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Abstract

Additive manufacturing has opened unexplored possibilities in the fabrication of elastic structures not manufac-
turable via traditional moulding and machining processes. These new fabrication techniques found immediate
synergies with topology optimization problems, allowing for the printing process of optimal shapes. Topology
Optimization routines uses a wide variety of methodologies to obtain strongly defined configurations, and the
one taken into consideration in this work used an anisotropic mesh adaptation technique to do so.

The focus will be centered around the results of a Topology Optimization routine in the context of a lin-
ear elastic problem to determine support structures under external loads.

The goal of this project is to show that Machine Learning algorithms could make a substantial contribution to
reducing the computational cost of topological optimisation procedures, by generating quasi-optimal meshes as
a starting point for the already existing pipelines. Said triangulations will need to reproduce the anisotropic
elements to successfully reduce the computational burden of the the considered optimization procedure.

This work will make use of Graph Neural Networks instead of more traditional ones, aiming to show the
inherent correlation between Finite Elements Methods and Graph Theory, possibly enticing further research in
potential synergies between the two fields.
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Chapter 1

Introduction

The main objective of a topology optimization procedure is to determine the layout of an object, by placing and
removing material from the domain of interest, in order to obtain the best performances, measured according to
a specific target objective. Applications of interest span a wide range of problems and fields, from aerodynamics
[13], to electromagnetic [25] and structural design [1].

These optimization problems can be formalized as a PDE-constrained problem for a domain-dependent func-
tional. The most prevalent industrial codes for topology optimization are developed around density-based meth-
ods, level-set and phase-field procedures [40]. The leading density-based approach is the Simplified Isotropic
Material with Penalization (SIMP), which emphasizes the material properties through a penalization factor.
The main drawback of this method, is its mesh dependency, which leads many solutions to tend towards a
chequered pattern. Numerous solutions to this common issue have been developed, like filtering techniques [37]
and penalization methods [42].
This work will use a modified version of the method proposed in [29], by combining a Reaction Diffusion Equa-
tion (RDE) update scheme [8] with a Double Well Potential (DWP) technique [39]. These methodologies are
solved by means of continuous Finite Elements Method (FEM), effectively allowing to develop error estimation
indicators and grid refinements techniques.

This combination of methods is synergised with an anisotropic mesh refinement procedure [2], based on a
recovery-based error estimator [12], which allows to reduce the computational cost and time required to obtain
the final optimized solution.

Although well established, these topology optimization pipelines are inherently complex and computationally
demanding. The need to reduce computational effort has been a staple of the engineering world, but in recent
years the growth in popularity of Machine Learning techniques, and in particular Neural Networks, gave a new
impulse to research in these technologies. A prime example of the possible advantages of implementing Neural
Network into pre-existing pipelines was image processing, which has been adopted into manufacturing processes
[43] to improve productivity. A further step forward in Machine Learning was achieved with the introduction of
Deep Learning. This new improved methodology immediately found itself in applications for complex problems
that could not be tackled before, such as health monitoring [26], disease detection [10], ocean data inference via
satellites [5] and active weed plants recognition during soil sowing in large scale agriculture [20].

Machine Learning undoubtedly changed significantly how many industries approach technological challenges.
Even though it may seems like Neural Networks could potentially solve any problem, a lot of challenges have
to be overcome before these tools can becomes useful and practical. Traditional Machine Learning techniques
do not allow much flexibility on the dimension of their input, and they intrinsically require exhaustive training
before becoming viable. In order to overcome these issues, another class of Neural Network grew in popularity
in recent years, Graph Neural Networks. This novel approach to Machine Learning aims to reduce the compu-
tational strain of the training associated to traditional networks, by associating the input data with connections
between single datapoints, effectively interpreting the inputs as graphs [6]. Moreover, these network have been
designed with the goal of allowing a much a broader flexibility when it comes to input data [9].

Information propagation methodologies [22], helped Graph Neural Network in becoming a viable tool for com-
plex problems such as inductive learning [14], neighborhood sampling and network scalability [15]. Recently
the research in graph based learning produced very advanced and flexible architectures[24], potentially capable
of tackling an incredible variety of tasks and problems. Employment of Graph Neural Networks for industrial
equipment residual lifetime forecast [34], estimation for thermodynamics effects in industrial processes [18] and
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anomaly detection [41] represents just a few of the possible usages of this new type of Machine Learning tech-
nologies as useful tools for real life industrial applications.

Nowadays most simulation tools used for industrial applications relies on FEM, which requires a triangula-
tion of the domain under study to be implemented. Such discretization could be interpreted as a graph, and
the connection between these methodologies and graph based learning is intuitive.
This project aims to apply Graph Neural Networks to Finite Elements Methods based simulations, to potentially
reduce the computational demand of the latter thanks to the inherent correlation between the meshes used in
FEM and the graph utilized by GNN. Such task is accomplished by developing a novel GNN architecture, which
expands the capabilities of models present in the literature today [11]. The potential of this new model is tested
on a well known problem, allowing to perform a numerical quantitative validation of its results before testing it
inside the context of an optimization pipeline.
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Chapter 2

Topology optimization of a linear elastic
structure

This chapter introduces the optimal design problem of an elastic structure with minimum compliance and a
volume restriction.

2.1 The elastic Problem
The elastic problem is studied under the hypothesis of linear elasticity. Let Ω ∈ Rd where d = 2, 3 be a connected
bounded domain. The deformation of Ω under a volume force f is described by the conservation of momentum
law

−∇ · σ = f in Ω, (2.1)

where σ = σT is the Cauchy stress tensor. We now define the linearized strain tensor, under the hypothesis of
small displacements [19], as

ε(u) =
1

2

(
∇u+∇uT

)
. (2.2)

Furthermore, we consider the linear relation between stress and strain known as Hook’s law

σ = σ(u) = Cε(u), (2.3)

where C = C(x) is the fourth-order elastic tensor. Under the assumption of an homogeneous and isotropic
material, the mechanical properties of the material are described by the Young’s modulus E and the Poisson’s
ratio ν. To maintain a more compact notation, we define the two Lamé constants

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.4)

Equation 2.3 can we reformulated using these constants as

σ = Cε(u) = 2µε(u) + λtr(ε(u))I, (2.5)

where I is the d× d identity matrix. Finally, is possible to fully describe the linear elastic model underlying the
deformation of Ω under a volume force f as

−∇ · σ(u) = f in Ω

u = 0 on ΓD

σ(u)n = g on ΓN

σ(u)n = 0 on ΓF

(2.6)

In the above equation, the domain boundary ∂Ω is divided into three portions disjoint by pairs such that
∂Ω = ΓD ∪ ΓN ∪ ΓF . They represent respectively the Dirichlet, Neumann and traction free sections of the
boundary.

To obtain the weak formulation of Equation 2.6, we consider the subspace:

V = {v ∈ [H1(Ω)]d | v = 0 on ΓD} (2.7)
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The weak form of the problem is obtained after multiplying the equation for a test function v ∈ V and integrating
over the whole domain. After using the above constitutive equations and assuming zero body forces, it is possible
to express the weak form of the problem as: find u ∈ V such that∫

Ω

(λ(∇ · u)(∇ · v) + 2µε(v) : ε(u))dx =

∫
ΓN

g · v ds, (2.8)

or alternatively ∫
Ω

Cε(u) : ε(u))dx =

∫
ΓN

g · v ds. (2.9)

The problem is solved numerically using the continuous Galerkin method.

2.2 Minimization of the compliace under a volume constrain
In this section, the problem of the minimization of the compliance under a volume constraint is studied.
Considering only a surface load, we define an energy functional as

J (Ω,u) =

∫
ΓN

g · u ds, (2.10)

where u is the solution of Equation 2.8. The compliace minimization problem is formulated as:

min
Ω∈Uad

J (Ω,u) =

∫
ΓN

g · u ds s.t.



−∇ · σ = 0 in Ω

u = 0 on ΓD

σ(u)n = g on ΓN

σ(u)n = 0 on ΓF∫
Ω

1 dx ≤ V ⋆

(2.11)

where Uad and V ⋆ represent the set of admissible domains in Rd and the maximum allowed volume.
The solid contained into the domain D will be described through a phase field ϕ(x), which will assume density
values between 0 and 1, namely, 

ϕ(x) = 1 ∀x ∈ Ω1

0 < ϕ(x) < 1 ∀x ∈ Ωint

ϕ(x) = 0 ∀x ∈ Ω0

(2.12)

where Ω1 ∪ Ωint ∪ Ω0 = D, as depicted in Figure 2.1.

Figure 2.1: Visual representation of the solid via a Phase field

It is now possible to define the material properties through said phase field, using the SIMP method as

E(ϕ) = Emin + (E0 − Emin)ϕ
p, (2.13)

where E0 is the material Young’s modulus and Emin is set to avoid singularities. The penalty parameter p is
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set to 3 [3]. Likewise is possible to define the Lamé constants and the elastic tensor by means of ϕ:

λ(ϕ) =
ν

(1 + ν)(1− 2ν)
E(ϕ), µ(ϕ) =

1

2(1 + ν)
E(ϕ), (2.14)

C(ϕ) = Cmin + (C0 −Cmin)ϕ
p. (2.15)

It is possible now to re-state the minimization problem as a function of ϕ, that is,

min
ϕ

J (ϕ,uϕ) =

∫
ΓN

g · uϕ ds s.t.



−∇ · (C(ϕ)ε(uϕ)) = 0 in D
uϕ = 0 on ΓD

(C(ϕ)ε(uϕ))n = g on ΓN

(C(ϕ)ε(uϕ))n = 0 on ΓF

G(ϕ) =
∫
D ϕ dx

|D| − Vreq ≤ 0

(2.16)

In the above formulation |D| is the area of the total domain and Vreq = V ⋆/|D| is the volume fraction required.

2.3 The optimization strategy
The solution of the minimization problem requires the sensitivity, namely the Fréchet derivative of the objective
function with respect to ϕ.[39]. The Lagrangian L accounting for the compliance and the state equation of the
linear elasticity problem is given by

L(ϕ, ũ, p̃) = J (ϕ, ũ) +

∫
D
(C(ϕ)ε(ũ)) : ε (p̃) dx−

∫
ΓN

g · p̃ ds (2.17)

where ũ ∈ V is associated with the solution of the elastic problem and p̃ is a Lagrange multiplier. The elastic
problem is notoriously self-adjoint [38],allowing to directly compute the sensitivity as

J ′(ϕ,u) = −(λ′(ϕ)(∇ · u)(∇ · u) + 2µ′(ϕ)ε(u) : ε(u)). (2.18)

Once obtained the sensitivity, we can add the inequality constraint related to the volume restriction using the
augmented Lagrangian [4]

L̃(ϕ, q, r) = ηJ (ϕ,u) + qG+(ϕ, q, r) +
1

2
r
∣∣G+(ϕ, q, r)

∣∣2 , (2.19)

Where q is the Lagrange multiplier of the inequality constraint and r is the penalty parameter. Moreover

G+(ϕ, q, r) = max
(
G(ϕ),−q

r

)
, η =

|D|
∥J ′(ϕ,u)∥L2(D)

(2.20)

In the above equation, the term

G(ϕ) =

∫
D ϕdx

|D|
− Vreq, (2.21)

represents the difference between the volume represented by ϕ and the required volume Vreq.

To solve the above problem, a gradient-based method is implemented exploiting the derived sensitivity. In
particular an iterative strategy is devised to optimize the augmented Lagrangian function L̃ with respect to the
variable ϕ, fixing qk and rk

ϕk+1 = argmin
ϕ

L̃(ϕ, qk, rk) s.t. ϕ ∈ [0, 1] (2.22)

Then the Lagrange multiplier q and the penalty coefficient r used in the augmented Lagrangian will be updated
[4] as follows ®

qk+1 = qk + rk max
Ä
G(ϕ),− qk

rk

ä
rk+1 = γrk, γ > 1

(2.23)

More precisely, to solve Equation 2.22 a combination of a Reaction Diffusion Equation [8] and a Double Well
Potential [39] is employed.

We introduce a fictitious time t to describe the evolution of ϕ. The RDE used for the topology optimiza-

8



tion is defined as
∂ϕ

∂t
= κ∇2ϕ− ∂L̃

∂ϕ

∣∣∣∣∣
t=t1

in D × (t1 ≤ t ≤ t2), (2.24)

with boundary conditions
∂ϕ

∂n
= 0 on ∂D. (2.25)

The right hand side of Equation 2.24 is composed of a diffusion and a reaction term. The diffusion coefficient κ
controls the complexity of the optimal shape and stabilizes the optimization, while the reaction is the derivative
of the augmented Lagrangian with respect to ϕ and encapsulates the sensitivity with respect to the design
variable ϕ, namely

∂L̃
∂ϕ

(ϕ, q, r) = ηJ ′(ϕ,u) +

®
G′(ϕ)(q + rG(ϕ)) if G(ϕ) ≥ −q/r

0 if G(ϕ) < −q/r
(2.26)

where G′(ϕ) = |D|.

Given this formulation, is possible to derive the weak form of Equation 2.22. Using a Backward Euler method
for the time derivative, and continuous FEM in space, the weak formulation results [2] is: for n = 1, 2, .. find
ϕ ∈ H1(D) such that∫

D

ñ
ϕn+1 − ϕn

∆t
ϕ̃+ κ∇ϕn+1 · ∇ϕ̃+

∂L̃
∂ϕ

(ϕn, qn, rn)ϕ̃

ô
dx = 0 ∀ϕ̃ ∈ H1(D) (2.27)

Where ∆t is the time step. It is worth noticing that the reaction term is relaxed and evaluated at the previous
time step.

2.4 Post processing
This RDE approach will yield an optimal configuration which is not printable, since it will present a wide area
where 0 < ϕ < 1. This area does not represent neither solid nor empty space. In order to obtain a printable
configuration, a second optimization is done replacing the DWP as a reaction term in the RDE. The DWP-RDE
equation is defined as follows [39]

∂ϕ

∂t
= κ∇2ϕ− ∂F

∂ϕ
in D × (t1 ≤ t ≤ t2), (2.28)

with

F(ϕ) = aw(ϕ) + g(ϕ)
∂L̃
∂ϕ

∣∣∣∣∣
t=t1

, (2.29)

where the two functions w and g are set as®
w(ϕ) = ϕ2(1− ϕ)2,

g(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10).
(2.30)

When restricted to the interval [0, 1], these functions become effectively a smooth Dirac’s delta and a smooth
Heaviside function, as graphically shown in Figure 2.2
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(a) function w (b) function g

As before, we need the weak formulation of Equation 2.28 to numerically solve the problem. Computing
all the terms and using yet again a Backward Euler time scheme and continuous FEM is space, the weak
formulation is: For n = 1, 2, .., find ϕn+1 ∈ H1(D) such that∫

D

ñ
ϕn+1 − ϕn

∆t
ϕ̃+ κ∇ϕn+1 · ∇ϕ̃+

Ç
aw′(ϕn+1) + 30w(ϕn+1)

∂L̃
∂ϕ

(ϕn, qn, rn)

å
ϕ̃

ô
dx = 0 ∀ϕ̃ ∈ H1(D) (2.31)

This second optimization procedure, does not aim to obtain a new optimal configuration, but rather to to
diminish the area in which ϕ is transitioning from 0 to 1.

The two optimization cycles are done sequentially. The first cycle will stop when the difference in volume
between two consecutive iterations will be below a certain threshold, while the second one will stop when the
transitional area of ϕ is reduced to less than 1% of the domain area.

Algorithm 1 Topology Optimization algorithm
Construct computational mesh Th
Initialize ϕh

0

while ∥ϕh
k+1 − ϕh

k∥L∞(Ω)>tol do
Solve elastic problem → uh

k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1}
end while
while Mnd > 1% do

Solve elastic problem → uh
k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE-DWP → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1, κk+1}
end while

In the above algorithm the term Mnd represents the measure of the transitorial interface of ϕ, formally:

Mnd =

∫
D 4ϕ(1− ϕ)

|D|
. (2.32)

2.5 Anisotropic mesh adaptation
This section will cover the explanation of the anisotropic mesh adaptation procedure used inside the topology
optimization routine, starting from the concept of metric of a mesh.

It is known that the precision of any numerical scheme is directly linked to the size of the mesh over which
the solution is computed. It is clear how an indiscriminate refining of the domain represents a sub optimal
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approach. An adapted mesh, which is refined only where needed is a much more ideal concept, which can allow
to reduce the computational burden of the optimization routine. The mesh adaptation procedure contained in
the following sections allows to obtain meshes with highly stretched elements near the interface of ϕ through a
recovery based error indicator.

2.5.1 Metric of a FEM mesh
We define any triangulation of the domain D as Th. Each element K of the mesh can be characterized geomet-
rically through the spectral properties of an affine invertible map TK : K̂ → K. This mapping transforms a
reference element K̂, by definition an equilateral triangle inscribed in the unit circle centered at the origin, into
a generic triangle K inscribed in an ellipse, as Figure 2.2 shows.

Figure 2.2: Mapping from reference element to actual element

The position of each vertex of the triangle in the reference element K̂ is known in the 2D case, and this
allows to compute the Jacobian of the transformation TK , namely, MK ∈ R2×2. This matrix can be factored
via the polar decomposition as

MK = BKZK , (2.33)

where BK ∈ R2×2 is a symmetric positive definite matrix describing the deformation of the triangle K, while
ZK ∈ R2×2 characterizes the rotation of the element.

Additionally, it is possible to spectrally decompose the matrix BK as

BK = RT
KΛKRK , (2.34)

where RT
K = [r1,K , r2,K ] is the right eigenvector of BK , and ΛK ∈ R2×2 is the diagonal matrix storing the

corresponding eigenvalues λ1,K ≥ λ2,K > 0. Figure 2.2 gives a graphical representation of the eigenvectors
describing the direction of the two semi-axis of the ellipse, while the eigenvalues represent their length.

We now introduce the symmetric positive definite matrix M ∈ R2×2, known as metric. It will contain all
the information of the triangulation relative to it. Practically, the metric will be approximated with its piece-
wise constant version M|K defined on the mesh Th.

The mesh metric is defined as follows

M|K = RT
KΛ−2

K RK ∀K ∈ Th (2.35)

Being M|K symmetric positive definite, is possible to re-organize all the information contained in it in a vector
using the Voigt notation, as follows ñ

M11 M12

M12 M22

ô
K

=
[
M11 M12 M22

]T (2.36)

This method allows us to not store M12 twice, while still having all the needed information about the metric.
It is important to note, that by definition of symmetric positive definite matrix, the two components M11 and
M22 will always be positive, while M12 could be both positive or negative.
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An additional local quantitative indicator for the mesh elements will be the stretching factor sK , defined
as sK = λ1,K/λ2,K ≥ 1. This parameter quantifies how deformed an element K actually is, since it is the ratio
between the two semi-axis of the ellipse in which the triangle is inscribed.

2.5.2 Mesh adaptation
The mesh adaptation routine is based on the a posteriori error estimation technique proposed by Zienkiewicz
and Zhu [44, 45]. Considering a numerical solution ϕh and its continuous counter part ϕ, the gradient ∇ϕh will
always be less accurate than the solution. A recovery procedure is performed to obtain an improved approxi-
mation P (∇ϕh) of ∇ϕh. The difference ∥P (∇ϕh)−∇ϕh∥L2(Ω) will provide an a posteriori error estimation of
the discretization error ϕ− ϕh in the H1 seminorm.

The explicit formula for the estimation P (∇ϕh) [31] used in this work is:

P∆K
(∇ϕh) =

1

|∆K |
∑

T∈∆K

|T | ∇ϕh
∣∣∣
T

(2.37)

In the above formulation, ∆K represents an elemental patch ∆K = {T ∈ Th|T ∪K ̸= ∅} and | · | stands for area.
A visual depiction of the reconstructed gradient is given by Figure 2.3.

Figure 2.3: Gradient of the discrete solution (black) and the recovered gradient (gray). Image from [35]

The formulation of the anisotropic recovery-based estimator will be based on the definition of Equation 2.37.
We define a symmetric positive definite matrix G∆K

∈ R2×2 such that the entries are defined as

[G∆K
]ij =

∑
T∈∆K

∫
T

ï
P∆K

(∇ϕh)− ∇ϕh
∣∣∣
∆K

ò
i

ï
P∆K

(∇ϕh)− ∇ϕh
∣∣∣
∆K

ò
j

dx (2.38)

We now define the elemental anisotropic estimator [2]

η2K = λ1,Kλ2,K |“∆K |
î
sKrT1,K

“G∆K
r1,K + s−1

K rT2,K
“G∆K

r2,K
ó

(2.39)

where “G∆K
= G∆K

/|∆K | and |“∆K | = T −1
K (∆K). The minimization of the number of element while using the

anisotropic estimator leads to the problem

minJK(sK , r1,K , r2,K) = sKrT1,K
“G∆K

r1,K + s−1
K rT2,K

“G∆K
r2,K s.t.

®
sK ≥ 1

ri,K · rj,K = δij
(2.40)

where δij is the Kronecker delta. The solution to the latter problem (see [30]) is obtained when sK = s⋆K and
ri,K = r⋆i,K , such that

s⋆K =

 
θ1
θ2

r⋆1,K = t2, r⋆2,K = t1

(2.41)
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where {θi, ti}i=1,2 are the eigenpairs associated with “G∆K
, with θ1 ≥ θ2 ≥ 0 and {ti}i=1,2 orthonormal. The

only missing component before being able to define an optimal metric M⋆ unambiguously, are the optimal
eigenvalues λ⋆

1,K and λ⋆
2,K , which are embedded in the optimal stretch factor s⋆K . Combining the definition of

optimal stretch factor with the estimator, the optimal eigenvalues results to be:

λ⋆
1,K = θ

−1/2
2

Ç
τ2∥∇ϕh∥2∆K

2|“K|

å1/2

, (2.42a)

λ⋆
2,K = θ

−1/2
1

Ç
τ2∥∇ϕh∥2∆K

2|“K|

å1/2

, (2.42b)

where τ is a user defined parameter used to impose a desired tolerance, and

∥∇ϕh∥2∆K
=

1

|∆K |
∑

T∈∆K

|T |
∥∥∥∇ϕh

∣∣∣
T

∥∥∥2 . (2.43)

Using the pairs {λ⋆
i,K , r⋆i,K}i=1,2 is possible to compute the optimal metric M⋆ for every element K. Such

metric is turned into a new mesh by means of the function adaptmesh provided by FreeFem++ [17]. This mesh
adaptation procedure is implemented during the RDE-DWP potential optimization cycle, before every DWP
computation, effectively allowing the routine to always have the optimal mesh supporting the computation,
thanks to the Adaptive Mesh Refinement (AMR) procedure.

Algorithm 2 Topology Optimization algorithm with AMR
Construct computational mesh Th
Initialize ϕh

0

while ∥ϕh
k+1 − ϕh

k∥L∞(Ω)>tol do
Solve elastic problem → uh

k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1}
end while
while Mnd > 1% do

Construct gradient reconstruction → P∆K
(∇ϕh

k)
Estimate optimal eigenpairs → {λ⋆

i,K , r⋆i,K}i=1,2

Compute optimal metric → M⋆

Compute optimal mesh via adaptmesh → T k+1
h

Solve elastic problem → uh
k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE-DWP → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1, κk+1}
end while
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Chapter 3

The Graph Neural Network for
quasi-optimal meshes

3.1 The idea
The main objective of the Graph Neural Network (GNN) will be to build a complete FEM mesh with anisotrop-
ically stretched elements, without resorting to the above error estimator and adaptation procedures. To achieve
this goal, a Graph Auto Encoder (GAE) architecture was devised. A GAE consists in a GNN that reduces the
dimension of its input data via an encoding procedure, and then reconstructs the input as output, through a
deconding procedure that starts from the so-called latent space.

The information relative to the original mesh chosen as input is the metric, since it allow to uniquely and
fully describe a given mesh. Figure 3.1 gives the general scheme of how the GNN will operate. A mesh arising
from a topology optimization case will produce the input metric and the output will be a reconstructed version
of the it, that will allow us to build a new mesh from it. The architecture will learn to reconstruct the metric
as close to the original as possible.

GNN Input:


M1

11 M1
12 M1

22

M2
11 M2

12 M2
22

...
...

...
MN

11 MN
12 MN

22

 , GNN Output:


m1

11 m1
12 m1

22

m2
11 m2

12 m2
22

...
...

...
mN

11 mN
12 mN

22



Figure 3.1: General idea

The GNN will essentially be divided in two sections: encoding and decoding. The encoding part will take
care of reducing the cardinality of the graph associated with the input and compressing the information into
a lower dimension latent space. The decoding part will do exactly the opposite, starting from the compressed
information of the latent space, it will increase the number of nodes of the graph and will decompress the
information over the new nodes.
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Figure 3.2: Internal structure of the GNN

To assest how similar the input and output metrics in the N graph nodes really are, an L1 loss function has
been implemented, as well as a L2 Regularization [27] for the M parameters θj , j = 1..M that each respective
model will have.

L(M ,m) =
1

N

i=1∑
N

|M i −mi|+
λ

M

j=1∑
M

θ2j (3.1)

3.1.1 From metric to graph
As seen in Section 2.5.1, it is possible to relate a mesh with a vectorial function called metric, which is defined
on each node of the discretization. It is possible to define the metric at each point of the domain through linear
interpolation between nodes. This interpolation allows to project the metric function on a different mesh and
more specifically, a structured reference mesh, as Figure 3.3 grafically shows.

Figure 3.3: Projection of the metric on the structured reference mesh

The reference structured mesh will act as the base structure of the graph used in the GNN. To relate this
triangulation to a graph, each node of the reference mesh will be considered as a node of the graph. The edges
of the discretization will be used as edges of the graph as well, effectively allowing us to represent the original
mesh through a graph structured as the reference mesh.
Each node of the graph will contain as information the values of the metric in that point of the domain, which
will be exact up to the linear interpolation.

Figure 3.4: Creation of the graph associated with the metric

It is important to remark the role of the reference mesh for the whole architecture and for the accuracy of
final results. The structured reference mesh will also be used for the outputs of the GNN, allowing straight
forward comparison thanks to the node enumeration and position.
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Remark. It is clear that if the reference mesh is insufficiently refined, part of information originally computed on
the original triangulation could potentially be lost during the projection, effectively preventing the reconstruction
of an accurate mesh, even with the exact output metric.

3.2 Structure of the GNN
The Encoding-Decoding procedure was designed to be as modular as possible, allowing to tackle different prob-
lems that would require different model structures, to be treated with the same code. For this reason, both
Encoder and Decoder have been built in blocks, which can be sequentially stacked to achieve a more complex
network, capable of reducing the dimension of the latent space at will.

To successfully reduce the inputs, three operations are necessary:

• Message Passing

• Graph Reduction

• Graph Augmentation

The first operation will ensure that each node shares information with its neighbors, and it will modulate how
many information are stored in each graph node. The second operation will reduce the cardinality of the graph
by eliminating nodes and all the edges connected to it. The last operation will improve the connectivity of a
given graph, allowing for a more even spread of the information.

It has to be noted that only the first two operations are learnable layers of the GNN, while the third is a
deterministic mathematical operation used to improve the performance of the overall structure.

3.2.1 Encoding block
Using all the three operations previously cited, is possible to create a modular encoding block, which will
produce as output a graph smaller than the input one. It is clear how multiple blocks could be sequentially
stacked in order to obtain very diminished and dense graph that encodes as much information as possible.
The first operation of a block will be the Graph Augmentation. The augmented connectivity will be used for
the second operation, the Message Passing. After these two operations, the only task left to do would be to
select the most important nodes, and discard the less valuable by using the Graph Reduction.

Figure 3.5: Combination of Message Passing and Graph Reduction layers in an encoding block

Figure 3.5 gives a visual representation of a possible pair of input and output graph of an encoding block,
where the amount of nodes features stored in each node increases, while the cardinality of the graph decreases.

3.2.2 Decoding block
The decoder of the GNN will function similarly to the encoder, by using stackable blocks that will take a graph
as input, and return a graph as output.

The objective of the decoding is exactly the opposite as the encoder, meaning that the number of features
of each node will decrease between input and output, but the number of nodes of the overall graph cardinality
will increase, as Figure 3.6 visually describes.
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Figure 3.6: Combination of unpooling operation and Convolution layer in an decoding block

The first operation of the decoding block would be the unpooling, which is the opposite operation to the
Graph Reduction. New nodes are created, with empty features, and are connected to previously existing
nodes using minimal information coming from the encoding procedure. The empty nodes are then filled with
information using a Message Passing layer.

3.2.3 Technical details of the operations
Message Passing: Convolutional layer

The chosen Massage Passing operation for the GNN will be the GCN Convolution[23]. This layer allows each
node to receive information about the nodes directly connected to them and to share their own, allowing to
compute the updated nodal information X ′ through the following operation:

X ′ = “D− 1
2“A“D− 1

2
XΘ (3.2)

where “A = A + I denotes the adjacency matrix with inserted self-loops, “D the diagonal matrix of “A, X the
node feature prior to the operation and Θ denotes the learnable parameters.

From the above formulation is clear how the dimension of the new nodes feature X ′ could be different from the
original ones, meaning that is possible to increase or decrease the number of features contained in each node.
Figure 3.7 visually explains how the information stored in each node can spread in the graph thanks to the
connections between them.

Figure 3.7: Visualization of the GCN Convolution acting on a graph

Graph Reduction: Pooling layer

To reduce the cardinality of the graph, the TopK Pooling layer[11] was used.
This layer assigns a score y to each node, based on its feature and the learnable parameters, to then discard
all the nodes that do not have a sufficiently high score. The node features are then filtered via an activation
function and the adjacency matrix is updated by retaining only the pre-existing edges between the non-discarded
nodes. 

y = σ
Ä
XΘ
∥Θ∥

ä
i = topk(y)

X ′ = (X ⊙ tanhy)i
A′ = Ai,i

(3.3)

The amount of eliminated nodes can be modulated by specifying the percentage of nodes to discard, effectively
leaving on the graph the top percentage of them, based on their score.
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Figure 3.8: Visualization of the TopK Pooling acting on a graph

Graph augmentation

It is important to improve the connectivity of the base graph to allow the information stored in each node, to
be shared not only with their first neighbors, but with as much nodes as possible. Furthermore, the pooling
operation could leave some poorly connected nodes isolated during the training process, effectively preventing
them from sharing or receiving any information about their features.

The chosen graph augmentation technique will be the Graph Power[7].
By raising the adjacency matrix relative the a graph to the k-th power, it is possible to build connections
for nodes that are at most k-th neighbors. This work will use k = 2 for the graph augmentation operation,
increasing the connectivity of each node to its second neighbors every time it is used, that is,

A′ = A2 (3.4)

Figure 3.9: Graph augmentation with k = 2 applied to a sample graph

3.2.4 Overall GNN architecture
Figure 3.10 visually summarizes the overall structure of the Graph Neural Network. It is important to note
that the encoder does not include only encoding blocks, but it also features a single Message Passing layer after
the last encoding block. This layer does not aim to increase or decrease the amount of feature in each node like
the ones in the encoding and decoding blocks.
This layer is in place to better share the information contained in the most compressed graph, allowing a more
even spread of the information between features among the latent space graph.
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Figure 3.10: The complete structure of the GNN, divided into Encoding and Decoding

3.3 Metric transformations and normalization
As seen in Section 2.5.1, the metric has three components, but by definition, only the second one allows negative
values. This disparity of range between the various components of the metric places some heavy constraints on
the problem as it is.

The choice of an activation function that does not filter out negative values, could potentially impact in a
negative way the training of the strictly positive components [14]. Another potential issue could be the presence
of sudden changes in the metric, and being able to capture and reproduce them while they range in RN , could
be much more challenging than doing so in a strictly positive valued environment such as [R+]N .

3.3.1 Transformation applied to the metric
In order to avoid having one component having values in RN and the two of them in [R+]N , a transformation
for the M12 component of the metric has been developed. The latter is divided into two new ones, as visually
depicted in Figure 3.11

F : RN → [R+]N × [R+]N

F(M12) → {M12
mod,M12

sgn} = {|M12|, |min(M12,0)|}
(3.5)

Figure 3.11: Transformation applied to the M12 component of the metric
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The first new component of the i-th node, namely Mmod
12,i is the absolute valued version of M12,i. The second

component of the i-th node, Msgn
12,i , is the absolute value of min(M12,i, 0).

Essentially, M sgn
12 is meant to represent the nodes in which the sign of M12 is negative. This tensor has

been developed this way to impose a bias on the important indices to estimate during the training process.
In particular, it is important to estimate correctly the position of the nodes having negative sign, but more
importance must be given to the nodes that have a greater absolute value, since they will influence the meshing
process the most. This transformation is applied to the data in the pre-process phase.

3.3.2 Normalization applied to the metric
considering the transformation applied to the metric in the pre-process phase, each component of the metric
could potentially range in the whole R+ domain. To normalize the input data of the GNN, a Min-Max Scaling[32]
approach has been used, and each component is normalized individually. The Min-Max Scaling consists of
dividing every value of the tensor considered by the same value, effectively modifying the range in which tensor
values lies. The chosen normalization value has been the maximum of each component, scaling all the features
to the interval [0, 1].
The normalization is applied right after the transformation in the pre-process phase.

3.3.3 Inverse transformation
The meshing algorithm of FreeFem++ will produce a mesh only if provided with a metric composed of three
features, which raises the need for an inverse transformation to apply to the output of the GNN in order to
have a compliant metric. The chosen method, has been to multiply the features of Mmod

12 by −1 only if the
corresponding feature of M sgn

12 is a number greater or equal than 1.

F−1 : [R+]N × [R+]N → RN

F−1(Mmod
12 ,Msgn

12 ) →


Mmod

12,i if Msgn
12,i < 1

−Mmod
12,i if Msgn

12,i ≥ 1

∀i = 1..N
(3.6)

Figure 3.12: Inverse transformation applied to the Mmod
12 and M sgn

12 component of the metric

Contrarily to the previous transformation, when reconstructing M12, it is not important if the estimated
feature of the i-th node has a great absolute value Msgn

12,i , but it is only important that the value has been
estimated as a non-zero. The threshold of 1 was imposed due to the possibility of the network of estimating
very low numbers instead of zeros.
The four scaling values are saved and passed to the post-process to allow a backward scaling to the original
range before being passed to the adaptmesh function.
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Figure 3.13: Workflow of the metric in pre and post process
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Chapter 4

Numerical validation of the GNN

In this chapter the GNN is tested over a simplified problem. All the key features of an anisotropically adapted
mesh are included, making possible to understand the capabilities of the GNN architecture.

4.1 Problem statement and Finite Elements approximation
Consider the following Poisson problem in Ω:®

−∆u = f in Ω,

u = uD on ∂Ω,
(4.1)

Where Ω = (0, 1)2 is a unitary square domain, ∂Ω is its boundary and uD is the analytical solution evaluated
on said boundary. The forcing factor imposed ensures that the analytical solution u coincides with the following
function

u(x, y) =
1

2
− 1

3
arctan

Å
a
((

(p1(x, y)− p1(b, c)
)m

+
(
(p2(x, y)− p2(b, c)

)m − dm
)ã

. (4.2)

Where p1 and p2 are the components of a vector function p, which is a rotation of the Cartesian coordinates

p(x, y) =

Ç
p1(x, y)

p2(x, y)

å
=

ñ
cos θ − sin θ

sin θ cos θ

ôÇ
x

y

å
(4.3)

Furthermore, between u and p, six parameters appears. These parameters modify how the solution looks like
and where its maximum peak is located.
The values of the parameters b and c allows to move the peak of the solution over the domain, while maintaining
its shape. Figure 4.1 shows how the analytical solution looks like with the parameters reported below.

(a) View from above (b) View with an angle

Figure 4.1: Analytical solution for b = c = 0.5
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For the validation problem four of the six parameters will be fixed, while the remaining two will change in
a closed interval, in order to construct a dataset of solutions.

a = 5× 106

b ∈ [0.05, 0.95]

c ∈ [0.05, 0.95]

d = 0.15

m = 6

θ = −π
6

(4.4)

The validation problem is solved by means of Continuous Galerkin, using the following weak formulation for
Equation 4.1: find u ∈ H1(Ω) such that∫

Ω

∇u∇v dx =

∫
Ω

fvdx ∀v ∈ H1
0(Ω). (4.5)

Given the analytical solution and the differential problem, is possible to produce anisotropically adapted meshes
for the numerical solution, which will be the target to reconstruct for the GNN later on.
Figure 4.2a and 4.3a show two example of the resulting meshes. Is possible to note in Figure 4.2b and 4.2b how
the elements near the vertical interface of the numerical solution are stretched in the direction perpendicular to
the gradient of it.

(a) 2799 Vertices - 5580 elements (b) Zoom on stretched elements

Figure 4.2: Resulting mesh when b = c = 0.5, with detailed view
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(a) 2012 Vertices - 3952 elements (b) Zoom on stretched elements

Figure 4.3: Resulting mesh when b = 0.1 and c = 0.6, with detailed view

4.2 Mesh reconstruction from the metric
The GNN will work only with the normalized metrics, hence it must ensured that the information it works with
are sufficient to correctly reconstruct the original mesh from which the metric is arising from. In order to check
if a perfect metric reconstruction would recreate the original mesh, we provide the meshing algorithm with the
exact metric, and we compare the input triangulation with the reconstructed one given as output by adaptmesh.

Additionally, we want to test how effective the two meshes are for the numerical validation problem, there-
fore we define a global relative error to evaluate the numerical solutions:

Erel =
∥uT − uh∥2

∥uT ∥2
(4.6)

where uT represent the discretised version of the analytical solution u. As Figure 3.4 suggests, it is important
to choose a reference mesh fine enough to capture as much information as the metric has to offer. An example
of how much the reference mesh could alter the reconstruction of the original mesh, can be seen in Figure 4.4

(a) (b)

Figure 4.4: Metric sampling with a 100× 100 reference mesh
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The reconstructed mesh has less than half the vertices and elements, and the relative error of the numerical
solution computed over it is more than one order of magnitude greater than the original one. By zooming on
the element-dense area is possible to visualize how poorly the mesh was reconstructed.

Figure 4.5: Detailed view of the element dense area of the mesh

It is therefore evident how the limiting factor in reconstructing the original mesh lies in the chosen reference
mesh. Ideally an infinitely refined mesh would perfectly describe all the information contained within the metric,
but this would be impossible on a practical level.

However, we recall that the metric is originally defined node-wise, and by linear interpolation, it is extended
to the whole domain. This means that a reference mesh with characteristic length h ≃ hmin, where hmin

is the smallest edge length of the original mesh, will capture the metric up to the interpolation error. Any
finer reference mesh, will add little to no information to the reconstruction, but increasing the computational
requirements needed to handle the operations.

Applying these consideration to the reconstruction procedure, we are able to almost perfectly reconstruct the
original meshes, as seen in Figure 4.6

(a) (b)

Figure 4.6: Metric sampling with a 350× 350 reference mesh

Even when comparing the relative error computed on both meshes, they differ from one another by less than
2 · 10−3, hence proving that the reconstructed mesh is just as good as the original one to be the support of the
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numerical problem. Given the similarities of the two meshes, and the impossibility of achieving a better result
without compromising the hardware requirements to process the resulting graph, the reconstructed meshes will
be considered the Ground Truth for the GNN, and any result computed will be compared to them.

4.3 GNN configurations
As seen in Section 3.3.1, the input graph of the GNN will have four features assigned to each node, one for every
pre-processes component of the metric. Our objective is to reconstruct the metric as accurately as possible, as
to have a resulting mesh similar to the input one. To achieve this goal, two main strategies have been tested
during the training process: a monolithic and a multi network approach.

4.3.1 Monolithic approach
The monolithic approach consists of training one single Neural Network, which will have as input all the features
of the pre-processed metric. This approach is intended to test the flexibility of the GNN, to understand if one
single set of trainable parameters could be capable of reconstructing all the features. This method is undoubtedly
the fastest, since it requires a single training to produce result, but it is potentially very inaccurate, since the
features could have significantly different structure from one another in each single graph, making it difficult to
reconstruct while using a single set of learnable parameters.

4.3.2 Multi Network approach
The Multi Network approach uses the opposite idea of the monolithic one. Each graph will be divided into four
separate sub graphs, which will have the same connectivity as the original one, but only one feature in each
node.

Figure 4.7: Multi Network splitting

This method is the slowest in terms of time and computations, since it requires four independent training to
take place before allowing the computation of any result. On the other hand, this method could potentially be
much more accurate, since it will have a set of trainable parameters for each component, allowing for a much
more flexible reconstruction of the metric. Furthermore, this approach potentially allows the four networks to
be trained in parallel, since they are independent from one another.

4.3.3 Technical details of the architecture
All the results obtained in the following section, and in Chapter 5 as well, use similar hyper-parameters. Only
two activation function were used: the tanh [28] inside the pooling layer, and the ReLu [33]in the convolution
layer.
The optimization algorithm implemented during training as been the Adam [21], with a MultiStep linear decay
scheduler for the learning rate [36]. The latter has been used in a range from 5×10−3 to 5×10−5. Additionally,
a fixed batch size has been used during all training, varying in size from 2% to 5% of the size of the training
database. The same batch size has been used for both training and validation, although the model allows for
different sizes during the training process. To avoid problems related to vanishing gradients during training, all
parameters are initialized using a He normal initialization [16].
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4.4 Numerical results of the validation
To understand which configuration is capable of producing the best results, two equivalent architectures com-
prised of a single encoding block have been built.

4.4.1 The database
The database used for all the results in this section, is composed of 1600 metrics, arising from an equivalent
number of meshes generated following the procedure detailed in Section 4.3.1. The parameters used for the mesh
generation are shown in Equation 4.4, and each mesh differs from all the others in the choice of the parameters
b and c respectively.
The database has been divided in 80% for training, 10% for validation and 10% for test.

4.4.2 Monolithic approach results
The chosen configuration for the monolithic approach is defined as follows in its single encoding block:

Node Features Cardinality Reduction
Block 1 4 → 16 80%

Table 4.1: Monolithic single block architecture

The Message Passing layer will increase the number of features in each node from the original 4 to 16, and
then the Graph Reduction layer will discard 80% of the graph nodes, based on the score it assigned. The
training of the network went on until the average loss over the validation set stagnated for more than 10 epochs.
Figure 4.8 is a visual representation of the metric as a vector. Each plot has the nodes’ indices as horizontal
axis, and the value of the metric on the vertical one. Comparing these plots for each component can give a
qualitative idea of the results produced by the GNN.

Figure 4.8: Metrics comparison

The comparison between the input and reconstructed metric using a monolithic approach suggests that the
quality of the corresponding mesh will be low. It is particularly clear the struggle of in the reconstruction of the
M12 component. By plotting the reconstructions of Mmod

12 and Msgn
12 , appears that the source of the error lies

in the estimation of the sign tensor, which leads to the inversion of sign of otherwise nicely estimated features.
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Figure 4.9: M12 transformation comparison

M11, M22 and Mmod
12 all have similar norms when compared, presenting a similar number of indices with

relevant values, while Msgn
12 tends to have a norm which is approximately half when compared with the others.

The difficulty in reconstruction could be credited to this imbalance, which is difficult to fully capture with a
single set of trainable parameters.

After providing the output metric to the meshing algorithm of FreeFem++, the reconstructed mesh is returned,
allowing from a direct comparison.

Figure 4.10: Meshes comparison

The reconstructed mesh clearly catches the shape of its original counterpart, but completely overshoots on
the amount of vertices and elements. Furthermore, the relative error on the reconstructed mesh is more than
one order of magnitude larger than the original one. Figure 4.11 zooms into the element-dense area, showing
the inability of the monolithic approach to produce stretched elements, effectively leading to a worst numerical
solution when the numerical problem is solved over the new mesh.
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(a) Original (b) Reconstructed

Figure 4.11: Detailed view of the mesh comparison

4.4.3 Multi Network approach results
The Multi Network approach for the validation problem used four identical one block structures to attempt the
reconstruction of the data. In order to pose a fair comparison between this methodology and the monolithic one,
the data compression reached by the sum of the four independent networks is equivalent to the one achieved by
the previous model.

Node Features Cardinality Reduction
Block 1 1 → 4 80%

Table 4.2: Multi network single block architecture

Each of the four networks will increase the number of features from 1 to 4 via the Massage passing layer,
and then the Graph Reduction layer will maintain only the top 20% of the nodes, based on their individual
scores. As before, every network has been individually trained until a prolonged stagnation of the average loss
over the validation set arose.

From the comparison of the original and reconstructed metrics, it is immediately clear how the reconstruc-
tion yielded better results than before. The plots suggest that the resulting mesh will be very accurate, but
possibly not perfect due to a visible over-shoot in the estimation of the M22 component.
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Figure 4.12: Metrics comparison

The partition of the training for Mmod
12 and Msgn

12 solved the problem encountered in the monolithic approach,
suggesting that the issue in the estimation of the previous model was indeed the inability of a single set of
parameters to interpret fully the differences between the two transformation components.

Figure 4.13: M12 transformation comparison

The mesh computed from the reconstructed metric still uses more vertices and elements when compared
to the original one, but the numerical solution obtained by solving the validation problem over it produces a
relative error, when computing the FEM problem over it, which is much closer to the original than the previous
approach.
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Figure 4.14: Meshes comparison

When zooming on the element-dense area of the meshes, it appears that also the reconstructed one has
highly stretched triangles. Elements which are far from an isotropic configuration, requires the metric to be
accurate in all three of the components, and this approach seems to be flexible enough to allow such accuracy
during the reconstruction.

(a) (b)

Figure 4.15: Detailed view of the mesh comparison
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Chapter 5

Numerical Results for GNN-enhanced
Topology Optimization

This chapter contains the results of the numerical experiments conducted while using a database of meshes
arising from the optimization problem described in Chapter 2. Various set-ups are described, with different
number of encoding-deconding blocks and different models that achieve various features dimensions and graph
cardinality in the latent graph.

5.1 Mesh reconstruction from the metric
As detailed in Section 4.2, the reference mesh plays a central role in the accuracy that the GNN will be able to
provide, even with perfectly reconstructed results.

(a) (b)

Figure 5.1: Metric sampling with a 350× 699 reference mesh

To tackle the problem of meshes arising from the topology optimization routine, a structured 350 × 699
mesh was chosen. This choice was done to maintain the similarity relation between the minimum edge length
hmin of the original mesh, and the characteristic edge length h of the structured mesh.

This sampling allow us to be able to capture even minute areas where the adaptive refinement produced
element-dense configuration, as pictured in Figure 5.2.

32



(a) (b)

Figure 5.2: Detailed view of the 350× 699 sampling

This choice comes with a noticeable computational cost, since the starting graph associated with the metric
will have as many nodes as the reference mesh, that is, 244650 graph nodes. Unfortunately, lowering the
refinement of the reference mesh will produce reconstruction of the mesh that looses many of the important
features of the original one. An example case is brought in Figure 5.3.

(a) (b)

Figure 5.3: Metric sampling with a 100× 199 reference mesh

The reconstructed mesh is visibly different from its original counterpart, presenting almost half of the vertices
and a reduced number of elements as well. Key areas that had a very high level or refinement are lost. Clearly,
the reference mesh used in this exemplification is not suitable to be the one used to store the information for
the metric’s database.

(a) (b)

Figure 5.4: Detailed view of the 100× 199 sampling
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5.2 The database
The database has been generated by computing 1674 different meshes, arising from an equivalent number of
topology optimization cases. The domain considered consists in a 2× 1 rectangle, constrained over its left side.
The forcing factors have been imposed only on the right portion of the domain’s boundary, which includes two
horizontal and one vertical sections.

Figure 5.5: Graphic representation of the dataset cases

Each computed case had only a singular force acting with an angle on the boundary, over a small portion of
one of the three available sections. Every interval over which the force is applied has width 1/16, dividing the
boundary in 48 equal parts, numbered in counterclockwise order starting from the left end of the bottom section
of the available boundary. All the computed cases can be uniquely identified by a combination of two parameters
{p1, p2}. The first parameter p1 determines where the acting force is applied, based on the parametric function
s1.

s1 : [1, 48] → R2 s.t. s1(p1) = Ii (5.1)

Where Ii represent the i-th subdivision of the boundary, according to the enumeration given before.
The second parameter p2 ∈ [0, 35] determines the angle used, with respect to the subdivision considered, to
apply the force, following the function s2.

s2 : [0, 35] → R s.t. s2(p2) = 2 + p2 · 5 (5.2)

s2 returns the angle in degrees that is used to apply the forcing factor. The angle is considered in a counter-
clockwise manner starting from the boundary’s wall of each section, as depicted in Figure 5.5

The resulting database of solutions has been divided into training, validation and test cases accordingly a
80-10-10 scheme, precisely as the validation problem in Section 4.4.1

5.3 Results
Stemming from the results of Chapter 4 only a Multi Network approach is used to produce results. A random
case was selected from the test partition of the database, and used to showcase the capabilities of each attempted
set-up.

5.3.1 One encoding block
The first set-up tested, consisted of a single encoding-decoding block, in an attempt to obtain the same precision
achieved in the equivalent case of the validation problem.

Node Features Cardinality Reduction
Block 1 1 → 4 80%

Table 5.1: Single block architecture
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The direct comparison of the input and output metrics of the GNN suggest that the corresponding mesh
will be accurate, since all three of the components are visually similar in Figure 5.6.

Figure 5.6: Metrics comparison

As seen for the validation problem, the presence of anisotropically stretched elements depends mostly on
the accuracy of the M12 component. Comparing the transformation components Mmod

12 and Msgn
12 , there are no

visually relevant mistakes in Figure 5.7, hence implying the possibility of a high fidelity mesh as output.

Figure 5.7: M12 transformation comparison

As expected, the mesh resulting from the reconstructed metric is remarkably similar to the original one,
having only a slightly lower number of vertices and elements.
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Figure 5.8: Meshes comparison

Zooming in, is possible to observe the similarities between the two meshes. Both of them have anisotropically
stretched elements, and the reconstructed one is just as stretched just as the original one.

(a) (b)

Figure 5.9: Detailed view of the mesh comparison

The precision obtained in this example is noteworthy, however it is mandatory to recall the simplicity of the
architecture used. In particular, this set-up reaches a mere 20% of information compression in the latent graph,
which is still comparable with the amount of information given as input, hence compromising the usefulness of
a single block set-up.

5.3.2 Three encoding blocks
When using multiple encoding-decoding blocks, several ways of equally compressing the input data arises. In
this work, two opposite alternatives were tested, whilst keeping the final compression of the data equivalent, to
prompt a fair comparison between them.

Model 1

The first of the two methodologies consists of removing a large percentage of nodes at every block, while
simultaneously increasing greatly the amount of features in each graph node. The architecture considered can
be described as follows:

Node Features Cardinality Reduction
Block 1 1 → 4 80%

Block 2 4 → 9 60%

Block 3 9 → 16 50%

Table 5.2: Multiple blocks architecture n°1

The reconstructed metric presents some issues from the first comparison. In particular it seems that the
visible lower values of the metrics, were not successfully estimated, or estimated as a constant. This behaviour
can be observed in the initial indices of both M12 and M22, as well as in the last indices of M11.

36



Figure 5.10: Metrics comparison

The transformation components shows that the inaccuracies in the M12 component are to be attributed to
the estimation of Mmod

12 rather than Msgn
12 .

Figure 5.11: M12 transformation comparison

The reconstructed mesh captures the locations of the elements-dense ares on the domain, but overestimates
the number of vertices and elements of the triangulation.
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Figure 5.12: Meshes comparison

A detailed view shows the effects of the reconstructed metric’s problems when building the mesh. The
inaccuracies bring the meshing algorithm to produce more isotropic elements.

(a) (b)

Figure 5.13: Detailed view of the mesh comparison

Despite the inability of the architecture to reconstruct anisotropic elements, the mesh could be suitable to
be the support of a Topology Optimization routine, given the capacity to correctly estimated the element-dense
areas of the domain.

Model 2

The second viable option comprises of reducing the graph’s cardinality slowly, as well as increasing the node
features gradually. The achieved architecture is described in the table below.

Node Features Cardinality Reduction
Block 1 1 → 2 50%

Block 2 2 → 4 60%

Block 3 4 → 8 60%

Table 5.3: Multiple blocks architecture n°2

The comparison between the original and reconstructed metrics in Figure 5.14 arises the same concerns of
the previous set-up. It appears that the lower valued indices of the metric are the one most affected, being
estimated at zero or at a constant value. When comparing with the previous case it seems like the problem is
more contained, and possibly less prominent.
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Figure 5.14: Metrics comparison

Once again it would seems that the most affected transformation component was Mmod
12 , while Msgn

12 was
able to estimate all the relevant indices required for the inverse transformation.

Figure 5.15: M12 transformation comparison

The mesh reconstructed from the output metric overestimates the number of vertices and elements. The
location of the elements-dense areas is very accurate and there seems to be some areas where the elements are
more stretched with respect to the previous architecture.
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Figure 5.16: Meshes comparison

The reconstructed mesh presents stretched elements in the horizontal element-dense area, while having
isotropic elements on the inclined ones. This result is due to the fact that horizontal and/or vertical stretching
requires precision in less components than an oblique stretching. In fact to correctly estimate an horizontally
stretched element, only M11 and M22 will have noticeable values in that point, while M12 will present a lower
figure.

(a) (b)

Figure 5.17: Detailed view of the mesh comparison

All the presented case do not provide a quantitative comparison up to now, but only a qualitative compar-
ison. In the following Section the resulting meshes will be integrated into a modified version of the Topology
Optimization pipeline, allowing to understand in a quantitative manner the quality of the resulting meshes as
support for optimization routines.

A problematic case

To prompt a more accurate comparison between the two three-blocks set-ups, a second case has been selected.
A fraction of the test partition database returns less accurate results when tested. An example of the possible
problematic results that the GNN could produce is presented below.
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Figure 5.18: Meshes comparison - Model 1

The reconstructed mesh lacks some element-dense areas, is completely isotropic and has a number of vertices
and elements that exceed the original one. When comparing the metrics, is not clear where the error lies, given
the visual similarity between them. An accurate scanning of the database revealed that a limited group of cases
presented very small areas of the domain, with elements stretched far more than the majority of the other cases
computed. These areas appear in the metrics as very thin an high peaks, present in all the components, like
the case under investigation shows in Figure 5.19.

Figure 5.19: Metrics comparison

This problem could be solved by enlarging the available number of cases in the database. Clearly a finer
selection of the nodes to discard in each block could mitigate the problem, and in fact the second multi-block
methodology is found to produce more accurate reconstructions of the original meshes when this problem arises,
as depicted in the below Figure.
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Figure 5.20: Meshes comparison - Model 2

It has to be noted that there is a small percentage of cases that work better while using the first model,
but overall the last set-up has a higher number of cases that do not show problems. The fraction of non-satisfy
cases amount to 15% of the test partition of the database with Model 1 and about 10% when using Model 2

5.3.3 Computational speed up
The reconstructed meshes presented in the previous Section, were used inside a modified version of Algorithm
2, which is presented below:

Algorithm 3 Modified Topology Optimization algorithm
Construct structured computational mesh Th
Initialize ϕh

0

while ∥ϕh
k+1 − ϕh

k∥L∞(Ω)>tol do
Solve elastic problem → uh

k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1}
end while
Construct GNN mesh Tnn
while ∇Mnd < 0 and Mnd > 1% do

Solve elastic problem → uh
k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE-DWP → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1, κk+1}
end while
while Mnd > 1% do

Construct gradient reconstruction → P∆K
(∇ϕh

k)
Estimate optimal eigenpairs → {λ⋆

i,K , r⋆i,K}i=1,2

Compute optimal metric → M⋆

Compute optimal mesh via adaptmesh → T k+1
nn

Solve elastic problem → uh
k+1

Compute sensitivity → J ′(ϕh
k ,u

h
k+1)

Solve RDE-DWP → ϕh
k+1

Update parameters → {k + 1, qk+1, rk+1, κk+1}
end while

The objective is to show that the RDE-DWP loop can be performed on the meshes received as output of
the GNN, allowing the procedure to reduce the transitorial interface without adapting the triangulation. In
the case in which the discretization will not allow a smooth reduction of Mnd, a third loop will start, where
the mesh adaptation is present. The reduction of Mnd is considered not smooth when more than 3 consecutive
iterations fail to reduce it beyond its lowest value achieved up to that point.
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Figure 5.21: Final optimal configuration using Algorithm 2

The first loop inside both algorithms is identical, allowing to start the second loop with the same distribution
of ϕ.

The meshes reconstructed from the GNN are used as support of the computation during the second loop.
The quality of these meshes is tested by measuring how many iterations of the RDE-DWP it takes to reduce
the transitional part of ϕ to less than 1% of the domain area, or up until Adaptive Mesh Refinement is required.

(a) Model 1 (b) Model 2

Figure 5.22: Final configuration obtained while using the GNN meshes during the optimization

Algorithm 2 Alg. 3 + Model 1 Alg. 3 + Model 2
RDE-DWP 38 38 37

AMR 38 0 0

Table 5.4: Topology Optimization iterations with different algorithms

For the first case analyzed, not only both meshes where able to support the optimization procedure without
visibly altering the final configuration, but the result was achieved without any mesh refinement iteration. The
most computationally demanding part of the loop for Algorithm 1, is clearly the mesh adaptation, since the
RDE-DWP requires just to solve a linear system and update the parameters. The computational advantage in
starting with a high quality mesh is quite apparent.

The same process is repeated for the problematic case, where the mesh is not completely reconstructed in
its element-dense areas. The corresponding case computed with Algorithm 2 is shown below.
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Figure 5.23: Final optimal configuration using Algorithm 2

The two final configurations obtained with Algorithm 3, are still compliant with the reference result, but in
the case of Model 1, the solution interface in the lower part of the smaller hole, slightly creased.

(a) Model 1 (b) Model 2

Figure 5.24: Final configuration obtained while using the GNN meshes during the optimization

Algorithm 2 Alg. 3 + Model 1 Alg. 3 + Model 2
RDE-DWP 45 41+4 43

AMR 45 4 0

Table 5.5: Topology Optimization iterations with different algorithms

Once again, the meshes produced by the GNN were able to speed up noticeably the computations of the
optimization routine. In particular, the mesh produced by Model 2 allowed to reduce the gray area without any
AMR iteration. The mesh produced by Model 1 had to enter the third loop and use adaptation to converge,
but it still reduced the computational cost of the whole process noticeably.

5.4 Generalization over different problems
The last result being drawn is the capability of these architecture to generalize over data very different from
the one included in the original database. To test this, a three-blocks architecture identical to the Model 1 of
Section 5.3.2 was trained uniquely over the validation problem database, and later tested over the Topology
Optimization dataset.
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Figure 5.25: Metrics comparison

The comparison of the input and output metric is surprisingly adequate, with sections where the values
where estimated at zero, but most of the metric structure seems to be present. The mesh reconstructed from
the output of the GNN is also remarkably similar to the original one, capturing most of the locations of the
element-dense areas.

Figure 5.26: Meshes comparison

As for the previous set-ups, anisotropically stretched elements appears only in horizontal and vertical areas,
while the oblique areas are mainly composed of isotropic elements.

The obtained mesh is inserted inside Algorithm 3, in order to quantify its quality as a support of a optimization
routine.
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(a) Optimal configuration computed (b) Detailed view of defective area

Figure 5.27: Final configuration obtained while using the GNN mesh during the optimization

The routine converged to a grey area less than 1% without any need for mesh adaptation, using just 39
iterations of the RDE-DWP loop. This result was possible only thanks to the excessive over-meshing in the
oblique interfaces, which allowed more gray area to be present in the poorly meshed part of the domain, as seen
in Figure 5.27b
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Chapter 6

Conclusions

In this work a new possible correlation between Topology Optimization and Machine Learning has been explored.
Using Neural Network to speed up computational demanding tasks is not a new approach in the engineering
world, but this work deep dived into the possibility of bringing this relation a step closer, by using Graph Neural
Network to achieve its results. The correlation between Finite Elements Methods and Graph is inherent, but
little to no application has been done so far to pursue industrial results, allowing this work to lay down the
foundation to a new type of strategy to tackle computational demands.

Starting from an optimization pipeline, which was enriched using a state of the art Adaptive Mesh Refinement
technique, a database of mathematically accurate results was built. This work revolved around the possibility
of reconstructing meshes which were already adapted to the final solution, hence an efficient way to uniquely
describe a triangulation has been used, the metric.

A novel Graph Neural Network architecture was built, inspired from recent works in the state of the art in
Machine Learning, aiming to show the potential applications of graph based structures to treat mesh data.
By associating the anisotropically stretched meshes resulting from the optimization routine to a graph through
the metric, we were able to compress the starting graph representation into a latent one, whose dimension was
considerably lower, then reconstruct the original data.

Multiple set-ups for this flexible architecture were developed and tested on a validation problem, which con-
firmed the capability of the GNN to accurately reproduce the objective meshes. When trained to the Topology
Optimization database each model was able to obtain results accurate enough to allow the optimization proce-
dure to successfully converge on them. It was shown how meshes created from a Neural Network were able to
cut computational costs in a remarkable way when implemented inside the existing routines.

Lastly, the architecture showed a considerable capacity to generalize over new data never seen during the
training, empirically proving the close correlation between the two fields. Additionally, these result suggest that
future development of this work could be able to tackle a broad variety of problems, even with limited access
to results arising from complex and expensive simulations.

47



6.1 Further developments
As of now, the developed Graph Neural Network focuses on compressing the information of the input metric
into a smaller latent graph, to then reconstruct them. However, this GNN could be the starting point for
a Generative Graph Neural Network (GGNN), which could predict quasi-optimal metrics by starting from a
limited amount of problem parameters, e.g. the location and orientation of the applied forces.

Moreover, the focus of this work has been centered around the reconstruction of the mesh as a support for
the optimal configuration, but not the configuration itself. It could be possible to improve even further the
speed-up that the GGNN could guarantee, by starting the optimization from an accurate guess of the optimal
configuration, allowing to reduce the computational costs in every part of the Topology Optimization pipeline
described by Algorithm 2
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