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Abstract 

exploratory data analysis (EDA) is of the utmost importance in the domain of lung cancer imaging-based 

spatial transcriptomics, as it enables the comprehension of enormous datasets. Popular EDA techniques 

such as differential expression analysis, visualization, clustering, and dimensionality reduction were 

applicable to this study. The maintenance of data structure is facilitated by the dimension reduction 

process, while the identification of intriguing patterns and regions of gene expression is aided by 

visualization. To identify clusters of malignant cells in lung tissue samples, the utilization of clustering 

algorithms such as Louvain can provide significant benefits. A more comprehensive understanding of 

signalling pathways and biomarkers can be attained by employing differential expression analysis, a 

technique that quantifies the expression of genes in specific regions. Following workflow analysis, six 

genes were identified in the current study; of these, MALAT demonstrated the highest level of 

expression in cluster four, while CD163 exhibited the lowest level of expression in cluster one. 
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1.Introduction 

1.1. The relationship between cells and transcription 

1.1.2. Cellular varieties 

The prevalence of cellular heterogeneity within a population of a particular cell line has been 

demonstrated [1]. Numerous characteristics, functions, and activities of organ tissue are dependent 

on the presence of highly specialized cell types. Hence, the ability to isolate distinct cell populations 

from a single tissue and analyse the transcriptomes of individual cell populations from any given 

tissue is crucial for comprehending the mechanisms by which cells regulate development, growth, 

and stress adaptation. Different types of cells appear to be present in the bodies of multicellular 

organisms. It is estimated that the human body contains approximately 210 distinct types of cells [2]. 

Nevertheless, research indicates that even a solitary cell type is extraordinarily diverse, indicating 

that such variations may result in alterations in function, regulation, or morphology in response to 

environmental stimuli and gene expression. Cell types are regarded as the fundamental functional 

units of various organs, including the brain, lung, and muscle, in molecular biology [3]. With the 

intention of achieving this, the physiological behaviour, anatomical shape, and functional molecular 

properties of any given organ are extraordinarily diverse. 

1.1.3. The RNA profile. 

Gene expression or RNA profiling in molecular biology pertains to the real-time assessment of the 

collective activity of tens of thousands of genes. RNA profiling experiments frequently entail the 

assessment of the relative expression of RNAs that vary in expression across distinct developmental 

stages, organs, and even cell types within a single tissue. It is noteworthy that RNA profiling has 

evolved into an indispensable instrument for various purposes, including drug discovery. The 

utilization of expression profiling facilitated the correlation between genomic and omics data, 

particularly transcriptomic data. 

Undoubtedly, the capacity to assess the worldwide expression of tens of thousands of genes in 

specific cell types within a single experiment will enable scientists to identify not only novel cell types 

but also differentially expressed genes (DEGs) that are integral to the experimental design. Broadly 

speaking, RNA profiling techniques have the capacity to surmount inherent constraints that are 

inherent in bulk cell measurements. In pursuit of this objective, computational frameworks that 

derive cell type-specific gene expression from RNA profiles are gaining popularity [4]. 

Notwithstanding the fact that innovative RNA profiling technologies can illuminate the distinction 

between cell types. 
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1.1.4. High-throughput omics of single cells 

Omics is, in broad terms, the systematic observation and analysis of genes, transcripts, proteins, 

metabolites, and lipids [5]. The utilization of single-cell omics and other microscale molecular 

biological tools has enabled the investigation of specific cell types within a population of other cell 

types from an omics standpoint [6]. Owing to recent developments in single-cell omics data mining, 

aberrant molecular pathways linked to diseases like cancer cells have come to light. As an illustration, 

in the field of cancer research, single-cell genomic sequencing has identified uncommon mutations 

that are linked to the development of tumours [7, 8]. Despite the progress made in early omics 

technologies over the past few decades, the current focus of omics technologies is single-cell 

analysis, which involves observing genetic variations between individual cells as opposed to relying 

on the stochastic average obscured by global bulk measurements [5]. The scholarly community has 

been significantly transformed regarding the correlation between gene regulation mechanisms and 

cell type through the utilization of population-level expression measurements. Nevertheless, single-

cell experiments have demonstrated that the RNA profile of specific cells can vary significantly from 

the average of the entire population [9]. 

 

1.1.4.1. The study of single-cell transcriptomics 

The utilization of single-cell transcriptomics has brought about significant advancements in 

numerous domains of molecular biology since its initial application [10]. Following the work of Tang 

and Barbacioru [10], numerous additional protocols for single-cell transcriptomics surfaced, such as 

SMART-seq/SMART-seq2 [14, 15], STRT-seq [11], CEL-seq [12], MARS-seq [13], and MARS-seq [13]. 

These protocols varied in terms of amplification technology, transcript coverage, and the degree of 

liquid handling in plates being automated [16]. 

While its initial application was limited to mice, single-cell transcriptomic technology subsequently 

evolved into a valuable tool for comprehending cells and tissues in various model organisms, 

including zebrafish, nematodes, and others. Following the introduction of single-cell transcriptomic 

technology by nine years, two research groups issued high-throughput compilations of murine 

tissues [17, 18]. Research has demonstrated that single-cell transcriptomes offer a distinct advantage 

in terms of identifying rare cell types, including cancerous cells, and provide a high-resolution 

measurement of cell identity [19, 20]. Specific events that characterized the major developments in 

the study of omics data are summarized in Table 1. 

 
 
Major events in evolution of prequel technique 
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1969 Radioactive ISH of rRNA 

1973 Radioactive ISH of globin mRNA 

1977 FISH of rRNA 

1982 FISH of action mRNA-immunological 

FISH with biotin labelled prob 

1987 Drosophila Enhancer Trap 

1989 WM ISH in Drosophila-ES cell enhancer 

and gene trap in mice 

1991 In situ reporter in C.elagans 

Major prequel WM ISH atlases 

1994 Scaling up MW ISH in C.elagans 

1995 First mouse MW ISH screening 

1998 AXeIDB:1765 clones in Xenopus Laevis 

1999 Mouse,GXD 

2000 Halocynthia roretzi:MAGEST 

2001 C.elegans NEXTDB-Ciona 

intestinalis:Ghost 

2002 Gene paint-Melanogaster BDGP in situ 

2003 Zebrafish: FIN- Oryzias Latipes:MEPD 

2004 Kitchen: GEISHA 

2005 First miRNA atlas 

2006 Allen brain atlas-BDTNP: toward single 

cell resolution 

2007 Xenopus Laevis: Xenbase- Fly FISH: 

Drosophila mRNA at subcellular level 

2011 Mouse genitourinary tract: GUDMAP 

2017 Hamn and mouse lung: Lung map 

2020 T.guttata:ZEBrA 

Major events in evolution of current-era technique 

1976 LCM 

1989 Single cell cDNA amplification 

1987 Ligase SNV detection 
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1989 FISH with combinatorial barcode 

1995 cDNA microarray 

1996 Commercial LCM 

1998 smFISH- Solexa founded 

1999 LCM+microarray 

2002 Combinatorial FISH for mRNA 

2008 RNA-seq 

2012 Tommy-array mouse brain 

2013 High throughput RCA+ISS 

2014 seqFISH 

2015 MERFISH 

2016 Spatial transcriptomics 

2019 GeoMX DSP 

Table 1 Table 1 timeline major events including: Major events in evolution of prequel technique, Major prequel WM ISH 

atlases, and Major events in evolution of current-era technique[74]. 

 

1.1.5. Spatial transcriptomics 

The spatial arrangement of a particular cell within a distinct tissue type, in comparison to adjacent 

cells and extracellular structures, offers valuable insights into the determination of cellular 

phenotype, tissue function, and cell fate. Novel spatial transcriptomics techniques exhibit significant 

potential in the concurrent profiling of thousands to hundreds of genes at the subcellular level. 

While spatial transcriptomics does produce cellular transcriptomes and spatial information 

pertaining to those transcriptomes within a specific tissue type, it does not produce data on 

individual cells. To examine the relationship between cell differentiation and morphogenesis, Mantri 

and Scuderi [21] utilized spatial transcriptomics in conjunction with single-cell technique. Although 

spatial transcriptomic methods have been in use for nearly a decade, their commercialization has 

only occurred more recently. Spatial transcriptomics has been rendered more accessible through the 

availability of several commercial spatial RNA-seq technologies, including the 10X-Visium (10X 

Genomics), CosMx (Nanostring Technologies), and MERSCOPE (Vizgen). 

Spatial transcriptomics has thus far been applied to the characterization of specific cells and cell 

types. Grauel and Nguyen [22] conducted research on breast cancer by employing droplet-based 

single-cell RNA-seq to profile cancer sections from diverse clinical subtypes and using Visium. This 

study's findings regarding gene expression led to the identification of tissue regions that correspond 

to stromal, immune, and tumor cells. It is noteworthy that the computational data corroborated 
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pathologist annotations satisfactorily. Thousands of genes were characterized with this data without 

the need for manual annotation. 

Multicellular organisms comprise an extensive variety of cell types that construct organs and tissues 

in a spatially diverse and well-defined body plan [23]. To gain access to multicellular systems, it is 

necessary to comprehend the processes that spatial heterogeneity governs [24]. Over the past thirty 

years, numerous in situ and in vivo techniques have been created with the purpose of deciphering 

spatial biological information [25]. In the past, subcellular labeling of nucleic acids or proteins 

required the use of complementary nucleotide probes or antibodies that were enzymatically or 

fluorescently linked [26]. While these techniques have significantly advanced our comprehension of 

fine-scale cellular events by elucidating biological processes [25, 26], their restricted throughput and 

inferior resolution when compared to sequencing-based methods prevent them from revealing the 

subcellular location of a target [25]. In addition, certain in situ techniques necessitate tissue 

preparations, and the simultaneous testing of a limited number of molecular markers is feasible [25, 

26]. Spatial transcriptomics methods based on next-generation sequencing (NGS) have undergone 

significant advancements in recent decades [25]. 

Pioneer technologies label cells with fluorescent markers so that they may be extracted and 

sequenced [25, 27]. One significant drawback of these approaches, nevertheless, is that the spatial 

information of cells within a given tissue is not preserved during the bulk photoactivation of all cell 

types [27]. This complicates the task of precisely locating a particular cell type and deducing its 

spatial information. Initially, spatial information was captured at the level of individual cells using 

laser capture microscopy (LCM) in conjunction with next-generation sequencing (NGS) techniques 

[28, 29]. However, a significant obstacle for LCM technologies is that they necessitate the use of 

complex and sophisticated equipment in addition to the laborious removal of tissue components 

[30]. Recent developments in spatial transcriptome sequencing enable scientists to investigate a 

more extensive region albeit at a reduced level of detail. In lieu of oligonucleotides, spatial 

transcriptomics was recently enhanced by substituting high density bead arrays with position index 

barcoded beads [31, 32].  

 

1.1.6. Spatially resolved transcriptomics. 

 

Spatially resolved transcriptomics (SRT) refers to a class of high-throughput technologies that 

compute the spatial coordinates of gene expression measurements at the transcriptome level [33]. 

SRT methodologies vary regarding both the quantity of genes assessed and the resolution of their 
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spatial parts. In general, resolved omics techniques quantify the abundance of transcripts while 

preserving positional information [25]. At present, there exists an extensive array of proposed 

applications pertaining to the imaging of single-cell transcriptomes. SRT technologies have been 

implemented in numerous biological systems to date. Notable among the numerous published 

studies are those that examine the application of SRT methods to the mouse brain [35], the human 

brain [34], cancer [36, 37], and mouse embryogenesis [38, 39]. 

 

1.1.6.1. Spot-based platforms 

Spot-based platforms, such as sci-Space, 10x Genomics Visium, Spatial transcriptomics, and Slide-

seqV2, capture transcriptome-wide gene expression in a series of spots on a tissue slide, the 

positions of which include spatial coordinates. These platforms aimed to quantify the 

transcriptome's overall gene expression profile across multiple locations. RNA-seq analysis can be 

carried out at multiple precisely located spots on the surface of a histological slice with any spot-

based platform. 

1.1.6.2. Molecule-based platforms 

This does not apply to spot-based technologies, which are based on molecules like MERFISH, 

seqFISH, and osmFISH. This is accomplished by combining sequential barcoding and in situ molecular 

fluorescence probing; additionally, these technologies are based on molecules, and each experiment 

requires a pre-defined transcript panel. These platforms achieve resolutions down to the subcellular 

level. These methodologies allow for the simultaneous determination of the spatial coordinates of 

each transcript with a resolution of micrometers while also identifying thousands of mRNAs. 

Molecular-based platforms are extremely effective tools that allow researchers to predict the 

subcellular resolution structures of RNA molecules. These technologies are currently used to 

represent the spatial distribution of desired gene expression in a variety of biological systems, 

including cancer cells, brain tissues, and embryonic stages of development. 

 1.2. Single-cell construction 

To analyze data sets derived from the aforementioned technologies, it is critical to devise techniques 

for collecting, storing, retrieving, and processing transcriptomic data for subsequent applications. 

There are several distinct approaches available for the analysis of single cell RNA sequencing (scRNA-

seq) data. However, these approaches diverge significantly from the methods utilized by bulk RNA-

seq analysis platforms. Significant variations in analysis platforms appear to be due to a variety of 

technical factors, including the prevalence of background noise [40, 41] and a small amount of 

extracted RNA from a single cell. In recent times, the progress made in multimodal single-cell 
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technologies has necessitated the creation and refinement of innovative computational algorithms 

that can effectively integrate data from various types [42]. 

 1.3. Spatial Experiment 

 

High-dimensional spatially resolved omics amass an enormous quantity of data when compared to 

alternative single-cell "-omics" methodologies. Analyzing such data sets is consequently becoming 

increasingly difficult. In general, the analysis of spatial datasets necessitates the development of 

infrastructures and the completion of numerous processing steps. The continuous progress of SRT 

techniques surpasses the development of bioinformatic algorithms utilized in data analysis by a 

significant margin. 

The spatial resolution is established using the most prevalent SRT method [43] in Visium technology, 

which employs spots (55 µm in diameter) as individual capture elements. An SRT method is 

employed to acquire a bright field image of the tissue's characteristics. Following this, morphological 

data are converted to their corresponding mRNA transcript levels via mapping. As of now, a variety 

of libraries and applications are accessible for the purpose of examining and investigating Visium 

data [33, 44-46]. Among these applications, the Seurat R package is the most popular For example, 

the Seurat [47] and Giotto [48] packages for R, as well as Squidpy [45] and AnnData [49] packages for 

Python, provide enhanced capabilities for the storage and annotation of data in the form of 

measurement value tables, in addition to the recording of pertinent spatial and image information. 

While the Seurat R package provides fundamental functionality for various SRT platforms, it still lacks 

interoperability with other tools. Numerous efforts have been devoted to addressing the limitations 

of the analysis.  

Within the R/Bioconductor framework, SpatialExperiment, a novel data infrastructure designed to 

store and retrieve spatially resolved transcriptomics data, is implemented. It offers modularity, 

interoperability, standardized operations, comprehensive documentation, and additional benefits. 

SpatialExperiment has been developed autonomously and is compatible with all subsequent analysis 

packages in Bioconductor that utilize the SingleCellExperiment or SpatialExperiment class [33]. This 

contrasts with previous infrastructures. Consequently, analysts are readily modifiable using 

additional packages created by diverse research groups. Additionally, it exhibits compatibility with a 

wide range of methodologies that utilize single-cell data and have been made available by 

Bioconductor. 

 

1.4. Cancer of the lung and transcriptomics 
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Cancer is the second leading cause of death in the United States and a major and progressively 

significant public health concern worldwide, according to the American Cancer Society [50]. Recent 

cancer statistics indicate that prostate cancer, breast cancer, lung cancer, bronchus cancer, and 

colorectal cancer are the most frequently diagnosed malignancies in humans (CRCs). In 2023, lung 

cancer and colorectal cancer will comprise 52% of all newly diagnosed cases [50]. Lung cancer is the 

primary cause of mortality for individuals aged 50 years and older, surpassing the combined fatality 

rates of breast, prostate, and colorectal cancer (CRC) [50]. 

Utilizing single-cell technologies, the intricate characteristics of tumor immune cell types have been 

uncovered [51-54]. Prior to recent times, the characterization of tumor subtypes through 

histopathological methods was the prevailing approach in clinical practice. This approach failed to 

account for the spatial context of single-cell types within stratified tissues. The correlation between 

the function of distinct immune cells and their spatial location within a complex tumor has been 

established [55-57]. In pursuit of this objective, illuminating the spatial distribution of lung cancerous 

lesions could yield valuable high-resolution data that can be utilized to track the advancement of the 

disease and aid in the development of innovative therapeutic approaches and biomarker-responsive 

therapies [58]. 

The utilization of high-resolution single-cell transcriptomes has enabled the differentiation of various 

cell types within the tumor microenvironment (TME) [59, 60]. Numerous cancer-related 

investigations have utilized single cell transcriptome associated analysis: head and neck cancer [66], 

breast cancer [59], lung cancer [61, 62], liver cancer [63], colorectal cancer [64], and melanoma [65]. 

For the purpose of gaining insight into the progression of cancer and drug resistance, Karacosta and 

Anchang [67] employed time-course analysis of mass cytometry. Significant disparities were 

identified in the trajectories of EMT and MET through the utilization of TRACER, a computational 

tool. 

As demonstrated by single-cell RNA sequencing technologies [68], lung cancer tumors contain a 

variety of immune cell populations and are heterogeneous. Zhang and Sun [69] demonstrated, via 

spatially resolved transcriptomics, that small cell lung cancer tumors are heterogeneous both inter 

and intratumor. An investigation into lung adenocarcinoma using 10Visium SRT technology revealed 

that the invasive process of lung adenocarcinoma is facilitated by the UBE2C+ cancer cell 

subpopulation [70]. A different SRT technology was employed by [71] to evaluate non-small cell lung 

cancer tumors in the same year. It was determined that patients exhibiting CD163+ tumorous cells 

not only maintain a greater distance from the tumor cells but also experience reduced infiltration 

levels and a prolonged survival rate. Collectively, these studies demontrate that SRT technologies 
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have the ability to distinguish between cells containing lung tumors and that it is possible to process 

data using various spatial approaches. 

The storage of gene expression data presents a formidable obstacle for nascent single-cell SRT 

technologies. Gene expression information is exclusively stored at the cell or spot level in the 

recently introduced SpatialFeatureExperiment [72], as opposed to SingleCellExperiment and 

SpatialExperiment. In order to take advantage of the molecule-level resolution capabilities of 

contemporary SRT technologies, it is crucial to analyze transcripts in their spatial positions, 

regardless of cellular compartmentalization, and to prevent premature summarization of ST data. 

The SpatialExperiment data class is the primary [33]. This class facilitates the storage of datasets at 

either the spot or cell level. For instance, it can be used to aggregate data from molecule-based 

platforms at the cell level or data from sequencing-based platforms at the spot level. For single-cell 

RNA sequencing data, SpatialExperiment extends the SingleCellExperiment class [73] by including 

attributes for storing spatial information, including image files and spatial coordinates. 

The following diagram provides a concise overview of the structure of the SpatialExperiment object. 

I assays, which contain expression counts; II rowData, which contains feature information such as 

genes; III colData, which contains spot or cell information including nonspatial and spatial metadata; 

IV spatialCoords, which contains spatial coordinates; and V imgData, which comprises image data. 

The primary emphasis of this research is on lung cancer CosMx datasets for molecular-based spatial 

transcriptomics that encompass supplementary data, including the spatial coordinates of individual 

mRNA molecules as well as the boundaries delineating cells or nuclei. The subsequent Bioconductor 

classes offer supplementary functionalities for the storage and manipulation of the aforementioned 

data. These SpatialExperiment-extending classes are applicable to aggregated cell analyses. 

1.4.1 CosMx lung cancer data 

 

Those interested in investigating non-small cell lung cancer (NSCLC) using advanced spatial 

transcriptomics technology will discover the CosMX dataset to be an indispensable resource. The 

CosMX dataset is generated by employing the CosMx SMI (Spatial Molecular Imager), a sophisticated 

instrument recognized for its capability to capture images of individual cells within formalin-fixed 

paraffin-embedded (FFPE) tissues. Tissue samples are frequently preserved and archived utilizing 

these tissues. This investigation focuses on non-small-cell lung cancer. Although this open-source 

dataset was acquired from the Nanostring website(https://nanostring.com/inaccessible/), we 

employ it to examine the intricate intricacies of NSCLC tissue.  
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Chapter2 
 

Aim of study 
 

When conducting an Exploratory Data Analysis (EDA) on spatial transcriptomics data from imaging in 

a lung cancer sample, consider the experimental design, highlight cancer-related genes, examine 

gene expression spatial patterns, integrate clinical annotations into clustering analysis, analyze 

differential expression compared to normal tissue, integrate with other omics data, and validate and 

interpret the results. These steps help identify potential disease-associated hallmark genes or 

biomarkers, identify spatially discrete subpopulations of tumors, and ensure the dependability and 

reproducibility of the results. It is essential to note that EDA is an exploratory step, and more 

rigorous analysis techniques like machine learning or statistical modeling should be used to further 

investigate the identified patterns or biomarkers in the lung cancer sample.  
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2.1. Quality control 

2.1.1. overview 

Cellular quality control (QC) procedures are designed to eliminate substandard cells before they are 

analyzed. We will present the data structure for the 1000-plex CosMx™ RNA assay, which will help 

develop downstream analysis pipelines. The 1000-plex CosMx Human Universal Cell Characterization 

panel aims to provide detailed information on cell states, signaling interactions, hormone activity, 

and microenvironments in both healthy and diseased human organs.  

The lung is critical to human health, so this study will use lung CosMx data to examine the diversity 

and spatial features of individual lung cell types, as well as the molecular and cellular processes that 

occur in both healthy and diseased tissue. 

2.1.2. load data 

To start, we load the following libraries: 

SpatialExperiment 

The Spatial Experiment package provides functionalities for manipulating and analyzing spatially 

resolved transcriptomics data. It includes features for manipulating spatial transcriptomics data 

acquired through imaging. 

scater 

The scater package can help with preprocessing and quality control for single-cell RNA-seq data. 

Although it is not inherently linked to spatial transcriptomics, it can provide useful data manipulation 

and analysis capabilities. 

scran 

The scran package focuses primarily on normalization and batch effect correction methods for single-

cell RNA-seq data. It may offer useful functionalities for the preprocessing stages of your analysis. 

ggspavis 

The ggspavis package's tools enable the exploration and visualization of spatial transcriptomics data. 

This tool can generate spatial maps and plots to investigate gene expression patterns across a tissue. 
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Then we load the specified lung cancer data by its name that is in RDS format. Thus, the head() 

function can be used to display the first few rows of the column metadata (colData) of a 

SpatialExperiment object (spe). (chapter3, table:2) 

 spe <- readRDS("C:/Users/sanaz/OneDrive/Documents/cosmx_lung_5_rep1_SPE.RDS") 

head(colData(spe)) 

 

2.1.3. Plot data 

Plot the spatial coordinates in x-y dimensions on the tissue slide as a preliminary check that the 

object was loaded correctly and in the expected orientation. Plots are created using the visualization 

functions provided by the ggspavis package. Here's the code: 

plotSpots(spe, in tissue = NULL) 

Using the SpatialExperiment object spe, the plotSpots() function is used to show the spatial 

distribution of cells.  

 

Figure 1 coordinates in the x-y plane relative to the tissue slide 
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2.1.4. Calculate QC metrics. 

The QC metrics described above are calculated using a combination of techniques from the scater 

[75] package. Following that, the QC metrics obtained from scater can be calculated and added to 

the SpatialExperiment object. Then compute and store the per-cell QC metrics in colData ("sum" and 

"detected"). In R, per-cell quality control metrics are calculated by calling the addPerCellQC() function 

on a SpatialExperiment object. Per-cell QC metrics can be used to assess the quality of specific cells 

in a spatial transcriptomics dataset. To update the SpatialExperiment object spe with the computed 

QC metrics and use the addPerCellQC() function, use the following code: 

Spe <- addPerCellQC (spe) 

Following the completion of this code, the spe object will receive additional per-cell quality control 

metrics. The per.cell.qc component of the spe object's colData will provide access to these metrics. 

Metrics such as total counts, number of detected genes, and other customizable measures can 

provide useful information about cell quality. 

Notably, the addPerCellQC() function is part of the scater package; therefore, ensure that the scater 

package is loaded before calling this function. 

The head() function displays the first few rows of a SpatialExperiment object's column metadata 

(colData) (spe). The data set now includes the outputs "Detected", "Sum", and "Total."(chapter3, 

table:3) 

head(colData(spe)) 

The histograms of QC metrics were as follows: 

The provided code creates an illustration consisting of two histograms placed next to each other. The 

first histogram depicts the distribution of molecules counts per cell, while the second shows the 

distribution of detected genes per cell. The code goes as follows: 

par(mfrow = c(1, 2)) 

hist(colData(spe)$sum, xlab = "sum", main = "molecules per cell") 

hist(colData(spe)$detected, xlab = "detected", main = "Genes per cell") 

The provided code establishes the layout of the plot with one row and two columns (par(mfrow = 

c(1, 2))). The initial invocation of the hist()function generates a histogram of the ‘’sum ‘’ column 

extracted from the colData of the spe object. The x-axis is annotated as ‘’sum ‘’, and the primary 

heading is specified as molecules per cell. The histogram of the ‘’detected ‘’ column from the colData 
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of the spe object is generated through the second invocation of the hist()function. The main title of 

the plot is ‘’Genes per cell‘’, and the x-axis is annotated as ‘’detected ‘’. 

 

Figure 2 Histograms of molecules per cell and genes per cell with detected information annotated along the x-axis. 

2.1.5. Selecting thresholds 

The most straightforward way to apply the QC metrics is to set thresholds for each metric and then 

remove any cells that do not meet the thresholds for one or more metrics. Exploratory visualizations 

can aid in the selection of appropriate thresholds, which will vary depending on the dataset. 

We use visualizations in this section to select thresholds for several QC metrics in our dataset: I the 

size of the library; (ii) the number of expressed genes (or features). 

2.1.5.1. Thresholds for library size (“sum”) 

The library size is calculated by summing the molecule counts for each cell. This data is stored in the 

‘’sum‘’ column of the scater output. 

Histogram of library size: 

Here's the code: 

par(mfrow=c(1,1)) 
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In R, the par() function is used to change the graphical parameters of the current plotting device. 

Par(mfrow=c(1,1)) in the code you shared configures the plotting device to display only one row and 

one column of plots. This means that any subsequent plots will be displayed in a single plot region, 

hist(colData(spe)$sum, xlab = "sum", breaks=100, main = "Molecule per cell") 

The code you provided uses R's hist() function to create a histogram from the values in the ‘’sum ‘’ 

column of the colData(spe) object. The xlab argument specifies the x-axis label as ‘’sum ‘’, the breaks 

argument specifies the number of histogram bins (100 in this case), and the main argument specifies 

the plot's main title as ‘’Molecule per cell ‘’. 

 

Figure 3 histogram Cellular quantity denoted by the x-axis as a sum. 

 

There are no obvious issues with the distribution, such as a significant increase or decrease at very 

small library sizes. 

We also plot the library size versus the number of expressed genes. This ensures that we do not 

accidentally remove a biologically significant group of cells. Based on the histogram, the horizontal 

line (argument threshold) represents our initial guess at a possible filtering threshold for library size. 
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plotQC(spe, type = "scatter",  

       metric_x = "detected", metric_y = "sum",  

       threshold_y = 10) 

The plotQC() function is most likely a custom function that generates quality control plots based on 

the arguments passed to it. It's a scatter plot that shows the relationship between the detected 

metric on the x-axis and the ‘’sum ‘’ metric on the y-axis. A threshold line is also being added at y = 

10 (chapter 3, figure:16). 

Based on the histogram, the horizontal line (argument threshold) represents our initial guess at a 

possible filtering threshold for library size. 

Setting a filtering threshold for library size (for example, at the value shown) does not appear to 

select for any obvious biologically consistent group of cells, as evidenced by the plot. 

A relatively arbitrary threshold of ten molecule counts per cell is established. Use the following code 

to set the QC threshold based on the library's size: 

qc_lib_size = colData(spe)$sum < 10 

table(qc_lib_size) 

To generate the logical vector qc _library size, run the following code: Qc library size = 

colData(spe)$sum < 10. This vector shows whether the values in the ‘’sum ‘’ column of the 

colData(spe) object are less than 10. The resulting vector will have TRUE values if the condition (sum 

10) is met and FALSE values otherwise. The code table then generates the frequency table (qc_ lib_ 

size), which counts the number of times each distinct value appears in the qc_ lib_ size vector. The 

sum of TRUE and FALSE values in the vector will be shown. So, with this description, the result is 

99185 FALSE and 1107 TRUE. 

 Use the following code to assign the contents of the qc _lib _size vector to a newly created column 

named "qc_ lib _size" in the colData(spe) object: colData(spe)$qc_ lib_ size = qc_ lib _size adds a 

column to the spe object's metadata, with each row representing a value from the qc_ lib _size size 

vector. 

Finally, to ensure that the discarded cells lack any discernible spatial pattern that corresponds to 

known biological characteristics. If not, the absence of these cells may indicate that the threshold 

was set too high, causing the loss of biologically significant cells. For that reason, Implementing code 

Probably a custom function, the plotQC() method generates quality control plots based on the 
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arguments passed to it. The plot denoted by type = "spots" will visually represent the dispersion of 

various metrics across multiple cells; even if we are indicating "spots” in the function type argument 

the plot still works because we previously summarized the coordinates information by cell. The cells 

designated by discard = "qc_ lib _size " will be excluded from the plot. 

plotQC(spe, type = "spots",in_tissue = NULL, discard = "qc_lib_size") 

 

 

Figure 4 The discarded cells are spatially devoid of any particular pattern. 

As illustrated, the discarded cells lack any discernible spatial pattern. 

2.1.5.2. Thresholds for Number of expressed genes (“detected”) 

The number of genes with non-zero molecule counts per cell is the number of expressed genes. This 

is stored in the column identified in the scater output. A comparable set of visual representations is 

used to establish a threshold for this quality control metric. Initial requirements include a histogram 

of the detected value. 

Hist(colData(spe)$detected, xlab = "detected", breaks=100, main = " detected value ") 

The hist () function creates a histogram of the values in the "detected" column of the colData(spe) 

object for further clarification. The xlab argument is used to designate the x-axis as "detected," while 

the breaks argument specifies the number of bins in the histogram (100 in this instance). In contrast, 

the main argument establishes "detected value" as the plot's main title. 
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Figure 5 Gene histogram by cell 

Second, regarding threshold 10, the following code is used: 

plotQC(spe, type = "scatter",  

       metric_x = "sum", metric_y = "detected",  

       threshold_y = 10) 

The plotQC() function generates quality control plots using the arguments passed to it. It's likely that 

this is a custom function. The scatter plot is used to show the relationship between the detected 

metric (y-axis) and the sum metric (x-axis). Furthermore, at y = 10, a threshold line is introduced. 

(chapter 3, figure:17) 

 

To determine the QC threshold for the number of expressed genes: 

Qc_ detected = colData(spe)$detected < 10 

 table(qc_ detected) 
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To check if the values in the detected column of the colData(spe) object are less than 10, use the 

code qc_ detected = colData(spe)$detected < 10. Creates the logical vector qc_ detected. If the 

condition is met (detected < 10), the vector will include TRUE values. Otherwise, it will return false 

results. After counting how many times each unique value appears in the qc_ detected vector, the 

code table (qc_ detected) generates a frequency table. The function returns the sum of TRUE and 

FALSE values in the vector. As a result, the answer will be 1353 TRUE and 98939 FALSE. 

Finally, calling colData(spe)$qc_ detected = qc_ detected updates the colData(spe) object with the 

contents of the qc_ detected vector into a new column named qc_ detected. Each row of this column 

in the spe object's metadata corresponds to a value extracted from the qc detected vector. 

PlotQC(spe, type = "spots", tissue=NULL, discard="qc _detected") 

The plotQC() method, which is most likely a custom function, generates quality control plots based 

on the arguments provided. The plot indicated by type = "spots" will refer to that part the 

distribution of different metrics across numerous cells. Despite the absence of these metrics in 

certain spots, the plot remains applicable to cells. Points that contain the value TRUE in the qc_ 

detected column will be excluded from the graph. 

 

Figure 6 Quality control plots in relation to the given arguments 

2.1.5.3. Remove low-quality cells. 

Having determined thresholds for each of the calculated QC metrics, we can now combine the sets of 

low-quality cells and eliminate them from the object. Additionally, we verify once more that the 

assemblage of discarded cells does not appear to be any discernibly significant group of biological 

cells. 

We establish codes with the following interpretation: 
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A) Number of discarded cells for each metric: 

apply(cbind(qc_lib_size, qc_detected), 2, sum) 

To apply a specified function across rows or columns of a matrix or data frame, use the apply 

function. In this case, the cbind() function combines two columns (qc_ lib _size and qc_ detected) to 

form a single matrix. The sum of each column in the new matrix is then calculated using the apply 

function. In the apply function, the value 2 indicates that the operation should be carried out column 

by column. Apply returns the sum of each column in the qc_ lib _size and qc_ detected columns. The 

resulting values will be 1107 qc_ lib _size and 1353 qc_ detected. 

B) Combined set of discarded cells: 

discard = qc_lib_size | qc_detected 

table(discard) 

To generate the discard variable, perform a logical OR (|) operation on the values qc_ lib_ size and 

qc_ detected. This will create a new variable with the value FALSE unless either qc_ lib_ size or qc_ 

detected is TRUE. Use the table function to create a table that summarizes the number of TRUE and 

FALSE values in the discard variable. This operation will return a two-row table containing the 

frequency of TRUE and FALSE values in the discard variable. The discard output would be 98939 false 

and 1353 true. 

C) Store in object: 

colData(spe)$discard = discard 

The values of the discard variable will be appended to the discard metadata column of spe. 

D) Check spatial pattern of combined set of discarded cells: 

plotQC(spe, type = "spots",in_tissue = NULL,discard = "discard") 
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Figure 7 Eliminated cells. 

 

Use the plotQC function to create quality control plots for spatial transcriptomics data using images 

stored in the spe object. The term "spots" With the exception of the complete absence of spots, the 

plot retains its applicability to all cells., with in_ tissue = NULL (this value can be left blank if we want 

to plot every cell) and discard = "discard"; this parameter specifies that the spe object's discard 

metadata column should be used to filter the cells before plotting. This assumes that the discard 

metadata column contains boolean values (TRUE or FALSE) and is located in the spe object's colData. 

F) Remove combined set of low-quality cells: 

spe = spe[, !colData(spe)$discard] 

dim(spe) 

To subset the spe object, samples with a TRUE value in the discard metadata column are excluded. 

By subsetting the spe object, this code only keeps samples for which the discard metadata column 

returns FALSE. In other words, the! operator nullifies logical values. If discard is set to FALSE, 

colData(spe)$discard returns TRUE for the specified sample. Using the dim function, one can 

examine the dimensions of the updated spe object after subsetting. This function returns the number 

of cells and genes that remain in the spe object after removing samples with TRUE discard. The 

outpots would be 980 and 98939. 
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2.2. Normalization 

2.2.1. overview 
When analyzing gene expression data, normalization is a crucial step that accounts for systematic or 

technical variations between samples. The objective is to establish comparability in the expression 

levels of genes among samples, which will facilitate significant comparisons and subsequent analysis. 

2.2.2. Logcount 

"Logcount" denotes the logarithm of count data, accounted for technical considerations and sample 

comparability, in gene expression analysis. Variance is stabilized through a logarithmic 

transformation, which diminishes outliers and produces a more symmetrical distribution. 

Subsequent analyses that assume normality or equal expression values are facilitated by this. The 

methods implemented in the scater and scran[2] packages are utilized. 

To achieve this, begin by eliminating any locations with zero counts. Subsequently, compute the 

library size and histogram. Finally, compute logcounts and store the results in an object. (chapter3, 

figure:18) 

spe = spe[, colSums(counts(spe)) > 0] 

spe = computeLibraryFactors(spe) 

summary(sizeFactors(spe)) 

output:  

 

Min 1st Qu 

 

Median 

 

Mean 

 

3rd Qu 

 

Max 

 

0.03259 0.45293 

 

0.82114 

 

1.00000 

 

1.34251 

 

8.06480  

 

 

hist(sizeFactors(spe), breaks = 100) 

Logcounts are computed and stored in an object. 

spe = logNormCounts(spe) 

for verifying, the function assayNames(spe) retrieves the names of different assay types in the 

SingleCellExperiment object spe, which typically contains a matrix of data. dim(counts(spe)) and 
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dim(logcounts(spe)) retrieve the dimensions of the count’s matrix and log-transformed counts matrix 

respectively. 

assayNames(spe) 

output:[1] "counts"    "logcounts" 

dim(counts(spe)) 

Output:   980/ 98939 

dim(logcounts(spe)) 

Output:   980/ 98939 

2.3. Feature selection 

2.3.1. overview 

In this study, feature selection methods are utilized to identify genes that are spatially variable (SVGs) 

or highly variable (HVGs). These genes can subsequently be examined independently or utilized as 

inputs for subsequent analyses. 

2.3.2. Highly variable genes (HVGs) 

Using scran methods, we identified a set of top highly variable genes (HVGs) that can be used to 

classify major cell types.  

It should be noted that HVGs are based solely on molecular characteristics (e.g., gene expression) 

and do not account for spatial information. If the biologically significant spatial information in this 

dataset primarily represents the spatial distributions of major cell types, then HVGs may be sufficient 

for subsequent analyses. However, if the dataset contains additional significant spatial features, it 

may be more fruitful to investigate genes that are spatially variable (SVGs). Scran methods have been 

implemented. This results in a collection of HVGs that can be used in subsequent analyses. The 

parameter prop indicates the desired number of HVGs. To illustrate, the value prop = 0.1 identifies 

the top 10% of genes. 

In first place, Using the modelGeneVar() function on the spe dataframe, the code dec = 

modelGeneVar(spe) fits a gene variance model and stores the result in the dec object. The code fit = 

metadata(dec) employs the metadata () function to extract metadata from the dec object and assign 

it to the fit object. 

Then, visualize the mean-variance relationship using code (chapter3, figure:19): 
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plot(fit$mean, fit$var,  

     xlab = "mean of log-expression", ylab = "variance of log-expression") 

curve(fit$trend(x), col = "dodgerblue", add = TRUE, lwd = 2) 

We have ultimately chosen the top 66 HVGs: 

top_hvgs = getTopHVGs(dec, prop = 0.1) 

length(top_hvgs) 

2.4. Dimensionality reduction 

2.4.1. overview 

During this segment, dimensionality reduction techniques are implemented to facilitate the 

visualization of the data and provide inputs for subsequent analyses. 

2.4.2. Principal component analysis (PCA) 

 

Utilize principal component analysis (PCA) to decrease the dimensionality of the dataset and 

preserve the initial 50 principal components (PCs) for subsequent analyses, using the set of highly 

variable genes (HVGs) as data. 

This is achieved for two purposes: (i) to mitigate the impact of noise introduced by the random 

variation in expression of genes of low biological significance, whose expression patterns are 

assumed to be unrelated; and (ii) to enhance the computational efficiency of subsequent analyses. 

The scater package contains a computationally efficient implementation of PCA that we employ. Due 

to the use of randomization in this implementation, a random seed must be set to ensure 

reproducibility. To calculate PCA using the subsequent analysis: 

A) The code set.seed(123) sets the random number generator seed to 123. This ensures that the 

random number generation will be reproducible in subsequent code executions. 

B) Run PCA: 

spe = runPCA(spe, subset_row = top_hvgs) 

reducedDimNames(spe) 

dim(reducedDim(spe, "PCA")) 
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The output was reduced DimNames(spe) and dim(reducedDim(spe, "PCA")) will be "PCA" and 98939 

/ 50, respectively. 

To obtain further visualizing, we employ code that appears to be associated with utilizing the 

plotSpots function to visualize the initial three principal components (PC1, PC2, PC3) of the spe 

dataset. 

spe$PC1 <- reducedDim(spe, "PCA")[, 1] 

spe$PC2 <- reducedDim(spe, "PCA")[, 2] 

spe$PC3 <- reducedDim(spe, "PCA")[, 3] 

plotSpots(spe,annotate ="PC1",in_tissue = NULL ) 

The code seems to utilize the PCA method to extract the PC1, PC2, and PC3 values from the result of 

the reducedDim function. Following that, these values are appended as fresh variables to the spe 

dataset. Following that, using PC1 as an example, the plotSpots function is called with PC1 as the 

annotate parameter and NULL as the in_tissue parameter. This graph most likely represents the 

spatial arrangement of data points in the dataset in accordance with the designated principal 

components. 

 

Figure 8 Data points are organized spatially within the dataset using the principal components, denoted as pc1. 

 

2.4.3. Uniform Manifold Approximation and Projection (UMAP) 

Additionally, UMAP is executed on the top 50 personal computers, and the two most prominent 

UMAP components are retained for the purpose of visualization. 



30 | P a g e  
 

set.seed(123) 

spe = runUMAP(spe, dimred = "PCA") 

reducedDimNames(spe) 

dim(reducedDim(spe, "UMAP")) 

The reducedDimNames(spe) function returns the available dimensionality reduction methods, which 

in this case are PCA and UMAP. The output of dim(reducedDim(spe, "UMAP")) indicates that the 

UMAP reduction transformed your data into a matrix with 98939 rows and two columns. This implies 

that the UMAP method reduced your data's dimension to two. 

However, the following is done to facilitate plotting: 

colnames(reducedDim(spe, "UMAP")) = paste0("UMAP", 1:2) 

The code colnames(reducedDim(spe, "UMAP")) = paste0("UMAP", 1:2) assigns column names to the 

UMAP representation of spe obtained through UMAP. The reducedDim function extracts the reduced 

dimensional representation from an object, and the paste0 command concatenates UMAP with 1 

and 2. 

2.4.4. Visualizations 
Utilize the plotting functions provided by the ggspavis package to generate plots. We shall annotate these 

reduced dimension plots with cluster labels in the subsequent section on clustering. 

a) Plot top 2 PCA dimensions: 

The code plotDimRed(spe, type = "PCA") generates a scatter plot of a dimensionally reduced representation of 

data using Principal Component Analysis (PCA). The plot displays data points in a two-dimensional space, 

revealing the structure or clustering of the data, enabling visual interpretation and analysis. 
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Figure 9 PCA dimensions. 

b) Plot top 2 UMAP dimensions: 

The code plotDimRed(spe, type = "UMAP") generates a scatter plot of the dimensionally reduced 

representation of data using the UMAP technique. This function visualizes high-dimensional data by reducing 

its dimensionality. The plot displays data points in a two-dimensional space, capturing non-linear relationships 

and manifold structure. This analysis provides insights into data structure and clustering. 

 

Figure 10 UMAP dimensions 
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2.5. clustering 

2.5.1. overview 

By utilizing clustering algorithms on lung cancer data, it is possible to discern "spatial domains," 

which are regions delineated spatially and comprise consistent gene expression profiles. Spatial 

domains may comprise regions that exclusively contain a single cell type or a consistent mixture of 

cell types, although this is not always the case. 

Implementing clustering algorithms derived from single-cell workflows onto data, excluding spatial 

information, is equivalent to utilizing clustering to distinguish cell types within single-cell data. 

It is critical to bear in mind that different resolutions can be utilized to define cell types and states. 

This implies that the optimal number of clusters is context-dependent with respect to clustering. The 

precise number of clusters is context-dependent and therefore cannot be determined (e.g. major cell 

populations vs. rare subtypes). 

After spatial domains have been identified through clustering or manual analyses, they can be 

subjected to differential expression testing to identify representative genes. 

2.5.2. Non-spatial clustering on HVGs 

We apply louvaine clustering method designed for single-cell RNA sequencing data and rely solely on 

molecular characteristics (gene expression) to perform clustering. We apply graph-based clustering 

to the top 50 PCs determined from the set of top HVGs utilizing the louvaine method implemented in 

Scran. 

This means that, in the context of spatial data, we assume that molecular characteristics can be used 

to discern spatial distribution patterns of cell types that are biologically informative (gene 

expression). 

For this purpose, first the code provided executes the following steps: 

set.seed(123) 

k =10 

g = buildSNNGraph(spe, k = k, use.dimred = "PCA") 

g_walk = igraph::cluster_louvain(g) 

clus = g_walk$membership 

table(clus) 



33 | P a g e  
 

To ensure reproducibility, the code initializes a random seed and parameter k. It then generates a 

graph with the Shared Nearest Neighbor (SNN) algorithm and the Principal Component Analysis 

(PCA) representation. The graph is analysed using the Louvain community detection algorithm, which 

identifies communities and clusters. The code extracts community assignments for each data point 

and generates a frequency table showing the number of data points in each cluster. 

The aforementioned analysis would yield the following results: 

1 2 3 4 5 6 7 8 9 10 11 12 13 

12889 9458 8660 6123 9875 9771 2158 10461 14753 8591 2561 3238 401 

 

The code colLabels(spe) = factor(clus) assigns column labels to the spe object via the clus factor 

variable, allowing each column to be assigned to a specific cluster. This is useful for tasks like analysis, 

visualization, and data manipulation that necessitate cluster-based data grouping or referencing. 

Additionally, visualize the clusters in (i) reduced dimension space and (ii) spatial coordinates (x-y) on 

the tissue slide (PCA or UMAP). Plotting functions from the ggspavis package are applied. 

The visualizations demonstrate that the clustering closely approximates the known biological 

structure (cortical layers). Again, the clusters are not perfectly separated in UMAP space. The code 

plotSpots(spe, annotate = colData(spe)$label, palette = "libd layer colors", in_ tissue = NULL) 

produces a spatial plot of the spe object's cells or data points. It employs the annotate argument to 

label cells, the palette argument to specify the color palette, and the in-tissue argument to specify 

specific regions or masks of the tissue. This function is commonly used to visualize spatial data. 
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Figure 11 spatial coordinates (x-y) on the tissue slide (PCA or UMAP) 

Consider Plot Clusters in PCA Reduced Dimensions plotDimRed(spe, type = "PCA", annotation = 

colData(spe)$label, palette = "libd layer colors") 

 

Figure 12 reduced dimension space for PCA. 

Additionally, plot clusters in UMAP reduced dimensions, plotDimRed(spe, type = "UMAP",  

           annotate = colData(spe)$label, palette = "libd_layer_colors") 
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Figure 13 reduced dimension space for UMAP. 

 

6. Marker genes 

6.1.overviwe 

In this section, we use differential expression testing to determine representative marker genes for 

each cluster or spatial domain. 

6.2. Differential expression testing 

 

Determine representative marker genes for each cluster or spatial domain by looking for differences 

in gene expression between clusters. 

We use the findMarkers implementation in scran to perform a binomial test, which looks for genes 

that differ in the proportion expressed vs. not expressed between clusters. This is a more stringent 

test than the default t-tests, and it favors genes that are simpler to interpret and validate 

experimentally. 

Firstly, trying to test for marker genes: 

markers = findMarkers(spe, test = "binom", direction = "up") 

then, returns a list with one DataFrame per cluster: 
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markers 

 

library(pheatmap) 

interesting = markers[[1]] 

best_set = interesting[interesting$Top <= 5, ] 

logFCs = getMarkerEffects(best_set) 

pheatmap(logFCs, breaks = seq(-5, 5, length.out = 101)) 

The code generates a heatmap using the pheatmap function from the pheatmap package to visualize 

patterns in large datasets. It uses the getMarkerEffects function to obtain the log-fold changes for 

markers in best_set. The heatmap is then generated using logFCs as input data and breaks as color 

levels. The resulting heatmap provides insight into the expression patterns or differences across 

samples, allowing for better visualization of the selected markers. 

 

Figure 14 The heatmap offers valuable information regarding the variations or patterns of expression among samples. 

Overall, plot log-transformed normalized expression of top genes for one cluster: 
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top_genes = head(rownames(interesting)) 

plotExpression(spe, x = "label", features = top_genes) 

Furthermore, it appears that the plotExpression function is used in spatial experiments to visualize 

the expression of the top genes (spe). This procedure can help you understand the differences in 

gene expression patterns between labeled groups. The code head(rownames(interesting)) = top_ 

genes extracts the names of the most important genes from the interesting object, whereas the 

head() function only selects the first few. Additionally, the plotExpression function (spe, x = "label", 

features = top_ genes) is used to generate the plot. We're plotting gene expression levels (features = 

top_ genes) across the different groups labeled in our SpatialExperiment. The variable "top_ genes" 

in our SpatialExperiment refers to the specific genes that will be visualized. The analysis of this plot 

may reveal useful information about the variation in expression levels of the selected top genes 

across different labeled groups in our spatial transcriptomics data. 

 

 

Figure 15top genes 
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Chapter 3 

Conclusion 
Spatial transcriptomics (ST) data has enabled the accumulation of significant knowledge in a variety 

of fields, including but not limited to cancer, neuroscience, and various diseases. This facilitates the 

molecular differentiation of normal and tumor tissues, as well as the spatial identification of specific 

cell types [76]. ST technologies are classified into two types: imaging-based and sequencing-based 

technologies [77,78]. This investigation involved exploratory data analysis (EDA) of a spatial 

transcriptomics dataset based on images, specifically the CosMX lung cancer dataset, which is the 

focus of this study. What we did with this survey is Conduct quality control inspections to identify 

areas or genes with poor quality. Use PCA or UMAP to see how cells are distributed spatially. Use 

spatial clustering analysis to identify spatially coherent cell groups, as well as genes whose 

expression varies according to the condition or cell type. Finally, we looked at the expression levels of 

six genes: HLA.DPA1, MALAT1, C1QB, and HLA.DPA1. MALAT1 has the highest expression, while 

CD163 has the lowest. ST, on the other hand, is a technological innovation that advances our 

understanding of complex biological systems and diseases, creating new opportunities for 

advancement in these fields. Nonetheless, the technology faces a number of challenges, including 

tissue complexity, spatial resolution limitations, integration issues, substandard data, data noise, 

sampling bias, and technological diversity. Addressing these challenges through interdisciplinary 

collaborations, technological advancements, and ethical structures is critical for maximizing ST 

capabilities and accelerating biological and medical research[79]. 
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4.1 Quality control 
 

 

Table 2 exhibit the result obtained from the data loading operation. 

 

 

 

Table 3 outcome of the compute QC metrics 

 

 

4.1.1 Thresholds for library size (“sum”) 

The plotQC() function is most likely a custom function that generates quality control plots based on 

the arguments passed to it. It's a scatter plot that shows the relationship between the "detected" 

metric on the x-axis and the "sum" metric on the y-axis. A threshold line is also being added at y = 10. 
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According to the histogram, the horizontal line (argument threshold) represents a potential filtering 

threshold for library size. 

 

Figure 16 Thresholds for library size 

4.1.2. Thresholds for Number of expressed genes (“detected”) 

The plotQC() function generates quality control plots using the arguments passed to it. It's likely that 

this is a custom function. The scatter plot is used to show the relationship between the "detected" 

metric (y-axis) and the "sum" metric (x-axis). Furthermore, a threshold line is introduced using the 

histogram at y = 10. 

 

Figure 17 Thresholds for Number of expressed genes 
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4.2. Normalization 
 

4.2.1. compute logcounts and store the results in an object. 

spe = spe[, colSums(counts(spe)) > 0] 

spe = computeLibraryFactors(spe) 

summary(sizeFactors(spe)) 

hist(sizeFactors(spe), breaks = 100) 

 

 

Figure 18histogram logcounts  

4.3. Feature selection 

4.3.1Highly variable genes (HVGs) 

To illustrate the mean-variance correlation: 
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Figure 19 Highly variable genes (HVGs) 
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