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Introduction

Equilibrium problems, i.e., problems having as solution a condition or a state of
the system where all the competing influences are balanced, have been widely
used to model phenomena coming from different areas of science.

A further generalization of this kind of problems is represented by quasi-
equilibrium problems: those ones represent a specific class of equilibrium prob-
lems whose feasible regions are subject to changes according to the point consid-
ered as a candidate solution. Variable feasible regions are well suited to model
situations in which the agents share resources or, more generally, when their
supposed behavior may influence the behaviors of other agents. As one can
easily imagine, even though such a class of problems allows to model a broader
variety of phenomena, the fact that the feasible regions are variable, represents
a quite challenging complication from the theoretical/modeling point of view.

Quasi-Variational Inequalities (QVIs) represent a very important tool to
model different classes of quasi-equilibrium problems. This is the reason why
many reasearchers in different fields focus their studies on this subject.

Just to give an idea of the relevance that QVIs have in applications, we
mention the fact that the generalized Nash Equilibrium problem, which is used
to model plenty of different applications in engineering, economics and so on,
(see, e.g., [1, 22, 21]), is strictly related to the solution of a QVI.

Several algorithmic approaches have been devised for QVIs: fixed points
and projections methods [30, 14], penalization of coupling constraints method
[6, 20], KKT based methods [7] and Newton type methods [18, 19]. Since
QVIs can be reformulated as a fixed point problem, it seems quite natural and
straightforward to solve those problems using fixed point methods.

In this thesis we hence focus on fixed point methods and, more specifically, on
projection methods. The main reasons why we choose to analyze those iterative
methods are the following:

1. They can be used in different scenarios, without having a deep knowledge
of the considered problem;

2. They are easy to implement (especially if we consider problems with simple
bounds or linear constraints);

3. They have limited storage requirements;



4. They can easily exploit any sparsity or separable structure of the corre-
sponding constrained sets.

Despite the great amount of research that has been devoted, projection-based
approaches for QVIs, in some cases, do not seem to guarantee good practical
performance. This is the reason why, in this thesis, we propose new strategies
to improve effectiveness and robustness of those methods.

More specifically, we will focus on “Algorithm 1b” in [26] and on“Algorithm
QVI” in [15], which we will call Generalized Solodov and Nguyen-Strodiot re-
spectively. These two methods belong to the class of hybrid extragradient meth-
ods. This class computes first a single projection onto the feasible set to get a
trial point and, afterwards, performs a line search procedure between the current
approximation and the trial point to obtain the prediction step. Once this step
has been calculated, the correction step is obtained thanks to a search direction
and a step length.

These methods could be affected by an extremely low rate of convergence,
and, for this reason we propose to couple these methods with some suitable
extrapolation techniques (see, e.g., [3]). Extrapolation is a technique commonly
used to accelerate the convergence of a sequence in a vector space: it is able to
transform a slowly convergent sequence into a new one which converges faster.
In recent times, the use of these techniques has been applied quite successfully
to different computational frameworks and it is a research topic currently in full
development.

We will consider two type of extrapolation techniques, that is the regularized
nonlinear acceleration developed in [24] and the regularized topological Shanks
type acceleration developed in [4]. These techniques compute estimates of the
optimum from a nonlinear average of the iterates produced by a given iterative
method. The weights in this average are computed via a simple linear system.
It is important to note that acceleration schemes run in parallel to the base
algorithm, providing improved estimates of the solution on the fly, while the
original method is running.

Finally some numerical results are displayed to show the behavior of the two
hybrid extragradient algorithms combined with the two types of acceleration to
solve generalized Nash equilibrium problems.

The thesis is organized as follows. In Chapter 1 we formally state the QVI
problem and summarize some definitions and results; in particular we refor-
mulate a QVI problem in a fixed-point fashion. In Chapter 2 we present the
Generalized Solodov method and Nguyen-Strodiot method and report some con-
vergence results. In Chapter 3 we introduce the regularized nonlinear acceler-
ation and the regularized topological Shanks acceleration and describe the way
we embedded them in the two hybrid extragradient methods. In Chapter 4 we
present some numerical results and some concluding remarks, while, in Chapter
5 we display the MATLAB codes used for the numerical experiments.



Chapter 1

Preliminaries

1.1 Preliminaries and problem statement

In this section we will give some preliminaries needed to understand the abstract
concept of quasi-equilibrium problem and the theory around it. We then focus
on quasi variational inequality problems, that are a particular case of a quasi
equilibrium problems.

Definition 1.1. Let # # X C R™ be a closed convex set, K : X = X be a
multivalued mapping such that Vz € X, 0 # K(z) C X is closed convex. Let
f: X xX — R be an equilibrium bi-function , i.e., it satisfies f(z,z) =0 Vzx €
X and f(z,-) be a convex function on X. The quasi — equilibrium problem,
denoted with QF (K f), consists in

find 2* € K(z¥) st. f(z*,y) >0 Vye K(z").

Definition 1.2. Let ) # X C R" be a closed convex set, K : X = X be a mul-
tivalued mapping such that Vz € X, 0 # K(x) C X is closed convex. Let F :
X — R™ be a monotone operator. The quasi — variational inequality problem,
denoted with QVI(K; F), consists in

find z* € K(z*) st. (F(z%),y—x2*) >0 Vye K(z").

Remark 1.1. The problem QVI(K; F)is a QE(K; f) where f(z,y) = (F(z),y—
o) with F: X — R".

Definition 1.3. Let ) # K C R™ be a closed convex set. Let F : K — R"
be a continuous operator. The wariational inequality problem, denoted with
VI(K; F), consists in

find ¥ € K st. (F(z%),y—2%) >0 VyeK.

Remark 1.2. The problem VI(K;F) is a QVI(K; f) where K(z) is a fixed
constraint set, say, K(z) = K Vx € X.



Througout the thesis the following definitions will be used:

Definition 1.4. Given p € R, a map F : R" — R" is called
— p — monotone on K if the inequality
(F(z) = Fy), @ —y) > pllz —y]?
holds Vz,y € K.
— p — pseudomonotone on K if the implication
(F(y), —y) 20 = (F(z2), z—y) > pllz — yl|?
holds Vz,y € K.

If u > 0, F is also called strongly (pseudo)monotone, if u < 0, F is also called
weakly (pseudo)monotone and if p = 0, F is also called (pseudo)monotone.

Definition 1.5. Given p € R, a bi-function f : R™ x R™ — R” is called
— p — monotone on K if the inequality
flay) + fly,2) < —pllz —y|®
holds Vz,y € K.
— p — pseudomonotone on K if the implication
flay) 20 = fly,2) < —pllo -yl
holds Vz,y € K.

If n > 0, f is also called strongly (pseudo)monotone, if 1 < 0, f is also called
weakly (pseudo)monotone, and if p =0, f is also called (pseudo)monotone.

Remark 1.3. f is strictly monotone at x € K if Vy € K, y # x, we have

f(z,y) + f(y,z) <O0.

Definition 1.6. Let ) # X C R™ be a closed convex set. A multi-value map
K : X = X is said to be

— upper semicontinuous (u.s.c.) at T € X if

k— _
2" ¢ X and 2F 22255 7

Yy e Kby = yeK(z).

k k—oo  _
Yy —y

— lower semicountinuos (1.s.c.) at € X if # € X and z* £ %, then
Y g€ K(z) 3 {y*} with y* € K(z%), s.t. y* 22 4.

— continuos on X if K is u.s.c. and ls.c. at every point of X.

10



1.2 Equivalent Reformulation

This section is devoted to the reformulation of the QF (K f) as another problem
with the same set of solution. In particular we will show that QE(K; f) can be
reformulated as a fixed point problem. With this aim, consider the multi-value
map Y : R™ = R” given by

Y(2) = argmin{f(z,y) : y € K(x)}

which could be possibly empty. The fixed point of Y coincide with the solution
of QE(K; f).

Theorem 1.2.1 ([2]). The point z* € K(z*) solves QE(K; f) if and only if
x* eY(x*).

The next equivalent QF play a key role in many solution methods.

Corollary 1.2.2 ([2]). Suppose f(z,-) is T-convex Vo € K(Z) with T > 0 and
let

falz.y) = f(a,y) + allz —y|*/2
with « > —7. Then QE(K; f) and QFE(K; fo) have the same set of solutions.

The equivalence between QF(K; f) and QE(K; f,) allows deducing some
alternative formulation of Theorem 1.2.1 when o > —7.
First consider the multi-value map Y, : R™ = R" given by

Yo(z) = argmin{fa(z,y) : y € K(x)}

Due fq(x,-) being (7 + a)-convex with 7 + @ > 0, guarantees that Y, (z) =
{ya(x)} is a singleton for any = € R™.

Theorem 1.2.3 ([2], pp.76). Suppose fir K = {x € R" : z € K(x)} is
nonempty and f(x,-) is T-convex Vx € fixr K. Given any a > —7, the following
statements are equivalent:

a) T solves QE(K; f),
b) ya(Z) =ZT.

Theorem 1.2.3 shows that QE(K; f) can be turn into a fixed point problem.
The following theorem gives us existence results for QE(K; f):

Theorem 1.2.4 ([2], pp.77). Suppose K be a lower semi-continuous with nonempty

convez values, fir K is closed and there exists a compact convez set X, such that
K(z) C X Vz e R™. If f(-,y) is upper semi-continuous Yy € R™ and f(x,-) is
quasi-convex Yz € X and upper semi-continuous Vr € Ox fix K, then QE(K; f)
has at least one solution.

11



1.3 General Algorithm

In this section our aim is to generalize a class of double-projection methods
for solving problems QF(K; f). The strategy is to reduce at each step the
distance from the solution set. We will give conditions on the data to force the
convergence of this very general algorithm.

From now on the following assumption is supposed to be satisfied for problem

QE(K; f):
Assumption (A)

(a) f: X x A — R bi-function finite on X x A where A C R™ is an open set

containing X, f(z,-) convex on A V z € X, continuous on X x A and
flz,z) =0Vz € X.

(b) K is continuous on X and K(z) is a nonempty closed convex subset of
X Vr e X.

(¢c) v € K(z) Vo € X.

(d) S* ={x € S| f(z,y) >0, Vy € T} is nonempty, where S = N ex K(x)
and T = Uzex K (z).

(e) f pseudo-monotone on X with respect to S*, i.e.,

fly,z) <0 VzeS" VyeX

Our general algorithm can be expressed as follows:

Algorithm 1: General Algorithm, [26]

Data: 2° € X, p € (0,1), v € (0,2).
1 for k=0,1,... do

2 | Compute y* = argminye g,y { (¥, y) + 1/2]ly — 2*|*};
3 if y* = 2¥ then
4 ‘ Stop.
5 else
6 Find d* such that (d*, 2% — 2*) > p|lz* — y*||? >0 Vz € S*;
7 Compute z¥(8;) = PK(xk)(l'k — Brd®) where 3, is such that
k |2 k |2 o llz* =y |*
[z (Br) — 2™ [I7 < fl2" — 2™ = v(2 = v)u I (1.1)
Vz* e §*;
8 end
9 Set xF+1 = 2F(By).
10 end

12



Remark 1.4. (1) When the vector —d* is a descent direction at % for the func-
tion 1|z — 2*||> V 2* € S*. In particular d* # 0 Vk.

(2) An example of §;, satisfying (1.1) is given by

=% — o2
Bk =Yg
|a*]|2

Indeed V 2* € S*, we have * € K(zF) and consequently, using the
definition of orthogonal projection, Py (,xy(u) = argmin,e x(.+) |y — ul/?,
and the propriety of d*, (d*, z* — 2*) > p||z* — y*||?, we obtain
k *12 (©.5) k *12 ko .k * 2( 7k (12
[2%(Bk) — ™[I < [la" — 2|7 = 28k (d”, " —27) + Blld”|
< lz* — |1 = 2Bkullz® — y*|* + B2 14"

2 [l=* — y*|I*

= |z* — 2" —=v(2 =)
(| ¥

y—x) Va,y € X, step 1 becomes: compute
)

1.3.1 Properties

First we give a characterization of y* computed from z* at step 1 of the General
Algorithm.

Proposition 1.3.1. For every y € K(x*), we have
f(xkay) > f(xk7yk) + <xk - ykv Yy — yk>
In particular f(x,y*) + ||2% — y*||2 < 0.

Proof. The vector y* being a solution of a convex minimization problem, the
optimality conditions imply that 3s* € 9f(z*, y*) such that

0¢€s" 4y —aF +/\/’K($k)(yk)

where N (,r)(y*) = {d € R" : (d, y —y*) <0, Yy € K(2*)} is the normal
cone to K (2*) at y*. Hence, by definition of this cone, we obtain that

(@F —yF — sy —y¥) <0, Yy e K(a"). (1.2)

On the other hand, since s € df (2, y*), we can write

Fa y) > fa® ") + (5 y —yh) Yy e K@) (1.3)
Combining (1.2) and (1.3) and taking y = ¥, we obtain the desired result
because x* € K (z*) by assumption (A)(c). O

13



Now we justify the stopping criterion: y* = z*.

Proposition 1.3.2. Ify* = 2*, then x* is a solution of the problem QE(K; f).

Proof. Since y* = z* and x* € K(2*), it follows from Proposition 1.3.2 that
Pt y) = fa¥,2h) + o —ab, y —a¥) =0 Yy € K(2¥),

, i.e., that z* is a solution of QE(K; f). O

Next we assume that 2% # y* Vk and we prove that the sequence {z*}
generated by the General Algorithm is bounded.

Proposition 1.3.3. The sequence {x*} is bounded.

Proof. Since by construction (step 7 of the General Algorithm), {||z* — z*||} is
a decreasing sequence, we have

2"l < fla® = 2| + o™ || < [|l2° = 27| + 2™ V&,

and thus {z*} is bounded. O

To prove the boundedness of the sequence {y*}, we need the next lemma.
Lemma 1.3.4. ||z% —¢*|| < |lg] Vg€ of(a¥,aF)
Proof. Let g € Of(x", %), then
Fa,y*) = f(a",2%) + (g, y* = 2F) = (g, 4" — o).

Using progressively Proposition 1.3.1, the previous inequality and the Cauchy-
Schwarz inequality, we obtain

la* — "1 < —f (@, y*) < —(g, v* = 2*) <|gll =" =",
and thus ||z% — *| < |g]|- O

The sequence {z*} being bounded, let Z be one of its limit points. Then
there exists a subsequence ¥/ converging to Z. Thanks to Lemma 1.3.4 we can
prove that the corresponding sequence {y*i} is also bounded.

Proposition 1.3.5. The sequence {y*i} is bounded.
Proof. By Lemma 1.3.4 it is sufficient to prove that 3 M > 0 such that
lgll <M Vgedf(ahs,a*) and V.

Since z € A, {z%} C A, f(z,-) is finite on A and since the sequence of convex
functions { f(x*7,-)} converges point-wise on A to the convex function f(z,-), it
follows form [23] Theorem 24.5 that 3 jy such that

of(xz%i xkiy c of(z,z)+ B Yj > jo

where B denotes the close Euclidean unit ball of R™. Since B and Jf(Z, ) are
bounded, 3 M > 0 such that

lgll <M Vge 5‘f(zkj,xkf) and Vj > jo.

Hence the sequence {y*s} is bounded. O

14



Proposition 1.3.6. Let T be a limit point of {xz*}. Assume that % — T and
that ||z%i — y*i|| 2=—=2°5 0. Then Z is a solution of the problem QE(K: f).
Proof. By assumption y*i = g% — 2% 4 2% — 7. Since y* € K(2*/) Vj and
since K is u.s.c. on X, we obtain that z € K ().

Now let § € K(z). We have to prove that f(z,y) > 0. Since K is ls.c. on X,
3 {y*s} sequence such that

g% € K(z") Vjand 5% — 3.

So, V¥ j, we have, by definition of ¥, that
. A 1 , . g 1 R
Jas, 49) + Sk — g2 < flate, g4 + Sl — g
Taking the limit as j — oo and remembering that f is continuous, we obtain
_ 1. o1
0=f@2)+5lz-2|* < fz,9) + 5z - 9l* (1.4)

But this implies that f(Z,7) > 0. Indeed, the inequality (1.4) means that Z is a
solution of the convex minimization problem

. _ 1, 5
min z,y) + = || — .
Juin 1 f(@y) + 5l -l
Hence 0 € 0f(z, %) + N (z)(Z), that is, Z is a solution of min f(Z,y) subject to
y € K(z). Consequently f(z,y) > 0. O

Finally we obtain the convergence of the whole sequence {z*} to a solution
of the problem QF(K; f) when the function f is strictly monotone.

Proposition 1.3.7. If, in addition to the assumption of Proposition 1.3.6 the
function f is strictly monotone at T, then the whole sequence {x*} converges to
Z as k — oco. Furthermore T is a solution of problem QE(K; f).

Proof. Let 2% — Z. By Proposition 1.3.6, Z is a solution of the problem
QE(K; f).

(1) First we prove that & € S*. Let z* € S*. Then z* € NyexK(z) and
flz*,y) >0 Vy € K(x) and Va € X. Since T € K(Z), we have f(z*,T) >
0.
On the other hand f(Z,2z*) = 0. Indeed, by Assumption (A)(e), we have
that f(z,2*) <0 and, since Z belongs to the solution set of QF(K; f) and
x* € K(Z), we have that f(Z,z*) > 0. Consequently x* = Z. Indeed, if
x* # &, we deduce from the strict monotonicity of f at z that

[, z) = f(a",2) + f(z,27) <O,

which contradicts f(z*,Z) > 0. Hence z = z* € S*.

(2) Next we prove that ¥ — Z. Since z = z* € S*, it follows from step 7

of the General Algorithm that the sequence {|z* — Z||} is non-increasing
and consequently converges to some a > 0. Since 2% — Z, we deduce

that the whole sequence |z* — Z| — 0, that is 2" LNy
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O

The convergence of the General Algorithm is obtained under the assumption
k— o0

that ||z —y*|| =——=> 0. Thanks to the inequality (1.1) the sequence {||z*—z*||}

is non-increasing and converges to some a > 0, which implies that
ko ka4 k—> 00
[1d*]?

|

0.

Consequently ||2* — y*|| — 0 when the sequence {||d*||} is unbounded.

1.3.2 Line-search
In this subsection we give an example of direction d* such that for some p € (0,1)
(d¥, 2% — 2y > pljz® —y*||? >0 Vze S* and VE.

This line-search has the property that when the step-lengths tend to zero, then
the sequence {d*} is unbounded and |z* — y*|| — 0. More precisely, step 6 of
the General Algorithm is replaced by the following line-search procedure:

Linesearch: Let 2*, y* be defined as in the General Algorithm; «, ¢ € (0,1).
Find the smallest m € N such that

FERmak) — f(Rm,yk) > cfla® —y*|?
ZFm= (1 — a™)ak + amy*.

Set aj, = o™, 2F = 2™ and set d¥ = g—}; where ¢g* € 9f (2*, z%).

Remark 1.5. When f(z,y) = (F(z),y —x) Vz, y € X, the inequality satisfied

by the line-search coincides with (F(z* —a™ (2% —y*)), 2% —9*) > c||a* — y*||?

F(z*)

and the direction d* becomes equal to o

First we prove that the line-search is finite when y* # x*.

Proposition 1.3.8. Assume y* # 2. Then the line-search gives oy, and z*
after finitely many iterations.

Proof. Suppose that the line-search is not finite, then Vm € N we have
FER k) FEET ) < clle — PP

. . . — .
Since f(-,x) is continuous Vz € A, and z*™ 2% 2k we obtain

—fa®yt) = fla,ah) = flab yh) < cllat -yt
On the other hand, by Proposition 1.3.1, we have that
Fa® y?) + lla® = |? < 0.
Combining these two inequalities yields
l2* — | < ella® —y*|I*.
Since ¢ € (0,1), we deduce that y* = 2*, which contradicts the assumptions

y* # ok =
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Now our aim is to prove that the direction d* obtained from the line-search
satisfies the property: (d, ¥ —x*) > ul|z*—y*||*> Va* € S* and some u € (0, 1).
Proposition 1.3.9. For the line search, Vg € 0f(2*,z*) and x* € S*, we have

g*
<77xk - $*> > f(zkka) - f(zk7yk)
Qg
Proof. Let g* € 9f(2*,2%) and 2* € S*. Then
f(Zk?m*) Z f(zk7xk) + <gkax* - xk>-
Since f is pseudo-monotone on X with respect to S*, we have f(z* 2*) <0, so
<gkamk —Jf*> > f(zkaxk)' (15)
Since f(z*,-) is convex, we can write, using the definition of z*,
f(Zk7 Zk) < (1 - ak)f(zkvzk) =+ akf(zka xk)a
that is

FF %) > an[f(2F, %) = f(25,47)]. (1.6)
Combing (1.5) and (1.6) yields the announced result. O

It follows immediately from Proposition 1.3.9 that if Line-search is used,
k
then the required property on d* = <

[0 :
(d*,a® —2*) > plla® —yF|?
is satisfied for p = ¢. In particular, when Line-search is used, that is when
y* # 2 the direction d* # 0 whatever g* € df (2%, z%).

From now on we denote by General Modified Algorithm the General Algorithm
with step 6 replaced by Line-search.

Algorithm 2: General Modified Algorithm, Alg.1 of [26]

Data: 2° € X, c€ (0,1), a € (0,1), v € (0,2).
1 for k=0,1,... do

2 Compute y* = arg minyGK(mk){f(xk,y) +1/2|ly — zF |1}
3 if y* = 2% then
4 ‘ Stop.
5 else
6 Find the smallest m € N such that
f(Pm k) — f(2Rm y*) > cflah -y
ZPmi= (1 — a™)zk + amyF.
Set ay, = a™, 2K = 2k,
7 Compute g* € 9f(zF,z%) and z*+! = PK($k)(xk — Brd")
K _ gt 2% —y*||?
where d" = £ and f, = ’YCW
8 end
9 end
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Now for the General Modified Algorithm we have the following boundedness
properties:

Proposition 1.3.10. Let T be a limit point {x*} and assume that x%i — 7.
Then the sequences {y*i}, {z%i} and {g*'} are bounded.

Proof. Since the sequence {z*/} and {y*} are bounded, see Proposition 1.3.3
and 1.3.5, it follows that the sequence {z*i} is also bounded because z*/ be-
longs to the segment [2%i; %] Vj. So a subsequence of {z%i}, again doted
{z%i}, converges to some z € X. Since # € X C A, {zFi} C X C A,
z% — %, and the sequence of convex functions {f(z%i,-)} converges point-
wise to the convex function f(Z,-). It follows from Theorem 24.5 of [23] that
3 jo such that Of(z%,2%) C 0f(z,z) + B VYj > jo, where B denotes the
closed Euclidean unit ball of R”. Since B and df(z,Z) are bounded, the se-
quence {g*i} is also bounded. O

In order to apply Proposition 1.3.6, we need to prove the next result.

Proposition 1.3.11. Let 2% — z. Then |2k — y¥i|| I,

Proof. We examine two cases:

1. inf; a, > 0 : the sequence {d"} is bounded because the sequence {z*7},

{y*s} and {g*s} are bounded, for Proposition 1.3.10, and d*i = ZZJJ . Since,
=% — y*]*
gl

from (1.1), — 0, we deduce that ||z%i — y*i | — 0.

2. inf; ag; =0 : then aj, — 0 for a subsequence. But this implies that
ag, < 1 for j large enough and that the line-search conditions are not
satisfied for % Let us denote

ki A . Ok; .
Zka =(1-—- —% xk’] + Jykal
« «

ki _ Z. Now if the line-search is used we have

It is immediate that z
FE,24) = F(,44) < ellabs =y .
By definition of y*/ we also have

2% —yFa |2 < — f(zh,y").

Let ¢ be a limit point of {y*}. Then combining the two inequalities and taking
the limit as j — oo, we obtain

f(j’j) _f(fag) é _Cf(i'vg)v

which implies that f(z,3) > 0. So —f(z*,y*) — —f(z,9) < 0 and
[la*s =y || — 0. O
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Finally using successively Proposition 1.3.6, 1.3.7 and 1.3.11, we obtain the
following convergence result for General Algorithm Modified.

Proposition 1.3.12. Any limit point of the sequence {z*} generated by Gen-
eral Algorithm Modified is a solution of the problem QE(K; f). If f is stricly

monotone at a limit point T of {x*}, then z* LN
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Chapter 2

Hybrid Extragradient
Methods

While there exists many different methods for solving VI(K;F) (like, e.g.,
Solodov-Svaiter method [25, 9]), the number of algorithms for handling QVI(K; F')
is quite small. In this chapter, our goal is to extend (following the basic idea of
the General Modified Algorithm) a well-known class of double-projection meth-
ods for solving problem VI(K;F') to the case of solving problem QVI(K;F).

2.1 Generalized Solodov Method

2.1.1 VI(K;F) case

Let us consider for a moment the case of a variational inequality with a fixed
constraint set K (z) = K Va € X. It can be shown that this problem can be
reformulated as a fixed-point equation:

x— Pg(x — AF(x))=0 (2.1)

where Pk denotes the orthogonal projection from R™ onto K and A > 0 is a
constant. The corresponding fixed point algorithm: 2! = P (zF — AF(2F))
is convergent to a solution of problem VI(K;F') under a strong assumption: F'
is Lipschitz and strongly monotone. To avoid that, the following modified fixed
point equation has been introduced:

x— Pg(x —AF(Z)) =0 where I = Pg(x— AF(x)). (2.2)

When F is Lipschitz continuous, it can be proven (see [13, 29]) that if x satisfies
(2.2), than z satisfies (2.1), thus is a solution of problem VI(K;F'), provided
that the Lipschitz constant L is such that A < % The equation of (2.2) gives
rise to the classical extragradient method [13] and its variants [11, 12]: given
xF € K, z**1 is obtained after two projections as follows:

Yk = Py (¥ — N\F(2F))
{1}’“’1 = Pg(z* — AF(yY)).

20



This method generates sequences converging to a solution of problem VI(K;F')
under the assumption that F' is pseudo-monotone and Lipschitz continuous with
a condition on the Lipschitz constant.
A well-known strategy [27, 28] to avoid the use of the Lipschitz constant is first
to define y* = Py (2% — AF(2%)) and then to find the direction d* such that the
inequality

(dF, a% — %) > pllz® — yF|* with p >0 (2.3)

holds for any solution z* of problem VI(K;F). When y* # 2*, the direction
—dF is a descent direction at z* for the distance function to K*, the solution
set of VI(K;F): 1|l — «*||? with 2* € K*. For the classical extragradient
method an example of such a direction is given by d* = %Z:) where 2F =
(1 — ag)z® 4+ ary® and oy, = o™k with my, is the smallest m € N satisfying the
inequality

(F(a* — ap(a® —y")), & —y*) > cfla® —*| (2.4)

and a, ¢ € (0,1). In fact, this vector z* gives rise to the hyperplane
H* = {z e R"| (F(2"), 2 — 2F) = 0} (2.5)
which separates 2* from the solution set K* of problem VI(K; F). The direction
d* satisfies (2.3) with y = ¢ and the next iterate z¥*1 is given by
F T = Py (aF — Bdb)

where B > 0 is chosen such that ||zF+1 — z*||2 < ||z%F — 2*||? Va* € K* ( see
[11, 27] for more details). For example, the step-length S can be chosen in
such a way that ¥ — 8,d* be the orthogonal projection of z* onto H*. It is
easy to see that this step is given by

L AEGH), o R
e N T

2.1.2 QVI(K;F) case

In this subsection we will reformulate the General Modified Algorithm for QE(K; f)
in terms to solve problems QVI(K; F).

In the General Algorithm the next iterate was defined as ¥+ = 2*(3;) where
VB >0, z¥(8) = Py (yr)(a* — Bd¥). The direction was equal to d* = Z—i with
g" € 0f (2%, 2%) and a4, obtained by using the Line-search. Furthermore the
step Br was chosen such that the following inequality holds:

2|l — ¥

”xk(ﬂk) - x*||2 < ka - 1'*”2 - 7(2 - ’Y)C Hdk”z

(2.6)
l2* —y*|?
L I . o
that it is possible to choose other steps (. while keeping true the inequality

(2.6). These steps will give rise to better decreases on the distance between the
iterates and the set S*.

An example of such a step is Sy = e . In this subsection we show
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By definition of g* € 9f(2*, 2*), we have
<gka xk - .’,E*> > f(Zka'rk) - f(ZkaI*)

where z* is any element in S*. Since f is pseudo-monotone on X with respect
to S*, we obtain that f(z*,2*) < 0 and thus that

k k ok
(d¥, zF — o) = (g—7 b — 2y > M
o (€75

(2.7)

Using this inequality [|z*(8x) — 2*||? < || — 2*||? — 28k (d¥, 2% —2*) + 82| d*|2
and taking
f(*,a%)

Be =V g5 Qs (2.8)
[|g*]2
we deduce that
. B B
2"t —2*|? < |2 — 2| — 2= £ (25, 2%) + 5 ||g")1?
(092 g

f(zk7xk)2
llg* 11>

Now from the convexity of f(z¥,-) and the Line-search, we obtain that

< flz* —a*)? =72 =)

FEE %) > an(f(25, %) = F(25,4%) = anclla® — oF|. (2.9)
So if we use the new step fi given in (2.7), we can conclude that

B+ 12 < gk — (12 — ~(2 — ZQM
|z o° < 2t — 2| ol ¥)agc TR

and thus that inequality (2.6) holds.
Replacing S by its new value in step 7 of the General Modified Algorithm, we
obtain

f Zk,{I,‘k
oS S - PK(gck) ok ’y(|gk||2)akdk = PK(zk)[xk _ yokgk}
k .k
Z¥, T
where o} = f(|9k||2)

Consider the hyperplane H* defined by
H* = {z e R"|(¢", 2" —z) = f(z*,2")}

Now this hyperplane H” separates ¥ from S*. Indeed, from (2.9), it fol-
lows that f(z%,2%) > 0 = (g, 2% — 2*) and from (2.7), that (g*, 2% — 2*) >
f(zF 2*)  Va* € S*. Furthermore g* is the normal vector to H* and since
¥ — o,g" € HF, we can say that ¥ — o1,¢* is the orthogonal projection of z*
onto H*. Since the set S* C K*, where K* is the solution set of the problem
QVI(K; F), is contained in K (z*) N HY where

HY = {z e R"|(¢", a* —z) > f(zF ")},
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a variant of the Generalized Modified Algorithm consist in replacing in step
7 the iterate " = P ur)(zF — yorg®) by 2Pt = Pre(erynmt (zF — yorgh).
Using the non-expansiveness of PK(wk)mHi instead of the one of Pg (), we
immediately obtain that the inequality (2.6) holds. So the convergence of the

sequence {z*} is preserved for this variant. So we obtain the following change:
step 7 Compute ¢gF € 9f(2*,2%) and 2! = PK(mk)mHi(zk — yorg*) where
f(&*,2%)

llg*1I>
When v = 1 we have that ¥ — yo,g* = PHi (z*) and we can use the proof of
Lemma 2.2 in [25] to show that

o = and HY = {z € R"|(¢*, 2% — 2) > f(2",2")}

ab = PK(mk)mHjcr (xk)

When v = 1, it is also possible to give a geometric interpretation of step 7
in the Generalized Modified Algorithm. In that purpose we recall the following
property of the orthogonal projection onto a convex set.

Proposition 2.1.1 ([27]). Let § # C C R™ be a closed convex set. Then

|Po(z) — 2||* < |lz — 2||* = | Po(x) —z||> VY2 €R"™ and z € C.

Using Lemma 2.1.1 with C = K (%), 2 = 2¥ — 8d¥ and z = 2*, we can write
[2*(8) — &*|* < ||la* — Bd* — 2*||* — ||« (8) — 2* + pd"|

Developing the first term of the right-hand side of this inequality and using
successively [|o# (8) — 2*||? < [la* — 2| — 2B (d¥, a* — %) + G2]|d*|2, (2.7)
and (2.8), we obtain

lz*(8) = 2*|I* < lla* — 2*|I* + gk (B) (2.10)

where 5
@r(B) = @r(B) — [2*(8) — 2" + ;kgk||2

with )
ou(B) = —2§kf<zk,xk> 4 i%|gk||2.

Since @k (8) < ¢i(8), we have, in particular, that
2" (8) — 2*||” < ||l2* — 2*|1 + @x(B) (2.11)

k .k
It easy to check that 8, = %ak = o) minimizes the right-hand side of

(2.11). Since 2*(B1) = Pr(ury (2 — opod®) = Pre(pry(z® — ogF), it follows
that the new iterate z**! in Generalized Modified Algorithm is given by z¥+1 =
2*(B1). Now if we minimize the right-hand side of (2.10), it can be shown exactly
as in [27] that the function @x(8) is convex and admits a minimum for a step-
length B > (1. Computing an explicit value for £o seems difficult but it is
possible, using a proof similar to the one of Lemma 3.2 in [27], to show that

2 (By) = Pre(amynmk (¥ = prd*) = Pre(amynmk (¥ — ong).
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Hence the new iterate z*! in Generalized Modified Algorithm is given by
CL.Ic-i—l — xk(ﬁg).

Now let’s focus on problem QVI(K;F), that is f(x,y) = (F(x), y — x)
Va,y € X.
Remember that a convex function g is differentiable at z < 0dg(x) = {Vg(z)},
since f(z,y) = (F(z),y —z) Yo,y € X is linear and f(x,-) is convex Vo € X
for Assumption (A), then f is differentiable and d,f = V, f. then we deduce
that:

o gk €0, f(2F aF) =V, f(2* ak) = F(2F)

_ fERaR)  (F(EF), 22
* Ok = T T T FGEHT

o f(FaM)—f(2F yF) = (F(eF), ab—25) (P (%), " —2%) = (F(2F), 2F =)

o (g%, 2" — ) > f(zF,2") & (F(F),2" —2) > (F("), 2" — 2F)
& (F(zF),x — 2¥) <0. Then the set HY becomes

HY = {z e R"|(F(z"), 2 — 2F) <0}
Notice that the hyperplane H* coincides with the one defined in (2.5)

In conclusion with these changes the General Modified Algorithm becomes
the Generalized Solodov, in fact when K(z*) = K Va € X and v = 1, we find
again the projection method introduced by Solodov and algorithm for solving
variational inequality problems [25].

Algorithm 3: Generalized Solodov, Alg.1b of [26]

Data: 2° € X, c€ (0,1), a € (0,1).

for k=0,1,... do
2 Compute

=

y* =arg min {(F(z*), y — 2*) + 1/2|ly — 2" ||*}
yeEK (x*)

= Py (omy(a® — F(a"))

if y* = 2* then

3 | Stop.
else
5 Find the smallest m € N such that

(F(zFm), o —yF) > cflab — y¥|?
2Pmi= (1 — a™)zk + amyP

Set ay, = ™, 2F = 2k,

N

6 Compute z*+1 = PK(zk)mHi (xF — V%F(zk)) where
HY ={z e R"|(F(z"), z — 2*) < 0}.

7 end

8 end
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2.2 Nguyen-Strodiot Method

In this subsection we present an efficient method for solving a quasi-variational
inequality problem. The strategy is to combine the well-known search directions
in the correction step from literature with the direction defined by the current
iterate and the trial point obtained in the prediction step. This new combined
search direction allows us to improve the convergence of the sequence of iterates
to the solution of the QVI(K;F) but under a slightly stronger assumption,
namely the co-coercivity of the problem operator. The new algorithm is devised
to solve problems where the projections onto the moving feasible set are not easy
to obtain.

2.2.1 Basic Idea

Let 2% € X; two procedures can be used to get the next iterate 2**!, depending
on the numerical difficulty to compute the projection onto the moving feasible
set K (z*). When the projection onto K (z*) is easy to compute, the prediction
step can be defined by

¢ = PK(zk)(l'k — ﬂkF({L'k)) (2.12)

where B = yI™*, v € (0,1), I € (0,1) and my is the smallest nonnegative
integer m such that

Br(F(a") = F(z%), a* — 2%) < [|l2* — 2*|?

with ¢ € (0,1). In this procedure, a new projection onto K (z*) must be com-
puted each time the parameter my is updated.
When the projection on K (x*) is numerically more expensive, it is preferable
to use only one projection on K (2*) per line-search. So, in that situation, we
first calculate

2k = PK(Ik)(Ik — F(z"))

and after we compute
Y = (1= Br)a® + B2t (2.13)

where 8, = 1™+, [ € (0,1) and my is the smallest nonnegative integer m such
as
(F(a") = F(y"), a® = 2%) < cfla® — 2F||?
where ¢ € (0,1).
Once z* or y* is obtained, a correction step is done by calculating

karl = PK(wk)(Z'k - Oékdk)
where d* is a search direction and ay is a step-length.
When 7% is used, Zhang et al. [30] propose to take, with o € (0, 2),
la* — z* |

d' = ot 3" + P @) = ! and ap=o(l— o)
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for the search direction and the step-length along this direction respectively.
On the other hand, when it is y* that is used, it is suggested to take, with
o€ (0,2),

lo* — 212

1
A= ok = 2Py = df and = o(1= )T

B

With this choice, it was proved [[30], Lemma 5.2, inequality (29)] that
(df, 2t —a*) > |la* = M7 = (F(a*) = F(y"), 2" = 2%). (2.14)

On the other hand, Han et al. [10] recently revisited the prediction set in
the case when Z* is used, and proposed, in the correction step, to combine the
direction d* := dZ! — By F(2*) with the direction 2% — z* as follows:

d* = pd* + (1 — p)(z* — z%)

where z* is given by (2.12) and p € (0,1). With this strategy, the numerical
behavior of Han et al.’s algorithm [10] is better than the one of Zhang et al. [30].
However, its convergence is obtained under the assumption that F' is co-coercive,
while Zhang and al.’s algorithm requires the monotonicity of F' to ensure the
convergence.

Our aim in this section is to modify Han and al.’s [10] algorithm as follows:
instead of computing the prediction step Z* given by (2.12), [15] proposes to
use the prediction step y* given by (2.13); doing so the projection step 2" is
computed only once. Furthermore, to obtain a very general algorithm, [15]
considers a class of search directions which will be used in the correction step.

2.2.2 Algorithm Description and Convergence Analysis

In order to prove the convergence of the resulting algorithm, we use the following
assumption and result:

e Assumption (A) with f(z,y) = (F(z), y — x)

e ['is u— co— coercive on T

Definition 2.1. Let us say that F' is co-coercive with modulus p > 0 (or p —
co-coercive) on X if, Va,y € X

(F(y) — F(z), y —x) > pl|F(y) — F(z)*

Lemma 2.2.1 ([10], Lemma 4.2). Let x* € S* and suppose that F' is co-coercive
on X with modulus 1> §. If 2% = Py (e (a® — F (%)), then

1
(aP — 2% ah — )y > (1 - — )|l = 2% vaFeXx.
4p
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Algorithm 4: Nguyen-Strodiot prototype, Algorithm QVT of [15]

Data: 2° € X, 1 € (0,1), c€ (0,1), p> %, p>0, v €(0,1).
1 for k=0,1,... do
2 Compute

2 =arg min {(F(z), z — 2F) + 1/2|z — 2¥||?}
zEK (zF)

= PK(M)(»’Ck - F(zk))§

if 25 = 2 then

3 | Stop.
else
5 Find m;, the smallest m € N such that

(F(a%) = F((1 = y")2 417 20), ok — 25) < cfja — 242
(2.15)
Set y* := (1 — Br)z" + Brpz* where B = v1™*;
6 Choose a direction d* satisfying V2* € S* the inequality

(Brd®, a* —a*) > ||a* —y*|? = Bu(F(2") — F(y"), «* — y");
(2.16)
Compute

g7 P k k 1 k
d¥ = " — + —
1+p( v 1+p

a* = Pre(ony (2 — o Brd”)

where o, >0 .
7 end

8 end

Before proving the convergence of Nguyen-Strodiot prototype Algorithm, it
remains to define the step-size oy, and to give some examples of directions d*
satisfying (2.6). It is the aim of the next propositions.

Proposition 2.2.2. Let z* € S* and assume thal y* £ 2F at iteration k, let
also be p1 = ﬁ. Then —d* is a descent direction at x* for the merit function
Ll — z*||* when

pip

1——— . 2.1
I p1c>0 (2.17)

In particular this inequality is satisfied when ¢ < 1+ p and p > 4(1@;16)_

Proof. Using successively the definition of d¥, Lemma 2.2.1, (2.15), (2.16), we
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obtain

(Brd*, 2 —2*) = Br(pp(z" — y*) + prd”, &* — 2¥)
= p1pBi(a’ — yF, oF — ) + p1 B (d¥, * — 2*)

> (1 - ”4;’) lo* — g1 — pr Bl F () — P4, o — )
(2.18)

> (1 %p —p c) lzF — ¥ > 0. (2.19)

But this implies that d* is a descent direction at z* for the merit function
1]lz — 2*||* when (2.17) is satisfied. O

Now we can determine the value of oy, in step 6 of Nguyen-Strodiot prototype
Algorithm. Indeed, since (B3zd"*, z* — 2*) = 0, it follows from (2.18) that for

(1 - i/f) la* — 452 = puBulF (") — F(y*), 2 — o)
B

aj = (2.20)

the hyperplane H* = {x € R"| (d*, 2% — x) = . Bx||d*|?} strictly separates z*
from the set S*. Using the definition of ak and observmg that d* is orthogonal
to the hyperplane H*, we obtain that z* — a;frd* = Py« (2¥). So z¥*! is
computed thanks to two successive projections: first xk is projected onto H*
and afterwards, the resulting vector is projected onto K (z*).

Now we can give three examples of directions d* satisfying (2.16). (Note
that in the next Proposition 2.2.3 and Proposition 2.2.4 the mapping F' needs
only to be pseudo-monotone).

Proposition 2.2.3. If d7 is a direction satisfying (2.14) at iteration k, then
the direction d* = ﬂkd satisﬁes (2.16). In particular, the direction al,l€ =gk —
y* + F(y*) satisfies (2.16)

Proof. Since z¥ — y* = B, (2F — 2¥), we have successively
(Brd*, a* —a*) = BR(dE, o — 2*)
> Billa® = 2F|* = BR(F(a*) — F(y*), 2* —2F)
= [la* = y* ) = Bu(F(2*) = F(y"), =* — y").

So the direction d* satisfies (2.16). On the other hand, it was proven in [30]
that the direction d? = 2% — 2F + ﬁ—lkF(yk) satisfies (2.14). Consequently, the

direction d},, being equal to Bkdf, satisfies (2.16). O

Proposition 2.2.4. At iteration k, the two directions

di == 2" —y* + F(a*) + F(y*)

k
dy == 2" —y" — By (F(fck) - F(Bi ))

introduced in Noor et al.[16] and [17], respectively, satisfy (2.16).
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Proof. First we observe that
2 =dj + F(«*) and d} =d} — BpF(z").

Since the direction dj satisfies (2.16), it suffices to see that (F(z*), z¥ —2*) > 0
(because F is pseudo- monotone) to obtain the direction d satisfies (2.16).

On the other hand, since z* = Br(ah — 2F), 28 = Pgur)(aF — F(2V)),
r* € K(z%) and F is pseudo—rnonotone, we have

(df, a* —a%) = (2" —y* + F(y*) = BrF(a"), 2* — 2%
F(yk)7 l‘k _ $*>

Brlah =2 — F(") +
= Bplak — F(z%) — 25, 2% —2*) +(
Br(ah — F(zF) — 2%, 2% — 2F) + 8
+(F"), 2" = o)+ (FY), " — o’
> Bzt — F(xk)—zk, zk — 2F)
(@ = F(a*) = 2%, 2% — 2%

lz* = 28|17 = Bu(F(a*) — F(y*), 2* - 2%).

B
B
Br

This implies that
(Brdi, % — %) > BRfla* — 28|® = BY(F (a*) = F(y*), «* — 2%)
= [la® — y¥|? = Bu(F(a*) = F(y*), «* —y").

So, the direction dj satisfies (2.16). O

Remark 2.1. When p = 0, we have that p; = 1 and d* = d*. So, if (2.19) is
used instead of (2.18), we obtain that for

(L= o)z —y*|?
Bella*|1?

af =

the hyperplane H* := {z € R"|(d*, 2* — z) = a;.B:||d*||?} also strictly sepa-
rates z* from S*. With this choice for aj and with d* = di. Nguyen-Strodiot
prototype Algorithm coincides with Algorithm 2 in [30]. In that case, it is not
necessary to assume that I’ is co-coercive on X. The monotonicity of F' is
sufficient to ensure the convergence of the proposed algorithm.

The following lemma shows that Nguyen-Strodiot prototype Algorithm is
well defined.

Lemma 2.2.5. Suppose that F' is p-co-coercive on X. At the current iteration
k, if 28 = 2, then 2% is a solution to QVI(K;F). Otherwise the line-search
condition (2.15) holds after finitely many inner iterations.
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Proof. If 2% = a*, then a* = P () (zF — F(2%)), and thus 2* is a solution
of QVI(K;F). Next we suppose, to get a contradiction, that the line-search
condition (2.15) is never satisfied. Then the following inequality is satisfied
vVmeN

(F(a:k) —F((1- Vlm)xk' + vlmzk)7 k- zk> > c||a?k — zk||2.

Using the Cauchy-Schwarz inequality on the left hand side of the last inequality
and dividing both sides of the resulting inequality by ||z* — 2*||, we obtain that

| (2%) = F((1 = AU™)a® + 1™ 25| > efla® — 2% (2.21)

On the other hand, since F' is p-co-coercive and thus %-Lipschitz continuous,
we have that

pllF(a®) = F((1=A1™)a® + 1 28)|| < A0 [|l2* = 27
Combining this inequality with (2.21), we obtain

lm
oo
cp
Taking the limit of this inequality as m — oo, we deduce that 0 > 1, which
is impossible. So, the line-search condition (2.15) holds after finitely many
iterations. O

The main result that [15] wants to prove, is the convergence of Nguyen-
Strodiot prototype Algorithm, which is stated in the following theorems.

Theorem 2.2.6. Let {z*} be the sequence generated by Nguyen-Strodiot pro-
totype Algorithm. Suppose that Assumption (A) is satisfied and that the pa-
rameters p, p1, i and c satisfy (2.17). Suppose also that y* # =¥ Vk and the
sequence {d*} is bounded. Then the sequence {z*} generated by Nguyen-Strodiot
prototype Algorithm is bounded, and any limit point of the sequence {x*} is a
solution to QVI(K; F).

Precisely because of this result, after the proof of convergence, we aim to
identify some concrete search directions d* for which we can guarantee the
boundedness of the sequence d* ( see Proposition 2.2.8 below)

Proof. Let x* € S* and let k € N. Then we have that #* € K(2*) and we
obtain, using successively the non-expansiveness of the projection and (2.18)

|25 — 2% ||? = || Pre(ory (2% — o Brod®) — 2|
<o — arBrd® — *|?

= |la® = a*|* = 205, (Brd”, a* — 2*) + o Filld"|?

1
<l = a2 = 20 (1 22 o - P
m

—pmMFu%—F@ﬂaﬁ—fﬁ+amﬂ%W.
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Consequently, from the definition of oy, we immediately deduce that

(- 8t — 1 = ;e — P, 2+ =)

Izt~ < fla®—a|? - 7
Belld*|1?
(2.22)
But (2.22) implies that ||2*+1—2*|| < ||z¥—2*|. So, the sequence {||z*—2*|}
is convergent and the sequence {z*} is bounded. Moreover thanks to (2.22), we
have
e L O =y II? = p1 Br(F(a*) — F(y*), a* —y*)
im —
koo Brlla*|

=0.  (2.23)

From (2.19), we obtain easily that
(1= gDl =M1 = pBuF @) = F(4"), 2 =y puplla — y*|2
Brlla*| o Belldt]

where p=1—c+p(1 — ﬁ) Therefore, we have from (2.23) and the definition
of y* that

ppll=® —y*I*

- E k|2
i 2P0l =2 = 0. (2.24)

k=00 || koo Bild|
Furthermore, it is easy to verify that {z*} is bounded. Indeed, since z* € K (z*),
we have successively

125 = [Py (ory (2 — F(2*)]
= 1P (ory (2" = F(a%)) + 2™ = Preory (a7
<[+ (| Preory (2 = F(a*)) = Preary ()]
<l + fla® = |l + R P
Since F is continuous and the sequence {z*} is bounded, we can conclude that
the sequence {2*} and {y*} are also bounded. In addition, since the sequence

{d*} is bounded by assumption, we have also that the sequence {d*} is bounded.
Therefore it follows from (2.24) that

lim By|z® — 2*||? = 0. (2.25)
k—o0
Let Z be a limit point of {z*}. Then there exists a subsequence {z*i} of {z*}
converging to & when 7 — oo. Two cases may occur:
Case 1:inf; B, = Bmin > 0. Then by (2.25), we get lim;_,[lz* — 2" || = 0.

Case 2:inf; B, = Bmin = 0. Then there exists a subsequence of {f, } denoted
again {f,} that converges to 0 as j — co. So, for j large enough, gy, =
™ with m; > 1. Then ~yImi=1 — 0 and, for j large enough, we can
write

(F(xr,) — F((1 - Al gk oy ma LRy ki kY s )|k — 2|2
Since F' is co-coercive, F' is also continuous, and using the Cauchy-Schwarz

inequality, we obtain that lim;_,[lz% — 2% || = 0.
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Therefore, since ||2%1 — Z|| < [|2%i —2%7|| 4 ||z*i — Z||, we obtain in both cases
that 2% 2% 7.

Moreover, by construction of ¥, we have that z*¥ € K(2*) Vk. Hence K
being upper semi-continuous on X, we deduce that z € K(z).

On the other hand, since K is lower semi-continuous on X, Vw € K(Z),
there exists a sequence {w*/} with w* € K(2*7), such that w*i — w. Since
2k = PK(zkj)(a:ki — F(2%7)), we obtain that

(2Fi — ki 4 F(2h), wh — 2%) >0,

, i.e.,
(F(xki), whi — 2kiy 4 (2ki —gki ki — 2ki) > 0.

Taking the limit as j — oo gives (F(Z), w — Z) > 0 VYw € K(Z). But this
means that Z is a solution to QVI(K; F). O

Remark 2.2. One way to obtain that the whole sequence {z*} generated by
Nguyen-Strodiot prototype Algorithm converges to a solution QVI(K; F) is to
impose that every limit point of {x*} belongs to S*. Indeed, let  be such a
limit point. Using (2.22) with * = Z, we immediately deduce that the sequence
{||=* —Z||} is convergent and thus that the sequence {x*} converges to a solution
of QVI(K; F).

In the next theorem, we give a condition to assure that every limit point of
{x*} belongs to S*.

Theorem 2.2.7. If, in addition to the assumption of Theorem 2.2.6, the oper-
ator F is strictly monotone on X, then the sequence {x*} generated by Nguyen-
Strodiot prototype Algorithm is convergent to a solution of QVI(K; F).

Proof. Let Z be a limit point of the sequence {z*}. By Theorem 2.2.6, 7 is a
solution to QVI(K; F') and by Remark 2.2, we have only to prove that Z € S* to
obtain that {z*} converges to . In that purpose, let {*/} be a subsequence of
{2*} converging to T and let 2* € S*. Then z* € K (2*/) V4 and by the upper
semi-continuity of K, z* € K(z). Hence, T being a solution of QVI(K; F), we
can write that

(F(z), 2" —z) > 0. (2.26)

On the other hand, since 2% € K (%) Vj, we have, by definition of S*, that
(F(z*), 2% —2*) >0 Vj.
So, taking the limit as j — oo, we obtain that
(F(z*), z —x*) > 0. (2.27)
Consequently, from the monotonicity of F', (2.26) and (2.27), we deduce that
(F(z") = F(z), T — ") =0,

which implies that T = x* € S* because F' is strictly monotone on X O
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Proposition 2.2.8. The directions d,ﬁ, di and dz introduced in Proposition
2.2.2 and 2.2.3 are bounded. So Nguyen-Strodiot prototype Algorithm is conver-
gent when the sequence of directions {d*} is one of the sequences {di}, {d?}
and {d3}.

Proof. From Theorem 2.2.7, it is sufficient to prove that each of the sequences
of directions {d;}, {d?} and {d}} is bounded. In this purpose, first we observe
that z* € K(2*) Vk and that, by the non-expansiveness of the projection,

125 = 2* || = || Pk a4y (2" — F(2*)) = Prcary (2")]]
< |F ().
This implies that ||y* — 2¥|| = Be||z* — 2F|| < Br||F(z¥)|. Therefore, we have,
for all k, that
ldill = ll2* = y* + F(y")|

<l = y* Il + [ F )l

< Bl F (™) || + 1F ().
Since F is continuous and the sequences {x*} and {y*} are bounded, we easily
deduce that the sequence {d}c} is bounded. On the other hand, the sequences

{F(z*)} and {8} being bounded, we also obtain the sequences {d2} and {d}}
are bounded. O
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In conclusion the algorithm that we will use to solve QVI is

Algorithm 5: Nguyen-Strodiot

Data: 2° € X, [ € (0,1), ¢ € (0,1), pu > maux{i7 ﬁ},
pZOa P1:ﬁ7 ’yE(O,l)

for k=0,1,... do
2 Compute

=

2P =arg min {(F(z%), 2 — %) +1/2||z — 2*||?}
zEK (zF)

= Pr(ohy (2" = F(2"));

if 25 = 2 then

3 | Stop.
else
5 Find m;, the smallest m € N such that

(F(a") = F((1 = Am)a® +41m2"), 2% = 2F) < efja® — 2|

Set y* := (1 — Br)x" + Bz where B, = vI™*;
6 Choose a direction d* among

. d}c:xk—yk—i-F(yk)
. dizmk—yk—l-F(mk)—i-F(yk)

X
° di:xk—yk—ﬁk(}?‘(xk)+ Fy ))

Bk
Compute
7 P k k L
1+p<x v L+p
mk+1 = PK(,ﬂk)(l’k - akﬂka)
where i 2 E k k k
o A= Dt I - B (FEE) - F(y*), 2 — o)
k= 7 '
Belld¥||>
7 end

8 end
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Chapter 3

Acceleration Method

The objective of this chapter is to present a current and very active research
topic, namely some methods for accelerating the convergence of sequences in
a vector space. It is well known that many methods used in numerical analy-
sis and applied mathematics are iterative, for example fixed point methods as
those presented in previous sections. It is well known, moreover, that iterative
methods could be slowly convergent and many approaches have been devised to
overcome this issue [3, 5]. In some cases, it is possible to modify the construc-
tion of the sequence itself. But, if the sequence is produced by a “black boz”,
i.e., the user has no access to its computation, it is possible to use extrapolation
techniques to transform this sequence into a new sequence which, under some
assumptions, convergences faster.
We will consider two acceleration methods:

e Regularized nonlinear acceleration [24];
e Regularized Topological-Shanks-type acceleration [4].

Our aim will be to show the idea of the aforementioned acceleration techniques
and how they combine with the hybrid extragradient methods that we have
presented.

3.1 Regularized Nonlinear Acceleration (RNA)

3.1.1 The Idea

Assume we are using the fized-point iteration
%t = g(x"), fori=0,...,k, (3.1)

where #' € R” and k is is a fixed integer.

The core idea behind this class of methods is to use a Taylor expansion of
the function g in (3.1) to approximate the fixed point iterations by a vector au-
toregressive model, then compute a weighted mean of the iterates X to produce
a better estimate of the limit x*. We assume x* is unique.
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Suppose g(x) is differentiable and let G' be the Jacobian of g evaluated at

*

x*. We will assume that G is symmetric, positive semi-definite and G =< o1,
with o < 1. Equation (3.1) becomes

1 = () + GE —x) + O(% —x"|?), fori=1,...,k

By neglecting the second order term, and because g(z*) = x*, we obtain the
linear fixed-point iteration

x o x* = G(x' —x¥), (3.2)

where x° = %x. We can hence recogmze in 3.2 a vector autoregressive process.

Because ||G||2 S o < 1, the iterates x* converge to x* at a linear rate, with
" = x| < ol = x| < ofx” - x|

Suppose we run k iterations of (3.2), a linear combinations of iterates x*
with coefficients ¢; reads

chx 7chx JrZ:c2 x — x*
(zk:q)x +<ZQG’> x — x*). (3.3)

=

Defining the polynomial
pe) = cis (3.4)

we can write (3.3) more concisely in terms of the matrix polynomial p(G), setting
p(1) = Zf:o ¢; = 1 without loss of generality, to get

}j@x_x +p(G) (X0 — x).

Error term

Ideally, we need to find ¢ (or equivalently p) which minimizes the error term
p(GQ)(x° — x*). Using [24], we know that the optimal solution satisfies

k

E x —x*

=0

G (xY — x*)

where Ry[z] is the subspace of polynomials of degree at most k, i.e.,

= min
{CER’CJrl cT1=1}

me—m

min
{pER[z]: p(1)=1}

k

Z cGH(x" — x*)

=0

c* = arg

min
{ceRF+1:cT1=1}

36



Now we focus on a method which will approximately minimize the error
Ip(G)(x° — x*)||. Since we do not observe G and x* we will work with the
residuals

r'=x

%= g(x") - % (3.5)
Observe that, when g is a linear function (3.2) this becomes
rl=x" —x' = (G- I)(x"—x") (3.6)

A linear combination of residuals r* with coefficients ¢; is written

k k
dar'=(G-1)) cx —x") = (G- Dp(G)(x" —x*).
=0 =0

We recognize the error term we wanted to minimize, multiplied by the matrix
G — I. Using the coefficients which minimize this alternative quantity will
approximately minimize the error as stated in the following proposition.

Proposition 3.1.1 ([24]). Let p*(x) be the polynomial solving

p(z) =

\ (@~ DO — )

min
{p€ER[z]: p(1)=1}

Then its coefficients, denoted by c*, satisfy

k
c' = i || 3.7
ST N DL (3.7
The iterates @ defined in (3.2) averaged with coefficients c* satisfy
1 i
ol — ot G2 — x|, (3.8)
1 -0 {ceRk+1 ch 1}

where we have assumed 0 X G <X ol, with o < 1.

This leads to the following acceleration algorithm.

Algorithm 6: Nonlinear Acceleration of Convergence, [24]

Input: Iterates x°,x!,..., %" ¢ R%.
1 Compute R = [,... 7f‘k];
2 Solve
¢’ =arg min | Re|

{cERF+1:cT1=1}

Output: Approximation of x* ensuring (3.8), computed as

Zf:o Cfii

37



The next proposition gives us an explicit solution, involving involving the
solution of k x k linear system.

Proposition 3.1.2 ([24]). The explicit solution of the problem

* = in ||R 3.9
c argchnllng c| (3.9)

in the variable ¢ € R*, where R is a d x k matriz assumed to be of rank k is
given by
RTR)"'1
¢ = §~7)~ (3.10)
1"(RTR)-11

Remark 3.1. In practice, instead of computing the inverse of the matrix ]:ET]:E,
we solve the linear system

and then set

So far, we have only considered linear function G in (3.2), when computing
the iterates x'. In general, the fixed point iteration (3.1) is usually generated
by a nonlinear function g, thus inducing a second order error term in O(||x* —
x*||?) compared to the dynamics in (3.2). In fact even in practical cases where
k is small, RTR is usually a singular or nearly singular matrix, that means
that even if the perturbations are small, their impact on the solution can be
arbitrarily large. This particular issue means that the linear system (R7R)~'1
in (3.10) needs to be regularized. This brought to derive a regularized version of
Algorithm 6, which better controls the impact of perturbations, using Tikhonov
regularization in order to solve the linear system (3.10). This leads to the
Regularized Nonlinear Acceleration:

Algorithm 7: Regularized Nonlinear Acceleration (RNA), [24]

Input: Iterates x°,%',..., %! € R? produced by (3.1),A>0
regularization parameter.

1 Compute R = [i°,..., "] where ¥ = ! — %',

2 Solve
¢y =a in ||Rel||? + Alc||?
= arg in | Rel” + e
or equivalently solve (RT R 4+ AI)z = 1 then set &} = 1
zZ

Output: Approximation of x* computed as Xeqztr(A) = Zfzo(é’;)ixi

Notice that regularization allows a better control of the impact of perturba-
tions, but also changes the solution c¢* into c3 in Algorithm 6.
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3.1.2 RNA for QVI

In this subsection we present how we incorporate the Regularized Nonlinear
Acceleration (RNA) in order to accelerate our fixed-point methods (Solodov,
Nguyen-Strodiot). Let us suppose we want to solve the fixed point problem
f(x) = x, then the main structure of our Algorithm will be

Algorithm 8: Prototype RNA

Data: Choose Nmazx € N (outer cycles), Kmaz € N (inner cycles),
A regularization parameter, x° € X.

1 fori=0,1,..., Nmaz do

2 Set u® = x*;

3 forn=1,...,2* Kmaz + 1 do

4 | Compute u™ = f(u"1);

5 end

6 Apply the RNA to u’, ..., u? Kmaz+l yging
7 Set Xi = XZztr(/\);

8 end

The major problem of the Regularized Nonlinear Acceleration, Algorithm 7,
is the presence of the parameter A, unknown in advance. To avoid this problem
we use an adaptive strategy to find A, based on grid search.

Since we restart our algorithm with u® = x* = x?,,,.(\) for i = 1,..., Nmaux,

obviously we are interested in finding the best A that minimizes the residuals. In
fact we are using fixed-point methods whose stopping criteria is the coincidence
of the prediction step with the previous iteration, i.e.,

xF — PK(xk)(Xk — FM) =o0.
For the above reason, in practice, we choose A such that
m/\in [Xextr(A) — PK(ertr(A))(Xemtr()‘) - F(Xextr()\»)HQ-
We use a grid of dimension K'max in order to find a good A, i.e., we solve

=1 _I_r_ligmmHXethO‘j) - PK(xcztr(Aj))(Xe:vtTO‘j) - F(Xewtr()‘j)))|‘2-

In conclusion our algorithm becomes
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Algorithm 9: Regularized Fixed-Point Method

Data: Choose Nmax € N (outer cycles), Kmaxz € N (inner cycles),
x% € X, ce (0,1), a € (0,1). Set bounds [Anin, Amaz)-
1 Divide the segment [Ayin, Amaz] into Kmaz points {);} using a
logarithmic scale;

2 fori=0,1,..., Nmaz do

3 Set u’ = x';

4 forn=1,...,2* Kmaz + 1 do

5 | Compute u™ = f(u"1);

6 end

7 Compute the residual matrix R such that R; = ut! — u’;
8 Build the matrix M = RTR/||RTR||;

9 for j=1,..., Kmax do

10 Solve in z the linear system (M + \;1)z = 1;
11 Normalize the solution €} = z/(17z);
Kmaw -
12 Compute Xegir(Aj) = h:"(L)M(CAj)huh;
13 end
14 Pick

A = arg . min ermtr()‘j)_PK(xcztr(Aj))(Xewtr()‘j)_F(XeItr()‘j)))H25
j=1,...,Kmax

* _ * T ¥ .
Set X! = Xewtr(A*)  and X' =X,

15 end

Remark 3.2. Notice that the function f in Algorithm 9 can be substitute with
Generalized Solodov (Algorithm 3) or with Nguyen-Strodiot (Algorithm 5) and
we will call Algorithm 9 Regularized Solodov or Regularized Nguyen-Strodiot
respectively.

Remark 3.3. Observe that step 6 to step 12, except step 9, in Algorithm 9 the
Regularizd Nonlinear Acceleration (Algorithm 7).

Remark 3.4. Last but not least observation, we explain the choice of the number
of the inner cycles. We choose 2* Kmaxz + 1 inner iteration so that we can
easily compare it with the Restarted Topological-Shanks-type acceleration in
the numerical experiences.
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3.2 Regularized Topological Shanks Acceleration
(RTSA)

3.2.1 Topological Shanks Transformations

Definition 3.1. A sequence {x'} is in the Shanks Kernelif there exists x* € R9,
Loy .., 0, € Rwith £y + ...+ £, # 0 such that, for all i > 0

lo(x! —x*) + ...+ 4,(xT —x*) = 0. (3.11)

We suppose that v is the minimal integer for which (3.11) holds

Definition 3.2. Let us define the minimal polinomial of A with respect to
v € R? as the monic polynomial of minimal degree such that p(A)v = 0. If such
polynomial of has degree v we write p, ().

It can be shown the following result:

Theorem 3.2.1 ([5]). Suppose that there exists * such that * = Ax*. Let us
consider a Picard iteration of the form x* = Ax'~'. If 2° is such that 2° — =*
has a minimal polynomial g, (t) = 377_, 0;t9 for which > =0ty # 0, then {z'}
is in the Shanks Kernel.

Consider a sequence {x'} belonging to the Shanks Kernel, then for every
1 > 0, using the normalization condition on the coefficients ¢; for j = 0, ..., v, we
have an explicit expression of the limit in terms of the element of the computed
sequence:

chx”j =x" (3.12)
J=0

Observe that (3.12) holds for every i > 0, so we can just write

14 14
chxi+j+1 - qu“‘j = 0. (3.13)
=0 =0
Let us define R := [r%,... r'""] with r'tJ = x¥H+ — x¥ for j = 0,...,v.

From (3.13), it is clear that it must be Rank(R) < v + 1, actually it can be
shown that Rank(R) = v.
Let us select an element y € R? and use it to multiply (3.12), obtaining

Z ey’ x = yTx*. (3.14)
J=0

Of course, we need to obtain v 4+ 1 equations of this type to be able to recover
the coefficients, i.e., we need to produce 2v + 2 element of the sequence and
consider

v v
3 ey et = N ey T (xR gy — 0 for B =0,...,v.
j3=0 j=0
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Defining by, := y”r**" for h =0,...,2v and defining the Hankel matrix,

bp ... b,
Tmv) = :

b, ... by
we can determine the coefficients c¢; solving the following problem

c=arg min | TG
teRVELS Y t,=1

The limit can be extrapolated just looking at v 4 1 elements of the sequence and
using one of the two relations

v v
x" = E cjxlﬂ or x*= E cjx“”H.
j=0 j=0

Suppose now we have produced a certain number of iterations, say the 2k +2
iterations x°, ..., x2**!. It is possible to produce an extrapolated approximation
solving the problem

c=arg min | TR,
tERMHSTE (¢5=1

The following algorithm formalizes this heuristic:

Algorithm 10: Restarted Topological method, [4]

Data: Choose Nmazx € N (outer cycles), k € N (inner cycles),

x0y € R?.
1 fori=0,1,..., Nmaz do
2 Set s¥ = x*;
3 forn=1,...,2*k+1 do
4 | Compute s™ = As" !
5 end
6 Compute TF);
7 | Solve c = arg Millgepesi sk tj:1||T(0’k)t||;
, & ,
8 | Setx' =37 jesFtIH;
9 Select y € R?;
10 end

if Rank(T(*F)) = k + 1, the solution is

(T(OF) Tro,k) )11

C = T .
1T(T(O,k) T(U,k))fll

Moreover, observe that T(%%) could be a ill conditioned matrix (or better, we
aspect this matrix to be singular), and hence we propose to solve

c=arg min | TR + Nt
tERFH1:TE 1,=1
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with solution
(ORI POR £ A1)-11

17(TORTTOR 4 A1

The following algorithm represents a general computational scheme for fixed
point problems where the problem concerning the choice of the regularization
parameter is addressed:

Algorithm 11: Regularized Topological Shanks type Acceleration,
[4]

Data: Choose Nmazx € N (outer cycles), k € N (inner cycles),

x% y € R4,
1 fori=0,1,..., Nmazx do
2 Set s¥ = x*;
3 forn=1,...,2°k+1do
4 | Compute s = As" ™1
5 end
6 Compute b; = (y' R); and T,
7 for A € [Mnin, Amaz) do
8 Solve ¢* = arg mingeprs1.4m1-1 | TOF ]| + \||t]|;
9 Set x) = Z?:o cysh It
10 end
11 x! = arg Ml [N, Amaa] [ AXA — XA [;
12 Choose y = x* € R?;
13 end

3.2.2 RTSA for QVI

Like we did before with the regularized nonlinear acceleration, we want to
present how we incorporate the Restarted Topological Shanks Acceleration
(RTSA) in order to accelerate our fixed-point methods (Solodov, Nguyen-Strodiot).
Again we have the same problem: the choice of the regularization parameter

A that is unknown. We applay the same argument that we did before and in
conclusion our algorithm becomes
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Algorithm 12: Regularized Topological Fixed-Point Method

Data: Choose Nmax € N (outer cycles), Kmaxz € N (inner cycles),
2% € X. Set bounds [Apnin, Mnaz)-
Divide the segment [Apin, Amaz] into K'max points {\;} using a
logarithmic scale;

[ary

2 fori=0,1,..., Nmaz do
3 Set s = x*;
4 forn=1,...,2* Kmaz + 1 do
5 | Compute s™ = f(s"1);
6 end
- Set y = S2*Kmaw+1;
8 Compute b; = (y” R); and T(0-Kmaz).
9 for A € [Mnin, Amaz) do
10 Solve c* = arg mingegrmart1.4r1—1 || TOE™92)¢]| + \||t]];
11 Set x) = EJKJSM cysfimartiti,
12 end
13 Set
x' = ar min xy— P, xzx— F(x Z
g o maw]” x = Py (@x — F(xx))[I%
14 end

Remark 3.5. Notice that the function f in Algorithm 12 can be substitute
with Generalized Solodov (Algorithm 3) or with Nguyen-Strodiot (Algorithm
5) and we will call Algorithm 12 Regularized Topological Solodov or Regularized
Topological Nguyen-Strodiot respectively.
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Chapter 4

Numerical Results

In this chapter our aim is to give some insight into the performance of our
accelerated fixed-point methods. We have implemented these algorithms in
MATLAB version R2018b to solve various quasi-variational inequality problem.
Some of the test problems are the numerical experiments examined in [26] and
[15], the others come from [§].

Each QVT is defined by the function F and the point-to-set mapping K (x).
We assume that K (z) is defined as the intersection of a fixed set K and a set
K (x) that depends on the point z: K(z) = K N K(z). The sets K and K (z)
are described by inequalities and equalities:

K:={yeR"g'(y) <0, M'y+" =0}
K(z) = {y e R"|g"(y,2) <0, MF(2)y + v"(z) = 0}.

The constraints defining the set K are individual constraints that are indepen-
dent of x, we use the superscript “I” in our notation (for individual /independent
of ). On the other hand, the constraints defining K (z) are parametric due to
their dependence on z, therefore, we use the superscript “P” (for parametric).
We assume that g/(-) is a vector of convex functions and that each compo-
nent function of g¥ (-, ) is convex for all z. When we refer to the whole set of
inequality or (linear) equality constraints, we use the notation

9(y,7) = (ggl(;y)x)) L M)y + o) = (Mﬂz{;x)) v+t (vlg(]x)) '

The type of constraints we focus on are the linear and bound ones, that means
that ¢! is linear and defines bounds on the variables, while g has the form
a’y +b(x) —c < 0 and ay’ + b(z) — ¢ < 0. This characteristic choice is due
to the fact that these linear and bound constraints make the QVI problem effi-
ciently solvable. We use the quadratic-program solver quadprog from MATLAB
optimization toolbox to perform the projection. Since quadprog can only works
on linear constraints (independent of x or parametric), we had to rewrite the
QVTI test problems in an acceptable form in [8] to make quadprog work.

In literature, the CPU time is usually chosen as measure of efficiency. Nev-
ertheless, we have decided to not taking into account this measure because our
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goal is to show the acceleration performance of the extrapolation algorithms, so
we have run a fixed number of iterations.

Note that when performing the grid search the ); are independent of each
other, so it would be possible to calculate them in parallel instead of using a
loop. This choice would lead to a big gain of time.

For our comparison we have implemented in MATLAB four algorithms cor-
responding to Regularized Solodov, Regularized Nguyen-Strodiot for RNA and
Regularized topological Solodov, Regularized topological Nguyen-Strodiot for
RTSA. For the algorithms linked to Nguyen-Strodiot method we have also stud-
ied them changing the choice of the direction d* with d,lc, d% and dz. In our
experiments we have chosen the following parameters:

e Solodov: ¢ = 0.5, « = 0.5 and v = 1.99 like in [26];
e Nguyen-Strodiot: ¢ = 0.5, ] = 0.5, v = 0.99, p = 1 and g = 0.5 like in
[15].

Let us point out that the parameter Kmax is connected with the extrap-
olation routine and affects the acceleration performance. We propose here the
Kmazx for which we obtain the best acceleration performance for RTSA and
RNA.

4.1 OutZ

4.1.1 OutZ40

Source : [§]
Description :

3 ) (i)

11

0 11

(3 é) (1)

For both the extrapolated methods we took (0,0) as starting point,
OptimalityTolerance = 1le — 20 and MaxIterations = 500.

Q
~

—~

<

=

Il I I
/—\ﬁ/\

o =
OOM
|

o (an)

Known solution: z* =
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Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmazx = 3, Kmax = 3;

e Nguyen-Strodiot:

— d}: Nmax =5, Kmax = 12;
- di: Nmax =5, Kmax = 1T,
- di: Nmaz =5, Kmax = 12;

Best parametric choice of Kmax for RNA
We took for

e Solodov: Nmax = 6, Kmaz = 6;

e Nguyen-Strodiot:

- d}c: Nmax =5, Kmax = 14;
- di: Nmaz = 4, Kmax = 23;
— d?: Nmazx =5, Kmax = 24;

Problem OutZ40, Kmax = 3 Problem OutZ40, Kmax = 6
10° . 10°
! .
! %
2 10° | 2 10° \\neng,
3 1 3 1 Se
g g !
-4 1 o 1 \
1010 \ 1010 | o
=Solodov S. ° ° =Solodov S.
@5Solodov S. + RTSA @5Solodov S. + RTSA
15 @Solodov S. + RNA s @Solodov S. + RNA
0 5 10 15 20 25 % 10 20 30 40 s0 60 70 80
iterations iterations

(a) Solodov with best Kmax choice for RTSA  (b) Solodov with best Kmax choice for RNA

Figure 4.1: OutZ40 solved with Solodov

5 Problem OutZ40, Direction d1 , Kmax = 12 Problem OutZ40, Direction d1 , Kmax = 14
10 =Nguyen-Strodiot 100
@®Nguyen-Strodiot + RTSA
; @Nguyen-Strodiot + RNA —

10 \'\ ¢
] © 10 i P
E it - —_— ] 1 = S
T 10° o ] S~ e .
@ 7
8 | 2 e _ °

o~ 10 -
10 ‘
101 | _—
==Nguyen-Strodiot o
é - @®Nguyen-Strodiot + RTSA
15 [ s @Nguyen-Strodiot + RNA
107 20 40 60 80 100 120 140 0% 50 100 150
iterations iterations
(a) Nguyen-Strodiot with best Kmax choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.2: OutZ40 solved with Nguyen-Strodiot with d}.
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Problem OutZ40, Direction d2 , Kmax = 17 Problem OutZ40, Direction d2 , Kmax = 23

10° _.'__..,..._~‘ 10°
|
2 10° & © 10° ¢ ~ L.\
3 S~ o~ E] Bl s
o he] 1
3} 1 3 1 ]
o o ‘
1010 é 1010 Q
~ ~
-~ ~
=Nguyen-Strodiot =Nguyen-Strodiot \
@Nguyen-Strodiot + RTSA & @Nguyen-Strodiot + RTSA °
15 @Nguyen-Strodiot + RNA 15 @Nguyen-Strodiot + RNA
10 0 50 100 150 200 10 0 50 100 150 200
iterations iterations
(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA
. . . . . 2
Figure 4.3: OutZ40 solved with Nguyen-Strodiot with dj,
105 Problem OutZ40, Direction d3 , Kmax = 12 Problem OutZ40, Direction d3 , Kmax = 24

10° \.—-s-_"‘\ N
1 10 [l

] ! )
© ~ © \
S ~ 1
3 10° 1 o 3 !
3 3 o
g O k! |
1010
1010 1 L -
=Nguyen-Strodiot =Nguyen-Strodiot
@Nguyen-Strodiot + RTSA L___ @Nguyen-Strodiot + RTSA 3
15 ®Nguyen-Strodiot + RNA - -0 |5 ®Nguyen-Strodiot + RNA
10 0 20 40 60 80 100 120 10 0 50 100 150 200 250
iterations iterations

(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.4: OutZ40 solved with Nguyen-Strodiot with dj

4.1.2 OutZ41

Source : [§]
Description :

=2, ")+ (25

2
-1 0 0
1 0 11
gl(y) = 0 -1 Y- 0 )
0 1 11
poov_ (1 0\ (0 1\ (15
Known solution : z* = (10,5)T.

For both the extrapolated methods we took (0,0) as starting point,
OptimalityTolerance = 1le — 20 and MaxIterations = 500.

Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmax = 3, Kmazx = 2;
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e Nguyen-Strodiot:
- d,lqz Nmax =5, Kmax =7,
~ d?: Nmax =5, Kmax = 15;

- di: Nmaz =5, Kmax =T,
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmax = 6, Kmazx = 2;
e Nguyen-Strodiot:

— d}: Nmazx =5, Kmax = 16;
- d%: Nmaz =5, Kmax = 19;
~ d}: Nmax =5, Kmax = 11;

Problem OutZ41, Kmax = 2 Problem OutZ41, Kmax = 2
10° 10°
——— Y
~-=~-% h.\._”\
\ ! %
\._o
2 10 \ - 10° |
3 3
@ \ a |
3 3}
o o l
1010 \ 1020
=Solodov S. 1 1 ==Solodov S.
@®Solodov S. + RTSA ° (] @®Solodov S. + RTSA
@Solodov S. + RNA @Solodov S. + RNA
10-15 10-15
2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35
iterations iterations

(a) Solodov with best Kmax choice for RTSA  (b) Solodov with best Kmax choice for RNA

Figure 4.5: OutZ41 solved with Solodov

Problem OutZ41, Direction d1 , Kmax = 7 Problem OutZ41, Direction d1, Kmax = 16

u o
3 3
3 0% 3
i 10 a
& &
1010 1 N,
b ot
=Nguyen-Strodiot ~ ==Nguyen-Strodiot S 'L
10 @®Nguyen-Strodiot + RTSA -~ @®Nguyen-Strodiot + RTSA 1
10'% @Nguyen-Strodiot + RNA > 15 @Nguyen-Strodiot + RNA
0 10 20 30 40 50 60 70 80 10 0 50 100 150 200
iterations iterations
(a) Nguyen-Strodiot with best Kmaxz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.6: OutZ41 solved with Nguyen-Strodiot with d}.
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Problem OutZ41, Direction d2 , Kmax = 19

Problem OutZ41, Direction d2 , Kmax = 15 105
10°
H 10°
%) 5 - - o)
T 10 ~=n K ~2
3 L 3 10° - e,
g bl 9 ~ o~ ~
4 Q 4 |
1010 - S —. ~
? 1010 o_ S,
=Nguyen-Strodiot L - =Nguyen-Strodiot -~
@Nguyen-Strodiot + RTSA e @Nguyen-Strodiot + RTSA o
15 @Nguyen-Strodiot + RNA 15 @Nguyen-Strodiot + RNA -
10 0 2| 40 60 80 100 120 140 160 10 50 100 150 200
iterations

iterations
(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.7: OutZ41 solved with Nguyen-Strodiot with d

Problem OutZ41, Direction d3 , Kmax = 11

Problem OutZ41, Direction d3 , Kmax = 7 5
10
10° R
- 100
w105 ! w LN\
5" 1 E RN
o T 107 'y [
g 1 g S ..
« O~ « N S
010 \ ° a
1010 ~ ~
~ ~
=Nguyen-Strodiot 1 =Nguyen-Strodiot >
@Nguyen-Strodiot + RTSA O o @Nguyen-Strodiot + RTSA .
; ®Nguyen-Strodiot + RNA ° .. ®Nguyen-Strodiot + RNA -9
10 0 10 20 30 40 50 60 70 80 10 0 20 40 60 80 100 120
iterations iterations
(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.8: OutZ41 solved with Nguyen-Strodiot with dj

4.1.3 OutZ45
Source : [26], [15]

Description :
8/3 34
5/4 2 24.25 )
—1 0 0
0 10
gl(y) = - 0 )
10
0 1 15
9" (y, ) = ( (1 0) (15) :
Known solution : (5, 9

For both the extrapolated methods we took (0,0) as starting point,
OptimalityTolerance = 1le — 20 and MaxIterations = 500.

Best parametric choice of Kmax for RTSA
We took for
e Solodov: Nmazx = 3, Kmaz = 11;
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e Nguyen-Strodiot:

- d,lqz Nmaz = 5, Kmax = 11;
~ d?: Nmazx =5, Kmax = 19;
- di: Nmaz =5, Kmax = 11;

Best parametric choice of Kmax for RNA

We took for
e Solodov: Nmazx =5, Kmax = 8;
e Nguyen-Strodiot:

~ d}: Nmazx =5, Kmax = 19;
- d%: Nmaz =5, Kmax = 22;
~ d}: Nmax =5, Kmax = 17,

Problem OutZ45, Kmax = 11 Problem OutZ45, Kmax = 8

Y 100 ==Solodov S.
10 - @®5Solodov S. + RTSA
A @®Solodov S. + RNA
2000
w w105 ! = =
0 @ 19
E] 1 g 1 1
- ° H
3 10 1 i 1
4 @ |
o o 1
1 1010 1 |
1
=Solodov S. | ° |
@®Solodov S. + RTSA 1
1010 @Solodov S. + RNA ! 15 °
0 10 20 30 40 50 60 70 0% 20 40 60 80 100
iterations iterations

(a) Solodov with best Kmax choice for RTSA  (b) Solodov with best Kmax choice for RNA

Figure 4.9: OutZ45 solved with Solodov

Problem OutZ45, Direction d1 , Kmax = 11 Problem OutZ45, Direction d1, Kmax = 19
10° —— o g ™y
® -~ —
bo
© 10° 1 ©
© ]
S Q S
o ]
g - g
@ <
1010 L 1010 bl Sea
- Q L)
== Nguyen-Strodiot h) ==Nguyen-Strodiot —~—
@®Nguyen-Strodiot + RTSA o @®Nguyen-Strodiot + RTSA \.
5 @Nguyen-Strodiot + RNA s @Nguyen-Strodiot + RNA
10 0 20 40 60 80 100 120 10 0 50 100 150 200
iterations iterations

(a) Nguyen-Strodiot with best Kmaxz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.10: OutZ45 solved with Nguyen-Strodiot with dj,
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Problem OutZ45, Direction d2 , Kmax = 19 Problem OutZ45, Direction d2 , Kmax = 22

10° -~
-
S~
1 n
v 10° oQ | n
E] e E]
S ~a o]
@ 1 hl @ 1
& S g !
1010 a 1010 'Y k.\
-~ ~ -
~ ~ 1
=Nguyen-Strodiot =Nguyen-Strodiot 3
@Nguyen-Strodiot + RTSA 'y @Nguyen-Strodiot + RTSA & -
15 ®Nguyen-Strodiot + RNA |5 ®Nguyen-Strodiot + RNA -0
10 0 50 100 150 200 10 0 50 100 150 200 250
iterations iterations

(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.11: OutZ45 solved with Nguyen-Strodiot with d?

Problem OutZ45, Direction d3 , Kmax = 11 Problem OutZ45, Direction d3 , Kmax = 17
10° 10°
Ow
“ l ~—
0 10 Sad DV v 10 |
E 1 ® E e
3 3 | e
L ! 2 s L
1010 1010 e S~
! . \ ~o
=Nguyen-Strodiot 1 =Nguyen-Strodiot
@Nguyen-Strodiot + RTSA o~ o @Nguyen-Strodiot + RTSA
15 @Nguyen-Strodiot + RNA o 15 @Nguyen-Strodiot + RNA
107 20 40 60 80 100 120 0% 50 100 150 200
iterations iterations
(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.12: OutZ45 solved with Nguyen-Strodiot with d3

4.1.4 OutZ46

Source : [26], [15]
Description :

Fla)= <534 843> T (23.%5) ’

-1 0 0
|10 [-10
9 (v) 0 _1lY 5 |

0 1 ~10

g (y,2):=(1 0)y—(0 1)az—(15).

Known solution: z* = (5,9)7.

For both the extrapolated methods we took (0,0) as starting point,
OptimalityTolerance = le — 20 and MaxIterations = 500.

Best parametric choice of Kmax for RTSA
We took for
e Solodov: Nmaz =2, Kmax = 3;

e Nguyen-Strodiot:
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,dllg
,di

,di

: Nmax =5, Kmazx = 9;
: Nmazx = 4, Kmaz = 22;
: Nmax = 3, Kmax = 14;

Best parametric choice of Kmax for RNA

We took for
e Solodov: Nmazx = 2, Kmax = 8;

e Nguyen-Strodiot:

— d}: Nmazx =5, Kmax = 10;
- di: Nmaz = 4, Kmax = 21;
— d}: Nmazx =5, Kmax = 13;

Problem OutZ46, Kmax = 3

Problem OutZ46, Kmax = 8

10° 10°
) ™ el T
1 ! |
» 10° © 10° \ ‘
8 \ ©
S S 1 ‘
] ]
3 1 3 1
4 o O~ | l
1010 \ 1010 - -a k
=Solodov S. ° =Solodov S.
@®Solodov S. + RTSA @®Solodov S. + RTSA l
@Solodov S. + RNA @®Solodov S. + RNA
10-15 10»15
0 5 10 15 5 10 15 20 25 30 35
iterations iterations

(a) Solodov with best Kmazx choice for RTSA  (b)

Figure 4.13: OutZ46

Problem OutZ46, Direction d1 , Kmax = 9

Solodov with best Kmazx choice for RNA

solved with Solodov

Problem OutZ46, Direction d1 , Kmax = 10

10° 10°
f.___ ——
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5 @Nguyen-Strodiot + RNA s @Nguyen-Strodiot + RNA
10 0 20 40 60 80 100 10 0 20 40 60 80 100 120
iterations iterations
(a) Nguyen-Strodiot with best Kmaxz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.14: OutZ46 solved with Nguyen-Strodiot with d},
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Problem OutZ46, Direction d2 , Kmax = 22 05 Problem OutZ46, Direction d2 , Kmax = 21

Residuals
I3 =
% <
1|
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e

2 10°
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10710 ] 1 1
- | 1010
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@Nguyen-Strodiot + RTSA 'y ® @Nguyen-Strodiot + RTSA ~ -~
15 @Nguyen-Strodiot + RNA ~ -0 15 @Nguyen-Strodiot + RNA 2
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iterations iterations
(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.15: OutZ46 solved with Nguyen-Strodiot with d?

105 Problem OutZ46, Direction d3 , Kmax = 14 Problem OutZ46, Direction d3 , Kmax = 13
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(a) Nguyen-Strodiot with best Kmaz choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.16: OutZ46 solved with Nguyen-Strodiot with d3

4.2 RHS

In this class of problem, the feasible set K (x) is defined by
9" (y,x) == By — d + c(x)

where EF € R™*™ is a given matrix, ¢ : R™ — R™? and d € R™”. In this class
of QVIs, the feasible set is defined by linear inequalities in which the right-hand
side depends on .

4.2.1 RHS1A1

Source : [§]
Description :

F(x) :=Ax + b,
Ply) =By — d + C(sin(z"))i-,

where A, b, E, d and C are available in the corresponding Matlab functions
(RHS1A1 differs from RHS1B1 only in the matrix C).

For both the extrapolated methods we took zeros(200,1) as starting point,
OptimalityTolerance = le — 20 and MaxIterations = 500.
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Best parametric choice of Kmax for RTSA
We took for
e Solodov: Nmazx = 2, Kmaz = 14;
e Nguyen-Strodiot:
— d}: Nmax =5, Kmax = 8;
~ d?: Nmax =5, Kmaz = T;

- di: Nmaz =5, Kmax =T,
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmax = 2, Kmaz = 10;

e Nguyen-Strodiot:
- d}c: Nmax =5, Kmax = 12;

- di: Nmaz =5, Kmax = 6;

— d?: Nmax =5, Kmax = 6;

Problem RHS1A1, Kmax = 10

Problem RHS1A1, Kmax = 14
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(a) Solodov with best Kmax choice for RTSA  (b) Solodov with best Kmax choice for RNA

Figure 4.17: RHS1A1 solved with Solodov

Problem RHS1A1, Direction d1 , Kmax = 12
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(a) Nguyen-Strodiot with best Kmax choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.18: RHS1A1 solved with Nguyen-Strodiot with d}.

55



Residuals
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Figure 4.19: RHS1A1 solved
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Figure 4.20: RHS1A1 solved with Nguyen-Strodiot with d;

4.2.2 RHSI1B1

Source : [§]
Description :

F(z) :=Ax + b,

9" (y) =By — d + C(sin(z"))}-,

where A, b, FE, d and C are available in the corresponding Matlab functions.

For both the extrapolated methods we took zeros(200,1) as starting point,
OptimalityTolerance = le — 20 and MaxIterations = 500.

Best parametric choice of Kmax for RTSA

We took for

e Solodov: Nmaz = 2, Kmax = 17,

e Nguyen-Strodiot:

*dllg
,d%

,di

: Nmax =5, Kmazx = §;
: Nmax =5, Kmazx =T,

: Nmax =5, Kmazx =7,
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Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmaz = 2, Kmazxz = 10;
e Nguyen-Strodiot:
— d}: Nmax =5, Kmaz = 12;

- di: Nmax =5, Kmax = 6;

— d?: Nmax =5, Kmax = 6;

Problem RHS1B1, Kmax = 10
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Figure 4.21: RHS1B1 solved with Solodov
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w==Nguyen-Strodiot
@®Nguyen-Strodiot + RTSA
@Nguyen-Strodiot + RNA

105 Problem RHS1B1, Direction d1, Kmax = 8 105
== Nguyen-Strodiot

@®Nguyen-Strodiot + RTSA

@Nguyen-Strodiot + RNA

10° 10°
K 5
3 10% = t 3 10°
g ~- 3
& ~ §*~~~. &
1010 LI b 1010
R
10.150 20 40 60 80 100 10'150 20 40 60 80 100 120 140
iterations iterations
(a) Nguyen-Strodiot with best Kmazx choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.22: RHS1B1 solved with Nguyen-Strodiot with d,lC
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Problem RHS1B1, Direction d2 , Kmax = 7 Problem RHS1B1, Direction d2 , Kmax = 6

4
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Figure 4.23: RHS1B1 solved with Nguyen-Strodiot with d

Problem RHS1B1, Direction d3 , Kmax = 6
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‘@®Nguyen-Strodiot + RTSA
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for RTSA for RNA

Figure 4.24: RHS1B1 solved with Nguyen-Strodiot with d3

4.2.3 RHS2A1

Source : [§]
Description :

F(z) :=Ax + b,
g"(y) =FEy —d+ Cx

where A, b, FE, d and C are available in the corresponding Matlab functions
(RHS2A1 differs from RHS2B1 only in the matrix C).

For both the extrapolated methods we took zeros(200,1) as starting point,
OptimalityTolerance = 1le — 20 and MaxlIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmaz =5, Kmax = 3;

e Nguyen-Strodiot:

— di: Nmazx =5, Kmax = §;
— di: Nmax =5, Kmax =7,

— d?: Nmax =5, Kmax = T;
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Best parametric choice of Kmax for RNA

We took for
e Solodov: Nmaz = 2, Kmazxz = 10;
e Nguyen-Strodiot:
— d}: Nmax =6, Kmaz = 12;
_ di
dj,

: Nmax =5, Kmaz = 6;

: Nmax =5, Kmazx = 6;

Problem RHS2A1, Kmax = 3
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Figure 4.25: RHS2A1 solved with Solodov
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Figure 4.26: RHS2A1 solved

Problem RHS2A1, Direction d1, Kmax = 12
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with Nguyen-Strodiot with d}c
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Problem RHS2A1, Direction d2 , Kmax = 7
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Figure 4.27: RHS2A1 solved

Problem RHS2A1, Direction d3 , Kmax = 7
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Figure 4.28: RHS2A1 solved with Nguyen-Strodiot with d;

4.2.4 RHS2B1

Source : [§]
Description :

F(z) :=Ax + b,
g"(y) =FEy —d+ Cx

where A, b, F, d and C are available in the corresponding Matlab functions.

For both the extrapolated methods we took zeros(200,1) as starting point,
OptimalityTolerance = le — 20 and MaxIterations = 500.

Best parametric choice of Kmax for RTSA

We took for

e Solodov: Nmaz =2, Kmax = 9;

e Nguyen-Strodiot:

- d,le: Nmaz =5, Kmax = §;
— d?: Nmax =5, Kmax = T;
— d2: Nmax =5, Kmax = T;
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Best parametric choice of Kmax for RNA

We took for

e Solodov: Nmaz = 2, Kmazxz = 10;
e Nguyen-Strodiot:

— d}: Nmax =5, Kmaz = 12;
_ di
_ di

: Nmax =5, Kmaz = 6;

: Nmax =5, Kmazx = 6;

Problem RHS2B1, Kmax = 9

10
10%
210°
E}
]
8.0 N
x 10 'Q_
Sl
-~
-4 h“%
107" ==Solodov S.
@Solodov S. + RTSA L
™ @Solodov S. + RNA
0% 5 10 15 20 25 30 35 40
iterations

(a) Solodov with best Kmax choice for RTSA

Problem RHS2B1, Kmax = 10

10
10?
2 10°
3
5 L
a ~
&107? NQ L NN
- -
Q\~
4
107 =mSolodov S.
®Solodov S. + RTSA S
& @Solodov S. + RNA
10% 10 20 30 40 50
iterations

(b) Solodov with best Kmax choice for RNA

Figure 4.29: RHS2B1 solved with Solodov
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Figure 4.30: RHS2B1 solved

Problem RHS2B1, Direction d1, Kmax = 12
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with Nguyen-Strodiot with d,lC
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Problem RHS2B1, Direction d2 , Kmax = 7 Problem RHS2B1, Direction d2 , Kmax = 6
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Figure 4.31: RHS2B1 solved with Nguyen-Strodiot with d3
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Figure 4.32: RHS2B1 solved with Nguyen-Strodiot with d3

4.3 Example

Description :

1/Bi 1/n
. 5000 ; .
Fi(z):=c + <i) + <Q > (;Q —1) i=1,...,nVar,

g'(y) :=[—eye(nVar);eye(nVar)|y + zeros(2 * nVar,nVar)s—
[-ones(nVar,1); 150 x ones(nVar, 1)],
g7 (y, ) :=eye(nVar)y + [ones(nVar) — eye(nVar)]z — 700 * ones(nVar, 1).

where nVar is the number of variables, Q@ = Y, .., ., 2, the coefficients
c(j) :=12—2%j and b(j) :=1.3—j*0.1forj=1,...,nVar,7=5and n = 1.1.

4.3.1 Number of variables: 5

Source : [26], [15]
Known solution :

o ~ (36.9325; 41.8181; 43.7066; 42.6592; 39.1790)

For both the extrapolated methods we took (10;10;10;10;10) as starting
point, OptimalityTolerance = 1le — 10 and MaxIterations = 500.
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Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmazx =2, Kmax =T,
e Nguyen-Strodiot:
— d}: Nmax =5, Kmax = 5;
- di: Nmax =5, Kmax = 6;
- di: Nmaz =5, Kmax = 4;

Best parametric choice of Kmax for RNA
We took for

e Solodov: Nmax = 3, Kmax = 4;

e Nguyen-Strodiot:

- d}c: Nmax = 6, Kmax = 5;
- di: Nmaz =5, Kmax =T,

— d?: Nmax =5, Kmax = 5;

Problem Example, nVar = 5, Kmax = 4
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Figure 4.33: Example of dimension 5 solved with Solodov
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Figure 4.34: Example of dimension 5 solved with Nguyen-Strodiot with dj.
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105Prohlem Example, nVar = 5, Direction d2 , Kmax = 7

104Prnblem Example, nVar = 5, Direction d2 , Kmax = 6
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Figure 4.35: Example of dimension 5 solved with Nguyen-Strodiot with d2
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Figure 4.36: Example of dimension 5 solved with Nguyen-Strodiot with d;

4.3.2 Number of variables: 6
Known solution :

o~ (32.3187; 38.0902; 40.7454; 40.3477; 37.4245; 32.8182).

For both the extrapolated methods we took (10;10;10; 10; 10; 10) as starting
point, OptimalityTolerance = 1le — 10 and MaxIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmaz = 6, Kmax = 2;

e Nguyen-Strodiot:

— d}: Nmax =5, Kmax = 5;

— d2: Nmazx =5, Kmax = 10;

- di: Nmaz =5, Kmax = 4;
Best parametric choice of Kmax for RNA
We took for

e Solodov: Nmazxz = 3, Kmax = 4;
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e Nguyen-Strodiot:
- d,lqz Nmax =5, Kmax = 6;
~ d2: Nmax =5, Kmax = T;

- di: Nmaz =5, Kmax = 6;

Problem Example, nVar = 6, Kmax = 2
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Problem Example, nVar = 6, Kmax = 4
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Figure 4.37: Example of dimension 6 solved with Solodov
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Figure 4.38: Example of dimension 6 solved with Nguyen-Strodiot with d},
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Figure 4.39: Example of dimension 6 solved with Nguyen-Strodiot with d2
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105Prohlem Example, nVar = 6, Direction d3 , Kmax = 6
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Figure 4.40: Example of dimension 6 solved with Nguyen-Strodiot with d

4.3.3 Number of variables: 7

Known solution :

x* & (28.7158; 35.1727; 38.4430; 38.5727; 36.0974; 31.8672; 26.7946).

For both the extrapolated methods we took (10; 10; 10; 10; 10; 10; 10) as start-
ing point, OptimalityTolerance = le — 10 and MaxIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmax = 3, Kmax = 5;

e Nguyen-Strodiot:

— d}: Nmazx =5, Kmax = 4;
— d2: Nmazx =5, Kmax = 11;
— d}i: Nmazx =5, Kmax = 5;
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmazx =5, Kmazx = 2;
e Nguyen-Strodiot:

— d}C: Nmaz =5, Kmax = 6;
- d%: Nmazx =5, Kmax = 12;

— d?: Nmazx =5, Kmax = 6;
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Problem Example, nVar = 7, Kmax = 2

2 Problem Example, nVar = 7, Kmax = 5 5
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Figure 4.41: Example of dimension 7 solved with Solodov
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Figure 4.42: Example of dimension 7 solved with Nguyen-Strodiot with d},
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Figure 4.43: Example of dimension 7 solved with Nguyen-Strodiot with d2
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Figure 4.44: Example of dimension 7 solved with Nguyen-Strodiot with di
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4.3.4 Number of variables: 8
Known solution :

"~ (25.9498; 32.9243; 36.6743; 37.2193; 31.1551; 26.3144; 21.3346)

For both the extrapolated methods we took (10;10;10;10;10;10;10;10) as
starting point, OptimalityTolerance = le — 10 and MaxIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmax =5, Kmaz = 5;

e Nguyen-Strodiot:

— d}j: Nmazx =5, Kmax = 4;
— d2: Nmax =5, Kmax = 6;
- di: Nmax =5, Kmax = 4;
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmax =5, Kmazx = 4;
e Nguyen-Strodiot:
— d}: Nmax =5, Kmax = 6;
- d%: Nmaz = 5, Kmax = 11;

— d¥: Nmax =5, Kmax = 3;

Problem Example, nVar = 8, Kmax = 4

Problem Example, nVar = 8, Kmax =5

Residuals
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Figure 4.45: Example of dimension 8 solved with Solodov
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105Prol:lem Example, nVar = 8, Direction d1 , Kmax = 6
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Figure 4.46: Example of dimension 8 solved with Nguyen-Strodiot with d}.
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Figure 4.47: Example of dimension 8 solved with Nguyen-Strodiot with d3
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Figure 4.48: Example of dimension 8 solved with Nguyen-Strodiot with d;
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4.3.5 Number of variables: 9
Known solution :

o* ~(23.8581; 31.2167; 35.3330; 36.1976; 34.3426; 30.6240; 25.9580; ...
21.1092; 16.5936).

For both the extrapolated methods we took 10*ones(9,1) as starting point,
OptimalityTolerance = le — 10 and MaxIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmax = 4, Kmaz = 8;

e Nguyen-Strodiot:

- d,lqz Nmax =5, Kmax = §;
~ d?: Nmax =5, Kmax = T;

- di: Nmaz =5, Kmax = 10;
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmazxz =7, Kmax = 5;
e Nguyen-Strodiot:
— d}: Nmax =5, Kmax = T;

- d%: Nmaz =5, Kmax = 9;

~ d}: Nmax =5, Kmax = 12;

Problem Example, nVar = 9, Kmax = 8 Problem Example, nVar = 9, Kmax =5
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Figure 4.49: Example of dimension 9 solved with Solodov
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Figure 4.50: Example of dimension 9 solved with Nguyen-Strodiot with d}.
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Figure 4.51: Example of dimension 9 solved with Nguyen-Strodiot with d3
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Figure 4.52: Example of dimension 9 solved with Nguyen-Strodiot with d;
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4.3.6 Number of variables: 10
Known solution :

o* ~(22.2991; 29.9385; 34.3294; 35.4355; 33.7836; 30.2309; 25.6951; ..
20.9433; 16.4959; 12.6327).

For both the extrapolated methods we took 10xones(10, 1) as starting point,
OptimalityTolerance = le — 10 and MaxIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmazx = 16, Kmax = 2;

e Nguyen-Strodiot:

- d,lqz Nmax =5, Kmax = 9;
~ d?: Nmax =5, Kmax = 13;

- di: Nmaz =5, Kmax = 11;
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmax =5, Kmaz = 10;
e Nguyen-Strodiot:

— d}: Nmax =5, Kmax = 6;
- d%: Nmaz =5, Kmax = 12;
~ d}: Nmax =5, Kmax = 23;

Problem Example, nVar = 10, Kmax = 2 Problem Example, nVar = 10, Kmax = 10
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Figure 4.53: Example of dimension 10 solve with Solodov
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Problem Example, nVar = 10, Direction d1, Kmax = 9 Problem Example, nVar = 10, Direction d1, Kmax = 6
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Figure 4.54: Example of dimension 10 solve with Nguyen-Strodiot with d},

wl’?roblem Example, nVar = 10, Direction d2 , Kmax = 13 10Pzrnblem Example, nVar = 10, Direction d2 , Kmax = 12
=Nguyen-Strodiot

‘@Nguyen-Strodiot + RTSA

@Nguyen-Strodiot + RNA

=Nguyen-Strodiot
@®Nguyen-Strodiot + RTSA
@Nguyen-Strodiot + RNA

10° 10°
2102 "y 2107
S S
=] k. =] 1
[ S &10
10 - < 10
« -~ o ~e ~ - k-
3 ) T
100 !\ 10 e )
- °
-8 B 8
10 0 20 40 60 80 100 120 140 10 0 20 40 60 80 100 120 140
iterations iterations

(a) Nguyen-Strodiot with best Kmax choice (b) Nguyen-Strodiot with best Kmax choice
for RTSA for RNA

Figure 4.55: Example of dimension 10 solve with Nguyen-Strodiot with d?
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Figure 4.56: Example of dimension 10 solve with Nguyen-Strodiot with d}
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4.3.7 Number of variables: 11
Known solution :

o* ~(21.1564; 28.9931; 33.5888; 34.8733; 33.3734; 29.9428; 25.5029; ...
20.8223; 16.4248; 12.5945; 9.4331)

For both the extrapolated methods we took 10xones(11,1) as starting point,
OptimalityTolerance = le — 10 and MaxIterations = 500.
Best parametric choice of Kmax for RTSA
We took for

e Solodov: Nmax =5, Kmazx = 12;

e Nguyen-Strodiot:

- d,lqz Nmax =5, Kmax = 1T,
— d?: Nmax =5, Kmax = 14;
- di: Nmaz =5, Kmax = 11;
Best parametric choice of Kmax for RNA
We took for
e Solodov: Nmax =5, Kmaz = 21;
e Nguyen-Strodiot:

— d}: Nmazx =5, Kmax = 21;
- d%: Nmaz =5, Kmax = 31;
— d}: Nmax =5, Kmax = 33;

Problem Example, nVar = 11, Kmax = 21

Problem Example, nVar = 11, Kmax = 12

.Nl'“'

Residuals

Residuals
S

o

2

,_.
e

.““'"b“
=Solodov S. Avay,

10-3 =Solodov S. ®Veany
@®Solodov S. + RTSA @®Solodov S. + RTSA
_, ‘®@Solodov S. + RNA " 104 @Solodov S. + RNA

10 0 20 40 60 80 100 120 140 0 50 100 150 200 250

iterations iterations

(a) Solodov with best Kmax choice for RTSA  (b) Solodov with best Kmax choice for RNA

Figure 4.57: Example of dimension 11 solve with Solodov
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Figure 4.58: Example of dimension 11 solve with Nguyen-Strodiot with d},
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Figure 4.59: Example of dimension 11 solve with Nguyen-Strodiot with d?
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Figure 4.60: Example of dimension 11 solve with Nguyen-Strodiot with d}
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4.4 Concluding Remarks

In this thesis we presented a numerical study for the behavior of two hybrid ex-
tragradient methods, namely Generalized Solodov and Nguyen-Strodiot, and of
two different type of regularized accelerations, namely the Regularized Nonlin-
ear Acceleration (RNA) and the Regularized Topological Shanks Acceleration
(RTSA).

It can be observed that on the one side, Nguyen-Strodiot has a low rate of
convergence if compered to Solodov method but, on the other side it is more
robust, i.e., it works on a larger number of test problems. An example is the
family of RHS test problems where the Nguyen-Strodiot method converges while
the Solodov one does not. Therefore Nguyen-Strodiot can be considered a better
choice in practice.

Regarding the performance between RTSA and RNA we can observe that
RTSA provides robust accelerations performance with respect to the choice of
the Kmax parameter, while RNA needs specific Kmax values in order to have
good results. Furthermore, we observed that, usually, RNA requires a greater
value of K'maz to exhibit a good acceleration performance.

We can conclude that on the problem set we considered, RTSA behaves
better than RNA. Moreover, to conclude, we found that the coupling on Nguyen-
Strodiot with RT'SA strongly improves the robustness and effectiveness of the
latter method.
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Chapter 5

Matlab Codes

In this chapter we show the MATLAB codes that we have written in order to
do the numerical experiments.

5.1 QVILIB quadprog

In this section there is the library of MATLAB codes for the test QVI problems
used for the numerical examples.

5.1.1 OutZ

Listing 5.1: OutZ40new.m

function out = OutZ40_new (i, x)

% QVILIB test problem OutZ40 [LBB/A/2—4—0—2-0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
% TEST PROBLEMS

Authors: Facchinei F., Kanzow C., Sagratella S.

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Input arguments:
i: function

flag;

it must be an integer between 0 and 7
x: input vector of dimension (nVar,l)

Description: <QVI name> = OutZ40_new

<QVI name>(0)

initializes nVar (= number of
variables), nlneq (= number of
inequality constraints), nEq (= number
of equality constraints), nIneqlnd

(= number of inequality constraints
that do not depend on x), nEqlnd

(= number of equality constraints that
do not depend on x), and the data
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22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

% defining the problem which are used

% when invoking <QVI name> with other

% flags; it must be the first <QVI name>
% function call and should be called

% only one time

%o

% out = <QVI name>(1,x) returns a vector of dimension
% (nVar,1) containing F(x)

%

% out = <QVI name>(2) returns a vector of dimensions
% (nVar,1) containing the lower

% bounds for the variable x

%

% out = <QVI name>(3) returns a vector of dimensions
% (nVar,1) containing the upper

% bounds for the variable x

%o

% out = <QVI name>(4) returns a sparse matrix of

% dimensions (nIneq—nIneqlnd ,nVar)
% containing A of Ay <= b(x);

%

% out = <QVI name>(5,x) returns a vector of

% dimensions (nIneq—nlIneqlnd ,nVar)
% containing b(x)of Ay <= b(x);

%

% out = <QVI name>(6) returns a sparse matrix of

% dimensions (nEq,nVar)

% containing M of My = v(x);

% the first nEqglnd rows refer to the
% those constraints that do not

% depend on x

%

% out = <QVI name>(7,x) returns a vector of dimension
% (nEq,1) containing v(x) of

% My = v(x);

% the first nEqInd components refer
% to the those constraints that do
% not depend on x

%

%

% Problem definition

global nVar nlneq nEq nlneqlnd nEqlnd QVItestA QVlItestb;
switch i

case 0

nVar = 2;
nlneq = 6;
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T2

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

106

107

108

109

nlneqlnd = 4;
nEqlnd = 0;

QVItestA = sparse([2 8/3; 5/4 2]);
QVItestb = [—34; —24.25];

case 1
% Function F
out = QVItestAxx + QVItestb;

case 2
% Bound constrains [1,u]: lower bound I
out = zeros(nVar,1);
case 3
% Bound constrains [l,u]: upper bound u
out = llxones(nVar,1);
case 4
% Linear constraints Ay<=b: matrix A
out = eye(nVar);
case 9
% Linear constraints Ay<=b: known term b
out = 1bxomnes(nVar,1)—(ones(nVar)—eye(nVar))*x;
case 6
% Equalities constraints My=v: matrix M
out = [];
case 7
% Equalities constraints My=v: known term v
out = [];
end
return
Listing 5.2: OutZ41lnew.m
function out = OutZ41l_new(i,x)

% QVILIB test problem OutZ41l [LBB-A—2—4-0—2—0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY

% TEST PROBLEMS

% Authors: Facchinei F., Kanzow C., Sagratella S.
%

% Input arguments:

% i: function flag;
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11
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17
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20

21
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23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

%o
%
%
%
%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%o
%
%
%o
%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%o
%
%
%o
%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%o
%

X

it must

be an integer between 0 and 7

input vector of dimension (nVar,1)

Description: <QVI name> = OutZ41_new

<QVI name>(0) initializes nVar (= number of

out

out

out

out

out

out

out

= <QVI

= <QVI

= <QVI

= <QVI

= <QVI

= <QVI

= <QVI

variables), nlneq (= number of
inequality constraints), nEq (= number
of equality constraints), nIneqlnd

(= number of inequality constraints
that do not depend on x), nEqlnd

(= number of equality constraints that
do not depend on x), and the data
defining the problem which are used
when invoking <QVI name> with other
flags; it must be the first <QVI name>
function call and should be called
only one time

name>(1,x) returns a vector of dimension
(nVar,1) containing F(x)

name>(2) returns a vector of dimensions
(nVar,1) containing the lower
bounds for the variable x

name>(3) returns a vector of dimensions
(nVar,1) containing the upper
bounds for the variable x

name>(4) returns a sparse matrix of
dimensions (nIneq—nIneqInd ,nVar)
containing A of Ay <= b(x);

name>(5,x) returns a vector of
dimensions (nIneq—nIneqInd ,nVar)
containing b(x)of Ay <= b(x);

name>(6) returns a sparse matrix of
dimensions (nEq,nVar)
containing M of My = v(x);
the first nEqlnd rows refer to the
those constraints that do not
depend on x

name>(7,x) returns a vector of dimension
(nEq,1) containing v(x) of
My = v(x);
the first nEqglnd components refer
to the those constraints that do
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%
%

% Problem definition
global nVar nlneq nEq nlneqlnd nEqlnd QVItestA QVItestb;
switch i

case 0
nVar = 2;
nlneq = 6;
nEq = 0;
nlneqlnd = 4;
nEqlnd = 0;

QVItestA = sparse([2 8/3; 5/4 2]);
QVTItestb [—100/3; —22.5];

case 1
% Function F
out = QVItestAxx + QVItestb;

case 2
% Bound constrains [1,u]: lower bound 1
out = zeros(nVar,1);

case 3
% Bound constrains [1,u]: upper bound u
out = 1llxones(nVar,1);

case 4

% Linear constraints Ay<=b: matrix A
out = eye(nVar);

case b
% Linear constraints Ay<=b: known term b
out = [15; 20]—(ones(nVar)—eye(nVar))x*x;

case 6
% Equalities constraints My=v: matrix M
out = [];

case 7
% Equalities constraints My=v: known term v
out = [];

end
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)

treturn
Listing 5.3: OutZ45new.m
function out = OutZ45_new(i,x)
% QVILIB test problem OutZ45 [LBB/A/2—4—0—2—0]
% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
% TEST PROBLEMS
% Authors: Facchinei F., Kanzow C., Sagratella S.
%
% Input arguments:
% i: function flag;
% it must be an integer between 0 and 7
% x: input vector of dimension (nVar,1)
%
% Description: <QVI name> = OutZ45_new
%
% <QVI name>(0) initializes nVar (= number of
% variables), nlneq (= number of
% inequality constraints), nEq (= number
% of equality constraints), nlneqlnd
% (= number of inequality constraints
% that do not depend on x), nEqlnd
% (= number of equality constraints that
% do not depend on x), and the data
% defining the problem which are used
% when invoking <QVI name> with other
% flags; it must be the first <QVI name>
% function call and should be called
% only one time
%
% out = <QVI name>(1,x) returns a vector of dimension
% (nVar,1) containing F(x)
%
% out = <QVI name>(2) returns a vector of dimensions
% (nVar,1) containing the lower
% bounds for the variable x
%
% out = <QVI name>(3) returns a vector of dimensions
% (nVar,1) containing the upper
% bounds for the variable x
%
% out = <QVI name>(4) returns a sparse matrix of
% dimensions (nIneq—nIneqlnd ,nVar)
% containing A of Ay <= b(x);
%
% out = <QVI name>(5,x) returns a vector of
% dimensions (nIneq—nIneqlnd ,nVar)
% containing b(x)of Ay <= b(x);
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%

% out = <QVI name>(6) returns a sparse matrix of

% dimensions (nEq,nVar)

% containing M of My = v(x);

% the first nEqlnd rows refer to the
% those constraints that do not

% depend on x

%

% out = <QVI name>(7,x) returns a vector of dimension
% (nEq,1) containing v(x) of

% My = v(x);

% the first nEqlnd components refer
% to the those constraints that do
% not depend on x

%

%

% Problem definition
global nVar nlneq nEq nlneqlnd nEqlnd QVItestA QVItestb;
switch i

case 0
nVar = 2;
nlneq = 6;
nEq = 0;
nlneqlnd = 4;
nEqlnd = 0;

QVItestA = sparse([2 8/3; 5/4 2]);
QVItestb [—34; —24.25];

case 1
% Function F
out = QVItestAxx + QVItestb;

case 2
% Bound constrains [1,u]: lower bound 1
out = zeros(nVar,1);

case 3
% Bound constrains [l,u]: upper bound u
out = 10xones(nVar,1);

case 4

% Linear constraints Ay<=b: matrix A
out = eye(nVar);

case 9
% Linear constraints Ay<=b: known term b
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out = 15*ones(nVar,1)—(ones(nVar)—eye(nVar) ) xx;

case 6
% Equalities constraints My=v: matrix M
out = [];
case 7
% Equalities constraints My=v: known term v
out = [];
end
return
Listing 5.4: OutZ46new.m
function out = OutZ46_new(i,x)

% QVILIB test problem OutZ46 [LBB/A/2—4—0—2—0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
% TEST PROBLEMS

% Authors: Facchinei F., Kanzow C., Sagratella S.

%

% Input arguments:

% i: function flag;

% it must be an integer between 0 and 7
% x: input vector of dimension (nVar,1)

%

% Description: <QVI name> = OutZ45_new

%
% <QVI name>(0)
%

initializes nVar (= number of
variables), nlneq (= number of

% inequality constraints), nEq (= number
% of equality constraints), nIneqlnd

% (= number of inequality constraints

% that do not depend on x), nEqlnd

% (= number of equality constraints that
% do not depend on x), and the data

% defining the problem which are used

% when invoking <QVI name> with other

% flags; it must be the first <QVI name>
% function call and should be called

% only one time

%

% out = <QVI name>(1,x) returns a vector of dimension
% (nVar,1) containing F(x)

%

% out = <QVI name>(2) returns a vector of dimensions
% (nVar,1) containing the lower
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% bounds for the variable x

%

% out = <QVI name>(3) returns a vector of dimensions
% (nVar,1) containing the upper

% bounds for the variable x

%o

% out = <QVI name>(4) returns a sparse matrix of

% dimensions (nIneq—nIneqInd ,nVar)
% containing A of Ay <= b(x);

%

% out = <QVI name>(5,x) returns a vector of

% dimensions (nIneq—nlIneqlnd ,nVar)
% containing b(x)of Ay <= b(x);

%

% out = <QVI name>(6) returns a sparse matrix of

% dimensions (nEq,nVar)

% containing M of My = v(x);

% the first nEqInd rows refer to the
% those constraints that do not

% depend on x

%o

% out = <QVI name>(7,x) returns a vector of dimension
% (nEq,1) containing v(x) of

% My = v(x);

% the first nEqInd components refer
% to the those constraints that do
% not depend on x

%

%

% Problem definition
global nVar nlneq nEq nlneqlnd nEqlnd QVItestA QVItestb;
switch i

case 0
nVar = 2;
nlneq = 5;
nEq = 0;
nlneqlnd = 4;
nEqlnd = 0;

QVItestA = sparse([2 8/3; 5/4 2]);
QVItestb = [—34; —24.25];

case 1
% Function F
out = QVItestAxx + QVItestb;

case 2
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% Bound constrains [l,u]: lower bound 1
out = [0; 2];

case 3
% Bound constrains [l,u]: upper bound u
out = 10xones(nVar,1);

case 4
% Linear constraints Ay<=b: matrix A
out = [1 0];

case 9

% Linear constraints Ay<=b: known term b
out = 15—[0 1]*x;

case 6
% Equalities constraints My=v: matrix M
out = [];

case 7
% Equalities constraints My=v: known term v

out = [];

end

return

5.1.2 RHS

Listing 5.5: RHS1Alnew.m

function out = RHS1Al new(i,x)

% QVILIB test problem RHS1A1 [LAL-A—200—0-—0-—199-0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
% TEST PROBLEMS

% Authors: Facchinei F., Kanzow C., Sagratella S.

%

% Input arguments:

% i: function flag;

% it must be an integer between 0 and 7

% x: input vector of dimension (nVar,1)

%

% Description: <QVI name> = RHS1A1 new

%

% <QVI name>(0) initializes nVar (= number of

% variables), nlneq (= number of

% inequality constraints), nEq (= number
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% of equality constraints), nlneqlnd

% (= number of inequality constraints

% that do not depend on x), nEqlnd

% (= number of equality constraints that
% do not depend on x), and the data

% defining the problem which are used

% when invoking <QVI name> with other

% flags; it must be the first <QVI name>
% function call and should be called

% only one time

%

% out = <QVI name>(1,x) returns a vector of dimension
% (nVar,1) containing F(x)

%

% out = <QVI name>(2) returns a vector of dimensions
% (nVar,1) containing the lower

% bounds for the variable x

%

% out = <QVI name>(3) returns a vector of dimensions
% (nVar,1) containing the upper

% bounds for the variable x

%

% out = <QVI name>(4) returns a sparse matrix of

% dimensions (nIneq—nIneqlnd ,nVar)
% containing A of Ay <= b(x);

%

% out = <QVI name>(5,x) returns a vector of

% dimensions (nIneq—nlIneqlnd ,nVar)
% containing b(x)of Ay <= b(x);

%

% out = <QVI name>(6) returns a sparse matrix of

% dimensions (nEq,nVar)

% containing M of My = v(x);

% the first nEqlnd rows refer to the
% those constraints that do not

% depend on x

%

% out = <QVI name>(7,x) returns a vector of dimension
% (nEq,1) containing v(x) of

% My = v(x);

% the first nEqlnd components refer
% to the those constraints that do
% not depend on x

%

%

% Problem definition

global nVar nlneq nEq nlneqlnd nEqlnd;
global QVItestA QVItestb QVItestE QVItestC QVItestd;
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switch i

case 0
nVar = 200;
nlneq = nVar—1;
nEq = 0;
nlneqlnd = 0;
nEqlnd = 0;

load RHS1Al.dat —mat

QVItestb = 10*ones(nVar,1);
QVItestd = 10%ones(nlneq,1);
a = 0.5;
QVItestC = axQVItestC;

case 1

% Function F

bound 1

bound u

matrix A

matrix M

known term v

out = QVItestAxx + QVItestb;
case 2
% Bound constrains [l,u]: lower
out = [];
case 3
% Bound constrains [1l,u]: upper
out = [];
case 4
% Linear constraints Ay<=b:
out = QVItestE;
case 9
% Linear constraints Ay<=b: known term b
out = QVItestd—QVItestCxsin (x);
case 6
% Equalities constraints My=v:
out = [];
case 7
% Equalities constraints My=v:
out = [];
end
return
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Listing 5.6: RHS1Blnew.m

function out = RHS1Bl new(i,x)

% QVILIB test problem RHSIB1 [LAL-A-—200—0—0-—199—0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
% TEST PROBLEMS

% Authors: Facchinei F., Kanzow C., Sagratella S.

%

% Input arguments:

% i: function flag;

% it must be an integer between 0 and 7

% x: input vector of dimension (nVar,1)

%

% Description: <QVI name> = RHS1B1 new

%

% <QVI name>(0) initializes nVar (= number of

% variables), nlneq (= number of

% inequality constraints), nEq (= number
% of equality constraints), nlneqlnd

% (= number of inequality constraints

% that do not depend on x), nEqlnd

% (= number of equality constraints that
% do not depend on x), and the data

% defining the problem which are used

% when invoking <QVI name> with other

% flags; it must be the first <QVI name>
% function call and should be called

% only one time

%

% out = <QVI name>(1,x) returns a vector of dimension
% (nVar,1) containing F(x)

%

% out = <QVI name>(2) returns a vector of dimensions
% (nVar,1) containing the lower

% bounds for the variable x

%

% out = <QVI name>(3) returns a vector of dimensions
% (nVar,1) containing the upper

% bounds for the variable x

%

% out = <QVI name>(4) returns a sparse matrix of

% dimensions (nIneq—nIneqlnd ,nVar)
% containing A of Ay <= b(x);

%

% out = <QVI name>(5,x) returns a vector of

% dimensions (nIneq—nlIneqlnd ,nVar)
% containing b(x)of Ay <= b(x);

%

% out = <QVI name>(6) returns a sparse matrix of

% dimensions (nEq,nVar)

89




49

50

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

% containing M of My = v(x);

% the first nEqInd rows refer to the
% those constraints that do not

% depend on x

%

% out = <QVI name>(7,x) returns a vector of dimension
% (nEq,1) containing v(x) of

% My = v(x);

% the first nEqlnd components refer
% to the those constraints that do
% not depend on x

%

%

% Problem definition

global nVar nlneq nEq nlneqInd nEqlnd;
global QVItestA QVItestb QVItestE QVItestC QVItestd;

switch 1

case 0
nVar = 200;
nlneq = nVar—1;
nEq = 0;
nlneqlnd = 0;
nEqlnd = 0;
load RHS1B1.dat —mat
QVItestb = 10xones(nVar,1) ;
QVItestd = 10%ones(nlneq,1);
case 1
% Function F
out = QVItestAxx + QVItestb;

case 2
% Bound constrains [l,u]: lower bound 1
out = [];

case 3
% Bound constrains [1,u]: upper bound u
out = [];

case 4

% Linear constraints Ay<=b: matrix A
out = QVItestE;

case 5
% Linear constraints Ay<=b: known term b
out = QVItestd—QVItestCxsin (x);
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case 6
% Equalities constraints My=v: matrix M

out = [];

case 7
% Equalities constraints My=v: known term v

out = [];

end

return

Listing 5.7: RHS2A1new.m

function out = RHS2Al new(i,x)

% QVILIB test problem RHS2A1 [LAL-A-200—0—0-199—0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
TEST PROBLEMS

Authors: Facchinei F., Kanzow C., Sagratella S.

%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%o
%
%
%o
%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%o
%

Input arguments:

i: function flag;
it must be an integer between 0 and 7
x: input vector of dimension (nVar,1)

Description: <QVI name> = RHS2A1 new

<QVI name>(0)

initializes nVar (= number of
variables), nlneq (= number of
inequality constraints), nEq (= number
of equality constraints), nlneqlnd

(= number of inequality constraints
that do not depend on x), nEqlnd

(= number of equality constraints that
do not depend on x), and the data
defining the problem which are used
when invoking <QVI name> with other
flags; it must be the first <QVI name>
function call and should be called
only one time

out = <QVI name>(1,x) returns a vector of dimension

(nVar,1) containing F(x)

out = <QVI name>(2) returns a vector of dimensions

(nVar,1) containing the lower
bounds for the variable x
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

% Problem

out

out

out

out

out

<QVI

<QVI

<QVI

<QVI

<QVI

name>(3) returns a vector of dimensions
(nVar,1) containing the upper
bounds for the variable x

name>(4) returns a sparse matrix of
dimensions (nIneq—nlIneqlnd ,nVar)
containing A of Ay <= b(x);

name>(5,x) returns a vector of
dimensions (nIneq—nIneqlnd ,nVar)
containing b(x)of Ay <= b(x);

name>(6) returns a sparse matrix of
dimensions (nEq,nVar)
containing M of My = v(x);
the first nEqglnd rows refer to the
those constraints that do not
depend on x

name>(7,x) returns a vector of dimension
(nEq,1) containing v(x) of
My = v(x);
the first nEqlnd components refer
to the those constraints that do
not depend on x

definition

global nVar nlneq nEq nlneqlnd nEqlnd;
global QVItestA QVItestb QVItestE QVItestC QVItestd;

switch i

case 0
nVar = 200;
nVar—1;

nlneq =
nEq = 0;

nlneqlnd = 0;

nEqlnd = 0;

load RHS2A1.dat —mat

QVItestb
QVItestd
a = 0.5;
QVItestC

case 1

= 10*omnes(nVar,1)
= 10x*ones(nlneq,1

)

= axQVItestC;

% Function F
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out = QVItestAxx + QVItestb;

case 2
% Bound constrains [1,u]: lower bound 1
out = [];

case 3
% Bound constrains [1,u]: upper bound u
out = [];

case 4

% Linear constraints Ay<=b: matrix A
out = QVItestE;

case 5
% Linear constraints Ay<=b: known term b
out = QVItestd—QVItestCx*x;

case 6
% Equalities constraints My=v: matrix M
out = [];

case 7
% Equalities constraints My=v: known term v
out = [];

end

return

Listing 5.8: RHS2B1lnew.m

function out = RHS2Bl.new(i,x)

% QVILIB test problem RHS2A1 [LAL-A-200—0—0—199-0]

% From: QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY
% TEST PROBLEMS

% Authors: Facchinei F., Kanzow C., Sagratella S.

%

% Input arguments:

% i: function flag;

% it must be an integer between 0 and 7

% x: input vector of dimension (nVar,1)

%

% Description: <QVI name> = RHS2B1_new

%

% <QVI name>(0) initializes nVar (= number of

% variables), nlneq (= number of

% inequality constraints), nEq (= number
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% of equality constraints), nlneqlnd

% (= number of inequality constraints

% that do not depend on x), nEqlnd

% (= number of equality constraints that
% do not depend on x), and the data

% defining the problem which are used

% when invoking <QVI name> with other

% flags; it must be the first <QVI name>
% function call and should be called

% only one time

%

% out = <QVI name>(1,x) returns a vector of dimension
% (nVar,1) containing F(x)

%

% out = <QVI name>(2) returns a vector of dimensions
% (nVar,1) containing the lower

% bounds for the variable x

%

% out = <QVI name>(3) returns a vector of dimensions
% (nVar,1) containing the upper

% bounds for the variable x

%

% out = <QVI name>(4) returns a sparse matrix of

% dimensions (nIneq—nIneqlnd ,nVar)
% containing A of Ay <= b(x);

%

% out = <QVI name>(5,x) returns a vector of

% dimensions (nIneq—nlIneqlnd ,nVar)
% containing b(x)of Ay <= b(x);

%

% out = <QVI name>(6) returns a sparse matrix of

% dimensions (nEq,nVar)

% containing M of My = v(x);

% the first nEqlnd rows refer to the
% those constraints that do not

% depend on x

%

% out = <QVI name>(7,x) returns a vector of dimension
% (nEq,1) containing v(x) of

% My = v(x);

% the first nEqlnd components refer
% to the those constraints that do
% not depend on x

%

%

% Problem definition

global nVar nlneq nEq nlneqlnd nEqlnd;
global QVItestA QVItestb QVItestE QVItestC QVItestd;

94




67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

101

102

103

104

106

107

108

109

111

switch i

case 0
nVar = 200;
nlneq = nVar—1;
nEq = 0;
nlneqlnd = 0;
nEqlnd = 0;

load RHS2B1.dat —mat
QVItestb = 10*ones(nVar,1);
QVItestd = 10%ones(nlneq,1);
case 1

% Function F

bound 1

bound u

matrix A

matrix M

known term v

out = QVItestAxx + QVItestb;
case 2
% Bound constrains [l,u]: lower
out = [];
case 3
% Bound constrains [1,u]: upper
out = [];
case 4
% Linear constraints Ay<=b:
out = QVItestE;
case 9
% Linear constraints Ay<=b: known term b
out = QVItestd—QVItestCx*x;
case 6
% Equalities constraints My=v:
out = [];
case 7
% Equalities constraints My=v:
out = [];
end
return
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5.1.3 Example

Listing 5.9: Examplegenerator.m

function out = Example_generator (i ,nVar,x)

% Test problem Example 2

% From: Some projection—like methods for the generalized
% Nash equilibria

% Authors: Jianzhong Zhang, Biao Qu, Naihua Xiu

%

% Input arguments:

% i: function flag;

% it must be an integer between 0 and 7
% x: input vector of dimension (nVar,1)

% nVar: number of variables

%

% Description: <QVI name> = Example_generator
%
% <QVI name>(0,nVar) initializes nIneq (= number of

% inequality constraints), nEq

% (= number of equality constraints),
% nIneqInd (= number of inequality
% constraints that do not depend on
% x), nEqInd (= number of equality
% constraints that do not depend on
% x), and the data defining the

% problem which are used when

% invoking <QVI name> with other

% flags; it must be the first

% <QVI name> function call

% and should be called only one time
%

% out = <QVI name>(1,nVar,x) returns a vector of

% dimension (nVar,1) containing F(x)
%

% out = <QVI name>(2,nVar) returns a vector of

% dimensions (nVar,1)

% containing the lower bounds

% for the variable x

%

% out = <QVI name>(3,nVar) returns a vector of

% dimensions (nVar,1)

% containing the upper bounds

% for the variable x

%

% out = <QVI name>(4,nVar) returns a sparse matrix of
% dimensions (nIneq—nlIneqlnd ,nVar)
% containing A of Ay <= b(x);

%

% out = <QVI name>(5,nVar,x) returns a vector of
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% dimensions (nIneq—nlIneqlnd ,nVar)

% containing b(x) of Ay <= b(x);
%

% out = <QVI name>(6,nVar) returns a sparse matrix of
% dimensions (nEq,nVar) containing
% M of My = v(x); the first nEqInd
% rows refer to the those

% constraints that do not depend
% on x

%

% out = <QVI name>(7,nVar,x) returns a vector of

% dimension (nEq,1) containing

% v(x) of My = v(x); the first

% nEqInd components refer to the
% those constraints that do not

% depend on x

%

%

% Problem definition
global nlneq nEq nlneqInd nEqlnd c¢ b;

switch i

case 0
nlneq = 3*nVar;
nEq = 0;
nlneqlnd = 2*nVar;
nEqlnd = 0;

for j=1:nVar
c(j) = 12=2xj;
b(j) = 1.3—jx0.1;
end

case 1
% Function F
Q = sum(x);
out = zeros(nVar,1);
for j=1:nVar
out (j) = c¢(j)+(x(j)/5)"(1/b(j))+(5000/Q)"(1/1.1)
*(x(j)/(1.1%Q) —1);

end

case 2
% Bound constrains [l,u]: lower bound 1
out = omnes(nVar,1);

case 3

% Bound constrains [l,u]: upper bound u
out = 150*ones(nVar,1);
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case 4
% Linear constraints Ay<=b: matrix A
out = eye(nVar);

case 5
% Linear constraints Ay<=b: known term b
out = 700*ones(nVar,1)—(ones(nVar)—eye (nVar) )*x;

case 6
% Equalities constraints My=v: matrix M
out = [];

case 7
% Equalities constraints My=v: known term v
out = [];

end

return

5.2 Hybrid Extragradient Methods

In this section there are the MATLAB codes of Generalized Solodov and Nguyen-
Strodiot.

Listing 5.10: Solodov.m

function [xn,residuals] = Solodov_quadprog(x0,F,A b, Aeq,
beq,1b ,ub,nVar,gamma, theta ,c,options)

% Algorithm 1b from

% *A new class of hybrid extragradient algorithms for

% solving quasi—equilibrium problemsx

% by J.J. Strodiot, T.T.V. Nguyen, V.H. Nguyen

%

% Solodov_quadprog returns the next terms of the sequence

% genereted from algorithm 1b x_{n}=F(x_{n—1})

% and its residuals

%

% Input arguments:

% x0 = previus terms of the sequence

% F = function of QVI, that is F(x) T(y—x)\geq 0
% A = inequality constraints of QVI's domain,

% , 1.e., Ax <= b(x)

% b = known term of the inequality constrains,
%o that is b(x)

% Aeq = equality constraints of QVI's domain,
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% , i.e., Aeqxx = beq(x)

% beq = known term of the equality constrains,
% that is beq(x)

% Ib = lower bound for the variable x

% ub = upper bound for the variable x

% nVar = number of variables

% theta ,sigma,c = parameters of Alg 1b

% options = optioptions (...) in order to make work
% quadprog

%

% Output arguments:

% xn = next term of the sequence

% residuals = ||x0-P_{K(x0) } (x0-F(x0)) ||

k = —1;

)

% Prediction step [coicides with PK(x_k)(x-k-F(x_k))]

xx0 = quadprog(eye(nVar) ,F(x0)—x0,A,b(x0) ,Aeq,beq(x0),1b,

ub,x0,options);
rx = x0—xx0;
residuals = norm(rx,2);

% Line search

while (k = -1 || sx < dx) && (k<30)
k = k+1;
z0 = (I1—theta"k)*x04+(theta "k)*xx0;
Fz0 = F(z0);
sx = Fz0'*xrx;
dx = cxresiduals " 2;

end

disp (['k = ' ,num2str(k, '%d')])

% Computing x_(k+1): projection on K(x_k) intersected

% with hyperplane Hk = {x: <F(z_k) ,x—z_k> <=0}

Aa = [A;Fz0'];

Bb = [b(x0);Fz0"'%z0];

sigma = (Fz0'+*(x0—20))/norm(Fz0,2) "2;

xn = quadprog(eye (nVar) ,gammaxsigma*Fz0—x0,Aa,Bb, Aeq,
beq(x0),lb,ub,x0,options);

end
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Listing 5.11: NguyenStrodiot.m

function [xn,residuals] = NguyenStrodiot_quadprog(x0,F A,
b,Aeq,beq,lb ,ub,nVar,gamma, elle ,ro,rol ,mu,c,options)

% Algorithm QVI from

% *A class of hybrid methods for quasi—variational
inequalitiesx

% by J.J. Strodiot, T.T.V. Nguyen, V.H. Nguyen,

% T.P.D. Nguyen

%

% Hybrid_methods_quadprog returns the next terms of the
% sequence genereted from algorithm x_{n}=F(x_{n—1})
% and its residuals

%

% Input arguments:

% x0 = previus terms of the sequence

%o F = function of QVI, that is F(x) T(y—x)\geq 0
% A = inequality constraints of QVI's domain,

% , i.e., Ax <= b(x)

% b = known term of the inequality constrains,
% that is b(x)

% Aeq = equality constraints of QVI's domain,

% , i.e., Aeqxx = beq(x)

% beq = known term of the equality constrains,
% that is beq(x)

% Ib = lower bound for the variable x

% ub = upper bound for the variable x

% nVar = number of variables

% gamma, elle ,ro,rol ,mu,c = parameters of Alg QVI
% options = optioptions (...) in order to make work
% quadprog

%

% Output arguments :

% xn = next term of the sequence

%o residuals = ||x0-P_{K(x0) }(x0-F(x0)) ||

k=—-1; sx = 0; dx = —1;

% Prediction step z_k = PK(x_k)(x_k—F(x_k))

z0 = quadprog(eye(nVar) ,F(x0)—x0,A,b(x0) ,Aeq,beq(x0),1b,
ub,x0,options);

rx = x0-z0;

residuals = norm(rx,2);

% Line search
while (sx > dx) & (k<30)
k = k+1;
y0 = (1—gammaxelle "k)*x04(gammaxelle "k)*z0;
sx = (F(x0)-F(y0)) '*rx;
dx = cx*residuals "2;
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end

disp (['k = ' ,num2str(k, '%d')])
beta = gammaxelle "k;

% Computing descent direction

d-k = x0—y0+F(y0) ; %d1

%d_k = x0—y0+F(x0)+F(y0);  %d2

%d_k = x0—y0—betax(F(x0)-F(y0)/beta); %d3
d_bar = ro/(14+r0)*(x0-y0)+1/(14+r0)*d_k;

% Computing hyperplane

% Hk = {x: <d_bar ,x_k-x> = alphaxbetax||d_bar|| 2}

alpha = ((1—rolx(ro/4*mu))*norm(x0—y0,2) "2—rolxbetax(F(x0
)=F(y0)) '*(x0—y0)) /(beta 2xnorm(d_bar ,2) "2);

% Computing x_(k+1): projection on K(x_k)
xn = quadprog(eye(nVar),—(x0—alphaxbetaxd_bar) ,A,b(x0),
Aeq,beq(x0),1b ,ub,x0,options);

end

5.3 Accelerated Methods

In this sections there are the MATLAB codes for Solodov and Nguyen-Strodiot
methods accelerated with regularized nonlinear acceleration (RNA) and regu-
larized topological Shanks acceleration (RTSA).

5.3.1 RNA

Listing 5.12: RNA.m

function [x_extr, c¢] = RNA(X, lambda)

% Regularized Nonlinear Acceleration (RNA) Alg2 from

% *Regularized Nonlinear Accelerationx

% by Damien Scieur , Alexandre d'Aspremont, Francis Bach

% RNA returns the approximation

% sum_{i=0}"{k}(cx_{lambda})_{i}x_{i} of the

% sequence {x_{i}} generated by x_{i}= G(x_{i—1}) where
% G is a fixed—point method

%

% Input arguments:

% X = [x0,x1,...,x_{2«xKmax+1}]

% lambda = regularization parameter, it must be >0
%

% Output arguments:
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%
%
%

%o
%
R
R
R

k

x_extr = approximation
sum_{i=0}"{k}(c*_{lambda}) _{i}x_{i}
¢ = vector of coefficient (cx_{lambda})_{i}
Computing R = [r.0,r_1,...,r_k] where
roi:=R(:,1) = X(:,i+1)— X(:,1)
= diff (X,1,2);
= R'*R;
= R/norm (R); % normalized
= size (R,2);

matrix = (R + eye(k)=*lambda);

%
c
c

%

Coefficient
= matrix\ones (k,1);
= c¢/sum(c);

Approximation

x_extr = X(:,2:end)*c;

end

Listing 5.13: RegularizedSolodovRNA.m

%% Solodov implemented with regularized nonlinear

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

acceleration

Regularized Nonlinear Acceleration (RNA) Alg2 from
xRegularized Nonlinear Accelerationx
by Damien Scieur, Alexandre d'Aspremont, Francis Bach

QVI formulation (Latex notation used):
find x such that: g(x,x) \leq 0,
M(x)x+v(x) = 0 and
F(x)"T (y—=x)\geq 0,
for all y such that
g(y,x)\leq 0 and M(x)y+v(x) = 0
where
F(x):\Re {nVar}\to\Re {nVar}
g(y,x):\Re " {nVar}\times
\Re " {nVar}\to\Re {nlneq}
M(x):\Re " {nVar}\to
\Re"{nEq\times nVar}
v(x):\Re " {nVar}\to\Re {nEq}

Note that some of the constraints
g(y,x)\leq 0 and M(x)y+v(x) = 0
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% may actually be independent of x.
% The constraints are always

% ordered so that these constraints
% independent of x are the first

% ones. For example

% gly,x) = [ gl(y); g2(yv,x) |

%

%% Problem Definition

clear all;

close all;

cle

addpath (' .../ QVILIB_quadprog")
Method_name = ' _Solodov';
QVIname = 'RHS2A1 new';
QVIproblem = QRHS2A1 new;

% Generating data files for some large scale problems of
% QVILIB

% N.B. necessary only for RHS QVI type problems
QVILibGenData (QVIname)

% Initialization of the data defining the problem
QVIproblem (0)

% Starting point
number = 1;
x0 = startingPoints (QVIname, number) ;

% Function
F = @(x)QVIproblem (1,x);
nVar = size (F(x0),1);

% Equality constraints
Aeq = QVIproblem (6) ;
beq = @(x)QVIproblem (7,x);

% Inequality constraints
A = QVlIproblem (4) ;
b = @Q(x)QVIproblem (5,x) ;

% Bound constraints
b = QVIproblem (2);
ub = QVlIproblem (3) ;

% Residuals

residuals_ RNA = []; % residuals from the Solodov_.RNA
alg
residuals = []; % residuals from the standard

103




72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

102

103

104

105

106

107

108

109

Solodov

%% QVI_algorithm accelerated

% Algorithm Initialization

% Parameters

gamma = 1.99;

theta = 0.5;

c = 0.5;

iter = 0;

options = optimoptions('quadprog
point—convex ',

‘OptimalityTolerance' ,1e—20,' MaxIterations' ,500);

, " Algorithm','interior —

% Set number of outer loops
Nmax = 5;

% Set number of inner loops
Kmax = 3;

% Set the total number of cycles for the original
sequence

TOT = Nmax* (2*Kmax+1) ;

% Set regularization parameter

info .lambdaRange=[1, le—14];
lambda_min = min(info.lambdaRange) ;
lambda_max = max(info.lambdaRange) ;

% Computing grid
lambdavec = [0, logspace(logl0(lambda_min),logl0(
lambda_max ) ,Kmax) | ;

% Main part
% Start the outer loop of the RNA method
for i = 1:Nmax
X(:,1) = x0;
disp ([ 'Inner iteration 1 of cycle ' ,num2str(i, ' %d"),"
completed ') ;

% Start of the inner loop of the modified RNA method
for n = 1:2xKmax+1
iter = iter+1;

% Performing 2xKmax+1 Solodov steps

[x0,residuals_ RNA (iter)] = Solodov_quadprog(x0,F,
A,b,Aeq,beq,1lb ;jub,nVar,gamma, theta ,c,options);

X(:,n+1) = x0;

disp ([ 'Inner iteration ', num2str(n+1,'%d"'),"' of
cycle ', num2str(i,'%d'),' completed']);
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end

% End of the inner loop
warning off
normvec = zeros (size (lambdavec)); % for the grid
search
memory_extrapolation_.1 = zeros(size(x0,1) ,size (
lambdavec ,2) ) ;
memory_extrapolation_2 = zeros(size (x0,1) ,size
lambdavec ,2) ) ;
% Grid search on lambda
for h = 1:length (lambdavec)
% extrapolation using differents values of lambda
[x_1,7] = RNA(X,lambdavec(h));
memory_extrapolation_1(:,h) = x_1;
memory_extrapolation_-2 (: ,h) = quadprog(eye(nVar)
F(x-1)—x_1,A,b(x_1),Aeq,beq(x_-1),lb,ub,x_1,
options);
normvec (h) = norm(memory_extrapolation_1(: h)—
memory_extrapolation_2 (: ,;h)) "2;
disp ([ 'Inner iteration for lambda ', num2str(h,'%
d")," of cycle ', num2str(i,'%d'),' completed"’
1)
end
% Choosing best lambda
warning on
[T, idx_min] = min(normvec);
lambdamin = lambdavec(idx_min);
info.lambdaUsed (i) = lambdamin;
% Approximation of xx
x0 = memory_extrapolation_1 (:,idx_min);
disp ([ '+ Outer iteration ', num2str(i,'%d'), '
completed']);
disp(* *);
end
% End of the outer loop

[x0,residuals RNA (TOT+1)] = Solodov_quadprog(x0,F,A b, Aeq
,beq,1b ,ub,nVar,gamma, theta ,c,options);

%

%% QVI_alg basic method

% Reinitialize the starting point
X0 = startingPoints (QVIname,number) ;
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% Solodov_generalizazion (basic method)
for j = 1:TOT+1
% In output, X0 is the new element x_j
[X0, residuals(j)] = Solodov_quadprog(X0,F,A,b,Aeq, beq
,1b jub,nVar ,gamma, theta ,c,options);
end

%
%% Graph of residuals
graphic_star = 2xKmax+2 :2xKmax+1: TOT+1;

figl = figure('Position', get(0, 'Screensize'));

semilogy (residuals , 'k','Linewidth' ,6);

hold on

semilogy (residuals RNA ,'r—o"',' MarkerIndices",
graphic_star , ' Linewidth' ,6,'MarkerSize' ,10);

hold on

title ([ ' Residuals, problem: ', QVIname],'Fontsize' ,22);

xlabel ('iterations');

legend ({'Solodov S.','Solodov S. 4+ RNA'}, 'LOCATION' , '
SouthWest ', ' Fontsize' ,22);

%

%% Saving data

savefig (figl ,['Graph/' ,QVIname, Method_name, ' Nmax_ ',
num?2str (Nmax) , ' -Kmax_' ,num2str (Kmax) , ' _bestlambda_RNA"
o figt])

saveas (figl, ['Graph/',QVIname, Method_name,' Nmax_',
num?2str (Nmax) , ' Kmax_', num2str (Kmax) , "' _bestlambda RNA

Ltipg ')
save ([ 'Results_number RNA _alg/' ,QVIname, Method name,
Nmax_' ,num2str (Nmax) , '-Kmax_', num2str(Kmax) '

_bestlambda_RNA "' ' .mat'])

106



© ® N o U oA W N

W oW W W W W W W W W NN N NN N NN NN B E R s e s s e e e
© ® 9 o O A @ N B O © O N4 O O k& @ N = O © ® N o ;U A& ®W N = O

'
o

41

42

43

44

45

46

Listing 5.14: RegularizedNguyenStrodiotRNA.m

%% Nguyen—Strodiot implemented with regularized nonlinear
acceleration

%

% Regularized Nonlinear Acceleration (RNA) Alg2 from

% *Regularized Nonlinear Accelerationx*

% by Damien Scieur , Alexandre d'Aspremont, Francis Bach

%

% QVI formulation (Latex notation used):

% find x such that: g(x,x) \leq O,

% M(x)x+v(x) = 0 and

7o F(x)"T (y—=x)\geq 0,

% for all y such that

% g(y,x)\leq 0 and M(x)y+v(x) = 0
% where

% F(x):\Re {nVar}\to\Re {nVar}

% g(y,x):\Re {nVar}\times

% \Re " {nVar}\to\Re {nlIneq}
% M(x):\Re {nVar}\to

% \Re " {nEq\times nVar}

% v(x):\Re {nVar}\to\Re {nEq}

%

% Note that some of the constraints
% g(y,x)\leq 0 and M(x)y+v(x) = 0
% may actually be independent of x.
% The constraints are always

% ordered so that these constraints
% independent of x are the first

% ones. For example

% gly,x) = [ gl(y); &2(y,x) |
%

%% Problem Definition
clear all;
close all;

cle
addpath (' .../ QVILIB quadprog"')
Method_name = ' _Nguyen—Strodiot';

QVIname = 'RHS2A1 new';
QVIproblem = QRHS2A1 _new;

% Generating data files for some large scale problems of
QVILIB

% N.B. necessary only for RHS QVI type problems

QVILibGenData (QVIname)

% Initialization of the data defining the problem
QVIproblem (0)
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% Starting point
number = 1;
x0 = startingPoints (QVIname, number) ;

% Function
F = @(x)QVIproblem (1,x);
nVar = size (F(x0),1);

% Equality constraints
Aeq = QVlIproblem (6) ;
beq = @(x)QVIproblem (7,x);

% Inequality constraints
A = QVlIproblem (4) ;
b = @Q(x)QVIproblem (5,x) ;

% Bound constraints
Ib = QVIproblem (2);
ub = QVIproblem (3);

% Residuals

residuals . RNA = []; % residuals from the
Nguyen—Strodiot_RNA alg
residuals = []; % residuals from the standard

Nguyen—Strodiot

%% QVI_algorithm accelerated
% Algorithm Initialization
% Parameters

c = 0.5;

elle = 0.5;

gamma = 0.99;

ro = 1; % 1o >= 0

rol = 1/(14ro0);

mu = 0.5; % mu > max(1/4,ro/(4*(1+ro—c)))

iter = 0;

options = optimoptions('quadprog','Algorithm', "interior—
point—convex','OptimalityTolerance' ,l1e—20,"

MaxIterations' ,500) ;

% Set number of outer loops
Nmax = 5;

% Set number of inner loops
Kmax = 7;

% Set the total number of cycles for the original

sequence
TOT = Nmax* (2*Kmax+1);

108




92

93

94

95

96

97

98

929

100

102

103

104

105

106

107

108

109

111

128

% Set regularization parameter
info.lambdaRange=[1, le—14];
lambda_min = min(info .lambdaRange) ;
lambda_max = max(info.lambdaRange) ;

% Computing grid
lambdavec = [0, logspace(logl0(lambda_min),logl0(
lambda_max ) ,Kmax) ] ;

% Main part
% Start the outer loop of the RNA method
for i = 1:Nmax
X(:,1) = x0;
disp ([ 'Inner iteration 1 of cycle ' ,num2str(i, ' %d"),"
completed']) ;

% Start of the inner loop of the modified RNA method
for n = 1:2xKmax+1
iter = iter+1;
% Performing 2xKmax+1 Nguyen—Strodiot steps
[x0,residuals_RNA (iter)] =
NguyenStrodiot_quadprog (x0,F,A b, Aeq, beq,1b ,ub
,nVar ,gamma, elle ,ro,rol ;mu,c,options);
X(:,n+1) = x0;
disp ([ 'Inner iteration ', num2str(n+1,'%d"'), ' of
cycle ', num2str(i, ' %d"),' completed']);
end
% End of the inner loop

warning off

normvec = zeros(size (lambdavec)); % for the grid
search
memory_extrapolation_.1 = zeros(size(x0,1) ,size (
lambdavec,2) ) ;
memory_extrapolation_2 = zeros(size(x0,1) ,size (

lambdavec,2) ) ;

% Grid search on lambda
for h = 1:length (lambdavec)
% extrapolation using differents values of lambda
[x_1,7] = RNA(X,lambdavec(h));
memory._extrapolation_1(:,h) = x_1;
memory_extrapolation_2 (: ;h) = quadprog(eye(nVar)
F(x-1)-x_1,A,b(x_1),Aeq,beq(x_-1),lb,ub,x_1,
options);
normvec (h) = norm(memory_extrapolation_1(:,h)—
memory_extrapolation_2 (:,h)) "2;
disp ([ 'Inner iteration for lambda ', num2str(h,'%
d"), ' of cycle ', num2str(i,'%d'),' completed
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end

% Choosing best lambda

warning on

[7, idx_min] = min(normvec);
lambdamin = lambdavec(idx_-min) ;
info.lambdaUsed (i) = lambdamin;

% Approximation of xx
x0 = memory_extrapolation_1(:,idx_min);

disp ([ '+# Outer iteration ', num2str(i,'%d'), '
completed']) ;
disp(' ');
end
% End of the outer loop

[x0,residuals_.RNA (TOT+1)] = NguyenStrodiot_quadprog(x0,F,
A,b,Aeq,beq,1lb ,ub,nVar,gamma, elle ,ro,rol ,mu,c,options)

?

%o

%% QVI_alg basic method

% Reinitialize the starting point
X0 = startingPoints (QVIname,number) ;

% Nguyen—Strodiot (basic method)
for j = 1:TOT+1
% In output, X0 is the new element x_j
[X0,residuals(j)] = NguyenStrodiot_quadprog(X0,F,A,b,
Aeq,beq,1lb ,ub,nVar,,gamma, elle ,ro,rol ;mu,c,options)

end

%% Graph of residuals
graphic_star = 2xKmax+2:2+Kmax+1:TOT+1;

figl = figure('Position', get(0, 'Screensize'));

semilogy (residuals , 'k','Linewidth' 6);

hold on

semilogy (residuals . RNA |, 'r—o"',' MarkerIndices",
graphic_star , 'Linewidth' ,6,' MarkerSize' ,10);

hold on

title ([ ' Residuals with d3, problem: ', QVIname],'Fontsize
',22);

xlabel ("iterations');

legend ({ 'Nguyen—Strodiot ', 'Nguyen—Strodiot + RNA'} "
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LOCATION"' | 'SouthWest ', ' Fontsize' ,22);

%
%% Saving data
savefig (figl ,['Graph/' ,QVIname, Method_name,' _d3', '

Nmax_', num2str (Nmax) ,' Kmax_', num2str (Kmax) ,'
_bestlambda_ RNA"' ' . fig'])

saveas (figl , ['Graph/',QVIname, Method name,"' _d3"',
Nmax_', num2str (Nmax) ,' Kmax_', num2str (Kmax) ,'

_bestlambda_RNA"' ' .jpg'])

save ([ 'Results_.number RNA _alg/' ,QVIname, Method_name, ' _d3
*, ' _Nmax_', num2str(Nmax), 'Kmax_ ', num2str(Kmax) '
_bestlambda_RNA "' ' . mat'])

5.3.2 RTSA

Listing 5.15: TopologicalShanksTransformation.m

function [ x_extr, c] =
topologicalShanksTransformation_new( x,y,lambda,S )
% TopologicalShanksTransformation

% [x_extr] = topologicalShanksTransformation_new (x,y,
lambda ,S)

% extrapolate the limit

% The output x_extr is equal to sum_i=1"k ¢ "*_i x_i.

%

% Author: Stefano Cipolla

%

if (nargin < 4)

k = (size(x,2))/2;
Delta = diff(x,1,2);

b=y 'xDelta;
S=hankel(b(1:k) ' ,b(k:end) ');
S=S'x*S;
end
%% This part MUST be further optimized
PS=S ' *S ;

S=S+spdiags (lambdaxones(size (S,1) ,1),0,size(S,1),size (S
1))

c=S\ones(size(S,1),1);

c=c./sum(c);

95670

x_extr=x(:,size(S,1)+1:end)x*c;

end
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Listing 5.16: RegularizedTopologicalSolodov.m

%% Solodov implemented with restarted topological Shanks
acceleration

%

% Restarted topological Shanks acceleration (RTSA)

% Alg from

% *Anderson type trasformations for systems of nonlinear
equationsx*

% by Claude Branzinski, Stefano Cipolla, Michela Redivo—
Zoglia , Yousef Saad

%

% QVI formulation (Latex notation used):

% find x such that: g(x,x) \leq 0,

% M(x)x+v(x) = 0 and

%o F(x)"T (y—x)\geq 0,

% for all y such that

% g(y,x)\leq 0 and M(x)y+v(x) = 0
% where

% F(x):\Re {nVar}\to\Re " {nVar}

% g(y,x):\Re {nVar}\times

% \Re " {nVar}\to\Re {nlneq}
% M(x):\Re " {nVar}\to

% \Re {nEq\times nVar}

% v(x):\Re {nVar}\to\Re {nEq}

%

% Note that some of the constraints
% g(y,x)\leq 0 and M(x)y+v(x) = 0
% may actually be independent of x.
% The constraints are always

% ordered so that these constraints
% independent of x are the first

% ones. For example

% g(y.x) = [ gl(y); g2(yv,x) |

%% Problem Definition

clear all;

close all;

clc

addpath (' .../ QVILIB_quadprog")
Method_name = ' _Solodov';

QVIname = 'RHS2A1 new';
QVIproblem = QRHS2A1 new;

% Generating data files for some large scale problems of
% QVILIB

% N.B. necessary only for RHS QVI type problems
QVILibGenData (QVIname)
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% Initialization of the data defining the problem
QVIproblem (0)

% Starting point
number = 1;
x0 = startingPoints (QVIname, number) ;

% Function
F = @(x)QVIproblem (1,x);
nVar = size (F(x0),1);

% Equality constraints
Aeq = QVIproblem (6) ;
beq = @(x)QVIproblem (7,x);

% Inequality constraints
A = QVlIproblem (4) ;
b = @Q(x)QVIproblem (5,x) ;

% Bound constraints
b = QVIproblem (2);
ub = QVIproblem (3);

% Residuals

residuals_.RTSA = []; % residuals from the Solodov_RNA
alg

residuals = []; % residuals from the standard
Solodov

%% QVI_algorithm accelerated
% Algorithm Initialization
% Parameters

gamma = 1.99;

theta = 0.5;

c = 0.5;

iter = 0;

options = optimoptions('quadprog','Algorithm'  'interior—
point—convex ', 'OptimalityTolerance',1e—20,"

MaxIterations' ,500);

% Set number of outer loops
Nmax = 5;

% Set number of inner loops
Kmax = 3;

% Set the total number of cycles for the original
sequence ;
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TOT = Nmax* (2*Kmax+1);

% Set regularization parameter

info .lambdaRange=[1, le—14];
lambda_min = min(info.lambdaRange) ;
lambda_max = max(info.lambdaRange) ;

% Computing grid
lambdavec = [0, logspace(logl0(lambda_min),loglO(
lambda_max ) ,Kmax) | ;

% Main part
% Start the outer loop of the RTSA method

for i = 1:Nmax
X(:,1) = x0;
disp ([ 'Inner iteration 1 of cycle ' ,num2str(i, ' %d"),"

completed']) ;

% Start of the inner loop of the modified RTSA method
for n = 1:2xKmax+1
iter = iter+1;

% Performing 2xKmax+1 Solodov steps
[x0,residuals_ RTSA (iter)] = Solodov_quadprog(x0,F
,A,b,Aeq,beq,lb,ub,nVar,gamma, theta ,c,options)
X(:,n+1) = x0;
disp ([ 'Inner iteration ', num2str(n+1,'%d"'), ' of
cycle ', num2str(i,'%d'),' completed"']);
end

% End of the inner loop

warning off

normvec = zeros(size (lambdavec)); % for the grid
search
memory_extrapolation_1 = zeros(size(x0,1) ,size (
lambdavec ,2) ) ;
memory_extrapolation_2 = zeros(size(x0,1) ,size(

lambdavec,2) ) ;
param.y = X(:,end);

% Grid search on lambda
for h = 1:length (lambdavec)
% extrapolation using differents values of lambda

x_1 = topologicalShanksTransformation_new (X, param
.y ,lambdavec(h));
memory_extrapolation_1(:,h) = x_1;

memory_extrapolation_2 (: ;h) = quadprog(eye(nVar)
F(x_.1)-x_1,A,b(x_1),Aeq,beq(x_-1),lb,ub,x_1,
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options);
normvec (h) = norm(memory_extrapolation_1(:,h)—

memory_extrapolation_2 (: ,h)) " 2;

disp ([ 'Inner iteration for lambda ', num2str(h,'%
d'"), ' of cycle ', num2str(i, '%d'),' completed
1)
end
% Choosing best lambda
warning on
[7, idx_min] = min(normvec);
lambdamin = lambdavec (idx_-min);
info.lambdaUsed (i) = lambdamin;
% Approximation of xx
x0 = memory_extrapolation_1 (:,idx_min);
disp ([ '+# Outer iteration ', num2str(i,'%d'), '
completed']) ;
disp (" ")
end

% End of the outer loop

[x0,residuals_RTSA (TOT+1)] = Solodov_quadprog(x0,F,A b,
Aeq,beq,1b ,ub,nVar,gamma, theta ,c,options);

%

%% QVI_alg basic method

% Reinitialize the starting point
X0 = startingPoints (QVIname, number) ;

% Solodov_generalizazion (basic method)
for j = 1:TOT+1
% In output, X0 is the new element x_j
[X0, residuals (j)] = Solodov_quadprog(X0,F,A,b,Aeq, beq
,1b jub,nVar ,gamma, theta ,c,options);
end

%
%% Graph of residuals
graphic_star = 2+Kmax+2:2*xKmax+1:TOT+1;

figl = figure('Position', get(0, 'Screensize'));

semilogy (residuals , 'k','Linewidth' 6);

hold on

semilogy (residuals RTSA ,'r—o"',' MarkerIndices",
graphic_star , ' Linewidth' 6, ' MarkerSize"' ,10);

hold on

title ([ 'Residuals, problem: ', QVIname],'Fontsize' ,22);
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xlabel ('iterations');
legend ({'Solodov S.','Solodov S. 4+ RTSA'},'LOCATION' "'
SouthWest ' , ' Fontsize' ,22);

%
%% Saving data
savefig (figl ,['grafici/' ,QVIname, Method_name,' Nmax_ ',

num?2str (Nmax) , ' Kmax_', num2str (Kmax) ,"
_bestlambda_RTSA "' ,"'. fig'])

saveas (figl, ['grafici/',QVIname, Method_name,' Nmax_ ',
num2str (Nmax) , ' Kmax_', num2str (Kmax) ,'

_bestlambda_RTSA"',"'.jpg"'])

save ([ 'results_.number RTSA _alg/',QVIname, Method_name, '
Nmax_', num2str (Nmax), ' Kmax_ ', num2str(Kmax) '
_bestlambda_RTSA"',' . mat'])

Listing 5.17: Regularized TopologicalNguyenStrodiot.m

%% Nguyen—Strodiot implemented with restarted topological
Shanks acceleration

%

% Restarted topological Shanks acceleration (RTSA)

% Alg from

% xAnderson type trasformations for systems of nonlinear
equationsx*

% by Claude Branzinski, Stefano Cipolla, Michela Redivo—
Zoglia , Yousef Saad

%

% QVI formulation (Latex notation used):

% find x such that: g(x,x) \leq 0,

% M(x)x+v(x) = 0 and

7o F(x)"T (y—=x)\geq 0,

% for all y such that

% g(y,x)\leq 0 and M(x)y+v(x) = 0
% where

% F(x):\Re {nVar}\to\Re {nVar}

% g(y,x):\Re {nVar}\times

% \Re " {nVar}\to\Re {nlIneq}
% M(x):\Re {nVar}\to

% \Re " {nEq\times nVar}

% v(x):\Re " {nVar}\to\Re {nEq}

%

% Note that some of the constraints
% g(y,x)\leq 0 and M(x)y+v(x) = 0
% may actually be independent of x.
% The constraints are always

% ordered so that these constraints
% independent of x are the first

% ones. For example
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% gly,x) = [ gl(y); g2(y,x) |

%% Problem Definition

clear all;

close all;

cle

addpath (' .../ QVILIB_quadprog")
Method_name = ' _Nguyen—Strodiot';

QVIname = 'RHS2A1 new';
QVIproblem = QRHS2A1_new;

% Generating data files for some large scale problems of
% QVILIB

% N.B. necessary only for RHS QVI type

% problems

QVILibGenData (QVIname)

% Initialization of the data defining the problem
QVIproblem (0)

% Starting point
number = 1;
x0 = startingPoints (QVIname, number) ;

% Function
F = @(x)QVIproblem (1,x);
nVar = size (F(x0),1);

% Equality constraints
Aeq = QVlIproblem (6) ;
beq = @Q(x)QVIproblem (7 ,x);

% Inequality constraints
A = QVlIproblem (4) ;
b = @Q(x)QVIproblem (5,x) ;

% Bound constraints
b = QVIproblem (2) ;
ub = QVIproblem (3) ;

% Residuals

residuals_.RTSA = []; % residuals from the
Nguyen—Strodiot_RTSA alg
residuals = []; % residuals from the standard

Nguyen—Strodiot

%% QVI_algorithm accelerated
% Algorithm Initialization
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% Parameters

c = 0.5;

elle = 0.5;

gamma = 0.99;

ro = 1; % ro >= 0

rol = 1/(1+ro);

mu = 0.5; % mu > max(1/4,ro/(4*(1+ro—c)))
iter = 0;

options = optimoptions('quadprog','Algorithm', 'interior—
point—convex ', 'OptimalityTolerance' ,1e—20,"

MaxIterations' ,500);

% Set number of outer loops
Nmax = 5;

% Set number of inner loops
Kmax = 7;

% Set the total number of cycles for the original
sequence

TOT = Nmax* (2*Kmax+1) ;

% Set regularization parameter
info.lambdaRange=[1, le—14];
lambda_min = min(info.lambdaRange) ;
lambda_max = max(info .lambdaRange) ;

% Computing grid
lambdavec = [0, logspace(logl0(lambda_min) ,logl0(
lambda_max) ,Kmax) | ;

% Main part
% Start the outer loop of the RTSA method
for i = 1:Nmax
X(:,1) = x0;
disp ([ 'Inner iteration 1 of cycle ' ,num2str(i, ' %d"),"
completed']) ;

% Start of the inner loop of the modified RTSA method
for n = 1:2xKmax+1
iter = iter+1;

% Performing 2xKmax+1 Nguyen—Strodiot steps

[x0,residuals_.RTSA (iter)] =
NguyenStrodiot_quadprog (x0,F,A b, Aeq,beq,1b ,ub
,nVar ,gamma, elle ,ro,rol ,mu,c,options);

X(:,n+1) = x0;

disp ([ 'Inner iteration ', num2str(n+1,'%d'), ' of

cycle ', num2str(i,'%d'),' completed"']);
end
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% End of the inner loop

warning off

normvec = zeros (size (lambdavec)); % for the grid
search
memory_extrapolation_1 = zeros(size(x0,1) ,size (
lambdavec,2) ) ;
memory_extrapolation_2 = zeros(size(x0,1) ,size (

lambdavec ,2) ) ;
param.y = X(:,end);

% Grid search on lambda
for h = 1:length (lambdavec)
% extrapolation using differents values of lambda

x_1 = topologicalShanksTransformation_new (X, param
.y,lambdavec (h));
memory_extrapolation_1(:,h) = x_1;

memory_extrapolation_-2 (: ,h) = quadprog(eye(nVar)
F(x-1)—x_1,A,b(x_1),Aeq,beq(x_-1),lb,ub,x_1,

options);

normvec (h) = norm(memory_extrapolation_1(: h)—
memory_extrapolation_2 (: ,;h)) "2;

disp ([ 'Inner iteration for lambda ', num2str(h,'%
d"), ' of cycle ', num2str(i,'%d'),' completed

1)

end

% Choosing best lambda

warning on

[T, idx_min] = min(normvec);
lambdamin = lambdavec(idx_min);
info.lambdaUsed (i) = lambdamin;

% Approximation of xx

x0 = memory_extrapolation_1 (:,idx_min);

disp ([ '+ Outer iteration ', num2str(i,'%d'), '
completed']);

disp(* ');

end
% End of the outer loop

[x0,residuals_.RTSA (TOT+1)] = NguyenStrodiot_quadprog(x0,F
,A,b,Aeq,beq,1b ,ub,nVar,gamma, elle ,ro,rol ,mu,c,options

)

%

%% QVI_alg basic method

% Reinitialize the starting point
X0 = startingPoints (QVIname,number) ;
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% Nguyen—Strodiot (basic method)
for j = 1:TOT+1
% In output, X0 is the new element x_j
[X0, residuals(j)] = NguyenStrodiot_quadprog(X0,F,A b,
Aeq,beq,1lb ,ub,nVar,gamma, elle ,ro,rol ,mu,c,options)

end

%
%% Graph of residuals

graphic_star = 2xKmax+2:2*xKmax+1:TOT+1;

figl = figure('Position', get(0, 'Screensize'));

semilogy (residuals , 'k','Linewidth' 6);

hold on

semilogy (residuals _ RTSA | 'r—o"',' MarkerIndices ",
graphic_star , 'Linewidth' ,6,' MarkerSize' ,10);

hold on

title ([ ' Residuals with d3, problem: ', QVIname]|,' Fontsize
',22);

xlabel ('iterations');

legend ({ 'Nguyen—Strodiot ', 'Nguyen—Strodiot + RTSA'},"
LOCATION' | ' SouthWest ', ' Fontsize' ,22);

%

%% Saving data

savefig (figl ,[ ' grafici/' ,QVIname, Method_name,' _d3"',"’
Nmax_', num2str (Nmax), '_Kmax_ ', num2str(Kmax) '
_bestlambda_RTSA"',"'. fig'])

saveas (figl , ['grafici/' ,QVIname, Method name,"' _d3"' '
Nmax_', num2str (Nmax), '_-Kmax_ ', num2str(Kmax) '
_bestlambda_RTSA"',"'.jpg'])

save ([ 'results_.number RTSA _alg/',QVIname, Method_name, '
~d3"'," Nmax_', num2str(Nmax), ' Kmax_ ', num2str(Kmax),
' _bestlambda RTSA"',' .mat'])

%
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