In any case, it was verified that

there were no erroneous detection before the same position was reached by reducing

the value of this parameter to 10.

minNumMatches_opt = 15 % minimum number of matched feature points

Tolerance = 1e-16 % tolerance of the optimization cost function

MaxIterations = 300 % Levenberg Marquardt opt algorithm maximum

number of iterations

For pose graph optimization, it was set a new variable for the minimum number of

matched feature points for a connection between views to be valid. The starting

algorithm employed the same value used to create new points by triangulation, but

it proved to be not optimal.

gpsData = load(" GPS_KITTI_07.mat");

timestamps = load(" Times07.mat");

Pose from the KITTI dataset and the timestamps for each frame are finally loaded

in order to evaluate the error.

Chapter 4. Tests Description and Results 89

At this point it is necessary to make an important observation. Tuning the

parameters for a visual SLAM system can be hard and requires a lot of heuristics.

As has been noted by the developers themselves, the Matlab implementation of

the ORB-SLAM2 method is undergoing improvements to increase its robustness

and predictability. As an example, a small variation of numPoints, in the order

of just tens of points, can significantly degrade the pose estimate. The same can

be said for other parameters, such as numSkipFrames, numPointsKeyFrame and

minNumMatches. It is therefore clear how balancing the algorithm as best as possible

can become an extremely tedious process. This made it particularly difficult to find

a set of values that returned acceptable errors and, most importantly, could be used

with different input images without significant modification. The values previously

listed result from a long series of trials and are the ones I considered best. In

particular, the search for greater precision was interrupted when levels of accuracy

comparable with those obtained from the demonstration test provided byMathworks

were achieved.

4.1.2 Ground Truth

As mentioned, the ground truth is given by a laser scanner and an inertial navi-

gation system with high accuracy. These values were assumed to be exact and taken

as an absolute reference to quantify the estimation error generated by the SLAM

method. The pose is provided in a text file in which each row shows the first 3 rows

of a 4x4 homogeneous pose matrix flattened into one line, so that

R11 R12 R13 Tx R21 R22 R23 Ty R31 R32 R33 Tz

represents the matrix

R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

where the 3 × 3 sub-matrix R expresses the rotation and the column vector T the

position, both with respect to the initial pose:

1.000000e+00 1.197625e-11 1.704638e-10 5.551115e-17 1.197625e

-11 1.000000e+00 3.562503e-10 0.000000e+00 1.704638e-10 3.562503

e-10 1.000000e+00 2.220446e-16

that, approximating with sufficient accuracy and putting into matrix form, is

1 0 0 0

0 1 0 0

0 0 1 0

90 4.1. KITTI dataset Test Setup

There are 1101 of these matrices, one for each frame of the sequence.

In order to refer these data to the global reference system used in Matlab and make

a comparison with the estimation from the SLAM algorithm, R is right multiplied by

the matrices [0 0 1; 0 1 0; −1 0 0] and [0 −1 0; 1 0 0; 0 0 1],

so that two elemental rotations around the y and z axes are performed. Sub-

sequently, the rotated matrix is converted to Euler angles according to the ZYX

sequence, thus deriving the values in radians for the roll, yaw, and pitch angles

which were then converted to degrees in the graphs below to simplify their interpre-

tation. Referring again to the sensor setup (Figure 3.2), it can be seen that there is

a position offset between the GPS/IMU unit and the left camera Cam 2. To avoid

having a constant bias error when comparing the two trajectories, the two sensors’

initial pose were made to coincide at the center of the global reference system. This

assumption was made because the sensors are rigidly mounted to the car, and never

vary their relative position.

4.1.3 Camera Projection Matrix

The calibrated camera parameters are also made available to the users through

a text file containing 5 matrices expressed as 12 elements rows. The first four of

these matrices are the 3 × 4 projection matrices P for each camera, describing the

mapping of a pinhole camera from homogeneous 3D world points to homogeneous

2D image points. The fifth row is instead the concatenation of all camera positions.

P is in the block-form:

P = [M| −MC] (4.1)

whereM is an invertible 3×3 matrix andC is the camera center in world coordinates.

In particular, for the sequence 07 and the color camera Cam 2, the projection matrix

is:

707.9012 0 601.8873 46.8878 0 707.0912 183.1104 0.1179 0 0 1

0.0062

that is

707.9012 0 601.8873 46.8878

0 707.0912 183.1104 0.1179

0 0 1 0.0062

while for the other camera of the stereo pair Cam 3 :

707.9012 0 601.8873 -333.4597 0 707.0912 183.1104 1.9301 0 0 1

0.0033

that is

Chapter 4. Tests Description and Results 91

707.9012 0 601.8873 -333.4597

0 707.0912 183.1104 1.9301

0 0 1 0.0033

This matrix by itself, however, does not explicitly express the camera pose or its

internal geometry. It was then necessary to decompose P into the intrinsics matrix

K and extrinsics matrix E. It can be demonstrated that P can also be written as:

P = K[R|t] = KE (4.2)

where K is a 3× 3 upper triangular matrix, R is a orthogonal 3× 3 rotation matrix

whose columns are the directions of the world axes in the camera’s reference frame,

and t = −RC is the vector containing the position of the world origin in camera

coordinates.

C is simply obtained by left-multiplying the last column ofP by−M−1. While, given

the properties ofK andR, it is possible to recover them by using RQ decomposition.

RQ decomposition in not a function available in Matlab, so an external file [31] was

downloaded from Matlab File Exchange and implemented.

As a result, the K and E matrices were finally obtained. For Cam 2 :

K =

707.0912 0 601.8873

0 707.0912 183.1104

0 0 1

 , (4.3)

E =

1 0 0 0.0610

0 1 0 −0.0014

0 0 1 0.0062

 . (4.4)

And, for Cam 3 :

K =

707.0912 0 601.8873

0 707.0912 183.1104

0 0 1

 , (4.5)

E =

1 0 0 −0.4744

0 1 0 0.0019

0 0 1 0.0033

 . (4.6)

92 4.1. KITTI dataset Test Setup

As expected, the inrtinsic matrix K is the same for both cameras and it will

be used to define the values of the reprojection matrix. Looking at the extrinsic

matrix instead, the rotation sub-matrix R is an identity since the images are already

rectified, while t differs because of the different position of the cameras on the vehicle.

In particular, along the x-axis the baseline distance is confirmed: | − 0.4744| +
0.0610 = 0.5354 ≈ 0.54m.

4.1.4 Results

Figure 4.1 shows the full trajectory in the XY plane plotted by means of Mat-

lab’s Point Cloud Player. Three curves of three different colors can be distinguished:

in green is the trajectory provided by the GPS/IMU system and thus serving as a

reference; in red is the estimated trajectory, obtained in real time during frame anal-

ysis; and in magenta is the optimized trajectory, created as a result of loop closure

recognition and pose graph optimization. The thousands of points surrounding the

trajectories are instead the 3D map points. The color gradient indicates the eleva-

tion of the points, from dark blue to yellow as Z increases. Although this is a sparse

map, it is interesting to notice that the number of points extracted is large enough

that some characteristics of the environment can be recognized. The walls of the

buildings lining the street are well defined, as well as in some sections the sidewalks,

some parked vehicles, trees and signposts.

Figure 4.1: KITTI’s Sequence 07 Trajectory.

Chapter 4. Tests Description and Results 93

The route starts from coordinates (X, Y, Z) = (0, 0, 0), with almost immediately

a 90 degrees left turn, and then closes again after traveling about 686 meters in

110.5 seconds.

This test performed using the sequence from the KITTI dataset is used here to

illustrate how the errors were derived. These same criteria will also be used later

for all other tests so that a meaningful comparison can be made. For this case

only, in addition, the errors between the estimated and optimized trajectory are

also compared to demonstrate the importance of loop closure recognition and sub-

sequent optimization. Since the purpose here is not to evaluate the goodness of the

optimization process of the ORB-SLAM2 system, only the optimized result will be

considered for the later simulations in the virtual environment, knowing that it has

an overall lower error than the estimated one.

The timestamps and the associated [X, Y, Z] positions have been used to derive

the distance covered over time and the instantaneous speed, as shown in Figure 4.2.

The top speed is 11.6m/s while the average speed is 6.2m/s.

Figure 4.2: Distance covered and speed along the path.

To evaluate the error there are two alternatives generally used in SLAM, it can

either refer to the distance covered or to the elapsed time. In this sequence, the

vehicle moves at a highly variable speed, even coming to a complete stop in the

interval 67s − 74s. This fact is particularly problematic when plotting the errors

because different key frames are captured in the same position, thus providing dif-

ferent error values associated with the same distance covered. For this reason, all

the following graphs will refer to the elapsed time.

Fig. 4.3 shows for all six d.o.f. the ground truth and the estimated and optimized

values.

94 4.1. KITTI dataset Test Setup

Figure 4.3: X, Y, Z translations and Yaw, Roll, Pitch angles.

For further proof of the correctness of the physical meaning of the plotted ro-

tations, reference was made to the sequence’s video. The frames from the dataset

were used to reconstruct the 10 fps video through the following FFmpeg code line:

@ECHO OFF

ffmpeg -r 10 -i %%06d.png -c:v libx264 -vf scale =1242:376 -pix_fmt

yuv420p -crf 20 -an output.mp4

pause

Note that it was necessary to add a row of pixels (from 375 to 376) because this

operation is not supported for odd numbers in the resolution. The obtained video

provided visual confirmation for the the yaw angle. Confirmation for the pitch

angle, on the other hand, comes from the fact that it is associated with the change

Chapter 4. Tests Description and Results 95

in position along the Z direction.

The errors for the i-th pose were obtained as

(Error)i = (GT Value)i − (Predicted Value)i for i = 1, . . . , N (4.7)

where N is the total number of key frames found. They are given here for all six

d.o.f. (Fig. 4.4).

Figure 4.4: Translation and Rotation Errors.

Another aspect that requires attention when plotting the errors concerns the

loop closure and at which frame it occurs. As mentioned, there are a total of 1101

frames, however closure is recognized in frame 1064 and the run is stopped. To make

the three trajectories correspond at every instant it is therefore necessary to take

96 4.1. KITTI dataset Test Setup

the exact number of frames used, and not the entire sequence. This would lead to a

slight shift in values with a consequent increase in the error since poses in different

frames would be compared.

Figure 4.5: Total Translation and Rotation Errors.

The absolute total translation and rotation errors (Fig 4.5) for the i-th key frame

are given by

Tr Errortot =

√√√√ 3∑
j=1

(tGT,j − tPredicted,j)2,

Rot Errortot =

√√√√ 3∑
j=1

(αGT,j −αPredicted,j)2

(4.8)

where t = [X, Y, Z] and α = (ψ, θ, ϕ). As expected, the error for the optimized

trajectory is overall significantly reduced with respect to the the estimated one.

Some conclusions can also be made about how the error varies at certain significant

events. In general, the most important variations in the translation error occur at

sections where the vehicle is moving at higher velocity, as can be seen from the

left graph in Fig. 4.6, where the instantaneous speed have been superimposed to

the total translation error. When the car stops at the intersection at second 67,

six vehicles pass in quick succession in front of it at an estimated speed of about

11m/s. During this period the translation error is almost stabilized in the XY plane

even though it continues to increase slightly along the Z direction. Similarly, the

error on rotations also remains rather stable here. This demonstrates a fairly good

behaviour of the algorithm in situations where there is no motion of the cameras

and the environment has dynamic objects. The left graph in Fig. 4.6 shows instead

the total rotation error and the speed, which is here useful to see when sharp turns

occurs (that is, when the speed plummets). The rotation error shows significant

increases precisely at these turns. In particular, the Yaw error has very important

Chapter 4. Tests Description and Results 97

peaks at the 90-degree corners at 74s and 94s. In the first case, the vehicle starts

from a standstill for a fast turn just as a car is passing in front. After following said

car in a straight stretch, both turn left at sustained speed, producing a situation

similar to the previous one where a moving object is framed for a decent amount of

time.

Figure 4.6: Translation and Rotation Errors shown with the instantaneous speed.

Certainly not insignificant is the presence throughout the sequence of dark shad-

ows alternating with areas highly illuminated by sunlight. However, no particular

events associated with the lighting conditions have been recognized as the cause of

a significant increase in error.

The Root Mean Square Error is then given in Figure 4.7 as

RMSE =

√√√√ 1

n

n∑
i=1

(Errori)2 (4.9)

where the average value is calculated for key frames distributed every ten seconds,

so that it is obtained in the intervals 0s− 10s, 0s− 20s, 0s− 30s, and so on, up to

the overall RMSE value for the whole course.

98 4.1. KITTI dataset Test Setup

Figure 4.7: Translation and Rotation RMS Errors.

The overall RMS errors are presented in Fig. 4.8 and the respective values are

summarized in Table 4.1. The RMS error can also be represented with respect to

the distance covered instead of the elapsed time given that it is averaged over a

certain length. The average value is here taken for cumulative distance values of 50

meters, up to the total error mediated over the entire length. As expected the trend

is similar but not identical because of the variable speed of the vehicle. Referring

to the distance covered gives a more immediate understanding of which sections

increase the error the most.

Chapter 4. Tests Description and Results 99

Figure 4.8: Overall RMS Errors with respect to the elapsed time and the covered
distance.

Table 4.1: RMSE Errors in the KITTI Sequence 07.

Time interval RMSE Pos. Est. RMSE Pos. Opt. RMSE Rot. Est. RMSE Rot. Opt.
0 s− 10 s 0.3333m 0.2920m 0.9110 deg 0.7506 deg
0 s− 20 s 1.1649m 0.9403m 1.0141 deg 0.8766 deg
0 s− 30 s 1.8876m 1.4973m 0.9225 deg 0.8480 deg
0 s− 40 s 2.3946m 2.0492m 1.1115 deg 0.8881 deg
0 s− 50 s 2.7286m 2.5597m 1.4037 deg 1.0370 deg
0 s− 60 s 2.8191m 2.8191m 1.6444 deg 1.2261 deg
0 s− 70 s 3.0958m 2.9051m 1.8793 deg 1.5069 deg
0 s− 80 s 3.4609m 3.0139m 2.2689 deg 1.9652 deg
0 s− 90 s 3.7901m 3.0470m 2.3606 deg 1.9480 deg
0 s− 100 s 4.2024m 3.1555m 2.6471 deg 2.0397 deg

0 s− 110.5 s 4.3045m 3.1684m 2.7387 deg 2.0053 deg
Distance interval RMSE Pos. Est. RMSE Pos. Opt. RMSE Rot. Est. RMSE Rot. Opt.

0m− 50m 0.3040m 0.2672m 0.8966 deg 0.7473 deg
0m− 100m 0.9845m 0.8043m 1.0140 deg 0.8753 deg
0m− 150m 1.4469m 1.1460m 0.9787 deg 0.8460 deg
0m− 200m 2.0413m 1.6361m 0.9193 deg 0.8489 deg
0m− 250m 2.3946m 2.0492m 1.1127 deg 0.8893 deg
0m− 300m 2.5521m 2.3282m 1.2758 deg 0.9927 deg
0m− 350m 2.8049m 2.7191m 1.4861 deg 1.0758 deg
0m− 400m 2.8104m 2.8174m 1.6404 deg 1.2225 deg
0m− 450m 2.9158m 2.8597m 1.7761 deg 1.3293 deg
0m− 500m 3.5188m 3.0140m 2.2938 deg 1.9863 deg
0m− 550m 3.6599m 3.0204m 2.3276 deg 1.9606 deg
0m− 600m 3.8858m 3.0734m 2.3878 deg 1.9440 deg
0m− 650m 4.2024m 3.1555m 2.6471 deg 2.0397 deg
0m− 686m 4.3045m 3.1684m 2.7378 deg 2.0053 deg

To conclude, in Table 4.20 are summarized some significant quantities that will

later be useful for making direct comparisons with the simulations in the virtual

environment. In fact, since the scenarios and paths will still be different despite the

similarities, a direct point-by-point comparison is meaningless. However, it remains

of interest to compare magnitudes such as the maximum or the final error achieved.

100 4.2. Virtual Scenario Performance Evaluation Tests

Table 4.2: Quantities of interest.

Distance covered 686m

Duration 110.5 s

Average speed 6.2m/s

Maximum speed 11.6m/s

Dynamic objects 7

Maximum translation error (opt) 4.4261m

Maximum rotation error (opt) 6.1951 deg

Final translation error (opt) 3.4797m

Final rotation error (opt) 1.1306 deg

RMS final translation error (opt) 3.1684m

RMS final translation error in % of

the distance covered (opt)
0.462%

RMS final rotation error (opt) 2.0053 deg

4.2 Virtual Scenario Performance Evaluation Tests

In conducting the first tests in the virtual environment described in Section

3.4.1, the need to develop some case studies aimed at quantifying the effect of some

features encountered in the KITTI scenario was soon realized. In particular, three

aspects have been evaluated: (1) the speed of the vehicle, (2) the presence of dynamic

objects, (3) the lighting conditions.

Figure 4.9: Top-down map of the path followed by the vehicle.

The following series of tests also highlights the strength of a virtual system as

a testing platform, as it demonstrates the simplicity with which it is possible to

Chapter 4. Tests Description and Results 101

change only targeted features of the environment, which can be very complex if not

impossible to do in a real environment. Each evaluation is carried out following the

same chosen path (Fig. 4.9) and the desired changes are applied from case to case.

The path followed by the vehicle has been imposed by selecting waypoints on the

top-down map of the scene and a distance of 270 meters is covered while proceeding

at constant speed with the cameras always raised 1.65m above the ground. Ap-

proximating the path with a rectangle, the longest side has a length of about 90m

while the shortest about 45m. The initial pose is:

Starting_Position = [21.3924 , 53.8970 , 1.65];

Starting_Rotation = [0.0038 , 0, 0];

The stereo videos that are obtained in Simulink are broken into frames using FFmpeg

through the code:

E:\Video >ffmpeg -i Right_Output.avi %06d.png

where Right Output.avi is the video generated by the right camera. The same

operation is then performed for the left video. As in the case of the dataset, all

sequences are recorded at 10 fps.

ORB-SLAM2 Parameters

The parameters are overall the same as those used previously. It was necessary

to adjust from which currKeyFrameId to start the loop closure search and load the

appropriate bag of features.

These values will not be altered in any of the tests that follow, so that changes in

the results will be attributable only to modifications made to the scenario.

% Intrinsics parameters , stereo pair distance (baseline) and image

size.

focalLength = [707.0912 707.0912]; % spec in pixels

principalPoint = [601.8873 183.1104]; % spec in pixels [x, y]

baseline = 0.54; % spec in meters

imageSize = size(currILeft ,[1 ,2]); % [1242 ,375] pixels

%ORB features

scaleFactor = 1.2;

numLevels = 8;

disparityRange = [0 48]; % spec in pixels

numPoints = 2000; % ORB Feature points

% Bag of features

bofData = load(" BoF_Virtual_City.mat");

102 4.2. Virtual Scenario Performance Evaluation Tests

% Keyframes identification

numSkipFrames = 4;

numPointsKeyFrame = 120;

% Map points by triangulation

minNumMatches = 30;

% Levenberg -Marquardt

AbsoluteTolerance =1e-7

RelativeTolerance =1e-16

MaxIteration =150

%Loop closure

if currKeyFrameId > 140 % Start looking for closure after key

frame 250

loopEdgeNumMatches = 120; % Minimum number of feature matches

of loop edges

[...]

end

% Optimization

minNumMatches_opt = 15 % minimum number of matched feature points

Tolerance = 1e-16 % tolerance of the optimization cost function

MaxIterations = 300 % Levenberg Marquardt opt algorithm maximum

number of iterations

4.2.1 Standard Condition

All tests will refer to a “standard condition”, which was chosen as the starting

point from which to implement the modifications. Each time a new typology of

changes is address, the simulation will restart from here so that it is possible to

make an equal comparison.

In this scene there are no dynamic objects and the vehicle completes the course in

90 seconds, so that it keeps a constant speed of 3m/s.

Results

The results for the simulation under standard condition are given below, always

referring to the optimized pose only.

Chapter 4. Tests Description and Results 103

Figure 4.10: Plot of the run under standard conditions.

Figure 4.11: Translation and rotation errors in standard conditions.

Figure 4.12: Translation and rotation RMS errors in standard conditions.

104 4.2. Virtual Scenario Performance Evaluation Tests

Table 4.3: Quantities of interest, Standard Conditions.

Distance covered 270m

Duration 90 s

Constant speed 3m/s

Dynamic objects No

Maximum translation error 0.9286m

Maximum rotation error 3.5624 deg

Final translation error 0.2789m

Final rotation error 0.6319 deg

RMS final translation error 0.4701m

RMS final translation error in % of

the distance covered
0.1741%

RMS final rotation error 0.9280 deg

4.2.2 Impact of the Speed of Motion

Constant Speed: 5m/s

Figure 4.13: Translation and rotation errors with a constant speed of 5m/s.

Chapter 4. Tests Description and Results 105

Figure 4.14: Translation and rotation RMS errors with a constant speed of 5m/s.

Table 4.4: Quantities of interest, 5m/s.

Distance covered 270m

Duration 54 s

Constant speed 5m/s

Dynamic objects No

Maximum translation error 0.9696m

Maximum rotation error 8.4820 deg

Final translation error 0.8117m

Final rotation error 1.0408 deg

RMS final translation error 0.5548m

RMS final translation error in % of

the distance covered
0.2055%

RMS final rotation error 1.7105 deg

Constant Speed: 7m/s

Figure 4.15: Translation and rotation errors with a constant speed of 7m/s.

106 4.2. Virtual Scenario Performance Evaluation Tests

Figure 4.16: Translation and rotation RMS errors with a constant speed of 7m/s.

Table 4.5: Quantities of interest, 7m/s.

Distance covered 270m

Duration 38.57 s

Constant speed 7m/s

Dynamic objects No

Maximum translation error 3.5597m

Maximum rotation error 28.0002 deg

Final translation error 2.1974m

Final rotation error 0.6257 deg

RMS final translation error 2.0648m

RMS final translation error in % of

the distance covered
0.7647%

RMS final rotation error 5.8742 deg

Constant Speed: 9m/s

Figure 4.17: Translation and rotation errors with a constant speed of 9m/s.

Chapter 4. Tests Description and Results 107

Figure 4.18: Translation and rotation RMS errors with a constant speed of 9m/s.

Table 4.6: Quantities of interest, 9m/s.

Distance covered 270m

Duration 30 s

Constant speed 9m/s

Dynamic objects No

Maximum translation error 12.3367m

Maximum rotation error 38.8966 deg

Final translation error 9.7278m

Final rotation error 2.1894 deg

RMS final translation error 5.9160m

RMS final translation error in % of

the distance covered
2.1911%

RMS final rotation error 8.4132 deg

Considerations on the velocity tests

Table 4.7 and Figures 4.19, 4.20 group the results for the four velocities at which

the tests were conducted. When the vehicle faces a turn, there is a spike in the

overall rotation error due to the rapid change in the yaw angle. Up to 5m/s this

effect is fairly contained, although confirming the trend of increasing error as the

speed increases. Making a comparison with the KITTI sequence (Fig.4.6), in which

the sharp turns are taken at a speed between 4m/s and 5m/s, it is appreciable

how the results are similar. On the other hand, if the speed is increased further,

the turns are estimated poorly by the algorithm as the available connected frames

get smaller and smaller to track the scenery. In any case, it always recognizes

with good accuracy how much the vehicle rotates, making it so that past the curve

there is an error of only a few degrees. The estimate on translation also worsens

108 4.2. Virtual Scenario Performance Evaluation Tests

in straight sections as speed increases, with an increment in error as the distance

covered increases (for example in the 50m − 100m and 100m − 150m stretches).

Even here, however, it is the rotations that make tracking significantly worse. The

moment there is a large error in orientation estimation, an offset is created between

the exact and optimized values that is carried along the rest of the path. This offset

fails to be corrected even with loop closure, although there is an improvement in

the last meters.

To improve results at higher speeds it is possible to act directly on the algorithm

by reducing numSkipFrames or by acting on the camera, using one that allows to

record at a higher number of frames per second (in the case of real cameras, the

presence of motion blur must also be considered).

Figure 4.19: Translation and rotation errors comparison.

Figure 4.20: Translation and rotation RMS errors comparison.

Chapter 4. Tests Description and Results 109

Table 4.7: Comparison of the results.

3m/s 5m/s 7m/s 9m/s
Distance covered 270m 270m 270m 270m

Duration 90 s 54 s 38.57 s 30 s
Maximum translation error 0.9286m 0.9696m 3.5597m 12.3367m

Maximum rotation error 3.5624 deg 8.4820 deg 28.0002 deg 38.8966 deg
Final translation error 0.2789m 0.8117m 2.1974m 9.7278m

Final rotation error 0.6319 deg 1.0408 deg 0.6257 deg 2.1894 deg
RMS final translation error 0.4701m 0.5548m 2.0648m 5.9160m

RMS final translation error in % of the distance covered 0.1741% 0.2055% 0.7647% 2.1911%
RMS final rotation error 0.9280 deg 1.7105 deg 5.8720 deg 8.4132 deg

4.2.3 Impact of dynamic objects on SLAM system perfor-

mance

Six tests were conducted to assess the impact of moving vehicles within the scene.

The first four tests form a general study of these elements, while the subsequent two

are designed to reproduce situations similar to those found in the dataset.

Figure 4.21: Top-down map showing the trajectories of the moving cars. In magenta is
an approximation of the trajectory followed by the recording platform.

The set-up for the first four tests is illustrated in Figure 4.21: in each run is

added a group of vehicles (Table 4.8), distinguished by color and numbered. A total

of 7 vehicles were therefore progressively added to the scene, each one with a dif-

ferent speed and traveling different paths. Since their motion is in a loop, some of

them appear in the frame several times (Table 4.9).

Vehicle trajectories and speeds are designed to present different situations that may

typically occur in an urban scenario. There are vehicles overtaking the recording

110 4.2. Virtual Scenario Performance Evaluation Tests

platform, others going against it in the opposite lane, and others moving orthogo-

nally to its direction. Moreover, they are repeatedly encountered in both straight

and curved sections.

Table 4.8: Simulations set-up summary.

Groups N. of cars N. of cars seen

Run 1 1 2 4

Run 2 1+2 3 7

Run 3 1+2+3 5 10

Run 4 1+2+3+4 7 14

Table 4.9: Speeds and number of appearances in the frame.

Speed Appearances

Car 1.1 9m/s 2

Car 1.2 5m/s 2

Car 2.1 14m/s 3

Car 3.1 6m/s 1

Car 3.2 2m/s 2

Car 4.1 13m/s 2

Car 4.2 7m/s 2

1) Run 1

Figure 4.22: Translation and rotation errors, 4 moving cars.

Chapter 4. Tests Description and Results 111

Figure 4.23: Translation and rotation RMS errors comparison, 4 moving cars.

Table 4.10: Quantities of interest, 4 moving cars.

Distance covered 270m

Duration 90 s

Constant speed 3m/s

Dynamic objects 4

Maximum translation error 1.3480m

Maximum rotation error 3.6683 deg

Final translation error 0.3205m

Final rotation error 0.6987 deg

RMS final translation error 0.6419m

RMS final translation error in % of

the distance covered
0.2377%

RMS final rotation error 1.0487 deg

2) Run 2

Figure 4.24: Translation and rotation errors, 7 moving cars.

112 4.2. Virtual Scenario Performance Evaluation Tests

Figure 4.25: Translation and rotation RMS errors comparison, 7 moving cars.

Table 4.11: Quantities of interest, 7 moving cars.

Distance covered 270m

Duration 90 s

Constant speed 3m/s

Dynamic objects 7

Maximum translation error 0.7064m

Maximum rotation error 3.4638 deg

Final translation error 0.2837m

Final rotation error 0.5174 deg

RMS final translation error 0.3718m

RMS final translation error in % of

the distance covered
0.1377%

RMS final rotation error 0.7900 deg

3) Run 3

Figure 4.26: Translation and rotation errors, 10 moving cars.

Chapter 4. Tests Description and Results 113

Figure 4.27: Translation and rotation RMS errors comparison, 10 moving cars.

Table 4.12: Quantities of interest, 10 moving cars.

Distance covered 270m

Duration 90 s

Constant speed 3m/s

Dynamic objects 10

Maximum translation error 0.7671m

Maximum rotation error 3.3592 deg

Final translation error 0.2996m

Final rotation error 0.5746 deg

RMS final translation error 0.4769m

RMS final translation error in % of

the distance covered
0.1766%

RMS final rotation error 0.8125 deg

4) Run 4

Figure 4.28: Translation and rotation errors, 14 moving cars.

114 4.2. Virtual Scenario Performance Evaluation Tests

Figure 4.29: Translation and rotation RMS errors comparison, 14 moving cars.

Table 4.13: Quantities of interest, 14 moving cars.

Distance covered 270m

Duration 90 s

Constant speed 3m/s

Dynamic objects 14

Maximum translation error 0.6973m

Maximum rotation error 3.4007 deg

Final translation error 0.1933m

Final rotation error 0.7578 deg

RMS final translation error 0.4664m

RMS final translation error in % of

the distance covered
0.1727%

RMS final rotation error 0.9502 deg

Considerations on the previous tests

The results obtained from these tests were partly surprising. As can be appreci-

ated from Figure 4.30 and 4.31 and Table 4.14, the introduction of moving objects

had an unpredictable impact on the overall pose estimation. As expected, with 4

moving vehicles the estimation worsens from standard condition, however the intro-

duction of other cars in the subsequent runs significantly improve the effectiveness of

the algorithm. Even changing the order with which the cars are added, or changing

their trajectories, the results are similar (for example, substituting Car 2.1 with Car

1.1 in the first run still leads to poor results, with a translation error up to 1.5m).

A justification for this behavior can be found by considering how key frames are

recognized. The number and IDs of the key frames may slightly change depending

on the objects that are seen. This leads to a ripple effect due to bundle adjustments

Chapter 4. Tests Description and Results 115

and pose graph optimization that also involves frames distant from those that have

changed. The improvement in the estimation of some path sections can thus be

associated with more key frames being captured there, which would not be taken

without moving vehicles. These considerations are supported in particular by two

facts: 1) for different tests, different frames were recognized for loop closure, despite

the fact that no changes were made in the initial (and thus final) stretch in any

of the cases; 2) the rotation error is overall worse in the standard condition, pre-

sumably because the added key frames are in correspondence with the turns, where

more dynamic objects are seen. In light of this outcome, it becomes difficult if not

impossible to predict whether, when and how the presence of dynamic objects af-

fect pose estimation. It transpires from this test that significantly different, but not

necessarily bigger errors are obtained as the number of dynamic objects is increased.

Figure 4.30: Translation and rotation errors comparison.

Figure 4.31: Translation and rotation RMS errors comparison.

116 4.2. Virtual Scenario Performance Evaluation Tests

Table 4.14: Comparison of the results.

0 cars 4 cars 7 cars 10 cars 14 cars
Distance covered 270m 270m 270m 270m 270m

Duration 90 s 90 s 90 s 90 s 90 s
Speed 3m/s 3m/s 3m/s 3m/s 3m/s

Maximum translation error 0.9286m 1.3480m 0.7064m 0.7671m 0.6973m
Maximum rotation error 3.5624 deg 3.6683 deg 3.4678 deg 3.3592 deg 3.4007 deg
Final translation error 0.2789m 0.3205m 0.2837m 0.2996m 0.1933m

Final rotation error 0.6319 deg 0.6988 deg 0.5175 deg 0.5746 deg 0.7578 deg
RMS final translation error 0.4701m 0.6419m 0.3718m 0.4769m 0.4701m

RMS final translation error in % of the distance covered 0.1741% 0.2377% 0.1377% 0.1766% 0.1741%
RMS final rotation error 0.9280 deg 1.0487 deg 0.7840 deg 0.8125 deg 0.9502 deg

Loop Closure frames 4, 5, 7− 221 4, 6, 7− 223 3, 4, 5− 221 5, 6, 7− 224 4, 6, 7− 224

5) Vehicle tracking

During the KITTI sequence there is a section of road in which the recording

platform follows at close range a car ahead of it. This situation was reproduced in

the virtual environment by synchronizing the motion of the recording vehicle with

that of an upcoming car. At the second turn, the cameras start to follow a car that

is proceeding in a straight line at a constant speed of 3m/s and stay behind it for

about 30 seconds, up until the next turn. The results of this test are presented in

the graphs below.

Figure 4.32: Translation and rotation errors, vehicle tracking.

Chapter 4. Tests Description and Results 117

Figure 4.33: Translation and rotation RMS errors comparison, vehicle tracking.

The comparison with the Standard Scenario is instead shown in Figures 4.34

and 4.35 and Table 4.15. It is evident how from the moment in which the vehicle

is framed the translation error becomes significantly larger. Here, too, optimization

operations on connected key frames make the overall error trend unpredictable: in

the first stretch, while there is no difference between the two cases, the optimized

trajectory gives here a better estimate.

As for rotations, overall the error here is greater, but the peaks are less pronounced.

Again, at the first turn where no moving vehicle is seen in either case, the estimate

is much better from this simulation.

Figure 4.34: Translation and rotation errors comparison.

118 4.2. Virtual Scenario Performance Evaluation Tests

Figure 4.35: Translation and rotation RMS errors comparison.

Table 4.15: Comparison of the results, with and without tracked car.

Without car With car
Distance covered 270m 270m

Duration 90 s 90 s
Dynamic objects 0 1

Maximum translation error 0.9286m 0.9961m
Maximum rotation error 0.5624 deg 2.8143 deg
Final translation error 0.2789m 0.5706m

Final rotation error 0.6319 deg 0.7940 deg
RMS final translation error 0.4701m 0.5971m

RMS final translation error in % of the distance covered 0.1741% 0.2211%
RMS final rotation error 0.9280 deg 0.9669 deg

6) Vehicles at an Intersection

Another feature seen during the KITTI sequence concern the scenario in which

a car stops at an intersection and sees a series of vehicles passing in front of it.

To evaluate the impact of these vehicles on the pose drift, a test was prepared by

keeping the cameras fixed while framing the intersection for a duration of 10 seconds.

In the first case there are no dynamic objects, while in the second case 5 vehicles

(4 pickups of different colors and 1 white box truck) moving in both directions and

at variable speed (from 3m/s to 10m/s) are added. In this case, the loop closure

search is not performed since the vehicle remains stationary, so only the estimated

pose was considered. Nevertheless, the results are indicative of what happens also

within a closed pathway (as in KITTI) since the optimized trajectory is created

starting from the estimated one. Another peculiar aspect of this test is that the

operation of local key frame culling is highlighted. In fact, for the sequence in which

there are no moving objects, only 4 key frames in total are retained, while in the

other sequence 19 key frames are kept. The results are summarized in Fig. 4.36 and

Table 4.16.

Chapter 4. Tests Description and Results 119

Figure 4.36: Translation and rotation errors comparison, vehicles at an intersection.

Table 4.16: Comparison of the results.

Without cars With cars
Distance covered 0m 0m

Duration 10 s 10 s
Dynamic objects 0 5

Maximum translation error 0.0116m 0.0569m
Maximum rotation error 0.0454 deg 0.0757 deg
Final translation error 0.0086m 0.0282m

Final rotation error 0.0400 deg 0.0612 deg

Overall, the drift remained rather low, despite the high volume of dynamic ob-

jects within the scene. In particular, the major contribution in the translational

drift is given by Y-axis component. The peak between seconds 8 and 9 is due to

a highly congested moment, as seen in Figure 4.37. These results are in agreement

with those of the dataset sequence, in which was assessed the good behavior of the

algorithm in these circumstances.

Figure 4.37: Left frame captured during the simulation.

120 4.2. Virtual Scenario Performance Evaluation Tests

4.2.4 Impact of lighting conditions on SLAM system per-

formance

As previously seen in Section 3.4.1, appropriately modeling lighting conditions

in Unreal Engine is a complex operation that relies on numerous parameters. To

study the behavior of the system under different conditions, it was chosen to act

only on the intensity level of the directional light that simulates the Sun. In this

way is affected only how much light is fed into the environment (Figure 4.38). Five

runs explore an incremental value of light intensity, from 0 to 100 lux (the Standard

Condition have been obtained with 50 lux). Observe how even at 0 lux, there is

still light illuminating the scene. This comes from the SkyLight component that

controls a diffuse light coming from the sky. As will be seen on the other hand, the

performance of the algorithm degrades significantly even without further reducing

visibility, so it was not deemed necessary to further darken the scene.

Figure 4.38: Comparison of the lighting, from the top left: 0, 25, 50, 75, 100 lux.

Chapter 4. Tests Description and Results 121

1) 0 lux

Figure 4.39: Translation and rotation errors, 0 lux.

Figure 4.40: Translation and rotation RMS errors, 0 lux.

Table 4.17: Quantities of interest, 0 lux.

Maximum translation error 1.8569m

Maximum rotation error 4.4471 deg

Final translation error 0.2777m

Final rotation error 1.2442 deg

RMS final translation error 1.0254m

RMS final translation error in % of

the distance covered
0.3798%

RMS final rotation error 1.3463 deg

122 4.2. Virtual Scenario Performance Evaluation Tests

2) 25 lux

Figure 4.41: Translation and rotation errors, 25 lux.

Figure 4.42: Translation and rotation RMS errors, 25 lux.

Table 4.18: Quantities of interest, 25 lux.

Maximum translation error 0.8026m

Maximum rotation error 3.5182 deg

Final translation error 0.1509m

Final rotation error 0.6711 deg

RMS final translation error 0.5122m

RMS final translation error in % of

the distance covered
0.1897%

RMS final rotation error 0.8774 deg

Chapter 4. Tests Description and Results 123

3) 75 lux

Figure 4.43: Translation and rotation errors, 75 lux.

Figure 4.44: Translation and rotation RMS errors, 75 lux.

Table 4.19: Quantities of interest, 75 lux.

Maximum translation error 1.3900m

Maximum rotation error 3.5860 deg

Final translation error 0.1515m

Final rotation error 1.2315 deg

RMS final translation error 0.7371m

RMS final translation error in % of

the distance covered
0.2730%

RMS final rotation error 1.2537 deg

124 4.2. Virtual Scenario Performance Evaluation Tests

4) 100 lux

Figure 4.45: Translation and rotation errors, 100 lux.

Figure 4.46: Translation and rotation RMS errors, 100 lux.

Table 4.20: Quantities of interest, 100 lux.

Maximum translation error 2.2702m

Maximum rotation error 4.6038 deg

Final translation error 1.0456m

Final rotation error 1.9098 deg

RMS final translation error 1.3007m

RMS final translation error in % of

the distance covered
0.4817%

RMS final rotation error 1.8921 deg

Chapter 4. Tests Description and Results 125

Considerations on the previous tests

The amount of light illuminating the scene has an important impact on the

detection of valid ORB features. The considerations made in the case of dynamic

vehicles regarding the key frames that are chosen in performing loop closure remain

valid. Indeed, it can be seen from Table 4.21 that different correspondences are

recognized for each run here as well. When the environment is dimly lit, the shadowy

areas do not allow reference points to be identified, on the other hand, an excess

of light overexposes the image. In both cases, there is then a loss of detail in the

image, which affects the functioning of the system. As expected, the worst cases are

for the two extremes at 100 and 0 lux, while the sweet spot appears to be between

25 and 50 lux.

Figure 4.47: Translation and rotation errors comparison.

Figure 4.48: Translation and rotation RMS errors comparison.

126 4.3. Scenario Modeled after KITTI’s Sequence 07

Table 4.21: Comparison of the results.

0 lux 25 lux 50 lux 75 lux 100 lux
Distance covered 270m 270m 270m 270m 270m

Duration 90 s 90 s 90 s 90 s 90 s
Speed 3m/s 3m/s 3m/s 3m/s 3m/s

Maximum translation error 1.8569m 0.8026m 0.9286m 1.3900m 2.2702m
Maximum rotation error 4.4471 deg 3.5182 deg 3.5624 deg 3.5860 deg 4.6038 deg
Final translation error 0.2777m 0.1515m 0.2789m 0.1515m 1.0456m

Final rotation error 1.2442 deg 0.6711 deg 0.6319 deg 1.2315 deg 1.9098 deg
RMS final translation error 1.0254m 0.5122m 0.4701m 0.7371m 1.3007m

RMS final translation error in % of the distance covered 0.3800% 0.1900% 0.1741% 0.2730% 0.4817%
RMS final rotation error 1.3463 deg 0.8774 deg 0.9280 deg 1.2537 deg 1.8921 deg

Loop Closure frames 4, 6, 7− 224 1, 2, 3,−221 4, 5, 7− 221 2, 4, 5− 223 1, 2, 4− 223

4.3 Scenario Modeled after KITTI’s Sequence 07

The last test presented is aimed at repeating what occurs during KITTI’s Se-

quence 07. As anticipated, compromises had to be made in reproducing a scenario

comparable to that seen in the dataset. Due to the conformation of the source US

City Block 3D Environment map, a slightly shorter route was plotted than the ref-

erence one. A distance of 600 meters is covered in 95 seconds by following the path

shown in Figure 4.50. The height of the cameras has been set at 1.65m above the

ground and is kept constant throughout the route. Similarly, the pitch and roll an-

gles were set to zero. The car therefore only moves in the XY plane by varying the

yaw angle. Dynamic vehicles were also arranged in numbers and modes comparable

to those in the dataset. 5 cars and 1 box truck pass at a speed of 11m/s in front

of the recording platform while it is stationary at an intersection. Another car is

followed up close in a straight stretch for about 90m before it moves out of the way.

A light intensity of 50 lux was deemed appropriate (please go back to Section 3.4.1

for more details about how the lighting condition were modeled).

Figure 4.49: Some images captured by the right camera in the scenario.

Chapter 4. Tests Description and Results 127

Figure 4.50: Virtual scene path as seen in the Point Cloud Player.

The initial pose is defined by the Player Start actor, which can be arbitrary set

anywhere within the scenario. In this case:

Starting_Position = [-112.2138 , -72.6462, 1.65];

Starting_Rotation = [1.5708 , 0, 0];

and the route is traveled in a clockwise direction. The ORB-SLAM2 parameters are

the same as those listed in Section 4.2. Some frames captured during the simulation

can be seen in Figure 4.49.

Table 4.22: Scenario characteristics comparison.

Virtual Scene Sequence 07
Distance covered 600m 686m

Duration 95 s 110.5 s
Average speed 6.3m/s 6.2m/s

Maximum speed 10m/s 11.6m/s
Dynamic objects 7 7

The trajectory was plotted within UE using the method described in Section

3.8.2, and was applied a variable speed from 0m/s up to 10m/s for the vehicle

(Fig. 4.51). The maximum speed is 1.6m/s lower than that in KITTI, however, it

was deemed of little influence since it is reached for a very short amount of time to

then drop again around 10m/s. The average speed of 6.3m/s is instead very close to

the one sought. Notice how the speed variation is stepped because of the choice made

in the input command. In fact, the mouse wheel is used to accelerate/decelarate,

and each step is due to the repositioning of the finger during the operation.

128 4.3. Scenario Modeled after KITTI’s Sequence 07

Figure 4.51: Distance covered and speed during the simulation.

The results of this simulation are presented in Fig. 4.52, Fig. 4.53 and Table

4.23.

Figure 4.52: Translation and rotation errors.

Figure 4.53: Translation and rotation RMS errors.

The variation of the error with respect to the speed is as expected. In general,

when the speed increase the translation error also grows, while the turns cause peaks

in the rotation error (Fig. 4.54). Between seconds 46 and 49, when the car is not

moving, the estimation has minimum drift.

Chapter 4. Tests Description and Results 129

Figure 4.54: Translation and rotation errors shown with the instantaneous speed.

Results comparison with the KITTI sequence

The virtual simulation provided results partly in agreement with those found in

the dataset sequence (Table 4.23).

Table 4.23: Results for the Virtual Scene and Sequence 07.

Virtual Scene Sequence 07
Maximum translation error 3.9997m 4.4261m

Maximum rotation error 5.6095 deg 6.1951 deg
Final translation error 2.2679m 3.4797m

Final rotation error 0.8636 deg 1.1306 deg
RMS final translation error 2.3670m 3.1684m

RMS final translation error in % of the distance covered 0.3945% 0.4619%
RMS final rotation error 1.4966 deg 2.0053 deg

The differences in the errors can be attributed to some feature that has not been

reproduced faithfully enough, but also to the simple fact that the environments still

have discrepancies that are impossible to fill (assets, trajectory, lighting conditions,

etc.). In addition, the difference in path length may also have contributed to a

slight underestimate of the error. As has been shown in previous tests, even small

variations can affect the entire estimate, so it was unlikely to find precise matches

between the two cases. The most relevant difference concerns the final error on the

translation. Comparing the graphs it can be seen that in the dataset the error fails

to effectively recover thanks to the loop closure. In the virtual simulation instead,

despite having the same increasing trend (notice that the maximum translation

errors are not that far apart), at a certain point the error starts to drop as the

repetition of the ORB features between the key frames at the beginning and at the

end of the sequence is recognized more accurately. It is important to note that this

is not a peculiarity of the virtual environment because other tests in similar scenes

(but with characteristics judged more distant from those sought) have not closed

the trajectory so well.

130 4.3. Scenario Modeled after KITTI’s Sequence 07

The behaviour on the rotations is considered well replicated to some extent since

the magnitude of the maximum and final error is in line with expectations. This

is assumed to be due to the fact that they are shorter phenomena in which the

rotational speed, correctly reproduced, is the most decisive variable. In the sequence

in the virtual environment however, all the sharp turns see a peak that increases

the error to at least 4 degrees, while in the dataset sequence this phenomena is seen

only in the last two turns. On the other hand, the KITTI sequence has an overall

higher mean error. The precise reason for this behavior has not been identified,

but it is presumed to be related to the fact that in the real environment there are

much more diverse characteristics from one turn to another in comparison to those

simulated. What’s more, KITTI’s car makes multiple small changes in direction, so

this can actually cause drift buildup in stretches that I modeled as straights.

The sensors model in Simulink is obviously also the cause of mismatches between

the two cases. Moreover, despite the efforts in introducing optical artifacts in the

simulation images, there are certainly unresolved differences in this respect.

Finally, even the functioning of the algorithm itself influences the outcome of the

tests. It has been said that there has been a lot of research and experimentation on

my part to find parameter values that could offer good results in both environments.

This does not exclude that the virtual scene gives overall a better estimation also

because this particular configuration is here more suitable.

Chapter 5

Conclusions and Future
Developments

This final chapter draws conclusions about the work presented and evaluates

possible future developments and improvements.

Chapter 1 stated the three goals that this thesis set out:

1. Present a detailed analysis and description of the Matlab implementation of

the ORB-SLAM2 system;

2. Implement a comprehensive and self-sufficient framework for performing SLAM

testing in a virtual environment, with possibilities for great customization of

the scene, sensors and trajectory;

3. Demonstrate the validity of a virtual environment as an alternative to a dataset

for testing purposes.

Each of these points is taken up below to make the appropriate considerations.

5.1 Matlab implementation of the ORB-SLAM2

system

To my knowledge, the ORB-SLAM2 implementation described and used in this

thesis is to date the only one available in Matlab. It has some differences from the

one originally proposed by Raùl Mur-Artal and Juan D. Tardòs [12], for this reason

it was not possible to use their results to verify that I had correctly applied the sys-

tem. For example, the global bundle adjustment that takes place at the end of the

Chapter 5. Conclusions and Future Developments 133

original implementation certainly improves the estimate over the one I obtained.

The verification of the correct application comes from the fact that the behavior

of the system and the order of magnitude of errors is in line with those obtained

by running the examples provided by Mathworks. In addition, a short conversation

with one of the authors of the Matlab version confirmed the correctness with which I

chose the parameters to change in order to adapt the algorithm to new case studies.

As disclosed by the authors and experienced in person during the course of this

work, there are still optimization and stability issues that they are actively working

on. It is then of primary interest to see how the trajectory estimation improves

with future versions of this implementation, and also how much more stable the

system becomes as parameter values change. Moreover, it would be interesting to

make a comparison with the more recent ORB-SLAM3, if it ever gets implemented

in Matlab.

While it is therefore expected that ORB-SLAM2 is capable of providing a overall

better estimate than that shown, the purpose of this thesis was not affected by this

fact. Indeed, the same implementation and parameters are used with both dataset

images and those derived from the virtual environment.

The documentation consulted to write this thesis was found to lack a complete

description, from beginning to end, of a SLAM system that could also be fully un-

derstood by those who are less experienced in this area of research. The description

spanning the entirety of Chapter 2 has been designed to offer readers with an intro-

duction to this particular system, with some insights aimed at aspects considered

more important. Therefore, it is believed that in addition to providing a detailed

understanding of how Matlab code is structured, this paper may be useful to those

who are new to this topic.

5.2 Simulation Framework

The framework that was built started from a fairly solid position, with the inter-

face between Matlab/Simulink and Unreal Engine, however, it had limitations that

were overcome by making changes and additions. The implementation provided in-

tegrated the SLAM system within Simulink, but it was deemed unsuitable to meet

the levels of customization sought and was then remodeled as seen in the diagram

of Figure 3.3.

The applications of FFmpeg varies according to need. In the simplest cases it is

used only to break down into frames the videos obtained as output from Simulink,

but it can also be used as an alternative way to reduce the resolution or the frame

134 5.2. Simulation Framework

rate if other set ups were to be evaluated.

Unreal Engine has proven to be a powerful tool for generating and manage virtual

environments. Only the scenario provided by Mathworks was used in this thesis,

however, alternatives were explored to see if any UE project could be used. A second

scenario was actually prepared for use (Fig. 5.1). It reproduced a small residential

neighborhood through the use of two different free packs downloaded from the UE

Marketplace: the Downtown West Modular Pack developed by PurePolygons [36]

and the Vehicle Variety Pack [39], developed by Switchboard Studios.

Figure 5.1: Some screenshots taken from the discarded virtual scenario.

This was a very valid environment with high resolution textures and very high

levels of detail, which had been modified and adapted to function like the one used

in the thesis. Unfortunately, it was later realized that there was a scale problem

that could not be solved. The assets were created by the authors with an unrealistic

scale, so the size of the objects differs from their real-world counterpart (for exam-

ple, to have the cars in the same scale as the rest of the environment, they would

have to be about 9 meters long). Maintaining these dimensions would have caused

an incorrect estimate in the trajectory reading once interfaced with Simulink. Due

to the complexity of the scenario, it was not possible to change the scale of every

asset, so the work had to be discarded. No other free projects were found that could

meet the needs of this work. Despite this setback that did not allow the assessments

of errors to proceed, it was still possible to confirm the framework’s compatibility

with this (and therefore any other) project.

Given the configuration that was intended to be reproduced, here were plotted only

trajectories in the horizontal plane by varying the yaw angle. The system, however,

Chapter 5. Conclusions and Future Developments 135

is set up to be able to vary all six degrees of freedom. This increases its versatil-

ity, allowing it to reproduce with precision the motion of any recording platform,

whether in indoor or outdoor environments.

There certainly remains much work to be done on the realism of the scene, especially

if the goal is to copy from a sequence of real images. The aspect in which I realize

there are more deficiencies is that of lighting. This is very complex to model prop-

erly and requires skills in the use of UE that are beyond my capabilities. In general,

should it not be possible to model from scratch this or other aspects of the envi-

ronment, one can use projects behind a pay wall that are designed by professionals

or amateur artist as a good starting point. It is important to note that the fidelity

with which the scenario is created does not affect the validity of the framework that

has been illustrated.

In light of these facts, the goal of presenting a universal and self-sufficient

framework for virtual images generation and processing is considered to have been

achieved. A future development of interest is to integrate a Simulink model for

vehicle dynamics into this framework, so as to complete the whole simulation given

by environment, sensors and vehicle. While it is believed that this addition is not

necessary to reproduce the correct operation of the SLAM system, it can expand

the scope of the simulations.

5.3 Simulation results

Is performing tests with images captured in a virtual environment equivalent to

using those taken from a dataset? While it is difficult to give a definitive answer to

this question, the results obtained are promising and they suggest that a sufficiently

well modeled scenario can come very close to the real case. An underestimation of

the error was expected from the beginning, as some disturbance phenomena could

not be modeled.

Overall, several hundred tests were carried out, both to understand the influence of

the parameters of ORB-SLAM2 and to evaluate the effect of different trajectories

and characteristics of the environment. No significantly different response was ob-

served between the real and simulated environments when trying to replicate the

scene. To be fair, given the way the system itself works, it would have been neces-

sary to reproduce an exact copy of the path and scene seen in KITTI to confirm the

validity of the virtual alternative. A future study might be to prepare a room so that

it is easy to recreate it in Unreal Engine, and then trace the same short trajectory in

136 5.3. Simulation results

the two environments. The two sets of images, one from the real environment and

one from the simulation, can then be fed into the SLAM algorithm to make a more

accurate comparison. Given the expected underestimation of the error, it is up to

the user to consider whether to follow this more flexible and rapid testing method or

to seek more accurate results with a dataset or personally acquired images. Person-

ally, from what emerged in this thesis, I believe that virtual environments can be a

valuable tool for conducting all relevant preliminary tests, but a final confirmation

with images captured in the real world is still necessary to definitively validate the

worthiness of the system being tested.

Another study of interest that may be conducted at a later time, concern the

impact of textures resolution (and in general, graphic quality) in the SLAM sys-

tem performance. Being able to figure out what minimum level of graphics quality,

depending on the resolution of the sensor being used, can be used without deterio-

rating trajectory estimation allows the computational load to be minimized. This

would make it possible to use this configuration even with less performing hardware.

Bibliography

[1] Cadena, C. et al. “Past, Present, and Future of Simultaneous Localization

and Mapping: Toward the Robust-Perception Age.” IEEE Transactions on

Robotics 32.6: 1309–1332, 2016

[2] Campos, C., & Elvira, R., & Rodriguez, J.J.G., & Montiel, J.M.M., & Tardòs,

J.D., ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-

Inertial and Multi-Map SLAM. IEEE Transactions on Robotics, 23 Apr 2021

[3] Delmerico, J., & Scaramuzza, D., A Benchmark Comparison of Monocular

Visual-Inertial Odometry Algorithms for Flying Robots. In Proceedings of the

IEEE Internetional Conference on Robotics and Automation (ICRA), pages

2502-2509, 2018

[4] Dissanayake, G., & Huang,S., & Wang,Z., & Ranasinghe, R., A review of re-

cent developments in Simultaneous Localization and Mapping. In International

Conference on Industrial and Information Systems, pages 477–482. IEEE,

2011.

[5] Durrant-Whyte, H., & Bailey, T., Simultaneous Localisation and Mapping

(SLAM): Part I The Essential Algorithms. In Robotics and Automation Mag-

azine, 2006

[6] Endres, F., Hess, J., & Sturm, J., & Cremers, D., & Burgard, W., 3D Map-

ping With an RGB-D Camera. IEEE TRANSACTIONS ON ROBOTICS,

VOL. 30, NO. 1, February 2014

[7] Gao, X.-S., & Hou, X.-R., & Tang, J., & Cheng, H.F., ”Complete Solu-

tion Classification for the Perspective-Three-Point Problem.” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence. Volume 25,Issue 8, pp.

930–943, August 2003.

Bibliography 139

[8] Geiger, A., & Lenz, P., & Stiller, C., & Urtasun, R., Vision Meets Robotics:

The KITTI Dataset

[9] Geromichalos, D., & Azkarate, M., & Tsardoulias, E., & Gerdes, L., &

Petrou, L., & Perez Del Pulgar, C., SLAM for autonomous planetary rovers

with global localization, 2020

[10] Mourikis, A.I., & Roumeliotis, S.I., A Multi-State Constraint Kalman Filter

for Vision-aided Inertial Navigation. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pages 3565–3572. IEEE,

2007.

[11] Raùl Mur-Artal, & Montiel, J.M.M., & Tardòs, J.D., ORB-SLAM: A Versa-

tile and Accurate Monocular SLAM System. IEEE Transactions on Robotics,

Vol.31, No.5, October 2015

[12] Raùl Mur-Artal, & Tardòs, J.D., ORB-SLAM2: an Open-Source SLAM Sys-

tem for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on

Robotics, 19 Jun 2017

[13] Ruble, E., & Rabaud, V., & Konolige, K., & Bradski, G., ORB: an effective

alternative to SIFT or SURF. IEEE International Conference on Computer

Vision (ICCV), pp.2564-2571, 2011

[14] Lynen, S., & Sattler, T., & Bosse, M., & Hesch, J., & Pollefeys, M., &

Siegwart, R., Get out of my lab: Large-scale, real-time visual-inertial local-

ization. In Proceedings of Robotics: Science and Systems Conference (RSS),

pages 338–347, 2015.

[15] Scaramuzza, D., & Zhang, Z., Visual-Inertial Odometry of Aerial Robots. In

Springer Encyclopedia of Robotics, 2019

[16] Smith, R., & Self, M., & Cheeseman, P. Estimating uncertain spatial rela-

tionships in robotics. In I.J. Cox and G.T. Wilfon, editors, Autonomous Robot

Vehicles, pages 167-193. Springer-Verlag, 1990.

[17] Torr, P.H.S., Zisserman, A., ”MLESAC: A New Robust Estimator with Ap-

plication to Estimating Image Geometry.” Computer Vision and Image Un-

derstanding, Volume 78, Issue 1, Pages 138-156, ISSN 1077-3142, 2000

[18] Xiang Gao, & Tao Zhang

”Introduction to Visual SLAM. From Theory to Practice”, Singapore, Publish-

ing House of Electronics Industry, 2021

140 Bibliography

[19] https://www.blender.org/, retrieved on 12/02/2023,

Blender Website

[20] https://ffmpeg.org/, retrieved on 12/02/2023,

FFmpeg Website

[21] https://artsandculture.google.com/asset/hilare-autonomous-mobile-robot-

laboratory-of-analysis-and-architecture-of-systems/UwFV2X6hPn0NjA,

retrieved on 12/02/2023,

Google Arts & Culture, Hilare autonomous mobile robot, Laboratory of

Analysis and Architecture of Systems, 1977

[22] https://www.hp.com/it-it/shop/offer.aspx?p=b-hp-reverb-vr-headset, re-

trieved on 12/02/2023,

HP Website

[23] https://www.cvlibs.net/datasets/kitti/, retrieved on 12/02/2023,

KITTI Vision Benchmark Suite Website

[24] https://it.mathworks.com/help/vision/ug/stereo-visual-slam-for-uav-

navigation-in-3d-simulation.html, retrieved on 12/02/2023,

MathWorks Website

[25] https://it.mathworks.com/help/vision/ug/stereo-visual-simultaneous-

localization-mapping.html, retrieved on 12/02/2023,

MathWorks Website

[26] https://it.mathworks.com/products/matlab.html, retrieved on 12/02/2023,

MathWorks Website

[27] https://it.mathworks.com/products/simulink.html, retrieved on 12/02/2023,

MathWorks Website

[28] https://www.mathworks.com/help/vdynblks/ug/customize-scenes-using-

simulink-and-unreal-editor.html, retrieved on 12/02/2023,

MathWorks Website

[29] https://it.mathworks.com/help/vdynblks/ug/install-support-package-and-

configure-environment.html, retrieved on 12/02/2023,

MathWorks Website

Bibliography 141

[30] https://it.mathworks.com/help/driving/ug/select-waypoints-for-3d-

simulation.html, retrieved on 12/02/2023,

MathWorks Website

[31] https://it.mathworks.com/matlabcentral/fileexchange/52065-rq-

decomposition-using-givens-rotations?focused=3884550&s tid=gn loc drop&tab=function,

retrieved on 12/02/2023, MathWorks Website

[32] https://medrobotics.ri.cmu.edu/node/128458, retrieved on 12/02/2023,

Medical Robotics, Carnegie Mellon University

[33] https://it.wikipedia.org/wiki/Microsoft Kinect,

Microsoft Kinect, Wikipedia

[34] https://www.microsoft.com/it-it/microsoft-365/excel, retrieved on

12/02/2023,

Microsoft Website

[35] https://en.wikipedia.org/wiki/Odometer, retrieved on 12/02/2023,

Odometer, Wikipedia

[36] http://www.purepolygons.com/, retrieved on 12/02/2023,

PurePolygons Website

[37] https://www.smithsonianmag.com/innovation/how-does-human-

echolocation-work-180965063/, retrieved on 12/02/2023,

Smithsonian Magazine

[38] https://www.unrealengine.com/en-US, retrieved on 12/02/2023,

Unreal Engine Website

[39] https://www.unrealengine.com/marketplace/en-

US/product/bbcb90a03f844edbb20c8b89ee16ea32, retrieved on 12/02/2023,

Vehicle Variety Pack

Appendices

Appendix A

Visual Basic
Sub-Routines

The operations performed by the code below are as follows:

1. Imports the text file containing the poses into an Excel sheet;

2. Rearranges the rows and columns of the sheet so that there are six columns

each containing one DoF;

3. Swaps columns so that they are reordered as desired:

(X,Pitch,Y,Yaw,Z,Roll);

4. Deletes columns containing unnecessary data that had been imported;

5. Remove first two characters in each cell, so that within the cells there are only

numerical values.

1 ’--

2 Sub ImportTextFileToExcel ()

3 Dim textFileNum , rowNum , colNum As Integer

4 Dim textFileLocation , textDelimiter , textData As String

5 Dim tArray () As String

6 Dim sArray () As String

7 textFileLocation = "C:\ Users\Davide\Desktop\Pos_Rot.txt"

8 textDelimiter = " "

9 textFileNum = FreeFile

10 Open textFileLocation For Input As textFileNum

11 textData = Input(LOF(textFileNum), textFileNum)

12 Close textFileNum

144

13 tArray () = Split(textData , vbLf)

14 For rowNum = LBound(tArray) To UBound(tArray) - 1

15 If Len(Trim(tArray(rowNum))) <> 0 Then

16 sArray = Split(tArray(rowNum), textDelimiter)

17 For colNum = LBound(sArray) To UBound(sArray)

18 ActiveSheet.Cells(rowNum + 1, colNum + 1) = sArray(

colNum)

19 Next colNum

20 End If

21 Next rowNum

22 MsgBox "Data Imported Successfully", vbInformation

23 End Sub

24 ’--

25 Sub SplitEveryOther ()

26 Dim Rng As Range

27 Dim InputRng As Range , OutRng As Range

28 Dim index As Integer

29 xTitleId = "SplitEveryOther"

30 Set InputRng = Application.Selection

31 Set InputRng = Application.InputBox (" Range :", xTitleId , InputRng.

Address , Type :=8)

32 Set OutRng = Application.InputBox ("Out put to (single cell):",

xTitleId , Type :=8)

33 Set OutRng = OutRng.Range("A1")

34 num1 = 1

35 num2 = 1

36 For index = 1 To InputRng.Rows.Count

37 If index Mod 2 = 1 Then

38 OutRng.Cells(num1 , 1).Value = InputRng.Cells(index , 1)

39 num1 = num1 + 1

40 Else

41 OutRng.Cells(num2 , 2).Value = InputRng.Cells(index , 1)

42 num2 = num2 + 1

43 End If

44 Next

45 End Sub

46 ’--

47 Sub Swap_Columns ()

48

49 Sheets ("Home").Columns ("A:A").Cut Destination := Columns ("O:O")

50 Sheets ("Home").Columns ("G:G").Cut Destination := Columns ("A:A")

51 Sheets ("Home").Columns ("O:O").Cut Destination := Columns ("G:G")

52

53 Sheets ("Home").Columns ("B:B").Cut Destination := Columns ("O:O")

54 Sheets ("Home").Columns ("H:H").Cut Destination := Columns ("B:B")

Appendix A. Visual Basic Sub-Routines 145

55 Sheets ("Home").Columns ("O:O").Cut Destination := Columns ("H:H")

56

57 Sheets ("Home").Columns ("C:C").Cut Destination := Columns ("O:O")

58 Sheets ("Home").Columns ("I:I").Cut Destination := Columns ("C:C")

59 Sheets ("Home").Columns ("O:O").Cut Destination := Columns ("I:I")

60

61 Sheets ("Home").Columns ("D:D").Cut Destination := Columns ("O:O")

62 Sheets ("Home").Columns ("J:J").Cut Destination := Columns ("D:D")

63 Sheets ("Home").Columns ("O:O").Cut Destination := Columns ("J:J")

64

65 Sheets ("Home").Columns ("E:E").Cut Destination := Columns ("O:O")

66 Sheets ("Home").Columns ("K:K").Cut Destination := Columns ("E:E")

67 Sheets ("Home").Columns ("O:O").Cut Destination := Columns ("K:K")

68

69 Sheets ("Home").Columns ("F:F").Cut Destination := Columns ("O:O")

70 Sheets ("Home").Columns ("L:L").Cut Destination := Columns ("F:F")

71 Sheets ("Home").Columns ("O:O").Cut Destination := Columns ("L:L")

72

73 End Sub

74 ’--

75 Sub Delete_Example1 ()

76

77 Columns ("G:K").Delete

78

79 End Sub

80 ’--

81 Sub RemoveFirstTwoCharactersInEachCell ()

82 For Each cell In Range("A1:F1", Range(" A999999:F999999 ").End(xlUp))

83 If Not IsEmpty(cell) Then

84 cell.Value = Right(cell , Len(cell) - 2)

85 End If

86 Next cell

87 End Sub

88 ’--

	Contents
	Introduction
	What is SLAM?
	A bit of history
	The SLAM Problem
	Probabilistic SLAM Formulation
	Fundamental Equations
	Batch State Estimation
	Least Square Formulation

	Factor Graph and Landmarks Correlation
	Visual SLAM
	Cameras
	Pinhole Camera Model
	Image Distortion

	Purpose of the Thesis and Outline

	ORB-SLAM2 Matlab Implementation
	ORB-SLAM Series Systems
	Matlab System Implementation Overview
	Map Initialization
	Preliminary Operations
	Detection and extraction of ORB features
	Feature Matching and 3D World Positions

	Data Management and Visualization
	Tracking
	Camera Pose Estimation and Refinement
	Key Frame Detection

	Local Mapping
	New Map Points From Triangulation
	Local Bundle Adjustment

	Loop Closure and Pose Graph Optimization
	Place Recognition Database Initialization
	Loop Closure
	Pose Graph Optimization

	Simulation Set Up
	Why a Virtual Environment?
	KITTI Vision Benchmark Suite
	Simulation Software and Hardware
	Software
	Hardware

	Virtual Simulation
	Unreal Engine Scenario

	Coordinate Systems
	Simulink Model for UAV Stereo Visual SLAM
	Recording Platform and Virtual Cameras
	Trajectory and Orientation Definition
	Waypoints Selection on a Top-Down Map of the Scene
	Unreal Engine frame-by-frame pose

	Tests Description and Results
	KITTI dataset Test Setup
	ORB-SLAM2 parameters
	Ground Truth
	Camera Projection Matrix
	Results

	Virtual Scenario Performance Evaluation Tests
	Standard Condition
	Impact of the Speed of Motion
	Impact of dynamic objects on SLAM system performance
	Impact of lighting conditions on SLAM system performance

	Scenario Modeled after KITTI's Sequence 07

	Conclusions and Future Developments
	Matlab implementation of the ORB-SLAM2 system
	Simulation Framework
	Simulation results

	Bibliography
	Appendices
	Visual Basic Sub-Routines

