
University of Padova

Master’s degree in Computer Engineering

Department of Information Engineering

A Content-Aware Interactive Explorer

of Digital Music Collections:

The Phonos Music Explorer

Author:

Giuseppe Bandiera

Supervisor:

Dr. Giovanni De Poli

Internship supervisor:

Pr. Perfecto Herrera

March 10, 2015

“If I were not a physicist, I would probably be a musician. I often think in music. I

live my daydreams in music. I see my life in terms of music.”

Albert Einstein

Abstract

The outstanding growth of the Web in recent years has changed many of our habits,

including the way we access and enjoy artistic works. Without any doubt, music is

one of most affected fields by this trend: some web services providing access to music

content have several hundreds of million users, and this growth shows no sign of slowing

down. We have easy access to much more music than we can listen to. Music information

retrieval (MIR) is a research field whose goal is to explore techniques that may help music

enthusiasts on finding relevant information more easily. The purpose of this work is to

exploit latest MIR findings in order to develop a software for pleasantly and efficiently

exploring a catalogue of music. The software developed is intended to be used at the

exhibition “Phonos, 40 anys de música electrònica a Barcelona” at Museu de la Musica,

Auditorium, Barcelona.

Abstract (Italian)

La crescita straordinaria del Web negli ultimi anni ha radicalmente cambiato molte

delle nostre abitudini, compreso il nostro modo di fruire dell’arte. Senza dubbi, la musica

è uno dei campi più colpiti da questo fenomeno: alcuni servizi web di accesso a contenuti

musicali vantano diverse centinaia di milioni di utenti, e questa crescita non accenna a

rallentare. Abbiamo facile accesso a molta più musica di quanta ne possiamo ascoltare.

Il Music Information Retrieval (MIR) è un campo di ricerca che si pone l’obiettivo di

esplorare nuove tecniche che possano facilitare l’accesso ai contenuti desiderati all’interno

di questi vasti cataloghi di musica. L’obiettivo di questo elaborato è di sfruttare i più

recenti risultati del MIR per sviluppare un software che permetta una facile e piacevole

esplorazione di un collezione musicale. Il software sviluppato verrà utilizzato alla mostra

“Phonos, 40 anys de música electrònica a Barcelona” al Museu de la Musica, Auditorium,

Barcelona.

Acknowledgements

There are so many people to which I feel immensely grateful. The first ones that I

wish to thank are professor Giovanni De Poli and Perfe: Perfe for showing a warm

involvement in my progress with this work, and always trying to bring out the best of

me in order to successfully reach the goal of it. I’m very grateful to professor Giovanni

De Poli for having kindly supported me in this choice of doing an internship at MTG,

a choice that has truly changed my life. Thanks to my family, always very close to my

feelings and needs despite the distance, I love you. Thanks to my sister Mariantonietta,

the most precious person of my life. Thanks to the amazing people I met in Spain:

Dara, Oriol, Cárthach, Emese. They have made everything much easier and funnier.

Thanks to Jean-Baptiste and Jesper, the best flatmates I had: I hope to see you again

somewhere in this world. Thanks to my dear friend Enrico, for always sharing with

me incredible experiences. Thanks to my friends of Conegliano: Nicola, Mattia, Giulia,

Andrea, Matteo, Elena, Andrea, Irene; I regret not being able to see you more often.

Finally, thanks to life, for giving the chance of growing, learning and meeting wonderful

people while feeding passions.

iv

Ringraziamenti

Ci sono cos̀ı tante persone a cui sono immensamente grato. Le prime che mi sento

in dovere di ringraziare sono il professore Giovanni De Poli e Perfe: Perfe per aver

dimostrato un interesse entusiastico nei confronti dei miei progressi, e portandomi a

tirare fuori il meglio da me stesso in ogni situazione. Grazie al professore Giovanni De

Poli per aver strenuamente supportato la mia volontà di svolgere un tirocinio all’MTG,

scelta che mi ha cambiato la vita. Grazie alla mia famiglia, sempre vicinissima ai miei

sentimenti e alle mie necessità nonostante la distanza, vi voglio bene. Grazie a mia sorella

Mariantonietta, la persona più preziosa della mia vita. Grazie alle persone straordinarie

che ho conosciuto in Spagna: Dara, Oriol, Cárthach, Emese. Hanno reso tutto molto

più facile e divertente. Grazie a Jean-Baptiste e Jesper, i migliori conquilini: spero di

rivedervi di nuovo da qualche parte in giro per il mondo. Grazie al mio amico Enrico,

compagno delle avventure più straordinarie. Grazie ai miei amici di Conegliano: Nicola,

Mattia, Giulia, Andrea, Matteo, Elena, Andrea, Irene. Mi dispiace non potervi vedere

più spesso.

Infine, grazie alla vita, per dare l’opportunità di crescere, imparare e incontrare persone

meravigliose coltivando una passione.

v

vi

Contents

Abstract ii

Abstract (Italian) iii

Acknowledgements iv

Ringraziamenti v

Contents vi

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Rise of the Web: changes in the fruition of music 1

1.2 Music Information Retrieval (MIR) . 2

1.3 Phonos Project . 3

1.4 GiantSteps . 4

1.5 Purpose of this work . 5

1.6 Introduction to the problem of Playlist Generation 6

1.7 Structure of the dissertation . 7

I Background 9

2 Automatic music analysis techniques: state of the art 11

2.1 Metadata . 12

2.1.1 Vector Space Model . 14

2.1.2 Co-Occurence Analysis . 16

2.2 Audio content analysis . 16

2.2.1 Low-level descriptors . 18

2.2.1.1 MFCCs . 18

vii

Contents viii

2.2.1.2 Bark bands . 19

2.2.2 Mid-level descriptors . 20

2.2.2.1 Rhythm . 20

2.2.2.2 Tonality . 23

2.2.3 High-level descriptors . 26

2.2.4 Main tools for extracting audio content 27

2.3 Computing music similarity with audio content descriptors 30

2.4 Conceptual differences between metadata and audio content information . 35

3 Assessing the quality of an automatically generated playlist 39

3.1 Difficulties in the evaluation of MIR systems 40

3.2 Evaluation of automatically generated playlists 40

3.3 Evaluation conferences in MIR . 42

II Methodology 45

4 Requirements and approach 47

4.1 Catalogue of music . 47

4.2 Requirements . 47

4.3 Design of the system . 48

4.4 Evaluation . 49

5 Off-line computation of audio features 51

5.1 Audio content features extraction . 51

5.2 FastMap computation . 55

6 Real-time application development 61

6.1 The server application . 61

6.1.1 Realtime computation of music similarity and playlist generation . 62

6.1.2 Audio generation and streaming 66

6.2 The client application . 70

III Results and Discussion 75

7 Results 77

7.1 Performance . 77

7.2 User evaluation . 83

7.3 Usage at exhibition . 87

8 Conclusions and future work 91

8.1 Contributions . 91

8.2 Future work . 92

Appendix A List of Essentia descriptors 95

Appendix B List of Echo Nest Features 99

Contents ix

Appendix C Phonos: list of tracks 103

Appendix D Questionnaire used for evaluation 125

Bibliography 127

x

List of Figures

1.1 Phonos, 40 anys de música electrònica a Barcelona 4

2.1 TagATune . 15

2.2 Standard procedure preliminary to the extraction of audio features. 18

2.3 Onset and sound envelope . 21

2.4 Major and minor modes . 24

2.5 Computation of HPCP with Essentia . 27

4.1 The implementation of the system. 50

5.1 Schema for the extraction of audio features. 52

5.2 Schema for the extraction of low level features from excerpts 53

6.1 Custom audio bin . 68

6.2 Audio player implemented . 69

6.3 Audio crossfade . 70

6.4 Client application user interface . 71

6.5 The second page of the user interface . 74

7.1 Global times for selecting next segment 78

7.2 Time for filtering music in regards to sliders’ positions 79

7.3 Time for performing Monte Carlo sampling 80

7.4 Time for filtering music according to musicality with current excerpt . . . 80

7.5 Time for computing euclidean distance . 81

7.6 Time for computing symmetric Kullback-Leibler distance 81

7.7 Time for computing distances from all filtered segments 82

7.8 Time for accessing and parsing a JSON file 82

7.9 Evaluation results: ease of use . 84

7.10 Evaluation results: familiarity with software 84

7.11 Evaluation results: understanding of sliders’ meaning 85

7.12 Evaluation results: enjoyability of musical output 85

7.13 Evaluation results: familiarity to the electroacoustic genre of music 86

7.14 Evaluation results: usefulness of the software for exploring a collection of
music . 86

7.15 Evaluation results: comparison of enjoyability in regards to a standard
full-track player . 87

7.16 Interactive kiosk at the exhibition . 88

xi

xii

List of Tables

2.1 Main tonal descriptors . 25

5.1 List of descriptors computed offline . 55

5.2 Features stored in the map . 58

5.3 Hardware configuration of computer used during off-line descriptors com-
putation . 58

5.4 Computational times for descriptors computation 58

6.1 Hardware configuration of the server machine 63

6.2 Element of playlist . 63

6.3 Requirements of the audio player . 66

6.4 Elements of the custom bin . 68

6.5 Elements of the pipeline . 69

A.1 List of features computable with Essentia 97

B.1 List of audio features provided by Echo Nest 102

C.1 Phonos catalogue of songs . 123

D.1 Questionnaire used for evaluation . 126

xiii

xiv

Abbreviations

BPM Beats Per Minute

EM Expectation Maximization

EMD Earth Movers Distance

FFT Fast Fourier Transform

GUI Graphical User Interface

HPCP Harmonic Pitch Class Profile

MFCC Mel Frequency Cepstrum Coefficients

MIR Music Information Retrieval

OR Onset Rate

RS Recommender Systems

SVM Support Vector Machine

xv

xvi

To Music

xvii

xviii

Chapter 1

Introduction

1.1 Rise of the Web: changes in the fruition of music

The last two decades have been highly affected by an incredibly disruptive technol-

ogy: the World Wide Web. Suddenly, easy communication towards any other angle of

the world was possible, making the sharing of information and content an immediate

task. Many sectors have exploited this technology, for the most disparate purposes:

research institutes for sharing results; global companies for providing easier access to

their products, for new forms of advertisement and for collecting data about users; ser-

vices for providing remotely available information. World Wide Web was soon employed

also to share artistic content, particularly music: huge catalogues were made available

to users (both in legal and illegal ways), providing access to “light” files (only a few

megabytes, compared to the several tens or hundreds for movies) whose quality was

comparable, if not extremely similar, to the same music piece stored on an analogic

support. A company that has taken great advantage of this situation is Apple, that in

2001 launched iTunes1, and audio player that was later (2003) extended into a store of

digital audio files, as well as coupled by the portable device iPod2. The response of the

public was incredible: the service now counts almost 800 million users3 and more than

43 million songs. Over the years, many other web-services providing access to music

catalogues have been launched: Spotify4, Pandora5 and Google Music6 just to name the

most important ones. Whether they offer a music streaming service (Spotify, Pandora)

or a store of digital music (iTunes, Google Music), they are now among the most used

1https://www.apple.com/itunes/
2https://www.apple.com/ipod/
3http://www.cnet.com/news/apple-itunes-nears-800-million-mark/
4https://www.spotify.com/es/
5http://www.pandora.com/
6https://music.google.com/

1

https://www.apple.com/itunes/
https://www.apple.com/ipod/
http://www.cnet.com/news/apple-itunes-nears-800-million-mark/
https://www.spotify.com/es/
http://www.pandora.com/
https://music.google.com/

Chapter 1. Introduction 2

ways of enjoying and discovering music, and the amount of music they provide access to

is enormous: much more than we could ever listen to. However, the transition to this

type of services has brought to some new problems. One of them relies on the vastness

of these databases: given that users want to easily discover new music suitable to their

tastes through intelligently created playlists, a way to reasonably pick songs and artists

among the entire catalogue is needed.

1.2 Music Information Retrieval (MIR)

This situation has lead to the establishment of a new interdisciplinary research field,

with the purpose of providing new ways of finding information in music. This field is

called Music Information Retrieval (MIR), and involves researchers from the fields

of musicology, psychology, academic music study, signal processing and machine learn-

ing. In MIR, techniques for the extraction, management and usage of different types of

data have been developed; specifically, the data involved is generally divided in metadata

and audio content descriptors.

The term metadata (literally data describing data) generally indicates all the textual

data referring to a particular artist, album or track. Depending on the source and the

purpose of their extraction, they might be related to very different aspects, ranging from

details of a musical work (artist, year of release, genre) to data more related to users

(for instance, the list of user ratings or users’ listening behaviour for it).

On the other hand, the term audio content descriptors indicates all the data that has

been extracted from the audio signal itself instead of having been mined from the Web or

other popular sources. It is important to notice that there is a lack of agreement on the

use of the term metadata, for sometimes audio content descriptors are also considered

metadata, as they are textual information about a track. In this work we will follow

the approach presented in [14], where Bogdanov proposes to use the term metadata to

indicate all the data that refers to a track and that has not been extracted from the

audio signal itself.

Both types of data have pros and cons. Regarding metadata, major concerns arise from

the questionable consistency of the descriptors among the entire catalogue catalogue of

music, given that they may have been extracted from several sources. Other concerns

also arise from how well they actually describe the audio track. Moreover, they generally

require human intervention, which is expensive, time-consuming and prone to disagree-

ment among different raters. On the other hand, audio content descriptors (particularly

the low-level ones) may have no musical meaning and therefore they could be hard to un-

derstand. Many efforts have been taken in order to improve the methods of information

Chapter 1. Introduction 3

extraction of both these categories. In general, however, audio content descriptors are

thought to be more flexible, since they can be easily and equally computed for any track.

One advantage of this technique relies on the fact that these kind of descriptors could

easily be computed not just for each kind of song, but also for any segment inside of it.

This has for example been exploited by Shazam, a widely-used smartphone app for music

identification that analyzes peaks in the frequency-time spectrum throughout all song

length to build a very robust song identification system [87]. Another popular product

that performs audio content analysis just for short segments of a song is The Infinite

Jukebox7, a web-application using The Echo Nest library and written by Paul Lamere,

that allows users to indefinitely listen to the same song, with the playback automati-

cally jumping to points that sound very similar to the current one. The Infinite Jukebox

can be considered an application of the so-called creative-MIR [77], an emerging area of

activity inner to MIR whose subject is to exploit MIR techniques for creative purposes.

Other relevant software that exploits Echo Nest library for similar purposes is Autocan-

onizer8 and Wub Machine9. However, there aren’t many commercial or research-based

software tools that exploit this kind of techniques for creative interaction or manipu-

lation of audio tracks at the moment. Probably the most relevant commercial system

is Harmonic Mixing Tool10, that performs audio content analysis on the user’s music

collection in order to allow a pleasant and harmonic fade when mixing between songs.

More recently, the research-based software AutoMashUpper has been developed with

the intent of automating generating multi-song mashup11 while also allowing the user a

control over the music generated [28].

1.3 Phonos Project

Phonos project12 is an initiative of the Music Technology Group (Universitat

Pompeu Fabra, Barcelona) in collaboration with Phonos Foundation. Phonos was

founded in 1974 by J.M. Mestres Quadreny, Andres Lewin-Richter and Luis Callejo,

and for many years it has been the only studio of electroacoustic music in Spain. Many

of the electroacoustic musicians in Spain attended the courses of the composer Gabriel

Brncic at Phonos and regularly organized concerts and public activities to disseminate

electroacoustic music. This initiative became Phonos Foundation 1982 and in 1984 it

was registered at the Generalitat de Catalunya. In 1994, an agreement of co-operation

7http://infinitejuke.com
8http://static.echonest.com/autocanonizer
9http://thewubmachine.com

10http://www.idmt.fraunhofer.de/en/Service_Offerings/products_and_technologies/e_h/

harmonic_mixing_tool.html
11A mashup is a composition made of two or more different songs playing together.
12http://phonos.upf.edu/

http://infinitejuke.com
http://static.echonest.com/autocanonizer
http://thewubmachine.com
http://www.idmt.fraunhofer.de/en/Service_Offerings/products_and_technologies/e_h/harmonic_mixing_tool.html
http://www.idmt.fraunhofer.de/en/Service_Offerings/products_and_technologies/e_h/harmonic_mixing_tool.html
http://phonos.upf.edu/

Chapter 1. Introduction 4

with Music Technology group was established, with the purpose of promoting cultural

activities related to research in the music technology. In 2014, the exhibition “Phonos,

40 anys de música electrònica a Barcelona”13 has been planned at Museu de la Musica14

(Barcelona) with the purpose of celebrating the 40th anniversary of Phonos and showing

many of the instruments used in the studio, while allowing visitors to listen to the music

works produced there during all these years. Given the songs’ average length and their

complexity, a way for the visitors to quickly and nicely explore a catalogue of songs

produced in these 40 years was needed.

Figure 1.1: Phonos, 40 anys de música electrònica a Barcelona, Manifesto.

1.4 GiantSteps

GiantSteps15 is a STREP project coordinated by JCP-Consult SAS in France in

collaboration with the MTG funded by the European Commission. The aim of this

project is to create the ”seven-league boots” for music production in the next decade

and beyond, that is, exploiting the latest fields in the field of MIR to make computer

music production easier for anyone. Indeed, despite the increasing amount of software

and plugins for computer music creation, it’s still considered very hard to master these

instruments and producing songs16 because it requires not only musical knowledge but

13http://phonos.upf.edu/node/931
14www.museumusica.bcn.es/
15http://www.giantsteps-project.eu/
16”Computer music today is like piloting a jet with all the lights turned off.” (S. Jordà). http:

//vimeo.com/28963593

http://phonos.upf.edu/node/931
www.museumusica.bcn.es/
http://www.giantsteps-project.eu/
http://vimeo.com/28963593
http://vimeo.com/28963593

Chapter 1. Introduction 5

also familiarity with the tools (both software and hardware) that the artist decide to

use, and whose way of usage may greatly vary between each other. The GiantSteps

project targets three different directions:

• Developing musical expert agents, that could provide suggestions from sample

to song level, while guiding users lacking inspiration, technical or musical knowl-

edge

• Developing improved interfaces, implementing novel visualisation techniques that

provide meaningful feedback to enable fast comprehensibility for novices and im-

proved workflow for professionals.

• Developing low complexity algorithms, so that the technologies developed can

be accessible through low cost portable devices.

Started on November 2013, GiantSteps will last 36 months and the institutions in-

volved are:

• Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain

• JCP-Consult SAS, France

• Johannes Kepler Universität Linz, Austria

• Red Bull Music Academy, Germany

• STEIM, Amsterdam, Netherlands

• Reactable Systems, Barcelona, Spain

• Native Instruments, Germany

1.5 Purpose of this work

The purpose of this work is to develop a software to be used by visitors during the

exhibition Phonos, 40 anys de música electrònica a Barcelona and that allows users to

easily explore a medium-sized (few hundreds of tracks) collection of music. This software

is intended to exploit latest MIR findings to create a flow of music, composed of short

segments of each song, concatenated in a way that the listener can barely realize of the

hops between different songs. The application must also allow users to interact with it

in order to have some control over the generation of the playlist; specifically, the user

should be able to give a general direction to this flow (through some sliders or others

Chapter 1. Introduction 6

GUI elements) in regards to some relevant music features, in a way that the user-driven

change in the musical output can be perceived. The application developed is meant

to be part of the GiantSteps project and therefore should follow the three guidelines

explained in the previous page. In addition to this, given its future use on a public

place, the application is required to be easy to use also for non-musicians, as many of

the visitors of the exhibition could be.

1.6 Introduction to the problem of Playlist Generation

The problem of playlist generation has already been addressed by many popular

music platforms, such as Last.fm17, Pandora and Musicovery18. The main objective

of such services is to help users find tracks or artists that are unknown to them and

that they may like, providing personalized radio playlists. However, a playlist may be

defined, in a broad way, just as a sequence of tracks [17] and therefore its use could be

more general. For instance, a common use of the term playlist refers to the broadcasting

radio playlists, i.e. playlists made by DJs in a radio stations and often involving popular

tracks. We can therefore define the problem of playlist generation as follows [17]:

Given (1) a pool of tracks, (2) a background knowledge database, and (3)

some target characteristics of the playlist, create a sequence of tracks fulfilling

the target characteristics in the best possible way.

This task is made particularly challenging by the average size of the music database

on which the generation of the playlist is needed: already, personal music libraries can

be huge [31], hence the corresponding amount of information to be processed in order

to the generate the playlist leads to very heavy computational tasks. Depending on the

need of the application, these tasks may also be performed offline, although a real-time

user interaction should be supported in many cases in order to allow the user to have

some control over this generation process (such as in the case study of this work). As

we will see in Chapter 2, extracting information from an audio signal is not a trivial

task and many algorithms have considerable time-complexity, and this may lead to very

long computational times already for the analysis of small-sized catalogues. Playlist

generation is a well-known problem inside MIR [34] [42], since this task can be considered

as a retrieval task if its definition is limited to the selection of tracks satisfying a user

query [17]. Other major topics of MIR also include extraction of features and similarity

analysis, that can be seen as a basis for building a playlist generation system [33].

17http://last.fm
18http://musicovery.com

http://last.fm
http://musicovery.com

Chapter 1. Introduction 7

1.7 Structure of the dissertation

This dissertation is organized as follows:

• The first part will at first give an overview regarding music analysis techniques, ex-

plaining metadata, audio content analysis and the differences between them. Then,

common techniques of music similarity computation will be explained. Moreover,

the problem of the evaluation in MIR will be introduced, with a focus on different

types of evaluations generally used for automatically generated playlists.

• The second part will be about the methodology, explaining the different stages of

the development, the problems faced and the techniques used, also in regards to

the evaluation of the system. A presentation of the case study will introduce to

an explanation of the reasons that lead to prefer the use of some techniques over

others.

• Finally, results are shown and discussed, regarding both the performance of the

system and the results of the evaluation conducted over a restricted number of

participants. Some ideas regarding future development of the system are also

presented.

8

Part I

Background

9

10

Chapter 2

Automatic music analysis

techniques: state of the art

In order to retrieve information from a vast catalogue of music, tools that can au-

tomatically extract information from audio or collect relevant data related to it are

required. During the last two decades, several approaches for automatic music analysis

and description have been developed, and they generally differ in the nature of the fea-

tures they deal with. The main categories of sources from which features are extracted

are generally considered to be the following ones: music content, music context, user

properties and user context [73]. Music content data deals with aspects that are directly

inferred by the audio signal (such as melody, rhythmic structure, timbre) while music

context data refers to aspects that are not directly extracted from the signal but are

strictly related to it (for example label [64], artist and genre information [13] [1], year of

release [84], lyrics [24] and semantic labels). Regarding the user, the difference between

user context and user properties data lies on the stability of aspects of the user himself.

The former deals with aspects that are subject to frequent changes (such as mood or

social context), while the latter refers to aspects that may be considered constant or

slowly changing, for instance his music taste or education [73].

In this chapter, we will focus on the differences between music content and music context

data.

11

Chapter 2. Automatic music analysis techniques: state of the art 12

2.1 Metadata

By metadata we mean all the descriptors about a track that are not based on the audio

content1. Therefore, they are not directly extracted from the audio signal but rather

from external sources. They began to be deeply studied since the early 2000s, when first

doubts about an upper threshold of the performance of audio content analysis systems

arised [4]. Researchers then started exploring the possibility of performing retrieving

tasks on written data that is related to the artist or to the piece.

At first, the techniques were adapted from the Text-IR ones, but it was immediately

clear that retrieving music is fairly more complex than retrieving text for several reasons:

• If metadata are used in a music recommendation system, they should take into

account also the musical taste of the user who performed the query.

• Text documents are in general able to provide information about its content. The

user who performs the query in the hope of retrieving a particular text generally

has a good idea of how to form his query. For instance, in [63] Orio provides the

example that if a user is looking for a text that is somehow linked to or setted in a

tempest, he could just query “tempest”. On the other hand, music’s abstractness

makes it very hard for the user to formalize a precise query in order to retrieve

audio.

As a consequence of this fact, it is generally believed that music characteristics can be

described only in musical terms [63]. Yet the task of describing music remains hard, for

musical terms are mainly referred to structural features rather than the content, and

therefore terms like concerto or ballad are not useful to discriminate among the different

hundreds or thousands of concerti or ballads [63].

During last years, many techniques exploiting metadata have been developed; they may

differ both in the sources used for retrieving data and in the way of computing a similarity

score, and clearly the performance of a system using metadata for similarity computation

is highly affected by both of these factors. Sources may include [14]:

• Manually annotated data: description provided by experts; they may be referred

to genre, mood, instrumentation, artist relations.

• Collaborative filtering data: data indirectly provided by users of web communities,

in the form of user ratings or listening behaviour information.

1We recall again that there is a lack of agreement on the use of the term metadata; elsewhere it
could be used with a different meaning, for instance it may indicate all the data regarding a music piece,
including the one extracted from the audio signal itself.

Chapter 2. Automatic music analysis techniques: state of the art 13

• Social tags: data directly provided by users of social network of music (such as

Last.fm2) or social games.

• Information automatically mined from the Web. Sources in these cases may include

web-pages related to music or microblogs (for instance Twitter).

The availability of some of them greatly depends on the size of the music collection under

consideration; for instance, as manual expert annotations might be very accurate, they

would be extremely costly and probably infeasible on large collections [83]. In contrast,

collaborative filtering data may be the most studied technique, given that it has already

been intensively used in other different fields, for instance in movie recommendation.

It is the predominant approach in the field of Recommender Systems (RS) [47] and is

mainly focused on user ratings, generally leading to better results [43]. However, some

concerns are related to this technique. First, collaborative filtering approaches have not

been designed to be used for playlist generation, but mainly for recommending artists

or music. Second, the availibility of datasets for user ratings in the field of music is

very limited compared to other fields, and research is often based on very small samples

[54]. Regarding listening behaviour information, they might be inaccurate for they don’t

keep track of song durations and of the user activities while listening to music [48]. In

addition, there’s no way of collecting negative feedback (dislikes) through them and,

more in general, listening to a specific song doesn’t necessarily imply liking that song

[14].

Sources are also picked in relation to the subject of the research or of the system, that

may be for example a recommendation or a similarity computation system. At this point,

it’s important to highlight the difference between the two of them: a recommendation

system not only has to find similar music, but has also to take into account the personal

taste of the user, and therefore it’s generally considered as a basic tool to produce

recommendation [22]. In any case, the terms “similarity” and “recommendation” cannot

be substituted, given that a good similarity computation system doesn’t necessarily

equate to a good recommendation system [62]. The computation of similarity may

happen through a Vector Space Model (a technique adapted from the Text-IR) and

co-occurence analysis. In the next subsections we will briefly explain the characteristics

and the performance of these techniques.

2http://last.fm

http://last.fm

Chapter 2. Automatic music analysis techniques: state of the art 14

2.1.1 Vector Space Model

The main idea of this technique lies on building a bag-of-words representation3 of a

retrieved document, and then computing a term weight vector for each document. It’s

a frequently used technique in Text-IR (and in Computer Vision) which can safely be

used when retrieving web pages related to music, in an attempt of computing similarity.

In [89], one of the first work in this field, Whitman and Lawrence provided an analysis

of this kind on music-related web pages retrieved with the queries (to the Google search

engine) “artist” music review and “artist” genre style, where words such as music

and review where added to improve the chances of automatically retrieving webpages

related to music. After downloading the pages, the authors apply a Part-of-Speech4

tagger to assign each word to its suited test set. Similarity between pairs of artists is

then computed on the tf-idf (term frequency - inverse document frequency) vectors of

the respective artists. In general, the tf-idf assigns more weight to words that occur

frequently in a specific document but rarely in others [52]. This approach has later

been refined, by applying better filtering to the corpus of the page (in order to consider

only significant words) and with different similarity measures. The use of Vector Space

Model has not been limited to webpages. For instance, it has been applied to microblogs

(specifically Twitter) in [71], achieving a mean average precision (MAP) of 64% on a

collection of 224 artists. Interestingly, results of more than 23000 single experiments

showed that:

• Queries composed only by the artist name performed best, while adding other

keywords showed a decrease in accuracy.

• Highest MAP values are achieved without filtering the corpus of the webpage (thus

increasing the computational costs)

Vector Space Model has been used also with collaborative tags and games with a pur-

pose5. Collaborative tags are small annotation (usually just one or two words) created by

users of social music platform, such as Last.fm of MusicStrands6. The main advantage

of these tags over the microblog data lies in the limited dictionary used for indexing and

in the meaningfulness of these tags; in other words, tags are generally less dispersive,

3A bag-of-words can be basically seen as an extension of a programming language “dictionary”:
it collects words (that sometimes may just be an abstraction of much more complex features, such as
computer vision descriptors) from a document, and then computes the frequency with which each of
them appears in the document. Two different documents are considered similar if they contain the same
or similar words with a comparable frequency.

4Software or algorithm for automatically assign each word in a text to a speech.
5Games with the goal of outsourcing to humans tasks that machines cannot execute properly. In

this field, a game with purpose may for instance be a game where people tag music with high-level
descriptors, with the advantage of providing intelligible data that machines generally fail to achieve.

6http://music.strands.com

http://music.strands.com

Chapter 2. Automatic music analysis techniques: state of the art 15

Figure 2.1: The user interface of TagATune.

less noisy and more musically meaningful. Furthermore, tags are available not only at

artist level, but also at the level of albums or tracks. On the other hand, they require a

large and active user community. In this kind of community, moreover, the phenomenon

of “popularity bias” is more frequent: much more data is available for popular tracks

and artists, while no data at all might be found for artists in the long tail. If this kind of

data is used inside a music recommendation system, a further phenomenon of “the rich

gets richer” may happen, as more popular songs are more subject to be recommended

and therefore will be tagged by even more users. Another problem with tags of Last.fm

is that many of them are irrelevant to create a descriptive artist or song profile [73], as

personal and subjective tags such as “love” or “favorite” may be found. This problem

can be solved with the use of data coming from games with a purpose (for instance

TagATune7), that are usually sources of much more meaningful data. In TagATune,

two players are played a song, which could be either the same or different: they have to

understand as soon as possible (in order to get a higher score) if the some they’re being

played it’s the same.

7http://musicmachinery.com/tag/tagatune/

http://musicmachinery.com/tag/tagatune/

Chapter 2. Automatic music analysis techniques: state of the art 16

2.1.2 Co-Occurence Analysis

The main idea behind co-occurence analysis is that two items that frequently co-

appear in some kind of music-related document are similar. Data sources on which this

kind of analysis is performed are typically music playlists [65] (compilation discs, radio

stations or even simply users’ playlist), music collections shared on peer-to-peer networks

[89], as well as web-pages [90] [25] and microblogs [72] [91]. On microblogs, hashtags

such as nowplaying or music are used to identify the individual listening events of a user

and therefore building a simple user model. Co-occurence analysis with music playlists

is commonly used in music recommendation system, while the same kind of analysis

with web-pages is not common as Vector Space Models have yielded better results on

the same kind of data [70].

2.2 Audio content analysis

The main idea behind this kind of analysis is to directly extract useful information,

through some algorithms (or library of algorithms), from the audio signal itself. The

type of content information extracted may greatly vary in relation to the need of the

research, but we can mainly distinguish four categories [14]:

• Timbral information: related to the overall quality and color of the sound. There is

not a general definition for music timbre; in [63], Orio has defined it as “the acoustic

feature that is neither pitch nor intensity”. In other words, timbre embraces all

the features that make a C4 played by a violin sound clearly different from the

same note played by a piano.

• Temporal information: related to rhythmic aspects of the composition, such as

tempo or length of measures.

• Tonal information: directly linked to the frequency analysis of the signal and to

the pitch. It can describe what notes are being played or the tonality of a given

track.

• Inferred semantic information: information inferred (usually through machine

learning techniques) from the previous categories, in the attempt of giving a more

defined and understable shape to the data collected. This kind of information may

include descriptors such as genre or mood.

Information extracted through this family of techniques may also be categorized in

the following way:

Chapter 2. Automatic music analysis techniques: state of the art 17

• Low-level data: information that has no musical meaning and that, more in gen-

eral, is not interpretable by humans. Examples of this kind of descriptors are Mel

Frequency Cepstral Coefficients (MFCCs) and Zero Crossing Rate (ZCR).

• Mid-level data: information that has musical meaning but that is related to low-

level music features. This kind of category mainly includes temporal and tonal

descriptors.

• High-level data: corresponding to inferred semantic information.

Many of the studies conducted on the computation of music similarity through audio

content descriptors have solely focused on low-level and timbral information, because this

has been proven to bring alone to acceptable results with proper similarity measures [75].

However, more recent studies have shown some evidence of advantages in using high-

level descriptors [6] [88] and, more in general, the most advanced systems use data from

all of these categories. When computing low and mid-level descriptors, the procedure

requires the following operations:

• Conversion of the signal from stereo to mono, in order to compute all the descrip-

tors for just one signal

• Down-sampling of the signal to improve the performance while computing the

descriptors

• Segmentation of the signal into frames, short segments (usually from 512 to 2048

audio samples). Consecutive frames are usually not disjoint: the so-called hop-size

determines the hop of samples between the beginning of a frame and the next one,

and is normally half or a quarter as big as the frame size.

• Computation of Fast Fourier Transform, with an appropriate prior windowing

technique8.

The computation of descriptors is then performed on each frame, and finally a single

value for each descriptor is computed by the means of specific statistical analysis. Mean,

median, variance and covariance are the most used statistical tools for calculating rep-

resentative global values out of the enormous pool of values computed in each frame.

Some more operations may sometimes be needed, such as de-noising 9 of time-scaling of

the signal. In the next sections, a more detailed look among most important descriptors

will be given.

8Although this last step may not be strictly seen as a necessary operation, many descriptors rely on
frequency analysis of the signal and therefore they require the computation of the Fourier Transform.

9A set of operations which purpose is to reduce the amount of background noise in a signal, therefore
incrementing the signal-to-noise ratio (SNR or sometimes S/N).

Chapter 2. Automatic music analysis techniques: state of the art 18

Stereo
Track

Mono
Track

Downsampled
Signal

Frames

conversion to
mono signal downsampling

decomposition
into frames

Preliminary steps

Figure 2.2: Standard procedure preliminary to the extraction of audio features.

2.2.1 Low-level descriptors

2.2.1.1 MFCCs

Mel-Frequency Cepstral Coefficients (MFCCs) are a set of descriptors that have been

widely used in MIR. They have been introduced in [29] for speech recognition: since

then, they are used in state of the art systems for speech recognition; furthermore, they

have shown prominent results on music similarity systems when a single or multivariate

Gaussian distribution is computed over their values.

MFCCs are strongly related to human auditory system behaviour, which can be modeled

by a set of critical bandpass filters (called “auditory filters”) with overlapping bands,

as already shown by Hermann von Helmholtz in 1863 [46]. The term critical band was

introduced by Harvey Fletcher in the 1940s, and indicates a range of frequencies around

a specific one that may be not perceived in a totally independent way if played together

to this reference frequency. This phenomenon is due to the inner behaviour of the

cochlea, the sense organ of hearing within the inner ear. The mel bands are a set of

bands that try to replicate auditory filters and therefore to somehow capture relevant

features in the perception of music. Mel bands are based on the mel frequency scale, a

perceptual scale of pitches judged by listeners to be equal in distance from one another.

Mel frequency scale is linear at low frequencies (below 1000Hz) and logarithmic above.

A popular formula from converting from f Hertz to m mels is:

m = 2595 log10

(
1 +

f

1000

)
(2.1)

Though there is not a standard procedure for computing MFCCs values, steps are

generally motivated by perceptual or computational consideration, and follow approxi-

mately this procedure:

1. Computation of Fourier Transform of the signal (of the frame)

Chapter 2. Automatic music analysis techniques: state of the art 19

2. Mapping of the powers obtained in step 1 onto mel bands. Then the logarithm

of each power for each mel band is computed, to approximate the cochlea in the

human ear more closely [75].

3. Computation of the discrete cosine transform of these logarithm values, in order

to eliminate unnecessary redundancies.

4. Extraction of the MFCCs as amplitudes of the resulting spectrum.

Differences in the procedure often involve the shape of the windows used for mapping

the spectrum into these bands, the choice of pre-filtering of the signal after step 1 or

even the total number of MFCCs to extract.

2.2.1.2 Bark bands

The Bark scale, proposed by Eberhard Zwicker in 1961, is a psychoacoustical scale

that tries to improve the mel scale, where each “Bark” stands for one critical bandwidth.

Bark bands are 24, and are described as bands over which masking phenomenon and the

shape of cochlea filters are invariant, which is strictly not true. To convert a frequency

from f Hertz to B Barks we can use the formula:

B = 13a tan

(
f

1315.8

)
+ 3.5a tan

(
f

7518

)
(2.2)

The published Bark bands (given in Hertz) are10:

[0, 100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720, 2000, 2320,

2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500]

with corresponding band centers at:

[50, 150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370, 1600, 1850, 2150, 2500,

2900, 3400, 4000, 4800, 5800, 7000, 8500, 10500, 13500]

Again it can be seen that width of frequency bands grows slowly below 1000Hz, while

showing an exponential growth at higher frequencies. One advantage of Bark bands

values over MFCCs is that they are intuitively more understandable, as they directly

represent energy presence (and they can be linked to graphical equalization operation),

whereas MFCCs values are just “abstract” numbers not directly related to our per-

ceptual experience. Therefore, significance and interpretation is more direct with Bark

bands.

10https://ccrma.stanford.edu/~jos/bbt/Bark_Frequency_Scale.html

https://ccrma.stanford.edu/~jos/bbt/Bark_Frequency_Scale.html

Chapter 2. Automatic music analysis techniques: state of the art 20

Other relevant timbre descriptors

The number of timbre descriptors that have been proposed is substantial (see Ap-

pendix A to specifically see what low-level descriptors can be extracted with Essentia).

Many of them are barely intelligible, but seem to somehow be related to perceptive

aspects. Some low-level descriptors that are quite intelligible and have been used often

in research are:

• Loudness: the loudness of a signal corresponds to its energy raised to the power of

0.67. This formula has been proposed by Stevens in [81], in an attempt of providing

a relationship between the magnitude of a physical stimulus and its perceived

intensity or strength. Therefore the loudness can be seen as the perception of the

energy of an audio signal.

• Dissonance: for sensory dissonance (which is different from musical or theoretical

dissonance) we mean the measure of perceptual roughness of the sound and is based

on the roughness of its spectral peaks, as it depends on the distance between the

partials measured in critical bandwidth. Any simultaneous pair of partials of about

the same amplitude that is less than a critical bandwith apart produces roughness

associated with the inability of the basilar membrane to separate them clearly.

2.2.2 Mid-level descriptors

2.2.2.1 Rhythm

In traditional music notation, there are several notations for tempo. It may be ex-

pressed in BPM (beats per minute), MPM (measures per minute; commonly used in

ballroom dance music) or by semantic notations indicating a range of BPM; an example

of this last category of notations may be the popular system of Italian markings, such

as presto (168-200 BPM), andante (84-90 BPM) or allegro (120-128 BPM).

In the field of MIR, accurate notations are needed, therefore semantic annotations are

disregarded in favour of more precise notation such as BPM and Onset Rate (OR).

Onset rate

Onsets are generally defined as the beginning of a new musical event, and onset rate

is therefore defined as the number of onsets in a time interval. This definition however

hides many difficulties: several instruments might have a long attack time, therefore it

is not trivial to determine the actual beginning of the note. Furthermore, in polyphonic

music nominally simultaneous notes may be spread over tens of seconds, making this

Chapter 2. Automatic music analysis techniques: state of the art 21

definition more blurred [32]. Onsets are generally considered to be different from notes:

for instance, a glissando might involve many different notes but only one onset.

Level

Time

Attack Decay Release

Onset

Figure 2.3: Onset in a sound envelope.

Several ways of computing an onset detection function have been proposed, according

to what aspects are taken into account for defining an onset. Actually, onset detection

may be performed in time domain (when looking for significant changes in the over-

all energy), frequency domain (if looking for events regarding just a specific range of

frequencies), phase domain or complex domain. Important algorithms for this task are:

• HFC, the High Frequency Content detection function that looks for important

changes on highest frequencies. It is very useful for detecting percussive events.

• Spectral Flux, that decomposes the entire audible range of frequencies (approxita-

mely the interval 20-20000 Hz) into bins, measures changes in magnitude in each

bin, and then sums all the positive changes across all the bins.

• the Complex-Domain spectral difference function [8] taking into account changes

in magnitude and phase. It emphasizes note onsets either as a result of significant

change in energy in the magnitude spectrum, and/or a deviation from the expected

phase values in the phase spectrum, caused by a change in pitch.

HFC was proposed by Masri in [59]. Given the short-time Fourier transform (STFT) of

the signal x(n):

Xk(n) =

N
2
−1∑

m=−N
2

x(nh+m)w(m)e−
2jπmk
N (2.3)

(where w(m) is again an N -point window, j the imaginary unit, and k is the index of the

frequency bin, and h is the hop size, or time shift, between adjacent windows), the idea

Chapter 2. Automatic music analysis techniques: state of the art 22

behind HFC is to give more weight to higher frequencies, by defining a onset function

whose values are computed in the following way:

HFC(n) =
1

N

N
2
−1∑

k=−N
2

k|Xk(n)|2 (2.4)

The HFC function produces sharp peaks during attack transients and is notably

successful when faced with percussive onsets, where transients are well modeled as bursts

of white noise [9].

On the other hand, the Spectral Flux SF function is defined as follows:

SF (n) =

N
2
−1∑

k=−N
2

H(|X(n, k)| −H(|X(n− 1, k)|) (2.5)

where H = x+|x|
2 is the half-wave rectifier function. This algorithm greatly characterizes

changes in magnitude spectrum but it is quite weak to frequency-modulation phenomena

(such as vibrato). To this end, the recently proposed variant SuperFlux [11] seems to

achieve much better results.

Another interesting onset function is the Complex Domain, that calculates expected the

expected amplitude and phase of the current bin X(n, k) based on the previous two

bins X(n− 1, k) and X(n− 2, k). By assuming constant amplitude the expected value

XT (n, k) is then computed:

XT (n, k) = |X(n− 1, k)|eψ(n−1,k)+ψ′(n−1,k) (2.6)

and therefore a complex domain onset detection function CD can be defined as the sum

of absolute deviations from the target values [32]:

CD(n) =

N
2
−1∑

k=−N
2

|X(n, k)−XT (n, k)| (2.7)

Given an onset function (for instance one of the already cited HFC(n), SF (n) or

CD(n)), onsets are then extracted by a peak-picking algorithm which finds local max-

ima in the detection function, subject to various constraints. Threshold and constraints

used in the peak-picking algorithm has a large impact on the results, specifically on

the ratio of false positives11 to false negatives12. For instance, a higher threshold may

lead to a lower number of false negatives but to a higher number of false positive, while

11True onsets that are not detected by the algorithm.
12Points that are classified as onsets by the algorithm, while they are actually not.

Chapter 2. Automatic music analysis techniques: state of the art 23

a lower threshold may have the opposite effect. A compromise, mostly specific to the

application, has to been found.

BPM

We can roughly define beats as those instants in which we tap with a foot while listen-

ing to track; beats therefore correspond to moments of musical emphasis in an audio

signal. The algorithms for detecting the beats-per-minute (generally called beat detec-

tion algorithms) greatly rely on onset detection funcions. The basic idea is to look for

some time-pattern that may explain the distribution of onsets over time, and hence

derive BPM. They usually require more than one onset detection function to achieve

good results. One of the beat tracking algorithm achieving very high reliability is Tem-

poTapDegara, presented by N. Degara et al. in [30]. This algorithm models the time

between consecutive beat events and exploits both beat and non-beat signal observa-

tions, estimating not only beats position but also the expected accuracy. It specifically

analyzes the input music signal and extracts a beat phase13 and a beat period salience

observation signal, and then computes the beat period14 from these values.

The beat tracking probabilistic model then takes as input parameters the phase observa-

tion signal and the beat period estimation, returning the set of beat time estimates. The

quality of the beat period salience observation signal is finally assessed and a k-nearest

neighbor algorithm is used to measure the reliability of the beat estimates.

A complex spectral difference method is used for computing the beat phase observation

signal that will allow to compute all the other features. This onset function has shown

good behavior for a wide range of audio signals and has been used with satisfying results

in other beat tracking systems [27].

2.2.2.2 Tonality

Many efforts have been taken in order to improve the techniques for detecting tonality

or harmonic content of a song, as this is one of the most main aspects of western music

(a direct consequence of tonality is the detection of predominant melody; to understand

why this is so important just try to think how many times you whistled or sang a song

to let other people recognize it). Many studies focused on this aspect of music were

not oriented toward the computation of similarity between tracks, but instead toward

different tasks, such as automatic trascription of a polyphonic audio signal (mainly into

a MIDI representation) and source separation, that is the task of isolating a single and

specific instrument among many playing together.

From a music point of view, in western music an octave is made of 12 different pitches,

13The location of a beat with respect to the previous beat.
14Regular amount of time between beat events.

Chapter 2. Automatic music analysis techniques: state of the art 24

and seven differents notes take place in this discrete range. According to the pitch

assigned to each note, we may have different keys, that are a combination of a tonic (the

central pitch) and the mode. Major and minor are the most popular modes.

Figure 2.4: Major and minor modes of C.

Harmony is a term that denotes the simultaneous combination of notes, called chords,

and over time, chord progressions. One of the most important descriptor for extracting

information related to tonality is called Harmonic Pitch Content Profile (HPCP , also

called chromagram). This is directly related to tonality and chord detection: chords

can be recognized from from the HPCP without even precisely detecting what notes are

being played, and tonality can also be inferred by HPCP (and in this case a previous

estimation of chords is not necessary).

An HPCP is a 12k size vector indicating the level energy for each profile class. If k = 1,

the HPCP represents the intensities of the twelve semitone pitch classes, otherwise

of subdivision of these15. In [41], Gómez proposes to distinguish tonality features on

temporal scales:

• Instantaneous: features attached to an analysis frame.

• Global: features related to a wider audio segment, for instance a phrase, a chorus

or the whole song.

Furthermore, Gómez proposes to split tonal descriptors in both low-level and high-level

descriptors. We hence obtain the representation of tonal descriptors shown in Table 2.1.

The general approach for computing HPCP can be summarized as follows:

• At first, some pre-processing of the audio signal may be performed. For instance,

a transient detection algorithm may be used to detect and eliminate regions where

15It may be extremely useful to study subdivision of semitone pitch classes when dealing with non-
chromatic scales, that are very popular in eastern music.

Chapter 2. Automatic music analysis techniques: state of the art 25

Name Temporal Scale Level of abstraction

HPCP Instantaneous Low
Chord Instantaneous High
Average HPCP Global Low
Key Global High

Table 2.1: Main tonal descriptors.

the harmonic structure is noisy. This step is usually performed to decrease the

computational cost of the HPCP without affecting its output [16].

• At this point, spectral analysis is required: once the signal is segmented into frames

of a proper size and a windowing function is applied, the Fast Fourier Transform

(FFT) is computed to get the frequency spectrum. Frames should not be too

short, in order to have a better frequency resolution.

• A peak-picking algorithm is run to find those frequencies corresponding to local

maxima in the spectrum. Usually, these algorithms are not run only on the interval

[100, 5000] Hz: this has shown much better results, because outside this range the

signal is predominantly noisy, due to some percussion and instrumental noise [41].

• The HPCP is finally computed; many approaches have been developed for this

task, all based on the pitch content profile algorithm presented by Fujishima in

[39]. At first, a mapping of each frequency bin of the FFT to a pitch class is

needed (for instance, FFT bins corresponding to frequencies like 430Hz, 432Hz or

444Hz are mapped to the A at 440Hz). Then, the amplitudes inside each region

are summed up and divided by the number of bins inside that region. Finally,

the bins obtained are collapsed, so that bins referring to the same note but in a

different octave (for example A4 and A5) are collapsed in a single bin for that note,

indicating the overall energy of it in the frame. The HPCP is different from the

PCP in the sense that a higher resolution may be used for HPCP bins (decreasing

the quantization level to less than a semitone) and a weight function is introduced

into the feature computation. The HPCP value of the n-th HPCP bin is calculated

as:

HPCP (n) =
nPeaks∑
i=1

w(n, fi)a
2
i (2.8)

where ai and fi are respectively the magnitude and the frequency of the ith peak,

nPeaks is the number of spectral peaks considered, and w(n, fi) is the weight of

the frequency bin fi when considering the HPCP bin n.

The performance of the HPCP builder strongly relies on the weight function [19].

Note that, for how the common procedure of building HPCP is defined, HPCP

Chapter 2. Automatic music analysis techniques: state of the art 26

are usually considered robust to noise and different tuning references.

HPCP values are usually normalized in order to store the relative importance of

the nth HPCP bin:

HPCPnormalized(n) =
HPCP (n)

Maxn(HPCP (n))
(2.9)

Once the HPCP are computed, additional tonal features may be computed, such as

tonality or chords. Regarding tonality estimation, this is generally computed through a

correlation analysis between the HPCP obtained and a matrix of empirically computed

HPCP profiles corresponding to different keys.

2.2.3 High-level descriptors

Though there is not an univocal definition for it, the term “high-level descriptor”

is generally used for indicating a descriptor that is the result of a machine learning

process or of a statistical analysis of low and mid-level descriptors. The motivation

behind them is to “translate” low-level features into descritors associated with a semantic

explanation. A growing research attention in MIR has been targeted to some MIR

classification problems, especially genre classification, artist identification and mood

detection [12]. Music genre classification is usually performed on the basis of a machine

learning process: a classification algorithm is trained on low-level data, such as timbre or

rhythm descriptors. The quality of the system for predicting music genre highly depends

not only on the quality of the low-level data employed, but also on the typology and

variety of music in the training set. For instance a system trained on a dataset of pop-

rock music would perform badly on a classical music dataset. In addition, the process of

labelling songs hides further difficulties, as labels themself could be misunderstood: for

example, with the term “danceable” we usually refer to electronic dance music, but the

term might correctly be applied to waltz music as well. The task of classification might

be performed to detect also valence and arousal, and results are generally considered

improvable. To this end, it is worth to mention the recent project AcousticBrainz16, that

is aimed at building a huge open database of descriptors computed (through Essentia,

see Section 2.2.4) on the catalogue of songs of its users. One of its main purposes is

to exploit this huge catalogue of music and data to explore the usefulness of current

algorithms for low-level audio features extraction in music classification algorithms.

Automatic segmentation of audio is another task targeted by the MIR community: it

consists of splitting songs into its compositional main parts (such as intro, refrain or

outro) or its main rhythmic patterns, such as bars. Regarding the segmentation into

16http://acousticbrainz.org/

http://acousticbrainz.org/

Chapter 2. Automatic music analysis techniques: state of the art 27

compositional main parts, approaches generally follow the one proposed in [38], in which

Foote performs a local self-similarity analysis in order to locate points of significant

change. Segmentation is then performed computing a self-similarity matrix for the

entire track, in which the similarity between excerpts starting at points of significant

change is measured on the basis of low-level descriptors regarding rhythm, melody or

timbre. Similar excerpts are then considered to belong to the same structural pattern

of the song.

2.2.4 Main tools for extracting audio content

Many tools are available for the extraction of audio content descriptors from an

audio signal. Many of them have been developed by researchers following the research

necessities of MIR. This great variety of tools offers support to several operative systems

(mainly Linux, Mac OS X and Windows) and programming languages (Java, C++, C,

Python, Matlab). Some of this tools may be offered as standalone software or as a Vamp

plugin. Not all the tools for extracting audio content are open-source, therefore they

may not be particularly useful for the research community. In the following paragraphs,

we will briefly show the features of the tools taken into account on the development of

this work.

Essentia

Essentia17 is an open-source C++ library of algorithms for audio analysis and audio-

based music information retrieval. It has been developed at Music Technology Group18,

Universitat Pompeu Fabra, and has released under the Affero GPL license19. In its

current version 2.0.1, it contains a large collection of spectral, temporal, tonal, and

Frame
Cutter

Windowing Spectrum
Spectral
Peaks

HPCP

HPCP computation

Figure 2.5: Computation of HPCP with Essentia. Each block corresponds to a
different algorithm of Essentia.

17http://essentia.upf.edu/
18http://mtg.upf.edu/
19http://www.gnu.org/licenses/agpl.html

http://essentia.upf.edu/
http://mtg.upf.edu/
http://www.gnu.org/licenses/agpl.html

Chapter 2. Automatic music analysis techniques: state of the art 28

high-level music descriptors, algorithms for audio input/output functionality, standard

digital signal processing blocks and statistical tools. The library can be complemented

with Gaia 20, a C++ library to apply similarity measures and classifications on the

results of audio analysis. Both these libraries include Python 2.* bindings and support

Linux, Mac OS X and Windows. Essentia has been in developed for over 7 years,

incorporating the work of more than 20 researchers and developers through its history.

It offers two different modes: standard and streaming, the first being imperative while

the latter being declarative. Each processing block is offered as an algorithm, and has

three different types of attributes: inputs, outputs and parameters. Different blocks

may be linked in order to perform the required processing task. In Figure 2.5 a block

diagram of a processing task is shown, composed of several different algorithms linked

together. See Appendix A for consulting the full list of descriptors provided by Essentia

2.0.1.

The Echo Nest

The Echo Nest21 is a company that provides access, through Web API, to a collection

of audio descriptors for a catalogue of over 36 million songs and almost 3 million artists.

In order to access to this database, an API key is required, and some rate limits are

imposed to the use of a free license (for instance, the maximum number of HTTP calls

for minute is subject to a limit, generally 20). Users can decide to upload their collec-

tion into this database, so that descriptors will be computed for new songs and made

available to other users. The performance of this library greatly depends on the chance

that a song that is about to be analyzed has already been uploaded into this service.

If this is not the case, the upload time has to be taken into account for performing the

analysis task.

The Echo Nest provides a great amount of descriptors for each track (see appendix B for

the entire list), ranging from very accurate audio content information to metadata, and

has been used by several commercial solutions, developed by Spotify, Rdio, Warner Mu-

sic Group and many others. Many official and unofficial libraries provide access to The

Echo Nest service; among these, the most important one is probably the official Python

library Pyechonest22, that provides full access to all of the Echo Nest methods includ-

ing artist search, news, reviews, blogs, similar artists as well as methods for retrieving

detailed analysis information about an uploaded track. Furthermore, the library Echo

Nest Remix23 is worth a mention, as it is a library for audio manipulation and mixing

20https://github.com/MTG/gaia
21http://the.echonest.com/
22http://echonest.github.io/pyechonest/
23http://echonest.github.io/remix/

https://github.com/MTG/gaia
http://the.echonest.com/
http://echonest.github.io/pyechonest/
http://echonest.github.io/remix/

Chapter 2. Automatic music analysis techniques: state of the art 29

and has been used by many web-applications, including The Infinite Jukebox.

However, the source code of The Echo Nest API service is not provided, therefore it has

little usefulness to the research community. The Echo Nest has been aquired by Spotify

on March 2014.

jMIR

jMir24 is an open-source software suite implemented in Java and intended for use in

music information retrieval research. Its development has been guided by Cory McKay

(Marianopolis College, Quebec, Canada), with many researchers from several institu-

tions contributing to it. jMir is composed of several components differentiated in their

scope, spacing from audio content analysis (performed by jAudio), to web mining of

metadata and machine learning algorithms for classification.

The most relevant components of this suite are as follows:

• ACE : Pattern recognition software that utilizes meta-learning.

• jAudio: Software for extracting low and high-level features from audio recordings.

• jSymbolic: Software for extracting high-level features from MIDI recordings.

• jWebMiner : Software for extracting cultural features from web text

• jSongMiner : Software for identifying unknown audio and extracting metadata

about songs, artists and albums from various web services.

MIRtoolbox

MIRtoolbox25 is a set of functions for Matlab, dedicated to the extraction of au-

dio content features from audio files. The design is based on a modular framework:

algorithms are decomposed into stages, formalized using a minimal set of elementary

mechanisms, with the objective of offering an overview of computational approaches in

the MIR research field. MIRtoolbox has been developed at the Jyväskylän Yliopisto

(University of Jyväskylä, Finland), by Olivier Lartillot, Petri Toiviainen and Tuomas

Eerola.

24http://jmir.sourceforge.net/
25https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

http://jmir.sourceforge.net/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

Chapter 2. Automatic music analysis techniques: state of the art 30

2.3 Computing music similarity with audio content de-

scriptors

Many sizable issues have to be taken into account when trying to compute the music

similarity between two pieces. Main concerns are:

• Features whose values somehow reflect similarities between tracks must be dis-

cerned; this is especially important with audio content features, since many differ-

ent descriptors can be extracted.

• Discerned features must be comparable by the means of proper distance functions;

• There is no consensual definition of similarity; specifically it may vary according

to the kind of music and to the users’ background.

Thus, computing music similarity is a difficult task, because its wideness involves

not only the choice of the similarity functions but also the descriptors and the data on

which the computation of similarity is performed. Furthermore, music similarity cannot

be thought as a static concept, as it highly depends on the context. For instance,

Stober [82] reports some context factors that may come into play when analyzing music

similarity:

• Users: their preferences and background highly affect their perception of music

similarity. Factors that may come into play are instruments played, listening

habits and history, musical preferences.

• Retrieval task: according to the particular retrieval task, the concept of music

similarity may be greatly affected. For instance, comparing the task of cover song

retrieval takes into account factors that wouldn’t be considered when comparing

a more general music similarity distance between two different tracks.

The lack of a static concept of music similarity makes the evaluation task of a music

similarity computation system difficult. The problem of evaluation of such systems will

be presented in Chapter 3.

Approaches to music similarity based on audio content data are generally based on

low-level timbre descriptors [4], rhythm features and tonal information. Before present-

ing important results in the field of music similarity, we will give a brief overview on

similarity measures.

Chapter 2. Automatic music analysis techniques: state of the art 31

Similarity measures

A similarity measure (also called “similarity function” or simply “similarity”) on

a set X is a function defined as:

s : X ×X → R+ (2.10)

satisfying the following conditions for all x, y and z in X:

• Equal self-similarity: s(x, x) = s(y, y)

• Simmetry: s(x, y) = s(y, x)

• Minimality: s(x, x) ≥ s(x, y)

On the other hand, a distance metric (also called “distance function” or simply

“distance”) on a set X is defined as the function:

d : X ×X → R+ (2.11)

satisfying the following conditions for all x, y and z in X:

• Non-negativity: d(x, y) ≥ 0

• Identity of indiscernibles: d(x, y) = 0 if and only if x = y

• Simmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Non-negativity and identity of indiscernibles together produce positive definite-

ness. Some “light” distance metrics are also defined:

• pseudometric: allows violation of identity of indiscernibles

• quasimetric: allows violation of simmetry. If d is quasimetric, the symmetric metric

d′ can easily be formed as:

d′(x, y) =
1

2
(d(x, y) + d(y, x)) (2.12)

• semimetric: allows violation of triangle inequality.

Chapter 2. Automatic music analysis techniques: state of the art 32

A similarity measure s and a distance measure d in a set X are compatible if and only

if the following condition holds for all x, y, a and b in X:

d(x, y) ≥ d(a, b)⇔ s(x, y) ≤ s(a, b) (2.13)

A distance measure can be easily transformed into a similarity measure (or viceversa) by

mapping s = 1 to d = 0 and s = 0 to d = MAX, and then reversing the order of objects

in between (for instance with the Shepard formula s(x, y) = e−d(x,y)) [82]. Therefore,

we will use the two terms almost indistinctively.

Distance measures may be vector-based, sequence-based, set-based or distribution-based.

Important vector-based distance measures are Minkowski distance, Mahalanobis dis-

tance and cosine similarity. Minkowski distance between vectors x and y is defined

as:

dminkowski(x, y) ≡

(
n∑
i=1

|xi − yi|p
) 1

p

(2.14)

Frequently used special cases of Minkowski distance are:

• Manhattan distance: p = 1

• Euclidean distance: p = 2

On the other hand, Mahalanobis distance between two n-dimensional vectors x and

y is defined as:

dmahalanobis(x, y) ≡
√

(x− t)TW (x− y) (2.15)

where W is a n × n weight matrix that can be derived from covariances in the data.

When W = I, the Mahalanobis distance corresponds to an Euclidean distance. The

cosine distance is finally defined as:

cos(x, y) =

n∑
i=1

xiyi

‖x‖‖y‖
(2.16)

and it corresponds to the angle between two n-dimensional vectors x and y. It is com-

monly applied in text retrieval.

Regarding distribution based, two distances measures commonly used in MIR are

Kullback-Leibler divergence and earth mover distance (EMD). Kullback-Leibler diver-

gence between two discrete probability distributions A and B is defined as:

DKL(A‖B) =
∑
i

A(i) ln
A(i)

B(i)
(2.17)

Chapter 2. Automatic music analysis techniques: state of the art 33

However, there are some aspects that must be taken into account with this specific

measure:

• It cannot be considered a real distance measure, as it fails to fulfill simmetry and

triangle inequality

• When A and B are multivariate normal distributions, the formula can be rewritten

as:

KL(A,B) =
1

2

(
tr(Σ−1B ΣA) + (µB − µA)TΣ−1B (µB − µA)− k + ln

(
detΣB

detΣA

))
(2.18)

where tr is the trace operation of a matrix (i.e., the sum of the elements in its

main diagonal), µi the mean vector of the MFCCs values of point i, Σi is its the

covariance matrix, Σ−1i its inverse covariance matrix, and k the size of µi.

These specific problems will be addressed in Chapter 5.2. Regarding earth mover

distance, it is a cross-bin distance function that addresses the problem of lack of align-

ment between bins domain. EMD defines the distance between two distributions as the

solution of the transportation problem that is a special case of linear programming [53].

It is commonly used in image retrieval; its computation is not trivial and for further

details we refer to [68].

Computing music similarity

Most of the techniques for music similarity computation are based on frequency spec-

trum analysis, as this has shown very good results since the first MIREX contest (a yearly

comparison of existing MIR algorithms, done by the MIR community of researchers;

more detailed overview about MIREX will be given in Chapter 3). Specifically, MFCCs

are frequently used, after their introduction to MIR by Beth Logan in [55]. One of the

first studies on music similarity function based on audio signal analysis was published by

Logan and Salomon in [56] (2001), where they propose to compare songs by the means of

the EMD used on signature models, which are the results of k-means clustering applied

to the MFCCs values of the songs themselves.

Another very important contribute to this field came from Aucouturier and Pachet [3]

(2004), where they propose to describe music pieces using multiple Gaussian mixture

models (GMMs) (computed by the means of an Expectation Maximization algorithm)

that fit the MFCCs vectors best. Similarity computation is then performed by comput-

ing the likelihood of samples from GMMsonga given GMMsongb and viceversa:

sima,b =
p(a|b) + p(b|a)

2
(2.19)

Chapter 2. Automatic music analysis techniques: state of the art 34

In 2005, Mandel and Ellis published a new fast method for computing similarity,

based on the approach of Aucouturier and Pachet [58]. Instead of computing mixtures

of three Gaussians to fit the MFCCs vectors, they propose to use Support Vector Ma-

chines (SVM) to represent a song as a single Gaussian distribution. To build this single

Gaussian distribution, they use the first 20 MFCCs of the song: specifically, they use

the 20x20 covariance matrix and 20-dimensional mean vector of their values over the

entire song. The comparison of two songs modeled as single Gaussian distribution is

then done by computing the Kullback-Leibler divergence. A great advantage of using

single Gaussians is that the simple closed Eq. 2.18 can be used with it for computing

the KL divergence: no closed form for the KL divergence of two mixtures would exist

otherwise, and in that case we should compute very expensive approximations, including

EMD or MonteCarlo sampling. This method has shown to be much several orders of

magnitude faster to compute, with just a small decrease in accuracy.

Another interesting result comes from Pohle et al. in [66], in which they present a high-

accuracy system based on rhythm descriptors: specifically, they extend the descriptor

of fluctuation patterns (that measures periodicities of the loudness in various frequency

bands) into proposed extensions onset patterns and onset coefficients; such descriptors

are novel in the computation of onsets. The authors propose to:

• Reduce the signal to the parts of increasing amplitude (i.e., likely onsets)

• Use semitone bands to detect onsets instead of fewer critical bands

• Use Hanning window and zero padding before detecting periodicities with FFT

• Represent periodicity in log scale instead of linear scale

This system ranked in the very first positions at MIREX from 2009 to 2014 in the audio

music similarity task (see Chapter 3 for more details on MIREX). Interestingly, there

haven’t been many researches targeted toward combining low and high-level features; to

this end, interesting results have been achieved by Bogdanov et al. in [12], in which they

combine timbral, rhythmic and semantic features, for this approach is more appropriate

from the point of view of music cognition. Specifically, for measuring the BPM similarity

of songs X and Y (with BPMs XBPM and YBPM) the authors propose the formula:

dBPM (X,Y) = min
i∈N

(
αi−1BPM

∣∣∣∣max(XBPM , YBPM)

min(XBPM , YBPM)
− i
∣∣∣∣) (2.20)

where αBPM ≥ 1. Furthermore this formula is robust to the frequent problem of du-

plicating (or halfing) estimated tempo in tempo estimation algorithms. With regard to

high-level descriptors, the authors apply SVMs to low-level descriptors to infer different

Chapter 2. Automatic music analysis techniques: state of the art 35

groups of musical dimensions, such as genre and musical culture, moods and instru-

ments, and rhythm and tempo. This hybrid system ranked in the first positions at

MIREX 2009 in the audio music similarity task.

Notable studies on large datasets

When large music collections are used, performance of similarity computation algo-

rithms become critic. Although the collection to be used by the system during its public

use can’t be considered large, the necessary decomposition of it into hundred of thou-

sands excerpts to be analyzed just in few seconds makes performance a critical factor

when designing and implementing an algorithm. Therefore, a deep look into studies

where large collections were used was needed.

One of the first content-based music recommendation systems working on large col-

lections (over 200,000 songs) was published by Cano et al. in [21], 2005. The system

presented on this work relies on rhythmic and timbre features, combined to form a music

similarity feature vector. No special indexing technique was used.

One of the first music recommendation systems for large datasets using Gaussian tim-

bre features was proposed some months later by Roy et al. in [67]. In this work, they

propose to use a Monte-Carlo approximation of the Kullback-Leibler (KL) divergence

to measure music similarity. The method proposed is, in principle, similar to the one

proposed by Schnitzer et al. in [76], which has been used on the development of this

thesis work (see 5.2). To pre-filter their results, Roy et al. increase the sampling rate

of the Monte-Carlo approximation. As the divergence values converge, they are able to

reduce the number of possible nearest neighbors. This method has shown good perfor-

mance, both in query time and results.

A different attempt of improving performance was proposed by Levy and Sandler in

[51] where they use only diagonal covariance matrix instead of a full one to compute

music similarity. While this has shown a ten-fold speedup compared to the full Kullback

Leibler divergence, the quality of this simpler similarity measure results in worse genre

classification rates.

2.4 Conceptual differences between metadata and audio

content information

The difference between metadata and audio content data concerns not only the way

the data is extracted, but the nature of the data itself. Given that they are generally

provided by humans, metadata are human readable, comprehensible and semantically

Chapter 2. Automatic music analysis techniques: state of the art 36

highly related to music facets. On the other hand, audio content data is generally a col-

lection of data, and sometimes it is really hard to give these number a musical meaning.

For instance, despite their intensive use and good performance in similarity functions,

MFCCs are still considered “hard-to-read”. This gap between the content of audio

content descriptors and their actual meaningfulness is called semantic gap, and many

efforts have been taken into the direction of making this gap smaller [5]. This difficulty

of translating them into relevant semantic descriptors implies the hidden difficulty of

detecting how much room there is for improvement of content-based music similarity

systems [4], and generally leads to lower performance of content-based approaches [80].

However, several problems are related to metadata as well, and they are different ac-

cording to the type of metadata under consideration. Generally, main concerns about

the use of metadata come from their questionable completeness and consistency: they

are generally available only for a small subset of songs, leaving the long-tail almost to-

tally unprovided of meaningful data [23]. In an automated process, data completeness

and consistency are crucial, for the performance of the process may greatly decrease in

presence of inconsistent or incomplete data. For instance, if metadata are used in an

automatic playlist generator, lacking data about some songs will result in never playing

those songs, while inconsistencies may lead to the preferred choice of certain songs, again

with the result of always skipping the remaining part of the music catalogue. Moreover,

if metadata are in the form of social annotation or collaborative filtering, this situation

may lead to the situation where “the rich gets richer” [14]: the more frequently a track is

retrieved by a music information retrieval system, the more metadata may be generated

by its usage and thus the easier it will be for this track to be retrieved again. Given that

social tags are generally subjective and come from a very large users’ base, they may

greatly suffer from inconsistencies [23]; furthermore, the perception of music is again

subjective and can even be influenced by the perception of other people [60], making the

quality of these data even more questionable. Problems of consistencies could be solved

with the use of expert annotations, but the actual size of digital catalogue of music

makes this choice clearly unfeasible. Regarding collaborative filtering, one significant

problem lies in sparsity of negative feedback: negative ratings are uncommon and, more

in general, not inserting a track into a playlist or simply not giving an opinion about it

carries no useful information about the track itself.

On the other hand, relying on the audio signal makes the process objective and easily

extendable by automation. However, extracting the features can be computationally

costly [74]. Moreover, some features as popularity or release data may be useful for the

playlist generation process, and they cannot be extracted from the audio signal [22].

It is thus clear that, despite the average results show that metadata-based systems per-

form better, the choice of one kind of representation over the other should come from

the context and from the purpose of the system to be developed. The two typologies

Chapter 2. Automatic music analysis techniques: state of the art 37

should be seen as complementary rather than as mutually exclusive: recently, efforts

have been taken in order to integrate the advantages of both in new music information

retrieval systems, with encouraging results.

In the next chapter we will introduce the problem of assessing the performance of a

music similarity computation system. This problem is very relevant, as a good evalua-

tion process can highlight advantages and defects of each system, therefore leading the

research community into a well-defined path to improvement.

38

Chapter 3

Assessing the quality of an

automatically generated playlist

Evaluation can be defined as the task of assessing the performance of a system on

a test set. This requires a ground truth, i.e. a specification of the correct output for

a specific task or query. The ground truth is usually assessed by experts before the

evaluation starts, and its assessment proceeds through different ways according to the

subjectivity of the output. For instance, in the field of music the chord or the predom-

inant melody of a segment of a track is an objective information, thus the definition of

the ground truth would require just a small amount of people (generally one or two).

On the other hand, assessing the similarity between tracks requires the contribute of

several people (generally around 20) in order to converge to a well-defined ground truth.

Once a ground truth is specified, the performance of a system may be evaluated with

different measures. Very important measures are precision and recall. In the context

of classification, we can define the terms true positives (TP), true negatives (TN), false

positives (FP) and false negatives (FN), where positive and negative refer to system’s

prediction and the terms true and false refer to whether that prediction corresponds to

the external judgement (i.e. to the ground truth). We can therefore define precision as:

Precision =
TP

TP + FP
(3.1)

and recall as:

Recall =
TP

TP + FN
(3.2)

In other words, precision is the fraction of retrieved documents that are relevant to the

find, while recall is the fraction of the documents that are relevant to the query that are

successfully retrieved.

39

Chapter 3. Assessing the quality of an automatically generated playlist 40

3.1 Difficulties in the evaluation of MIR systems

Several hassles specific only to Music IR have arised since the birth of this research

field. The most important difference with Text IR lies in the availability of data: while

textual documents are readily available for example on Internet, music files are protected

by copyrights, and the expenses related to the use of such files would make it pratically

impossible to create publicly accessible collections [73]. The result has been that research

teams acquired their private collections of audio files; they then test and evaluate their

system on this specific private collection, hence reducing both the reproducibility and

the validity of the research.

Moreover, music is inherently more difficult than text, as it is composed of several facets

(for instance timbre, rhythm, lyrics, etc.); the result is that a music piece is still perceived

as the same one even after alteration of some facets, such as pitch or lyrics.

Finally, the size of music files is several order of magnitude larger than the one of text

files, with the result of collections requiring large storage space.

For all these reasons, the option of providing an entire public collection of music files

to be used during evaluation is generally disregarded. The only viable alternative in

many cases is to just provide a set of features computed by third parties, such as in

the Latin Music Database [78] or the Million Song Dataset [10]. The problem of this

approach is that, not being provided of a direct access to the multimedia files, research

teams are constrained to the use of provided features, hence not giving any room for the

exploration of new features extractable from signals.

3.2 Evaluation of automatically generated playlists

The coherence of the tracks is a typical quality criterion for playlists [57]. Therefore,

maximizing similarities between consecutive elements is an obvious strategy to generate

and to evaluate playlists. In general, user satisfaction should be considered the main

criterion to assess the quality of an automatically generated playlist. However, many

factors come into play to determine the user’s satisfaction: for instance we should con-

sider the extent to which the list matches its intended purpose, fulfills the characteristic

desired by the user, or is in line with user’s expectactions [17] [37]. Hence it is clear that

the evaluation of automatically generated playlists could concern many different aspects;

for this reason, several categories of evaluation have been studied. In [61], Mcfee and

Lanckriet propose to organize evaluation approaches in three different categories: human

evaluation, semantic cohesion, and sequence prediction. In [17], Bonnin and Jannach

propose to generalize this approach into the subdivision of evaluation approaches in four

Chapter 3. Assessing the quality of an automatically generated playlist 41

more general categories: user studies, log analysis, objective measures and comparison

with handcrafted playlists.

• User studies. Allow to determine the perceived quality of playlists with good con-

fidence. In such studies, participants to the experiment listen to automatically

generated playlist and submit surveys in order to leave a feedback about the per-

ceived quality of the playlist. The main drawback of this kind of studies is that

they are time consuming and expensive. For some experimental designs, partici-

pants are required to listen to the entire catalogue of music. Studies of this kind

are generally based only on 10 to 20 participants; only few studies have involved a

considerable amount of participants (for instance, in [7] Barrington et al. present

the results of a study conducted over 185 subjects). Moreover, another drawback

of this category of evaluation approach is that the results are difficult to reproduce,

for the experiment is based on specific software application.

• Log analysis. Users’ logs about listening and interaction are analyzed. Such logs

contain information about how often each user listened to an automatically gen-

erated playlist. Furthermore, if the playback system implements a “like/dislike”

feature, additional data regarding the enjoyability of the playlist for the users is

provided. The main advantage of this technique is that it doesn’t require direct

participation of subjects to the evaluation. However, this approach requires a plat-

form sharing information regarding listening behavior: such platforms are usually

closed and thus they don’t share data.

• Objective measures. With the term objective measures, Bonnin and Jannach re-

fer to measures that can be automatically computed for a given playlist and that

try to approximate a user-perceived subjective quality [17] [26]. Typical examples

of subjective qualities are diversity or homogeneity of a playlist. Many ways for

assessing the homogeneity of a playlist have been presented, such as the number

of different artists or genres appearing in the playlist. Anyways, a single quality

criterion might not be sufficient to assess the quality of a playlist [17]: deter-

mining, for example, the homogeneity alone might not lead to a good evaluation,

especially since some researches have shown that determining diversity is at least

as important as homogeneity [79] [50]. Other measures that have been explored

are freshness, novelty of track, their familiarity with respect to a certain user, the

consistency of the mood, and the smoothness of transitions [17].

• Comparison with handcrafted playlists. Estimates the ability of the algorithm

to generate playlists similar to the ones generated by music enthusiasts. The

advantage of this technique is that for it, two well known protocols can be used

for this kind of evaluation: hit rates and average log-likelihood.

Chapter 3. Assessing the quality of an automatically generated playlist 42

1. Hit rates are frequently used in Information retrieval, and give the ratio be-

tween the number of times the system retrieves a “good” result over the

number of overall tries. For applying this measure, the idea is to take a

handcrafted playlist and “hide” some of the tracks. The playlist generation

system is left to guess the hidden items. A limitation of this strategy is that

is based on the assumption that the hidden items are the most relevant ones

of the collection, for they are the one on which the system is tested. Clearly,

other elements are just as important.

2. Average log-likelihood (All) can be used to assess how likely a system is to

generate the tracks of a given set of deemed positve playlists. This measure

is computed as:

All(Train, Test) =
1

‖Test‖
∑

(h,t)∈Test

log(PTrain(t|h)) (3.3)

where PTrain(t|h) is the probability of observing t given h according to a

model learned on Train. The possible values range from −∞ to 0, therefore

it only allows to compare results between each others without knowing if the

best one is actually good. It can be seen as a complementary measure to hit

rate.

In the context of evaluation of Phonos Music Explorer, log analysis should be dis-

carded, for the interaction of users with it will be occasional and it would be difficult to

collect relevant data. The same decision applies to objective measures, for the catalogue

is itself very homogeneus, therefore trying to evaluate the behaviour on this measure

wouldn’t be appropriate. Finally, we cannot perform comparisons with handcrafted

playlists, because we are not provided with playlists generated by music enthusiasts on

the same catalogue. Therefore, for us the only proper solution is to perform user studies.

3.3 Evaluation conferences in MIR

Evaluation of a retrieval system is a fundamental task in order to achieve continuous

improvements of it on the basis of the results obtained. Evaluation of MIR systems is

generally based on test collections [69], following the Cranfield paradigm that is tra-

ditionally employed in Text IR [44] [73]. On the other hand, the Text IR has a long

tradition of conferences devoted to the evalutation of information retrieval systems, such

as Text REtrieval Conference (TREC) [86] and Conference and Labs of Evaluation Fo-

rum (CLEF) [18], where research teams interested in participating in a specific task can

use data published by organizers and submit the output data of their own information

Chapter 3. Assessing the quality of an automatically generated playlist 43

retrieval system. Results of submitted data are then compared and evaluated by or-

ganizers, and during the actual conference results are discussed with participants, thus

encouraging sharing of new promising techniques and main concernings.

No such evaluation conference exists in MIR [73]. In 2000, the International Conference

of Music Information Retrieval (ISMIR) series of conferences started, as the premier

forum for research on MIR. The first edition1 was held at Plymouth, Massachusetts

(USA), covering the following topics:

• Estimating similarity of melodies and polyphonic music

• Music representation and indexing

• Problems of recognizing music optically and/or via audio

• Routing and filtering for music

• Building up music databases

• Evaluation of music-IR systems

• Intellectual property rights issues

• User interfaces for music IR

• Issues related to musical styles and genres

• Language modeling for music

• User needs and expectations

However, until year 2004, MIR systems were evaluated with self-made test collections:

each research group was using different documents, queries and measures [63]. The

first step toward a common evaluation framework was carried out by Music Technology

Group2 of Universitat Pompeu Fabra (Barcelona), which hosted ISMIR in that year.

The evaluation framework was called Audio Description Contest and divided into six

independent tasks3:

• Genre Classification: label an unknown song with one out of six possible music

genres

• Artist Identification: identify one artist given three of his songs, after training the

system with seven more songs

1http://ismir2000.ismir.net/
2http://mtg.upf.edu/
3http://ismir2004.ismir.net/

http://ismir2000.ismir.net/
http://mtg.upf.edu/
http://ismir2004.ismir.net/

Chapter 3. Assessing the quality of an automatically generated playlist 44

• Rhythm Classification: label audio signals with one out of eight rhythm classes

(Samba, Slow Waltz, Viennese Waltz, Tango, Cha Cha, Rumba, Jive, Quickstep)

• Tempo Induction: induce the basic tempo (i.e. a scalar, in BPM) from audio

signals

• Melody Extraction: main melody detection from polyphonic audio signal

In the first edition, participants had to submit their own algorithms instead of the

output data. These algorithms would have been compiled and run by organizers, who

would have finally published the results. There was general agreement on the benefit of

doing so, but it was also clear that data on which the systems were tested should have

been published before, so that researchers could test their systems before submission

and improve them between editions. This has instead been possible thanks to the

many efforts of the team led by Dr. J.S. Downie, who organized several workshops on

MIR evaluation (with the purpose of collecting ideas and needs of researchers in MIR)

and finally started the International Music Information Retrieval System Evaluation

Laboratory (IMIRSEL) project4. The aim of the project is to create an provide secure

and easily accessible music collections for MIR evaluation. Furthermore, the role of

participants was made more important, as they could propose a particular task, defining

the final goal, providing the datasets for training and testing the results, and defining the

measures by which the results would have been ranked. The first evaluation campaign

based on IMIRSEL, called Music Information Retrieval Evaluation eXchange (MIREX).

was organized in the year 2005 in London, and the results were presented and discussed

at the ISMIR of the same year. MIREX is still based on an algorithm-to-data paradigm:

participants submite the code or binaries for their systems and IMIRSEL runs them with

pertinent datasets. The ISMIR-MIREX is being held every year, with an increasing

amount of retrieval tasks performed: since 2005, over 1500 different runs have been

evaluated for 22 different tasks, making it the premier evaluation forum in MIR research.

The next conference is scheduled in Malaga, 26-30 October 20155.

4http://www.music-ir.org/evaluation/
5http://ismir2015.uma.es/

http://www.music-ir.org/evaluation/
http://ismir2015.uma.es/

Part II

Methodology

45

46

Chapter 4

Requirements and approach

4.1 Catalogue of music

The catalogue of provided music features 584 songs, for a total length of 91 hours, 43

minutes and 35 seconds. The average length of each song is 9 minutes and 25 seconds

circa. This catalogue has been provided with metadata indicating only artist, year of

release and title of each song. Furthermore, all of these works can be labelled as belong-

ing to the electro-acoustic genre, which usually indicates very abstract and arrhythmic,

for which it is difficult to provide semantic descriptors or tags. Given this feature of the

music and the length of the entire catalogue, the possibility of manually annotating it

with proper metadata has been soon disregarded. This collection of music has therefore

represented a great chance for developing a system based on the latest findings on audio

content analysis.

The catalogue features songs recorded over 40 years and coming from different sources

(mainly open-reel tape, cassette, DAT and vinyl). These recordings were provided

transcoded by us to CD-quality format and then transcoded into mp3 format at 192kbps.

4.2 Requirements

Despite its intended use as part of the exhibition “Phonos, 40 anys de música

electrònica a Barcelona”, the software developed should feature good flexibility to dif-

ferent catalogues of music, in order to be exploited as a part of the research for the

GiantSteps project. This has represented a strong requirement during the development,

and has induced the adoption of several descriptors that may not be particularly mean-

ingful for the Phonos catalogue of songs, but that extend the range of possible music

catalogues in which the system performance could be satisfactory. Furthermore, as a

47

Chapter 4. Requirements and approach 48

part of a research project, the system developed should be easily extendable in other

research activities, hence a modular, coherent and well-document code is preferred.

The software is intended to be used at the exhibition through an interactive kiosk: it

will be available to users as a link inside a more general webpage containing several

information regarding Phonos history and music creation technologies and devices. In

addition, it must fully support touch devices, provided that this will be the only way

users will be able to interact with the application, specifically with some sliders that

allow them to control the flow of music in regards to the year of release of recordings or

some relevant and perceivable audio features.

All of these requirements have lead to the choice of developing a web-application. Any-

ways, the interactive kiosk to be used at the exhibition was not available during the

development; furthermore, its technical specification was unknown. For these reasons, it

was therefore decided to develop a two-layers system made of the interactive kiosk ma-

chine connected (by an Ethernet cable) to a server machine. The latter one is in charge

of providing and executing all the complex functions required during the functioning of

the system. This solution has been chosen also because of its flexibility: it could easily

be extended into a client-server architecture for web-based remote access, making the

system more accessible for further use or evaluation outside the exhibition.

An additional strong requirement for the system is to be able to react to the real-time

interaction of users with the user interface. Computation times must hence be as low as

possible, in order to avoid a notable and inconvenient delay between the user interaction

and the effective perception of changes in the flow of audio.

Finally, given the substantial average length of the songs, the system should segment

the songs into very short excerpts (from 2 seconds to around 30; the choice of this length

should be available to users in a real-time fashion), in order to allow users to listen to

as many works as possible during the visit at the exhibition and to more easily find

tracks that fulfill their taste or personal requirements. It must then be found a way to

properly segment the audio pieces and computing descriptors for each slice obtained. In

order to achieve a better sense of “flow of music”, the computation of similarities should

therefore be carried out between these short excerpts, instead of exploiting descriptors

for the entire songs.

4.3 Design of the system

The requirements cited above have lead to the following choices for the design of the

system. First, the computation of audio descriptors can be performed offline, because the

catalogue of music on which the system will run is not subject to changes. It is therefore

safe to compute descriptors prior to their public use. The performance of the system

Chapter 4. Requirements and approach 49

will greatly benefit from this choice, given that the computation of audio descriptors for

each excerpt of every song of the catalogue is the most computationally intensive step

to be performed. The audio descriptors will be stored on the server machine.

Second, for the system to have low response times to user inputs, the computation

of music similarity is being carried out on the server (also because the performance

of the interactive kiosk machine are unknown, as already cited in 4.2), with proper

music similarity algorithms. The flow of music is not supposed to require any human

interaction, to the meaning that it will automatically generate a flow of music based on

the computation of audio similarity also without an interaction of the user. Actually,

the system always concatenates segments in a way that only very similar segments are

consecutive elements of the playlist. The interaction of the user will eventually give a

direction to this flow, according to the user’s will and taste.

Third, the application running on the server machine will be in charge of collecting

the user interaction with the web-application running on the interactive kiosk machine,

and that will come in the form of HTTP POST requests. At each user interaction, the

application running on the server machine deletes the current and already computed

playlist and performs an audio similarity computation between the currently playing

excerpt and a set of excerpts that fulfill all the requirements about music, that the user

has imposed through the graphic user interface. One of the most similar excerpts is

taken from the list and a new content-aware playlist starts being built above that.

4.4 Evaluation

For our main concerns regard the musicality of the output and its flow, we wanted to

collect data about user listening experience while interacting with the app. We therefore

decided to evaluate the performance the system with surveys compiled after a short (5

minutes) interaction with the software. Since the enjoyment of the musical output highly

depends on the familiarity with this typology of music, we will attest the participant’s

familiarity with a specific question. The flow of the music depends also on the ability

of the system to show short response times to user interaction, so that the user is not

frustrated by the slow responsiveness; some questions of the survey will then try to

establish the enjoyment in the use of the software.

We have therefore decided to collect the following data for each participant:

• Ease of use

• Understanding of GUI controllers’ meaning

• Enjoyability of the musical output

Chapter 4. Requirements and approach 50

Similar
Candidates

Excerpts
descriptors

Choice
of segmentPlaylist

last element
of playlist

reduce
problem size

compute music
similarity

add new excerpt to playlist

Server machine

Audio
Playback

Controlling
Music Flow

User

first element
of playlist

Excerpt playback
Interaction
with sliders

F iltering of
candidates

Client machine

Figure 4.1: The implementation of the system.

• Encountered problems

• Familiarity with this kind of software

• Familiarity with the music styles the collection included

The participant is then asked if he thinks that the software provides a more enjoyable

way of listening to music (compared to a full-track player) and if he would use it for

exploring a catalogue of music.

Results for the surveys will be shown and discussed on Chapter 7, and the whole ques-

tionnaire is presented in Appendix D.

Chapter 5

Off-line computation of audio

features

In order to achieve good performance, two very computationally intensive tasks of the

system are performed off-line, and their output is then going to be used by the real-time

application. These tasks consist of the computation of the audio content descriptors and

of the building of a fast-map, a high dimensionality space in which each point correspond

to an audio musical excerpt. This space is built in a fashion that guarantees that nearby

points of this space correspond to very similar excerpts.

5.1 Audio content features extraction

Solving this problem has involved two very important choices: what audio content

descriptors to use and what library or tool to use for computing them. Many factors

have been taken into account for solving both of these problems.

• Among the features of the tools, flexibility has constituted the strictest require-

ment: an easy way to compute descriptors for each excerpt of every track is re-

quired, while many tools provide only ways of computing descriptors for the entire

file. In this latter case, the file should manually split into subfiles (one for each

segment), therefore implying a huge waste of memory. This has soon lead to the

exclusion of jMir, for it doesn’t fulfill this requirement.

• The tool should easily be callable by source code or bash scripts, and results of

the analysis must be stored in output files.

51

Chapter 5. Off-line computation of audio features 52

• The computation of descriptors should be as fast as possible, given that the ex-

cerpts to be analyzed are in the order of tens of thousands.

• Last but not least, the tool must provide descriptors whose usefulness for this

specific case study has been empirically verified during the development of the

system.

All of these requirements lead to the choice of performing the audio analysis with

Essentia and Echo Nest: the first for its speed, flexibility and reliability. Echo Nest has

been used for some of its descriptors are not present or not as accurate in Essentia, and

have shown a great usefulness during the development or granted by existing previous

research.

Furthermore, both of the two libraries are offered in Python, allowing the entire analysis

task to be written in a single programming language, therefore improving the code

consistency and readability.

The schema for the extraction of the audio features is illustrated in figure 5.2.

At first, the user is required to give the path of the folder in which the audio files are

Track
Echo Nest
Analysis

Bar Analysis
(Essentia) Output File

get E.N.
analysis

for each bar
found by E.N.

store
analysis

Analysis of one track

Figure 5.1: Schema for the extraction of audio features.

stored. The collection is entirely stored as .mp3 files with a sample rate of 44100Hz

and a bitrate of 192kbps. The application then collects the path to all the .mp3 files in

this folder, and mark them as to be analyzed if no previous analysis has be performed.

An analysis of these files with Echo Nest (through Pyechonest) is performed, and we

specifically use the following fields of the output of this analysis: bars, BPM, loudness,

HPCP and acousticness. Bars give the starting and ending point of each bar detected

and, although not particularly meaningful for the arrhythmic Phonos catalogue of music,

have shown to perform well on the additional and more generic personal catalogue used

during first stages of development; therefore, it was decided to use them in order to

improve the flexibility of the system.

Segmentation of songs into excerpts is then performed, based on starting and ending

Chapter 5. Off-line computation of audio features 53

point of each bar. Then, we compute more specific descriptors with Essentia for these

excerpts, with the following strategy:

• each excerpt is divided into frames, with a size of 2048 samples and a hop of 1024

samples. For each of these frames:

– we apply an Hann windowing function

– we apply the FFT algorithm provided by Essentia in order to get a spectral

representation of the signal

– we look for peaks in the spectrum, collecting their frequencies and magni-

tudes, and then we use them to compute the dissonance in the frame, with

Essentia’s algorithm Dissonance

– an HFC onset function is computed on the spectrum, that will be used after-

wards to compute the onset times

– the MFCCs bands and coefficients are computed with Essentia’s algorithm

MFCCs1

– the energy in 27 Bark bands of the spectrum is computed

Excerpt Frame Spectral Analysis Dissonance

Onsets
MFCCs

Energy in
Bark bands

frame
generation FFT

peaks
analysis

HFC onset
detectorMFCCs

computation
analysis of
Barkbands

Low level features extraction

Figure 5.2: Schema for the extraction of low level audio features from excerpts.

• onset times in the excerpt are calculated, according to the onset function computed

in each frame, and then onset rate is calculated with the formula:

ORexcerpt =
Onsetsexcerpt
Lengthexcerpt

(5.1)

1Essentia uses the MFCCs-FB40 implementation, which decomposes the signal into 40 bands from
0 to 11000Hz, takes the log value of the spectrum energy in each mel band and finally applies a Discrete
Cosine Trasform of the 40 bands down to 13 mel coefficients.

Chapter 5. Off-line computation of audio features 54

• dissonance in the excerpt is computed as a mean of the dissonance in each of its

frames

• a single Gaussian model for the collected MFCCs values is computed. Specifically,

we collect its mean, covariance and inverse covariance. Mean is a 13 size vector,

while covariance and inverse covariance are 13x13 matrices. The inverse covariance

is stored in order to prevent having to compute it in the real-time application or

during the fast map computation, therefore increasing the performance of both

these stages. If a problem of ill-conditioned covariance matrices is encountered (i.e.,

a not positive semi-definite covariance matrix has been computed), only values of

the diagonal of these problematic covariance matrices are used. This has allowed

to avoid the presence of outliers when computing similarity, while still taking into

account excerpts for which a covariance matrix of the MFCCs values could not be

correctly computed.

• based on the HPCP values computed by Echo Nest, we use Essentia’s Key Detector

to associate a key to each first and fourth beat of the bar. The reason why we

keep values for these two particular beats is that this allows us to perform a more

precise tonal comparison when trying to merge two excerpts in the real-time ap-

plication: if the key of the first beat of the inspected excerpt is very different from

the key of the fourth beat of the excerpt for which we’re looking for similar pieces,

the candidate is discarded.

This procedure is repeated for each excerpt, in order to get a deep description for all

of them and perform more precise similarity computation in the real-time application.

In addition, we store some additional level-song descriptors, specifically artist, title and

year of release, and acousticness (computed with Echo Nest). Finally, for each song we

create a corresponding JSON file in which we store all the descriptors computed.

The list of descriptors computed during this task is summarized in Table 5.1.

Chapter 5. Off-line computation of audio features 55

Features Source Level Motivation

Title, Artist,

Year

Provided Song-Level Display more information about the current

playing track in the GUI

Acousticness Echo Nest Song-Level Give the user the chance to filter music in regards

to its nature (acoustic or electronic music)

MFCCs Essentia Bar-Level Timbre similarity computation

BPM Echo Nest Bar-Level Avoid consecutive excerpts with very different

BPM

Onset Rate Essentia Bar-Level Give the user the chance to filter music in regards

to the presence of percussive elements

Dissonance Essentia Bar-Level Give the user the chance to filter music in regards

to the dissonance2 of excerpts

Loudness Echo Nest Bar-Level Give the user the chance to filter music in regards

to its loudness

Bark Bands Essentia Bar-Level Give the user the chance to filter music in regards

to its “sparseness”, i.e. the amount of mel bands

with significant energy level

HPCP Echo Nest Beat-Level Use them to compute key

Key Essentia Beat-Level Use them to discard the possibility of having two

consecutive dissonant excerpts in the playlist

Table 5.1: Descriptors computed by the offline application.

5.2 FastMap computation

The procedure just described for computing descriptors give us a 410 size vector for

each excerpt, and a total number of 159239 excerpts.

In order to achieve good real-time performance when comparing these excerpts, a di-

mensionality reduction of these vectors is required. Furthermore, as seen in 2.3, the

computation of Kullback-Leibler divergence, although showing very good results in cap-

turing the timbre similarity, is a very intensive computational operation and therefore a

2During development, it has been empirically noticed that dissonance has a significant correlation
to the perception of noise: the more an excerpt is perceived as noisy, the more it is dissonant.

Chapter 5. Off-line computation of audio features 56

simpler distance measure with comparable results is preferred.

These requirements were also faced by Schnitzer et al. in [76], who presented a filter-

and-refine method to speed up nearest neighbor searches with the Kullback-Leibler di-

vergence for multivariate Gaussians, yielding high recall values of 95-99% compared to

a standard linear search. The original FastMap was proposed in 1995 by Faloutsos and

Lin [36] for indexing and data-mining multimedia datasets. It was used for the first

time for computationally heavy, non-metric measures and nearest neighbor retrieval in

[2], for speeding up classification of handwritten digits. FastMap was used for the first

time in MIR by Cano et al. in [20] in the attempt of reducing high dimensional music

timbre similarity space into a 2-dimensional space. This was done not for speeding up

classification, but rather for visualization purposes.

The idea behind the use of a FastMap for classification or computing similarities is to

compute with the original distance measure D() (computationally intensive) just a sub-

set of all the distances, specifically the distances between each point and a subset of

2k points (the “pivots”); then, on the basis of these computed distances, each feature

vector is mapped with a non-linear trasformation into a point of a k-dimension space,

where a simpler distance measure can be applied, with a small decrement in accuracy.

For choosing the 2k pivot elements, the original FastMap [36] follows this strategy:

• k element x11, x
1
2, ..., x

1
k are randomly selected from the collection of feature vectors

• for each x1i , its corresponding most distant object x2i according the original distance

measure D() is picked

Each vector of features x is then mapped into the point (F1(x), ..., Fk(x)) of the new

k-dimensional space, where Fj(x) is computed with the formula:

Fj(x) =
D(x, x1j)

2 +D(x1j , x
2
j)

2 −D(x, x2j)
2

2D(x1j , x
2
j)

(5.2)

In other words, the coordinate in the j − th dimension of each point is determined by

the pair (x1j , x
2
j), specifically by the original distance (computed with D()) of the point

from both these pivots and the distance between the pivots themselves.

For our work, we have decided to use the Kullback-Leibler as the original distance

function, computed for the multivariate normal distributions x1 and x2 with the Eq. 2.18,

that for convenience we report again here:

KL(x1, x2) =
1

2

(
tr(Σ−1x2 Σx1) + (µx2 − µx1)TΣ−1x2 (µx2 − µx1)− k + ln

(
detΣx2

detΣx1

))
(5.3)

Chapter 5. Off-line computation of audio features 57

As it has been widely used (achieving good results in [75], [13], and [76]), we can be very

confident on using it here too. Anyways, we must take into account several aspects.

As already seen in 2.3, the Kullback-Leibler cannot be intended as a pure distance

measure, for it fails to be symmetric and to fulfill the triangle inequality. It can simply be

made symmetric by considering the distance SKL (symmetric Kullback-Leibler) defined

as:

SKL(x1, x2) =
1

2
KL(x1, x2) +

1

2
KL(x2, x1) (5.4)

Regarding the triangle inequality, a proper solution is not that trivial. However, in [76]

Schnitzer et al. have shown that rescaling the symmetric Kullback-Leibler divergence

with the square root leads the new distance function to fulfill the triangle inequality in

more than 99% of the cases. Therefore our original distance function D() that we use

in Eq. 5.2 is:

D(x1, x2) =
√
SKL(x1, x2) =

√
1

2
KL(x1, x2) +

1

2
KL(x2, x1) (5.5)

This procedure can be further improved by a small modification in the strategy for

choosing pivots: once the pivot x1i is randomly picked, we choose to pick the object lying

at the distance media as x2i , i.e. the object at the index j=bN2 c once all the distances

from point x1i are sorted. We have decided to use k = 20 (therefore having 20 pairs of

pivots and a final 20-dimensional space) as this has allowed us to find a good balance

between computational times and quality of the output the similarity computation.

The accuracy and performance of this procedure are well-documented in [76]. This

technique constitutes the basis on which our system will perform the real-time similar-

ity computation, with some additional tweak that will see in the Chapter 6.

The computed data is stored on a JSON file: for each point (corresponding to an ex-

cerpt), we store its coordinates in the new 20-dimensional space plus some additional

descriptors that allow us to do a faster filtering in the real-time application, as we won’t

need to lookup to the original JSON descriptor file for each song just for retrieving the

values of these descriptors. The list of features stored in the map for each point is shown

in Table 5.2.

During this stage, we additionaly save lists that associate each segment to the decade

the song it has been extracted from has been produced. This will allow very fast filter-

ing techniques on the real-time application when the user interacts with the sliders for

selecting music according to the year of release.

The computational times of this stage are shown in Table 5.4 and the configuration of

the computer used in Table 5.3.

Chapter 5. Off-line computation of audio features 58

Features Motivation

Year, Artist, Title Speed up access to information

Starting and ending point in-

side the track

Allows fast extraction of the excerpt from the entire audio

signal

BPM, Key Be faster when filtering out music with very different

BPM or key

Acousticness, Loudness, Dis-

sonance, Bark Bands, Onset

Rate

Perform a fast filtering of database of excerpt when the

user interacts with the GUI for controlling the musical

output

Table 5.2: Features stored in the map for each point.

Laptop Model Packard Bell EasyNote TS-11HR

CPU Intel R©CoreTMi5-2410M @ 2.50GHz

RAM 4GB DDR3 @ 1066MHz

Hard Disk Drive 5400rpm

OS Linux Mint 17.1 “Rebecca” (64 bit)

Table 5.3: Hardware configuration of computer used during off-line descriptors com-
putation.

Stage Time required Stats

Descriptors

computation

04h 32m 25s Minimum time for track: 00m 15s

Maximum time for track: 00m 52s

Average time for track: 00m 28s

FastMap

computation

00h 47m 12s Choosing pivots: 16m 43s

Computing points coords: 30m 29s

Total 05h 19m 37s

Table 5.4: Computational times for descriptors computation of a collection of 584
tracks, with a total length of 91 hours, 43 minutes and 35 seconds (the time for uploading

these tracks to Echo Nest is not considered in these results).

Chapter 5. Off-line computation of audio features 59

The features collected and the FastMap computed over this stage will constitute the

basis on which the real time computation of music similarity will be performed; this

particular core of the system will be shown and discussed in next section.

60

Chapter 6

Real-time application

development

The real-time application is based on a two-tier architecture, organized as follows:

• the server machine runs a Python Flask application, and it is responsible for gen-

erating playlists and audio

• the client displays an HTML web-page that collects user interactions and sends

them to the server machine for realtime editing of playlists. Additionally, it receives

audio streaming from the server.

Therefore, the realtime computation of music similarity happens on the server ma-

chine.

6.1 The server application

As already stated above, the server application is in charge of offering several fea-

tures: it generates the playlist, sending audio and additional information to the client

(such as artist and title of current playing piece, so that the client can display them for

the user on the GUI). Additionally it has to generate audio, that will be streamed to

the client in order for the user to listen to it through its own device. For generating the

playlist, a realtime music similarity algorithm with very good performance must run on

the server.

Many Python web frameworks are available; the most used ones are Django1, Flask2 and

1https://www.djangoproject.com/
2http://flask.pocoo.org/

61

https://www.djangoproject.com/
http://flask.pocoo.org/

Chapter 6. Real-time application development 62

Pyramid3. This realtime server application has been based upon Flask framework, that

is a lightweight web application framework written in Python and based on the WSGI

toolkit4 and Jinja2 template engine5. It is provided with a BSD license and, contrarily

to Django and Pyramid, is aimed at small applications with simple requirements. Its

first version was released in 2010 and it comes with a great usability, where a simple

“Hello World” web-app can be written with only 7 lines of source code6. Web applica-

tion framework are usually thought to be separated into several conceptual units called

“apps”, each one providing different functionalities to the system. Flask is intended to

make really simple the development of a single app; many others may be added, but in

this latter case Django and Pyramid may provide a better ease of use.

All of these factors have lead to the choice of this framework for our system: the web

platform to develop is actually intended to be quite simple, displaying just the main GUI

and a few more details and options for the user. Given that the application is meant to

be offered just to one client at time, we decided to use the builtin server of Flask also

on production; indeed, we considered a full deployment option (such as Apache or CGI)

to be a waste of resources for this simple use case. The server application executes two

parallel tasks: the generation of the playlist, based on realtime computation of music

similarity, and the generation and streaming of this playlist to the client of the audio.

It furthermore provides several methods that are handled by Flask routing techniques

and invoked at specific interaction of the user with the client application; these methods

have deep impact on the generation of the playlist and allow the user real-time control

over this process.

6.1.1 Realtime computation of music similarity and playlist generation

As we mentioned, this computation is performed on the server machine, for the

hardware configuration of the interactive kiosk has been unknown until the beginning

of the exhibition, and might have not been able to achieve good performance with

the software developed. The hardware configuration of the server machine is shown in

Table 6.1.

3http://www.pylonsproject.org/
4A specification for universal communication between web servers and web applications or frame-

works for Python programming language. Published on December 2003 by its author Phillip J. Eby, it
has become a standard for Python web application development.

5http://jinja.pocoo.org/docs/dev/
6http://flask.pocoo.org/docs/0.10/quickstart/#a-minimal-application

http://www.pylonsproject.org/
http://jinja.pocoo.org/docs/dev/
http://flask.pocoo.org/docs/0.10/quickstart/##a-minimal-application

Chapter 6. Real-time application development 63

CPU Intel R©CoreTM2 Quad Processor Q6600

@ 2.40GHz

RAM 2GB DDR2 @ 800MHz

Hard Disk Drive 5400rpm

OS Linux Mint 17.1 “Rebecca” (32bit)

Table 6.1: Hardware configuration of the server machine.

The task for generating the playlist follows a well-defined schema: at first, the

FastMap computed as described in Section 5.2 is loaded into memory; this process

usually takes just few seconds. A random point of this map is pick, and will be used as

the first excerpt of the playlist. This excerpt in then put inside the playlist, a Python

dictionary whose keys are the position of the elements inside the playlist and the cor-

responding values are tuples containing several important aspects for the playback; the

details of these tuples are shown in Table 6.2.

URI of file Song title Song

artist

Song Year Starting

time

Ending

Time

Table 6.2: Information stored for each element of the playlist.

Once the first segment is picked, the application enters in a loop in which each

iteration ends in adding a new excerpt to the playlist. The comparison of music similarity

is always performed between all the candidate elements of the FastMap and the last

element of the playlist. The procedure invoked in this loop can be summarized as

follows:

1. If any user interaction with sliders or knobs has happened since the last itera-

tion, delete the content of playlist. This allows users to immediately hear musical

differences in the playlist as soon as they interact with the client application.

2. Delete already played elements from the playlist in order to avoid memory leaks

Chapter 6. Real-time application development 64

3. If we already have enough elements in the playlist, let the task “sleep” for one

second and then go back to step one. This prevents the cpu from always working

at full load, a behaviour that could cause serious overheating problems in a server

machine running this application for several consecutive hours at the museum.

4. At this point, we get into the procedure for actually choosing the next excerpt to

be inserted into the playlist. At first, a weighted queue according to the sliders for

filtering by decades is created.

5. The entire map of excerpts is now filtered according to the current positions of

sliders in the client application. If there is no excerpt fulfilling all the constraints

imposed by the sliders, we only take the segments whose descriptors values fulfill

less strict thresholds based on actual sliders values. If instead the amount of ex-

cerpts available after this filtering is over 500, a Monte Carlo sampling of them

is performed, to bring the total number of candidates to 500. We experienced

unsatisfying performance of the application during successive steps of the proce-

dure (also due to a not particularly powerful configuration hardware of the server

machine) with less aggressive sampling, and we noticed that with 500 candidate

excerpts good results were still achieved. This value may be increased in more

powerful devices.

6. Additional filtering is performed, based on the values of BPM and loudness of the

candidates. Candidates who greatly differ on these values from the last element of

the playlist are discarded. For judging similarity in terms of BPM, the Eq. 2.20

(with αBPM = 1) has been used, with a maximum distance of 3 allowed. The

maximum discrepancy allowed in loudness is of 5dB. If no candidate excerpt fulfill

this stage, the list of candidates before this filtering is restored.

7. At this point we finally choose the number of candidates in which we’ll perform

deeper analysis. This number, that we call NNeighbors, is computed according to

the following formula:

NNeighbors = filter size ∗ |FastMap| (6.1)

where |FastMap| is the number of excerpts in the FastMap (i.e., the total number

of excerpts in the catalogue), and filter size is a value in [0, 1]. We empirically

noted that a value of 0.1 for filter size already gives good results, while allowing

to achieve highly satisfactory computational times. We then select the NNeighbors

nearest neighbor to the current element through an Euclidean distance on the

20-dimensional space.

Chapter 6. Real-time application development 65

8. We now compute the symmetric Kullback-Leibler distance between the last ele-

ment of the playlist and all its neighbors. We do this specifically only if:

• We have a margin of at least 5 seconds of playback in the current playlist

after the current playing excerpt

• The user has not interacted with the controllers of the client-application since

the last iteration of the loop

If any of this two conditions is not met, we don’t compute the symmetric Kullback-

Leibler distances but we rather choose the next element of the playlist on the basis

of the euclidean distance on the 20-dimensional space. We do this because this

stage could require several seconds (around 4 to 9 seconds on the server machine7)

and the conditions for performing such a slow computation could not be met, re-

sulting in a perception of a high-latency system. The second condition is used

because, even if the playlist is emptied as soon as the user interacts with the con-

trollers (but there still may be more than 5 seconds to play, if the current excerpt

is very long), it doesn’t make sense for us to perform computational intensive task

for computing similarity when the user’s will is actually to change the flow of the

music by interacting with the controllers.

Once all the distances are computed, we keep only the segments whose SKL dis-

tance from last element in the playlist is less than 20, a threshold that we empir-

ically noticed to be quite selective in the quality of the output despite not being

extremely selective in the amount of results. An excerpt from this list is finally

randomly picked and put in the playlist. If the list is empty (or the computation

of symmetric Kullback-Leibler couldn’t be performed), the next excerpt of the

playlist is randomly picked among the 10 nearest neighbors by the mean of the

Euclidean distance.

The procedure described allows to choose the next element of the playlist with satis-

fying performance (see Chapter 7), although this may greatly vary with the condition;

specifically, computational times become much longer when all the symmetric Kullback-

Leibler distances are computed, but this generally leads to better musical results.

It may be useful to mention two further features of the application:

• When the user interacts with the slider for changing the length of the excerpt to be

played, the procedure for computing similarity doesn’t change. Longer segments

are obtained by playing consecutive excerpts of the same song, and the procedure

7This considerable amount of time is due not only to the complexity of the formula for computing the
symmetric Kullback-Leibler distance, but also to the necessary access to JSON files, where the needed
MFCCs values are kept. We could not store them on primary memory, as the low amount of RAM in
the server machine (2 GB) might have been problematic.

Chapter 6. Real-time application development 66

for computing similarity will look for similar excerpts to the last one in this queue

of consecutive excerpts of the same song.

• The software provides options for managing the playlist generation in regards to

repetition of songs or excerpts: specifically, the user can force the application of

never picking two excerpts belonging to the same song unless a specific amount of

different excerpts in the playlist has already put between them. We noticed that

disabling this feature may greatly improve the quality of the musical flow (some

loops between excerpts of the same song may be generated, creating a strong

cohesion of the musical output; this behaviour is the same one proposed by The

Infinite Jukebox8) but may annoy some users if they want to broadly explore the

collection of music and would possibly like to avoid repetitions.

6.1.2 Audio generation and streaming

Everything we have seen so far allows to dinamically generate a content-aware playlist

of excerpts. To allow the user to actually listen to this playlist we need to read the cor-

responding slices of the audio files and implement a streaming over the network of this

audio content.

Feature Motivation

Seek by millisecond Perform very accurate extraction of excerpts

from audio tracks, in order to perform beat syn-

chronized track mixing

Audio Crossfade Improve the audio “flow”, making the transition

between consecutive excerpts less abrupt

Programmable Facilitate communication with the code for com-

puting music similarity. Python preferred.

Streaming Streaming over the network is required for the

user to listen to the playlist.

Table 6.3: Requirements of the audio player.

8infinitejuke.com/

infinitejuke.com/

Chapter 6. Real-time application development 67

This is not a trivial task, for not many audio players on Linux provide the needed

flexibility by the application. Specifically, it has been found no audio player on this

platform that simultaneously provides all the needs reported on Table 6.3. Therefore,

we decided to build our custom audio player, exploiting the very popular multimedia

framework GStreamer.

GStreamer

GStreamer9 is a free and open-source multimedia framework written in the C pro-

gramming language, subject to the GNU Lesser General Public License (LGPL). It

allows developers to modularly build multimedia applications with the use of pipelines,

where lower-level units are connected; each unit has a specific purpose. It fully sup-

ports Linux, Android, iOS, Mac OS X and Windows, and offers bindings in several

programming languages, Python included. The list of popular applications built upon

this framework includes Amarok10, Banshee11, Flumotion12, Pitivi13, QuodLibet14 and

RhythmBox 15.

The main advantage in the use of this framework lies in its modularity: it offers many

units (also called plugins) with media-handling features, including audio and video play-

back, recording, streaming and editing. The pipeline design serves as a base to create

many different types of multimedia applications, for instance media players, video edi-

tors, and streaming media broadcasters.

It fulfills all the requirements of Table 6.3 and therefore we decided to use it for devel-

oping our custom audio player.

Audio player developed

Given that we want to smooth the transition between two consecutive excerpts, the

use of a crossfade is preferred. This implies that two different audio players should be

playing simultaneously when the crossfade is being performed. We solved this by creat-

ing a simple audio player (the custom bin shown in Figure 6.1) for each track that is then

connected in a global pipeline (Figure 6.2) responsible for the audio synchronization of

different custom bins and of the streaming over the network of the audio content.

The units used in the custom bin are explained in Table 6.4, while the ones used in the

9http://gstreamer.freedesktop.org/
10https://amarok.kde.org/
11http://banshee.fm/
12http://www.fluendo.com/
13http://www.pitivi.org/
14https://code.google.com/p/quodlibet/
15https://wiki.gnome.org/Apps/Rhythmbox

http://gstreamer.freedesktop.org/
https://amarok.kde.org/
http://banshee.fm/
http://www.fluendo.com/
http://www.pitivi.org/
https://code.google.com/p/quodlibet/
https://wiki.gnome.org/Apps/Rhythmbox

Chapter 6. Real-time application development 68

global pipeline are explained in Table 6.5.

URIdecodebin Volume Audioconvert Audioresample
audio/x-raw
S16LE

44100Hz
2Ch

Custom Bin

Figure 6.1: Custom audio bin, that corresponds to an audio player only responsible
for the playback of a single excerpt.

Unit Input16 Output16 Motivation

URIdecodebin mp3 file audio/x-raw Loads the raw audio content of a file by

S32LE, 2Ch its location (URI)

44100Hz

Volume audio/x-raw audio/x-raw Used in crossfades, allows fade in and

S32LE, 2Ch S32LE, 2Ch fade out on single audio tracks

44100Hz 44100Hz

Audioconvert audio/x-raw audio/x-raw Negotiates a raw audio format

S32LE, 2Ch S16LE, 2Ch according to formats supported by its

44100Hz 44100Hz end and the format of the input

Audioresample audio/x-raw audio/x-raw Needed by the adder to ensure that

S16LE, 2Ch S16LE, 2Ch its input files will always be of the

44100Hz 44100Hz same type

Table 6.4: Elements of the custom bin.

16Values shown here are related to particular files of the Phonos catalogue of music used by the
system, and they have been inserted just as examples. Their values may vary with different types of
files.

Chapter 6. Real-time application development 69

CustomBin1

CustomBin2

+ Volume MP3Encoder TCP Sink
audio/mpeg
layer : 3
44100Hz

2Ch

Global Audio Player

Figure 6.2: Schema for the audio player implemented.

Unit Input16 Output16 Motivation

Adder audio/x-raw audio/x-raw Mixes together samples coming from

S16LE, 2Ch S16LE, 2Ch multiple audio streams, producing a

44100Hz 44100Hz single audio stream

Volume audio/x-raw audio/x-raw Gives control over the global volume.

S16LE, 2Ch S16LE, 2Ch This will be settable by the user on

44100Hz 44100Hz the client application GUI

MP3Encoder audio/x-raw audio/mpeg Converts the raw audio stream into an

S32LE, 2Ch layer3, 2Ch mpeg layer 3 stream

44100Hz 44100Hz

TCPSink audio/x-raw Provides streaming over the network of

layer3, 2Ch the mpeg audio content

44100Hz

Table 6.5: Elements of the pipeline.

The class responsible for handling the global audio player has access to the playlist

generated by the algorithm explained in Section 6.1.1. It extracts the first element on

this queue, creates a custom bin for it, performs the seeking17 and plays it with an initial

fade in, whose length is CROSSFADE18. CROSSFADE seconds before the end of the current

excerpt, the algorithm extracts the next element on the playlist. If this is empty, we

keep playing the current track until a new excerpt is inserted into the playlist. The

algorithm then creates a new custom bin for this new excerpt, adds it to global pipeline,

17Seeking is actually performed on the URIdecodebin element.
18The default value is 0.8s, enough for creating a sense of music “flow”. The user can edit this value

through the client graphical user interface.

Chapter 6. Real-time application development 70

performs the seeking and starts the playback of this custom bin with a fade in. The seek

sets the inpoint of the playback to the point (start point19 - CROSSFADE), so to have

a beat-level synchronization of music (see Figure 6.3): when the old excerpt reaches the

end of its length (i.e. at the end of the crossfade, that also corresponds to the first beat

of the next bar), the new one reaches the first beat of its corresponding bar20. These

two beats are then played together. This aspect greatly improved the musicality of the

output with the music collection used during development, while not being particularly

relevant for the arrhythmic Phonos collection of music.

In order to prevent memory leaks, the old excerpt and its corresponding custom bin are

both removed respectively from the playlist and from the global pipeline.

1 2 3 4

1 2 3 4

CrossfadePlayback exc.1 Playback exc.2 Crossfade Playback exc.3

1 2

Figure 6.3: Handling of audio crossfades. The red rectangles indicated the content
of the excerpt, and dashed lines indicate crossfades. Note that the playback involves
more than just the excerpts’ content: we use the portion of audio before it during the
fade-in to achieve a beat-level synchronization. The indices indicate the number of the

beats inside the excerpts.

The audio of the global pipeline is collected by the TCP sink, that is in charge of

streaming this content over the TCP port 8070. This stream will be collected by the

client application.

6.2 The client application

The client application consists of a web-application hosted by the Flask applica-

tion running on the server. To access it, the client needs to connect to the address

http://server address:5000 on a browser. We entirely designed the graphical user

19By start point we mean the starting point of the excerpt inside the track it belongs to.
20We recall that each excerpt corresponds to a bar.

Chapter 6. Real-time application development 71

interface of this application with the software Adobe Photoshop CS621, with the inten-

tion of providing a “metallic” looking (that could resemble of the analogue synthesizers

used in early Phonos records) coupled with the presence of elements (sliders and knob

controllers) whose purpose could be easily understood by users. This interface is shown

in Figure 6.4.

Figure 6.4: Client application GUI.

This interface provides several ways for the user to control the music flow. Each

time the user interacts with one of them, an HTTP post request is done from the client

machine to the server, resulting in a change of the candidates for the playlist.

There are ten sliders: five of them are related to the year of release of the musical pieces,

the other five are instead related to intrinsic characteristics of the music. In this way,

the user has control both over the decade, and both over the type of music he wants to

listen to. The motivation of this design choice is that we want to make the process of

discovering music interactive while preserving ease of use. Furthermore, the suddivision

of music into decades may be particularly useful in the use at the exhibition, since

visitors could be particularly interested in hearing the differences between the works

belonging to just a particular era over the entire 40 years life of Phonos.

The five sliders for music features are:

• Loudness

21http://www.adobe.com/products/photoshop.html

http://www.adobe.com/products/photoshop.html

Chapter 6. Real-time application development 72

• Noisiness: related to the dissonance of the signal

• Rhythm: higher values of the slider lead to excerpts with a high amount of onsets

on high frequencies

• Density: higher values of the slider lead to excerpts where many Barkbands have

a considerable amount of energy

• Acousticness: sets the ratio Acoustic/Electronic. Lower values of the slider mostly

lead to purely electronic music.

The ranges of the internally managed sliders’ values are dinamically generated during

the computation of the FastMap: once the corresponding values for all the excerpts

have been collected, these are sorted and we then pick the minimum, the maximum, and

the first, second and third quartile for the values related to each descriptors. Therefore

keeping the slider of the loudness at maximum will for instance lead to all the excerpts

whose loudness value is between the third quartile and the maximum value of loudness

of all excerpts. Step values for these five descriptors are calculated after the computation

of the FastMap and kept in a separate JSON file.

The GUI additionally provides a set of presets for the values of these five sliders, a

monitor for displaying information about the currently playing track, a slider for selecting

the length of the audible segments (from 1 to 5 bars), and a knob for the volume (which

controls the volume element of the global pipeline explained in Table 6.5).

By clicking on the button with a star on it, the user has the possibility of marking a

track as favorite. The list of “starred tracks” is accessible on the second page of the GUI

(shown in Figure 6.5), together with the list of the five last played track. The motivation

behind this choice is to give the user the chance to keep track of the songs he has been

finding interesting. At the exhibition, visitors may be particularly interesting in looking

for more information about a track they like.

Furthermore, this interface is offered in three different languages: English, Spanish and

Catalan. This has been done to increase the usability of the software at the exhibition,

taking into account possible cultural differences.

The interface fully supports touch screen environments and is based on HTML5, CSS3

and Javascript. Many features of the jQuery library for Javascript are also used. The

range sliders are based on noUiSlider22, while the volume knob is based on jQuery

Knob23. The design of the graphical user interface has been directed toward the ease of

use, for the visitors of the Museum may not be particularly confortable with the use of

software or of tools related to music manipulation or playback.

Corcerning the reception of the audio streaming, many efforts have been done in order to

22http://refreshless.com/nouislider/
23http://anthonyterrien.com/knob/

http://refreshless.com/nouislider/
http://anthonyterrien.com/knob/

Chapter 6. Real-time application development 73

achieve low-latency in the transmission of the multimedia content. Specifically, tries have

involved the use of an icecast24 server or specific GStreamer units to try to implement

low-latency audio streaming directly accessible from the html5 page. None of these

tries have fully worked: latency was always registered around 5 seconds, probably due

to browser’s buffering techiques. This performance was clearly unacceptable. Thus

we decided to exploit the functionalities provided by VideoLAN VLC25: specifically, we

wrote a daemon for the interactive kiosk that launches a hidden instance of VLC as soon

as it detects a stream on the TCP port 8070 (generated by the TCPSink of GStreamer).

This istance of VLC is then in charge of capturing and playing this stream of multimedia

content. The main advantages of this choice are:

• Good latency (around 500ms)

• The user is completely unaware of this, for it is possible to start VLC in a daemon

mode, thus without any sort of windows popping up.

Generally, for real-time web application, the use of web protocols RTP (Real Time Pro-

tocol) and RTSP (Real Time Streaming Protocol) is suggested, as this usually allows low

latencies in multimedia streaming. The use of these protocols for this application have

not been taken into account, for their use requires to be integrated into Adobe Flash26

applications, which are generally discouraged as they introduce additional constraints

and are usually not supported on touch devices. Furthermore, we had no experience with

this particular programming language, and it could have not been feasible to develop

the audio streaming in this language before the inauguration of the exhibition.

The performance of this real-time system will be analyzed in the following chapter.

24http://icecast.org/
25http://www.videolan.org/vlc/index.html
26http://get.adobe.com/it/flashplayer/

http://icecast.org/
http://www.videolan.org/vlc/index.html
http://get.adobe.com/it/flashplayer/

Chapter 6. Real-time application development 74

Figure 6.5: The second page of the client application GUI, providing information
about favorite and last played tracks.

Part III

Results and Discussion

75

76

Chapter 7

Results

7.1 Performance

Performance has been the main concern in the development of the system. As already

seen in previous chapters, many efforts have been made in order to achieve a good

responsiveness to user input in the real time application. We made the clear choice of

preferring low times in the offline computation of descriptors (reported in Table 5.4)

for this has helped us in achieving good response times in the real time application.

Response times were controlled in order to provide the fastest response while preserving

the quality of the retrieval: when the user moves sliders, the playlist queue gets empty

(which will result in temporary shorter computational times, due to the use of the least

precise but fastest music similarity computation algorithm in order to get some new

element into the playlist as soon as possible); contrastringly, when the user chooses long

segments or does not interact with the sliders, the computational time may increase (for

the system realizes that it has more time available for computing music similarity and

then uses the most accurate algorithm1).

In other words, we have built an adaptive system, defined in [82] as a system that:

• Behaves different in different contexts given the same input, and

• Performs this adaptation in order to optimize the system’s behaviour in the given

context according to some predefined measure.

In order to analyze its performance, we decided to collect data about computational

times of the real time application for the choice of 1000 consecutive excerpts, with

1We recall that the only difference between the two algorithms lies in the choice of the similarity
function, as shown at the point 8 of Section 6.1.1

77

Chapter 7. Results 78

occasional interaction of the user. This is a reasonable analysis case, for it may be

very similar to the real use of the system and also provides a good perspective on

the computational times while using the most demanding algorithm of the system for

computing music similarity. The hardware used in this analysis is the one reported

in Table 5.3. Values of the global times required for choosing these 1000 consecutive

excerpts are shown in Figure 7.1.

1 2 3 4 5 6 7 8 9 10

Time (s)

0

50

100

150

200

C
ou

nt
s

Time for the entire procedure

Figure 7.1: Global times for selecting next segment.

It can be seen that most of the times, the algorithm for choosing the next excerpt

requires between 1.5 seconds and 3 seconds. The presence of some outliers above 5 sec-

onds is due to particular conditions of the environment or of the operative system (such

as some other process starting running in the background) and should not be considered

meaningful for judging the performance of the algorithm itself.

We consider particularly valuable that the system is capable of adapting its responsive-

ness to the environment, while still getting good response times also with most intensive

computations. As already stated, during this experiment user interactions were oc-

casional, leading the system to use the most intensive (but more precise regarding to

retrieval) variant of the algorithm 732 out of 1000 times.

We will now discuss the computational times required for individual steps of the pro-

cedure presented in Section 6.1.1. The first step consists of selecting, among all the

Chapter 7. Results 79

excerpts of the Phonos catalogue of music, the ones that fulfill the current sliders’ val-

ues. For this step has to compare several values of all the 159239 excerpts, it is the most

demanding task of the algorithm, requiring around 1.6 seconds.

1.4 1.5 1.6 1.7 1.8 1.9 2.0

Time (s)

0

20

40

60

80

100

120

140

C
ou

nt
s

1. Filtering for values of sliders

Figure 7.2: Time for performing the first step of the procedure: filtering of excerpts
based on the current positions of sliders.

The next two steps consist of further filtering of candidate excerpts: at first a Monte

Carlo sampling is performed to further reduce the size of the problem, and then we

filter out candidate segments that would be generate a quite dissonant result if mixed

with the previous excerpt of the playlist. It can be seen the both these operations are

much faster than the first one, although the Monte Carlo sampling still requires a tiny

considerable time (around 0.02 seconds).

Chapter 7. Results 80

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Time (s)

0

50

100

150

200

250

C
ou

nt
s

2. MonteCarlo Subsampling

Figure 7.3: Time for performing Monte Carlo sampling.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

Time (s)

0

20

40

60

80

100

120

140

C
ou

nt
s

3. Filtering by additional music features (BPM, Key)

Figure 7.4: Time for filtering music according to musicality with current excerpt (in
regards of BPM and key).

Chapter 7. Results 81

At this point, a context-aware distance function is applied to select the next excerpt

of the playlist among all the remaining candidates. According to the context, a simple

Euclidean distance or a more complex Kullback-Leibler divergence may be computed,

and from the following graphs we can see the difference in the computational times of

the two:

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

Time (s)

0

50

100

150

200

250

300

350

C
ou

nt
s

4a. Computing Euclidean distances

Figure 7.5: Time for computing euclidean distance between two 20D points.

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Time (s)

0

200

400

600

800

1000

1200

1400

1600

C
ou

nt
s

4b. Computing SKL distances

Figure 7.6: Time for computing symmetric Kullback-Leibler divergence between the
single Gaussian distributions of the MFCCs values of two excerpts.

Chapter 7. Results 82

The global times for computing the distance between all the remaining candidates

and the last excerpt of the playlist are shown in Figure 7.7. It is important to remark

that the values of the single Gaussian distributions are stored on JSON files; therefore

the computation of KL divergence requires the access to these files. The time required

for accessing and parsing these files is shown in Figure 7.8.

0 1 2 3 4 5 6 7 8

Time (s)

0

50

100

150

200

250

300

C
ou

nt
s

Computing distances to all filtered neighbors

Figure 7.7: Time for computing distances from all filtered segments.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

0

20

40

60

80

100

120

140

160

C
ou

nt
s

Time for accessing a single JSON file

Figure 7.8: Time for accessing and parsing a JSON file.

Chapter 7. Results 83

Looking at these graphs, several details emerge:

• Without any doubt, the most demanding task is the filtering of candidates on the

base of sliders value. This is due to the fact that this is step acting on the highest

number of excerpts. This filtering is based on values that are stored on RAM and

therefore is not sensibly slowed down by the time for accessing these values.

• Random sampling, having possibly to act on a very large collection of excerpt, is

one of the longest tasks.

• Once all the filtering steps are done, computing all the similarity distances gener-

ally requires around one second.

• Computing symmetric Kullback-Leibler distance is around 10 times slower then

computing Euclidean distance.

• Time for accessing and parsing JSON file is not negligible and is actually 100 times

longer than computing the symmetric Kullback-Leibler distance.

7.2 User evaluation

As explained in Section 4.4, we have decided to perform the evaluation of the system

with learn-play-discuss sessions, followed by the compilation of a survey. Specifically,

the evaluation sessions are organized as follows:

• The subject of the experiment is introduced to the purpose of the application,

without explaining any details about the interaction or the functioning;

• The subject is given 5 minutes to freely interact with the application (playing with

the Phonos collection of music), asking for clarification about the use if necessary;

• The subject is finally given the chance to ask about more the functioning of the

system;

• The subject answers the survey (presented in Appendix D) with specific questions

about ease of usage, enjoyment of musical output, familiarity with the music and

with this kind of software, and any problems.

19 subjects took part to this evaluation, recruited from members of the Music Tech-

nology Group of Universitat Pompeu Fabra, Barcelona. The subjects were all male,

aged between 24 and 34.

Chapter 7. Results 84

The application was generally evaluated very easy to use, with 13 subjects considering

it extremely easy:

Extremely
difficult

Difficult Average Simple Extremely
simple

0

2

4

6

8

10

12
Was it easy to use the application?

Figure 7.9: Evaluation results: ease of use.

despite many of them not having used any similar software before:

Yes No
0

2

4

6

8

10

12

14
Have you ever seen or interacted with a similar kind of software?

Figure 7.10: Evaluation results: familiarity with software.

Chapter 7. Results 85

The meaning of the sliders was generally understood, and the output was evaluated

mainly enjoyable and “flowing”, despite general lack of familiarity with the music genre:

Did you understand the meaning of the sliders?

I could understand all of them (42.1 %)
I could understand most of them (42.1 %)
Some were clear, but others were not (10.6 %)
I couldn't understand most of them (5.2 %)
I couldn't understand any of them (0 %)

Figure 7.11: Evaluation results: understanding of sliders’ meaning.

How did you find the musical output?

I really enjoyed the way music was mixed, it "flowed" (31.5 %)
Despite some minor issues, the musical experience flowed well (57.9 %)
The music sometimes sounded disconnected and sometimes flowing (5.2 %)
The music sounded generally disconnected and I couldn't enjoy it (0 %)
I found the music extremely disconnected or "jumpy" (0 %)

Figure 7.12: Evaluation results: enjoyability of musical output.

Chapter 7. Results 86

Extremely
unfamiliar

Unfamiliar Quite familiar Very familiar
0

1

2

3

4

5

6

7
What’s your familiarity with this kind of music?

Figure 7.13: Evaluation results: familiarity to the electroacoustic genre of music.

Regarding its effective usefulness, the system was generally evaluated as useful for

exploring a collection of music:

Do you think that this player could make it easier to explore a huge collection of music?

I think it would make it definitely easier (47.4 %)
I think it would make it quite easier (47.4 %)
Generally not, but sometimes it could be useful (5.2 %)
Just in rare cases (0 %)
Not at all (0 %)

Figure 7.14: Evaluation results: usefulness of the software for exploring a collection
of music.

Chapter 7. Results 87

while not necessarily constituting a new alternative to a traditional full-track player:

Is this way of listening to music an improvement over the traditional one?

It's definitely an improvement and I would use it all the time (5.2 %)
I think that I could use this player many times (57.9 %)
Generally not, but sometimes it could be useful (26.6 %)
Just in rare cases (5.2 %)
Not at all (5.2 %)

Figure 7.15: Evaluation results: comparison of enjoyability in regards to a standard
full-track player.

Overall, evaluation results can be considered very satisfactory: the application has

succeeded both its purposes of generating an enjoyable flow of music and yet to preserve

ease of use. Subjects further commented that, although generally not fully understanding

the meaning of all the sliders, they were surprised to see how much the flow of music

changed at the interaction with sliders. Moreover, it is interesting to observe that,

despite the subjects are generally very used to music technology software, most of them

were totally unfamiliar with the software developed. This may be considered as a proof

that the software developed actually succeeds in its purpose of providing a new way to

approach music playlist generation.

7.3 Usage at exhibition

The inauguration of the exhibition has been on December 18th 2014, at Museu de

la Musica, Barcelona. Many people have interacted with the system in order to explore

Chapter 7. Results 88

Figure 7.16: Use of the interactive kiosk at the exhibition.

Chapter 7. Results 89

the Phonos catalogue of music. The system hasn’t incurred in any problem. At the time

of the writing (February 2015), it’s still daily used by several visitors at the Museum.

The interactive kiosk will be dismissed at the end of the exhibition, on late September

2015.

90

Chapter 8

Conclusions and future work

We have developed a software that allows an easy, fast and enjoyable exploration of

music collections. The main requirements for the system during the development have

been:

• Responsiveness to real-time users’ interaction

• Ease of use

• Enjoyability of musical flow

As shown in Chapter 7, we achieved good results for each of these aspects. For doing

this many efforts have been taken, especially in the design of the design: many “little”

choices were taken in order to make the system as fast as possible. Most of the difficulties

encountered were related to the generation of audio with Gstreamer (for which good

documentation was generally lacking) and to the streaming of this audio content to the

client machine with low latencies.

8.1 Contributions

The main result achieved by the study was the exploitation of latest MIR findings

for the development of a system that could easily be used by people not related to the

research field and, more in general, not accustomed to the use of software.

This is a further proof that MIR technologies may be extremely useful in a wide range

of applications, the most of which linked to common daily life situations. The software

integrates not only different descriptors, but also different tools to extract them (Essen-

tia and Echo Nest) in order to maximize the output, something that has rarely been

91

Chapter 8. Conclusions and future work 92

done before.

Another contribution of this study lies in the integration of different researches into a

single system: a study of of latest findings has been conducted in order to find what

results have been achieved and could have been useful for our purposes. Despite being

influenced by other solutions, ours constitutes an original way of solving the problem,

for the algorithm we developed offer several new ideas; these are mainly due to the re-

quirement of developing a low-latency system. Furthermore, the requirement of mixing

together tracks (instead of just building a playlist of songs to be played one after an-

other) has lead to the choice of implementing some personal musical knowledge in order

to discard mixes that would have been perceived highly contrasting. This knowledge is

especially related to the field of music composition and perception.

8.2 Future work

Despite having successfully reached its main goals, there is a lot of room for improv-

ing the system.

At first, the use of JSON files should be discarded in favour of much faster database

tables, for instance PostgreSQL or MySQL. As seen in 7.1, accessing and parsing JSON

files is one of the slowest operations of the algorithm (almost 100 times longer than

computing the symmetric Kullback-Leibler distance). Implementing a database should

allow to use the more computationally intensive variant of the algorithm more frequently

and to make the sampling less aggressive, therefore leading to generally better results.

The computation of music similarity could also be improved and use more sophisticated

techniques, such as Fluctuation Patterns, that have shown very good results in similar

systems [66].

Furthermore, the development of a web application imposes several limitations (such

as general low performances and high latency on audio streaming) that could easily be

solved in a native mobile application for tablets or smartphones.

The source code for the application is entirely available at https://github.com/giuband/

Phonos-Music-Explorer, so that many users can contribute in making it better.

Once the above cited aspects are refined, the development of the system could follow

two different paths.

1. The system could be improved in its use for music discovery. For instance the

user interface could implement some way of letting the user explore his current

position inside the map of excerpts, in order to give a more clear idea about the

https://github.com/giuband/Phonos-Music-Explorer
https://github.com/giuband/Phonos-Music-Explorer

Chapter 8. Conclusions and future work 93

music of the catalogue. New descriptors could be used and some of them could

also be inherited from metadata or machine learning processes.

2. The system could additionaly be integrated into a more creative environment for

making music. It could be used for the automatic generation of recommendations

while in the process of composing music. For instance, it could suggest the user of

using a particular excerpt at some point of his composition to improve the quality

of the work. It could also be used as the only source to compose music, providing

the ability of automatically composing music made of excerpts while the user gives

a direction to this flow, according to his creative intent.

The use suggested in 2. is particularly interesting, for such an application would perfectly

fit the vision embraced by the GiantSteps project and provide a new system of producing

music, making this amazing creative task accessible at anyone, indipendently from the

skill. The process of making music could therefore overthrow its innate boundaries,

leading to a world where the creation of art arises from the purest intent of contributing

to the world cultural heritage, in spite of lack of limited technical knowledge, economic

unavailability and physical impediments.

94

Appendix A

List of Essentia descriptors

As of November 2014, the features provided by Essentia 2.0.1 are:

Category Subcategory Name

Low-level Barkbands Values

Kurtosis

Skewness

Spread

Pitch Value

Instantaneous confidence

Salience

Spectral Centroid

Complexity

Crest

Decrease

Energy

Energyband high

Energyband low

Energyband middle high

Energyband middle low

Flatness db

Flux

95

Appendix A. List of Essentia descriptors 96

Kurtosis

Rms

Rolloff

Skewness

Spread

Strongpeak

Other Average loudness

Dissonance

Hfc

Mfcc

Sccoeffs

Scvalleys

Silence rate 30dB

Silence rate 30dB

Silence rate 60dB

Zerocrossingrate

Rhythm Beats Position

Loudness

Loudness band ratio

BPM Value

Estimates

Intervals

First peak BPM

Spread

Weight

Onset Onset Rate

Onset Times

Second peak BPM

Spread

Appendix A. List of Essentia descriptors 97

Weight

Sfx Pitch After max to before max energy ratio

Centroid

Max to total

Min to total

Other Inharmonicity

Oddtoeven harmonic energy ratio

Tristimulus

Tonal Chords Changes rate

Histogram

Key

Number rate

Progression

Scale

Strength

HPCP

Key Value

Scale

Strength

Thpcp

Tuning Diatonic strength

Equal tempered deviation

Frequency

Nontempered energy ratio

Table A.1: List of features computable with Essentia.

98

Appendix B

List of Echo Nest Features

Category Subcategory Name

Meta Timestamp

Duration seconds

Audio MD5

Analysis time

Num samples

Album

Decoder version

Sample rate

Title

Duration

Sample md5

Decoder

Artist

Id

Window seconds

Genre

Analysis sample rate

Analyzer version

Bitrate

99

Appendix B. List of Echo Nest Features 100

Md5

Analysis channels

Structure Segments Start

Duration

Confidence

Loudness start

Loudness max

Loudness max time

Pitch 01

Pitch 02

Pitch 03

Pitch 04

Pitch 05

Pitch 06

Pitch 07

Pitch 08

Pitch 09

Pitch 10

Pitch 11

Pitch 12

Timbre 01

Timbre 02

Timbre 03

Timbre 04

Timbre 05

Timbre 06

Timbre 07

Timbre 08

Timbre 09

Timbre 10

Appendix B. List of Echo Nest Features 101

Timbre 11

Timbre 12

Sections Start

Duration

Confidence

Mode

Mode confidence

Key

Key confidence

Tempo

Tempo confidence

Time signature

Time signature confidence

Loudness

Rhythm Bars Start

Confidence

Duration

Beats Start

Confidence

Duration

Tatums Start

Confidence

Duration

Desc Danceability

Speechiness

End of fade in

Start of fade out

Liveness

Acousticness

Valence

Appendix B. List of Echo Nest Features 102

Energy

Loudness

Tempo

Tempo confidence

Time signature

Time signature confidence

Mode

Mode confidence

Key

Key confidence

Table B.1: List of audio features provided by Echo Nest.

Appendix C

Phonos: list of tracks

The musical pieces to be used during the “Phonos, 40 anys de música electrònica a

Barcelona” exhibition at Museu de la Musica (L’Auditori, Carrer de Lepant, 150, 08013

Barcelona) are:

Artist Title Year

Alain Perón De Dos Para Uno 1996

Los Edictos 1998

Albert Llanas Nexus 1999

Formants 2004

Alejandro Mart́ınez Monoleg N.A.

Helesponto 1982

Tazir 1984

Crisálida 1987

Machina animata 1987

Canción de Otoño 1989

Homenaje L.Nono 1990

Música Palimpesto 1991

Vaciando el hueco 1996

Alex Arteaga Témenos 2006

Alex Geell Panales 2010

Alex Sanjurjo Fluir 2003

103

Appendix C. Phonos: list of tracks 104

Alexandra Gardner Ayehli 2002

Snapdragon 2002

New Skin 2003

Onice 2003

Luminoso 2004

Tourmaline 2004

Alexandre Marino Apparatus, Experimentalis 2008

Apparatus, Musical 2008

Andrés Lewin-Richter Joc - Eventos 1976

Joc - Fondo 1976

Acción 2 - 1 1978

Acción 2 - 2 1978

Acción 2 - 3 1978

Acción 2 - 4 1978

Giravolt 1978

El Paraiso 1979

El Viento I - 1 1979

El Viento I - 2 1979

El Viento I - 3 1979

El Viento II 1979

Reacciones I II 1979

Secuencia IV 1979

Baschetiada 1980

El Viento III 1980

El Viento IV 1980

Reacciones III 1980

Wagler Walricci 1981

Actualidad discográfica 1982

Sones 1982

Appendix C. Phonos: list of tracks 105

6 Songs 1983

Quorum 1983

Secuencia V 1983

Secuencia VI 1983

Tinell 1983

Cogida 1984

In memoriam Manuel Valls 1984

Isaac el Cec 1984

Juegos 1985

Musica electroacústica 1985

Solars Vortices 1985

Desfigurat 1986

Diálogos 1987

Secuencia VII 1987

Homenaje a Zinovieff 1988

Secuencia VIII 1988

Verra la Morte 1988

Verra la Morte 1 1988

Verra la Morte 2 1988

Verra la Morte 3 1988

Verra la Morte 4 1988

Verra la Morte 5 1988

Verra la Morte 6 1988

Verra la Morte 7 1988

Verra la Morte 8 1988

99 Golpes 1989

Ben avra questa donna cor di ghiacio 1989

Secuencia IX 1989

Strings 1989

Brossiana 1990

Appendix C. Phonos: list of tracks 106

Donne Fiori 1990

Fragmento (a Nono) 1990

Frullato 1990

Ludus Basiliensis 1991

Reacciones IV 1991

Secuencia X 1991

Radio 2 1996

Sarangi 1999

Configuraciones 2000

Constelaciones 2000

Figuras 2000

Resonancias 2000

Secuencia XI 2001

Secuencia XII 2001

Dreams 2002

Ludus Allavarium 2002

Platjes 2002

Secuencia XIII 2002

Signals 2002

Viso di Primavera 2002

Fantasia 2003

Juego de Acordeón 2003

Meisoh No Ne 2003

Melodias 2003

Metálica 2003

Omaggio a Berio: sequenza per tuba 2003

Secuencia XIV 2003

Essay on Trombone 2004

Fragments 2004

Appendix C. Phonos: list of tracks 107

Secuencia XV 2004

Arssonxx.rne 2005

Fluxus es zen? 2005

Interacciones 2006

On ”Freesound” Water 2006

Secuencia XVI 2006

For Harry 2007

Retales 2007

Sombras 2007

Soplos 2007

Sospiri 2007

Friendship Quartet 2008

Homenaje a Pierre Schaeffer 2008

Makeup 2008

Schaeffer granulado 2008

Aire 2009

Génesis 2009

Homenaje a Varese 2009

Memento 2009

Paseo BCN 2009

Sancta Maria 2009

Slapring 2009

Spring 2009

Imagenes 2010

Secuencia XVIII Fagot 2010

Multifonia 2011

Campanas para una celebracion 2012

Multifonia III 2012

Secuencia XIX 2014

Anna Bofill Espai Sonor N.A.

Appendix C. Phonos: list of tracks 108

Trio para Violin y Cinta N.A.

Ariadna Alsina Sinapsis 2006

Reconstrucció 2011

Vels Vitris 2012

Ariadna Alsina & David

Salleras

Contramarea 2009

Arturo Moya La Música Que Hab́ıa en Mis Objetos 1996

Estampas de Caza 1 2000

Estampas de Caza 2 2000

Estampas de Caza 4 2000

Estampas de Caza 5 2000

Arturo Palaudaria Estate quieto Voltaire N.A.

Adolescencia y Estrella 1980

Escudellers 1981

Piamo 1984

Toda la Memoria de un Hombre 1987

El Destino de las Cosas 1988

La Luz de los Sueños 1989

Boule de Feu 1990

Paréntesis militar 1990

El Juicio Estético Universal 1991

Moverse en el Tiempo 1997

Aurelio Edler-Copes Women in Process 2013

Cadavers Exquisits 2003

Carlos Lupprián Latido 1995

Agugagá 1996

Naturaleza Muerta 1997

Claudio Nervi Improvisación con Oratio Trio 2010

Claudio Zulian Valent La Notte N.A.

Appendix C. Phonos: list of tracks 109

El Libro de los Excesos 1983

San Claudio Vive Solo 1985

Sexo y Politica 1987

I Quattro Continenti 1989

Por de Ser Set 1989

Sueños Ecléctricos 1989

Variazione Angelica 1990

2 Escenas de Macbeth - 1 1991

2 Escenas de Macbeth - 2 Ruidos 1991

Concha Trallero Armonias 1 1980

Armonias 2 1980

Armońıas Sonoras 1 1980

Armońıas Sonoras 2 1980

Cristián López Leftraru, Viajero Ensoñado - El Ŕıo de la Vida 2005

Leftraru, Viajero Ensoñado - Esṕırutu Azul 2005

Leftraru, Viajero Ensoñado - Interludio 2005

Leftraru, Viajero Ensoñado - Piedra Solitaria 2005

Leftraru, Viajero Ensoñado - Relámpago Azul 2005

Relief II Cristián Morales-Ossio 2001

Daniel Domı́nguez Teruel TRTPS 2010

SKTHN 2012

Study I 2013

Study II 2013

Study V 2013

Daniel Rios Aranda Say It 1987

Erial 1990

Danilo Vidotti Sueños 2008

Danio Catanuto Psicofonias Urbanas 1 2010

Psicofonias Urbanas 2 2010

Daŕıo Cortés Formantes 1998

Appendix C. Phonos: list of tracks 110

David Dalmazzo Pulsajes 2010

David Padros Confluencies 1985

Diego Dall’Osto Caosmofonia 1998

Doénado, el Ur Kinoko Tab́ı 1988

Pedicoj en la Arena del Pamir 1989

Zalody 1990

Yñé do zalod 1991

A Sensu Contrario 1992

Blordt Prelar 1992

Kzadzak 1994

Edgar Barroso Tu Mateix 2004

Dux 2005

Tau 2005

Tu Soplo Que Transporta 2005

IOD 2006

CYT 2007

Edson Zampronha Mármore 2001

Mármore 1 2001

Mármore 2 2001

Mármore 3 2001

Eduard Resina Read my LISP 1991

L’Esquizofrènia Dels Sons 1993

Aca Amaron 2001

L’Anna-crusa 2002

Eduardo Polonio Espai Sonor 1976

Eduardo Reck Miranda Requiem per una Veu Perduda 1997

Elsa Justel Midi de Sable 2000

Enrique Maŕın Elementos Constantes, Hechos Variables 2002

Transiciones de Fase 2007

Appendix C. Phonos: list of tracks 111

Ensamble Crumble y Re-

acTable

Untitled 1 2006

Untitled 2 2006

Untitled 3 2006

Untitled 4 2006

Untitled 5 2006

Untitled 6 2006

Untitled 7 2006

FMOL Trio Untitled 1 2001

Untitled 2 2001

Untitled 3 2001

Felipe Pérez Santiago CampoSanto 2004

Encandilado 2007

Hunger FM 2009

Hurt 2009

Ishmael 2009

Miuk 2009

Post War 2009

Tacto 2009

War-Post War 2009

Pronto Desapareceremos 2012

Fernando Jobke Ecos 1 2008

Ecos 2 2008

Ecos 3 2008

Ecos 4 2008

Ecos 5 2008

Ecos 6 2008

Félix Luque & Ricardo Gadea Cuerpos Sensibles 2005

Appendix C. Phonos: list of tracks 112

Félix Luque & Thomas

Charveriat

The Machine Manifesto 2004

Gabriel Brncic Batucada Amenazante 1970

El Túnel (a Ernesto Sabato) 1970

Agua 1 1971

Agua 2 1971

Agua 3 1971

Cielo 1980

Destierro 1980

Chile Fértil Provincia 1983

Concert Gothique 1985

Operas Rotas 1985

Clarinen Tres 1986

Clarinen Tres 1986

Desêtre a Oscar Masotta 1986

Triunfo Para las Madres 1986

Aria y Pasacalle 1987

Ese Mar 1987

Música de cámara 1987

Historia de Dos Ciudades 1988

Alegrias 1989

Composición de 1989 a Eduardo Polonio 1989

Dulcian Concert 1989

ariaciones sobre Sonatas e Interludios 1989

Adagio-Scherzo 1990

Vade Retro a Luigi Nono 1990

Dos Esbozos Para Antiguos Instrumentos

Electrónicos

1994

...Que No Desorganitza Cap Murmuri 1995

Appendix C. Phonos: list of tracks 113

Constanza 1996

Claro-Oscuro 1998

Meng 1998

Clarinet Concert 1999

Coreutica 1999

Ergon-Rondeau 2000

A Joan Miró 2001

Alto-Concert II 2001

Bass clarinet-Concert for Harry Sparnaay 2003

Son(ru)idos I 2003

Son(ru)idos II 2003

La Casa del Viento 1 2006

La Casa del Viento 2 2006

Gaspar Lukacs Esguep Pregoneros de Barcelona 2002

Germán Brull Moreno Sin t́ıtulo 2004

Sin t́ıtulo 2004

Graciela Muñoz Farida Arboleda 2011

Fragmentos de un Arbol 2011

Lo Que No Das Te Lo Quitas 2011

Viento Sur 2011

Graeme Truslove Piece for Guitar and Tape 2001

Graham Coleman Improvisation 2007

Improvisation 2007

Guillermo Eisner Guitarŕısticamente 2007

Igor Bimsbergen Duo Para Siete 1996

Luis y Marylin 1998

Ismael Sanoja & Kai Kraatz Free What 2006

Free What 1 2006

Free What 2 2006

Free What 3 2006

Appendix C. Phonos: list of tracks 114

Free What 4 2006

Free What 5 2006

Free What 6 2006

Free What 7 2006

Free What 8 2006

Jan Schacher Traumtäntze 2000

Javier Navarrete Preludios 1976

Jelena Vico Almogavers 2008

Brithm 2008

Mrzbw 2008

Pangea 2008

Zeno 2008

Zitar 2008

Jep Nuix Gallinària 1980

Doble Peça de Lletres i Sons 1981

Tres Canons de Noces 1981

Ad Valorem 1984

Halterofilia 1 1984

Serenata Nocturna 1985

L’Inizio 1986

Dit a Dit, Pas a Pas 1988

Asirara 1989

Monoleg 1989

Trialeg 1989

His Master’s Voice 1990

Improvisació per a tubs 1990

Pensant en Nono 1990

Percuflu 1990

Atentament 1992

Appendix C. Phonos: list of tracks 115

Stack 1995

Joan Bagés i Rub́ı Intersections-BouleWav 2.0 2006

Joan Josep Ordinas & Claudio

Zulian

Al Tranquilodromo 1981

Joan Sanmarti Passadis 2001

Reflexos Improvisacxiones Asistidas por Orde-

nador

1997

Xtrapolució 4 1998

Jordi Rossinyol Ricercare a 5 1986

Objectes Trobats a la Platja 1987

Ocellots 1988

Mòbils Inquiets i Altres Equivocs 1989

Prosper Laberint Intermitent 1990

Variaciones guit 1990

Concert Mestis 1997

Ecliptic 2004

Jorge Sad El Doble Bandoneón 1998

La Ida Hacia Abajo de la Tierra de la Tarde 1999

Josep Maria Guix Landscape 2010

Landscape 2010

Landscape 2010

Josep Maria Mestres Quadreny Oxo 1963

Peça per a Serra Mecanica 1963

Homenaje a Galileo 1965

Trois Cánones en Hommage à Galilea 1968

Aronada 1972

El Teler de Teresa Codina 1973

Song for Jane Manning 1973

Espai Sonor 1976

Espai Sonor 1976

Appendix C. Phonos: list of tracks 116

Quina 1979

Cánones a Galileo 1989

José Manuel Berenguer El Pensamiento Que Se Trabaja Hacia la Luz N.A.

Spira N.A.

Montardo 1983

A Florats 1984

La Logica de la Sorpresa 1984

El Ponent Excesiu 1985

La Perla Estranya 1985

La Relojeria del T́ıo Paco 1985

Música en la Noche 1985

Quartet Ambar 1986

Color 1987

Juan Antonio Moreno Polifońıa de Colores 1984

Preludio III a Lluis Callejo 1988

Nono Está Aqui 1990

Buenhache 1991

Lina Bautista G-Gems N.A.

Bombyx Mori 2010

Encélado 2011

Linda Antas A River From the Walls 1999

Sueño sin palabras 2001

Lisos-Estriados Untitled 2001

Llorenç Balsach Carota i Caramel 1976

Espais residuals (Espai I) 1976

L’assassi Bagliatti 1977

El Cant de les Arteries 1979

Lluis Callejo Caleidoscopi N.A.

Dibuixos 1981

Estructures 6502 1982

Appendix C. Phonos: list of tracks 117

Paisatges 1983

Tèxtils 1984

A Pitàgores en do 1985

A Pitàgores en re 1985

Espai Sonor 2003

Stokos IV 2003

Luis Caruana La Triste Herida de Margot 2001

Por Tus Pliegues Transita la Pena 2001

Marcelo DeMatei & Carlos

Smith

Animales Divinos 2003

Mario Peña y Lillo Petit Estudi N.A.

Beso 2013

El Contorno de sus Ojos 2013

Esencia 2013

He Perdido la Apuesta 2013

Youkali 2013

Mario Verandi Figuras Negras 1992

Flamencas 1995

Faces and Intensities 1996

Frèquences de Barcelone 1997

Mu 1997

Matthew Burtner Mists 1996

Fern 1997

Incantation S4 1997

Split Voices 1997

Glass Phase 1998

Portals of Distortion 1998

Delta 1 2000

Mauricio Valdés Duo 2002

Appendix C. Phonos: list of tracks 118

Popan II 2008

Mercè Capdevila Gramatges 1983

Baobab 1985

Nu 1990

Alegries de Comèdia 1991

Mercuri 1991

Fons de Mar 2000

Pols 2000

Puente 2000

A Chillida 2009

Miquel Jordà Time Machine 2000

Nadine Kroher La Máquina, el Humano y el Olivo 2013

Mixed Signals 2014

Neil Harbisson Concierto Sonocromático 2011

Oliver Rappoport Catarsis III 2009

Oriol Graus Laberint Mutant II 1987

Miradaclosa IV 1987

I despres... 1990

La Solitud de l’Origen 1990

La conseqüència 1990

La intüıció 1990

Oketus 1990

Diferents Formes de Dir - T’Ho 1991

La Tolerancia 1993

El Laberint de l’Esperança 2000

Paisatge Interior 2010

Oscar Martin Black Nature 2012

Black Nature 2012

Pablo Fredes Fer et Defer N.A.

Historia del Vinilo N.A.

Appendix C. Phonos: list of tracks 119

Trama N.A.

Las Nenias del Sonido 2002

Ça Fait Faire Ça Ruidos 2004

El Ćırculo de Cero 2009

sX-off-on 2009

Azu Gemma Torralbo 2011

Son-ethos (Sueños en el Sueño) 2011

Son-file 2011

iO 2011

on off Gemma Torralbo 2011

Cero Roce Sostenuto 2012

Pedro Barboza Estratos 2001

Estratos 2001

La fila de Ocata 2001

inTENSIONtres 2004

Ramon Humet Mantra I 2005

Rebecka Biro 1 2005

2 2005

Ricardo Arias Daffodil for Peter Billings N.A.

Ricardo Arias & Carlos Gómez Improvisación 2009

Ricardo Arias & Roberto

Garćıa

Sol Sonoro 1 2008

Sol Sonoro 2 2008

Roger Costa Je Suis l’Autre 2012

Ross Bencina off ICMC2005 2005

off ICMC2005 2005

Sanjay Fernandes Simple Math 2010

Sebastián Garćıa Ferro Ella Era Todo - Escribir Sobre Piel N.A.

Ella Era Todo - Yang N.A.

Appendix C. Phonos: list of tracks 120

Europa 1 - Piano N.A.

Europa 2 - Crescendo N.A.

Europa 3 - Bosque N.A.

Europa 4 - Vibracion N.A.

Europa 5 - Noise Delay Long N.A.

Europa 6 - Piano N.A.

Equs 2001

Noise 2001

Pulso 2001

Afro Dero 2002

Ceratti 2002

Dash 2002

Seed 2002

Shadow 2002

Silla 2002

Absorción Vertical 2003

Bosa 2003

Drugs 2003

Etheric 2003

Fiesta 2003

Final 2003

Huellas 2003

Huellas Intro 2003

Mistrius 2003

Nervio 2003

Rebotes 2003

Rhesus 2003

Sentadas 2003

Solo Caro 2003

Trio 2003

Appendix C. Phonos: list of tracks 121

Viaje Transparente 2003

Vacio y Multitud 1 2004

Vacio y Multitud 2 2004

Bajo el Agua 2005

Caidas 2005

Come Home 2005

Flotar 2005

Sumergir 2005

Back (escena 1) 2006

Back (escena 3) 2006

Back (escena 5 y 6) 2006

Gatos 2006

Mandrös 2006

Modified - Intro 2006

Peces 2006

Caras Jazzie End 2007

Clock 2007

Corn 2007

Despertar 2007

Fork 2007

Mañana 2007

Mediodia 2007

Metting 2007

Noche 2007

Pointing 2007

Sueños 2007

Tarde 2007

Vaiven Parte 1 2007

Vaiven Parte 2 2007

Appendix C. Phonos: list of tracks 122

Travellers 1 2008

Travellers 2 2008

Travellers 3 2008

Sebastián Jara Bunster La Lámpara 2010

Sergi Jordá For Eric 2001

Sergio Naddei Big Bang 2011

Rock Memories 2011

The Fly 2011

Windows 2012

Almost New Places 2013

Almost New Spaces 2013

Through Memories 1 2013

Through Memories 2 2013

Through Memories 3 2013

Through Memories 4 2013

Through Memories 5 2013

Reactable 2014

Sergio Poblete Actions 1998

Sáez,Ignacio Mı́sticos I Phonos Fund.Miro 1987

El Riu Fosc 1988

Horizonte Encadenado 1990

Teruyoshi Kamiya For Fernando Riera 1996

Dance of Stone 1998

Thomas Charveriat & Félix

Luque

The Machine Manifesto 2004

Tim Schmele Hemispherical Glitch Study 2013

Neurospaces 2013

Waiting 2013

Trino Zurita & Teresa Car-

rasco

Seguiriyas 2013

Appendix C. Phonos: list of tracks 123

Xavi Manzanares Doll sa caustika 2006

Errortunnel 2006

H2O 2006

Massiva 2006

Nnervits 2006

Nuvols 2006

Openspaceinvaders 2006

Plastiknazzxs 2006

R4gg4gg4r 2006

Rezzaka 2006

Segmentationfault0100 2006

Segmentationfault1001a 2006

Segmentationfault1001b 2006

Standbykut 2006

Stirofoammentre 2006

Tripikx 2006

Xavier Maristany East Cocker 1984

Remember Me 1999

Table C.1: Phonos catalogue to be used during the exhibition “Phonos, 40 anys de
música electrònica a Barcelona”.

124

Appendix D

Questionnaire used for evaluation

Question Possible answers

Was it easy to use the application? 1 (extremely difficult)

2 (generally difficult)

3 (average)

4 (generally simple)

5 (extremely simple)

Did you understand the meaning of I couldn’t understand any of them

the sliders (e.g.: the sliders for I couldn’t understand most of them

setting the desired loudness)? Some were clear, but others were not

I could understand most of them

I could understand all of them

How did you find the musical out-

put?

I found the music extremely disconnected or

“jumpy”

The music sounded generally disconnected and I

couldn’t enjoy it

The music sometimes sounded disconnected and

sometimes flowing

Despite some minor issues, the musical experi-

ence flowed well

I really enjoyed the way music was mixed, it

“flowed”

125

Appendix D. Questionnaire used for evaluation 126

Have you ever seen or interacted Yes

with a similar type of software? No

Please rate the familiarity you felt Very dissimilar

with the music that was played Quite dissimilar

(i.e., how similar or far was the Familiar

played music with the music you

are used to listen to):

Very familiar

Do you think that this way of Not at all

listening to music is an Just in rare cases

improvement over the traditional Generally not, but I can see its usefulness

full-track player? I think that I could use this player many times

It’s definitely an improvement and I would use

it all the time

Do you think that this player could Not at all, it just makes it harder

make it easier to explore a huge Just in rare cases

collection of music? Generally not, but sometimes it could be useful

I think it would make it quite easier

I think it would make it definitely easier

Table D.1: Questionnaire used for evaluation of the developed system.

Bibliography

[1] N. Aizenberg, Y. Koren, and O. Somekh. Build your own music recommender by

modeling internet radio streams. Proceedings of WWW, 1-10, 2012.

[2] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. Boostmap: A method for efficient

approximate similarity rankings. Proceedings of the 2004 IEEE Computer Society

Conference, 2:II-268, 2004.

[3] J.J. Aucouturier, and F. Pachet. Music similarity measures: What’s the use?. IS-

MIR, 2002.

[4] J.J. Aucouturier, and F. Pachet. Improving Timbre Similarity: How High is the

Sky?. Journal of Negative Results in Speech and Audio Sciences, 1(1):1-13, 2004.

[5] J.J. Aucouturier. Sounds like teen spirit: Computational insights into the ground-

ing of everyday musical terms. Language, Evolution and the Brain. Frontiers in

Linguistics, 35-64, 2009.

[6] L. Barrington, D. Turnbull, D. Torres, and G. Lanckriet. Semantic similarity for

music retrieval. Music Information Retrieval Evaluation Exchange (MIREX), 2007.

[7] L. Barrington, R. Oda, and G.R.G. Lanckriet. Smarter than genius? Human eval-

uation of music recommender systems. Proceedings of ISMIR, 357–362, 2009.

[8] J.P. Bello, C. Duxbury, M. Davies, and M. Sandler. On the use of phase and energy

for musical onset detection in the complex domain. Signal Processing Letters, IEEE,

11(6):553-556, 2004.

[9] J.P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B. Sandler.

A tutorial on onset detection in music signals. IEEE Transactions on Speech and

Audio Processing, 13(5):1035-1047, 2005.

[10] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song

dataset. Proceedings of the 12th International Society for Music Information Re-

trieval Conference (ISMIR 2011), 2011.

127

Bibliography 128

[11] S. Böck, and G. Widmer. Maximum filter vibrato suppression for onset detection.

Proceedings of the 16th International Conference on Digital Audio Effects (DAFx-

13), Maynooth, Ireland, 2013.

[12] D. Bogdanov, J. Serrà, N. Wack, P. Herrera, and X. Serra. Unifying low-level and

high-level music similarity measures. IEEE Transactions on Multimedia, 13(4):687-

701, 2011.

[13] D. Bogdanov, and P. Herrera. How much metadata do we need in music recom-

mendation? A subjective evaluation using preference sets. WProceedings of ISMIR,

97-102, 2011.

[14] D. Bogdanov, and X. Serra. From music similarity to music recommendation: Com-

putational approaches based on audio features and metadata. PhD Thesis, Univer-

sitat Pompeu Fabra, 2013.

[15] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera, O. Mayor, G. Roma, J.

Salamon, J. Zapata, and X. Serra. ESSENTIA: an open-source library for sound

and music analysis. Proceedings of the 21st ACM international conference on Mul-

timedia, 855-858, 2013.

[16] J. Bonada. Automatic technique in frequency domain for near-lossless time-scale

modification of audio. Proceedings of International Computer Music Conference,

396-399, 2000.

[17] G. Bonnin, and D. Jannach. Automated Generation of Music Playlists: Survey and

Experiments. ACM Computing Surveys, 47(2), Article 26, 2014.

[18] M. Braschler and C. Peters. Cross-language evaluation forum: Objectives, results,

achievements. Information retrieval, 7(1-2):7–31, 2004.

[19] G. Cabral, J.P. Briot, and F. Pachet. Impact of distance in pitch class profile com-

putation. Proceedings of the Brazilian Symposium on Computer Music, 319-324,

2005.

[20] P. Cano, M. Kaltenbrunner, F. Gouyon, and E. Batlle. On the use of FastMap for

Audio Retrieval and Browsing. ISMIR, 2002

[21] P. Cano, M. Kaltenbrunner, and N. Wack. An industrial-strength content-based

music recommendation system. Proceedings of the 28th annual internation ACM

SIGIR conference on research and development in information retrieval, 673-673,

2005.

Bibliography 129

[22] O. Celma, and X. Serra. FOAFing the music: Bridging the semantic gap in music

recommendation. Web Semantics: Science, Services and Agents on the World Wide

Web, 6(4):250-256, 2008.

[23] O. Celma. Music Recommendation and Discovery: The Long Tail, Long Fail, and

Long Play in the Digital Music Space. Springer, 2010.

[24] F. Coelho, J. Devezas, and C. Ribeiro. Large-scale crossmedia retrieval for playlist

generation and song discovery. Proceedings of OAIR, 61-64, 2013.

[25] W.W. Cohen, and W. Fan. Web-Collaborative Filtering: Recommending Music by

Crawling the Web. WWW9 / Computer Networks, 33(1-6):685-698, 2000.

[26] P. Cremonesi, F. Garzotto, S. Negro, A.V. Papadopoulos, and R. Turrin. Looking

for “good” recommendations: A comparative evaluation of recommender systems.

Proceedings of INTERACT, 152–168, 2011.

[27] M.E.P. Davies, and M.D. Plumbey. Context-dependent beat tracking of musical au-

dio. IEEE Transactions on Audio, Speech, and Language Processing, 15(3):1009-

1020, 2007.

[28] M.E.P. Davies, P. Hamel, K. Yoshii and M. Goto. AutoMashUpper: Automatic Cre-

ation of Multi-Song Music Mashups. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 22(12):1726-1737, 2014.

[29] S. Davis, and P. Mermelstein. Comparison of parametric representations for mono-

syllabic word recognition in continuously spoken sentences. IEEE Transactions on

Acoustics, Speech and Signal Processing, 28(4):357-366, 1980.

[30] N. Degara, E.A. Rua, A. Pena, S. Torres-Guijarro, M.E. Davies, and M.D. Plumb-

ley. Reliability-informed beat tracking of musical signals. IEEE Transactions on Au-

dio, Speech, and Language Processing, 20(1):290-301, 2012.

[31] R. Dias, and M. J. Fonseca. MuVis: An application for interactive exploration of

large music collections. Proceedings of MM, 1043-1046, 2010.

[32] S. Dixon Onset Detection Revised. Proc. of the 9th Int. Conference on Digital Audio

Effects (DAFx’06), p.133-137, 2006.

[33] M. Dopler, M. Schedl, T. Pohle, and P. Knees. Accessing music collections via

representative cluster prototypes in a hierarchical organization scheme. Proceedings

of ISMIR, 179-184, 2009.

[34] J.S. Downie. Music information retrieval. Annual Review of Information Science

and Technology, 37(1):295-340, 2003.

Bibliography 130

[35] J.S. Downie. The Scientific Evaluation of Music Information Retrieval Systems:

Foundations and Future. Computer Music Journal, 28:12-23, 2004.

[36] C. Faloutsos, and K.I. Lin. FastMap: A fast algorithm for indexing, data-mining

and visualization of traditional and multimedia datasets. Proceedings of the 1995

ACM SIGMOD international conference on management of data, 24(2):163-174,

1995.

[37] B. Fields. Contextualize Your Listening: The Playlist as Recommendation Engine.

Ph.D. Dissertation. Department of Computing Goldsmiths, University of London,

London, 2011.

[38] J. Foote. Automatic audio segmentation using a measure of audio novelty. IEEE

International Conference on Multimedia and Expo, 1:452-455, 2000.

[39] T. Fujishima. Realtime chord recognition of musical sound: A system using Common

Lisp Music. Proceedings of the International Computer Music Conference, Beijing.

1999.

[40] A. Germain, and J. Chakareski. Spotify me: Facebook-assisted automatic playlist

generation. Proceedings of MMSP, 25-28, 2013.

[41] E. Gómez. Tonal Description of Polyphonic Audio for Music Content Processing.

INFORMS Journal on Computing, 18(3):294-304, 2006.

[42] M. Grachten, M. Schedl, T. Pohle, and G. Widmer. The ISMIR cloud: A decade of

ISMIR conferences at your fingertips. Proceedings of ISMIR, 63-68, 2009.

[43] S.J. Green, P. Lamere, J. Alexander, F. Maillet, S. Kirk, J. Holt, J. Bourque,

and X.W. Mak. Generating transparent, steerable recommendations from textual

descriptions of items. ACM Conference on Recommender Systems (RecSys’09), 281-

284, 2009.

[44] D. K. Harman. Information retrieval evaluation. Synthesis Lectures on Information

Concepts, Retrieval, and Services, 3(2):1–119, 2011.

[45] D. Hauger, J. Kepler, M. Schedl, A. Kosir, and M. Tkalcic. The million musical

tweets dataset: What can we learn from microblogs. Proceedings of ISMIR, 189-194,

2013.

[46] H. von Helmholtz. The physiological causes of harmony in music. Popular Lectures

on Scientific Lectures, p.53-54, 1903.

[47] D. Jannach, M. Zanker, M. Ge, and M. Gröning. Recommender systems in computer

science and information systems — A landscape of research. Proceedings of EC-

Web, 76-87, 2012.

Bibliography 131

[48] G. Jawaheer, M. Szomszor, and P. Kostkova. Comparison of implicit and explicit

feedback from an online music recommendation system. Int. Workshop on Infor-

mation Heterogeneity and Fusion in Recommender Systems (HetRec’10), p.47-51,

2010.

[49] P. Knees, T. Pohle, M. Schedl, and G. Widmer. Combining audio-based similarity

with Web-based data to accelerate automatic music playlist generation. Proceedings

of MIR, 147-154, 2006.

[50] J.H. Lee, B. Bare, and G. Meek. How similar is too similar? Exploring users’ per-

ceptions of similarity in playlist evaluation. Proceedings of ISMIR, 109–114, 2011.

[51] M. Levy, and M. Sandler. Lightweight measures for timbral similarity of musical

audio. Proceedings of the 1st ACM workshop on Audio and music computing mul-

timedia, 27-36, 2006.

[52] T. Li, M. Ogihara, and G. Tzanetakis. Music Data Mining. CRC Press, p. 95, 2011.

[53] H. Ling, and K. Okada. An efficient earth mover’s distance algorithm for robust

histogram comparison. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 29(5):840-853, 2007.

[54] N.H. Liu, S.W. Lai, C.Y. Chen, and S.J. Hsieh. Adaptive music recommenda-

tion based on user behavior in time slot. Computer Science and Network Security,

9(2):219-227, 2009.

[55] B. Logan. Mel frequency cepstral coefficients for music modeling. Proceedings of

ISMIR, 2000.

[56] B. Logan, and A. Salomon. A Music Similarity Function Based on Signal Analysis.

ICME, 2001.

[57] B. Logan. Music recommendation from song sets. Proceedings of ISMIR, 425–428,

2004.

[58] M.I. Mandel, and D.P. Ellis. Song-level features and support vector machines for

music classification. ISMIR 2005: 6th International Conference on Music Infor-

mation Retrieval: Proceedings: Variation 2: Queen Mary, University of London

Goldsmiths College, p. 594-599, 2005.

[59] P. Masri. Computer Modeling of Sound for Transformation and Synthesis of Musical

Signal. Ph.D. dissertation, Univ. of Bristol, 1996.

[60] J. McDermott. Auditory preferences and aesthetics: Music, voices, and everyday

sounds. Neuroscience of Performance and Choice. Elsevier, 227-256, 2012.

Bibliography 132

[61] B. McFee, and G.R.G. Lanckriet. The natural language of playlists. Proceedings of

ISMIR:537–542, 2011.

[62] S. McNee, J. Riedl, and J. Konstan. Being accurate is not enough: how accuracy

metrics have hurt recommender systems. CHI’06 extended abstracts on Human

Factors in Computing Systems, p.1001, 2006.

[63] N. Orio. Music Retrieval: A Tutorial and Review. Foundations and Trends R©in

Information Retrieval, 1(1):1-90, 2006.

[64] F. Pachet, P. Roy, and D. Cazaly. A combinatorial approach to content-based music

selection. Multimedia, 7(1):44-51, 2000.

[65] F. Pachet, G. Westermann, and D. Laigre. Musical data mining for electronic music

distribution. Web Delivering of Music, Proceedings, First International Conference,

p.101-106, 2001.

[66] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and G. Widmer. On Rhythm and

General Music Similarity. ISMIR, p. 525-530, 2009.

[67] P. Roy, J.J. Aucouturier, F. Pachet, and A. Beurivé. Exploiting the Tradeoff Between

Precision and Cpu-Time to Speed Up Nearest Neighbor Search. ISMIR, 230-237,

2005.

[68] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for

image retrieval. International journal of computer vision, 40(2):99-121, 2000.

[69] M. Sanderson. Test collection based evaluation of information retrieval systems.

Foundations and Trends in Information Retrieval, 4(4):247–375, 2010.

[70] M. Schedl, T. Pohle, P. Knees, and G. Widmer. Exploring the Music Similarity

Space on the Web. ACM Transactions on Information Systems, 29(3), 2011.

[71] M. Schedl. nowplaying Madonna: a large-scale evaluation on estimating similarities

between music artists and between movies from microblogs. Information retrieval,

15(3-4):183-217, 2012.

[72] M. Schedl, D. Hauger, and J. Urbano. Harvesting microblogs for contextual music

similarity estimation - a co-occurence-based framework. Multimedia Systems, 2013.

[73] M. Schedl, E. Gómez, and J. Urbano. Music Information Retrieval: Recent De-

velopments and Applications. Foundations and Trends R©in Information Retrieval,

8(2-3):127-261, 2014.

Bibliography 133

[74] I. Schmädecke, and H. Blume. High performance hardware architectures for au-

tomated music classification. Algorithms from and for Nature and Life, 539-547,

2013.

[75] D. Schnitzer. Mirage – High-Performance Music Similarity Computation and Auto-

matic Playlist Generation. Master’s Thesis, Vienna University of Technology, 2007.

[76] D. Schnitzer, A. Flexer, and G. Widmer A fast audio similarity retrieval method

for millions of music tracks. Multimedia Tools and Applications, 58(1):23-40, 2012.

[77] X. Serra, M. Magas, E. Benetos, M. Chudy, S. Dixon, A. Flexer, E. Gómez, F.

Gouyon, P. Herrera, S. Jorda, O. Paytuvi, G. Peeters, J. Schlüter, H. Vinet, and

G. Widmer. Roadmap for Music Information ReSearch. Geoffroy Peeters (editor),

Creative Commons BY NC ND 3.0 license, 2013.

[78] C. N. Silla Jr, A. L. Koerich, and C. A. Kaestner. The latin music database. Proceed-

ings of the 9th International Conference on Music Information Retrieval (ISMIR

2008), p.451–456, 2008.

[79] M. Slaney and W. White. Measuring playlist diversity for recommendation systems.

Proceedings of AMCMM, 77–82. 2006.

[80] M. Slaney. Web-scale multimedia analysis: Does content matter?. IEEE Multime-

dia, 18(2):12-15, 2011.

[81] S.S. Stevens. On the psychophysical law. Psychological Review, 64(3): 153–181,

1957.

[82] S. Stober. Adaptive methods for user-centered organization of music collections.

Doctoral dissertation, Magdeburg, Universitat, Diss., 2011.

[83] G. Szymanski. Pandora, or, a never-ending box of musical delights. Music Reference

Services Quarterly, 12(1):21-22, 2009.

[84] R. Van Gulik, and F. Vignoli. Visual playlist generation on the artist map. Pro-

ceedings of ISMIR, 520-523, 2005.

[85] F. Vignoli, and S. Pauws. A music retrieval system based on user driven similarity

and its evaluation. Proceedings of ISMIR, 272-279, 2005.

[86] E. M. Voorhees and D. K. Harman. TREC: Experiment and Evaluation in Infor-

mation Retrieval. MIT Press, 2005.

[87] A. L.-C. Wang, and T.F. Block F. An industrial-strength audio search algorithm.

Proceedings of the 4 th International Conference on Music Information Retrieval,

2003.

Bibliography 134

[88] K. West, and P. Lamere. A model-based approach to constructing music similarity

functions. EURASIP Journal on Advances in Signal Processing, 149-149, 2007.

[89] B. Whitman, and S. Lawrence. Inferring Descriptions and Similarity for Music

from Community Metadata. Proceedings of the 2002 International Computer Music

Conference (ICMC 2002), p.591-598, 2012.

[90] M. Zadel, and I. Fujinaga. Web Services for Music Information Retrieval. Proceed-

ings of the 5th International Symposium on Music Information Retrieval (ISMIR

2004), 2004.

[91] E. Zangerle, W. Gassler, and G. Specht. Exploiting Twitter’s Collective Knowledge

for Music Recommendations. Proceedings of the 21st International World Wide

Web Conference: Making Sense of Microposts, p.14-17, 2012.

	Abstract
	Abstract (Italian)
	Acknowledgements
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Rise of the Web: changes in the fruition of music
	1.2 Music Information Retrieval (MIR)
	1.3 Phonos Project
	1.4 GiantSteps
	1.5 Purpose of this work
	1.6 Introduction to the problem of Playlist Generation
	1.7 Structure of the dissertation

	I Background
	2 Automatic music analysis techniques: state of the art
	2.1 Metadata
	2.1.1 Vector Space Model
	2.1.2 Co-Occurence Analysis

	2.2 Audio content analysis
	2.2.1 Low-level descriptors
	2.2.1.1 MFCCs
	2.2.1.2 Bark bands

	2.2.2 Mid-level descriptors
	2.2.2.1 Rhythm
	2.2.2.2 Tonality

	2.2.3 High-level descriptors
	2.2.4 Main tools for extracting audio content

	2.3 Computing music similarity with audio content descriptors
	2.4 Conceptual differences between metadata and audio content information

	3 Assessing the quality of an automatically generated playlist
	3.1 Difficulties in the evaluation of MIR systems
	3.2 Evaluation of automatically generated playlists
	3.3 Evaluation conferences in MIR

	II Methodology
	4 Requirements and approach
	4.1 Catalogue of music
	4.2 Requirements
	4.3 Design of the system
	4.4 Evaluation

	5 Off-line computation of audio features
	5.1 Audio content features extraction
	5.2 FastMap computation

	6 Real-time application development
	6.1 The server application
	6.1.1 Realtime computation of music similarity and playlist generation
	6.1.2 Audio generation and streaming

	6.2 The client application

	III Results and Discussion
	7 Results
	7.1 Performance
	7.2 User evaluation
	7.3 Usage at exhibition

	8 Conclusions and future work
	8.1 Contributions
	8.2 Future work

	Appendix A List of Essentia descriptors
	Appendix B List of Echo Nest Features
	Appendix C Phonos: list of tracks
	Appendix D Questionnaire used for evaluation
	Bibliography

