
università di padova facoltà di ingegneria

Role Assignment

for

Multi-Robot System

in

dynamic and uncertain

environments

Laureando DE BATTISTI RICCARDO

Relatore PAGELLO ENRICO
Correlatore FARINELLI ALESSANDRO

Corso di laurea Magistrale in

INGEGNERIA INFORMATICA

Anno Accademico 2011-2012

2

A Lino, Mara e Francesca

Introduction

Coordination in a multi-robot system
The growing interest in developing colonies of robots engaged in complex tasks
has caused an increasing interest in coordination approaches which can provide
flexible and reliable solutions for different problems, for instance:

• Search and rescue;

• Monitoring environmental phenomena;

• Surveillance in security applications.

In fact, the coordination of the robotic activities can increase both the efficiency
of the global task execution and the robustness of the system to individual robot
failures. However, devising flexible and effective coordination methods for multi-
robot systems is a very complex and challenging task, in fact:

• Coordination in these domains is particularly difficult because it requires
the solution to be distributed among the robots to enhance robustness and
avoid the existence of a central point of failure;

• The environment where robots act is highly dynamic and unpredictable;

• The coordination method should be able to react to unexpected changes
and provide good-quality solutions minimizing the reaction time.

Even if agent-based coordination techniques are widely used to achieve cooper-
ative behavior in distributed settings, after analyzing some of state-of-the-art
approaches, we decide to focus on coalition formation. In detail in a coalition
formation problem [1]:

1. A set of robots must cooperate to accomplish a set of tasks (or roles);

2. Each robot can execute one task at a time;

3. Robots can form coalitions to cooperate on specific tasks.

3

4

Indeed coalitions can perform tasks better, e.g. faster, than single robots and
the quality of the execution of a specific task depends both on the individual
capabilities that each robot has for that task, and on how the capabilities can be
combined together. It is knows that coalition formation is an NP-hard problem
and several approaches, which are also able to compute the optimal solution,
have been studied to address such problems, e.g. [1, 2], however they do not
consider that robots are situated in the environment hence collisions can occur
when they act and move, because robotics collision avoidance and task allocation
are kinds of coordination generally treated as separate entities.

Handled problems
The following problems are those that have been handled in this thesis:

• The development of a coordination system based on the distributed Max-
sum algorithm whose messages are exchanged over a factor graph repre-
sentation of the system, where robots, even with low resources, have to
collaborate to offer services to tasks, which can require more than a robot
to be accomplished;

• The explanation of a lower level coordination based on a kinodynamic
collision avoidance approach which, in turn, is distributively optimized
through the Max-sum algorithm over another factor graph system repre-
sentation;

• The introduction of an hybrid approach which merges the collision avoid-
ance system with the task allocation system into a unique architecture, in
order to get some benefit from the usage of the same algorithm and the
similar system representations, and trade off between greedy and optimal
solutions approaches.

Experiments
The created system for solving a coalition formation problem through the Max-
sum algorithm and the factor graph framework has been simulated and tested
on the Simulator Gazebo over the ROS middleware. In detail we implemented:

1. Two utility functions which re able to:

(a) Estimate robots’ capacities to carry out all the system tasks;

(b) Merge such capacities hence getting coalition utilities for each task.

2. Two factor graph versions, the former resulted in a bipartite complete
graph, in order to solve the task allocation problem, the latter, needed for
the collision avoidance system, which can permit a graph to be incomplete;

5

3. All the tools used for execute the Max-sum algorithm, e.g. the elaboration,
maximization and normalization of exchanged messages;

4. The Simulator Gazebo’s environments necessary to test and make experi-
ments.

5. The procedures needed to solve both the task allocation and the collision
avoidance problem within the coordinated collision avoidance framework.

Moreover the same experiments have been done applying a greedy algorithm,
called agent satisfaction, we took from the state of the art and implement in
order to get comparisons with the proposed task allocation approach.

Results
The experiments has shown that such distributed task allocation approach works
well managing to guarantee optimality with a few number of exchanged messages
in all the tested instances, in particular those where a greedy approach has
failed. However such tests have also stressed a collision avoidance system is
fundamental in that kind of multi-robot environments, hence confirming an
hybrid approach is necessary to get significant and important results. In fact the
proposed hybrid structure has permitted to trade off between greedy approaches
and optimal solutions algorithms, making robots able to avoid collisions, rapidly
choose tasks and optimizing those choices at the same time. Nevertheless all
carried out experiments are only simulated, hence future works could concern
the test and analysis of the proposed systems on real Pioneer 3AT robots and
real-life environments.

Outline
The outline of this thesis is as follows:

• In Chapter 1 we introduce the problem of coordination between robots,
giving an example of the utility function called, Q-function and a
dynamic role assignment developed for a RoboCup scenario;

• In Chapter 2 we treat the Optimal assignment problem and how it is corre-
lated with robot role allocation, proposing both centralized and distributed
approaches which can lead to optimal or suboptimal solutions;

• In Chapter 3 the Implicit coordination is considered presenting some state-
of-the-art approaches and a practical example of how can be used in a
Middle Size League RoboCup team;

• In Chapter 4 we deal with some architectures needed to completely coor-
dinate multi-robot systems in all their complex structure;

6

• In Chapter 5 we give an introduction to the utility function, the theoretical
framework and the distributed algorithm used to solve the proposed task
allocation problem and propose some toy problem examples;

• In Chapter 6 a detailed explanation of how the proposed system for the
problem solution is given, in particular how the factor graph and the
Max-sum algorithm really works over ROS middleware;

• In Chapter 7 after giving instances on how the proposed system works
and making some interesting comparisons with a greedy approach to the
problem, we show a distributed kinodynamic collision avoidance [3] and
introduce the hybrid system we called coordinated collision avoidance.
approach.

Contents

I State of the art 9

1 The importance of coordination 11
1.1 Robocup . 12

1.1.1 Middle Size League . 14
1.2 Dynamic role assignment . 15

1.2.1 Role assignment . 17
1.2.2 Formation selection . 18
1.2.3 Q function . 19

2 Optimal assignment problem 23
2.1 Solution approaches . 25

2.1.1 Sub optimal approaches 27
2.2 Linear programming model . 28
2.3 Economic game . 30
2.4 Stable marriage problem . 32
2.5 Network flow problem . 33
2.6 Scheduling problem . 35
2.7 Coalition formation problem . 37

3 Implicit coordination 41
3.1 Task allocation strategies . 41

3.1.1 Alarm handling problem 43
3.2 Belief communication . 44

3.2.1 Experiments results . 46
3.3 Implicit coordination in RoboCup 47

3.3.1 Role assignment . 49

4 Heterogeneous architectures 55
4.1 Schema-based framework . 55

4.1.1 Ball exchanging . 56
4.2 Hybrid automata . 57
4.3 Resources constraints . 60

4.3.1 Two-defender rule protocol 61
4.4 Interaction Nets . 64

7

8 CONTENTS

4.4.1 Passplay . 65

II Coalition formation for task assignment in multi-

robot system 69

5 Coalitions satisfaction 71
5.1 Problem statement . 71
5.2 Utility functions . 73

5.2.1 Coalition utility function 77
5.3 Factor graph and GDL . 79
5.4 Max-sum algorithm . 82

5.4.1 Bounded Max-sum algorithm 88

6 Software framework 89
6.1 ROS . 89
6.2 Factor graph . 91
6.3 Max-sum algorithm . 93

7 Experiments 99
7.1 Problem solution . 99

7.1.1 Agent Satisfaction . 107
7.2 A lower level of coordination . 110

7.2.1 Coordinated collisions avoidance 115
7.3 Conclusions . 119

Part I

State of the art

9

Chapter 1

The importance of
coordination

Communication among a group of robots should in principle improve the overall
performance of the team of robots, as robots may share their world views and
may negotiate task assignments. However, in practice, effectively handling in
real-time multi-robot merge of information and coordination is a challenging
task which usually requires complex and hybrid architectures (see Chapter 4).
However it is important to distinguish a Multi Agent Systems (MAS) from Multi
Robot Systems (MRS): the former are developed with regards to the simulated,
software teams of robots, while refer to the real robot teams [4], but in both case
the difficulties arise from the development of distributed approaches to coordina-
tion, because the advantages of coordination can not only be measured in terms
of reached goals, but also in the achievements of subgoals. Obviously, when real
robotic players are considered, issues such as uncertainty on the physical sensors
and actuators emerge, so that coordinating a multi robot system, where there
are many possible sources of errors, appears to be a rather challenging problem.

The concept of MAS is emerged as an important model of designing intel-
ligent and complex software application, because it exploits diverse and dis-
tributed online information resources, and builds sophisticated and distributed
systems that work effectively in a group setting.

In general, to perform specific tasks by cooperation of a team of multi agents,
three distinguishing features are needed:

1. The environment where the agents act is unpredictable and the tasks are
complex;

2. It should achieve effective coordination;

3. The behaviors in MAS are hierarchical in nature, including both low level
emergent and high level cooperative behaviors.

These behavior-based MAS are suitable to a variety of tasks where either more
than one agent is unable to do the job, or a team of agents cam achieve an

11

12 CHAPTER 1. THE IMPORTANCE OF COORDINATION

optimal solution in terms of time, energy efficiency and quality. Another basic
feature of MAS is the system architecture, whose simplest version can be pure
reactive, where the agents:

1. Perceive environment changes (inputs);

2. Interpret them;

3. React to them according to predefined procedures.

However, the really essential requirement for a real world agent acting in a
dynamic and uncertain environment is to be able to show reactive as well as
deliberative behaviors. This need of embodying both kinds of behaviors has
lead to the so-called hybrid architectures (see Chapter 4), where because of the
hierarchical task structure, two types of control flow can be identified within
this layered architectures:

1. The horizontally layered, whose layers are each directly connected to the
sensory input and to the action output (each layer acts like an agent);

2. The vertically layered, where sensory input and action output have dedi-
cated layers, while intermediate layers perform the I/O processing.

On the other end in a MRS, every robot in order to successfully coordinate its
action to achieve a common complex goal, must be aware, even if at a minimal
level, of the subtask carried out by the other robots in the system. This problem
is known as the problem of action recognition, that is the ability of a robot to
observe and interpret the behaviors of another robot.

The research in cooperative robotics has widely investigated on this issue,
classifying MRS in two major categories: MRS based on implicit and explicit
communication. In the former communication is achieved throughout sensory
feedback from the operating environment (see Chapter 3), while in the latter
(see Chapter 1.2) the explicit exchange of information between robots, typically
based on messages, is exploited. Implicit communication has the advantage
of not requiring any type of common communication device and negotiation
among the robots, leading to emergent, non intentional, coordination. On the
other side, explicit communication has been more extensively exploited and has
proven to be more efficient in different domains, because MRS can be designed
and implemented such a way to guarantee important features, e.g. robustness,
adaptivity and fault tolerance.

1.1 Robocup
RoboCup1 is an international robotics competition founded in 1997 whose aim is
to develop autonomous soccer robots with the intention of promoting research
and education in the field of artificial intelligence. The contest is a very in-
teresting domain in which experimenting coordination tasks, currently has four

1http://www.robocup.org

1.1. ROBOCUP 13

major competition domains, each with a number of leagues and sub-leagues and
covers the following themes:

1. RoboCup Soccer, creating teams of fully autonomous, cooperative robots
that exhibit advanced competitive behaviors and strategies, whose sub-
league are:

(a) Standard Platform League;
(b) Small Size League;
(c) Middle Size League;
(d) Simulation League;
(e) Humanoid League;

2. RoboCup Rescue, assisting emergency responders to save people and per-
form hazardous tasks with highly mobile, dexterous and semi-autonomous
robots capable of mapping and negotiating complex environments;

3. RoboCup@Home, helping people in their daily lives at home and in public
with autonomous and naturally interactive assistant robots;

4. RoboCupJunior, motivating young people to learn skills and knowledge
necessary in science, technology, engineering, and mathematics as well as
to foster their soft skills through participating in the creative process of
building and programming autonomous robots.

The problem of coordinating the behaviors of a team of autonomous agents
playing soccer is one of the scientific challenges that have been put forward for
the RoboCup Soccer competitions. Even if in this part the focus in on these
competitions with great care of the Middle Size League, let briefly describe all
the leagues of the soccer competition domain.

In Standard Platform League all teams use identical (i.e. standard) robots,
hence teams concentrate on software development only. Moreover omnidirec-
tional vision is not allowed, forcing decision-making to trade vision resources for
self-localization and ball localization. The Small Size League or F180 league,
as it is otherwise known, is one of the oldest RoboCup Soccer leagues. It focuses
on the problem of intelligent multi-robot/agent cooperation and control in a
highly dynamic environment with a hybrid centralized/distributed system. In
Middle Size League, robots are no more than 50 cm diameter and play soccer in
teams of up to 6 robots with regular size FIFA soccer ball on a field similar to a
scaled human soccer field. Because all sensors are on-board and robots can use
wireless networking to communicate, the research focus is on full autonomy and
cooperation at plan and perception levels. The Simulation League is another old
league in RoboCup Soccer, where independently moving software players which
play on a virtual field inside a computer, has led to the development of artificial
intelligence and team strategies. In the Humanoid League, autonomous robots,
with a human-like body plan and human-like senses, play soccer against each

14 CHAPTER 1. THE IMPORTANCE OF COORDINATION

other. Dynamic walking, running, and kicking the ball while maintaining bal-
ance, visual perception of the ball, self-localization, and team play are among
the many research issues investigated in the league.

An interesting case for coordination in MRS is the Middle Size League,
where coordination usually relies on explicit communication, but due to the
frequent communication failures, the robots must not depend completely on
communication, nor on information provided by other robots. In such a setting
and since the heterogeneity of robot players, coordination needs to be achieve
without laying down drastic prerequisites on the knowledge of the single players,
hence leading to distributed approaches.

1.1.1 Middle Size League

An interesting case for coordination in MRS is the Middle Size League, where
coordination usually relies on explicit communication, but due to the frequent
communication failures, the robots must not depend completely on communica-
tion, nor on information provided by other robots. In such a setting and since
the heterogeneity of robot players, coordination needs to be achieve without
laying down drastic prerequisites on the knowledge of the single players, hence
leading to distributed approaches.

In the Middle Size League (MSL) the rules are generally the same as the
laws of football except for some modifications:

1. The standard field dimensions are 12 m by 18 m;

2. The official tournament ball used in matches is any orange FIFA standard
size 5 football;

3. Only 5 robots per team may play on the field, including the goalkeeper.

4. The robots may only explicitly communicate by means of a WLAN satis-
fying the IEEE 802.11 specification.

Moreover there are the following robot design restrictions:

1. The robot must fit inside a 52 cm × 52 cm × 80 cm box;

2. The keeper can also temporarily increase its dimensions to 60 cm × 60
cm × 80 cm or 52 cm × 52 cm × 90 cm, but only for 1 second, if the goal
is endangered by an approaching ball (after complete reducing its size, he
has to wait 4 seconds before he is allowed to expand again);

3. The maximum weight of the robot is 40 kg;

4. The base color of a robot’s body must be black;

5. The paint or used material must be matte in order to minimize reflectivity.

1.2. DYNAMIC ROLE ASSIGNMENT 15

1.2 Dynamic role assignment
Here we present a distributed and explicit coordination of a multi-robot system
[5] based on a dynamic role assignment, which relies on the broadcast commu-
nication of utility functions. First of all, it is worth highlighting the hypotheses
underlying the MRS:

• Communication-based coordination: the usage of communication among
the robots to improve team performances, allowing the robots to acquire
more information and self-organize in a more reliable way;

• Autonomy in coordination: the robots are capable to perform their task,
possibly in a degraded way, even in case of partial or total lack of commu-
nication;

• Distributed coordination: the communication capabilities, combined with
the autonomy requirement, require that each robot, while interacting with
the others, must rely on local control;

• Heterogeneity : the robots are heterogeneous both from hardware and soft-
ware viewpoints, they can usually perform the same tasks but with differ-
ent performance;

• Highly dynamic, hostile environment : the robots must be able to perform
the assigned task in the presence of external and dynamic changes in the
environment.

The approach is a formation/role system, where a formation decomposes the
task space defining a set of roles: each robot has the knowledge and capabilities
necessary to play any role, therefore robots can switch their roles on the fly,
if needed. The coordination protocol is based on broadcast communication of
some data, which are processed by every robot in order to establish the formation
that the team will adopt and the roles assigned to robots. The computation is
distributed, because each robot must process the information coming from the
others to identify the team formation and its own role and and the protocol is
also robust because it relies on a little amount of transmitted data. It is also
based on the concept of utility functions, which are defined off-line before the
actual operation of the MRS in the environment, but they are then evaluated
periodically during the robot mission and exchanged among the robots. The
protocol includes two steps that are periodically executed on-line during the
MRS mission:

1. Role assignment ;

2. Formation selection.

Formally, an utility function f i

j

(·) for a robot R
i

and role r
j

is a function that,
given the information about the status of the robot, returns the value that
indicates how well R

i

can play role r
j

. In other words, it should return higher

16 CHAPTER 1. THE IMPORTANCE OF COORDINATION

values when robot R
i

is in a good situation to play role r
j

, lower values when
the robot is a bad situation to fulfill it.

The definition of the utility functions is an important step in the design
and realization of the MRS, and, since they are deeply related to the applica-
tion domain of the MRS, it is not easy to develop a general methodology for
defining them. The designer of the MRS must anyhow take into account two
considerations:

1. There are some variables or conditions that characterize the state of the
robot that are relevant for the execution of the task associated to a role;

2. Some parameters of the utility functions must be experimentally evalu-
ated, since they are also depend from the characteristics of the individual
robots.

Therefore the following steps are performed for defining the utility functions:

1. Identify the variables that are relevant for the execution of the task asso-
ciated to a role;

2. Define the utility function as a linear combinations of these variables;

3. Perform a set of systematic experiments in order to determine the coeffi-
cients of the utility functions.

Even if calibration typically requires a significant experimental work, the ex-
perimentation of the proposed coordination protocol has been done in three
stages:

1. A simulator;

2. Experimentation without playing;

3. Experimentation during actual games;

4. Analysis of log files of the games.

The first and easier experimental setting is provided by a simulator, which is
useful for verifying the correctness of the protocol and for computing a first es-
timation of the coefficients of the utility functions. Then, the experiments with
real robots have been done without and with playing: the former is needed to
adjust the discrepancies arising from differences in heterogeneous robots’ im-
plementation, the latter to single out the failures of the coordination system.
Finally an analysis of the log files generated during the games is very useful for
identifying misbehaviors of the coordination systems, detecting several interest-
ing features and further refining the utility functions.

1.2. DYNAMIC ROLE ASSIGNMENT 17

1.2.1 Role assignment

Suppose we have n robots {R1, . . . , Rn

} and m roles {r1, . . . , rm

}, which are
ordered with respect to importance in the global task to be performed. Moreover
for each role r

j

let P
j

define the percentage of robots of the team that should
be assigned to this role and let A (i) = j denote that r

j

is assigned to the robot
R

i

, hence the method for dynamic role assignment requires that each robot R
p

computes the following steps (see Algorithm 1.1):

1. For each role r
j

, robot R
p

computes and broadcasts the values of the
utility function fp

j

(·) (lines 1-2);

2. It collects the values of the utility function computed by other robots (lines
3-5);

3. After creating an empty list L for assigned robots (line 6), it assigns it
sets roles to all robots (lines 7-13).

It is easy to see that every role is assigned to at most P
j

⇥ n robots and every
robot is assigned to only on role. In fact at every cycle of the algorithm a
different assignment A (i) = j is done: j changes after P

j

⇥ n cycles and robots
already included in the set L of assigned robots cannot be chosen for function
assignments. In particular, the first role (i.e. the one with the highest priority),
will be assigned to those robots that have the best utility values for role r1,
the second role to those among the remaining robots that have the best utility
values for the second role, and so on, while in the case of a complete lack of
communication all the robots will assume the most important role.

In order to obtain an effective application of the above algorithm, an im-
portant issue to be dealt with is the stability of decisions with respect to possi-
ble oscillations of the numerical parameters on which they depend upon. The
method adopted to stabilize decisions is based on the notion of hysteresis (see
Figure 1.1), which amounts to smoothing the changes in the parameters val-
ues. This technique prevents a numerical parameter’s oscillation from causing
oscillations in high level decisions. For instance, if at a certain instant robot R

i

covers role r
j

, its utility function f i

j

(·) for role r
j

returns a higher value, or once
a robot realizes a sudden difficulty in performing its task, all its utility functions
must return low values so that the role can be assigned to other robots.Moreover
in the case of a great loss of transmitted data due to interferences, the robots
may have slightly inconsistent data. Therefore, there could be roles temporarily
assigned to more than one robot or not assigned at all, but if it is assumed
that the values of utility functions do not change sharply, the correct use of the
hysteresis method guarantees that the roles will be correctly assigned almost
always.

18 CHAPTER 1. THE IMPORTANCE OF COORDINATION

Algorithm 1.1 Dynamic role allocation
1. for each role rj do
2. compute and broadcast fp

j (·);
3. for each robot Ri (i 6= p) do
4. for each role rj do
5. collect f i

j (·);
6. L = ;;
7. for each role rj do
8. for c = 1 to Pj ⇥ n do
9. begin
10. h = arg max(i/2L)

�
f i
j (·)

;

11. if h = p then A (p) = j;
12. L = L [{h};
13. end

numerical parameter

NO

YES

decision

Figure 1.1: Hysteresis

1.2.2 Formation selection

The robots have at their disposal a number of predefined formations and rules
to select the formation to adopt, on the basis of the environment configuration,
where the instructions in Algorithm 1.2 for the formation selection.

Algorithm 1.2 Formation selection
1. for each robot Ri of the team do
2. begin
3. collect voted_formation[i];
4. votes[voted_formation[i]] = votes[voted_formation[i]] + 1;
5. end
6. if there is a formation f such that votes[f] > n/2 then
7. selected_formation = f ;

Since each robot status do not necessarily coincide with those of the others,
the robots may choose different formations, hence this algorithm is based on a
voting scheme that allows for changing the formation only in presence of the
absolute majority of votes. This voting scheme also ensure stability of decisions
because the formation selection is accomplished at a lower frequency to that of
role selection.

1.2. DYNAMIC ROLE ASSIGNMENT 19

1.2.3 Q function

Q function [6], as an example of utility function, is a important measure of
quality in a dynamic role assignment. According to its design, at any given
time, the value taken by Q, depends on the following quantities:

• Its distance from the ball;

• Its relative position with regard to a right approaching configuration to
the ball;

• The last visible position of the ball, if the ball is not currently visible;

• The position of other robots if there are any toward the goal;

• The number of failure while it is trying to move around collision-free;

• Its previous role.

Each robot R
i

computes independently Q
i

based on its local estimation. Then
it sends the calculated value to the teammates (10 times per second) and decides
autonomously how to behave comparing its own estimation Q

i

with the values
of the other robots. In this MRS scenario players may assume three different
roles:

• Master, when the robot holds the ball, either as defender or attacker;

• Active supporter, when the robot cooperates with the master avoiding to
interfere with it and protecting if from opponents;

• Passive supporter, when the robot has located far from the ball, but it is
ready to enter the game.

This function guarantees fault tolerance and flexibility and prevents ambiguity,
indeed to enhance role swapping robustness, and avoid the system instability,
it was made sensitive to the previous role played by R

i

. Thus, if the robot R
i

do not play as master in the previous move, its actual value of Q
i

is penalized
in order to make more difficult to move from active supporter to master. To
enforce the effectiveness of the active supporter, when a robot is assigned to that
role, the following statements are always true:

1. It must never interfere with the master ;

2. It must quickly try to get the ball if the master fails to perform its task;

3. It must keep itself close to the master to eventually recover the ball if the
master looses it;

4. It must avoid any position on the straight line connecting the master with
the opponent’s goal.

20 CHAPTER 1. THE IMPORTANCE OF COORDINATION

For example if the active supporter meets the master along its moving to the
ball, it handles the master as an obstacle and does not interfere with the master
action, on the other hand, if it does not meet the master along its path to
the ball, because the master is faced with some unexpected difficulties while
performing its task, then the it is able to become the master. Indeed in the
situation the master meets an opponent, while keeping the ball, it often makes a
back step to avoid collision and the active supporter succeeds to move to a better
approaching position to the ball. Hence the master makes room to the active
supporter, that may take the ball, because it comes to be in a better position to
score, and swap its role. The value of Q computed by the master becomes lower
than the one computed by the active supporter, and after swapping their roles
they succeeds to exchange the ball, showing an emergent behavior (see Figure
1.2).

Figure 1.2: Ball exchanging

The coordination method described in Section 1.2 and a generalization of Q
function have been implemented within the Azzurra Robot Team (ART team2),
the italian national team of heterogeneous robotic soccer players participating
in the Middle Size League RoboCup competitions.

The approach adopted by the ART team relies on a very flexible coordination
protocol: it is based on a set of formations and a set of roles for every formation.
The formation that has been mostly used is the standard formation, in which 3
roles for the 3 players are defined, i.e. Attacker, Defender and Support, while
other formations have been considered to deal with special situations. The
utility functions for these roles are determined as a linear combination of:

• The distance from the ball;

• The position of the robot in the field;

• The orientation of the robot in the field;
2http://www.dis.uniroma1.it/ART.

1.2. DYNAMIC ROLE ASSIGNMENT 21

• The obstacles in the path towards the ball.

Since there are 3 roles for 3 robots the percentage role covering P
j

are set to 1/3,
so that every role is assigned to one robot. Moreover, the roles have priorities,
so that if one robot is out or does not communicate with the others the first
two roles (Attacker and Defender) are assigned to the remaining two robots,
leaving the Support role unassigned.

22 CHAPTER 1. THE IMPORTANCE OF COORDINATION

Chapter 2

Optimal assignment problem

Let here introduce and examine the optimal assignment problem (OAP) [12],
that is is a well-known problem that was originally studied in game theory and
then in operations research, in the context of personnel assignment. In fact
given m workers, each looking for one job, each requiring one worker, and for
each worker a nonnegative skill rating estimating its performance for each job,
the goal of the OAP problem is the assignment of workers to jobs in order to
maximize the overall expected performance simultaneously taking into account
the priorities of the jobs and the skill ratings of the workers.

The multi-robot task allocation problem (MRTA) can be posed similarly:
given m robots, each capable of executing one task and possibly weighted tasks,
each requiring one robot and given for each robot a nonnegative efficiency rating
estimating its performance for each task the goal for the MRTA problem is to
assign robots to tasks so as to maximize overall expected performance, taking
into account the priorities of the tasks and the efficiency ratings of the robots.

In this chapter, it is shown how in several fields the OAP and consequently
the MRTA problem can be casted in and then solved [14, 11], but before that,
we first show how robots can calculate the performance estimates, which are
also called utility estimates, next we formalize the MRTA problem and finally
we present an interesting taxonomy [13] of multi-robot task allocation problem.

However the problem of role allocation is a dynamic decision problem, the
OAP refers to a static environment, hence the static assignment is iteratively re-
solved over time. Of course, the cost of running the assignment algorithm must
be taken into account: at one extreme, a costless algorithm can be executed
arbitrarily quickly, ensuring an efficient assignment over time, on the other
hand, an expensive algorithm that can only be executed once will produce a
static assignment that is only initially efficient and will degrade over time.

In order to create and maintain an efficient allocation, even if it might be
very expensive, the assignment algorithm must consider and reassign every role
in the system. Indeed some implemented approaches to role allocation use
heuristics to determine a subset of roles that will be considered in a particular
iteration.

23

24 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

Formally, given a robot I and a role J , if I is capable of executing J and Q
IJ

and C
IJ

define the quality and cost, respectively, a combined and nonnegative
utility measure for that performance can be derived as

U
IJ

=

(
Q

IJ

� C
IJ

if I is capable of executing J and Q
IJ

> C
ij

0 otherwise
.

For an instance of OAP, it is given:

• A set of m robots, I1, I2, , . . . I
m

;

• A set of n roles, J1, J2, , . . . J
n

with relative weights w1, w2, , . . . w
n

;

• U
ij

, the nonnegative utility of robot I
i

for role J
j

, 1 i, j n.

It is also assumed that:

• Each robot I
i

is capable of executing at most one role at any given time;

• Each role J
j

requires exactly one robot to execute it.

Hence the problem is to find an optimal and feasible1 allocation of robots to
roles, that is a set of robot-role pairs

(i1, j1) . . . (i
k

, j
k

) , 1 k min (m, n) ,

that maximize the weighted utility sum

U =

nX

m=1

U
imjmw

jm .

The utilities are usually represented in a matrix form, called the utility matrix,
however, some algorithms are designed to minimize, rather than maximize, the
previous sum, so a cost matrix C from a utility matrix U can be obtained by

C
ij

= U
ij

� max {U
ij

} 8i, j

that is subtracting each element in U from the maximum value in U . On the
other hand other algorithms require that the utility (or cost) matrix is symmet-
ric, i.e. m = n, hence we can construct a symmetric matrix from an asymmetric
one by applying as many zeros padding as necessary without carrying out as-
signments that involve those columns and rows added.

The proposed taxonomy is done by dividing the space along three axes, hence
getting:

• Single-task robots (ST) vs. multi-task robots (MT):
1An allocation is considered feasible, the robots i1 . . . ik and the task j1 . . . jk must be

unique.

2.1. SOLUTION APPROACHES 25

– ST means that each robot is capable for executing as most one task
at time;

– MT means that some robots can execute multiple tasks simultane-
ously;

• Single-robot tasks (SR) vs. multi-robot tasks (MR):

– SR means that each task requires exactly one robot to achieve it;

– MR means that some tasks can require multiple robots;

• Instantaneous assignment (IA) vs. time-extended assignment (TA):

– IA means that the available information concerning the robots, the
tasks, and the environment permits only an instantaneous allocation
of tasks to robots with no planning for future allocations;

– TA means that more information is available, such as the set of all
tasks that will need to be assigned, or a model of how tasks are
expected to arrive over time.

Indeed, as described below, various MRTA problems can be positioned in the
resulting problem space and some organizational theories are strongly related
to those problems.

2.1 Solution approaches

Here we present some centralized but computationally complex approaches: a
first and simple method to solve an OAP instance is the so called brute force
approach, which:

1. Creates all the possible assignments;

2. Computes the relative costs;

3. Chooses the best one.

However, given an n⇥n matrix, there are n possibilities for the first assignment,
n � 1 for the second assignment, n � 2 for the third assignment and so on, to
the amounts of n! possible assignments. Hence the complexity of this approach
is at least exponential and not suitable to be implemented.

There are some approaches formulated specifically for the OAP that result
in less computational complexity, e.g. the Hungarian method, which runs in
O
�
n3
�

time and is efficient, even if run in real time. In detail, given a n ⇥ n
cost matrix C, this method consists of several steps (see Algorithm 2.1).

26 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

Algorithm 2.1 Hungarian standard version

1. For each row:

(a) Find the smallest element;
(b) Subtract it to the entire row;

2. Until there is a zero uncovered:

(a) Mark it with a star;
(b) Cover its relative column and row;

3. Uncover all the rows and columns;

4. Cover all the columns with a starred zero;

5. If all columns are covered, END;

6. Until there are uncovered zeros:

(a) Mark an unstarred zero with a bar;
(b) If there are starred zeros in the same row:

i. Cover the row and uncover the column with the starred zero;
ii. Find the smallest value uncovered;
iii. Add it to the elements of each covered row;
iv. Subtract it to the elements of each uncovered column;

7. Add the first barred zero found in previous step into a list;

8. Until the list do no end with a barred zero, that has no starred zero in its
column:

(a) Add the starred zero into the list;
(b) Add the first barred zero that is in the row of the barred zero;

9. For each element in the list

(a) Remove the star, if it is a starred zero;
(b) Substitute the bar with a stars, if it is a barred zero;

10. Uncover every line of the matrix;

11. GO to step 5;

Another way to solve this problem is done by achieving its graph repre-
sentation and then applying a modified version of the Hungarian method (see

2.1. SOLUTION APPROACHES 27

Algorithm 2.2), where the OAP becomes: given a bipartite complete graph2

G = (V1 + V2, E), find a minimum weight perfect matching3.

Algorithm 2.2 Hungarian graph version

1. For each row:

(a) Find the smallest element;
(b) Subtract it to the entire row;

2. For each column:

(a) Find the smallest element;
(b) Subtract it to the entire column;

3. Get graph G0
= (V1 + V2, E0

), where E0
= {(i, j) | C

ij

= 0, 8i, j};

4. Find on G0 a matching M of maximum cardinality;

5. If |M | = |V1| = |V2|, END;

6. Label all the rows unmatched in step 4;

7. Until there are rows or columns unlabeled:

(a) Label the columns that have zeros in correspondence of labeled rows;
(b) Label the unlabeled rows, matched by the matching algorithm;

8. Bar every row not labeled and every column labeled;

9. Get the minimum element not labeled;

10. Subtract it from all the unbarred elements;

11. Add it to the barred elements;

12. GO to step 3.

2.1.1 Sub optimal approaches

Sub optimal algorithms are those methods that guarantee to get admissible but
not optimal solutions. Because of the high complexity of getting an optimal
solution for an OAP instance they try to come closer the optimal solution as
best as possible for examples by exploiting greedy paradigms.

2A complete bipartite graph G = (V1 + V2, E) is a bipartite graph such that for any two
vertices, v1 2 V1 and v2 2 V2, (v1, v2) 2 E.

3A perfect matching is a matching which matches all vertices of the graph. That is, every
vertex of the graph is incident to exactly one edge of the matching.

28 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

For instance, given a n ⇥ n utility matrix U , referred to a set of n robots
R = {1, . . . , n} and a set of n tasks T = {1, . . . , n}, a first approach is presented
in Algorithm 2.3.

Algorithm 2.3 OAP greedy approach

1. For each robot i:

(a) Find the task best suited for robot i, that is task j such that u
ij

=

max

k

u
ik

;

(b) Set task j as assigned.

However the simplicity of the approach is in contrast the high running com-
plexity which equals O

�
n2
�
.

The following greedy technique (see Algorithm 2.4) is another approach com-
monly used on role allocation problems.

Algorithm 2.4 OAP 2-competitive greedy approach

1. Until all roles have been assigned:

(a) Find the highest utility u
ij

;
(b) Assign robot i to role j;
(c) Cross out row i and column j from the utility matrix;

The complexity of this algorithm is even higher than the previous one, be-
cause it fundamentally got worse by the research of the best utility value in the
matrix, which spends a O

�
n2
�

time (hence O
�
n3
�

is the total running time).
However it can be proved that the worst-case performance of this algorithm on
the OAP is 2-competitive4, that is this algorithm in the worst case produce a
solution with utility that is 1

2 of that given by an optimal solution.

2.2 Linear programming model
Given an m⇥n matrix A, an n-vector b, and an m-vector c, a maximum problem
for a linear program tries to find a nonnegative m-vector x such that

xc is a maximum

under the constraints
xA b.

4An algorithm is said to be ↵-competitive if, for any input, it finds a solution that is no
worse than 1

↵ of the optimum.

2.2. LINEAR PROGRAMMING MODEL 29

If there exists a vector x that satisfies the constraints, then the problem is called
feasible and the vector x is a feasible solution, which is called an optimal solution
if there is no other feasible solution that produces a higher value in the function
to be maximized. Often the elements of the solution vector x are required to
be integers, so making the problem is call an integral linear program (ILP). The
MRTA problem can be cast as an ILP if the problem goal becomes finding,
always in a centralized way, n2 nonnegative integers ↵

ij

that maximize

nX

i=1

nX

j=1

↵
ij

U
ij

w
j

(2.1)

subject to:

nX

i=1

↵
ij

= 1, 1 j n

nX

j=1

↵
ij

= 1, 1 i n,

where

↵
ij

=

(
1 ith robot executes jth task

0 otherwise
.

Given an optimal solution to this problem, that is a set of integers ↵
ij

under the
above constraints, an optimal task allocation can be constructed by assigning
robot i to task j only when ↵

ij

= 1.
By creating the linear program of Algorithm 2.5, the space of role allocation

problems is restricted in the sense the function to be maximized, i.e. Equation
(2.1), must be linear, but there is no such restriction on the manner in which
the components of that function are derived, in other words, individual utilities
can be computed in any arbitrary way, but they must be combined linearly.

Algorithm 2.5 ILP

max

nP
i=1

nP
j=1

↵
ij

U
ij

w
j

nP
i=1

↵
ij

= 1, 1 j n

nP
j=1

↵
ij

= 1, 1 i n

↵
ij

2 {0, 1} , 1 i, j n

Fundamental to the theory of linear programming is the concept of duality,
that is to say, given a maximum LP problem, it is possible to construct a related
minimum LP problem (and vice versa), where the original problem is called the

30 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

primal and the related problem is called the dual. In particular If both a problem
and its dual are feasible then both have optimal solutions and the values of the
optimal solutions are the same, while if either is infeasible, then neither has an
optimal solution.

The dual of the MRTA problem (see Algorithm 2.6) can be stated as follows:
find n integers u

i

and n integers v
j

that minimize

nX

i=1

u
i

+

nX

j=1

v
j

subject to
u

i

+ v
j

� U
ij

8i, j.

Thus, given an instance of the MRTA problem, its dual can be trivially con-
structed, then whichever form is more computationally convenient can be solved
because there exist algorithms for each.

Algorithm 2.6 Dual problem

min

nP
i=1

u
i

+

nP
j=1

v
j

u
i

+ v
j

� U
ij

1 i, j n
u

i

integer, 1 i n
u

j

integer, 1 j n

The Dantzig’s simplex algorithm, also called the simplex method, gives an
optimal solution to an ILP problem whose matrix is TUM5, after at most

�
n

n

�

iterations.

2.3 Economic game
It is known that a strong connection between economics and game theory and
game-theoretic techniques are often used to analyze and synthesize rules for
economic systems. Hence the MRTA problem is here posed as an economic
game and solved in a distributed manner, even gaining optimal solution.

Construct a price-based task market, in which tasks are sold by brokers to
robots and each task j is for sale by a broker, which places a value c

j

on the
task. As each robot i places a value h

ij

on task j, thus the the problem is to
establish feasible6 task prices p

j

, which will in turn determine the allocation of
tasks to robots. If we assume that robots are acting selfishly, each robot i will

5
A 2 Rn⇥n is TUM if det(Q) 2 {−1, 0, 1} for each square sub matrix of order k n.

If A is TUM and b 2 Rn is made up of integers, then the relative ILP problem has integer
solutions.

6We say a price pj is feasible for task j if it is greater than or equal to the broker’s valuation
cj , because otherwise the broker would refuse to sell.

2.3. ECONOMIC GAME 31

elect to buy a task t
i

, where

t
i

2 arg max

j

{h
ij

� p
j

} ,

that is the task for which its profit is maximized. In particular a market is said
to be at equilibrium when prices are such that no two robots select the same
task, and consequently each individual’s profit in this market is maximized. The
profits made by the robots and the brokers form an optimal solution if the dual
of the MRTA problem (see Algorithm 2.6), where

(
u

i

= h
iti � p

ti 8i

v
j

= p
j

� c
j

8j
.

Since in the MRTA problem there are not separate valuations as above, but
only combined utility estimates for robot-task pairs, if we define task valuations
for the robots and brokers as

(
h

ij

= ↵
ij

8i, j

c
j

= 0 8j
,

we make the solution of the corresponding dual problem become

(
u

i

= ↵
iti � p

ti 8i

v
j

= p
j

8j
.

Setting c
j

= 0 implicitly states that the brokers always prefer to sell their tasks,
regardless of how much they are paid, i.e. it is always better to execute a task
than not execute it, regardless of the expected performance.

For solving this economic form of the MRTA problem, a number of algo-
rithms are available, where prices are usually determined by some kind of auc-
tion in which the participants make bids on items of interest. For the purposes
of Algorithm 2.7, ✏ is a positive scalar and a robot i is said to be happy if and
only if it is assigned to a task t

i

for which its profit is ✏-maximized, i.e.

↵
iti � p

ti � max

j

{↵
ij

� p
j

} � ✏.

32 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

Algorithm 2.7 Bertsekas’s Auction

1. Randomly assign tasks to robots and prices to tasks;

2. Randomly select a robot i that is not happy;

3. If no such robot exists END;

4. Find a task t
i

that maximizes profit for robot i;

5. Swap tasks between robot i and the robot that is currently assigned task
t
i

;

6. Increment the price of t
i

by �
i

= v
i

� w
i

+ ✏, where v
i

= max

j

{↵
ij

� p
j

}
and w

i

= max

j 6=ti

{↵
ij

� p
j

};

7. GO to step 2.

This auction algorithm is guaranteed to terminate and it produces an as-
signment for which the overall utility is within n✏ of the optimal utility, but if
the utilities ↵

ij

are integral and if ✏ < 1
n

, then the assignment is also optimal.

2.4 Stable marriage problem
The MRTA problem can also be casted in the stable marriage problem (SMP),
that is the problem of finding a stable matching between two sets of elements
with a given a set of preferences for each element, and solved with a distributed
but computationally complex algorithm. A matching is a mapping from the
elements of one set to the elements of the other set and it is defined as stable
whenever it is not the case that both:

1. Some given element A of the first matched set prefers some given element B
of the second matched set over the element to which A is already matched;

2. B also prefers A over the element to which B is already matched.

In other words, a matching is stable when there does not exist any alternative
pairing (A, B), in which both A and B are individually better off than they
would be with the element to which they are currently matched.

Hence given n men and n women first each person ranks all members of the
opposite sex with a unique number between 1 and n in order of preference, then
the algorithm tries to marry the men and women together. These marriages are
chosen so that there are no two people of opposite sex who would both rather
have each other than their current partners, i.e. the algorithm tries to get stable
marriages.

An instance of SMP, whose solving pseudocode is shown in Algorithm 2.8,
can be cast to an instance of MRTA simply by substituting in the previous

2.5. NETWORK FLOW PROBLEM 33

statement the word man with robot and the word woman to task. This algorithm
guarantees with a O

�
n2

+ 2n + 2

�
complexity that everyone gets married and

that such the marriages are stable, but it was empirically proved that it is not
good in real situations because of the high number of messages that robots have
to exchange each other.

Algorithm 2.8 Stable marriage
1. Initialize all m 2 M and w 2 W to free
2. while 9 free man m who still has a woman w to propose to
3. w = m’s highest ranked such woman who he has not proposed to yet;
4. if w is free (m, w) become engaged;
5. else // some pair (m0, w) already exists
6. if w prefers m to m0

7. (m, w) become engaged;
8. m0 becomes free;
9. else
10. (m0, w) remain engaged;
11. end if
12. end if
13. end while

2.5 Network flow problem
The fastest but centralized way to solve an OAP problem is casting it in a
general network flow problem, a weighted graph with maximum capacities for
the edges is give: the nodes in the graph that can provide a common resource
are called sources, while nodes that require the common resource are called
sinks. In particular, when dealing with a Minimum cost network flow problem,
the given directed graph G = (V, E) is such that:

1. |E| = n;

2. Edges have Nonnegative costs c
e

;

3. Edges have capacities k
e

;

4. Vertexes have demands b
v

so that:

(a) If b
v

< 0, v is a sink ;

(b) If b
v

> 0, v is a source.

Let � (v) and � (v) respectively denote the set of edges entering and leaving each
vertex v 2 V , the problem consists of finding n flows f

e

that minimize
X

e2E

c
e

f
e

,

34 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

subject to conditions
X

e2�(v)

f
e

�
X

e2�(v)

f
e

= b
v

, 8v 2 V

f
e

 k
e

, 8e 2 E

that is, find the cheapest way to satisfy demands, satisfying source and capacity
constraints.

Hence the MRTA problem can be considered as a network flow problem after
constructing a bipartite graph G = (R [T, E), where:

• n = |R| = |T |;

• R is the set of robots;

• T is the set of tasks;

• E is the set of possible robot-task pairs.

The cost c
e

associated with an edge is defined to be the cost estimate of the
underlying robot-task pair and the capacities k

e

for all edges in the graph are
set to 1. Moreover G must be modified, getting G

x

by adding:

1. A source node p with demand b
p

= n;

2. A sink node q with demand b
q

= �n;

3. For each robot r
i

2 R, a zero-cost edge linking p and r
i

;

4. For each task t
i

2 T , a zero-cost edge linking t
i

and q.

Then a solution can be obtained by finding the minimum cost integral flow in
the previous modified graph G

x

, for instance by choosing successive shortest
paths from the source p to the sink q, as in Algorithm 2.9 where:

1. A flow is sent from p to q along the shortest path respecting arc costs;

2. The residual network is updated;

3. Another shortest path is found and the flow is augmented;

4. If the residual network contains a path from p to q, i.e. the flow is not
maximal, GO to step 1.

Since the flow is maximal, it corresponds to a feasible solution of the original
minimum cost flow problem (it can be proved it is also optimal). By imple-
menting this search with Dijkstra’s algorithm for computing shortest paths on

2.6. SCHEDULING PROBLEM 35

Fibonacci heaps7, an n ⇥ n MRTA problem can be solved in time O
�
n2

log n
�
,

which is the fastest known algorithm for the OAP.

Algorithm 2.9 Successive paths
1 Initial flow x is zero
2 while G

x

contains a path from p to q do
3 Find any shortest path P from p to q
4 Augment current flow x along P
5 Update G

x

6 end while

2.6 Scheduling problem
Given a set of machines, a set of jobs to be processed, and a performance
criterion, a schedule of jobs for each machine have to be constructed such that
performance is maximized. A scheduling problem is formally defined by three
variables:

1. The machine environment ↵;

2. The job characteristics �;

3. The optimality criterion �.

Traditionally, a problem’s classification is given by the triple:

↵ | � | �,

where a machine environment ↵ determines how many machines are available,
which jobs each machine can process and how fast each machine can be expected
to process a given job. It will generally be:

1. P if indicates an arbitrary number of identical parallel machines that all
process each job at the same rate;

2. R if indicates an arbitrary number of unrelated parallel machines that
potentially process each job at a different rate.

Moreover the job characteristics � determine what relationships and constraints
exist between the jobs. It will generally be empty, to indicate that the individual
jobs are not related to or dependent upon each other. Finally the optimality

7A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is,
the key of a child is always greater than or equal to the key of the parent. This implies that
the minimum key is always at the root of one of the trees. Compared with binomial heaps,
the structure of a Fibonacci heap is more flexible. The trees do not have a prescribed shape
and in the extreme case the heap can have every element in a separate tree. In particular,
degrees of nodes (here degree means the number of children) are kept quite low: every node
has degree at most O(log n) and the size of a subtree rooted in a node of degree k is at least
Fk+2, where Fk is the kth Fibonacci number.

36 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

criterion � determines the goal of the scheduling problem and is usually some
aspect of the time taken to process the jobs, such as finishing time or lateness.
It will generally be:

1. C
max

if indicates that the aim is to minimize the maximum time taken to
complete any job;

2.
P
j

C
j

if indicates that the aim is to minimize the sum of processing times

over all jobs;

3.
P
j

w
j

C
j

if indicates that the aim is to minimize the weighted sum of pro-

cessing times over all jobs.

The MRTA problem is in the class of scheduling problems described by

R||
X

j

w
j

C
j

,

i.e. the system is composed of unrelated parallel machines and the overall perfor-
mance is computed as a weighted sum of the processing times for the individual
tasks, where the processing time C

j

is defined as K
ij

, the cost expected from
the execution of task j by the robot i to which j is assigned.

Even if such problem is known to be strongly NP-hard, it can be simplified
by making two domain-specific observations.

1. Since MRTA is a degenerate scheduling problem, whereas in scheduling
one must assign tasks to machines over time, only a single time-slot is
considered;

2. The task weights can be directly incorporated into the cost estimates if
we make the reasonable assumption that the task weights are known to
the robots and can be used in cost estimation.

Hence given a cost estimate K
ij

for robot i and task j and a scalar task weight
w

j

, a new weighted cost estimate K
0

ij

can be defined, where

K
0

ij

= w
j

K
ij

,

making the problem become

R||
X

j

C
j

which takes O
�
n4
�

time to be solved with Bruno, Coffman and Sethi’s job
scheduling algorithm [26].

2.7. COALITION FORMATION PROBLEM 37

2.7 Coalition formation problem
The MRTA problem can take a more complex and composite form which goes
beyond the task allocation treated so far, i.e. the coalition formation problem
[11], we see fit to be described in this chapter. In detail in a coalition formation
problem a set of robots have to cooperate to accomplish a set of tasks (or roles),
with the constraints that each robot can execute one task at time and robots
can form coalitions to cooperate on specific tasks. Thus the overall performance
of the formation can be better than the single performances of robots and the
quality of the execution of a specific task depends both on the individual ca-
pabilities that each robot has for that task and on how the capabilities can be
combined together.

More precisely, the problem can is composed of two sets:

1. The set of robotic agents R = {R1, . . . Rn

};

2. The set of tasks (or roles) T = {t1, . . . tm}.

Each robotic agent R
i

has capabilities to perform each task which are repre-
sented by a vector S

i

=

⌦
s1

i

, . . . sm

i

↵
, where sj

i

2 R is the level of performance
that R

i

an achieve when allocated to role t
j

. Moreover each task t
j

has a desired
achievement level l

j

2 R that needs to be reached by the agents accomplishing
the task. The level of achievement of a task represents an objective of the whole
system and will therefore be called the system objective, while each of the sj

i

can then be interpreted as the level of satisfaction that the agent will obtain if
it is allocated to the task or self evaluation of the agent (it is an estimation that
each agents computes of its capability to perform a task).

A coalition C is a set of agents, in particular C
j

is the coalition of agents
assigned to task t

j

and the set C = {C1, . . . Cm

} is a partition of R and rep-
resents the set of coalitions assigned to all tasks, hence we define F (C, t

i

) as
the amount of work that agents in coalition C can perform task t

i

when the
coalition works on task t

i

. Then if we define V
i

(C) = v
i

2 R+ as the utility
that the system can gain when a coalition successfully accomplishes a task t

i

i.e. the aggregation of the individual agents’ self evaluations which indicates
the total level of satisfaction that the agents inside the coalition have for task
t
i

, called agent satisfaction, the objective of this approach is then

arg max

C

mX

i=1

V
i

(C
i

) .

However coalition formation is usually a one-shot problem where coalitions val-
ues are known in advance, and once coalitions are formed and allocated to tasks,
robots will simply carry on with their tasks. Indeed in the Middle Size League
RoboCup domain robots have to deal with a more complex setting, because they
have opponents which can change the situation very rapidly: the self evaluation
that each robotic agent computes for each task will change over time as well
as the value of coalitions, the priorities of tasks and the system objectives and
some hardware problems can occur:

38 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

1. Robots may have wrong estimation of their self evaluation;

2. Robots might fail unexpectedly;

3. Messages communicated among robots might be lost, leading the team to
have temporarily misaligned knowledge about the current situation.

Hereafter Algorithm 2.10 shows the pseudocode which represents a cooperative
control method to address the described problem, whose handling follows the
basic idea in which robots first evaluate and share the self evaluation for the
roles that the robots can perform, then they compute the best allocation of
coalitions to tasks deciding which roles should be executed. In particular such
process is iterated over time in order to react from;

1. The environment dynamism;

2. The changes in task priorities;

3. Robot failures or malfunctioning.

In fact the algorithm is run at a predefined execution rate, which is specified
according to the application domain, and at each execution all information re-
quired to run the algorithm is acquired by the robots through sensor perception
or through communication. The assumptions underlying this method are the
following:

1. Robots are able to compute their self evaluation for each role depending
on their current state and the state of the environment;

2. Each robot can estimate the self evaluation for each role and each of their
teammates;

3. The system objective is known to all robots;

4. Tasks to be allocated have priorities (task t
i

has higher priority than t
i+1)

which are known to the whole team.

Given the above assumptions, the cooperative control method includes three
main steps:

1. Each robot computes the Self Evaluation value for each task;

2. Robots broadcast the computed Self Evaluation value, for each task, to
all team members;

3. Using a greedy approach each robot computes the coalitions to allocate to
each task based on the information received by teammates.

2.7. COALITION FORMATION PROBLEM 39

Algorithm 2.10 Agent Satisfaction task assignment
1. Input: Tasks, Agents, SystemObjectives, SelfEvaluations
2. Output: TaskToExecute
3. SortedTasks Sort Tasks given priority
4. while SortedTasks 6= ; do
5. Task Pop(SortedTasks)
6. SortedAgents Sort Agents given Self Evaluation for Task
7. AgentSatisfaction 0

8. AssignedAgents(Task) ;
9. while AgentSatisfaction < SystemObjectives(Task) ^ SortedAgents 6= ; do
10. AssignedAgents(Task) AssignedAgents(Task) [Pop(SortedAgents)
11. AgentSatisfaction Aggregate(AssignedAgents(Task))
12. end while
13. if AgentSatisfaction < SystemObjectives(Task) then
14. AssignedAgents(Task) ;
15. else
16. Agents Agents \ AssignedAgents(Task)
17. end if
18. if mySelf 2 AssignedAgents(Task) then
19. TaskToExecute Task
20. return TaskToExecute
21. end if
22. end while
23. return NoTask

In detail the proposed algorithm taking as inputs the tasks to be executed, the
available agents (including the one executing the algorithm) and the desired
achievement level for each task, returns as output the task which should be
executed by the agent running the algorithm. Basically, it sorts the tasks ac-
cording to their priority (line 3), and then for each task computes the best agent
coalition for that task. The algorithm sorts agents according to their ability to
fulfill the task (line 6), and then incrementally builds a set of assigned agents for
that task: at each iteration it checks whether the achievement level of the task
has been reached (line 9), by computing the current agent satisfaction, through
the evaluation of the Aggregate function which sums the achievement values of
the agents and computes the achievement level of the coalition. Hence the inner
while loop terminates if one of these cases occurs:

1. The algorithm found a set of agents that satisfies the achievement level of
the task;

2. Task is not achievable with the current available agents.

In the latter case the algorithm makes the set of assigned agents be empty (line
14), while in the former case it removes the assigned agents from the set of
available agents (line 16). Before proceeding for the second task, each agent
checks the set of the agent assigned to the current task:

1. If it belongs to this set, it terminates the algorithm execution and returns
the task to execute;

40 CHAPTER 2. OPTIMAL ASSIGNMENT PROBLEM

2. Otherwise, it proceeds considering the following task.

However, in the case the agent is never assigned a special value, NoTask is
returned (line 23).

Notice that the algorithm always terminates, because at each iteration of
the inner while loop one agent is removed from the SortedAgents list, and in
the while condition at line 9 the algorithm checks whether the SortedAgents list
is empty. Therefore, at most the algorithm repeats the statements inside the
while loop until all agents have been included in the coalition (similar reasoning
holds for the outer while loop over tasks). Moreover, since allocated agents are
removed from the list of available agents (line 16), agents allocated to one task
will never be considered for another task, and thus we will never have an agent
being part of two different coalitions. Finally, recalling that all agents have the
same input data, because the set of tasks and the desired achievement levels are
known a priori and agents communicate their Self Evaluation for each task, by
executing the same algorithm the allocation to tasks will converge to a common
solution.

Chapter 3

Implicit coordination

3.1 Task allocation strategies
It is well-known that the general problem of dynamically allocating tasks in a
group of multiple robots satisfying multiple goals is yet unsolved. However, if
this problem is viewed as an instance of dynamic task allocation under uncer-
tainty, individualistic strategies [15], which do not involve explicit coordination
and negotiation among the robots, can produce cooperative behaviors without
explicit coordination, without guaranteeing optimality.

A framework, which is a general formulation for the MRS coordination prob-
lem, can be obtained exploiting the following decomposition of the task alloca-
tion problem:

1. Each robot bids on a task based on its perceived fitness to perform the
task;

2. An auctioning mechanism decides which robot gets the task;

3. The winning robot’s controller performs one or more actions to execute
the task.

In this formulation, first a bidding function determines each robot abilities to
perform each task according to robot states, next a task allocation mechanism
determines which robot should perform a particular task examining their bids.
Finally, considering their current task engagements, the robot controllers deter-
mine appropriate actions for each robot. This partitioning is shown in Figure
3.1 serves the purposes of reducing:

• The dimensionality of the coordination problem;

• The amount required for inter-robot communication.

In fact instead of mapping
S|R| ! A|R|,

41

42 CHAPTER 3. IMPLICIT COORDINATION

where S is the state space of a robot, |R| is the number of robots, and A is the
set of robot available actions, the function becomes

B|R||T | ! T |R|,

i.e. a map from robot bids B for tasks T to a task assignment for each robot.
Moreover the considered systems are Markovian, that is for a given robot R

i

,
the task allocation function:

1. Receives as inputs:

(a) R
i

’s current task assignment;
(b) Every other robot’s current bid on each task;

2. Produces as output R
i

’s new assignment.
Multi-Robot Task Allocation 257

?FitnessRobot state Engagement Action

FitnessRobot state

FitnessRobot state

Engagement Action

Engagement Action

E
nvironm

ent

Task allocation

Actions affect the environment

Sensing Bidding

TS B
|T|

E A

|T||R| |R|
(B T)

Control

Figure 1. Reducing dimensionality of multi-robot coordination.

is used to assign tasks to robots. In Werger’s BLE ap-
proach (Werger and Matarić, 2000), a local eligibility
mechanism is used as the robots’ perceived ability to
perform a task, i.e., its fitness, and the best robot (com-
puted through a port-based max function) “wins” at
each time-step. Continued work by Gerkey and Matarić
(2002a), on which this formulation is based, applies and
validates this decomposition in different task domains.

3. Four Task Allocation Strategies

The dynamic task allocation problem, i.e., the mapping
from bids to tasks, can be performed in numerous ways.
We limit our discussion here to Markovian systems,
where the task allocation mapping for a given robot is
based on the mapping between that robot’s current task
assignments and every other robot’s current bid on each
task, to the given robot’s new task assignment, as shown
in Fig. 2. The problem, then, is: given each robot’s bid
on each task and each robot’s current task engagement,
what should each robot’s new task assignment be ?

We focused on exploring the effects of two
key aspects of distributed control, commitment and
coordination, have on performance. Given the large
space of possibilities, we considered only the extreme
cases of each: no commitment and full commitment,
and no coordination and full coordination. The com-
bination of these extremes resulted in four task allo-
cation strategies (see Fig. 3). Along the commitment
axis, a fully committed strategy meant a robot would
complete its assigned task before considering any new
engagements, while a fully opportunistic strategy al-
lowed a robot to drop an ongoing engagement at any
time in favor of a new one. Along the coordination axis,

Figure 2. An example task allocation scenario.

Figure 3. The four task allocation strategies considered are set up
as combinations of two variables, the amount of commitment, and
the amount of coordination.

the uncoordinated (individualistic) strategy meant each
robot performed based on its local information, while
a coordinated strategy simply implemented mutual ex-
clusion, so only one robot could be assigned to a task,
and no redundancies were allowed. We note that this
notion of “coordination” is simple, and not intended to
represent explicit cooperation and coordination strate-
gies being explored in other work. Our tasks were struc-
tured so that one robot was sufficient for completion of
an individual task assignment. Thus, mutual exclusion
was the simplest yet effective form of coordination.
Figure 2 shows the table that results from listing each
robot’s current engagement and each robot’s current
bid on each task.

As an example, the fully committed mutually ex-
clusive strategy, one of the four described above, is as
follows:

Figure 3.1: Dimensions reducing

However the overall mapping here is treated as a global and centralized process
because the focus is on what the task allocation function should be, rather than
on how it should be distributed. Indeed we get four task allocation strategies
(see Table 3.1) by exploring the effects on performance of two key aspects of
distributed control, commitment and coordination in their extreme cases:

1. No commitment and full commitment;

2. No coordination and full coordination.

Strategies Coordination
Individualistic Mutual exclusion

Commitment Committed Strategy 1 Strategy 2
Opportunistic Strategy 3 Strategy 4

Table 3.1: Task allocation strategies

3.1. TASK ALLOCATION STRATEGIES 43

Along the commitment axis, in a fully committed strategy a robot completes
its assigned task before considering any new engagements, while a fully oppor-
tunistic strategy allows robots to drop their ongoing engagements, at any time,
in favor of new ones. On the other hand, along the coordination axis, the indi-
vidualistic strategy makes a robot perform considering only its local information,
while in a mutual exclusion strategy only one robot can be assigned to a task
and no redundancies were allowed.

This concept of coordination is very simple and is not intended to represent
explicit cooperation and coordination strategies: tested tasks are structured so
that one robot is sufficient for completion of an individual task assignment, so
that mutual exclusion can be the simplest yet effective form of coordination.
Suppose to fill a table that results from listing each robot’s current engagement
and each robot’s current bid on each task, hence Algorithm 3.1 shows a fully
committed mutually exclusive strategy, where in case of individualistic (unco-
ordinated) strategies, the same steps are run on a separate table for each robot,
while in the opportunistic (uncommitted) case, step 1 is skipped.

Algorithm 3.1 Committed mutually exclusive strategy

1 I f a robot i s cu r r en t l y engaged in a task and i t s bid on that task
i s g r e a t e r than zero :

2 (a) Remove the row and column o f the bid from the tab l e ;
3 (b) Set the robot ’ s new assignment to i t s cur r ent one ;
4 Find the h i ghe s t bid in the remaining tab l e .
5 Assign the cor re spond ing robot to the cor re spond ing task .
6 Remove the row and column o f the bid from the tab l e .
7 Repeat from step 2 until the re are no more b ids .

3.1.1 Alarm handling problem

In order to study and compare the task allocation strategies described above, a
task domain can be used in simulations: this is the case of the emergency han-
dling problem, in which robots roam around a planar environment and alarms
occur at unpredictable times and in unpredictable locations. The task of the
robot team is to detect alarms and fix problems they indicates, but there are
the following costs:

1. A variable time-cost associated with traveling to an alarm, depending on:

(a) The speed of the robot;
(b) The distance from the alarm to the robot.

2. A fixed time-cost for fixing the alarm.

In the implementation represented by Figure 3.2, the situation is restricted to
the case where any robot can fix any alarm. In this 10 ⇥ 10 grid three new
alarms appeared every twelve time-steps at random positions, so that robots
bid on them depending on their distance to those alarms, i.e. 20−d, where d is

44 CHAPTER 3. IMPLICIT COORDINATION

the Manhattan distance1 to the alarm. At each time-step, any robot assigned
to a particular alarm moves toward that alarm and when it arrives, because the
fixed time-cost is 0, that alarm is instantly put out.258 Matarić, Sukhatme and Østergaard

1. If a robot is currently engaged in a task, and its bid
on that task is greater than zero, remove the row and
column of the bid from the table, and set the robot’s
new assignment to its current one.

2. Find the highest bid in the remaining table. Assign
the corresponding robot to the corresponding task.
Remove the row and column of the bid from the
table.

3. Repeat from step 2 until there are no more bids.

In case of individualistic (uncoordinated) strategies,
the same algorithm is run on a separate table for each
robot. In the opportunistic (uncommitted) case, step 1
above is skipped.

4. Experimental Validation

4.1. The Task

In order to study and compare the task allocation strate-
gies described above, we devised a task domain that can
be used in simulation and in an indoor building setting,
and is also relevant to real-world problems, including
those found in space exploration.

We used emergency handling (Østergaard et al.,
2001) as our problem task domain for evaluation. In
it, robots roam around a planar environment, in which
alarms occur at unpredictable times and in unpre-
dictable locations. The task of the robot team is to detect
alarms and “fix problems” indicated by those alarms.
There is a variable time-cost associated with traveling
to an alarm, depending on the robot’s speed and the dis-
tance to the alarm. There is also a fixed time-cost for
fixing the alarm. In the implementation presented here,
we restricted ourselves to the case where any robot can
fix any alarm.

This task domain can be generalized to a variety of
real-world multi-robot scenarios. For example, alarms
can correspond to new incoming goals (e.g., “get that
rock”), as well as to failures or cries for help by one or
more members of the robot team.

4.2. Grid World Experimental Setup

We implemented a simplified version of the above-
described multi-robot emergency handling task in a
grid world, as illustrated in Fig. 4, in order to con-
duct large numbers of experiments that are practically
impossible with physical robots.

As the base case of the grid world implementation,
we considered a 10×10 grid inhabited by 10 “robots”.

Figure 4. An example 10×10 grid world with four robots and three
active alarms.

Robots bid on alarms depending on their distance to
those alarms. The bid was set to 20 − d, where d is
the Manhattan distance to the alarm. In each time-step,
any robot assigned to a particular alarm moved toward
that alarm. When a robot arrived at an alarm, that alarm
was instantly put out (i.e., the fixed time-cost was 0).
Three new alarms appeared every twelve time-steps at
random positions on the grid.

4.3. Physical Experimental Setup

We also implemented the multi-robot emergency han-
dling task in a physical multi-robot testbed, in an indoor
office building setting. In our experiments with mo-
bile robots, we used ActivMedia Pioneer 2 DX mobile
robots, equipped with 233 MHz Linux PCs, SICK laser
range finders, cameras, wireless Ethernet, speakers, and
microphones, as shown in Fig. 5. The microphones
were made directional by placing them at the bottom
of two Styrofoam cups. All control of the robots was
done through Player (Gerkey et al., 2001), a server and
protocol that connects robots, sensors, and control pro-
grams through a standard TCP socket. Player was de-
veloped jointly at the USC Robotics Research Lab and
HRL Labs and is freely available under the GNU Public
License from http://playerstage.sourceforge.net.

In the physical experiments, alarms were speak-
ers placed in the environment (Fig. 6), marked with

Figure 3.2: World grid representation

3.2 Belief communication
Another approach centered on implicit coordination is here applied to a typical
coordination task from heterogenous robotic soccers, that is regaining ball pos-
session [13]. Acquiring ball possession is a goal for the team as a whole, but all
robots must agree upon which of the field robots will approach the ball. In order
to infer the intentions of others, they first learn utility prediction models from
observed experience: for the ball approach task, the utility measure is time, so
the robots first locally learn to predict how long all robots will take to approach
the ball, then they globally coordinate.

In a computational model for implicit coordination three components are
necessary:

1. Utility prediction models;

2. Knowledge of the states of others;

1The Manhattan distance is a form of geometry in which the usual distance function or
metric of Euclidean geometry is replaced by a new metric where the distance between two
points is the sum of the absolute differences of their coordinates.

3.2. BELIEF COMMUNICATION 45

3. Shared performance model.

The utility prediction model makes all robots able to predict their own ball
approach time, as well as that of the others. For instance, navigating to ran-
dom targets on the field, robots can measure the time they took to approach
them, and with these instances a model tree2 is first trained, then by recursively
partition the data, they fit them to linear.

However, predicting utilities for others can only be done if the robots have an
estimation of the other robot’s state, because, usually due to the vision system,
it is often not possible to see all the teammates. Hence the task of the second
component is making robots communicate their belief states3 to each other to
achieve more coherent and complete beliefs about the world, which are then
used to determine their joint actions.

The last component is a locker-room agreement that only the quickest robot
approaching the ball can enter, in tother words It is a flexible teamwork structure
with inter-agent communication protocols which is accessible only to internal
behaviors.

Now consider these three experiments used to evaluate learn prediction mod-
els and shared representations:

1. A dynamic environment experiment;

2. A static environment experiment;

3. A simulated experiment.

In the dynamic environment 2 robots continuously navigate to random targets
on the field, for about half an hour, but the paths are generated such that
interference between the robots was excluded. Each robot, 10 times per second,
records:

1. Its own position and orientation;

2. The position an orientation of its teammate;

3. The position of the ball;

4. The predicted approach time for both robots.

Based on the above times, they choose which robot should approach the ball,
even if they never actually approach it.

In the previous experiment, it is impossible to measure if the temporal pre-
dictions are actually correct, and if potential inaccuracies cause incorrect esti-
mations. Therefore in the second experiment both robots navigate to different
random positions and wait there, but the target to approach is fixed and the
same for both robots and they are requested to record:

2Model trees are functions that map continuos or nominal features to a continuos value.
3This might seem contrary to a communication-free paradigm, but there is an important

difference between communicating intentions and beliefs.

46 CHAPTER 3. IMPLICIT COORDINATION

1. Their own state;

2. The state of their team mate;

3. The predicted approach times;

4. The actual approach duration to the goal position.

The log-files so acquired are almost identical to the ones in the dynamic exper-
iment, with the difference they also contain the actual observed time for the
robot. This static environment is less realistic, but allows comparisons between
the predicted time with the actually measured time for each robot.

Regarding the simulated experiment, the set-up is identical to the dynamic
one and the simulator allows to vary two variables that most strongly influence
the success of implicit coordination: the communication quality and the field
of view, which respectively vary from 100% (perfect communication) to 0%
(no communication) and between 0 (blind) and 360 (omni-directional vision)
degrees.The other robot and the ball are only perceived when they are in the
field of view. Gaussian noise with a standard deviation of 9, 22 and 25 cm is
added to the robot’s estimates of the position of itself, the teammate and the
ball respectively, which correspond to the errors observed on the real robots.

3.2.1 Experiments results

In the 96% of the dynamic experiments, robots agreed on which robot should
approach the ball, while in the static experiment the chosen robot is actually the
quickest one to approach the ball the 92% of the time. Moreover experiments,
using only distance as a rough estimate of the approach time, although time is
certainly strongly correlated with distance, led to significantly more incorrect
coordinations: agreement is still very good (95%), but the robot that is really
the quickest is chosen only 68% of the time.

The results of the simulation experiment depends on the quality of commu-
nication and the field of view (see Figure 3.3), where communication quality
is the percentage of packets that arrive, and field of view is in degrees. The
z-axis depicts coordination success, which is the percentage that only one robot
intended to approach the ball.

3.3. IMPLICIT COORDINATION IN ROBOCUP 47

the robots are still very sure about who should approach it, but they are also

wrong about it much more often.

When does implicit coordination fail? In the dynamic experiment, coordina-

tion succeeds 96% of the time. In the log-file, we labeled all examples in which

exactly one robot decided to approach the ball with ‘Success’, and others with

‘Fail’. A decision tree was then trained to predict this value. The learned tree

is represented graphically in Figure 1. The main rule is that if the di�erence in

predicted times between two robots is small, coordination is likely to fail, and if

it is large, it is likely to succeed. This is intuitive, because if the di�erence be-

tween the times is large, it is less likely that estimation errors will invert which

time is the smallest. Note that in between these two limits, there is a ‘gray’ area,

in which some other rules were learned. They only accounted for a small number

of example, so for clarity, we will not discuss them here.

In sports like soccer or volleyball, it is

Difference of predicted times (s)

Success
0.48 1.480

Fail

Fig. 1. Visualization of the de-

cision tree that predicts coordi-

nation failure

sometimes not completely clear who should

go for the ball. Humans solve this problem

by communicating their intention through an

exclamation:“Mine!”, or “Leave it!”. The de-

cision tree essentially provides the robots with

similar awareness, as they predict when im-

plicit coordination failure is likely. So, they

could be used for instance to determine when

robots should resort to explicit coordination.

How do communication quality and state estimation accuracy influence co-
ordination? The results of the simulation experiment, which show how the per-

formance of di�erent coordination strategies depends on the quality of commu-

nication and the field of view, are depicted in Figure 2. Communication quality

is the percentage of packets that arrive, and field of view is in degrees. The z-

axis depicts coordination success, which is the percentage that only one robot

intended to approach the ball.

0
100

200
300

0

50

100
0

50

100

0
100

200
300

0

50

100
0

50

100

0
100

200
300

0

50

100
0

50

100

(intention communication)
Explicit Coordination

(no communication)
Implicit Coordination

(belief communication)
Implicit Coordination

C
oo

rd
in

at
io

n

Communication Field of viewquality

Fig. 2. Results of the simulation experiment, which show how the performance of

coordination strategies depends on the quality of communication and the field of view.

Figure 3.3: Simulation experiments

Since explicit coordination is based completely on communication, it is not
surprising that it perfectly correlates with the quality of the communication,
but is independent of the size of the field of view.

For implicit coordination without communication there is a correlation with
the field of view, indeed if a robot is able to estimate the states of others better,
it is able to coordinate better.

The third graph shows implicit coordination with belief state exchange, in
which:

1. If the robot has another one in its field of view, it determines the other’s
state through state estimation;

2. Otherwise it uses communication (if possible) to exchange beliefs.

These states are then used to predict the utilities of others, independent if
they were perceived or communicated, where the graph clearly shows that this
approach combines the benefits of both.

3.3 Implicit coordination in RoboCup
CAMBADA is the RoboCup MSL soccer team of the University of Aveiro, Por-
tugal. After the development of the team, started in 2003, it has participated
in several national and international competitions, including RoboCup world
championships, achieving excellent results in the mandatory technical challenge
of the RoboCup MSL, e.g. the 1st place in 2009.

For instance Figure 3.4 shows their 2008 RoboCup MSL team whose robots
basically follow a biomorphic paradigm. A robot is centered on a main pro-
cessing unit, e.g. a laptop, which is responsible for the high-level behavior
coordination, called the coordination layer. This processing unit:

1. Handles external communication with other robots;

2. Has a vision system directly attached;

3. Receives a low bandwidth sensing information;

48 CHAPTER 3. IMPLICIT COORDINATION

4. Sends actuating commands to control the robot attitude by means of a
distributed low-level system.

Figure 3.4: CAMBADA robots

Deliberation considerably relies on the concepts of role and behavior. Indeed
at each time step the robots can take one the roles of Table 3.2, which actives
some of these behaviors:

1. bMove that may activate the functions relative to:

(a) Obstacles avoiding;

(b) Ball avoiding;

2. bMoveToAbs that allows the movement of the player to an absolute posi-
tion in the game field;

3. bPassiveInter, which first moves the player to the closest point in the ball
trajectory, and waits there for the ball;

4. bDribble is used to dribble the ball towards a given relative player direc-
tion;

5. bCatchBall makes a robot receive a pass;

6. bKick that kicks the ball accurately to a position, either for shooting to
goal or passing to a teammate;

7. bGoalieDefend is the main behavior of the goalie.

3.3. IMPLICIT COORDINATION IN ROBOCUP 49

Kind Roles
Positioning RoleGoalie, RoleSupporter, RoleStricker

Passing RolePasser, RoleReceiver
Free kicking RoleToucher, RoleReplacer

Barrier RoleBarrier

Table 3.2: CAMBADA roles

However also information sharing and integration are some of the key aspects
in multi-robot teams, because sharing perceptional information in a team can
improve the accuracy of world models and team coordination. Here the system
uses an implicit coordination model based on notions like strategic positioning,
role and formation, i.e. Each robot uses the information shared by the other
robots to improve its knowledge about the current positions and velocities of
the other robots and the ball.

3.3.1 Role assignment

The algorithm for role assignment is based on the absolute positions of the
ball, the robot and its teammates, whose positions are not obtained through
the vision system, but from the communicated information. Multi-robot ball
position integration is used to:

1. Maintain an updated estimation of the ball position, when the vision sub-
system cannot detect the ball;

2. Validate robot’s own ball position estimation, when the vision subsystem
detects a ball.

In other words as shown in Algorithm 3.2, when the robot does not see the ball,
it analyzes the ball information of playing teammates.

Algorithm 3.2 CAMBADA ball detecting

1 Ca l cu la te the mean and standard dev i a t i on o f the b a l l
p o s i t i o n s ;

2 Discard the va lue s cons ide r ed as o u t l i e r s o f b a l l
p o s i t i o n ;

3 Use the b a l l in fo rmat ion o f the teammate that has a
sho r t e r d i s t ance to the b a l l .

Moreover robots use a similar algorithm to determine if the robot sees a
fake ball validating the robot’s own perception. Communication is also used
to convey the coordination status of each robot allowing robots to detect un-
coordinated behavior and to correct this situation reinforcing the reliability of
coordination algorithms.

50 CHAPTER 3. IMPLICIT COORDINATION

Regarding implemented formations, they are sets of strategic positionings,
that are movement models for a specific player, and are identified by three
elements:

1. Home position, which is the target position of the player, when the ball is
at the center of the field;

2. Region of the field, where the player can move;

3. Ball attraction parameters, used to compute the target position of the
player in each moment using on the current ball position.

For instance, different home positions and attraction parameters allow a simple
definition of defensive, wing, midfielder and attack strategic movement models.

The algorithms used for role and positioning assignment are based on consid-
ering different priorities for roles and positionings, so that the most important
ones are always covered. Moreover these algorithms are separated and run at
different rates: the former, based on its current world model, is decided locally
by each robot, every cycle (40 ms), while the latter is decided by the coach and
communicated to the robots every second.

The positioning assignment algorithm decides the place in the formation
that each robot should occupy. Considering a formation with N positionings
and a team of K N players (not counting the goalkeeper which has a fixed
role) and N target positions (TP), Algorithm 3.3 take as inputs:

1. POS, an array of N positionings;

2. BallPos, the ball position;

3. PL, an array of K active players.

Then It returns as output the array of players PL. In depth, the algorithm
consists of these main steps:

1. Calculate the distances of each of the robots to each of the target positions;

2. Assign the closest robot to the highest priority strategic positioning, which
is in turn the closest to the ball;

3. Until all active robots have positionings assigned, from the remaining K �
1 robots, assign the defensive positioning to the robot closest to that
location.

In such away the robot assigned to the highest priority positioning will in most
cases be locally assigned to RoleStriker: it do not move to that positioning
and assures the stability of the assignment by placing itself close to the ball.
Therefore after the RoleStriker role first defensive positionings are assigned,
which are followed by the other supporter positionings.

3.3. IMPLICIT COORDINATION IN ROBOCUP 51

Algorithm 3.3 CAMBADA positioning assignment

1 begin
2 clearAssignments (PL) ;
3 TP = calcTargetPositions (POS, Bal lPos) ;
4 for each POS[i] in descending order o f p r i o r i t y
5 i f the re i s no f r e e p laye r then return
6 p = the f r e e p laye r c l o s e s t to TP[i] ;
7 PL[p] . p o s i t i o n i n g = i ;
8 PL[p] . t a r g e tPo s i t i o n = TP[i] ;
9 end for

10 end

Passing is one of the most important coordinated behavior involving two
players, in which one kicks the ball towards the other, so that the other can
continue with the ball. Until now, MSL teams have shown limited success in
implementing and demonstrating passes.

In CAMBADA the player running RoleStriker may decide to switch to
RolePasser, choosing the player to receive the ball, which in turn takes on the
RoleReceiver. As described in Table 3.3, robots start from their own side of the
field and, after each pass, the passer moves forward in the field, then becoming
the receiver of the next pass (see Figure 3.5).

The coordination between passer and receiver is based on passing flags, one
for each player, which can take the following values: ready, tryingToPass and
ballPassed.

RolePasser RoleReceiver
PassFlag TRYING_TO_PASS

Align to receiver Align to Passer
PassFlag READY

Kick the ball
PassFlag BALL_PASSED

Move to next position Catch ball

Table 3.3: CAMBADA coordinated action in pass

52 CHAPTER 3. IMPLICIT COORDINATION

Figure 3.5: Sequence of passes

Other coordinated procedures regards the set plays4. In a toucher–replacer
procedure (see Algorithm 3.4) the purpose of RoleToucher is to touch the ball
and leave it to the RoleReplacer : the replacer handles the ball only after it has
been touched by the toucher, allowing the replacer to score a direct goal if the
opportunity arises.

Algorithm 3.4 CAMBADA corner kicks replacer role

1 begin
2 i f I have the b a l l then shoot to opponent goa l ;
3 else i f Bal l c l o s e to me then move to Ba l l ;
4 else i f Toucher a l r eady passed Ba l l then catch Bal l ;
5 else wait that Ba l l i s passed ;
6 end

Another toucher–replacer procedure is used in the case of throw-in, goal kick
and free kick set plays. In this situations, the toucher:

1. Approaches the ball;

2. Touches the ball pushing it towards the replacer until the ball is engaged
by the replacer;

3. Withdraws leaving the ball to the replacer.

On the contrary, the replacer:

1. Moves towards the ball;

2. Grabs the ball;

3. Waits that the toucher moves away;
4Set plays are situations when the ball is introduced in open play after a stoppage, such

as kick-off, throw-in, corner kick, free kick and goal kick.

3.3. IMPLICIT COORDINATION IN ROBOCUP 53

4. Shoots to the opponent goal.

On the other hand in the case of opposer’s set pieces, RoleBarrier is used to
protect the goal from a direct shoot (see Figure 3.6). The line connecting the
ball to the own goal defines the barrier positions:

1. One player places itself on this line, as close to the ball as it is allowed;

2. Two players place themselves near the penalty area;

3. One player is placed near the ball, 45 degrees from the mentioned line;

4. One player positions itself in such a way that it can oppose to the pro-
gression of the ball through the closest side of the field.

Figure 3.6: Placement of RoleBarrier players

54 CHAPTER 3. IMPLICIT COORDINATION

Chapter 4

Heterogeneous architectures

4.1 Schema-based framework
Recalling that a behavior-based approach assumes a robot to be situated within
its environment, and that a robot interacts with the world on its own, without
any human intervention, thus its perspective is different from the observer’s.
Moreover, since robots are not merely information processing systems, their
embodiments require that both all acquired information and all delivered effector
commands must be transmitted through their physical structure.

Here given primitive behaviors are implemented with one motor schema1,
representing the physical activity, and one perceptual schema which includes
sensing. The resulting architecture, whose reactive/deliberative trade-off stems
from its hierarchical organization of its behaviors, is hybrid [7]: each behavior
is implemented at some level, i.e. k, and can use perceptual schemas coming
from the underlying k � 1 level, eventually triggering one selected behavior at
that level. The overall architecture is organized at 7 levels of abstraction shown
in Figure 4.1 and here itemized from the lowest to the highest one:

• Perception;

• Reactive;

• Implicit coordination;

• Individual goal triggering ;

• Dynamic role assignment ;

• Deliberative;

• Learning.
1According to schema-based theories, a schema is a generic template for doing some activity

which is parametrized, that is a schema composed of the basic units of behavior to construct
basic actions.

55

56 CHAPTER 4. HETEROGENEOUS ARCHITECTURES
4

reactive level

implicit coordination

individual goal triggering

dynamic role assignment

perceptron

deliberative level

learning

0

1

2

3
4

5

6

level

Fig. 2. The hierarchical levels of control for each individual robot, that
represent the different levels of abstraction.

motor schemas accessing directly robot effectors. On top of
these, we can build two primitive behaviors like playDefensive
and chaseBall by simply appending a perceptual schema to
a motor schema, as explained by the following behavior
constructing rules:

The perceptual schemas seeBall and haveBall, also imple-
mented in C++, allow to access virtual sensor devices like
senseBall and touchBall which are fed by robot physical
sensors. At any level, the primitive control component is a
behavior with combines perceptual and motor schemas. A
behavior is fired by an activation-inhibition mechanism built
on evaluating-condition patterns. Thus, a primitive behavior
at reactive level results in appending just one perceptual
schema to one motor schema in order to get the sensorimotor
coordination that the individual robot is equipped with. The
reactive level uses only information coming from sensors
and feeds motors with the appropriate commands. Compound
behaviors appear only at higher levels, where they receive
more abstract information about the environment, filtered by
lower behavior functioning.
As suggested by Fig. 2, the control of each robot has been

organized into different layers, each of which represents a
different level of abstraction such that an upper level results in
a more abstract handling of the environment. So, the implicit
coordination layer assumes that perceptual patterns represent
events generated by other individuals, either opponents or
teammates. Moreover, the corresponding schemas can control
the underlying reactive behaviors but, at the same time, they
are also triggered by the individual goals every robot should
pursue. The higher layers refer to the cooperation capabilities
that any robot could exhibit with its teammate while a coop-
erative behavior emerges. This is described in Section IV.

III. SINGLE SENSOR OBSERVATION
Every robot of the team is fitted with a catadioptric omni-

directional vision system [19]. Every omnidirectional sensor
mounts a mirror with a different profile, especially tailored
for the task of the robot [25], Fig. 4. The assumptions are:
the omnidirectional vision sensor is calibrated and the objects
are assumed to lie on the floor. In Fig. 5, we sketched
the Perception Module implemented inside our robots. The

Fig. 3. An omnidirectional image processed by the Vision Agent of the
perception module. Note that the ball has been detected as the red blob and
marked with a yellow cross. The goals have been detected and marked with
red crosses. The black dots are the sample grid used to process the image in
a discrete fashion.

Fig. 4. Profi le plot of the omnidirectional mirror used to grab the picture of
Fig. 3. Note that the profi le is generated point by point to achieve the desired
resolution in the different parts of the image.

omnidirectional image is the input, on the left, of the image
processing module, called VAModule (Vision Agent Module).
The result of the image processing is sent to the so-called
Scene Module, where all measurements are transformed in
the common frame of reference of the field of play using the
inputs of the encoders and of the localization module. The
measures in the common frame of reference are sent to the
other robots and to the Distributed Vision Module, where they
are fused with the measures received by the teammates.
A description of the scene in the frame of reference of the

field of play (i.e. the positions and speeds of the objects of
interest) is reconstructed here using the data coming from the
encoders and by the localization system. The measurements
on the positions and velocities of the objects are then passed
to the Distributed Vision Module (DVM) and broadcast to
the other robots. Fig. 3 shows an example of the result of the
image processing on one omnidirectional image taken in the

Figure 4.1: Behavior hierarchical organization

4.1.1 Ball exchanging

As came out so far, a pure reactive level would fail to provide a robot team with
the required cooperation capabilities, because of the lack of some sort of mech-
anism, which allows the behavior of each individual robot to take into account
other robots’ behavior. Even a coordinated behavior among a group of robots
based only on implicit communication could fail to exhibit collective behaviors,
because implicit communication in itself does not guarantee cooperation.

The solution to the more general problem of making a collective behavior
emerge from the individual behaviors of a group of robots depends on two
different conditions that must be true at the same time: the first concerns the
ability of any robot to recognize the circumstances under which it can be engaged
in a collective behavior, while the second requires that those circumstances be-
come effective. Hence, in this hybrid multi-level architecture, two intermediate
levels have been provided to allow robots to communicate:

1. The lower implements implicit communication;

2. The higher deals with the dynamic role exchange.

Dealing with the reactive level, the former provides the necessary conditions,
evaluated from the environment and specified patterns, to be verified to start
cooperation, while the latter is devoted to examine and schedule the behaviors
which are the best candidates for cooperation. In particular, when an individ-
ual robot succeeds in recognizing a distinguishing configuration pattern in the
environment, it tries to become a master of a collective action indexed by that
pattern. This can occur because at reactive level some conditions forces the es-
timation of a given quality function to evaluate over a fixed threshold. However
different individual robots could evaluate over it, so that the method to acquire
a master role is based the temporal ordering by which individuals try to notify
the other teammates also wishing to become master.

As coordination task, consider the example two robots which try to carry
the ball towards the opponent goal, passing and eventually defending it from
opponents’ attacks. Because robots are required to play well-specified roles, the

4.2. HYBRID AUTOMATA 57

master role is assigned to the robot chasing the ball, whereas the other can be
considered the supporter. Let clampmaster/clampsupporter be the implemented
behaviors associated, where:

1. One robot is able to acquire and then to advocate a master role, showing
a dominant role in the clamp action by chasing the ball;

2. The other robot is committed to acquire a supporting role in the clamp
action while it is approaching the ball.

As just stated and shown in Algorithm 4.1, clampmaster and clampsupporter
are complementary behaviors that must be arbitrated.

Algorithm 4.1 Clampmaster/Clampsupporter behaviors

1 Begin clampsupporter
2 i f ! acquire (master) & canBe(supporter) then assume(supporter) ;
3 i f assume(supporter) & notify (supporter) then acquire (supporter) ;
4 End clampsupporter

1 Begin clampmaster
2 i f haveBall (me) & ! haveBall (mate) then acquire (master) ;
3 i f acquire (master) & notify (master) then advocate (master) ;
4 End clampmaster

The basic rule is that a master role must be advocated whereas the supporter
role should be acquired, so that two reciprocity rules are required, i.e. only if
provided that a notification is made to the referred teammate:

1. A role is switched from acquire to advocate;

2. A role is switched from assume to acquire.

Such rules imply a direct communication between teammates to assign the role
on the first notified/first advocated basis, where the robot carrying the ball
advocates the master role for its-self and commit the teammate to acquire the
supporter role. By doing so, both robots issues the behavior haveBall, while
the former also issues the behavior chaseBall, whereas the latter exhibits the
behavior approachBall.

4.2 Hybrid automata
A framework can capture both the discrete and continuos dynamics of hybrid
systems [8], making possible to model cooperative tasks and dynamic role as-
signment in MRS. Here for each robot, hybrid automata2 makes the mechanism
for coordination is completely decentralized by representing for each robot:

2In automata theory, a hybrid automaton is a mathematical model for precisely describing
systems, in which computational processes interact with physical processes. The behavior of
a hybrid automaton consists of discrete state transitions and continuous evolution.

58 CHAPTER 4. HETEROGENEOUS ARCHITECTURES

1. Roles;

2. Role assignments;

3. Continuos controllers;

4. Discrete variables.

indeed a robot has its own controllers and takes its own decisions based on local
and global information; the former consists of the robot’s internal state and
its perception about the environment, while the latter contains data about the
other robots and is normally received through explicit communication. Thus
each team member has to explicitly communicate with other robots to gather
information but normally they do not need to construct a complete global state
of the system for the cooperative execution. For instance, part of the informa-
tion necessary to role assignment, is obtained a priori, before the start of the
execution (e.g. the information concerning the task), while the rest of informa-
tion is obtained dynamically during the task execution.

There are three ways of changing roles during the execution of a cooperative
task:

1. Allocation, in which a robot assumes a new role after finishing the execu-
tion of another one;

2. Reallocation process, in which using an utility function, a robot interrupts
the performance of one role and starts or continues the performance of
another role;

3. Exchange, in which two or more robots synchronize themselves and swap
their roles.

Differently from the approaches described so far, this one allows for two types of
explicit communication, the synchronous and the asynchronous one. Recalling
that the former usually consists of messages sent and received continuously
at a constant rate, while the latter permits interruptions when messages are
received, synchronous messages are important in situations where robots must
receive constant updates, on the other hand, the asynchronous ones are used
when unexpected events occurs.

Let here describe in a more formal way the framework representing this
architecture. First of all a MRS can be described by its state X,

X = [x1, x2, . . . xn

]

T ,

that is a concatenation of the states of the individual robots and varies as a
function of its continuous states

n

{x
i

}
i=1

and its inputs vector
n

{u
i

}
i=1

. Considering

that robot i can also receive ẑ
i

, i.e. the approximated information given by the
rest of the system, and that it can be controlled according to its assigned role
q, the state equation can be defined as

·
x

i

= f
i,q

(x
i

, u
i

, ẑ
i

) .

4.2. HYBRID AUTOMATA 59

But robot i is associated with a control policy

u
i

= k
i,q

(x
i

, ẑ
i

)

and ẑ
i

is a function of the state X, hence the state equation can be written as:
·

x
i

= f
i,q

(X) ,

or, for the whole team
·

X = F
q

(X) , F
q

= [f1,q

, . . . , f
n,q

]

T .

These equations, which model the continuous behavior of each robot and con-
sequently the continuous behavior of the team, in turn are modeled by a hybrid
automaton. It is a finite automaton, whose arguments are a finite number of
real-valued variables that change continuously and that can be formally defined
as

H = {Q, V, E, f, Inv, G, Init, R} ,

where:

• Q = {1, 2, . . . k} is the set of discrete states, called control models;

• V = V
d

[V
c

is the set that represents the discrete (V
d

) and continuous
(V

c

) variables of the system;

• f is the function which describes the dynamics of the continuous variables;

• E is the set of control switches of discrete transitions between pairs of
control modes;

• Inv is the set of predicates3 related to the control modes;

• G is is the set of predicates related to the control switches;

• Init is the initial states of the system;

• R is the set of reset statements for control switches.

Each role is a control mode of the hybrid automaton, where:

1. Internal states and sensory information can be specified by continuous and
discrete variables;

2. Messages are sent and received in discrete self transitions through com-
munication channels.

As the role assignment is represented by discrete transitions, where the invari-
ants (Inv) and guards (G) define when each robot will assume a new role, the
cooperative task execution can be modeled by a parallel composition of several
hybrid automata.

3In mathematics, a predicate is commonly understood to be a boolean-valued function
P : X ! {true, false}, called the predicate on X.

60 CHAPTER 4. HETEROGENEOUS ARCHITECTURES

4.3 Resources constraints
When designing a MRS performing complex tasks in a dynamic environment
in addiction to a dynamic assignment of roles constraints on resources that are
accessed by the robots have to take into account. However very often coopera-
tion through dynamic task assignment and coordination on the access to shared
resources are often treated, separately. The former problem is faced by splitting
the tasks and assigning each robot a role without directly supporting the coor-
dination in the access to shared resources. On the other hand the latter problem
focuses on the techniques for handling the conflicts arising from the attempt to
access common resources, where resource conflicts among robots can be solved:

1. By combining the plans of each robot, and producing a coordinated plan;

2. Using task networks indicating dependencies among the tasks to be exe-
cuted;

3. Using ad hoc approaches, such as space partition in foraging task.

Here it is proposed the design and realization of a MRS that takes into account
at the same time dynamic role assignment and constraints on resources [9].
The approach keeps the requirements on each robot to a very abstract set of
functionalities: it is not needed an explicit synchronization which is integrated
within the information acquisition capabilities of the robots, hence making the
implementation easier with heterogenous MRS.

The focus is on the Sony Legged Robot League, an highly successful Four-
Legged League, based on Sony’s AIBO dog robots, now replaced by the Stan-
dard Platform League based on Aldebaran’s Nao humanoids (see Subsection
1.1). Indeed in the set of game rules, the two-defender rule prohibits the simul-
taneous presence of two players in the goal area, introducing a new challenge
for coordination. It turns out that this rule gives rise to a scenario where the
dynamic exchange of roles in not sufficient for effective performance, while a
specific constraint on the access to a shared resource (the goal area) must be
properly taken into consideration. The basic intuition underlying the proposed
solution is to treat the role assignment as a technique for establishing the goal
of each individual player, where the need of synchronization with other players
must be explicitly addressed in the selection and execution of the plan devised
by the player to achieve the assigned goal.

The framework here proposed is based on a hybrid robot architecture, made
up of two main layers:

1. The Operative Level ;

2. The Deliberative Level, which is in turn made up of:

(a) An On-Line Deliberative SubLevel ;

(b) An Off-Line Deliberative SubLevel.

4.3. RESOURCES CONSTRAINTS 61

The former is based on a numeric representation of both the information ac-
quired by the robot sensors and the data concerning the current task. The
latter is based on a symbolic representation of both the information acquired
by the robot sensors and the data concerning the task to be accomplished. In
fact the On-Line Deliberative SubLevel is in charge of evaluating data during
the execution of the task, while the Off-line Deliberative SubLevel is executed
off-line before the actual task execution.

In detail, the deliberative level relies on a representation of the robot’s knowl-
edge about the environment (it is provided off-line and acquired during task
execution) and it is formed by two main components:

1. A Plan Execution Module, executed on-line during the accomplishment
of the robot’s task, responsible for executing a plan by coordinating the
primitive actions of a single robot;

2. A Plan Generation Module, executed off-line before the beginning of the
robot’s mission, generates a set of plans to deal with some specific situa-
tions.

During the execution of a plan, the Plan Execution Module checks for the con-
ditions that guarantee the applicability of the current plan in the current sit-
uation (provided by the high-level state), and, if the current plan is no longer
executable, it selects a new plan from the library.

A plan is represented as a transition graph, where:

• Each node denotes a state and is labeled with the state properties;

• Each arc denotes a state transition and is labeled with the action that
causes the transition.

A state represents a situation the system can be in and is characterized by a set
of properties which give a description of the situation. Actions are represented
using preconditions and effects. Preconditions are the conditions that are neces-
sary for activating the action and indicate what must be true before the action
is executed, that is they specify circumstances under which it is possible to ex-
ecute an action. Effects are the conditions that must hold after the execution
of the action and characterize how the state changes after the execution of the
action. Sensing actions are associated with conditions to be verified, because
depending upon the runtime value of these conditions, a different part of the
plan will be executed.

4.3.1 Two-defender rule protocol

A typical situation, represented by Figure 4.2 in when the goalkeeper (robot
1) is moving away from its own goal and is approaching the ball to push it
away, while robot 2 is far away from the ball and it cannot help the goalkeeper
immediately. It is more convenient for the team that robot 1 takes the role of
attacker pushing the ball toward the opposite goal, while robot 2 goes back to

62 CHAPTER 4. HETEROGENEOUS ARCHITECTURES

defend its own goal acting as a goalkeeper. However in performing this role
exchange the two robots must comply with the two defenders rule, thus robot
2 can enter the goal area only after robot 1 has left it.

1

2

Figure 2: Typical situation for dynamic coordina-
tion.

3 Dynamic Coordination with Con-
straints on Resources

The problem we describe in detail in this section, as
an example for explaining our coordination method,
is the dynamic exchange of the role of goalkeeper in
the Sony Legged League and the application of the
two-defender rule.
This problem cannot be easily solved by applying
the distributed coordination protocol presented in
[5], since dynamic role exchange is not sufficient to
respect the two-defender rule. In other words, we
want to solve two aspects of coordination: on one
hand dynamic role exchange allows for selecting the
best robot able to accomplish a task, on the other
hand while accomplishing their own tasks the robots
must take into account some constraints on shared
resources and thus have to synchronize their actions.
The situation presented in Fig. 2 is a typical situ-
ation in the Sony Legged League matches in which
the goalkeeper (robot number 1) is moving away from
its own goal and is approaching the ball to push it
away, while robot number 2 is far away from the ball
and it cannot help the goalkeeper immediately. In
this situation it is more convenient for the team that
robot 1 takes the role of attacker pushing the ball
toward the opposite goal, while robot 2 goes back to
defend its own goal acting as a goalkeeper. However
in performing this role exchange the two robots must
comply with the two defenders rule, and thus robot
2 can enter the goal area only after robot 1 has left
it.
The solution we present in this paper is divided in
two parts: 1) we have defined utility functions for
dynamic assignment of the roles of goalkeeper and
attacker; 2) we have implemented action synchro-
nization in the plan the two robots will execute.

3.1 Utility functions for dynamic role assign-

ment

The utility functions for the role attacker and goal-
keeper are defined as functions of information of the

robot about the environment. These functions are
designed in such a way that higher values indicate
that the robot is able to perform the task associated
with this role, while lower values mean that the robot
may not be adequate to perform this task. Utility
functions are usually determined by a set of experi-
ments aiming at an appropriate configuration of the
MRS. Examples of utility functions for the roles at-
tacker and goalkeeper are reported below. they are
mainly based on the position of the robots and of the
ball in the field. Other factors may be easily taken
into account depending on the implementation of the
actions and on game strategies.
The utility function for the attacker is based on the
robot position and orientation and its distance to
the ball. This function evaluates an estimation of
the time needed to reach the ball in the direction of
the opponent goal.
f

attacker

= �↵ trajectory to ball �
� |dir to opponent goal| + ... + Hysteresis

where ↵ and � are positive coefficients to be deter-
mined by experiments and that may also be differ-
ent among robots taking into account heterogeneity
in the capabilities of the robots in a team (although
it is not this case in the Sony Legged League where
robots are all the same). Hysteresis is a term that
introduce a preference for the robot to maintain its
current role.
The utility function for the goalkeeper is based on
its position in the field, This function evaluates an
estimation of the time needed to reach the goal facing
the opponent goal.
f

goalkeeper

= �↵ dist to my goal �
� |dir to opponent goal| + ... + Hysteresis

These functions can also be improved by considering
the position of other players in the field or the pres-
ence of obstacles in the path that must be executed.

3.2 Action synchronization during plan exe-

cution

The problem of complying with the two-defender rule
is solved by generating a plan in which one robot
before entering the goal area must check that it is
free (i.e. the other robot has left the area).
This is achieved by adding in the knowledge base
of the robot that is taking the role of goalkeeper
the following specification for the actions GotoAre-
aLine, SenseFreeArea, and GotoGoal (given in a sim-
plified notation with respect to the formal one used in
[14]): GotoAreaLine has precondition NOT PosGoal
and effects PosAreaLine; SenseFreeArea has precon-
ditions PosAreaLine and effects FreeArea / NOT
FreeArea; GotoGoal has preconditions PosAreaLine
AND FreeArea and postconditions PosGoal.

Figure 4.2: Two-defender rule

In this situation the utility functions for the role attacker and goalkeeper are
defined as functions of information of the robot about the environment. The
utility function for the attacker is based on the robot position and orientation
and its distance to the ball and computes an estimation of the time needed to
reach the ball in the direction of the opponent goal. In other words

f
attacker

= �↵ · trajectorToBall�� · |dirToOpponentGoal|+ . . .+Hysteresis,

where ↵ and � are positive coefficients to be determined by experiments because
can be different among heterogeneous robots. On the other hand the utility
function for the goalkeeper is based on its position in the field and evaluates an
estimation of the time needed to reach the goal facing the opponent goal, i.e.

f
goalkeeper

= �↵ ·distToMyGoal�� · |dirToOpponentGoal|+ . . .+Hysteresis.

The problem of complying with the two-defender rule is solved by generating
a plan in which one robot before entering the goal area must check if it is free.
This is achieved by adding in the knowledge base of the robot that is taking the
role of goalkeeper the following specification (see Table 4.1) for the actions:

• GotoAreaLine;

• SenseFreeArea;

• GotoGoal.

PosAreaLine represents the robot positioned close, but outside, the area line,
FreeArea denotes the area being free from robots of its own team and PosGoal
states for the robot being in the goal area.

4.3. RESOURCES CONSTRAINTS 63

Action Preconditions Postconditions Effects
GotoAreaLine NOT PosGoal - PosAreaLine
SenseFreeArea PosAreaLine - FreeArea

NOT FreeArea
GotoGoal PosAreaLine AND FreeArea PosGoal -

Table 4.1: Goalkeeper specifications

The portion of the plan of interest for coordination is generated by an au-
tomatic plan generation system. As shown in Figure 4.3, the plan contains a
while loop in which the robot waits for the condition FreeArea to become true
before entering the area, allowing for synchronization of the actions between the
two plans executed by the robots.

a) b)

GotoAreaLine

SenseFreeArea (T)

GotoGoal

SenseFreeArea (F)

Figure 3: a) Simulator environment. b) Cyclic con-
ditional plan generated by the Plan Generation Mod-
ule.

The conditions PosAreaLine, FreeArea, and PosGoal
represent respectively the robot positioned close (but
outside) the area line, the area being free (from
robots of its own team), and the robot being in the
goal area. Note that the KB includes the specifi-
cation of other actions and conditions that are not
reported here since they are not directly related to
the coordination example.
The portion of the plan, of interest for coordination,
generated by the automatic plan generation system
(see [9]) is represented in Fig. 3b). The plan contains
a while loop in which the robot waits for the con-
dition FreeArea to become true before entering the
area. This loop allows for synchronization of the ac-
tions between the two plans executed by the robots.
In fact, the robot executing the plan in the Figure
will not enter the goal area until this is free.

4 Implementation

Previous work on coordination in RoboCup has been
carried out mostly in the Mid-size league [5, 12, 22].
and in the simulation league [21]. In the past year, we
have seen first attempts to coordinate the robots also
in the Sony Legged League, however communication
through the sound emitters is very unreliable, in par-
ticular during the matches. The use of explicit com-
munication in the Sony Legged League (introduced
this year) can now take advantage of wireless LAN
communication, as in the case of Mid-size league.
This makes it feasible to pursue communication-
based coordination also in this league. In the follow-
ing some details on the implementation of our ap-
proach in this League and the experiments we have
performed are presented.

4.1 Action Implementation

The actions executed by the robots are implemented
in the operative layer of our software architecture. In
particular, the implementation of the action Sense-
FreeArea, that is of interest for coordination, is ob-

tained by means of explicit communication among
the robots. In fact, every robot broadcasts a set
of information about its state, including its position
to all the other teammates. The execution of the
sensing action SenseFreeArea corresponds to check-
ing that among the positions received from all the
teammates no one is inside the defense area. No-
tice that the implementation of this sensing action
based on explicit communication is adequate for ac-
tion synchronization among robots, since it is robust
in the case of missing communications for a limited
amount of time. In fact, when no data from a robot
are acquired SenseFreeArea is implemented in order
to return false, when data are received from other
robots, the action evaluates their positions. How-
ever, in other cases, it is obviously possible to imple-
ment the sensing action used for synchronizing the
robots with other techniques (for example vision pro-
cessing). The current implementation of the sensing
action SenseFreeArea also relies on the ability of each
robot to localize itself, and this could be a limitation
in the effectiveness of the approach. However, in
practice, for coping with this situation, it is not im-
portant to have a precise localization for the robot,
but only the ability of detecting when the robot has
left the defense area.

4.2 Experiments for goalkeeper-attacker Co-

ordination

The experimental setting we have used has been
given by a simulator (see Fig. 3a)), that even though
cannot provide a precise characterization of all the
aspects that influence the performance of the robot
in the real environment, it can provide useful feed-
back to the design of the coordination system for
actual robots. Through this simulator we have veri-
fied the intended behaviour of the robots in each of
the roles in different scenarios and we have effectively
tuned the utility functions. However this tuning will
be performed again with real robots. The simulator
provides a global view of the environment that in the
case of our experiment is the RoboCup soccer field,
and shows ball position and robot positions and ori-
entations. With the simulator is possible to let the
simulated robot play, changing the environment in
order to represent some particular situations of in-
terest. In our experiments we have represented the
situation of Figure 2, and we have checked the dy-
namic role assignment and the execution of the robot
plans. More in depth the first robot (robot number 1
in the figure) is initially assigned to a defensive role
and its position is inside the goal area, robot num-
ber two start position is outside the goal area and is
assigned with a non defensive role. When the ball
is positioned in front of the robot number 1 a role
change occurs: robot number 1 takes the attack role

Figure 4.3: Cyclic conditional plan

The actions executed by the robots are implemented in the operative layer
of the software architecture. The implementation of the action SenseFreeArea
is obtained by means of explicit communication among the robots, which:

1. Broadcast a set of information about their state, including their position
according to all the other teammates;

2. Check among the positions received from all the teammates that no one
is inside the defense area.

When no data from a robot are acquired, SenseFreeArea is implemented in order
to return false, when data are received from other robots, the action evaluates
their positions, otherwise it is obviously possible to implement the sensing action
used for synchronizing the robots with other techniques, e.g. the vision system.

This dynamic role assignment is tested in situations represented by Figure
4.2, where robot 1 is initially assigned to a defensive role and its position is

64 CHAPTER 4. HETEROGENEOUS ARCHITECTURES

inside the goal area, while robot 2 start position is outside the goal area and is
assigned with a non defensive role. When the ball is positioned in front of the
robot 1 a role change occurs:

• Robot 1:

– Takes the attack role;
– Begins to push the ball toward the opponent goal escaping the goal

area.

• Robot 2:

– Takes the defender role;
– Starts to go in the defense position but it does not enter the area

until the other robot leaves it.

4.4 Interaction Nets
There are other ways to create such frameworks that model distributed multi-
agent systems, for instance firstly by a graphical modeling of behaviors in form
of hierarchical Interaction Nets [10] and secondly by the execution of decision
trees described in XABSL4 language. Here the used world model incorporates
mechanisms for multi-thread save data representation, data processing and com-
munication and each robot holds several data containers:

1. One for the locally sensed or derived data;

2. One for each robot of the team.

However only a part of locally available information of a robot is communicated
to others, which use it to estimate abstract world states, i.e. application relevant
features of the environment. Due to autonomy of the robots, they make their
decisions locally and model behaviors by considering all available data which
includes communicated status information.

The subsystem for team play is divided into two layers. One layer, called
WorldModelAdapter, is derived from the world model and is responsible for pro-
cessing the data and providing results (e.g. data sets, numerical data, boolean
flags) in a format suitable for the second layer. Due to fault tolerance, it runs
locally on each robot so that the characteristics of the current game are derived
from a merged view of the distributed system of robotic agents. The second and
higher layer constitutes the control of the of the behavior of an agent, where a
behavior is a state of an agent in which certain drive command are executed.

Let here describe formally the Interaction Nets, whose parameters consist
of:

4XABLS (eXtensible Agent Behavior Specification Language) is a specification language
for agent behavior which can be directly executed by an execution engine.

4.4. INTERACTION NETS 65

1. A set Ph = {Ph1, . . . , Ph
n

} of phases, which represent the states of the
agent, but imply the execution of a basic behavior;

2. A set of arcs from phases to transitions and from transitions to phases;

3. A token which indicates the current phase;

4. A set of transitions Trans : Ph ! Ph which define preconditions and
postconditions of a phase (to switch from Ph

n

to Ph
n+1, Ph

n

must hold
the token and the transition conditions must be satisfied).

However modeling the behavior of robot agents can reach a high level of com-
plexity with a large number of phases and transitions, hence in order to keep the
system manageable, hierarchical nets are introduced, where subnets SN ✓ Net
are handled like common phases. In particular such subnets have a transition
for its preconditions and one for its postcondition and a certain process can
leave them only after it reaches their end phases,then being free to continue on
the level above with the post condition of the subnet.

4.4.1 Passplay

Remembering that all robots communicate with each other, it is possible to
assign tactical roles and subroles to the different robot players. Every robot has
a tactical role and a unique tactical subrole during the match, which will not
be changed unless other robots fails. Here there are two main tactical roles,
Defender and Forward, which are re divided into subroles in such a way they do
not conflict with each other and define complementary behaviors at the same
time. The advantage of the chosen tactical role hierarchical approach is a better
organization of the team coordinating mechanism.

The implementation uses two ordered lists:

1. A list (roleList) contains the dedicated tactical roles;

2. A list (robotList) contains the available robots (robots that break down
during a match are automatically removed from this list).

The tactical roles a reassigned to the robots one-on-one, depending on the order
in the role list. Tactical subroles are assigned depending on the number of robots
that occupy a tactical role, because every robot calculates its tactical role and
subrole locally using a common algorithm. Moreover special roles exist, such
that if a robot possess one of these roles, it can execute the behavior of the
special role keeping its tactical role and subrole.

During the running game there are two strategies, the offensive play and the
defensive play, where each strategy defines a proper set of behaviors according
to the situation. The advantage of such an approach is that each role can make
use of different behaviors depending on the current situation in the match,
which results in a situation sensitive architecture. The Offensive and Defensive
subnets are subdivided into further subnets that handle the behavior for the

66 CHAPTER 4. HETEROGENEOUS ARCHITECTURES

different tactical roles and subroles. For instace in the subnets for tactical
subroles, the behavior PassPlay is implemented (see Figure 4.4).

Zweigle et al. / Cooperative Agent Behavior 7

During the running game we di�erentiate between two strategies, o�ensive

play and defensive play. Each strategy defines a proper set of behaviors according

to the situation. The advantage of such an approach is that each role can make use

of di�erent behaviors dependending on the current situation in the match, which

results in a situation sensitive architecture. This architecture can be used for many

di�erent player movement strategies that are modeled on real soccer movements.

The O�ensive and Defensive subnets are subdivided into further subnets that

handle the behaviour for the di�erent tactical roles and subroles. In the subnets

for tactical subroles, the di�erent behaviours are implemented. An example for

such a behavior is the pass play scenario described in the following section.

4.1. Passplay

Figure 4. Pass Play Net

Figure 4 shows an example of an interaction net for a pass play implemen-

tation in form of a 2-agent interaction. Here, a pass is done between two players

with a fixed position of the pass receiver. This interaction net requires the par-

ticipation of two agents, one taking the special role of a pass player and another

the special role of pass receiver.

The two participating agents start in the initial phase decideRole. Here a

decision is done which player takes which role in the pass play interaction. The

function iAmNearestTo, which calculates the current position of the robot itsself

compared to the position of the team mates relative to the distance to a given

arrival point, is part of a set of special world model functions 2.1. They are

triggered regularly to gain information about the current status of the robot in

connection with its team mates.

Figure 4.4: Passplay

Here, a pass is done between two players with a fixed position of the pass
receiver. This interaction net requires the participation of two agents, one
taking the special role of a pass player and another the special role of pass
receiver. The two participating agents start in the initial phase decideRole,
where the decision of which player is assigned to which role is taken. By the
function iAmNearestTo a player can calculate the current position compared to
the position of the teammates relative to the distance to a given arrival point.
Let here summarize the main step required:

1. The agent that has the closest position to the ball takes the special role
pass player ;

2. The agent that has the closest position to the defined pass target position
takes the special role pass receiver ;

3. The pass player approaches the ball oriented in the direction of the pass
target;

4. The pass receiver drives towards the pass target position;

5. As soon as the pass player has the required position relative to the ball
an action synchronization between the two agents takes place;

4.4. INTERACTION NETS 67

6. Only if the pass receiver moves into a range of tolerance around the target
position the execution of the pass play is continued;

7. The pass receiving agent changes to the behavior interceptBall as soon as
it reaches the pass target position;

8. As soon as the pass receiver agent gets the ball or the ball stops in a
position very close to the pass receiver, it tries to shoot a goal directly.

The introduced interaction only contains three transitions that result in an
actions coordination: the input transition of the behavior decideRole results in
a complementary role assignment of the cooperating agents, while the transition
canPass results in a time synchronization of the action phase.

68 CHAPTER 4. HETEROGENEOUS ARCHITECTURES

Part II

Coalition formation for task
assignment in multi-robot

system

69

Chapter 5

Coalitions satisfaction

5.1 Problem statement
Consider the alarm handling problem described in Subsection 3.1.1, where alarms
arise in unpredictable locations at unpredictable times, then we consider this
dynamic and uncertain environment to create role allocation instances.

Hence given a robots team represented by the set R

n

= {R1, R2, . . . , Rn

}
and a set of roles, i.e. r

m

= {r1, r2, . . . , rm

} , m T n, that have to be assigned to
each robot, we can cast a role allocation problem into a task allocation problem
by replacing r

m

with T

m

= {T1, T2, . . . , Tm

} defined as a set of tasks that robots
have to accomplish.

For example in the environment of Figure 5.1, given four robots, i.e. R1, R2

, R3, R4 and three tasks, i.e. T1, T2, T3 Figure 5.1 represents a possible task
assignment. In particular both robot R1 and R3 cooperate to accomplish task
T2, while tasks T1 and T3 are assigned to robots R2 and R4, respectively.

R1

T2

R2

R3 R4

T1 T3

(0,0)

Figure 5.1: Instance of the task allocation problem

71

72 CHAPTER 5. COALITIONS SATISFACTION

R1

T2

R2

R3 R4

T1 T3

(0,0)

Figure 5.2: Solution of the task allocation problem

Let here explain how robots and tasks are represented. First each robot R
i

is described as an agent whose position within the environment is represented
by a quaternary Rpos

i

= (x, y, ✓), where:

1. x, y are the cartesian coordinates;

2. ✓ is the orientation angle.

A robot also knows the position and relative orientation of all the available
tasks.

As for each robot the quaternary T pos

j

= (x, y, ✓) refers to the position and
orientation of task T

j

. Moreover, each robot can provide a service time equal
to Rser

i

, while a task possesses two parameters:

1. The deadline service time T ser

j

, that is the time after which the task leaves
the environment;

2. The satisfaction service T sat

j

, that is the minimum time of service required
by the task in order to be satisfied.

Each robot R
i

can accomplish task T
j

if the following conditions are both sat-
isfied:

1. R
i

has to reach T
j

before it expires,i.e. the arrival of the robot is after
T ser

j

;

2. R
i

has to satisfy T
j

for at least T sat

j

.

This concept of satisfaction leads to the definition of an utility function f j

i

(·),
which makes a robot R

i

able to compute the time of service it can give to task
T

j

, and from now on we refers to this function with the name of A function.

5.2. UTILITY FUNCTIONS 73

5.2 Utility functions
Q function (see Subsection 1.2.3) has inspired the development of A function.
However, considering that the proposed scenario is far from being similar to
RoboCup competitions, some parameters of the Q function are not considered,
while other ones are introduced. For instance, according to the Q function
design, a task can take the role of the ball such that the common parameters
with the A function are the distance d between the robot and the task and the
robot approach orientation ✓ to the task.

Hence the A function can be defined as

f j

i

�
Rpos

i

, T pos

j

�
= T arr

j

2 R+
0 , (5.1)

where the arrival time T arr

j

represents the estimated time that robot R
i

spends
to reach task T

j

placing in front of it. Given a fixed robot scalar velocity vscalar

i

and rotational velocity vangular

i

, the position of the task T pos

j

combined with
the position of the robot Rpos

i

are responsible for the T arr

j

computation, which
fundamentally evaluates:

1. The Euclidean distance dj

i

between T
j

and R
i

;

2. The angle of rotation ✓j

i

which R
i

has to perform to head T
j

;

3. The distance mj

i

which R
i

has to carry out to face T
j

.

Then, according to robot velocities, the procedure uses the obtained parameters
to get an estimated time.

R1

T2

d1
2

ϑ1
2

(0,0)

Figure 5.3: Euclidean distance and angular rotation

As shown in Figure 5.3, the function (see the pseudocode in Algorithm 5.1)
first evaluates the Euclidean distance between T2 and R1 (line 2), then the robot
minimum rotation ✓2

1 (lines 3-5).

74 CHAPTER 5. COALITIONS SATISFACTION

(0,0)

T2
ϑ1,2
app

ϑ2

ϑ1,2
min

Figure 5.4: Minimum angular

Next, the robot position is also used to compute the angle ✓app

1,2 (see Figure
5.4), relative to the task, which is supposed to be the robot approaching angle
(line 6) . This angle combined with task orientation ✓2 permits to get ✓min

1,2 ,
that is the minimum angular gap robot has to carry out (lines 7-8).

(0,0)

T2
0 1
1
2

2

3
3
4

BlockDim

Figure 5.5: Manhattan distance approach

In order to transform this angle into distance m2
1 we introduce a manhattan

distance approach (see Figure 5.5). In other words an area is created around
the task, which is on its center, and divided to create blocks of blockDim2 area.
Since the widest angular gap ✓min

i,j

is equal to ⇡ we can obtain an estimation of
the covered space by:

1. Computing of radianForBlock =

⇡

maxBlockNum

, that is the number of
radians per block element (line 9);

2. Evaluating blockNum =

l
minimumGap

radianForBlock

m
, that is the number of block

5.2. UTILITY FUNCTIONS 75

elements necessary to cover the minimum angular gap (line 10).
Finally, after evaluating the total distance dtotal

1,2 the robot has to achieve (see
Figure 5.6) by summing the Euclidean distance d2

1 to the task rounding distance
m2

1 (lines 11-12), the estimated time is that the robot spends to rotate a ✓2
1 angle

at vangular

1 velocity and cover a dtotal

1,2 distance at vscalar

1 velocity. For example
such approach could fit into a museum environment, where robot acts as tour
guides and have to reach visitors that are looking for some objects d’art, so that
a robot frontal appearance is preferred even at the cost of spending more time
on coming up.

R1

(0,0)

T2

Figure 5.6: Estimated path

Algorithm 5.1 Arrival time T arr

j

1 timeToArrive (taskPos){
2 e u c l iD i s t = getDistance (taskPos) ;
3 angularDr ive = getDrive (robotPos , taskPos) ;
4 angularAdjust = abs (robotDrive � robotPos . theta) ;
5 minimumAdjust = minimizeGap(angularAdjust)
6 taskApproach = getApproach (robotPos) ;
7 angularGap = abs (taskPos . theta � taskApproach) ;
8 minimumGap = minimizeGap(angularGap) ;
9 radianForBlock = pi / maxBlockNum ;

10 blockNum = ce i l (minimumGap / radianForBlock) ;
11 taskRoundDist = blockNum ∗ blockDim ;
12 distToTask = euc l i dD i s t + taskRoundDist ;
13 rotat ionTime = robotAdjust / angularVel ;
14 distTime = distToTask / s c a l a rVe l o c i t y ;
15 return distTime + rotat ionTime ; }

76 CHAPTER 5. COALITIONS SATISFACTION

For instance, if in Figure 5.1 we consider only robots R1, R3 and task T2 we
get Figure 5.7, where:

1. Rpos

1 = (1, 4, 0);

2. Rpos

3 = (4, 3, 0);

3. T pos

2 = (3, 5, 2.26).

Then we evaluate A functions f2
1 (Rpos

1 , T pos

2) and f2
3 (Rpos

3 , T pos

2), where the
scalar and rotation velocity are respectively 0.7 m/s and 2.09

rad/s, whose results
are shown in 5.1. Even if both robots have the Euclidean distance equal to 2.23

meters, their arrival time differ more than 3 seconds: this is due both to their
orientation angle which implies different rotational times and the orientation
angle of the task which is in favor of robot R1 in terms of rounding distance.

R1

T2

R3

(0,0) 1

3

43

4

5

Figure 5.7: A-function examples

R1 R3

euclidDist [m] 2.236 2.236
angularDrive [°] 26.56 116.50
angularAdjust [°] 26.56 116.50

minimumAdjust [°] 26.56 116.50
taskApproach [°] 206.56 296.56
minimumGap [°] 76.50 166.50

blockNum 2 4
taskRoundDist [m] 2 4

distToTask [m] 4.236 6.236
rotationTime [s] 0.221 0.973

distTime [s] 6.051 8.908
timeToArrive [s] 6.273 9.882

Table 5.1: A-function examples results

5.2. UTILITY FUNCTIONS 77

5.2.1 Coalition utility function

Inspired by the coalition formation problem (see Section 7.1.1), given a set of
robots R

n

and a set of tasks T

m

as described in Section 5.1 the self eval-
uations of robot R

i

are represented by vector S
i

=

⌦
s1

i

, s2
i

, . . . , sm

i

↵
, where

sj

i

= f j

i

�
Rpos

i

, T pos

j

�
, while T sat

j

and T ser

j

are the system objectives relative
to task T

j

.
Recalling that a coalition C

j

is the set of agents assigned to task T
j

, the set
C = {C1, . . . , Cm

} is a partition of R
n

and represents the coalitions assigned
to all tasks. For instance in Figure 5.8 a possible coalition C = {C1, C2, C3} is
C1 = {R2} , C2 = {R1, R3} , C3 = {R4}.

R1 T2

R2T1 T3

C3
C1

R3 R4C2

Figure 5.8: Coalition formation problem

Given a coalition C and a task T
j

, let here define F (C, T
j

) as the total
amount of service Rser

C

the coalition gives to the task before it expires. The
evaluation of Rser

C

is computed through the following steps:

1. START;

2. Compute the arrival time T arr

j

for each robot R
i

2 C;

3. Sort these times in an increasing order;

4. Set the service start time Sser with the R
i

smallest arrival time and
remove it;

5. Set the service end time Eser and the new service start time with Sser

+

Rser

i

;

6. Add Rser

i

to the total amount of service Rser

C

;

7. If it turns out that Eser has exceeded the deadline service time T ser

j

,
reduce Rser

C

by the surplus END else CONTINUE;

8. If there are other robots:

78 CHAPTER 5. COALITIONS SATISFACTION

(a) Update the new service start time with regards the next arrival time
(Figure shows the possible cases);

(b) GO TO 4;

9. END.

R
ser
i

R i start of service

R jArrival of

R j start of service

(a) Service start time overlap updating

R
ser
i

R i start of service

R jArrival of

R j start of service

(b) Service start time not overlap updating

Then we can define the coalition utility function V
j

(C) = v
j

, 0 v
j

 1 as

V
j

(C) =

(
F (C,Tj)

T

ser
j

F (C, T
j

) � T sat

j

0 F (C, T
j

) < T sat

j

, (5.2)

that is the service time ratio with regard to the time task T
j

remains in the
environment, when coalition C successfully accomplishes task T

j

, 0 otherwise.
Therefore the aim of the proposed coalitions satisfaction problem is the same
of Section 2.7, whose purpose is maximizing, over the possible coalitions, the
summation of the V

j

, the coalition satisfactions, i.e.

arg max

C

mX

j=1

V
j

(C
j

) . (5.3)

For instance consider again the previous proposed situation, where R1 and
R3 are in the environment with the only task T2. According to Table 5.1 the
arrival times f2

1 (Rpos

1 , T pos

2) and f2
3 (Rpos

3 , T pos

2) are respectively 6.27 and 9.88

(see Figure 5.9). After its arrival robot R1 serves immediately the task for
Rser

1 = 2 seconds, then the task has to await until time 9.88 with the come of
robot R3. However R3 can not serve T2 for Rser

3 = 2 seconds because of the

5.3. FACTOR GRAPH AND GDL 79

deadline service time T ser

2 = 10, hence it real service time is equal to 0.11. The
total amount of service is therefore Rser

C2
= 2.11, which, combined with a task

satisfaction T sat

2 = 2, implies a coalition satisfaction V2 = (C2) =

2.11
10 = 0.21.

Iteration number 0 1
Arrival times < f2

1 , f2
3 > < f2

3 >
Service start Sser 6.27 9.88

Service end time Eser 8,27 11.88
Rser

C2
surplus 0 1.88

Total amount of service Rser

C2
2 2.11

Table 5.2: Example of coalition satisfaction V2 (C2 = {R1, R3})

R1 R3

0 6.27

R
ser
1 = 2

9.88

R
ser
3 = 2

T
ser
3 = 10 11.888.27

Figure 5.9: Example of total amount of service Rser

{R1,R3}

5.3 Factor graph and GDL
The theoretical framework used to solve the proposed coalition satisfaction prob-
lem is the factor graph [15], which is suitable to represent the optimization
problem described by Equation (5.3).

Indeed, let x = {x1, x2, . . . , xn

} be a collection of variables, where each
variable x

i

takes values in a finite alphabet A
i

and let g (x1, x2, . . . , xn

) be a
R-valued function of these variables, i.e. a function whose domain is

S = A1 ⇥ A2 ⇥ · · · ⇥ A
n

and codomain R. The domain S is called configuration space for this collection
of variables, while each element of S is a particular configuration of the variables,
i.e. an assignment of a value to each variable. The codomain R may generally
be any semiring , so that we can also assume R is the set of real numbers.

We recall that a commutative semiring is a set K, with two binary operations
called ” + ” and ” · ”, which satisfy these axioms:

1. The operation ”+” is associative and commutative and there is an additive
identity element ”0” such that k + 0 = k, 8k 2 K;

2. The operation ” · ” is associative and commutative and there is a multi-
plicative identity element ”1” such that k · 1 = k, 8k 2 K;

80 CHAPTER 5. COALITIONS SATISFACTION

3. For all triples (a, b, c) , a, b, c 2 K (a · b) + (a · c) = a · (b + c), that is to
say the distributive law holds.

As stated before, the set of real or complex numbers, with ordinary addition
and multiplication, forms a commutative semiring. However there are many
other commutative semirings, some of which are summarized in Table 5.3. For
example, consider the Max-sum semiring (entry 5), where:

1. K is the set of real numbers, plus the symbol 1;

2. The operation ” + ” is defined as the operation of taking the maximum
with �1 as identity element (i.e. max (k, �1) = k, 8k 2 K);

3. The operation ” · ” is defined as the ordinary addition with 0 as identity
element and k + 1 = 1, 8k 2 K;

4. The distributive law max (a + b, a + c) = a + max (b, c) is always true.

Number K ” (+, 0) ” ” (·, 1) ” Short name
1 [0, 1) (+, 0) (·, 1) Sum-product
2 (0, 1] (min, 1) (·, 1) Min-product
3 [0, 1) (max, 0) (·, 1) Max-product
4 (�1, 1] (min, 1) (+, 0) Min-sum
5 [�1, 1) (max, �1) (+, 0) Max-sum
6 {0, 1} (OR, 0) (AND, 1) Boolean

Table 5.3: Some commutative semirings

Moreover, suppose that function g (x) can be decomposed into a summation
of different functions, that is

g (x1, x2, . . . , xn

) =

rX

i=1

F
i

(x

i

) , x

i

✓ x (5.4)

a factor graph is defined as a bipartite graph1 that shows the structure of this
summation. In particular a factor graph FG = {F,x} is made up of variable
nodes, one for each x

i

, i.e. x = {x1, x2, . . . , xn

} and function nodes, one for
each F

i

(·), that is F = {F1, F2, . . . , Fn

}, where a variable node x
i

is connected
to the function node F

j

if and only if that variable is one of the arguments of
that function, i.e. x

i

2 x

j

.
Consider for example the function

g (x1, x2, x3) = F1 (x1) + F2 (x2) ,

1In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can
be divided into two disjoint sets U and V such that every edge connects a vertex in U to one
in V , that is U and V are independent sets.

5.3. FACTOR GRAPH AND GDL 81

where x1 = {x1, x2, x3} and x2 = {x1, x2}. This structure is shown by the
graph of Figure 5.10 with function nodes F = {F1, F2} and variable nodes
x = {x1, x2, x3} and edge connections represented by set

E = {(F1, x1) , (F1, x2) , (F1, x3) , (F2, x1) , (F2, x2)} .

F1 F2

x1 x2 x3

Figure 5.10: Factor graph example

In the proposed approach, given the set of robots R

n

, we suppose each
robot R

i

2 R

n

locally possesses and can control only a function F
i

(x

i

) and a
variable x

i

and has knowledge of, and can directly communicate only with its
neighboring2 robots.

Our supposition is that x

i

= {x1, x2, . . . , xn

} , 8i, i.e. the factor graph is a
complete bipartite graph3, which also means that all robots belong to the same
neighboring. For instance in Figure 5.11, there are two robots, R1 and R2

which respectively possess their pair function-variable (F1, x1) and (F2, x2) but
are neighbors and can communicate each other, because both x1 and x2 equal
{x1, x2}.

2Two robots are neighbors if there is a relationship connecting variables and functions that
robots control.

3In the mathematical field of graph theory, a complete bipartite graph is a special kind of
bipartite graph where every vertex of the first set is connected to every vertex of the second
set.

82 CHAPTER 5. COALITIONS SATISFACTION

F1

F2x1

x2

R1 R2

Figure 5.11: Robot-controlled factor graph

5.4 Max-sum algorithm
The Max-sum algorithm belongs to the family of iterative message passing algo-
rithms called Generalized Distributive Law (GDL) [16], which can be combined
with factor graphs to efficiently compute functions with the same structure of
Equation (5.4).

Given a set of robots R

n

, a set of tasks T

m

and a complete factor graph
such as the one of Figure 5.11, the Max-sum algorithm computes

x

?

= arg max

x

nX

i=1

F
i

(x

i

) , (5.5)

an optimization similar to the proposed coalitions satisfaction problem. Indeed
this algorithm can be very adapt when dealing with such coalition formation
problems even if in completely different environment such as the RoboCup Res-
cue [17] hence presenting a distributive approach to a problem whose solution
algorithms are generally centralized. Let each variable x

i

represent the possible
tasks a robot can satisfy and can take values over a finite domain d

i

✓ T

n

,
hence each function F

i

(x

i

) represents the amount of the utility given to the
system if robot R

i

acts for task x
i

, eventually supported by other robots. This
is a different point of view of the same optimization problem, where the maxi-
mization is shifted from task to robot, and the evaluation of F

i

(x

i

) trades off
between these representations. Hence we have to introduce V i

j

(x
i

), an utility
function, which connects the coalition utility function V

j

(C) to the real service
time Rrs

i

given by robot R
i

to task T
j

,
(

V i

j

(x

i

) =

R

rs
i

F (TMi(xi),Tj)
· 1

T

ser
j

V
j

(TM
i

(x)) > 0

0 otherwise
,

5.4. MAX-SUM ALGORITHM 83

where TM
i

(x) , x = {x1, x2, . . . , xn

} represents the set of robots {R
j

} whose
variable x

j

has the same argument of x
i

. In other words V i

j

(x

i

) is the percentage
of service robot R

i

offers respect to the total amount of service F (TM
i

(x) , T
j

)

with regard to the deadline time service T ser

j

. Let describe the main steps
F

i

(x

i

) entries are evaluated:

1. START

2. Find the robot variable between the set x

i

, that is x
i

, the variable con-
trolled by robot R

i

;

3. For each entry:

(a) Evaluate TM
i

(x

i

), i.e.:

i. Evaluate the argument of robot variable, i.e. T
j

;
ii. Add R

i

to set TM
i

(x

i

);
iii. For each variable x

k

2 x

i

:
iv. If x

k

has T
j

as argument, add robot R
k

to TM
i

(x

i

);

(b) Evaluate F
i

(x

i

) as V i

j

(x

i

).

4. END

For instance, consider the environment of Figure 5.7 with the addition of task
T3 which is described by T pos

3 =

�
5, 1, 0.1, ⇡

2

, T ser

3 = 8 and T sat

3 = 2. The
situation is different from before and robots have to choose if join forces to
accomplish that or the other task or act in a divide-and-conquer approach.

First of all let Table 5.4 show the table form of function F1 (x1, x3), where
the main variable is x1, such that the real F1 evaluations are:

• F1 (T2, T2) = V 1
2 ({R1, R3});

• F1 (T2, T3) = V 1
2 ({R1});

• F1 (T3, T2) = V 1
3 ({R1});

• F1 (T3, T3) = V 1
3 ({R1, R3}).

During the developing of these procedures, we notice that this approach always
consider the alphabet d

i

of each variable x
i

equal to T

m

even if it is not nec-
essary. In other words, supposing the current value of the main variable is T

j

,
a robot can take into account and eventually insert into the coalition, robots
which can not reach T

j

before its deadline service time, that is robots which can
not offer any service to the task.

Therefore, in order to get the updated tabular form (see Table 5.5a), we
erase from variable x1 all the tasks unreachable by R1; in the example shown in
Figure 5.12 robot R1 reaches task T3 at time 10.30, exactly 2.30 seconds after
the task leaves the environment, such that |d1|, the cardinality of x1 alphabet

84 CHAPTER 5. COALITIONS SATISFACTION

is decreased by one unity (the same procedure is applied to F3 (x3) obtaining
Figure 5.5b).

F1 x1 x3

0.090 T2 T2

0.100 T2 T3

0 T3 T2

0 T3 T3

Table 5.4: Evaluation of F1 (x1, x3) table form

F1 x1 x3

0.090 T2 T2

0.20 T2 T3

(a) Reduced evaluation
of F1 (x1, x3) table form

F3 x1 x3

0.005 T2 T2

0.125 T2 T3

(b) Reduced evaluation
of F3 (x1, x3) table form

T3

(0,0)

F1 T2 T2,)(

R3

R1

T2

F1 T2 T3,)(

Figure 5.12: Example for F1 (x1) table form representation

After this table filling, the optimized x

? of Equation (5.5) is achieved by
repeatedly passing messages within the factor graph (Figure 5.13 shows the
messages exchanged between robots R1 and R2 in the factor graph Figure
5.11):

5.4. MAX-SUM ALGORITHM 85

1. From variable nodes to function nodes, called q-messages;

2. From function nodes to variable nodes, called r-messages.

Formally, a r-message r
j!i

(x
i

) from function F
j

to variable x
i

is defined as

r
j!i

(x
i

) = max

xj\xi

2

4F
j

(x

j

) +

X

k2Nj\xi

q
k!j

(x
k

)

3

5 , (5.6)

where N
j

is the set of variable indexes, indicating which variable nodes in the
factor graph are connected to function node F

j

and x

j

\ x
i

⌘ {x
k

: k 2 N
j

\ i}.
On the other hand a q-message q

i!j

(x
i

) from variable x
i

to function F
j

is
defined as

q
i!j

(x
i

) = ↵
ij

+

X

k2Mi\j

r
k!i

(x
i

) , (5.7)

where M
i

is the set of function indexes, indicating which function nodes in the
factor graph are connected to variable node x

i

and ↵
ij

is the message normal-
ization factor such that

P
xi

q
i!j

(x
i

) = 0

4.
When the factor graph is cycle free, the algorithm is guaranteed to con-

verge to the global optimal solution x

?, thereby optimally solving the proposed
optimization problem. Moreover, this convergence can be achieved by first cal-
culating

z
i

(x
i

) =

X

j2Mi

r
j!i

(x
i

) , (5.8)

we have trivially called z-message5, and then computing

arg max

xi

z
i

(x
i

) . (5.9)

However it can be show that, despite the lack of convergence guarantees, the
GDL algorithms generates good approximate solutions when applied to cyclic
graphs [18].

In order to better explain this kind of messages exchanging, let we apply
the algorithm to the last presented system, i.e. that one with robots set R2 =

{R1, R3} and tasks set T2 = {T2, T3}. Figure 5.13 shows both q and r messages
for a single iteration exchanged over a factor graph with the same structure of
that in Figure 5.11 and the table form of the functions are those of Table 5.5a
and 5.5b.

4In cyclic factor graphs such normalization prevents messages to increase endlessly, on
condition that there are not negative infinity utilities, which are usually taken into account
to represent hard constraints on the solution.

5The z-message is considered a message because it is made up of the sum of other messages,
but at the same time it is judge trivial because it is calculated locally and is not exchanged
between robots.

86 CHAPTER 5. COALITIONS SATISFACTION

F1

F3x1

x3

R1 R3

r
1 3

r
3 1

r 1
1

r
3

3

1
q
3

3
q
11

q 1

3
q 3

Figure 5.13: Max-sum messages example

Since at the fist iteration, whose messages are indicated with the super-
script 0, q-messages q0

i!j

(x
i

) equal 0, and consequently r-messages become
r0
j!i

(x
i

) = max

xj\xi

F
j

(x

j

), in our example we get:

• q0
i!j

(x
j

) = 0, j 2 {1, 3} , i 2 {1, 3};

• r0
1!1 (x1) = max

x3

F1 (x1, x3) = {hT2, 0.100i};

• r0
1!3 (x3) = max

x1

F1 (x1, x3) = {hT2, 0.090i , hT3, 0.100i};

• r0
3!1 (x1) = max

x3

F3 (x1, x3) = {hT2, 0.125i};

• r0
3!3 (x3) = max

x1

F3 (x1, x3) = {hT2, 0.005i , hT3, 0.125i}.

Next we applying Equation (5.8) and (5.9) we obtain:

• T2 = arg max

x1

[{hT2, 0.100i} + {hT2, 0.125i}];

• T3 = arg max

x3

[{hT2, 0.090i , hT3, 0.100i} + {hT2, 0.005i , hT3, 0.125i}].

This means that variables x1 and x3 after computing their z-message, choose
the value that maximize it, that is T2 and T3 respectively, with a system utility
with this which equals 0.225.

F1 F3

x1 �0.125 �0.100

x3 �0.065 �0.0095

Table 5.5: Example of message normalization factors

5.4. MAX-SUM ALGORITHM 87

However the algorithm does not end at the first iteration and immediately
computes the second iteration q-messages, which are normalized by setting each
↵

ij

according to Algorithm 5.2. For instance we get ↵31 = �0.065 and conse-
quently q1

3!1 (x3) following these steps:

1. Component-wise sum all r3!3 vectors (lines 2-5);

2. Sum the resulted components (lines 6-8) (0.005 + 0.125 = 0.130);

3. Change sign to the obtained value (line 9) (�0.130);

4. Divide the previous result by the vector cardinality (� 0.130
2 = �0.065)

(line 10);

Then if we add ↵31 to each r3!3 component we get {hT2, �0.06i , hT3, 0.06i}.
Therefore if the same procedure (Table 5.5 summarize the computed message

normalization factors) is applied to other messages we also obtain:

• q1
1!1 (x1) = {hT2, 0.0i};

• q1
1!3 (x1) = {hT2, 0.0i};

• q1
3!3 (x3) = {hT2, 0.005i , hT3, �0.005i}.

At this point the algorithm has the required messages to computed the relative
r-messages, whose evaluation is left to the reader (for instance Figure 5.14 shows
how the r-message r1

3!1 (x1) is computed). The most important fact is that the
z-messages obtained using the r1

j!i

(x
i

) messages make the system evaluate
x1 = T2 and x3 = T3 again, which means the algorithm has converged to a
solution, ending its execution.

Algorithm 5.2 Message normalization factor evaluation

1 computeAlpha(Rmessages){
2 messageQ messQ ;
3 foreach message in Rmessages{
4 messQ .+ message ;
5 }
6 foreach value in messQ{
7 alpha += value ;
8 }
9 alpha ∗= �1.0;

10 alpha /= messQ . s i z e () ;
11 return alpha ; }

88 CHAPTER 5. COALITIONS SATISFACTION

+

+

CHAPTER 1. COALITIONS SATISFACTION 19

1. The messages are small and scale with the domain of the variables;

2. The number of messages exchanged typically varies linearly with the num-
ber of agents within the system;

3. The computational complexity of the algorithm scales exponential with
just the number of variables on which each function depends [?].

However, the lack of guaranteed convergence and guaranteed solution quality,
limits the use of the standard Max-sum algorithm in many application domains,
and such exponential computation behavior is undesirable in systems composed
of devices with constrained computational resources. The Bounded Max-sum
[?], a variation of the Max-sum algorithm, whose approach removing cycles from
the factor graph, by ignoring some of the dependencies between functions and
variables, ensures the convergence of the algorithm to a bounded approximate
solution.

•
q1
3!3 (x3) x3

0.005 T2

�0.005 T3

max

CHAPTER 1. COALITIONS SATISFACTION 15

F1 x1 x3

0.090 T2 T2

0.20 T2 T3

(a) Reduced evaluation
of F1 (x1, x3) table form

F3 x1 x3

0.005 T2 T2

0.125 T2 T3

(b) Reduced evaluation
of F3 (x1, x3) table form

T3

(0,0)

F1 T2 T2,)(

R3

R1

T2

F1 T2 T3,)(

Figure 1.12: Example for F1 (x1) table form representation

After this table filling, the optimized x

? of Equation (1.4) is achieved by
repeatedly passing messages within the factor graph (Figure 1.13 shows the
messages exchanged between robots R1 and R2 in the factor graph Figure
1.11):

1. From variable nodes to function nodes, called q-messages;

2. From function nodes to variable nodes, called r-messages.

Formally, a r-message r
j!i

(x
i

) from function F
j

to variable x
i

is defined as

r
j!i

(x
i

) = max

xj\xi

2

4F
j

(x

j

) +

X

k2Nj\xi

q
k!j

(x
k

)

3

5 , (1.5)

where N
j

is the set of variable indexes, indicating which variable nodes in the
factor graph are connected to function node F

j

and x

j

\ x
i

⌘ {x
k

: k 2 N
j

\ i}.

r1
3!1 (x1) x1

0.120 T2

1

Figure 5.14: Evaluation of r1
3!1 (x1) message

5.4.1 Bounded Max-sum algorithm

The Max-sum algorithm is extremely attractive for the decentralized coordina-
tion of computationally and communication constrained devices for the following
reasons:

1. The messages are small and scale with the domain of the variables;

2. The number of messages exchanged typically varies linearly with the num-
ber of agents within the system;

3. The computational complexity of the algorithm scales exponential with
just the number of variables on which each function depends [19].

However, the lack of guaranteed convergence and guaranteed solution quality,
limits the use of the standard Max-sum algorithm in many application domains,
and such exponential computation behavior is undesirable in systems composed
of devices with constrained computational resources. The Bounded Max-sum
[20], a variation of the Max-sum algorithm, whose approach removing cycles from
the factor graph, by ignoring some of the dependencies between functions and
variables, ensures the convergence of the algorithm to a bounded approximate
solution.

Since our proposed approach works with complete factor graphs, which means
each function depends upon each variable, and the cardinality of the task to be
accomplished T

m

is in general of the order of the number of robots |R
n

| the
exponential behavior is here stressed. Nevertheless, due to the characteristics of
the proposed environment and optimization problem, we choose to adopt and
implement a system which use the simple Max-sum algorithm (see Section 7.3
for more exhaustive considerations and Section 7.1.1 for some experiments).

Chapter 6

Software framework

6.1 ROS

ROS1 (Robot Operating System) is a robot software system, whose development
was started in the 2007 with the name of switchyard by Morgan Quigley and his
team at the Stanford Artificial Intelligence Laboratory, but in 2008 was taken on
by the Willow Garage2 group and the current release is called Electric Emys (see
Figure 6.1). ROS is very adapt to the development of robotics software, indeed
it provides interesting services, such as hardware abstraction, devices control,
message passing between processes, source codes and dependencies manage-
ment, but relies on the hosting operating system for low level services, e.g.
processes scheduling, memory management and network communications.

Figure 6.1: ROS release Electric Emys

1www.ros.org
2
www.willowgarage.com

89

90 CHAPTER 6. SOFTWARE FRAMEWORK

ROS architecture is component-based, whose components are organized in
packages, stacks and repositories (see Figure 6.2), where:

1. A Package is at the lowest level of ROS software organization and contains
libraries, executable and configuration files;

2. A Stack is a packages collection providing aggregated high level functions;

3. A repository is where a set of stacks is collected to allow the software
distribution.

Repository

Stack

Package

Stack

Package

Package

Package

Figure 6.2: ROS File System

In detail ROS architecture is based on the ROS Computational Graph, a
peer to peer network of loosely coupled3 processes, whose components are:

1. The master node;

2. The nodes;

3. The parameter server;

4. The bags.

As the main process of ROS execution, the Master handles the parameter server,
the network resources and service naming, allowing all the other processes to
communicate each other. Indeed processes in ROS are nodes which after reg-
istering at the master node, can communicate each other using topic, service

3Loose coupling is an approach to interconnecting the components in a system or network
so that those components depend on each other to the least extent practicable. that is coupling
refers to the degree of direct knowledge that one element has of another.

6.2. FACTOR GRAPH 91

and the parameter server. Handled by the master node,The parameter server
is a shared dictionary that the nodes access to save or recover runtime system
parameters. Finally through the bags ROS records in log files all the communi-
cations occurred in the system.

In ROS the communication between two nodes do not imply their mutual
knowledge, but only the name on the network of the service offered or the topic
used. Indeed ROS uses three mechanisms to make nodes communicate and
interact each other:

1. Service;

2. Topic;

3. The shared memory of the parameter server.

A service represents the RPC procedure on ROS, where a node in the com-
putation graph can be a provider or client: the former provides at least one
service, which have to be identify by a unique name, in a hierarchic namespace,
while the latter sends requests to providers specifying the name of the required
service, then waiting the response.

A topic provides a unidirectional and asynchronous streaming communica-
tion, letting nodes exchange messages assuming the role of publisher or sub-
scriber : a node which generate datas can be a publisher with regards to a
specific topic, specifying the name and kind of message it publishes, while a
node which desires receiving communications have to subscribe a topic, specify-
ing its name, the kind of message and the function which handles the received
messages.

Because of ROS architecture and the choice of using a belief propagation
algorithm4, such as Max-sum, we choose to implement the framework to solve
the proposed coalitions satisfaction problem over the ROS system which highly
favors a distributed arrangement. However the focus is here on how the structure
of the Max-sum algorithm has been implemented rather than centering the
attention on how messages are really exchanged.

6.2 Factor graph
The factor graph is the support where the Max sum algorithm is applied, hence
the FactorGraph object was the first to be implemented, together with its main
components, i.e. NodeFunction and NodeVariable objects. According to our def-
inition of factor graph (see Subsection 5.3), given a FactorGraph, a robot is able
to gain access of its local data but possesses a reference for every neighboring
variable and function node. Consider Figure 5.11, which represents a complete
factor graph, where R1 and R2 respectively own function nodes F1 (x1) and
F2 (x2) and variable nodes x1 and x2, but can fully communicate with the other

4Generally a belief propagation is a message passing algorithm for performing inference on
graphical models.

92 CHAPTER 6. SOFTWARE FRAMEWORK

robot, then Figure 6.3 gives the idea of how this example of mathematical fac-
tor graph has been implemented over ROS. Indeed each robot here possesses a
reference, represented by the ? symbol, to neighboring NodeVariable and Node-
Function objects.

F1

x1

x2

R1

F2

x2

x1

R2

Figure 6.3: Factor graph implemented structure

After the implementation of NodeVariable and NodeFunction, two other ob-
jects was considered: the NodeArgument and the TabularFunction. A NodeVari-
able x

i

contains a NodeArgument object Aj

i

for each element of its alphabet,
i.e. A

i

=

�
A1

i

, A2
i

, . . . , Am

i

, m = |x

i

|, while a TabularFunction represents the
table form of a function node.

Figure 6.4 shows how both these objects are connected within the Factor-
Graph nodes: each robot can access both its local and neighboring NodeFunction
and NodeVariables objects and can evaluate its TabularFunction with regards
to the NodeArguments taken by the NodeVariables. For instance if we con-
sider Table 5.5a relative to the proposed example with robots R1 and R3, the
complete FactorGraph becomes that of Figure 6.5.

F1

x1

x2

R1
A
1

A
1

A
1...

x1 x2F1 x1 x2(,)

1 2 m

A
2

A
2

A
2
m''

'

A
2
1

A
1
1

A
1
m'

A
2
m''

.

.

.

.

.

.

F1(,)A
1
1
A
2
1

.

.

.

F1)(A1
m'
A
2
m'',

...

Figure 6.4: TabularFunction and NodeArguments

6.3. MAX-SUM ALGORITHM 93

F1

x1

x3

R1

F3

x3

x1

R3

T
2

T
2

T
3

x1 x3F1 x1 x3(,)
T
2

T
2

T
2

T
3

0.090
0.100

x1 x3F3 x1 x3(,)
T
2

T
2

T
2

T
3

0.005
0.125

Figure 6.5: Complete FactorGraph

6.3 Max-sum algorithm
In Section 7.1 we describes the procedures robots exploit along with the Max-
sum algorithm to solve the proposed coalitions satisfaction problem but, before
that, it is important to point out the main steps which compose this algorithm.
The Max-sum algorithm, as an iterative message passing algorithm, relies on
the messages exchange between factor graph nodes, hence we first developed
a distributed mail manager, represented by a DMailMan object. This message
manager, combined with ROS architecture and its communication mechanisms,
allowed the development of transparent procedures which make robots commu-
nicate and collaborate each other.

Indeed, according to this software transparency this section do not place
emphasis on how the mail manger has been realized or how the message are
really exchanged, but supposes the factor graph nodes can interact in message
exchanging. Hence the Max-sum procedure is here presented as composed of
four main block steps (see Figure 6.6), where only the last one properly executes
the Max-sum algorithm:

1. The startConnection;

2. The initialization;

3. The makeTabularFunction

4. The computeItaration;

94 CHAPTER 6. SOFTWARE FRAMEWORK

startConnection

initialization

makeTabularFunction

computeIterations

start

end

Figure 6.6: Max-sum procedure

In the startConnection steps robots synchronize each other first by regis-
tering to the ROS master node, then by querying this node about the position
on the network of other robots. Then in the initialization step each robot first
creates its local factor graph, which consists of a function and a variable node,
and then share it to other robots shaping the needed complete factor graph.
During this steps robots also create the zero q-messages q0

i!j

(x
i

) as required
by the first iteration of the Max-sum algorithm.

Local factor graph
creation

Checking
No

Yes

Quering

Advertising

Checking

st
ar
tC
on
ne
ct
io
n

in
iti
al
iz
at
io
n

Complete factor
graph creation

q-messages zero
initialization

Yes
No

Figure 6.7: startConnection and Initialization steps

6.3. MAX-SUM ALGORITHM 95

After both steps terminate without errors in the makeTabularFunction block
robots firsts creates the TabularFunction for their local functions, then consid-
ering the alphabets of the NodeVariables they gain from other robots and those
they possess, they evaluate each table entries. Next the procedure enters the
computeIteration block where it loops until the loop checking conditions are
satisfied (see Figure 6.8).

Tabular function
filling

Tabular function
creation

m
ak

eT
ab

ul
ar

Fu
nc

tio
n

co
m
pu
te
Ite
ra
tio
ns

Yes

No

Checking

Message
exchanging

Iteration
parameters
upgrading

Figure 6.8: makeTabularFunction and computeIteration steps

The computeIterations block is the core of the Max-sum procedure, hence let
we describe more in detail how it works, for example starting from the conditions
which make the procedure stops (the flow-chart is shown in Figure 6.12). First

define the summation U
i

=

nP
i=1

F
i

(x

i

) of Equation (5.5) as the utility the system

can gain if it stops at the ith iteration. Except for the first one, suppose the
system previously computed the ith iteration, then before continuing with the
(i+1)th iteration, it enters the checking sub-step of Figure 6.8, that is shown in
detail in Figure 6.9. The procedure controls if:

1. A fixed point is reached, that is to say the system utility is the same of
the previous iteration, i.e. U(i�1) = U

i

;

2. The maximum number of iterations scheduled has been reached.

96 CHAPTER 6. SOFTWARE FRAMEWORK

 Fixed point
checking

Iteration
number

checking

Yes

No

C
he

ck
in

g

Yes

No

Message
exchanging

End

Figure 6.9: Checking sub-step

This last point is due to the fact that robots executes on-line this algorithm
and sometimes a sub-optimal but fast-computed solution is preferred to the
optimal solution which can spend too much time and resources. Then If one of
these conditions are satisfied the Max-sum procedure ends, otherwise each robot
enters first the message exchanging, then the iteration parameters upgrading
sub-steps (see Figure 6.10 and Figure 6.11, respectively). Respect to the ith
iteration previously computed each robot:

1. Sends and receive the q-messages obtained by the previous iteration, i.e.
qi

i!j

(x
i

);

2. Builds the r-messages, i.e. r
j!i

(x
i

);

3. Sends and receives the r-messages.

Next it upgrades all the parameters needed for the (i+1)th iteration by executing
the following steps:

1. Builds the q-messages qi+1
i!j

(x
i

);

2. Builds the z-messages z
i

(x
I

);

3. Upgrades the algorithm iteration number from i to t + 1;

4. Updates the system utility according to the maximization get by Equation
(5.9).

6.3. MAX-SUM ALGORITHM 97

Iteration
parameter
upgrading

Checking

sendQMessages

receiveQMessages

buildRMessages

sendRMessages

receiveRMessagesM
es

sa
ge

 e
xc

ha
ng

in
g

Figure 6.10: Message exchanging sub-step

Checking

Message exchanging

buildQMessages buildZMessages

Ite
ra

tio
n

pa
ra

m
et

er
s

up
gr

ad
in

g

updateSystemUtility

upgradeIteration

Figure 6.11: Iteration parameters upgrading sub-step

98 CHAPTER 6. SOFTWARE FRAMEWORK

sendQMessages

receiveQMessages

Fixed point checking

Iteration number
checking

Yes

No

end

start

buildRMessages

sendRMessages

receiveRMessages

buildQMessages buildZMessages

upgradeIteration

updateSystemUtility

No

Yes

C
he

ck
in

g
M

es
sa

ge
 e

xc
ha

ng
in

g
Ite

ra
tio

n
pa

ra
m

et
er

s
up

gr
ad

in
g

Figure 6.12: ComputeIteration block

Chapter 7

Experiments

7.1 Problem solution

Since we introduced the utility functions (see Section 5.2), the theoretical frame-
work (see Section 5.3) algorithm (Section 5.4) chosen to solve the proposed
problem and we presented the main concepts of their software implementation
(see Chapter 6), we focus our attention on how robots use them to deal with
the coalition satisfaction problem.

The solution of such problem instances can be approached with a PDCA
method1, that is by iteratively executing the following steps (see Figure 7.1):

1. Establish the objectives and processes necessary to deliver results in ac-
cordance with the expected output (PLAN);

2. Implement the plan, execute the process (DO);

3. Study the actual results (measured in DO above) and compare against
the expected results (targets or goals from the PLAN) to ascertain any
differences (CHECK);

4. Request corrective actions on significant differences between actual and
planned results (ACT);

1PDCA is an iterative four-step management method used in business for the control and
continuous improvement of processes and products.

99

100 CHAPTER 7. EXPERIMENTS

Figure 7.1: PDCA

In more concrete terms, let the system start with a robots set R

n

and the
initial tasks set T

0
m

, it is supposed robots completely know each task T
j

, that
is:

1. Its position T pos

j

;

2. Its deadline service time T ser

j

;

3. Its satisfaction service T sat

j

.

Then robots, after building their local variable and function nodes x
i

and F
i

(x

i

),
have to communicate each other in order to exchange their position and create
the complete factor graph described in Section 6.2 (PLAN).

Afterwards each robot R
i

fills its x
i

with the proper alphabet and the func-
tion node with the relative F

i

(x

i

) table form by evaluating with the A-function
and getting the subset of tasks, i.e. T

0
i,m

✓ T0
m

, it can reach before they leaves
the environment. According to Section 6.3 applying the Max-sum algorithm
over the built factor graph (DO) robots:

1. Find a task allocation within a before-know maximum number of itera-
tions;

2. Form coalitions which move towards and reach the tasks;

3. Serve the task.

Within the CHECK step, robot R
i

after updating its reachable tasks set T 1
i,m

✓
T 0

i,m

in accordance with the elapsed time:

1. If T 1
i,m

= ;, it stops and attends the arrival of other reachable tasks;

2. Otherwise, it enters the ACT step.

In particular each robot which enters into this step clears:

1. The alphabet A
i

of its local variable node x
i

;

7.1. PROBLEM SOLUTION 101

2. The table form entries of its local function node F
i

(x

i

).

Then all the remaining robots start a PLAN step communicating each other to
update their positions and factor graph neighbors.

Positions
communication

Local factor graph
building

Complete factor
graph building

PL
AN

DO

Reachable tasks
computing

Task allocation
finding

Coalitions moving

Task serving

CH
EC

K

Reachable tasks
computing

Reachable
tasks finding

AC
T

Local variable
cleaning

No

Yes

EN
D

START

Local function
cleaning

Figure 7.2: System execution flow-chart

Such system has been tested using Adept2 Pioneer 3-AT robots (see Figure
7.3), small four-wheel, four-motor skid-steer robots ideal for all-terrain oper-
ation or laboratory experimentation. A Pioneer 3-AT comes complete with
one battery, emergency stop switch, wheel encoders and a micro-controller with
ARCOS firmware.

2http://www.mobilerobots.com

102 CHAPTER 7. EXPERIMENTS

Figure 7.3: Pioneer 3-AT

However this robots is simulated under ROS using its specifications e.g.
its dimension shown in Figure 7.4 or its forward/backward speed (vscalar

=

0.7 m/s) and its rotation speed (2.09

rad/s) to create an URDF3 whose graphical
representation is shown in Figure 7.5.

Dimensions (mm)

268

 222

508

381497

688

277

Figure 7.4: Pioneer 3-AT dimensions

Figure 7.5: Simulated pioneer 3-AT

Consequently the environment itself is simulated within ROS middleware
under Gazebo4, a 3D multi-robot simulator with dynamics, capable of simulating

3The Unified Robot Description Format (URDF) is an XML format for representing a
robot model.

4http://gazebosim.org/

7.1. PROBLEM SOLUTION 103

articulated robot in complex and realistic environments, combined with another
3D visualization environment for robots, called rviz (respectively see Figure 7.6
and Figure 7.7).

Figure 7.6: Gazebo environment

Figure 7.7: Rviz environment

We represent here the instance of Figure 5.1, whose robot parameters are as
follows:

104 CHAPTER 7. EXPERIMENTS

1. Rpos

1 = (1, 4, 0), Rser

1 = 1;

2. Rpos

2 = (3, 4, ⇡), Rser

2 = 1;

3. Rpos

3 =

�
4, 3, ⇡

2

�
, Rser

3 = 1;

4. Rpos

4 =

�
5, 3, 3⇡

2

�
, Rser

4 = 1.

The system in Figure 7.8 shows three tasks, i.e. T1, T2 and T3 with parameters:

1. T pos

1 =

�
1, 1, ⇡

4

�
, T ser

1 = 7 and T sat

1 = 1;

2. T pos

2 =

�
3, 5, 3⇡

1

�
, T ser

2 = 9.5 and T sat

1 = 1.5;

3. T pos

3 =

�
5, 1, ⇡

2

�
, T ser

3 = 5.5 and T sat

1 = 1.

Figure 7.8: Simulated coordination instance

Then after applying the PDCA cycle, all tasks colors change from red to yel-
low, in other words they are all chosen by a robot and wait for service (see
Figure 7.9): both R1 and R3, the green and red robots, choose to serve and
positively accomplish task T2, while the blue robot R2 and the the orange robot
R4 respectively choose task T1 and T3 (see Figure 7.10).

7.1. PROBLEM SOLUTION 105

Figure 7.9: Robot’s chosen tasks

Figure 7.10: Coalition task serving

Another simulation example is given by that of FIgure 7.11 where there are
four robots but only two tasks which however require the intervention of the
entire system (Table 7.1a and Table 7.1b summarize the whole system parame-
ters).

106 CHAPTER 7. EXPERIMENTS

R
i

Rpos

i

Rser

i

1 (1, 6, 0.2, 0) 1

2

�
4, 3, 0.2, ⇡

2

�
1

3

�
6, 4, 0.2, 3⇡

4

�
1

4 (8, 5, 0.2, ⇡) 1

(a) Robot parameters

T
i

T pos

i

T ser

i

T sat

i

1 (1, 6, 0.2, 0) 14 2

2

�
4, 3, 0.2, ⇡

2

�
12.5 1.5

(b) Task parameters

Indeed the task satisfaction levels are such that one robot cannot achieve the
goal: task T2 with its deadline service time equal to 12.15 and 1.5 satisfaction
service can be accomplished only by R4 and R3, the first two fastest robots. In
order to gain an higher utility the system can try to accomplish also task T1,
but suppose robots R4 and R3 are unavailable, the only possibility is to assign
it to robots R1 and R2. The algorithm makes this choice to optimize the total
utility whose result is shown in Figure 7.12.

Figure 7.11: Task allocation instance under Gazebo

7.1. PROBLEM SOLUTION 107

Figure 7.12: Task allocation solution under Gazebo

7.1.1 Agent Satisfaction

According to Section 2.7 we implemented a version of Algorithm 2.10: while
the A-function is kept as in our proposed solution, the coalition utility function
becomes, i.e. aggregate function

V
j

(C) = F (C, T
j

) ,

that we recall represents Rser

C

, the total amount of service coalition C can offer
to task T

j

. With these modifications the algorithm undergoes some changes:
the system objective relative to task T

j

is only represented by the satisfaction
service T ser

j

, while the self evaluations of R
i

respect to T
j

are computed ac-
cording to Equation (5.1), which evaluates the arrival time to that task. Even
if partially modified the pseudocode shown in Algorithm 7.1 still represents a
greedy approach, which as such can leads to sub-optimal solutions, while the
Max-sum algorithm guarantee optimality.

108 CHAPTER 7. EXPERIMENTS

R1

T2

R2 R3

R4
T1

T3
(0,0)

Figure 7.13: Agent satisfaction algorithm failure

For instance in the previous scenario of Figure 7.8 the resulted assignment is
different from the one given by the Max-sum algorithm. In detail T3 with a T

sat
3

T

ser
3

ratio equal to 0.18 is the task with the highest priority and is served and satisfied
by robot R4 (here this is the same of our approach). Then the task with higher
priority is T2, where the faster robots which can satisfy the task are in order:
R1, R2 and finally R3, which arrive at times 4.84, 7.52 and 8.38. In this case,
because of the satisfaction service equal to 1.5, two robots are needed, so R1

and R2 are subsequently assigned to that task. As Figure 7.13 the last task is
T1, but the only available robot is R3 which can reach the task only at time 6.67,
after its deadline time service, making this task be unserved. Indeed differently
from the Max-sum algorithm, this procedure has assigned robots to tasks with
greedy choices without considering robots as a whole system, so that in some
way the algorithm puts robots’ satisfactions before system’s performance.

7.1. PROBLEM SOLUTION 109

Algorithm 7.1 Modified Agent satisfaction
1. Input: Tasks, Agents, SystemObjectives, SelfEvaluations
2. Output: TaskToExecute
3. SortedTasks Sort Tasks according to T

sat
i

T

ser
i

, where higher values correspond
to higher priorities
4. while SortedTasks 6= ; do
5. Task Pop(SortedTasks)
6. SortedAgents Sort Agents given Self Evaluation for Task, where faster arrivals
correspond to higher priorities
7. AgentSatisfaction 0

8. AssignedAgents(Task) ;
9. while AgentSatisfaction < SystemObjectives(Task) ^ SortedAgents 6= ; do
10. AssignedAgents(Task) AssignedAgents(Task) [Pop(SortedAgents)
11. AgentSatisfaction Aggregate(AssignedAgents(Task))
12. end while
13. if AgentSatisfaction < SystemObjectives(Task) then
14. AssignedAgents(Task) ;
15. else
16. Agents Agents \ AssignedAgents(Task)
17. end if
18. if mySelf 2 AssignedAgents(Task) then
19. TaskToExecute Task
20. return TaskToExecute
21. end if
22. end while
23. return NoTask

The same result is gotten if this algorithm is applied to the problem instance
of Figure 7.11. Indeed in this case T1 is the task with the highest priority, hence
Algorithm 7.1 first assign R1 and R4 to accomplish that task, then as Figure
7.14 shows, R3 and R1 are the only available robots, which cannot reach T2 in
time.

110 CHAPTER 7. EXPERIMENTS

R1
R4

0 9.32 T
ser
1 = 14

0 10.75

T
ser
2 = 12.50

R2

R3

12.01 13.45

T1

T2
R4

11.49

R3

12.50

R1

13.43

R2

Figure 7.14: Arrival times to T1 and T2

7.2 A lower level of coordination
The main assumption made so far is that robots safety reach their chosen tasks,
i.e. there are no collisions and the time evaluated by the A-function is a good
estimation of the time needed by robots to arrive at their chosen task position.
However, considering that such assumption is not borne out of the facts and as
it is stated in the state of the art, that coordination in multi-robot systems is
a such complex and challenging task that composite architectures are generally
needed (see Chapter 4), a lower level of coordination, i.e a collisions avoidance
is here introduced [3].

Before discussing how the collisions are avoided in the proposed system, let
briefly introduce how in literature the problem is handled. The collisions avoid-
ance problem in a static and multi-robot known environment can be dealt with a
reactive or a predictive approach: the former is a class of methods that permits
robots to avoid collisions on a dynamic environment without explicit commu-
nication, such as the Dynamic Window Approach [21], while the latter has his
most recent extension on the Optimal Reciprocal Collision Avoidance (ORCA)
[22], which can be used to simulate thousands of moving agents without colli-
sions and achieve this objective without communication. In turn the predictive
approaches can be addressed either with coupled or decoupled approaches: the
former guarantee completeness but generate an exponential dependence on the
number of robots and use a centralized computation [23], the latter allow robots
to compute their own paths and then resolve conflicts, so that feasible solutions
are usually incomplete, but computed in a decentralized and faster way.

Hence consider R

m

, i.e. a set of robots with a second order dynamics rule
by the time constraint

·
x

i

(t) = f (x
i

(t) , u
i

) ,

7.2. A LOWER LEVEL OF COORDINATION 111

where g
⇣
x

i

(t) ,
·
x

i

(t)
⌘

 0, 8t 2 R, x
i

(t) and u
i

respectively represent a system
state and a robot control and functions f and g are both smooth. Let E ✓ R2 be
the environment where the robot operates and FE ✓ E the free environment,
i.e. the free space of that environment, then given a point p 2 R2, for each robot
R

i

:

1. f
P

(R
i

, p) is called the footprint on the point p, i.e. the subset of FE
occupied by the robot;

2. c (R
i

) ✓ R2 is the center of that footprint;

Therefore we call the safe environment, which is represented with SE
i

, the 2D
local subspace of FE where robot R

i

can perceive and move, or more formally
every c (R

i

) such that f
P

(R
i

, c (R
i

)) ✓ FE. For instance in Figure 7.15...
Now suppose that each robot R

i

starts possessing a local goal list LG
i

filled
up with 2D space points p 2 SE

i

and that R
i

has to reach a global goal G
i

by
passing through a sequence of local goals. Thus after robot R

i

has reached a
chosen local goal by covering a linear trajectory at v

i

2 V
i

speed, first it has to
compute a new list LG

i

, next it has to choose a new local goal lg
i

2 LG
i

and a
velocity v

i

2 V
i

such that, until it does not reach it, 8t and 8i 6= j

(
f

P

(R
i

, v
i

· t) 2 SE
i

f
P

(R
i

, v
i

· t) \ f
P

(R
i

, v
j

· t) 6= ;
.

ENVIRONMENT

SAFE ENVIRONMENT
OBSTACLE

FOOTPRINT

Figure 7.15: An example of E, FE, SE
i

112 CHAPTER 7. EXPERIMENTS

The presented problem is therefore solved by means of the collisions avoiding
system shown in Figure 7.16 which execute a planning cycle composed of the
following modules:

1. The Environment Model Builder ;

2. The Local Goals Generator ;

3. The Communication framework ;

4. The Motion Planner;

5. The Controller.

Controller Motion PlannerRobot

Enviroment Model
Builder

Local Goals
GeneratorSense

Motion
commands

Other
Robots

Selected local goalPath

ROBOT CONTROLLER

SE i

SE i

Cooperation
framework

Enviroment

Feasable
loacal goals

Figure 7.16: Collisions avoidance system

In detail the Environment Model Builder retrieves sensor and odometry envi-
ronment data, which uses to compute a costmap5 and sends the evaluated self
environment to the Local Goals Generator module, which produces as output a
set of feasible6 local goals around the robot position after taking into account the
robot global goal. Then in the Cooperation framework each robot first broadcast
its position, then compares it with the ones received by other teammates and
according to these comparisons it can choose to:

1. Reach its local goal because it is not near to other robots;

2. Cooperate with its closer teammates which are within a cooperationDis-
tance radius, e.g. 2 meters, because some collisions can arise.

The former case is the most interesting one because we choose again to rely
on the Max-sum algorithm over the graph mathematical framework to assure
a cooperative collisions avoidance approach. Even for this problem solution,

5A costmap is a discrete grid inflated with costs obtained from environment data.
6With feasible we means that for sure there is a path between the robot position and the

local goal.

7.2. A LOWER LEVEL OF COORDINATION 113

each robot R
i

possess a local variable node x
i

and a local function node F
i

(x

i

),
where:

1. The variable x
i

represents the paths towards the candidate local goals;

2. The function F
i

(x

i

):

(a) computes the minimum distance between all possible local goals, log-
arithmically weighted the Euclidean distance to the global goal, if
there are no collisions;

(b) is set to a small positive ✏ value, otherwise.

However in this case the factor graph is not necessary a complete factor graph as
in Section 6.2 because the concept of neighboring between nodes is here related
to the distance between robots. In other words, consider the situation presented
in Figure 7.17 where robots R1, R2 R3 and R4 have to reach global goal G1,
G2, G3 and G4, respectively. In particular robot R1 is not near enough to other
robots, hence do not create any factor graph and consequently do not cooperate
within the system, while both R2 and R4 are within the cooperation area of R3

they have to interact with.

R1

G4

R2

R3 R4

G1 G3

(0,0)

G2

cooperation distance radius

Figure 7.17: Example of cooperative collisions avoidance

Therefore the Max-sum executes the messages exchanging over the factor
graph of Figure 7.18 with the result of assigning such local goals to R2, R3 and
R4 such that the system utility U = F2 (x2, x3) + F3 (x2, x3, x4) + F4 (x3, x4) is
maximized. Respect to other approaches the Max-sum algorithm plays a leading
role on exploiting as best as possible to the trade off between avoiding collisions
and getting closer to the global goal G

i

represented by function F
i

(x

i

). Indeed
in the example of Figure 7.19 we apply:

1. A greedy algorithm based on the global goal distance;

114 CHAPTER 7. EXPERIMENTS

2. A general collisions avoiding algorithm;

3. The Max-sum algorithm.

As result the greedy algorithm fails and leads robots to a collision, the collisions
avoiding algorithm positive handles the collision, but makes robots moving away
from their global goals, while the Max-sum algorithm chooses the path which
mediate the other algorithms’ goals.

F2

F3x2

x3

R2 R3

F4

x4

R4

Figure 7.18: Example of a collisions avoidance factor graph

R1

R2

R2

R1

R1

R1

R2

R2

Max-SumCollision avoidingGreedy

Collide!

G1

G2

Figure 7.19: Collisions avoidance algorithms comparisons

7.2. A LOWER LEVEL OF COORDINATION 115

Before proceeding with the description of left system modules, i.e. the Mo-
tion planner and Controller, let first define SD as the safe distance (e.g. 0.5
meters) the space needed by the robot to safely carry out on of its ICS7 es-
cape maneuverers, i.e. if a robots has to cover a distance of length L � SD
it will move for that length minus the safe distance. Nevertheless if recovery
actions are needed, the robot first try to slowly rotate to escape obstacles, even-
tually looking for other path. Then the Motion Planner first computes a path
towards the selected local goal using the A? algorithm [25] next it cover that
distance with the Dynamic Window approach shown in Algorithm 7.2, which
fundamentally:

1. Computes the goals directly reachable from the current robot position;

(a) Selects the safe8 goals around robot position not near to useless goals;

2. If at least a goal is found, it chooses that one which minimizes the distance
to the global goal, otherwise it takes recovery actions.

Algorithm 7.2 High level navigation procedure

1 geo s t ru c tu r e gs ;
2 p o s i t i o n g loba lGoa l ;
3 while (g loba lGoa l i s not reached){
4 currPos = getCurrentPosition () ;
5 gs .add(currPos) ;
6 gs . find (currPos) . type = GOOD;
7 l o ca lGoa l s = computeGoalsFrom(currPos) ;
8 i f (l o c a lGoa l s . s ize () > 0){
9 newLocalGoal = selectBest (l o c a lGoa l s) ;

10 gs .add(newLocalGoal) ;
11 moveTo(newLocalGoal) ;
12 } else {
13 gs . find (currPos) . type = USELESS ;
14 recoveryGoal = gs . findGoodNeighbour (currPos) ;
15 i f (not s e t recoveryGoal)
16 contingencyPlan () ;
17 else

18 moveTo(recoveryGoal) ;
19 }
20 }

7.2.1 Coordinated collisions avoidance

Since both collisions avoidance problem and coalitions satisfaction problems
rely on the Max-sum algorithm executed over the same framework, i.e. a factor
graph, a system, where both the presented problems solutions coexist, is here
described introducing a different logical point of view. Indeed a typical solution,

7A state is an Inevitable Collision State (ICS) [24] if every next state involves a collision.
8A goal is defined as safe when the trajectory towards it does not make the robots collide.

116 CHAPTER 7. EXPERIMENTS

which involves the integration of these systems can be that of the coalitions
satisfaction problem (see Section 7.1), with the difference that in the DO step
robots move towards and serve tasks with the so called cooperative collisions
avoidance algorithm. However, since time is a key feature in our task allocation
solution, such approach arose some problems during experiments because even
if robots chose the optimal task allocation and avoided collisions at the same
time, the time spent on coordinating and cooperating thorough the Max-sum
sometimes was not suitable for real-time systems and they arrived late on the
tasks positions.

This is the main reason that led the development of an hybrid framework,
we called coordinated collisions avoidance, where greedy and sub-optimal ap-
proaches are combined together, so that the execution scheme shown in Figure
7.2 becomes the PDCA of FIgure 7.20. Given the assumption the system starts
with a set R

n

of robots and an initial tasks set T

0
m

, robots do not spend the
same time in the PLAN-DO steps because, considering their own capacities on
satisfying tasks, they adopt a simpler and faster greedy choice. In fact in the
PLAN step for each task T

j

and independently from other teammates, each
robot R

i

:

1. Evaluates the A-function f j

i

;

2. Determines the coalition utility function V
j

({R
i

}).

Next in the DO step each robot first applies the greedy choice on the computed
values, i.e. it sorts them with an increasing order and chooses the highest one,
then it move towards the relative chosen task. In this way each robot satisfy
itself, but that does not mean the system as a whole is satisfied and some tasks
cannot be considered at all.

7.2. A LOWER LEVEL OF COORDINATION 117

A-function computing

Singleton coalition
function evaluating

DO
CH

EC
K

AC
T

PL
AN

Recoverable
tasks

reaching

Singleton coalition
moving

START
Local task allocations

broadcast

Global tasks
allocation checking

Task allocation
recovering

No

Yes

Task allocation
finding

Collisions avoiding
moving

Reachable
task finding

Task serving

END

Yes

No

Greedy task selection

Local factor graph
building

Task neighbors
updating

Neighbors factor
graph building

Figure 7.20: Coordinated collision avoidance

Indeed, in order to adjust such undesired situation, the CHECK step is re-
designed in such a way some robots decide to coordinate and cooperate, while
others continue standalone: such decision is made by each robot after the broad-
casting of their chosen task, so that the whole system knows where each robot
has decided to move. First each robot R

i

considers as neighbor each robot within
the cooperation distance radius creating the relative factor graph, moreover if
a robot is also within the emergency distance radius demer

i,j

of an unchosen task
T

j

in the system, where

�
T ser

j

� Rser

i

�
� ⇡

vangular

i

� maxBlockNum

vscalar

i

!
· vscalar

i

,

i.e. the maximum distance which permits a robot to reach and serve the task
in time, it updates its factor graph communicating with the other robots within
this task area.

118 CHAPTER 7. EXPERIMENTS

After that in the ACT step, if necessary, robots carry out a task allocation
step and eventually change their initial chosen task in favor of a task previously
unconsidered, and avoid collisions at the same time. Then if there are other tasks
in the environment to be satisfied a robot enters a new PLAN step, otherwise
it ends its system execution.

For instance let we take in consideration the situation described in Figure
7.17, where goals G

i

are now tasks T
i

to be accomplished. Without entering in
details, also suppose robots greedily choose task as follows: robots R1 and R2

choose task T2 while task T3 is chosen by robots R3 and R4.

Figure 7.21: Example of coordinated collision avoidance

As stated before some tasks are not chosen at all, i.e. T1 and T4, so robots
have to update the system factor graph connections in order to handle all task:
robots R3 and R4 are linked, because they both desire to accomplish task T3 and
for the same reason robots R1 and R2 are connected because of T2. However both
robot R1 and R3 are within the emergency area of T4 and the same fact occurs
with regard to robots R1 and R2 and task T1, hence getting the neighborhood
of Figure 7.22.

F1

F3x1

x3

R1 R3

F4

x4

R4

F2

x2

R2

Figure 7.22: Example of a coordinated collision avoidance factor graph

7.3. CONCLUSIONS 119

7.3 Conclusions
As experiments have shown the Max-sum algorithm applied over the proposed
factor graph framework, where each robot has its own function and variable
nodes, is very attractive for the coalition formation problem. Such procedure
in a distributive manner but with a few messages exchange guarantees optimal
solutions and by the periodic updating of the system neighborhood also the fault
tolerance.

However this system, which relies on time-based utility functions, needed
to be completed by a lower level of coordination, i.e. the robotics collision
avoidance, which could make robots reach their chosen task without collisions
and navigation faults. This is the reason we integrate our high level coordination
with a kinodynamic but distributed collision avoidance system [3], we called
cooperative collision avoidance system.

These systems are merged together thank to their common framework, the
factor graph, and the distributed procedure, the Max-sum algorithm, however it
was interesting to introduce and develop a theoretical architecture completely
different from those studied in the state of the art, we called coordinated collision
avoidance.

Such hybrid structure has permitted to trade off between greedy approaches
and optimal solutions algorithms, making robots able to avoid collisions, rapidly
choose tasks and optimizing those choices at the same time. However all carried
out experiments are simulated within the Gazebo simulator over ROS middle-
ware, hence future works could concern the tests and analysis of the proposed
system on real Pioneer 3AT robots and real-life environments.

120 CHAPTER 7. EXPERIMENTS

Acknowledgements
The author wishes to thank Michele Roncalli for giving some important features
in order to develop the Max-sum algorithm and Nicolò Boscolo for helping the
implementation of such distributing algorithm and giving a kinodynamic col-
lision avoidance system. Moreover the author also wishes to thank Matteo
Munaro and Stefano Micheletto for giving precious advise about ROS middle-
ware.

Bibliography

[1] O. Shehory and S. Kraus. Methods for task allocation via agent
coalition formation, Artificial Intelligence, Volume 101 (1–2), 1998,
165–200.

[2] T. Rahwan, S. D. Ramchurn, A. Giovannucci, V. D. Dang and
N. R. Jennings. Anytime optimal coalition structure generation, in
Proceeding of the 22nd conference on artificial intelligence, AAAI-
07, Vancouver, Canada, 2007, 1184–1190.

[3] N. Boscolo, R. De Battisti, M. Munaro, A. Farinelli and E. Pagello.
A distributed kinodynamic collision avoidance system under ROS,
in Proceedings of 12th Int. Conference on Intelligent Autonomous
Systems (IAS-12), JeJu Island, Korea, June 26-29, 2012.

[4] C. Candea, L. Iocchi, H. Hu, L. Iocchi, D. Nardi and M. Piag-
gio. Coordination in Multi-Agent RoboCup Teams, Robotics and
Autonomous Systems, 2001, Volume 36(2-3), 67-86.

[5] L. Iocchi, D. Nardi, M. Piaggio and A. Sgorbissa. Distributed Co-
ordination in Heterogeneous Multi-Robot Systems, Autonomous
Robots, 2003, Volume 15(2), 155-168.

[6] E. Pagello, A. D’Angelo, C. Ferrari, R. Polesel, R. Rosati and
A. Speranzon. Emergent Behaviors of a Robot Team Performing
Cooperative Tasks, Advanced Robotics, 2003, Volume 17(1), 3-19.

[7] E. Pagello, A. D’Angelo and E. Menegatti. Cooperation Issues and
Distributed Sensing for Multi-Robot Systems, Proceedings of the
IEEE, 2006, Volume 94(7), 1370-1383.

[8] L. Chaimowicz, R. Kumar and M. Campos. A Mechanism for
Dynamic Coordination of Multiple Robots, Autonomous Robots,
2004, Volume 17(1), 7-21.

[9] A. Farinelli, G. Grisetti, L. Iocchi and D.Nardi. Coordination in
dynamic environments with constraints on resources, IROSWK02,
Dept. of Informatics and Systems, University "La Sapienza", 2002.

121

122 BIBLIOGRAPHY

[10] O. Zweigle, R. Lafrenz, T. Buchheim, H. Rajaie, F. Schreiber and
P. Levi. Cooperative Agent Behaviour Based on Special Interaction
Nets, Intelligent Autonomous Systems 9, 2006, Volume 0, 651-659.

[11] A. Farinelli, H. Fujii, N. Tomoyasu, M. Takahashi, A. D’Angelo
and E. Pagello. Cooperative control through objective achievement,
Robotics and Autonomous Systems, 2010, Volume 58(7), 910-920.

[12] B. Gerkey and M. Matarić. On Role Allocation in RoboCup, Com-
puter Science, 2004, Volume 3020/2004, 43-53.

[13] B. Gerkey and M. Matarić. Are (explicit) multi-robot coordination
and multi-agent coordination really so different?, Proceedings of
the AAAI Spring Symposium on Bridging the Multi-Agent and
Multi-Robotic Research Gap, 2004, 1-3.

[14] B. Gerkey. On multi-robot task allocation, Technical Report
CRES-03-012, University of Southern California, 2003.

[15] M. Matarić, G. Sukhatme, E. Ostergaard. Multi-Robot Task Al-
location in Uncertain Environments Autonomous Robots, 2003,
Volume 14(2-3), 255-263.

[13] M. Isik, F. Stulp, G. Mayer and H. Utz. Coordination without
Negotiation in Teams of Heterogeneous Robots, Computer Science,
2007, Volume 4434/2007, 355-362.

[14] N. Lau, L. Lopes, G. Corrente, N. Filipe and R. Sequeira. Robot
team coordination using dynamic role and positioning assignment
and role based setplays, Mechatronics, 2010.

[15] F. R. Kschischang, B. J. Frey and H. Loeliger. Factor Graphs
and the Sum-Product Algorithm, IEEE TRANSACTIONS ON IN-
FORMATION THEORY, 1998, Volume 47, 498-519.

[16] S. M. Aji and R. J. McEliece. The generalized distributive law,
IEEE Transactions on Information Theory, 2000, Volume 46(2),
325-343.

[17] S. D. Ramchurn, A. Farinelli, K. S. Macarthur and N. R. Jennings.
Decentralized Coordination in RoboCup Rescue, The Computer
Journal, 2010, Volume 53(9), 1447-1461.

[18] B. J. Frey and D. Dueck. Clustering by passing messages between
data points, Science 315(5814), 2007, 972–976.

[19] A. Farinelli, A. Rogers, A. Petcu and N.R. Jennings. Decentralized
coordination of low-power embedded devices using the max-sum
algorithm, Proceedings of the Seventh International Conference on
Autonomous Agents and Multiagent Systems, 2008, 639–646.

BIBLIOGRAPHY 123

[20] A. Farinelli, A. Rogers and N. Jennings. Bounded Approximate De-
centralized Coordination using the Max-Sum Algorithm, IJCAI-09
Workshop on Distributed Constraint Reasoning (DCR), Pasadena,
California, USA, 46-59.

[21] O. Brock and O. Khatib. High-speed navigation using the global
dynamic window approach, Robotics and Automation, 1999, Pro-
ceedings 1999 IEEE International Conference, Volume 1, 1999,
341–346.

[22] J. Van Den Berg, S. Guy, M. Lin and D. Manocha. Reciprocal
n-body collision avoidance, Robotics Research, 2011, 3–19.

[23] C. Clark, S. M. Rock and J. C. Latombe. Motion planning for
multiple mobile robot systems using dynamic networks, IEEE Int.
Conference on Robotics and Automation, 2003, 4222–4227.

[24] T. Fraichard and H. Asama. Inevitable collision states. A step to-
wards safer robots?, Intelligent Robots and Systems, 2003, (IROS
2003), Proceedings 2003 IEEE/RSJ International Conference on,
Volume 1(1), 2003, 388–393.

[25] P. Hart, N. Nilsson and B. Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths, IEEE Transactions on
Systems Science and Cybernetics, Volume 4(2), 1968, 100–107.

[26] J. Bruno, E. G. Coffman and R. Sethi. Scheduling independent
tasks to reduce mean finishing time, Commun. ACM 17(7), 1974,
382-387.

	I State of the art
	The importance of coordination
	Robocup
	Middle Size League

	Dynamic role assignment
	Role assignment
	Formation selection
	Q function

	Optimal assignment problem
	Solution approaches
	Sub optimal approaches

	Linear programming model
	Economic game
	Stable marriage problem
	Network flow problem
	Scheduling problem
	Coalition formation problem

	Implicit coordination
	Task allocation strategies
	Alarm handling problem

	Belief communication
	Experiments results

	Implicit coordination in RoboCup
	Role assignment

	Heterogeneous architectures
	Schema-based framework
	Ball exchanging

	Hybrid automata
	Resources constraints
	Two-defender rule protocol

	Interaction Nets
	Passplay

	II Coalition formation for task assignment in multi-robot system
	Coalitions satisfaction
	Problem statement
	Utility functions
	Coalition utility function

	Factor graph and GDL
	Max-sum algorithm
	Bounded Max-sum algorithm

	Software framework
	ROS
	Factor graph
	Max-sum algorithm

	Experiments
	Problem solution
	Agent Satisfaction

	A lower level of coordination
	Coordinated collisions avoidance

	Conclusions

