
MSc programme in Physics of Data

Saverio Monaco

Study of quantum correlations in LHCb simulated heavy flavour
jets

final project

Supervisors:
Prof. Donatella Lucchesi
Dr. Davide Zuliani
Dr. Lorenzo Sestini

academic year 2022-2023

ii

Contents

Introduction 1

1 Quantum Computing for High Energy Physics 3
1.1 Introduction to Machine Learning . 3
1.2 Quantum Machine Learning . 8

1.2.1 Parametrized Quantum Circuit 9
1.2.2 Data encoding . 10
1.2.3 Optimization loop . 12

1.3 Entanglement . 14
1.3.1 Von Neumann Entropy as measure of Entanglement 16
1.3.2 Example: (Parametrized) Bell Circuit 17

2 Jet Physics at LHCb 21
2.1 The LHCb experiment and jet identification 22

2.1.1 The Large Hadron Collider . 22
2.1.2 LHCb . 22

2.2 b- and c-jets formation . 25
2.2.1 Quarks and gluon production 26
2.2.2 Fragmentation . 27
2.2.3 Hadronization . 27

2.3 Jets reconstruction . 28
2.3.1 Particle flow . 28
2.3.2 Clustering . 28
2.3.3 E-recombination scheme . 30

iii

CONTENTS

2.3.4 Jet energy correction . 30
2.3.5 Secondary Vertex finding . 30

3 Jet identification with Quantum Machine Learning 33
3.1 Data-set . 33

3.1.1 Secondary Vertex features . 34
3.1.2 Data set selection . 35

3.2 Classical model: (Gradient) Boosted Decision Trees 37
3.3 Software implementation for jet tagging on quantum models 38

3.3.1 PennyLane . 38
3.3.2 JAX . 40

3.4 Quantum Models . 40
3.5 QML Performance . 41

3.5.1 Metrics . 42
3.5.2 Scaling with number of qubits N and layers L: 43
3.5.3 Comparison between QPC and BDT 44

4 Benchmarking of entropy production in a quantum classifier 47
4.1 The Barren Plateau problem in QML 48
4.2 Entropy productions . 50

4.2.1 Ansatz . 52
4.2.2 Parameters initialization . 57
4.2.3 Cost function . 59

5 Entanglement-based models for b- and c-jet tagging 63
5.1 Characteristic circuits . 63

5.1.1 Training of the circuits . 64
5.1.2 Classification phase . 66

5.2 Feature importance . 68
5.3 Correlation from entanglement . 71

Conclusions 77
C.1 Future developments in heavy jet tagging 78

Bibliography 79

6 Appendix 87
A.1 Quantum Computing . 87

iv

Introduction

Quantum Machine Learning (QML) is gaining significant traction as a powerful
framework for data analysis, specifically for High Energy Physics (HEP) tasks at the
Large Hadron Collider (LHC). Experiments taking data at this collider are start-
ing the so called Run 3 [1], the third period of data collection characterized by a
center-of-mass energy of 13.6 TeV and a increased number of collisions that can be
produced in a detector per cm2 and per second (luminosity).
Concurrently, the detectors have been upgraded in order to cope with the accelerator
improved performance to increase measurements accuracy and potentially revealing
new physics.
However, Run3 data-taking starts posing computational challenges, that will need
to be addressed for High Luminosity LHC [2], due to the increased complexity and
amount of data generated, necessitating both more sophisticated algorithms and
greater computational power for its successful analysis. Quantum Computing, par-
ticularly QML, emerges as a potential solution for addressing these demands.

This thesis work focuses on jet flavour tagging, specifically distinguishing between b-
and c-quark jets, using QML techniques. Jet tagging is known to be a challenging
classification task that could potentially benefit from a quantum implementation. In
particular, there may be correlations among the particles forming the jet, that are
hidden or washed out by the methods used so far to simulate jets formation. The
research starts from the existing literature [3, 4] on jet tagging using new quantum
techniques that could help to implement technologies to identify and use new corre-
lations. The methods are here applied to simulated data with a future possibility to
compare results with jets collected in actual proton-proton collisions.
The primary technique examined in this study revolves around analyzing the entan-

1

Introduction

glement generated within a quantum circuit during its training phase. The hypothesis
is that the entanglement measure holds valuable information that can be leveraged
to improve the training process on a quantum computer. By delving into the dy-
namics of entanglement production during the training loop, this research aims to
enhance the performance of jet flavour tagging and potentially unlock more accurate
and efficient results for this complex classification task.

The outcomes in this work pertaining to jet flavor classification and entanglement
study are organized as follows:

• Chapter 1: provides an overview of the techniques in quantum computing
and QML specifically tailored for data analysis in HEP tasks.

• Chapter 2: explores the physics phenomena of jets formation at LHCb. It
begins with a brief description of the LHCb detector and the functioning of
each sub-detector. The physical processes that produce jets are then explained,
from the quarks and gluons production followed then by a description of jet
formation with particular attention to b- and c-jets. A chapter subsection is
dedicated to jets reconstruction and jet identification (jet tagging) from where
the features used in the rest of the work are extracted.

• Chapter 3: introduces the data set, providing insights into each feature cho-
sen to characterize the jets. Additionally, it presents and compares both the
Classical and Quantum state-of-the-art classifiers for the b- vs c-jets identifi-
cation.

• Chapter 4: presents the findings related to entanglement formation within
a quantum classifier, with the goal in mind to distinguish b- from c-jets. Nu-
merous hyper-parameters of the learning models were taken under analysis to
investigate their impact on entanglement production.

• Chapter 5: showcases two models developed that leverage the information on
the generated entanglement. The first model is capable of estimating feature
importance, while the second model provides information on data correlation.

• Conclusions: summarizes the work done the and draws the major conclusions
I can extract from the work performed. In addition the next steps of this work
is presented together with possible future applications when hardware with
enough qubits will be available.

2

Chapter 1
Quantum Computing for High
Energy Physics

The upcoming chapter will explore the methods of Machine learning (ML) on a Quan-
tum Computer [5, 6]. Initially, an introduction to classical ML is provided, exploring
the fundamental concepts shared to its quantum counterpart. Subsequently, the
optimization procedure of a general quantum model is presented. Lastly, some con-
siderations are made towards the quantum-exclusive phenomenon of entanglement
formation, a pivotal factor behind the high expressiveness of quantum models.

1.1 Introduction to Machine Learning

ML is a branch of Artificial Intelligence which involves developing models that are
able learn from data to address specific problems without the need to provide an
explicit solving algorithm. Its objective is to automate the process of drawing gen-
eralizations from experience, enabling the generation of new plausible predictions
in unfamiliar scenarios. ML proves particularly powerful in tasks where the rela-
tionships within the input data are highly intricate, where it is challenging or even
unfeasible to derive analytical algorithms. The trained model, due to its intricate use
of data correlation, becomes challenging to interpret in non-trivial cases, leading to
its characterization as a black box. This property was historically the primary reason
for the initial negative perception of ML models in the scientific community. Even
today, considerable efforts are invested in developing interpretable machine learning
models to address this limitation [7].

3

1.1. INTRODUCTION TO MACHINE LEARNING

ML models fall into three main categories:

• Supervised Machine Learning: The primary objective of this branch is to
develop models that can learn from labeled data to make accurate predictions
on unseen data. In supervised learning, the algorithm is "supervised" during
the training phase: the data set contains both the inputs and their respective
ground-truths and the model adapts itself in order to match the prediction
to its true label. Supervised ML models are primarily utilized for classifica-
tion and regression tasks, with a notable example being the implementation
of sophisticated and rapid GPU triggers for signal-background noise classifica-
tion [8].

• Unsupervised Machine Learning: The end goal of unsupervised machine
learning is to discover patterns, structures, or relationships in data. Unlike
supervised learning, where the algorithm learns from labeled data, unsuper-
vised learning works with unlabeled data, meaning that the algorithm has no
predefined correct answers to learn from. It has found valuable applications in
various HEP tasks including clustering and anomaly detection. Notably, mod-
els for these two tasks have already found use in enhancing the jet identification
pipeline [9]. Moreover, it has enabled the development of numerous generative
models. These novel approaches have been proven to be effective in simulating
collision events with high accuracy while requiring significantly less simulation
time compared to conventional Monte Carlo methods [10].

• Reinforcement Learning: The primary goal of reinforcement machine learn-
ing is to create an agent model capable of taking decisions within an environ-
ment to achieve specific objectives. This framework involves training the model
through interactions with the environment, employing a reward/punishment
system to guide its learning process. For instance, a reinforcement learning
agent has been employed at LHC to address the task of jet grooming. This
involves improving the purity of jet events derived from collisions [11].

The upcoming part will focus on elucidating the fundamentals of Supervised ML, as
it serves as the primary method employed throughout this thesis.

4

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

Supervised Machine Learning

The main structure of a generic supervised machine learning algorithm is the follow-
ing:

1. Problem definition: given an input domain X and an output domain Y , the
training data-set is D = {(x1, y1), ..., (xM , yM)} with each element (xi, yi) ∈
X × Y is the pair of training input (event) and expected output (label). The
relationship between each event xi and the label yi is unknown and finding the
function that best represents this relationship is the goal of the training.

2. Choice of the model family: a model family is a function

y = f(x, θ⃗) (1.1)

with x ∈ X , y ∈ Y and θ⃗ = {θ1, ..., θD} is a set of parameters that will be
optimized during the training phase such that the errors during prediction are
minimized.

3. Training of the model: the model is trained by fitting the parameters and
the hyper-parameters to the data D. A test data set is then used to validate
the performance of the model on new, unseen data.

4. Employment of the model: once trained, the model can be used to predict
output values.

The training phase holds utmost importance in a ML algorithm. Its objective is
to meticulously adjust the parameters θ⃗ of the model in order to minimize an error
function defined as loss function L(θ⃗) that quantifies the discrepancy between the
model’s predictions and the true labels. A model achieving a low (minimized) error
indicates a strong alignment with the input data.
Different choices of the loss function lead to different training strategies and results.
For a regression task, the most widely used is the mean squared error loss defined
as:

LMSE(θ⃗) =
1

M

M∑︂
i=1

(︂
f(xi, θ⃗)− yi

)︂2

(1.2)

While for binary (and multi-class) classification problems, the most common loss
function is the cross-entropy loss, defined as:

5

1.1. INTRODUCTION TO MACHINE LEARNING

Figure 1.1: Performances of three different models on the same input data. On the
left, a linear model which results in a high error, in the middle a polynomial model
with little training error, on the right an overfit model with no error over the training
set.

LCE(θ⃗) = −
M∑︂
i=1

yi log pi + (1− yi) log(1− pi) (1.3)

Where pi = f(xi, θ⃗) are the outputs of the model, which are assumed to be proba-
bilities of belonging to a given class.

The loss function L(θ⃗) has to be minimised with respect to the parameters of the
model to obtain the optimal parameters configuration θ∗⃗:

θ∗⃗ = argmin
θ
L(θ) (1.4)

In equation 1.4, the training objective is defined as finding the parameters that
lead to the lowest value of the loss function. However, an essential consideration
must be made regarding the choice of the model family. If the selected model is
overly complex, it may achieve a very low error during training, but when used on
unseen data, it can lead to a high prediction error. Thus, while minimizing the loss
function is the primary goal of training, achieving a low error on the training set does
not necessarily guarantee a good model that will generalize well to new data. An
overly simplistic model exhibits limited expressibility, potentially failing to capture
the complex tendencies the data (as shown in the left plot in Figure 1.1). On the
other hand, excessively complex models can result in overfitting (as illustrated in the
right plot of Figure 1.1), where the model memorizes the training data rather than

6

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

extracting meaningful patterns applicable to unseen data. Thus, achieving a balance
between model complexity and its ability to generalize is important in developing
effective ML models, as in the scenario depicted in the middle plot of Figure 1.1.

Gradient descent: Finding the minimum of the loss function analytically becomes
impractical due to the high dimensionality of its space, which depends on the number
of model parameters and can be very high, even reaching millions. To address this,
gradient descent offers a smart approach. Its main goal is to iteratively adjust the
model’s parameters θ⃗ following the direction of the steepest descent (opposite to the
gradient) until it reaches a local or global minimum. By doing so, gradient descent
efficiently seeks the optimal point without requiring an explicit analytical solution.
The compact formula for gradient descent is:

θ⃗
(t+1)

= θ⃗
(t)

− η∇L(θ⃗
(θ)
) (1.5)

Where θ⃗
(t+1)

represents the updated parameters at step t+1, θ⃗
(t)

denotes the param-
eters at iteration t. The gradient vector of the loss function at iteration t, denoted
as ∇L(θ⃗

(t)
), indicates the direction of the descent, and η stands for the coefficient

determining the magnitude of change at each step, referred to as the learning rate.
A typical optimization procedure through gradient descent is described through
pseudo-code in the Algorithm block 1.1.

Even after careful tuning of the learning rate parameter (η), plain gradient descent
might not be enough because of flat regions and local minima present in the loss
function (as in figure 1.2) which can limit the effectiveness of this approach.
To mitigate these effects, several methods have been developed from the naive gra-
dient descent, in this work the ADAM [13] optimizer has been used.
The main features of the ADAM optimizer are:

• Adaptive Learning Rate: ADAM uses adaptive learning rates for each pa-
rameter. It calculates individual learning rates based on the historical gradients
of each parameter. This helps to adjust the step size for each parameter, pro-
viding faster convergence for different features.

• Momentum: ADAM incorporates the concept of momentum. Instead of rely-
ing solely on the current gradient value, momentum considers the accumulated

7

1.2. QUANTUM MACHINE LEARNING

Algorithm 1.1: Pseudo-code for Gradient Descent
Function Gradient Descent:
Initialization: choose initial values for the parameters θ⃗
for epoch = 1 ... n_epochs do

Compute the gradient: Compute the gradient of the loss function L(θ⃗)
relative to each parameter θi: ∂L/∂θi.

The gradient represents the direction of the steepest increase in the function
and it represents the change of the loss function upon small variations in
each parameter.

Update the parameters: Each parameter is updated by subtracting a
fraction of the gradient from the current parameter values. The fraction is
called learning rate:

θi = θi − η ∗ ∂L/∂θi
end

effect of past gradients to guide the updates to the model’s parameters which
it helps both in escaping from local minima (thus premature optimization) and
escaping flat regions of the loss landscape, which gradients have a value close
to zero.

1.2 Quantum Machine Learning

QML has emerged as a promising paradigm for data analysis merging Quantum
Computing (QC) and ML, offering novel approaches to address complex challenges
in research fields as for example in HEP at particle colliders. With the potential
to exploit quantum properties, such as superposition and entanglement, QML holds
the promise of enhancing analysis and computational capabilities crucial to HEP
experiments.

These novel models incorporate the essential techniques and concepts from their clas-
sical counterpart, as explained in the previous section, within a framework governed
by the principles of quantum mechanics.

8

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

Figure 1.2: During gradient descent, various scenarios can occur in the optimization
process. Saddle points are locations in the landscape where the gradient value is
low. Local minima represent situations that often lead to premature optimization,
causing the model’s parameters to become trapped in these points and preventing
further updates. [12]

1.2.1 Parametrized Quantum Circuit

Every QML model is structured as a Parametrized Quantum Circuit (PQC) which
functions as the graphical representation of the parametrized model. An instance
of this circuit is depicted in Figure 1.3. It visually portrays the evolution of a sys-
tem of spin particles, or qubits, with each horizontal line—also referred to as a
wire—representing one of the spins. The x-axis signifies time, where actions to the
right occur after those on the left.

|0⟩ U1(θ1) U5(θ5)

|0⟩ U2(θ2)

|0⟩ U3(θ3)

|0⟩ U4(θ4)

Figure 1.3: Example of a parametrized quantum circuit with 4 number of qubits.

The initial (leftmost) state is referred to as |0⟩⊗N , where N is the number of qubits.
This state serves as the starting point for every quantum circuit. In practical imple-
mentations, it signifies that each qubit is initialized to its ground state.

9

1.2. QUANTUM MACHINE LEARNING

The circuit is then composed of blocks, representing actions applied to specific qubits
denoted as gates, while elements spanning multiple wires denote multi-qubit gates.
The former constitute the parametrized elements that enable model adaptation, while
the latter are responsible for generating entanglement.
The output of the circuit is obtained through the measurement of the wavefunction
and it is depicted by the gate .

The optimization process, namely the update of the parameters, is executed through
the aid of a classical computer which obtain the gradients through multiple measure-
ments and sets the new angles for the parameterized rotations. The following section
will explore the initial segment of the quantum circuit, the embedding block.

1.2.2 Data encoding

In QML, the process of embedding involves loading classical data, which the model
uses as input for learning and make predictions, into the quantum circuit as a quan-
tum state. Conventionally, the initial state of a quantum circuit is |0⟩⊗N (the state
in which all N qubits are in the state |0⟩), which then it is evolved by a parametrized
circuit block F . The parameters in F differ from the trainable parameters since they
are used to represent an input event. To input a single event x⃗i into a circuit, the
state |0⟩⊗N is evolved into a state representing that event |x⃗i⟩ through the embedding
block F(x⃗i), where the parameters correspond to the values of the features of the
input events. This feature map takes a classical data point xi⃗ and converts it into a
set of gate parameters in a quantum circuit, resulting in a quantum state |x⃗i⟩:

x⃗i
Embedding−−−−−−→ |x⃗i⟩ (1.6)

Through the process of embedding, a d-dimensional input vector (defined in the
space Rd, is mapped into the significantly larger Hilbert space H. Proper selection
of the quantum embedding process can result in feature maps that exhibit a greater
expressiveness compared to their classical counterparts, leading to advantages in clas-
sifications in selected scenarios [6, 14].

The typical strategies for embedding classical data into a quantum circuit are:

10

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

Angle Embedding: The angle embedding is the most straightforward approach
to input classical data into a quantum circuit. This method requires a circuit with
the number of qubits matching the dimension of the input vector. It revolves around
applying rotations on the x-axis or y-axis, utilizing parametrized RX or RY gates,
respectively. The angle of these rotations is determined by the values present in the
feature vector, thus establishing the quantum representation of the classical data.

The operation of angle encoding is then the following:

|ψxi
⟩ =

N⨂︂
k=1

R
(︁
xi[k]

)︁
|0k⟩ (1.7)

where R can be either RX or RY and xi[k] is the k-th element of the vector x⃗i. An
example of angle encoding for x⃗i = (0.2, 1.5, 3.1) is shown in Figure 1.4.

Rotational gates are periodic unitary operator with respect to the parameter θ:
R(θ) = R(θ+ 4π). Therefore, each feature value must be scaled to the [0, 4π] range.

|0⟩ RX(0.2)

|0⟩ RX(1.5)

|0⟩ RX(3.1)

|x⃗i⟩

Figure 1.4: On the left, the action of the angle embedding on the |0⟩⊗3 state for
the vector x⃗i = (0.2, 1.5, 3.1). On the right the graphical representation of the angle
embedding circuit.

Amplitude encoding: an alternative and widely used approach for data encoding
within a quantum circuit is known as amplitude encoding. In this method, a nor-
malized N -dimensional vector is encoded into a circuit comprising n qubits, where
n = log2(N). By employing this scheme, the amplitudes of the quantum states

11

1.2. QUANTUM MACHINE LEARNING

are manipulated to represent the data, providing an efficient and compact quantum
representation of the classical information.
For instance we define a map which represents the state |ψxi

⟩ such that:

|ψxi
⟩ =

N∑︂
k=1

xi[k]|k⟩ (1.8)

where |k⟩ is the k-th computational basis state
(namely {|k⟩} ≡ {|0...00⟩, |0...01⟩, |0...10⟩...|1...11⟩})
As an example, the vector xi = [0.2, 1.5, 3.1] can be represented in just 2 qubits
through amplitude encoding such that the embedded state is:

xi⃗ =

⎡⎣0.21.5

3.1

⎤⎦ ⇒ |ψxi
⟩ = 0.2 ∗ |00⟩+ 1.5 ∗ |01⟩+ 3.1 ∗ |10⟩+ 0.0 ∗ |11⟩ (1.9)

The main advantage of amplitude embedding over angle embedding is that it requires
significantly fewer qubits (exponentially less) to represent the same amount of data.

However, in this study, Angle embedding will be the primary choice due to its unique
property of dedicating each wire to a specific feature. This property will be partic-
ularly advantageous for the entanglement-based models presented in chapters 4 and
5.

1.2.3 Optimization loop

Variational circuits: Variational circuits play a central role in QML. These cir-
cuits consist of single-qubit gates, such as parametrized gates like RX, RY, and RZ,
which offer flexibility and trainability through the optimization of their parameters.
Additionally, variational circuits incorporate multiple-qubit gates, which are typically
non-parametrized. These multiple qubit gates are crucial for establishing intricate
relationships between qubits through entanglement, enabling the solution of complex
tasks in quantum machine learning.

A general Variational Quantum Circuit (VQC) is made of the following parts as
represented in Figure 1.5:

• Feature Map: An Embedding block is positioned before the variational part
in the quantum circuit. Its purpose is to transform the initial state |0⟩⊗N into

12

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

a state that effectively represents the given input vector:
|0⟩⊗N → |x⃗i⟩ = F(x⃗i)|0⟩⊗N

• Variational gates: The state is then evolved further through a complex uni-
tary operation represented by U(θ⃗). This unitary operation incorporates the
variational parameters θ⃗.

• Measurement gate(s): Depending on the selected loss function, there are
two approaches:

– Global Measurement: In this approach, all the qubits are measured col-
lectively.

– Local measurement: Alternatively, the measurement can be performed
only on a subset of all the qubits. This approach is referred to as a local
cost function. As highlighted in later sections, local cost functions can
exhibit greater robustness against noise and may yield better-behaved
gradients, hence better training.

...

|0⟩

F(x⃗i) U(θ⃗)
|0⟩
...

|0⟩

|0⟩⊗N |x⃗i⟩ |ψ(x⃗i, θ⃗)⟩

Figure 1.5: General QML circuit, the first block represents the embedding, the light
yellow block U(θ⃗) is the variational part, then the wavefunction is measured through
local measurement.

Computation of the gradient: A crucial element for any QML model imple-
mentation is the integration of a gradient descent algorithm. The computation of
partial derivatives of the loss function with respect to each parameter can be entirely
carried out directly on a quantum circuit using the parameter shift rule, which is a

13

1.3. ENTANGLEMENT

method of gradient computation exclusive to quantum computers.

Keeping in mind that L(θ⃗) is the loss function, where θ⃗ are the current parameters
of the model, the parameter shift rule is given by the equation:

∂L(θ⃗)

∂θi
=

1

2

[︂
L
(︂
θ⃗ +

π

2
· e⃗i

)︂
− L

(︂
θ⃗ − π

2
· e⃗i

)︂]︂
(1.10)

This rule enables the calculation of exact gradients with just two evaluations per
parameter. By shifting the given parameter by +π

2
and −π

2
.

Therefore, to calculate the gradient for the parameter θi, it is necessary to evaluate
the loss of the quantum circuit with the parameter θ⃗ while first shifting the i-th
parameter θi to +π

2
and then to −π

2
. The optimization routine for each parameter

involves evaluating the two expectation values using the parameter shift rule using
the Quantum Hardware, then calculating the difference, and subsequently updating
the parameters using a classical optimizer as in Figure 1.6.

Quantum Circuit

Classical optimizer

⟨σ(i)
z ⟩

Updated parameters

Figure 1.6: Optimization routine, multiple shots are performed within a quantum
circuit to compute the gradient for each parameter, then the parameters are updated
through the computation of a classical computer.

1.3 Entanglement

Entanglement is a fundamental phenomenon that plays a crucial role in quantum
mechanics. It refers to the non-classical correlations that can exist between the
quantum states of two or more particles. When two or more particles get entangled,
their states become inextricably linked, behaving as one single system.

14

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

When a composite quantum system is entangled, its overall quantum state cannot
be expressed as a simple product of individual states of its constituent parts.
To provide more clarity, two examples will be presented, one involving an entangled
state, and the other concerning an unentangled state:

• Entangled State (Bell State):
The Bell state is a maximally entangled state between two qubits and is given
by:

|ψBell⟩ = 1√
2
(|00⟩+ |11⟩) (1.11)

Here, |00⟩ represents both first and the second qubit being in the state |0⟩.
Similarly, |11⟩ represents both qubits being in the state |1⟩. The coefficient 1√

2

ensures that the state is properly normalized.

This state cannot be represented as a product of individual states. If it were
separable, we could write it as |ψBell⟩ = |q1⟩ ⊗ |q2⟩, where |q1⟩ and |q2⟩ are
individual states of the first and second qubit, respectively. However, it is
impossible to find such states |q1⟩ and |q2⟩ that satisfy this condition for the
Bell state |ψBell⟩.

• Unentangled State (Separable State):
A simple unentangled state can be given by the following product state:

|ψsep⟩ = 1

2
((|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩)) (1.12)

In this case, the state |ψsep⟩ is separable because it can be expressed as the
product of individual qubit states. The first qubit is in the state 1√

2
(|0⟩+|1⟩) :=

|+⟩ and the second qubit is in the state 1√
2
(|0⟩ − |1⟩) := |−⟩.

As previously indicated, qubit entanglement plays a fundamental role in generat-
ing intricate behaviors among qubits, enabling the development of highly expressive
models.

Furthermore, entanglement between qubits also represents a form of shared infor-
mation. Analyzing entanglement production within a quantum circuit can provide
valuable insights into the input data and the classification task, as discussed in Chap-
ter 5.

15

1.3. ENTANGLEMENT

1.3.1 Von Neumann Entropy as measure of Entanglement

Von Neumann Entropy [15] is a quantity named after John Von Neumann, one of the
pioneers of quantum mechanics. It is a concept borrowed from the field of classical
information theory with its relative counterpart, the Shannon Entropy [16] and it
is used to quantify the amount of uncertainty or information content of a random
variable.

In the context of entanglement, the Von Neumann Entropy is a measure of quantum
entanglement shared between two bipartitions of a quantum state.

Computation of the Von Neumann Entropy: Von Neumann Entropy between
two bipartitions A and B is computed starting from the the density matrix (or density
operator) ρ:

ρ = |ψ⟩⟨ψ| (1.13)

where |ψ⟩ is the wavefunction representing the global state.

Given the two bipartitions of the system, it is possible to marginalize one of the
two to obtain what is called the reduced density matrix. The reduced density matrix
describes the state of that specific subsystem by marginalizing components of the
other subsystem.

The formula to compute the Von Neumann entropy between two quantum biparti-
tions A and B is defined as follows:

S(ρA) = −Tr(ρA log(ρA)) (1.14)

where ρA is the reduced density matrix of subsystem A, obtained by tracing out the
degrees of freedom of subsystem B from the joint density matrix of the composite
system. In this context, the logarithm can be computed using either base 2 or e.
However, throughout this work, the natural logarithm loge will be utilized unless
otherwise specified.

Similarly, we can calculate the Von Neumann entropy S(ρB) for subsystem B by
taking the reduced density matrix ρB obtained from the joint density matrix by
tracing out the degrees of freedom of subsystem A.

16

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

Properties:

• S(ρ) is zero if and only if ρ represents a separable state. By definition, a
separable state does not have entanglement.

• Given the two bipartitions A and B, S(ρA) = S(ρB), in other words, the
amount of entanglement obtained by tracing out respectively the system B

and A are the same.

1.3.2 Example: (Parametrized) Bell Circuit

The Parametrized Bell Circuit offers a straightforward illustration of entanglement
between qubits as shared information. This circuit relies solely on a single parameter,
θ:

|0⟩ RY (θ)

|0⟩

Figure 1.7: Circuit that outputs the parametrized Bell State |ψBell(θ)⟩.

The unitary representation of the circuit (B̂(θ)) is

B̂(θ) = (CNOT)(RY (θ)⊗ I) (1.15)

Which applied to the initial state |00⟩, it outputs the desired evolved state:

B̂(θ)|00⟩ =

⎡⎢⎢⎣
cos(θ/2) 0 sin(θ/2) 0

0 cos(θ/2) 0 sin(θ/2)

0 − sin(θ/2) 0 cos(θ/2)

− sin(θ/2) 0 cos(θ/2) 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1

0

0

0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
− cos(θ/2)

0

0

− sin(θ/2)

⎤⎥⎥⎦ = cos(θ/2)|00⟩ − sin(θ/2)|11⟩ (1.16)

17

1.3. ENTANGLEMENT

The reduced density matrix ρ̃(θ) of the state |ψBell(θ)⟩ is:

ρ̃(θ) =

[︃
cos2(θ/2) 0

0 sin2(θ/2)

]︃
(1.17)

From which it is possible to compute the Von Neumann Entropy of the state:

S(θ) = −Tr
[︁
ρ̃(θ) log(ρ̃(θ))

]︁
=

= − cos2(θ/2) ∗ log(cos2(θ/2))− sin2(θ/2) ∗ log(sin2(θ/2)) (1.18)

Figure 1.8: Value of Von Neumann Entropy for θ ∈ [0, π].

The Von Neumann entropy of the circuit shown is dependent on the parameter θ.
Figure 1.8 illustrates the entropy (quantifying the amount of entanglement) concern-
ing various values of θ within the range [0, π]. Notably, as θ approaches π/2, the
entropy increases, reaching its maximum for the Bell state with maximum entangle-
ment. Conversely, the entropy returns to 0 at θ = π.
Three distinct noteworthy cases can be identified:

• When θ = 0, the state is simply |00⟩, displaying no entanglement. From
an information theory perspective, measuring one qubit provides no useful
information about the other, as the result is always 0.

• At θ = π, the state is −|11⟩, which is equivalent to the θ = 0 case, no informa-
tion of the other qubit is gained upon measuring one.

• For θ = π/2, the state is the bell state with maximum entanglement. From
an information theory standpoint, maximum entanglement implies the most
information is conveyed upon measurement. When measuring one qubit, the

18

CHAPTER 1. QUANTUM COMPUTING FOR HIGH ENERGY PHYSICS

other collapses into the same state, providing a complete description of the
global state.

The techniques outlined in this chapter constitute the fundamental components of
data analysis employing QML models for HEP. This framework is progressively gain-
ing ground as a possible successor to conventional ML, showing remarkable potential
for advancing data analysis in this field.

The integration of ML in the field of HEP has resulted in significant boosts in the
efficiency of the experiments. This resulted not only in enhanced data analysis, but
it has also proven highly beneficial for tasks such as calibrating various modules of
the experiments for better performances [17]. ML results effective primarily thanks
to its property of being able to tackle problems that do not have an analytical defi-
nition, which it can be assumed to be the majority of tasks faced nowadays in HEP.

Fundamentally, even with its exclusive characteristics, QML can be applied to the
same problem domains currently addressed by conventional ML algorithms. Just as
Quantum Computation showcased superior performance for specific tasks such as
factorization [18], QML could serve as the solution to address tasks that proved to
be challenging even for current ML models.
Furthermore, as Quantum Sensing [19] technology advances and more robust quan-
tum hardware is developed, the true capabilities of quantum models will become
more and more prominent.
One of the tasks within the realm of HEP that experienced a substantial improve-
ment in efficiency through the incorporation of ML is the classification of jet events.
However, even with the implementation of these techniques, the results are not yet
fully optimal. The upcoming chapter will concentrate on introducing this particular
task which will be the focus of the thesis. Additionally depiction of the LHCb exper-
iment is provided, as it stands as the most suitable detector to date for investigating
jet phenomena.

19

1.3. ENTANGLEMENT

20

Chapter 2
Jet Physics at LHCb

The phenomena studied in this thesis work regard the formation of jets subsequent
to proton collisions. These jets, which manifest as clusters of particles, can emerge in
tandem with important physics events such as the Higgs decay H → b b̄ and H → c c̄.

The ML techniques presented in Chapter 1 have already been employed in the realm
of jet tagging, yielding results surpassing those achieved by conventional algorithms
[4, 20]. Given the intricate nature of jet formation and the amount of information em-
bedded in a single event, the integration of a quantum variant represents an attempt
to amplify even further the classification efficiency and purity, i.e. the capability to
correctly identify the flavour of the quark originating the jet.

The forthcoming chapter will explore the architecture of the LHCb experiment, elu-
cidating the functioning of all the sub-detectors used for the data collection. Subse-
quently, it will explore the underlying physics governing the formations of the studied
events. Lastly, the focus will shift to the algorithms that process the raw detectors
information into high level features information like track/jets position, momentum
and energy.

21

2.1. THE LHCB EXPERIMENT AND JET IDENTIFICATION

2.1 The LHCb experiment and jet identification

2.1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [21], is the world’s largest and most powerful
particle accelerator, with a nominal center-of-mass energy of 14TeV and stretching
about 27 km in length [22]. Within the LHC, two beams of either protons or heavy
ions circulate in separate beam pipes, where a vacuum is maintained in the order of
10−10 to 10−11 mbar. These beams intersect at four interaction points housing the
main experiments. Figure 2.1 shows the CERN accelerators complex with the LHC
machine, the Super Proton Synchrotron (SPS), the Proton Synchrotron (PS), and
other extracted beams used for fixed target experiments and or test beams facilities.
Protons are produced by ionizing hydrogen atoms, then they undergo several pre-
acceleration stages in the synchrotrons. After this series of accelerations, the protons
are injected into the collider, where each beam can reach a final energy of approxi-
mately 7 TeV, resulting in a center-of-mass energy at the collision of approximately√
s ≈ 14 TeV.

The LHC accommodates four main experiments at its four collision points: ATLAS
(A Toroidal LHC ApparatuS) [23] and CMS (Compact Muon Solenoid) [24] serve
as the two General Purpose Detectors with a cylindrical structure surrounding the
collision points. ALICE (A Lead Ions Collision Experiment) [25] focuses on the
study of phases of matter where quarks and gluons are free, particularly in heavy
ions collisions. Lastly, LHCb is dedicated to studying the properties of b- and c-
quarks, which are the subject of investigation and discussion in this thesis work.

2.1.2 LHCb

In this section, a more in-depth description of the LHCb detector is done, as the
thesis work involves analyzing Monte Carlo data of this experiment.
LHCb is a single-arm spectrometer with a forward pseudo-rapidity η1 coverage be-
tween 1.8 and 4.9. It uses a coordinate system with the z-axis parallel to the beam
direction, the y-axis opposite to gravity, and the x-axis perpendicular to the yz-plane.
Starting from the interaction point the main sub-detectors are:

1The pseudo-rapidity, denoted as η, is defined as η = − ln tan θ/2, where θ represents the polar
angle formed by the particle momentum with respect to the beam axis.

22

CHAPTER 2. JET PHYSICS AT LHCB

Figure 2.1: Schematic representation of accelerator facilities at CERN. The entire
infrastructure depicted is interconnected, incorporating various facilities like PS, SPS
responsible for accelerating particles from a source before injecting them into the
LHC and other experiments including ELENA (utilized for trapping antiprotons)
and AWAKE (employing plasma to accelerate particles). [26]

• Vertex Locator [VELO]: The VELO measures track coordinates near the
interaction point. It provides precise information enabling the identification of
secondary vertices from b- and c-hadron decays.

• Tracking stations [TT, T1, T2, T3]: Four planar stations positioned per-
pendicular to the beam axis. One of them, the TT, is positioned upstream
of the dipole magnet (see definition in the last bullet) and the remaining T1-3
stations are positioned downstream of the magnet. The primary purpose of the
tracking system is to accurately reconstruct charged-particle tracks, enabling
the determination of their momenta.

• Ring Imaging Cherenkov [RICH1, RICH2]: The RICH detectors allow to
distinguish between charged hadrons (π,K, p). Moreover, the RICH system can
also help to identify charged leptons (e, µ), providing additional information to
complement the data from downstream calorimeters and the muon system.

The fundamental principle underlying the RICH system relies on the Cherenkov
effect. This effect takes place when charged particles traverse a transparent
medium at a velocity higher than the phase velocity of light in that medium.

23

2.1. THE LHCB EXPERIMENT AND JET IDENTIFICATION

Figure 2.2: Structure of the LHCb detector. [27]

As a result, the charged particles emit Cherenkov radiation, which forms the
basis for particle identification in the RICH detector.

• Scintillator Pad Detector and Preshower [SPD/PS]:

– The primary role of the SPD is to provide precise and fast information
for real time event acquisition decision (trigger) . It is designed to detect
charged particles passing through its scintillator pads, which are plastic
materials that emit light when charged particles traverse them. By quickly
identifying charged particles, the SPD helps initiate the data readout pro-
cess for the full detector when interesting collision events occur, ensuring
that relevant data is not missed.

– The PS stands for "Preshower Detector." It is another sub-detector of
LHCb, positioned downstream of the SPD. The main function of the PS
is to enhance the particle identification capabilities of the LHCb detector,
particularly for electrons and photons

• Calorimeters [ECAL, HCAL]: ECAL, the electromagnetic calorimeter, serves
the purpose of detecting photons and electrons by measuring the energy they
deposit. Meanwhile, the HCAL, the hadronic calorimeter, is responsible for

24

CHAPTER 2. JET PHYSICS AT LHCB

capturing the energy of both charged and neutral hadrons.
Both calorimeters are of the sampling type, characterized by alternating layers
of different materials. Instead of immediately absorbing the entire energy of
the incoming particle, these layers are designed to initiate a particle shower
and then measure the energy deposit [28].

• Muon detection system [M1-M5]: The muon detection system, positioned
at the outermost part of the detector, is specifically designed for the exclusive
purpose of detecting muons.

• Magnet: A dipole magnet is positioned between the tracking stations TT
and T1. The magnet allows the measurement of charged particle momentum
by observing the curvature induced by the magnetic field parallel to the y-
axis, resulting in bent trajectories on the xz-plane. For 10 m long tracks, the
integrated magnetic field is approximately 4Tm, while the residual magnetic
field inside the two RICHs is approximately 2Tm. The coverage of the magnet
coverage spans a forward acceptance of ±250mrad vertically and ±300mrad
horizontally.

2.2 b- and c-jets formation

Jets are narrow cones of particles observed following collisions between protons with
sufficient high energy. These collisions, occurring at a center-of-mass energy of
13.6TeV at LHC, results in strong interaction between the protons. The collision
triggers a complex chain reaction leading to the formation of cone-shaped patterns
composed of long lived and stable particles.
The quarks composing each proton possess a portion of the overall electric charge,
but more importantly, they carry a distinctive charge known as the color charge,
which determines the strength of the strong interaction force. Due to the principle
of color confinement, it is impossible to isolate individual particles with a non-zero
color charge, rendering them undetectable.
The tagging of jets is the process of determining the type of quark that originated
the jet, which cannot be directly measured due to color confinement. Instead, this
identification relies on studying the stable particles forming the jet.
Accurately classify the types of jets is a crucial task in HEP for two main reasons.
b- and c-jets may be produced by direct parton-parton interaction but also by the

25

2.2. B- AND C-JETS FORMATION

Figure 2.3: Formation of Jets: Partons inside protons collide, producing other par-
tons or particles decaying to partons, of particular interest b and c quarks. These
quarks then immediately undergo the process of fragmentation, which results in more
quarks and gluons produced. Finally, they hadronize into short, long lived or/and
stable particles. [29].

decay of newly discovered particles like the Higgs and being able to distinguish be-
tween H → b b̄ and H → c c̄ is one of the most challenging task in LHC experiments.
Moreover the underlying mechanisms involved in the formation of jets, namely frag-
mentation and hadronization, are not yet fully determined.
The upcoming three sections will delve into the processes that give rise to the ob-
served jets: Quarks and gluon production, Fragmentation and Hadronization.

2.2.1 Quarks and gluon production

When protons collide at high energies (
√
s ≈ 13 TeV), their constituent partons can

undergo a wide range of interactions and produce various physics phenomena. The
kinematics of this collision are encoded in the Parton Distribution Functions (PDFs)
and in the two partons elementary cross section. dσpp→QQ̄, represents the probability
density of a process where a quark pair QQ̄ is produced from the interaction of two
protons pp :

dσpp→QQ̄ =
∑︂
n,m

∫︂ ∫︂
dxn dxm fn/p(xn, µ)fm/p(xm, µ)dσ̂nm→QQ̄ (2.1)

26

CHAPTER 2. JET PHYSICS AT LHCB

Where n and m take into account all possible partons with a non-vanishing contri-
bution at the parton level in dσ̂nm→QQ̄, the inclusive elementary cross section, and
µ is a renormalization parameter.

2.2.2 Fragmentation

After the production, the quark shifts away few millimetres and start fragmenting
originating the jet.

The fragmentation is a process defined by the QCD, perturbative and non. Dur-
ing this process, a chain reaction of sub-processes are involved that results in the
production of many color-charged particles. Schematically it can be summarized as:

• Emission of a gluon from a quark.

• Generation of a quark-antiquark pair by a gluon.

• Emission of a gluon by a gluon.

2.2.3 Hadronization

Due to color confinement, isolated quarks and gluons resulting from the fragmen-
tation process, cannot be directly observed in nature. Instead, they quickly re-
arrange themselves to form color-neutral bound states, which are the detectable
hadrons. This mechanism guarantees that only color-neutral particles, like mesons
and baryons, are observed in experiments.

The result of these processes is the formation of hadrons narrow clustered, within
the cone of a jet.

By studying the properties of jets, it is possible to infer the flavor of the quark
originating the jet itself. Here, ML techniques are typically employed to exploit the
correlations of all the particles inside the jet.

These techniques use high level jets information that are obtained with the event
reconstruction software. Here the jets reconstruction is described.

27

2.3. JETS RECONSTRUCTION

2.3 Jets reconstruction

The algorithms used for jet reconstruction at LHCb combine the information from
the sub-detectors listed in 2.1.2 to construct quantities representing each single jet
event. The reconstruction of jets consists of the following steps:

• Particle Flow provides the list of particles reconstructed, eventually elimi-
nating any false positives;

• Clustering is performed using the anti-kT [30] algorithm, where particles are
separated into different jets based on their association.

• E-recombination scheme where the four-momentum of the jet is computed
as a function of the particles momenta;

• Jet Energy Correction is then applied to the final energy of the jets, based
on Monte Carlo simulations.

2.3.1 Particle flow

The first step of the event reconstruction is the Particle flow algorithm. Its aim is
to produce a singular list of the reconstructed particles such as photons, charged
hadrons, neutral hadrons, muons, and electrons [31].

The output list is constructed to be as accessible as the list of actual particles derived
from event reconstruction. Its purpose is to serve as input for the next reconstruction
algorithms.

While applying the particle flow algorithm, certain detector hits might be discarded
to guarantee the accuracy and reliability of the resulting data. These exclusions
are based on quality criteria, based on data acquisition and previous reconstruction
steps.

2.3.2 Clustering

Aggregating the reconstructed particles into jets/clusters is a complex task since
particles belonging to separate jets could potentially overlap. There exist diverse
strategies to estimate the number of clusters and subsequently assign each particle

28

CHAPTER 2. JET PHYSICS AT LHCB

to the most appropriate cluster.

The anti-kt is the clustering algorithm employed at LHCb and many other exper-
iments within LHC [30]. The main idea is to merge particles together into jets,
according to a metric dij, that takes into account both the position of the particles
and their momenta.

The anti-kt algorithm works as follows:

1. For each pair of particles the distance dij is calculated:

dij = min(k−2
t,i , k

−2
t,j)

∆2
ij

R2
where ∆2

ij = (yi − yj)
2 + (ϕi − ϕj)

2 (2.2)

Kt,i, yi and ϕi are the transverse momentum, the rapidity2 and the azimuthal
angle of the particle i, respectively. R instead is a tunable parameter of the
algorithm called radius.

2. Once each distance dij is computed, a similar distance is calculated between
each particle i and the beam axis

diB = k−2
t,i (2.3)

3. For each i, the distances dij and diB are compared:

3.1 If dij < diB, the particle i is combined into j making a new particle (sum-
ming their four-momenta) and removed from the list of input particles.

3.2 Otherwise the particle i is defined as a jet and removed from the list of
particles.

4. The algorithm repeats steps 2 and 3 until any particle is remaining to be
clustered.

The anti-kt algorithm only has a free parameter R. It can be tuned in order to
optimize the jet energy resolution depending on the type of experiment and detector
properties. At LHCb, typical values are between 0.5 and 0.7 [30], For the specific
data set used in this analysis, the jets were clustered setting the value to 0.5.

2rapidity y is defined as y = (1/2) ln ((E + pzc)/(E − pzc))

29

2.3. JETS RECONSTRUCTION

2.3.3 E-recombination scheme

The four-momenta (Ejet, pjet) of the reconstructed jets after the clustering process is
defined as the sum of energy and momenta of each particle:

Ejet =
∑︂
i

Ei pjet =
∑︂
i

pi (2.4)

The described algorithm is applied both to simulated and p − p collisions jets. In
this thesis the jetreco are simulated jets reconstructed as the experimental ones while
jetMC are based on truth level Monte Carlo information. The main difference be-
tween the two classes lies in the particles used: jetMC is clustered using all stable
truth-level particles with truth-level kinematical values, while jetreco is formed using
reconstructed particles with reconstructed quantities.
To associate a jetMC with a jetreco, the distance between them in the η − ϕ plane,
∆R =

√︁
∆η2 +∆ϕ2, must be smaller than 0.4. If more than one compatible jet is

found within this range, the jet with the closest distance is chosen.

2.3.4 Jet energy correction

An important step in the jet reconstruction is the energy correction. Such a correction
is needed to take into in account several factors: partial containment of the jets in
the calorimeter, not perfect calibration, energy losses due to sampling, event pile-up,
etc. In this thesis, a correction factor is applied to the energy of the reconstructed
jets, denoted as Ejet

reco. This correction is achieved using a factor called Jet Energy
Correction, represented as kMC, and it follows the equation:

Ejet
MC = kMCEjet

reco (2.5)

2.3.5 Secondary Vertex finding

b- and c-jets exhibit the distinct behaviour of a secondary decay "within" the jet
structure. The b and c hadrons undergo a decay process located in the Secondary
Vertex (SV) which is few millimeters beyond the primary interaction point, named
Primary Vertex (PV).
While analyzing the tracks stemming from the fragmentation process for these types
of jets, it is possible to identify a secondary point where the tracks converge, the SV.
This is exemplified in Figure 2.4.

30

CHAPTER 2. JET PHYSICS AT LHCB

This specific structure is unique to heavy quark (b and c) jets, as the resulting hadron
in the collision possesses a sufficiently long lifetime to decay at a distance far enough
from the PV [32]. The ability to detect the SV within a jet constitutes the primary
strategy for distinguishing between heavy quark jets and light quark jets at LHCb.
The characteristics of jets with a SV are presented in the next chapter.

Figure 2.4: Illustration of a jet with secondary and tertiary decay vertices. [33]

31

2.3. JETS RECONSTRUCTION

32

Chapter 3
b− and c−jet identification with
Quantum Machine Learning

In this chapter, the focus initially lies in the presentation of the data set employed
and analyzed for the classification of b- vs c- jets. Initially, the chapter presents the
source of the data set, followed by an explanation of each individual feature present
in the data set.
Afterwards, both classical ML models and QML models for b- vs c-jets classification
will be introduced, to facilitate a comparative analysis between the two approaches.

3.1 Data-set

The data set samples are generated using the official LHCb Monte Carlo simulations,
focusing on jets arising from proton-proton collisions with a center-of-mass energy of√
s = 13 TeV (under Run 2 conditions).

The Monte Carlo simulation process involves the utilization of three distinct pro-
grams. Initially, Pythia [34] is employed to generate the hard process occurring dur-
ing the collision. EvtGen [35] simulates the subsequent decay of b- and c- hadrons.
Finally, Geant4 [36] is employed to simulate the interactions of the hadronized par-
ticles with the detector. The events, then, undergo processing through the pipeline
showcased in Section 2.3 with the application of the ParticleFlow algorithm and the
anti-kT clustering algorithm.

33

3.1. DATA-SET

3.1.1 Secondary Vertex features

Figure 3.1: The jet on top illustrates a secondary vertex, SV, with some of the
constituent features. [4]

Since the tagging in this thesis focuses on heavy quark jets, events are distinguished
by the presence of the SV. To the SV, are associated the following quantities, which
will form the utilized data set:

• vtx_fdrMin: the transverse flight distance of the two-track SV closest to the
PV;

• vtx_ptSvrJet: The fraction of the component of the momentum transverse to
the beam pT carried by the SV over the total transverse momentum, pT (SV)/pT (jet);

• vtx_nTrk: the number of tracks forming the SV;

• vtx_drSvrJet: the ∆R between the SV flight direction and the jet (as in Figure
3.1);

• vtx_nTrkJet: the number of SV tracks with ∆R < 0.5 relative to the jet axis;

• vtx_absQSum: the net charge of the tracks that form the SV;

• vtx_m: the SV mass assuming all particles being a pion;

34

CHAPTER 3. JET IDENTIFICATION WITH QUANTUM MACHINE
LEARNING

• vtx_mCor: it takes into account the invariant mass of the particles constituting
the SV, as well as the momentum and the angle between the momentum vector and
the direction of the SV trajectory.;

• vtx_fdChi2: the flight distance χ2;

• vtx_ipChi2Sum: the sum χ2
IP of all tracks associated with the SV. χ2

IP refers
to the difference in the χ2 value of the PV reconstructed with and without the
considered track.

• vtx_tau: the SV lifetime;

• vtx_z: the SV z−position;

• vtx_pt: the SV transverse momentum pT ;

It is important to highlight that not all of these quantities will be employed in the
subsequent methods due to the considerable computational demands of simulating
and training a quantum circuit able to embed this high number of features. The
implementation of the subsequent models rely on the Angle Embedding method
outlined in Section 1.2.2. Consequently, to handle N features, N qubits are needed
to be simulated.
Figure 3.2 illustrates the distribution of the features of the SV. The SV corrected
mass distribution exhibits the most significant differences between b-jets and c-jets.
Because of this, the corrected mass is anticipated to yield a substantial score in the
feature importance analysis conducted in Section 5.2. Additionally, in the data set,
each jet contains information about its quark origin, which is determined by the
matched Monte Carlo jet. The label takes a value of 0 if the jet originates from
a b-quark or 1 if it comes from a c-quark. This "Jet Label" variable serves as the
target feature for the tagging algorithms aimed at distinguishing between the two
types of jets.

3.1.2 Data set selection

The data set derived from the Monte Carlo events is subjected to a set of filters.
These filters are commonly applied in the context of Jet data analysis at LHCb
as their purpose is maintaining a high data quality due to limitations arising from
detector and the reconstruction algorithm.

35

3.1. DATA-SET

Figure 3.2: Distribution of the features of the b- jets (blue) and c- jets, in red.
Description of each feature in the text.

36

CHAPTER 3. JET IDENTIFICATION WITH QUANTUM MACHINE
LEARNING

• Transverse Momentum: 20 < pT < 1000 GeV/c. This criterion ensures the
accurate reconstruction of the jet, as the reconstruction algorithm tends to be
less reliable outside this range.

• Pseudo-rapidity: 2.2 < η < 4.2. This condition guarantees that the jet remains
entirely within the angular acceptance of the actual detector.

3.2 Classical model: (Gradient) Boosted Decision
Trees

The classical model selected for the comparative analysis is the Boosted Decision
Tree (BDT) [37], which serves as a standard in jet flavor tagging at LHCb [38].
BDTs are an enhancement of simple decision tree models that incorporate gradient
descent techniques (gradient boosting) for optimization.

Decision tree: A decision tree is a straightforward machine learning model, tak-
ing the form of a tree-like structure. In this structure, each internal node represents
a data split based on a specific value of a given feature. The process of splitting
continues until the training data set is sufficiently divided, ideally leading to fully
separated classes in a classification task, and ultimately concluding with leaf nodes
that represent class labels. The training of these trees involves identifying the most
suitable values for data splitting at each node.

Decision trees are models that offer high interpretability; however, they are sus-
ceptible to overfitting. Their full potential is realized when multiple decision trees,
forming a "forest," are aggregated using a voting system. When presented with an
input, each decision tree provides a predicted class, and the final assigned class is de-
termined by the majority of predictions among the constituent trees. This ensemble
approach enhances generalization and reduces the risk of overfitting, making random
forests a powerful and widely-used tool.

Gradient boosting: Gradient boosting is a technique that combines the concept
of gradient descent to the construction of new trees in a forest. The process involves
adding new trees based on the prediction error of the preceding tree, updating the
weight parameters to minimize the error of the next individual decision tree. This
iterative approach allows the next tree to focus on the patterns that were not captured

37

3.3. SOFTWARE IMPLEMENTATION FOR JET TAGGING ON QUANTUM
MODELS

well by the previous trees, leading to a more accurate and robust model. A visual
representation of this method is depicted in Figure 3.3.

Figure 3.3: Diagrammatic representation of a Boosted Decision Tree. [39]

3.3 Software implementation for jet tagging on quan-
tum models

3.3.1 PennyLane

The quantum models discussed in the following sections have been implemented in
Python using the PennyLane library [40]. This library enables the implementation
of the quantum techniques elucidated in Chapter 1. However, simulating a quantum
circuit within a classical computer entails notable limitations that effectively nullify
the exponential advantage. Notably, simulating a quantum system with 10 or more
qubits in a classical computer necessitates significant memory allocation, making it
as well computationally expensive due to the multiplication of large matrices.
In Figure 3.4 shows a basic example of a QML model. The first line of code loads the
PennyLane package, while the second line defines a quantum device which determines

38

CHAPTER 3. JET IDENTIFICATION WITH QUANTUM MACHINE
LEARNING

the overall behavior of the simulator.
In Figure 3.4, a 1-qubit circuit is defined using the circuit Python function, con-
structed with a parametrized RX(x) gate (where x is the trainable parameter). After
applying the rotation, the measurement is performed on the only wire, computing
the Z−expectation value. This circuit is executed alongside the qml.qnode(dev)
decorator, which maps the circuit to the specified device, creating a Quantum Com-
putation Node (QNode). By calling the circuit function, the quantum circuit is
evaluated on the selected device.
The cost function serves as the loss function explained in Chapter 1. Within this
framework, the cost function is essential for the explicit definition of its gradient.
Finally, the last three lines of code implement an optimization step of the cost func-
tion concerning the weight parameters, utilizing a simple Gradient Descent optimizer.

Figure 3.4: An illustrative instance of a QML model pipeline, comprising a quantum
node and a subsequent classical node. The outcome obtained from the classical node
serves as the optimization target. [40]

In this work, the "JAX" backend (see next paragraph) is employed for simulating
the devices, particularly for its high-speed automatic differentiation capabilities. The
functions jit and vmap provided by the JAX library [41] enable efficient execution
on accelerators like GPUs, contributing to improved overall performance.

39

3.4. QUANTUM MODELS

3.3.2 JAX

JAX, developed by Google, is an open-source library designed for high-performance
numerical computing and machine learning. In this work, the following features
offered by JAX are used:

• Automatic Differentiation: JAX provides efficient and accurate methods
for computing gradients. Specifically, the function jax.value_and_grad is
used to compute the gradient function of a given circuit for the optimization
loop.

• Vectorization: Through the function jax.vmap, it is possible to vectorize a
circuit, allowing different executions of the same quantum circuit to be applied
in parallel with no significant increase in execution time.

• Just-in-Time Compilation (JIT): JAX’s jax.jit feature enables to ac-
celerate the execution of Python functions (including circuit functions) by con-
verting them into optimized machine code and executing them on a GPU.

By leveraging these features, the work gains advantages such as efficient gradient
computation, parallel execution of quantum circuits, and accelerated execution on
GPUs, leading to enhanced performance of the QML algorithms.

3.4 Quantum Models

A thorough investigation has been conducted to identify the best set of hyper-
parameters for a QML classifier employed in the b- vs. c-jet tagging [3].
The analysis centered specifically on the hyper-parameters: Ansatz and Data Scal-
ing. The latter refers to the function applied to the input data prior to embedding
it into the circuit.

This investigation resulted to a model configured as follows:

QAOA Ansatz: The parametrized circuit design draws inspiration from the com-
binatorial problem QAOA [42]. This circuit is designed to encode N features in N

qubits and encloses a total of 2 · L ·N trainable parameters, where L is the number
of iterations of a single QAOA block. The complete Ansatz is visually presented in
Figure 3.5. In each iteration of the block, the data is initially embedded using the

40

CHAPTER 3. JET IDENTIFICATION WITH QUANTUM MACHINE
LEARNING

standard angle embedding (refer to 1.2.2). Subsequently, a parametrized multi-qubit
gate RZZ is applied, followed by an independent parametrized Ry rotation on each
qubit. After the L repetitions, an additional final embedding is applied [43] and then
the Pauli-Z expectation value is measured.

×L repetitions

|0⟩ Rx(x1)
R

Z
Z
(θ

1
)

R
Z
Z
(θ

4
)

Ry(θ5) Rx(x1) ⟨σz⟩

|0⟩ Rx(x2)
R

Z
Z
(θ

2
) Ry(θ6) Rx(x2)

|0⟩ Rx(x3)

R
Z
Z
(θ

3
) Ry(θ7) Rx(x3)

|0⟩ Rx(x4) Ry(θ8) Rx(x4)

where:

R
Z
Z
(θ
)

=
Rz(θ)

Figure 3.5: QAOA Ansatz.

Power Transformer: The PowerTransformer is a scaler function provided by the
Python library sklearn. Its purpose is to transform each feature across all events in a
way that they exhibit a Gaussian-like distribution with a mean of 0 and a standard
deviation of 1 [44]. An example of the transformation on the input feature vtx_pt
can be seen in Figure 3.6.

3.5 QML Performance

In the following section, multiple models are compared with different hyper-parameters.
To assure a fair comparison, the following models underwent training using the iden-
tical training set. Following their training, their performance has been evaluated
using an identical test set.
The training set consists of 276,790 jets , and the test set comprises 126,228. Both
the training and test sets have a balanced distribution of the two classes, with a split

41

3.5. QML PERFORMANCE

⇒

Figure 3.6: Distribution of the values of the feature vtx_pt before (left) and after
(right) applying PowerTransformer

of 50% b-jets and 50% c-jets.
The performances have been evaluated using two metrics on the test set: the stan-
dard accuracy and the ROC AUC.

3.5.1 Metrics

Accuracy: One of the simplest metric is the accuracy, defined as the ratio of all
correctly classified samples over all the samples:

Accuracy:
∑︁|M |

i=1 δ(yi − ˜︁yi)
|M |

(3.1)

where M is the set of input events and yi and ˜︁yi are respectively the true and the
predicted label of the jet i.

When provided with input, the models generate a score. A score close to 0 indicates
higher confidence that the input event belongs to class 0, whereas a score near 1
signifies greater confidence in classifying it as class 1. A firm threshold is set at
0.5. Therefore, if the score falls below this threshold, the model predicts the input
belongs to class 0; otherwise, it predicts it belongs to class 1.

ROC AUC: One of the most utilized metrics for assessing the performance of a
ML classifier is the area under the curve (AUC) of the Receiver Operating Charac-
teristic (ROC) curve. The ROC curve is generated by plotting the true positive rate
(TPR) against the false positive rate (FPR) at different threshold settings across the
prediction distributions [45]. In Figure 3.7, several ROC curves are illustrated for

42

CHAPTER 3. JET IDENTIFICATION WITH QUANTUM MACHINE
LEARNING

different model examples. In the case of a random classifier, the ROC curve takes
the form of a straight line from the points (0,0) to (1,1). Conversely, for an ideal
classifier, the ROC curve starts directly from (0,0) to (0,1) and then proceeds to
(1,1). The area beneath the ROC curve indicates the performance of a given model,
with a larger area signifying better performance.
The AUC metric is computed by evaluating the integral (i.e., the area) beneath the
ROC curve. Unlike plain accuracy, a high AUC score not only implies that the
classifier accurately predicted most test events, but also that these predictions were
made with high confidence and precision.

Figure 3.7: ROC curves of three models, the blue line is the ROC curve associated
to the classification on top, the green line is the middle model, the orange line is
related to the bottom model. [46]

3.5.2 Scaling with number of qubits N and layers L:

The effectiveness of the QAOA Ansatz was evaluated across various values of N
(number of qubits) and L (number of layers/iterations). Given that the QAOA
Ansatz embeds a feature in each wire, the value N corresponds to the quantity of
features from the SV utilized in the analysis as well. Increasing N results in the
incorporation of a greater number of features, while raising L maintains the same
feature count but raises the number of trainable parameters of the model.

43

3.5. QML PERFORMANCE

The result of this analysis is summarised in Figure 3.8. As expected, elevated values
of both N and L yield to improved model performance. It is worth noticing that a
crucial number of layers threshold exists, beyond which accuracy plateaus due to the
model reaching a saturation point in parameter necessity. On average, this the layer
count is at 7 for all the models.

Figure 3.8: Test accuracy (left) and its corresponding ROC area under the curve
(right) as a function of number of qubits and number of layers using the QML
model. [3]

3.5.3 Comparison between QPC and BDT

In this section, a trained QAOA circuit is compared with a classical BDT presented
in Section 3.2. In order to guarantee a fair comparison, the number of qubits (and
features) for the QAOA circuit is set to 8 as well as the number of features for the
BDT model.

Figure 3.9 shows the prediction distributions of the BDT and QAOA. The BDT
model performs a better job in effectively distinguishing between the two classes,
achieving correct predictions for the majority of events with high confidence. Con-
versely, while the QAOA circuit correctly classify a considerable portion of events, it
consistently maintains a conservative approach in its predictions.

44

CHAPTER 3. JET IDENTIFICATION WITH QUANTUM MACHINE
LEARNING

To quantitatively assess the aforementioned assertion, the Figure 3.10 displays ROC
curves and AUC scores of the two models. As anticipated, the BDT model demon-
strates a slightly superior performance, as evidenced by its ROC curve consistently
above of that of the parametrized quantum circuit. The AUC score for the BDT
model is 0.922, while for the quantum circuit, it stands at 0.896.

The classical BDT exhibits overall superior performance in the tagging task. How-

Figure 3.9: Predictions of the classical (left) and quantum model (right)

ever, an implementation of a quantum classifier with a higher number of features
could potentially diminish the disparity between the quantum and classical models.
The difference in outcomes achieved at this limited scale constitutes the primary
factor driving the integration of unused information within the quantum classifiers,
which it will investigate in the subsequent two chapters.

45

3.5. QML PERFORMANCE

Figure 3.10: ROC curves of the Boosted Decision Tree model (green) and QML
model(orange) for 8 features/qubits

46

Chapter 4
Benchmarking of entropy production
in a quantum classifier

Entanglement is a vital component in QML models as it enables them to achieve high
expressiveness (as defined below), even beyond classical models. By allowing qubits
to exhibit intricate and non-classical behaviors, entanglement unlocks the potential
to process highly complex data, which could prove advantageous, particularly in the
context of tagging heavy quark jets. Currently, this task poses significant challenges
that are not easily overcome even with advanced models like BDT.

The general assumption is that the expressiveness of a quantum model increases
with higher entanglement capability. This enables the quantum model to explore
larger portions of the highly-dimensional Hilbert space, allowing it to represent more
complex and diverse quantum states.

Expressibility: In the context of a PQC it refers to its capability to generate
states that effectively represent the entire Hilbert space. For instance, for a single
qubit, this translates to the circuit’s ability to explore the entire Bloch sphere as in
Figure 4.1. In the case of two or more qubits, expressibility refers to the circuit’s
capacity to fully explore its entire Hilbert space. Unlike the single-qubit scenario, the
exploration of this multi-qubit Hilbert space cannot be visually represented through
graphical illustrations like Bloch spheres.

However, the high expressivity offered by QML compared to ML poses a major

47

4.1. THE BARREN PLATEAU PROBLEM IN QML

Figure 4.1: Examples of four 1-qubit circuits with different expressive powers. [47]

training challenge known as the "Barren Plateau" problem [48]. Currently, the pri-
mary obstacle to achieving deep quantum circuits is the presence of these plateaus
alongside the present limitation by the physical hardware.

4.1 The Barren Plateau problem in QML

PQC exhibit high expressivity, mainly because of the vast dimensionality of the
Hilbert space they can explore. While this high expressiveness offers advantages,
it also poses challenges during the training phase. The high dimensionality of the
Hilbert space can lead to exceedingly flat loss functions, known as Barren Plateau.
In this scenario, the gradients necessary for efficient optimization become vanish-
ingly small, making it extremely difficult and computationally expensive to train the
quantum circuit effectively.

Overcoming the Barren Plateau problem in QML is an active area of research. While
there is no one-size-fits-all solution, several approaches have been proposed to miti-
gate or address this challenge.
The main proposed ideas revolve around limiting the portions of the Hilbert space
accessible to the trainable quantum model to restrict it to regions that potentially
contain the desired optimal solution.

48

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

Some of the strategies to overcome the barren plateau include:

• Circuit design: The placement and number of parametrized single-qubit gates
and multi-qubit gates play a fundamental role in determining the level of entan-
glement generated within a quantum circuit. The arrangement of these gates
is critical as it directly influences the amount formed and the specific pair of
qubits involved.
The Quantum Convolutional Neural Network (QCNN) [49], the quantum coun-
terpart of a classical convolutional neural network, stands out as a notable ex-
ample of an architecture that has demonstrated resilience against the barren
plateau problem [50].

• Initialization Scheme: The general consensus is that a Gaussian Distribu-
tion with a mean 0 is the preferred choice for parameter initialization. However,
determining the appropriate standard deviation has been a subject of investi-
gation. Existing literature [51] proposes a formula that takes into account the
number of parametrized gates. This initialization is proven to ensure that the
expectation value of the gradient of the loss function remains above a certain
lower bound, thereby preventing the loss function from becoming flat during
optimization.

• Optimisation strategy: The types of optimization algorithms and loss for-
mulas used play a critical role in the formation of entropies during QML tasks.
Key choices are:

– Parameters update algorithm: such as plain Gradient Descent, ADAM
Gradient Descent or even gradient-free methods such as SPSA [52].

– Cost function: the function that determines the error in the prediction of
the model is responsible as well for the update of the parameters, hence
the formation of the entropies.

• Data Preprocessing: Data preprocessing is a vital factor in determining the
quality of any ML model. In the context of QML models, data preprocessing
becomes even more crucial due to the specific requirements of data embedding,
such as addressing periodicity. The impact of data preprocessing is signifi-
cant as it directly affects the model’s training process and also influences the
generation of entropies within the quantum circuit.

49

4.2. ENTROPY PRODUCTIONS

In the following section, an analysis will be conducted on how the different strategies
listed above influence the production of entropy (entanglement) within a quantum
circuit. This relationship is inherently linked to the barren plateau problem, as the
objective during training is to find a sweet spot where the entropy is sufficient to
ensure model expressiveness, while also maintaining a low enough amount of entropy
for effective training. Achieving this balance is crucial for optimizing the quantum
circuit and addressing the challenges posed by the barren plateau.

4.2 Entropy productions

The entropy production has been investigated under various hyperparameter config-
urations of the quantum circuits.

Bipartitions chosen: As elucidated in Chapter 1, entanglement within a quantum
circuit can be computed between two bipartitions of the whole system. A biparti-
tion refers to a pair of subsets of wires, whose combination covers all the wires, as
illustrated in Figure 4.2. The selection of the specific bipartitions for inspection is
entirely arbitrary, and in this study, the following bipartitions have been chosen for
examination:

|0⟩

F U(θ⃗)

} A1

|0⟩
B1|0⟩

|0⟩

|0⟩

F U(θ⃗)

A2|0⟩
|0⟩

B2|0⟩

|0⟩

F U(θ⃗)
A3|0⟩

|0⟩
|0⟩ } B3

↓ ↓ ↓

u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4

Figure 4.2: Bipartitions chosen of a 4-qubit quantum circuit (above) and their re-
spective bipartitions in a Tensor Network representation (below).

For such bipartitions, the entanglement established within a quantum circuit across
the chosen bipartition is linked to a parameter referred to as the bond dimension.
This parameter gains significance when contemplating an analogous framework called

50

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

the Matrix Product State Tensor Network [37]. The bond dimension quantifies the
degree of quantum entanglement present in the described state. A state with a low
bond dimension exhibits limited entanglement and can be represented using a small
number of parameters, making it relatively efficient. Conversely, a state with a high
bond dimension indicates a highly entangled and complex quantum state, necessi-
tating an exponentially larger number of parameters for a complete description [37].

Entropy computation framework: The approach for computing and analyzing
the entropies shares similarities with the methodology presented in the paper titled
"Entanglement entropy production in Quantum Neural Networks" (Ballarin et al.,
2022) [53]. In the cited paper, the entropy production was analyzed by computing
the average entropies for multiple trainings. Additionally, our investigation further
involved studying the evolution of the entropies at each training step and exploring
the changes in entropy as the single wavefunction evolved through the circuit.

To elaborate further, let us consider the training step t, where the circuit’s trained
parameters are denoted as θ⃗

(t)
. The examined circuit can be viewed as comprising

L iterations of the same circuit block. Each circuit block has only a fraction of the
complete parameter vector θ⃗

(t)
, which is decomposed into L vectors: θ⃗

(t)

1 , θ⃗
(t)

2 , ..., θ⃗
(t)

L ,
with each vector representing the parameters for one circuit block. An example for
L = 3 is depicted in Figure 4.3.

|0⟩

F(x⃗i) U1(θ⃗
(t)
1) U2(θ⃗

(t)
2) U3(θ⃗

(t)
3) |ψ(xi, θ⃗(t))⟩

|0⟩
...
|0⟩

depth : 0 1 2 3

Figure 4.3: Circuit of Depth 3 at Training Step t. The first one is the embedding
block, then 3 iterations of an Ansatz block U .

In addition to examining the entropies concerning the output wavefunction at each
training step, I also analyzed the evolution of entropies as the wavefunction evolved

51

4.2. ENTROPY PRODUCTIONS

after the application of each individual circuit block.

At the training step t, the considered wavefunction are the following:

1. F(x⃗i)|0⟩, namely the wavefunction by only applying the embedding (depth= 0)

2. U1(θ⃗
(t)

1)F(x⃗i)|0⟩, the wavefunction after only the first iteration of the circuit block
(depth= 1)

...

L+ 1. The output wave-function |ψ(xi, θ⃗
(t)
)⟩ = UL(θ⃗

(t)

L)...U1(θ⃗
(t)

1)F(x⃗i)|0⟩ (depth=
L)

The algorithm used to compute all the essential entropies for the data analysis is
elaborated further with pseudo-code in Algorithm 4.1.

The subsequent sections provide an analysis of entropy productions, comparing how
changes in the following hyper-parameters impact them: Circuit design, Parameters
Initialization, and Cost Function. These hyper-parameters were observed to have
the most significant influence on the entropy variations.

4.2.1 Ansatz

The Ansatz is certainly the most impactful factor in the production of entanglement,
as it decides where to place each unitary operation, and most importantly, how
to connect a pair of qubits through multi-qubit gates, shaping the formation of
entanglement.
In this study, three different circuit designs are compared, as seen in Figure 4.4.
These circuits are intended to exhibit different qualities:

• QAOA Ansatz: This is the same circuit inspected in Chapter 3. It is the
most well-rounded among the analyzed circuits, having only 2N parameters
per iteration and connecting qubits only in subsequent pairs.

• Circuit 8: The most parameterized, with (9/2)N parameters per iteration for
even N . However, connections between qubits are limited to nearest neighbors.

52

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

Algorithm 4.1: Framework of entropy production analysis
Initialization: Choose variational circuit block U and number of iterations of
the block L

for model = 1 ... n_models do

Set the initial random parameters of the given model θ⃗
(0)

for t = 1 ... n_epochs do

Update the training parameter in accordance with the optimization loop:
θ⃗
(t)

= θ⃗
(t−1)

− η∇L(θ⃗
(t−1)

)

for depth = 0 ... L do

for each input event x⃗i do
Compute the relative wavefunction given the current parameters
θ⃗
(t)

, L and x⃗i:
|ψ(θ⃗

(t)

L , ..., θ⃗
(t)

1 , x⃗i)⟩ = UL(θ⃗
(t)

L)...U1(θ⃗
(t)

1)F(xi)|0⟩

for each bipartition (A|B) do
Compute the entropy between the subsystems A and B from
the relative wavefunction

end
end
Average among all the input events x⃗i for each bipartition

end
end

end
Average among all models

• Circuit RY full: This circuit has the lowest number of parameters per itera-
tion, being just N . At every iteration, every qubit is interconnected with each
other through CZ gates.

The top set of plots, depicted in Figure 4.5, illustrates the training progress of the
three models, distinguished by their respective colors (blue for QAOA Ansatz, green
for circuit 8, and violet for circuit RY full). Each column of sub-figures corresponds
to a specific bipartition, as previously illustrated in Figure 4.2. Conversely, each row
represents a distinct depth value.
To gather meaningful statistics due to the strong dependence of entropy production
on initial parameters, each configuration underwent 100 separate training runs with

53

4.2. ENTROPY PRODUCTIONS

QAOA Ansatz: circuit 8: circuit RY full:
A

ng
le

E
m

be
dd

in
g

R
ZZ

R
ZZ

RY

R
ZZ

RY

R
ZZ

RY

RY

RX RZ RX RZ

RX RZ RX RX RZ

RX RZ RX RZ RX

RX RZ RX RX RZ

RY

RY

RY

RY

Figure 4.4: Circuit blocks examined. The "QAOA Ansatz" involves a total of 2N
parameters per iteration, whereas "circuit RY full" utilizes (9/2)N parameters, and
"circuit 8" employs only N parameters.

varying initial random parameters. Each thin line in the graph represents the average
entropy value among the whole input events at a specific training step t, indicated
on the x-axis. The thick lines indicate the average entropy among all models for a
given set of hyper-parameters, hence the line obtained averaging the y-values of the
thin lines.

The bottom plot follows a similar structure, but it showcases the entropy values of
the already-trained models. In this case, the x-axis represents the depth coordinate,
providing insight into the evolution of entropy productions as the wavefunctions tra-
verse the trained circuits.

Each plot features a red line representing the entropy value of a maximally entan-
gled state, alongside an orange line representing the Haar Random Entropy [54].
The latter is the average entropy value of a state randomly selected from a uniform
distribution across the Hilbert space. The values of these lines depend on the size
(number of qubits) of the two bipartitions involved.

The three circuits exhibit varying levels of average entropy generation. "circuit
RY full" possesses the highest values of entropy across all bipartitions, followed by
"circuit QAOA," and then "circuit 8."
To clarify the disparity in entropies between the "circuit 8" and "circuit RY full"
models, it is important to address the influence of over-parametrization leading to
low trainability and potentially resulting in a barren plateau phenomenon (thus,
high entropy). Interestingly, the actual results contrast this notion, showing that the
lower-parametrized model has the highest overall entropy.

54

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

In reality, it is not merely the quantity of parameters within a circuit that dictates the
average entropy production. Rather, it is the number of multi-qubit gate connections
that plays a crucial role. Notably, "circuit RY full" possesses the highest number of
these connections, contributing to its elevated entropy levels.
As stated previously, achieving enhanced performance involves striking a balance
between high entropy production (indicating high expressivity but lower trainability)
and low entropy production (denoting lower expressivity but better trainability).
To support this assertion, the accuracies are presented. Notably, "circuit QAOA"
emerges as the better model in terms of accuracy, with 81.00%. This places it ahead
of the other two models, with "circuit 8" achieving 78.50% and "circuit RY full"
with 77.50% accuracy.

55

4.2. ENTROPY PRODUCTIONS

Figure 4.5: Entropy generation is examined across three distinct models for the cases
of n = 4 and L = 3, considering various circuit designs. The upper section illustrates
the progression of each entropy among the considered bipartitions throughout the
training phase. Conversely, the lower section showcases the ultimate entropy values
attained after each iteration.

56

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

4.2.2 Parameters initialization

Parameter initialization has been identified as a contributing factor to the presence
of barren plateaus [51]. Specifically, when setting the initial parameters prior to
training using a Gaussian distribution centered around zero and with an appropriate
standard deviation, the circuit demonstrates a reduced level of entanglement.
Operationally, this approach enables the model to be initialized in a region of the
Hilbert space that does not exhibit any plateau. As a result, the optimization through
gradient descent in the initial stages of training becomes more impactful.

Similarly to the preceding section, a comparison between two models is analyzed.
Each of these models comprises 3 repetitions of the QAOA block, serving as an Ansatz
for 4 qubits. However, they are initialized using two distinct Gaussian distributions:
one with a smaller standard deviation (σ = 0.3), and the other with a larger standard
deviation (σ = 3), close to being a uniform distribution.

Figure 4.6: Drawing distribution of the initial parameters for a model with low
variance (in blue) and for a model with high variance (in green, with a nearly uniform
distribution).

Figure 4.7 depicts the entropy generation of these two models. The upper graph
illustrates the evolution across various bipartitions and depths. As previously men-
tioned, the primary distinguishing factor between the two models lies in the initial
training phase, where the entropies of the low standard deviation model start below
those of the other model. However, after a few epochs, the entropies of the low stan-
dard deviation model begin to converge with those of the higher standard deviation
model.

57

4.2. ENTROPY PRODUCTIONS

The lower set of plots displays the entropies of the fully trained models as the wave-
functions progress through the circuit. On the whole, the average entropies of the
low standard deviation model remain slightly lower than those of the other model.
Moreover as expected, the accuracy of the first model is marginally higher than the
other, surpassing it by a 1.3 percentage point difference.

Figure 4.7: Entropy production examined for different parameters initialization for
a L = 3 and n = 4, QAOA circuit.

58

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

4.2.3 Cost function

The final factor under study contributing to the occurrence of barren plateaus during
training is the type of cost function. This term pertains to the number of qubits that
are measured at the end of the circuit to generate predictions.
The cost function can be categorized as either global, involving the measurement of
all qubits to assess the output, or local, where the output is derived solely from the
measurement of a subset of all qubits, as depicted in Figure 4.8.

Global cost function: Local cost function:

|0⟩

Q
A

O
A

C
ir

cu
it|0⟩

|0⟩

|0⟩

|0⟩

Q
A

O
A

C
ir

cu
it|0⟩

|0⟩

|0⟩

Figure 4.8: For a circuit with a global cost function (left), the output is derived from
the information encompassing all qubits. For a circuit featuring a local cost function
(right), the output is acquired through the measurement of only a small subset of
qubits.

Global cost function: Local cost function:

Figure 4.9: Change in the loss landscape for the same model with a Global Cost
function and a Local Cost function. [55]

A local cost function has been already established to enhance the training process
of a model by creating a more gradient-friendly loss function [55, 56], as illustrated

59

4.2. ENTROPY PRODUCTIONS

through an instance in Figure 4.9. This attribute justifies to the popularity of the
QCNN architecture, because its intrinsic design ensures a localized measurement ap-
proach [50].

In this last section, the examination focuses on the entropy generation of the QAOA
Circuit with parameters N = 4 and L = 3. One model is trained using a global cost
function, while the other with a local cost function as in Figure 4.9.
Figure 4.10 depicts the entropy production in the two configurations. Across dif-
ferent depths and training steps denoted as t, the model with a local cost function
consistently displays lower entropy levels.
The model with a local cost function shows minor improvements in accuracy, al-
though it is expected that further benefits of employing a local cost function can be
harnessed by tailoring the circuit Ansatz to connect specific qubits according to those
being measured as well as creating the circuit dependent on the specific classification
task.

Overall here were presented some factors that alleviated the barren plateau problem,
showing how it is related to entropy production. While opting for the improved
hyper-parameters discussed - including a balanced Ansatz, Gaussian initialization,
and a local cost function - does yield improved models, it does not ensure flawlessly
trouble-free training due to the high expressivity. To gain a substantial advantage,
innovative techniques need to be developed that go over the mere selection of hyper-
parameters. This holds particular significance when entering the era of deep quantum
neural networks.

60

CHAPTER 4. BENCHMARKING OF ENTROPY PRODUCTION IN A
QUANTUM CLASSIFIER

Figure 4.10: Entropy production examined with a local and global cost function for
a L = 3 and n = 4, QAOA circuit.

61

4.2. ENTROPY PRODUCTIONS

62

Chapter 5
Entanglement-based models for b-
and c-jet tagging

Until now, the focus of the study has been on entropies within regular quantum clas-
sifiers, treating the examination of entropy production as an additional element. In
the upcoming section, a reversed approach is adopted, where models are constructed
based on the concept of entropies. As a result, the entropies of the models developed
correspond to meaningful quantities, leading to unique models that differ from those
observed previously.

The model presented in this chapter retains its focus on distinguishing between bot-
tom and charm jets and it draws inspiration from the work titled "Quantum-inspired
machine learning on high-energy physics data" [57]. In that study, a Tree Tensor
Network Approach was devised for performing b− versus b̄−jet classification. How-
ever, the data set used in the cited paper differs from the one employed in this work
(see 3.1).

5.1 Characteristic circuits

The primary goal of this model is to optimize the parameters of a circuit U(θ⃗) in
such a way that the resulting evolution from the initial state |0⟩, denoted as U(θ⃗)|0⟩,
is a wavefunction that represents the data on which the model has been trained.

In the specific case of this study, which involves the classification of b− versus c−jets,

63

5.1. CHARACTERISTIC CIRCUITS

the idea is to separately train two circuits, namely UB(θ⃗B) and UC(θ⃗C). The resulting
circuits applied to the initial state |0⟩, will output two wavefunctions that optimally
capture the characteristics of the two classes, b and c.

5.1.1 Training of the circuits

As just mentioned, the training process for both circuits involves making the result-
ing wavefunctions represent the occurrences of their respective classes, also ensuring
in the meantime that they differ significantly from the events belonging to the op-
posing class.

The concept of quantifying the distance between the output of the circuit, the repre-
sentative wavefunction, and the input events is accomplished using the inner product
between two wavefunctions.

Inner product between two wavefunctions: The inner product between two
quantum states is a mathematical operation that measures the degree of overlap or
similarity. Given two quantum states represented as ket vectors, |ψ⟩ and |ϕ⟩, the
inner product ⟨ψ|ϕ⟩ is defined as:

⟨ψ|ϕ⟩ =
∑︂
i

ψ∗
i ϕi (5.1)

where ψ∗
i is the i-th element the complex conjugate state |ψ⟩, and ϕi denotes the i-th

component of state |ϕ⟩.
If the inner product between two states is 0, it indicates that they are orthogonal or
completely dissimilar. On the other hand, a non-zero inner product indicates that
there is some degree of similarity or overlap between the states.

|0⟩

F(x⃗i) |x⃗i⟩
|0⟩
...

|0⟩

|x⃗i⟩⏟ ⏞⏞ ⏟
x1i x2i · · · xNi

Figure 5.1: Embedded input state using a Quantum Circuit and as Tensor Network.

64

CHAPTER 5. ENTANGLEMENT-BASED MODELS FOR B- AND C-JET
TAGGING

While training a characteristic Circuit, the inner product is used between the output
of the circuit and the wavefunction obtained from embedding an input event (as in
Figure 5.1). A notable distinction from the previous models in this study is that the
input event contributes to the loss function computation not by directly loading the
data into the circuit before the variational unitaries (namely through embedding),
but rather as an independent instance used in the loss for computing the overlaps
with the characteristic wavefunction.

Quantitatively, the following objectives are aimed to be achieved for each character-
istic function with the label K:

• Ensure a high overlap between the characteristic function and the events shar-
ing the same label: ⟨x⃗i|ψK(θ⃗)⟩ ∼ 1, where label(x⃗i) = K.

• Ensure a low overlap (orthogonal) between the characteristic function and the
events with a different label: ⟨x⃗i|ψK(θ⃗)⟩ ∼ 0, where label(x⃗i) ̸= K.

|0⟩

U(θ⃗B) |ΨB(θ⃗B)⟩
|0⟩
...

|0⟩

LB(θ⃗) =
1

MB

MB∑︂
n=1

(︂
⟨xn|ΨB(θ⃗)⟩ − δB,Ln

)︂2

|0⟩

U(θ⃗C) |ΨC(θ⃗C)⟩
|0⟩
...

|0⟩

LC(θ⃗) =
1

MC

MC∑︂
n=1

(︂
⟨xn|ΨC(θ⃗)⟩ − δC,Ln

)︂2

Figure 5.2: Characteristic circuits for the class of b and c jets and their respective
Loss functions.

The loss functions used for the two models are illustrated in Figure 5.2. These loss
functions are specifically crafted to achieve both aforementioned objectives.
The term δK,Ln corresponds to the Kronecker delta, where Ln denotes the label
of the event xn. When the label differs from the characteristic circuit’s label, the
delta is 0. In this case, the optimization aims to make the overlap between the

65

5.1. CHARACTERISTIC CIRCUITS

characteristic function and the event close to 0. On the other hand, if the event shares
the same label as the characteristic function, the Kronecker delta is 1. Consequently,
to minimize this quantity, the overlap needs to be as close to 1 as possible.
To some extent, this loss is a mean squared error (as seen in section 1.1), in which
the target value changes arbitrarily: the target is either 1 if the classes of the input
event and of the wavefunction match (high overlap), or 0 if the two classes do not
match (low overlap).
Figure 5.3 illustrates the training process of the two characteristic circuits. The left
plot depicts the curve of the loss function C(θ⃗B, θ⃗C), which is the aggregate of the
individual losses from the two circuits: C(θ⃗B, θ⃗C) = LB(θ⃗B) + LC(θ⃗C). The right
plot showcases the progression of the overlap between the outputs of the two circuits
⟨ΨB|ΨC⟩. While this measure does not inherently provide information about the
optimization quality, it offers valuable insights. Specifically, if the overlap between
the two characteristic functions were to approach either 1 or -1, it would signify a
high correlation between the two functions. Consequently, distinguishing events in
one of the two classes would become exceedingly challenging.

Figure 5.3: Training of the two characteristic circuits: on the left, the error curves
for the training and validation set, on the right the value of overlap between the two
characteristic wavefunctions.

5.1.2 Classification phase

Following such training, the resulting characteristic wavefunctions will exhibit a fa-
vorable response to events with labels that match the characteristic circuit, resulting
in a high overlap. Conversely, they will not respond effectively to events with labels

66

CHAPTER 5. ENTANGLEMENT-BASED MODELS FOR B- AND C-JET
TAGGING

different from the circuit, leading to a low value of overlap.

Therefore, one possible method for performing classification in this framework is to
assign the label of the circuit that produces the highest overlap as shown in Figure
5.4. The prediction metric employed for an event |x⃗i⟩ is determined by the difference
in the overlaps: ⟨x⃗i|ΨC(θ⃗C)⟩−⟨x⃗i|ΨB(θ⃗B)⟩. If this value is negative, it indicates that
circuit B exhibits a more favorable response, consequently leading to its classification
as a b-jet. Conversely, if this value is positive, the label is chosen as C.

QAOA Classifier: Characteristic Circuits:

Results: Results:
• Accuracy: 0.812 • Accuracy: 0.774
• AUC: 0.885 • AUC: 0.828

Figure 5.4: Comparison of the prediction distributions for a QAOA classifier (left)
and a classifier through the characteristic circuits.

Figure 5.4 depicts a comparison of the classifications using a QAOA classifier and a
classification using the studied model in this section. To ensure a fair comparison,
both models were trained using the same numbers of qubits N = 6 and the same
number of iterations of the circuit blocks L = 6. The classification through charac-
teristic circuits demonstrates lower effectiveness, yielding a lower accuracy of and an
AUC score than the ones obtained with the dedicated Quantum classifier. However,
the primary objective of this model is not centered around classification, but rather
aimed at extracting insights from the training data obtaining intricate underlying
data structures that a conventional classifier might not be able to catch.
The resulting characteristic wavefunctions carry valuable information in their entan-
glement. A crucial aspect of this process is the use of Angle Embedding to compute

67

5.2. FEATURE IMPORTANCE

the wavefunction of the training events as in Figure 5.1. During training with data,
each wire of the characteristic circuit represents a specific feature. For example, if
the feature vtx_m is embedded on the first wire, the first qubit of the trained char-
acteristic circuit will represent that particular feature.

The entropies between subsystems of wires that represent features naturally provide
insights into the significance of those specific features. In the following two sections,
the Feature Importance and Correlations between the features is showcased.

5.2 Feature importance

Feature importance within the context of ML involves an assessment of the data
set to determine the relative significance of individual features for the classification
or regression task. This technique is employed to reduce the dimensionality of the
problem, reducing the computation time without any major drop in accuracy and
avoiding over-fitting.
Within the domain of QML, the efficient reduction of data set dimensions holds ut-
most significance. This is due to current quantum circuit models that are constrained
in their capacity to accommodate only a limited number of features. For instance, an
average computer could simulate up to 10 qubits, whereas a supercomputer equipped
with multiple GPUs might achieve a simulation of up to 20 qubits. Beyond these
numbers, the employment of actual quantum hardware becomes indispensable. This
stands in contrast to classical models, which are capable of handling much larger
feature sizes, potentially reaching hundreds of thousands in the case of image data
sets [58].

Classical Feature Importance: There are many approaches available for assess-
ing the feature importance for a ML model. Among these, one of the most adaptable
and straightforward methods is known as permutation importance.
The core concept behind permutation importance is to assess the impact on perfor-
mance when a particular feature loses its significance. This is achieved by first train-
ing the model, evaluating its accuracy, and subsequently randomizing (by shuffling)
only the values associated with a specific feature and then measuring the subsequent
drop in performance. The extent of this drop determines the importance of the fea-
ture.

68

CHAPTER 5. ENTANGLEMENT-BASED MODELS FOR B- AND C-JET
TAGGING

The algorithm works as follows [59]:

1. Train a model and evaluate its performance.

2. For each feature f :

2.1 Repeat the following process k times (for statistical robustness):

2.1.1 Shuffle the values corresponding to the column of feature f .
2.1.2 Calculate the resulting accuracy.

2.2 Compute the average reduction in accuracy.

3. Normalize the average accuracy reduction values.

One of the primary advantages of this method is that it can be applied to any
ML model. In the ensuing comparison, the classical model utilized for determining
feature importance is the BDT, introduced in Section 3.2.

Quantum Feature Importance: The feature importance derived from a trained
characteristic function is determined by computing the Von Neumann entropy of the
bipartition between the wire representing that feature and all the other qubits in the
characteristic function:

Importance(A) =
S(ρA)∑︁
F S(ρF)

(5.2)

where S(ρA) is the value of entropy between the subsystems A and B as in Figure 5.5,
and the denominator is the sum of all the importance of the feature for normalization.

|0⟩

U

Feature 1
|0⟩ Feature 2
...

...
|0⟩ Feature A
...

...
|0⟩ Feature N

Subsystem B

Subsystem A

Figure 5.5: Computation of S(ρA).

The motivation behind considering these quantities as feature importance is best ex-
plained through the Tensor Network equivalence [57]. Specifically, the Von Neumann

69

5.2. FEATURE IMPORTANCE

Entropy between these two bipartitions is equivalent to the bond dimension of the
corresponding Matrix Product State.
In that context, the bond dimension represents the amount of information shared
during the classification contraction as in Figure 5.6 (which is equivalent to the com-
putation of the overlap). This can be readily interpreted as the feature importance,
where a higher bond dimension indicates that the corresponding feature contributes
more significantly to the classification process.

u1 u2 · · · u4

x1i x2i · · · xNi⟨x⃗i|

|ψ(θ⃗)⟩

Figure 5.6: Overlap computed on a Tensor Network model.

Both classical and quantum approaches for the feature importance analysis have
been performed on the first six features of the data set in Figure 5.7. Due to the
absence of an analytical method for an exact feature importance computation, di-
rect comparison with an absolute ground truth is not possible. However, the general
agreement between the two methods implies that both models are capturing mean-
ingful importance values.
Furthermore, certain insights can be drawn based on the underlying physics phe-
nomena. For instance, in the tagging between b- and c-jets, the corrected mass of
the SV is highly significant. This is because of the distinct masses of the decaying
b and c hadrons that generate the SV. Indeed, both quantum and classical methods
assign the highest degree of importance to the corrected mass feature. This also is
in agreement with the considerations made from the distribution of the features in
Figure 3.2.
The analyzed features are vtx_mCor, vtx_ipChi2Sum, vtx_tau, vtx_ptSvrJet,
vtx_m, and vtx_pt. Figure 5.8 illustrates the impact of feature selection in a
resource-limited quantum classifier. The two exhibited classifiers were respectively
trained utilizing the foremost four crucial features, namely vtx_mCor, vtx_ipChi2Sum,
vtx_tau, and vtx_ptSvrJet, and the least four significant features, which in-
clude vtx_tau, vtx_ptSvrJet, vtx_m, and vtx_pt.
The classifier trained with the most important features showcases a discernible ad-
vantage, evident in both accuracy and AUC metrics, which surpass the corresponding
values achieved by the alternate model.

70

CHAPTER 5. ENTANGLEMENT-BASED MODELS FOR B- AND C-JET
TAGGING

Figure 5.7: Feature importance of 6 features of the SV data set computed with the
Quantum method and classical method.

5.3 Correlation from entanglement

Similar to the process employed for obtaining feature importance, the correlation be-
tween two variables can be evaluated using derived quantities from the characteristic
wavefunctions. To facilitate this analysis, a distinct set of features has been selected
to accentuate the assessment of correlations. This choice was made to enhance the
detection of correlations, given that the prior feature set exhibited minimal feature
correlations.
The updated set of features for this section is: vtx_mCor, vtx_ipChi2Sum,
vtx_nTrk, vtx_nTrkJet, vtx_ptSvrJet, and vtx_pt.
As affirmed by this analysis, there exists a correlation between vtx_nTrk and
vtx_nTrkJet, as well as between vtx_ptSvrJet and vtx_pt. All other fea-
tures demonstrate a general lack of correlation.

Correlation between features has been computed with two standard methods: Pear-
son correlation and Classical mutual information, and a quantum method derived
from the characteristic functions.

Pearson correlation coefficient: The Pearson correlation coefficient r is a sta-
tistical measure that quantifies the strength of a linear relationship between two
variables.
The Pearson correlation coefficient ranges from -1 to 1, where:

• if r = −1 as one variable increases, the other decreases by a consistent pre-
dictable amount. It indicates a perfect anticorrelation;

71

5.3. CORRELATION FROM ENTANGLEMENT

4 most important features: 4 least important features:

Features: Features:
· vtx_mCor, · vtx_tau,
· vtx_ipChi2Sum, · vtx_ptSvrJet,
· vtx_tau, · vtx_m,
· vtx_ptSvrJet, · vtx_pt,

Results: Results:
• Accuracy: 0.823 • Accuracy: 0.757
• AUC: 0.897 • AUC: 0.830

Figure 5.8: Comparison of two 4-qubits classifiers trained with the 4 most important
features (left) and 4 least important features (right) among the six analyzed.

• if r = 0 it indicates no linear correlation: There is no discernible pattern
between the variables’ variations.

• if r = 1 the two features have perfect linear correlation: As one variable
increases, the other also increases by a consistent predictable amount.

To assess the correlations between two SV features, one considers all values of the two
features as two separate probability distributions J and K. The correlation between
these features, denoted as rJK , is then computed using the formula:

rJK =

∑︁
(Ji − J̄)(Ki − K̄)√︁∑︁

(Ji − J̄)2
∑︁

(Ki − K̄)2
(5.3)

where:

• Ji and Ki are the data points of the feature distributions J and K

• J̄ and K̄ are the respective average values.

72

CHAPTER 5. ENTANGLEMENT-BASED MODELS FOR B- AND C-JET
TAGGING

Classical Mutual Information: Another classical method inspected to compute
the correlation among features is through the computation of classical mutual infor-
mation. It comes from information theory, and it is a quantity that tells how much
knowing the value of one variable reduces the uncertainty about the other variable.
Similarly to the Pearson coefficient, it is computed assuming the values of the two
features as two probability distributions and then using the following formula:

I(J,K) =
∑︂
i

∑︂
l

p(Ji, Kl) log

(︃
p(Ji, Kl)

p(Ji) · p(Kl)

)︃
(5.4)

where:

• I(J,K) represents the mutual information between features J and K.

• p(Ji, Kl) is the joint probability of observing values Ji and Kl for features J
and K.

• p(Ji) and p(Kl) are the marginal probabilities of observing values Ji and Kl

for features J and K, respectively.

Quantum Mutual information: The quantum approach for calculating correla-
tion involves utilizing the quantum version of mutual information. Up to this point,
entropy has been utilized as a measure of the level of entanglement between two
subsystems that together constitute the entire quantum system. When assessing
the extent of entanglement specifically between two qubits within a larger quantum
circuit, one can employ the concept of quantum mutual information.
The mutual information between two qubits, denoted as qubit A and qubit B, is
a measure of the amount of information they share and is defined using the Von
Neumann entropy.
It is expressed as:

MI(A : B) = S(ρA) + S(ρB)− S(ρAB) (5.5)

where:

• S(ρA) is the entropy between the qubit A and the complementary subsystem;

• S(ρB) is the entropy between the qubit B and the complementary subsystem;

• S(ρAB) is the entropy between the system containing the qubits A and B, and
the complementary subsystem

73

5.3. CORRELATION FROM ENTANGLEMENT

In the context of quantum information, this formula can be interpreted as follows: the
information shared between the two qubits, is the information shared between qubit
A and the rest of the system, in addition to the information shared between qubit B
and the rest, subtracting the information shared between the two qubits along with
the complementary subsystem. This concept follows a similar idea to the formula for
the probability of the union between two sets: P (A∪B) = P (A)+P (B)−P (A∩B).

The mutual information allows us to quantify the correlations and entanglement be-
tween the two qubits in the larger quantum circuit. Positive mutual information
indicates correlated or entangled qubits, while zero mutual information implies un-
correlated qubits.

In the context of the characteristic wavefunction, where each qubit represents a fea-
ture, computing the correlation between qubits using mutual information allows us
to infer the correlation between features.

Figure 5.9 displays the application of the three metrics explained above to examine
data correlations. Both quantum and classical mutual information have been nor-
malized to span the range from 0 to 1. As for the Pearson coefficient, its squared
value has been taken to fall within the same 0 to 1 range as the other two metrics,
for an easy comparison.

All the models seem to have successfully captured the expected correlations dis-
cussed at the beginning of this section. Particularly, a strong correlation between
vtx_nTrk and vtx_nTrkJet, as well as between vtx_ptSvrJet and vtx_pt,
have been identified. However, the classical mutual information encountered diffi-
culty in identifying the correlation between the latter pair of features, while the other
model effectively managed it.
Among the three, the quantum approach appears to be the most balanced. It man-
ages to capture all the correlations anticipated based on physics insights, while also
mitigating potential weak false correlations between other pairs of features which
could possibly arise due to the data set having a limited number of samples.
The model however did not identify any novel correlations that differ from those
detectable by classical approaches.

While it remains possible that a slightly altered implementation or a different data

74

CHAPTER 5. ENTANGLEMENT-BASED MODELS FOR B- AND C-JET
TAGGING

Features:
1: vtx_mCor 4: vtx_nTrkJet
2: vtx_ipChi2Sum 5: vtx_ptSvrJet
3: vtx_nTrk 6: vtx_pt

Figure 5.9: Correlation of the features using the fully quantum method (left), classical
mutual information (middle), and the Pearson coefficient (right).

set might achieve that result, a significant advancement in this framework could be
achieved through the future integration of quantum sensing and quantum memories.
This advancement could facilitate the analysis of an event without first converting it
into classical data. This approach could potentially set a standard for the analysis
of complex quantum correlations for subsequent implementations that handle true
quantum data.

The application of the characteristic wavefunctions methodology might be able to
unlock new applications beyond just the computation of the feature importance
and correlations. One example can be the generation of a tailored Ansatz for the
characteristic circuits with the assistance of mutual information. This entails the
application of multi-qubit gates to qubits (features) exhibiting strong correlations
while restricting the application of these gates to uncorrelated qubits. As discussed
in Chapter 4, limiting the number of multi-qubit gates narrows down the space of the
problem leading to a better convergence and training efficiency overall. Moreover,
the scalability of calculating quantum correlations extends easily to the computation
of 3-point correlations. This could potentially unveil novel data patterns and provide
fresh perspectives on the formation of jets, which is yet not fully understood.

75

5.3. CORRELATION FROM ENTANGLEMENT

76

Conclusions

HEP stands as one of the best-proving grounds for testing the capabilities of Quan-
tum Computation and in particular QML [6]. Within this thesis, QML models have
been employed on simulated data for the task of jet tagging heavy jets. First, a
quantum classifier has been implemented, inspecting how different choices of hyper-
parameters affect the classification accuracy. Then novel models have been developed
that leverage the entanglement between qubits to gather useful information for the
input data.

The outcomes can be categorized into three distinct parts:

• Quantum Classifier for Jet Tagging: A quantum model able to distinguish
between b- and c-jets has been developed.
Multiple evaluations of the performances have been conducted by varying the
number of loaded features and by altering the number of trainable parameters.
The developed quantum classifiers have been compared to the state-of-the-art
classical classifiers for jet tagging at LHCb (the BDTs), revealing just slightly
lower performances in terms of classification capability.
While it is true that the quantum models had lower performances than their
classical counterparts, it is important to acknowledge that they were consider-
ably limited by the simulator employed. With advancements in optimization
strategies and the implementation of the model on real quantum hardware,
featuring 20 or more qubits, it is expected a remarkable enhancement in the
performance. This progress is projected to eventually surpass the capabilities
of the current BDT.

• Study of Entropy productions: One of the main challenges to overcome

77

C.1. FUTURE DEVELOPMENTS IN HEAVY JET TAGGING

in the field of QML is the presence of the Barren Plateaus. In the thesis, this
phenomenon has been linked to the capability of a model to build up entan-
glement. By monitoring the production of entanglement in quantum models
dedicated to jet tagging, it has been possible to study more accurately the cur-
rent strategies to limit the presence of these Plateaus, leading to slightly better
values of accuracy.

• Entropy-based models: From the study of entropy production, a model has
been developed that yields meaningful information in the amount of entangle-
ment between the qubits. Through these values, it has successfully computed
the feature importance and the correlation among the SV features with a full-
quantum approach. These two methodologies produced results comparable to
established classical counterparts.
A consideration must be made about its functioning. This model depends on
the ability to compute the entropies, whose values can be obtained through the
computation of the wavefunction. However, for larger scales than implemented
and on real quantum hardware, the access of the wavefunction becomes unfea-
sible. Improvements to this model can be made to overcome this limitation,
such as the C-Swap test [60], which can make possible the computation of the
entropy without direct access to the wavefunctions.
These entropy-based models are also expected to yield more compelling re-
sults when applied to real quantum data. This can be realized with the future
development of quantum sensors and quantum memories.

C.1 Future developments in heavy jet tagging

The SV data set presents a very challenging set to investigate, as it is the result of
complex physics phenomena and multiple steps of processing.
One of the objectives set for this thesis was to investigate whether a quantum model
would be able to extract some hidden information from the SV data invisible to a
classical model. In the study of the SV data set in Chapter 5, no significant discrep-
ancies were observed from a classical analysis concerning the feature importance and
correlations.
However, it is important to note that this analysis has been conducted on a simu-
lated data set. Monte Carlo events might not reproduce faithfully all the intricacies
involved in the real events due to the still limited knowledge behind these complex

78

Conclusion

physical phenomena.
One hypothesis is that the study on the data set of real events might potentially
reveal more pronounced divergences between classical and quantum models which
can be attributed to hidden correlations visible only by the quantum model.

In the domain of jet tagging, the integration of quantum models into the jet recon-
struction process has the potential to enhance tagging accuracy. Firstly, concerning
particles identification and SV detection, as elucidated in Chapter 2. The incorpo-
ration of quantum models could offer advantages in finding complex patterns within
the data set by harnessing their high expressive capabilities.
Likewise, accurate jet clustering significantly impacts the resulting tagging power
of the classifier. Instances where algorithms encounter difficulties during the pre-
classification stages lead to slight deviations in the data from their actual values. In
this regard, quantum models could be employed to either replace or complement the
existing anti-kt clustering algorithm.
A well-executed implementation of a quantum pipeline is expected to offer a degree of
advantage. This can be verified quantitatively by evaluating the tagging performance
using the same classifier since better data pre-processing leads to the production
of higher quality data, thereby resulting in a better tagging efficacy of subsequent
models.
One of the first outcomes of developing enhanced heavy jets classifiers is a better
understanding of Higgs boson decays (H → b b̄ and H → c c̄). The same models
can be employed to improve the identification of these decays, providing increased
statistics and insights. Additionally, one important aspect not to overlook is the
ability of the of quantum models of being more interpretable. This arises from their
construction, as each circuit (unitary) is reversible, a property that comes from the
foundations of quantum mechanics.

79

C.1. FUTURE DEVELOPMENTS IN HEAVY JET TAGGING

80

Bibliography

[1] LHC Run 3: An opportunity to expand the Large Hadron Collider’s physics
programme. url: https://home.cern/press/2022/run-3.

[2] url: https://home.cern/science/accelerators/high-luminosity-
lhc.

[3] Donatella Lucchesi, Carlos Cocha, and Lorenzo Sestini. “Study of b-and c-jets
identification with quantum machine learning algorithms and application to
the Higgs reconstruction.” In: ().

[4] Alessio Gianelle et al. “Quantum Machine Learning for b-jet charge identifica-
tion”. In: arXiv preprint arXiv:2202.13943 (2022).

[5] Wen Guan et al. “Quantum machine learning in high energy physics”. In: Ma-
chine Learning: Science and Technology 2.1 (2021), p. 011003.

[6] Alberto Di Meglio et al. “Quantum Computing for High-Energy Physics: State
of the Art and Challenges. Summary of the QC4HEP Working Group”. In:
arXiv preprint arXiv:2307.03236 (2023).

[7] Mengnan Du, Ninghao Liu, and Xia Hu. “Techniques for interpretable machine
learning”. In: Communications of the ACM 63.1 (2019), pp. 68–77.

[8] Tatiana Likhomanenko et al. “LHCb topological trigger reoptimization”. In:
Journal of Physics: Conference Series. Vol. 664. 8. IOP Publishing. 2015,
p. 082025.

[9] Vinicius Mikuni and Florencia Canelli. “Unsupervised clustering for collider
physics”. In: Physical Review D 103.9 (2021), p. 092007.

81

https://home.cern/press/2022/run-3
https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc

BIBLIOGRAPHY

[10] Viktoria Chekalina et al. “Generative models for fast calorimeter simulation:
the LHCb case”. In: EPJ Web of Conferences. Vol. 214. EDP Sciences. 2019,
p. 02034.

[11] Stefano Carrazza and Frédéric A Dreyer. “Jet grooming through reinforcement
learning”. In: Physical Review D 100.1 (2019), p. 014014.

[12] Maria Schuld and Francesco Petruccione. Supervised learning with quantum
computers. Vol. 17. Springer, 2018.

[13] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[14] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. “A rigorous and
robust quantum speed-up in supervised machine learning”. In: Nature Physics
17.9 (2021), pp. 1013–1017.

[15] John Von Neumann. Mathematische grundlagen der quantenmechanik. Vol. 38.
Springer-Verlag, 2013.

[16] Claude Elwood Shannon. “A mathematical theory of communication”. In: The
Bell system technical journal 27.3 (1948), pp. 379–423.

[17] Pasquale Arpaia et al. “Machine learning for beam dynamics studies at the
CERN Large Hadron Collider”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 985 (2021), p. 164652.

[18] url: https://quantum-computing.ibm.com/composer/docs/
iqx/guide/shors-algorithm.

[19] Christian L Degen, Friedemann Reinhard, and Paola Cappellaro. “Quantum
sensing”. In: Reviews of modern physics 89.3 (2017), p. 035002.

[20] Roel Aaij et al. “First measurement of the charge asymmetry in beauty-quark
pair production”. In: Physical Review Letters 113.8 (2014), p. 082003.

[21] Lyndon Evans and Philip Bryant. “LHC machine”. In: Journal of instrumen-
tation 3.08 (2008), S08001.

[22] url: https://home.cern/science/accelerators/large-hadron-
collider.

[23] Georges Aad et al. “The ATLAS experiment at the CERN large hadron col-
lider”. In: (2008).

82

https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm
https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider

BIBLIOGRAPHY

[24] Roman Adolphi et al. “The CMS experiment at the CERN LHC”. In: Jinst 803
(2008), S08004.

[25] Kenneth Aamodt et al. “The ALICE experiment at the CERN LHC”. In: Jour-
nal of Instrumentation 3.08 (2008), S08002.

[26] Ewa Lopienska. The CERN accelerator complex, layout in 2022. Tech. rep.
2022.

[27] A Augusto Alves Jr et al. “The LHCb detector at the LHC”. In: Journal of
instrumentation 3.08 (2008), S08005.

[28] url: https://lhcb-outreach.web.cern.ch/detector/calorimeters/.

[29] Eric M. Metodiev. The fractal lives of jets. Apr. 2020. url: https://www.
ericmetodiev.com/post/jetformation/.

[30] Gavin P Salam. “Towards jetography”. In: The European Physical Journal C
67 (2010), pp. 637–686.

[31] url: https://twiki.cern.ch/twiki/bin/view/CMSPublic/
SWGuideParticleFlow.

[32] ATLAS collaboration et al. Secondary vertex finding for jet flavour identifica-
tion with the ATLAS detector. Tech. rep. ATL-PHYS-PUB-2017-011, 2017.

[33] Jonathan Shlomi et al. “Secondary vertex finding in jets with neural networks”.
In: The European Physical Journal C 81.6 (2021), p. 540.

[34] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. “A brief introduc-
tion to PYTHIA 8.1”. In: Computer Physics Communications 178.11 (2008),
pp. 852–867.

[35] Anders Ryd et al. “EvtGen: a Monte Carlo generator for B-physics”. In: BAD
522 (2005), p. v6.

[36] Sea Agostinelli et al. “GEANT4—a simulation toolkit”. In: Nuclear instru-
ments and methods in physics research section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 506.3 (2003), pp. 250–303.

[37] Song Cheng et al. “Tree tensor networks for generative modeling”. In: Physical
Review B 99.15 (2019), p. 155131.

[38] LHCb Collaboration et al. “Identification of beauty and charm quark jets at
LHCb”. In: Journal of Instrumentation 10.06 (2015), P06013.

83

https://lhcb-outreach.web.cern.ch/detector/calorimeters/
https://www.ericmetodiev.com/post/jetformation/
https://www.ericmetodiev.com/post/jetformation/
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideParticleFlow
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideParticleFlow

BIBLIOGRAPHY

[39] Haowen Deng et al. “Ensemble learning for the early prediction of neonatal
jaundice with genetic features”. In: BMC medical informatics and decision mak-
ing 21 (2021), pp. 1–11.

[40] Ville Bergholm et al. “Pennylane: Automatic differentiation of hybrid quantum-
classical computations”. In: arXiv preprint arXiv:1811.04968 (2018).

[41] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. Version 0.3.13. 2018. url: http://github.com/google/jax.

[42] Nikolaj Moll et al. “Quantum optimization using variational algorithms on
near-term quantum devices”. In: Quantum Science and Technology 3.3 (2018),
p. 030503.

[43] Adrián Pérez-Salinas et al. “Data re-uploading for a universal quantum classi-
fier”. In: Quantum 4 (2020), p. 226.

[44] In-Kwon Yeo and Richard A Johnson. “A new family of power transformations
to improve normality or symmetry”. In: Biometrika 87.4 (2000), pp. 954–959.

[45] James P Egan, Gordon Z Greenberg, and Arthur I Schulman. “Operating char-
acteristics, signal detectability, and the method of free response”. In: The Jour-
nal of the Acoustical Society of America 33.8 (1961), pp. 993–1007.

[46] Wikimedia Commons. roc curve. 2007. url: https://upload.wikimedia.
org/wikipedia/commons/1/13/Roc_curve.svg.

[47] Sukin Sim, Peter D. Johnson, and Alá n Aspuru-Guzik. “Expressibility and En-
tangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-
Classical Algorithms”. In: Advanced Quantum Technologies 2.12 (Oct. 2019),
p. 1900070. doi: 10.1002/qute.201900070. url: https://doi.org/
10.1002%2Fqute.201900070.

[48] Jarrod R McClean et al. “Barren plateaus in quantum neural network training
landscapes”. In: Nature communications 9.1 (2018), p. 4812.

[49] Iris Cong, Soonwon Choi, and Mikhail D Lukin. “Quantum convolutional neural
networks”. In: Nature Physics 15.12 (2019), pp. 1273–1278.

[50] Arthur Pesah et al. “Absence of barren plateaus in quantum convolutional
neural networks”. In: Physical Review X 11.4 (2021), p. 041011.

[51] Kaining Zhang et al. Escaping from the Barren Plateau via Gaussian Initial-
izations in Deep Variational Quantum Circuits. 2022. arXiv: 2203.09376
[quant-ph].

84

http://github.com/google/jax
https://upload.wikimedia.org/wikipedia/commons/1/13/Roc_curve.svg
https://upload.wikimedia.org/wikipedia/commons/1/13/Roc_curve.svg
https://doi.org/10.1002/qute.201900070
https://doi.org/10.1002%2Fqute.201900070
https://doi.org/10.1002%2Fqute.201900070
https://arxiv.org/abs/2203.09376
https://arxiv.org/abs/2203.09376

BIBLIOGRAPHY

[52] James C Spall. “A one-measurement form of simultaneous perturbation stochas-
tic approximation”. In: Automatica 33.1 (1997), pp. 109–112.

[53] Marco Ballarin et al. “Entanglement entropy production in Quantum Neural
Networks”. In: arXiv preprint arXiv:2206.02474 (2022).

[54] Alfred Haar. “Der Massbegriff in der Theorie der kontinuierlichen Gruppen”.
In: Annals of mathematics (1933), pp. 147–169.

[55] Thomas Storwick. Alleviating barren plateaus with local cost functions. Jan.
2021. url: https://pennylane.ai/qml/demos/tutorial_local_
cost_functions.

[56] M. Cerezo et al. “Cost function dependent barren plateaus in shallow parametrized
quantum circuits”. In: Nature Communications 12.1 (Mar. 2021). doi: 10.
1038/s41467-021-21728-w. url: https://doi.org/10.1038%
2Fs41467-021-21728-w.

[57] Timo Felser et al. “Quantum-inspired machine learning on high-energy physics
data”. In: npj Quantum Information 7.1 (2021), p. 111.

[58] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In:
2009 IEEE conference on computer vision and pattern recognition. Ieee. 2009,
pp. 248–255.

[59] Leo Breiman. “Random forests”. In: Machine learning 45 (2001), pp. 5–32.

[60] Steph Foulds, Viv Kendon, and Tim Spiller. “The controlled SWAP test for
determining quantum entanglement”. In: Quantum Science and Technology 6.3
(2021), p. 035002.

[61] Duarte Magano et al. “Quantum speedup for track reconstruction in particle
accelerators”. In: Physical Review D 105.7 (2022), p. 076012.

[62] E Knuth Donald et al. “The art of computer programming”. In: Sorting and
searching 3.426-458 (1999), p. 4.

[63] Matthias Troyer. Quantum Advantage: Hope and hype. May 2023. url: https:
//cloudblogs.microsoft.com/quantum/2023/05/01/quantum-
advantage-hope-and-hype/.

[64] John Von Neumann. Mathematical foundations of quantum mechanics: New
edition. Vol. 53. Princeton university press, 2018.

[65] Erik Gustafson. “Noise improvements in quantum simulations of sqed using
qutrits”. In: arXiv preprint arXiv:2201.04546 (2022).

85

https://pennylane.ai/qml/demos/tutorial_local_cost_functions
https://pennylane.ai/qml/demos/tutorial_local_cost_functions
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038%2Fs41467-021-21728-w
https://doi.org/10.1038%2Fs41467-021-21728-w
https://cloudblogs.microsoft.com/quantum/2023/05/01/quantum-advantage-hope-and-hype/
https://cloudblogs.microsoft.com/quantum/2023/05/01/quantum-advantage-hope-and-hype/
https://cloudblogs.microsoft.com/quantum/2023/05/01/quantum-advantage-hope-and-hype/

BIBLIOGRAPHY

86

Chapter 6
Appendix

A.1 Quantum Computing

Quantum computation in a new interdisciplinary field that combines Computer Sci-
ence and Quantum Mechanics. At its core, Quantum Computation aims to leverage
the precise evolution of quantum systems, utilizing multiple quantum bits (qubits)
to gain a computational advantage by harnessing quantum mechanical phenomena,
such as quantum entanglement, to our benefit.

This following additional chapter will delve into the fundamental principles of Quan-
tum Computation, starting from the basic unit of information, the qubit and pro-
gressing towards the construction of the first quantum circuits.

A.1.1 Quantum Advantage

In 1995, the field of Quantum Computation received a significant boost when P.
Shor formulated a quantum algorithm capable of solving the factorization problem,
resulting in faster executing times for large numbers than for any classical algorithms.
Subsequently, in 1996, L. Grover introduced a quantum algorithm that offered a sig-
nificant speedup for unstructured searches in databases. These two fundamental
algorithms garnered substantial interest within the scientific community. Shor’s fac-
torization algorithm exhibited the potential to factorize large numbers exponentially

A.1. QUANTUM COMPUTING

faster than any known classical methods, thereby challenging the security of systems
reliant on the difficulty of factoring large numbers. On the other hand, Grover’s algo-
rithm found applications in various tasks, such as pattern recognition, cryptographic
key breaking, and optimization problem-solving. As an example, the High Energy
Physics community has been exploring the adaptation of Grover’s algorithm for the
task of track reconstruction [61]. The remarkable progress made by these algorithms
has led to a surge of research interest and exploration of their applications across
different domains.

Complexity of an algorithm

The main advantage of quantum computers over classical computers lies in their abil-
ity to harness quantum properties to execute exclusive quantum algorithms which
might be able to solve given tasks faster than their classical counterparts. To evaluate
the effectiveness of these algorithms, complexity measures are employed for compar-
ison.

Computational complexity of an algorithm describes the amount of time an algorithm
requires to solve a particular task. It is typically evaluated by counting the number
of elementary operations involved. If an algorithm demands a constant number of
operations irrespective of the input size, its complexity is considered constant. On
the other hand, if the time taken by the algorithm increases proportionally with
the input size, the complexity can be classified as linear, linearithmic, polynomial,
exponential, or even worse, depending on the rate at which the time taken (number
of operations) scales, as shown in Figure 6.1 and Table 6.1.
As two examples:

• An algorithm that outputs whether a given integer number is either even or
odd, can work at a constant time no matter the number of digits that the input
number has, since it only has to check whether the last digit is even or odd.

• An algorithm that outputs whether a given integer number contains the digit
0 in it, works in linear time since in the worst case scenario, it has to check
every digit, up until the last one.

Additionally, the same task can be performed in different computational times given
the algorithm used. As an example, there is a wide selections of different sorting

88

Appendix

Figure 6.1: Most common classes of algorithms with Big O notation.

Big O Notation Name
O(1) Constant
O(log(N)) Logarithmic
O(N) Linear
O(N log(N)) Linearithmic
O(Nm) Polynomial
O(kN) Exponential
O(N !) Factorial

Table 6.1: Big O notation and names of the most common classes of algorithms.

algorithms, the most basic implementation the exchange sort scales as O(n2), while
more advanced implementations manage to reduce the scaling to O(n log(n)) [62].
Quantum Computation introduces a distinct framework for constructing novel algo-
rithms, rooted in the principles of Quantum Mechanics. As demonstrated by Shor
and Grover, there are situations where a Quantum Algorithm may outperform its
classical counterpart for specific tasks. However, not all tasks will necessarily benefit
from a Quantum Algorithm over classical approaches.

The Advantage of Quantum Algorithms over existing classical counterparts lies in
their better scaling for tasks where they are expected to outperform.
For instance, for the case of factorization algorithms, when transitioning from clas-
sical to Quantum Algorithms, the scaling reduces to polynomial (const ∗ d3) instead
of the previous exponential scaling

(︁
exp(const ∗ d 1

2)
)︁

considering the best classical

89

A.1. QUANTUM COMPUTING

factorization algorithm, as shown in Figure 6.3.

Figure 6.2: Advantage for Quantum Algorithms, after the problem size is bigger than
the Crossover size, quantum algorithms become advantageous. [63]

Figure 6.3: Complexity of Shor’s algorithm and its best classical counterpart. [18]

A.1.2 The Qubit

In Classical Information theory, the unit of information is the bit which represents
a logic state that can have only two possible values: 0 (or false, off, etc.) or 1 (or
true, on, etc.). Single bits are concatenated into strings to be able to represent an
exponentially larger number of different states: an n-bits string can represent a max-
imum of 2n different configurations, e.g the task of counting integers from 0 to 1000
can be accomplished using at least 10 bits since 210 = 1024 > 1000.

Similarly in Quantum Computing, the elementary information unit is called qubit,
a two-level quantum system that can be measured in two states |0⟩ (ground-state)
and |1⟩ (first excited state), which form an orthonormal basis, called computational

90

Appendix

basis, of the 2-dimensional Hilbert space H.

A generic state |ψ⟩ of a single qubit can be written as:

|ψ⟩ = α0|0⟩+ α1|1⟩ (6.1)

where α0, α1 ∈ C, satisfying the normalization condition |α0|2 + |α1|2 = 1.

The main difference with classical computation is that at any given time, a qubit
does not have to be in either one of the two states (|0⟩ or |1⟩) but it can be in any pro-
portions of both states at once. This behaviour is exclusive to quantum systems and
it is called superposition. However, in the instance the qubits are measured, they col-
lapse to either one of the two states with probabilities depending on the coefficients α.

The 2-dimensional Hilbert space H is isomorphic to the C2 vector space, so we an
conveniently associate the canonical basis of C2 to the computational basis of H:

|0⟩ ∈ H →
(︃
1

0

)︃
∈ C2 (6.2)

|1⟩ ∈ H →
(︃
0

1

)︃
∈ C2 (6.3)

This isomorphism allows us to represent quantum states as complex (normalized)
vectors and linear operators as complex matrices.

The equation 6.1 hints at the potential of manipulating information using qubits
over classical bits, as the former can carry a higher amount of information through
its superposition properties. The potential of qubits becomes even more significant
when multiple qubits interact, surpassing the standard classical bit concatenation.

Bloch sphere: A convenient way to graphically represent the 1-qubit state is
through the Bloch sphere: the expression 6.1 can be rewritten as:

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (6.4)

where θ and ϕ are real number with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. In a 3D sphere the
angle θ corresponds to latitude and angle φ corresponds to a phase factor representing
the longitude.

91

A.1. QUANTUM COMPUTING

Figure 6.4: Bloch sphere.

With reference to the Figure 6.4, some noteworthy examples can be made:

• for θ = 0, ψ = |0⟩ regardless of the phase ϕ

• on the contrary, for θ = π, ψ = |1⟩ regardless of the phase ϕ

• while for θ = π/2, there are different scenarios depending on the value of the
phase ϕ:

– for ϕ = 0, |ψ⟩ = |0⟩+|1⟩√
2

which is the state denoted as |+⟩.

– for ϕ = π, |ψ⟩ = |0⟩−|1⟩√
2

which is the state denoted as |−⟩

Representing the states

Density matrix and mixed states: The quantity obtained by the outer product
of a state-vector |ψ⟩ is called density matrix of the pure state (ρpure) and represents
a projector operator:

|ψ⟩ = α0|0⟩+ α1|1⟩ ρpure = |ψ⟩⟨ψ| =
(︃
|α0|2 α0α

∗
1

α∗
0α1 |α1|2

)︃
(6.5)

ρpure has the following properties:

• ρpure = ρ†pure (ρ is Hermitian)

• ∀|ϕ⟩ : ⟨ϕ|ρpure|ϕ⟩ ≥ 0 (ρ is positive semi-defined)

92

Appendix

• Tr(ρpure) = 1 (the diagonal terms |αi|2 of ρpure are the probabilities of measuring
|ψ⟩ in the respective basis state and, being probabilities, they sum up to 1)

• ρ2pure = ρpure (ρ is a projector)

The density matrix is particularly useful when dealing with quantum states that
are not in pure but rather in mixed states which is a statistical mixture of different
pure states. Additionally, density matrix essential for computing the amount of
entanglement among qubits in that given state [64].

Multi-qubit states: The description of a multi-qubit quantum system can be
easily gained using the concept of tensor product between Hilbert spaces. An n-
qubit quantum system is described by the tensor product of n single qubit states:

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ ...⊗ |ψn⟩ |ψ1⟩, |ψ2⟩, ..., |ψn⟩ ∈ |ψ⟩ ∈
n⨂︂

i=1

H (6.6)

A completely generic n-qubits state is described by 2n complex coefficients:

|ψ⟩ = α1|0...00⟩+ α2|0...01⟩+ α3|0...10⟩+ ...+ α2n|1...11⟩ αi ∈ C (6.7)

Where each coefficient is related to the probability of measuring the state in that
particular basis state: |ai|2 ≡ P [state i].

Generalizing density matrices of pure and mixed states is straightforward: let |ψ⟩ be
an n-qubits state, then:

|ψ⟩ =
2n∑︂
i=1

αi|i⟩ ρpure = |ψ⟩⟨ψ| ρmix =
∑︂
i,j

αij|i⟩⟨j| αj, αij ∈ C (6.8)

Quantum measurement: The state of a quantum system can be accessed only
through measurements operated on the qubits of the system. Measurements does
collapse the wavefunction in one of the eigenvectors with a probability given by its
relative coefficient. For the sake of simplicity, let us assume to deal with a generic
1-qubit state as in the expression 6.1. In this case, the two possible outcomes of a
measurement on the computational basis (0 or 1) are associated to the two projectors
on the eigenspaces:

93

A.1. QUANTUM COMPUTING

P0 = |0⟩⟨0| P1 = |1⟩⟨1|

Therefore, the probabilities associated to the two measurement outcomes are:

p(0) = ⟨ψ|P0|ψ⟩ = |α0|2 p(1) = ⟨ψ|P1|ψ⟩ = |α1|2

which again, they correspond to the modulus squared of the coefficients ai.

So, the final quantum state gets destroyed upon measurement and it has to be rebuilt
if repeated assessments are needed. This type of measurements on a system of qubits
are called projective measurements on the computational basis.

The Qutrit

Other than qubits, additional units of information are considered in the advancement
of Quantum Computing algorithms and hardware. In a practical implementation of
a quantum computer, the states |0⟩ and |1⟩ represent distinct energy levels within
the system (refer to A.1.4). Theoretically, there is no limitation in utilizing higher
excited states alongside these (as in figure 6.5). The introduction of qutrits serves
as an initial example of extending beyond the use of only the first two states.

...
|2⟩

|1⟩ |1⟩

|0⟩ |0⟩

|ψ⟩ = α0|0⟩+ α1|1⟩ ⇒ |ψ⟩ = α0|0⟩+ α1|1⟩+ α2|2⟩

Figure 6.5: Energy levels and general wavefunction of a qubit (on the left) and a
qutrit (on the right).

The utilization of qutrits provides the benefit of accommodating a greater number
of state combinations using an equivalent number of information units.
The advantage of employing qutrits becomes apparent when considering the increased
capacity to represent an even greater number of combinations with the same number

94

Appendix

of information units. This distinction becomes evident even when comparing just 2
qutrits over 2 qubits.

Qubits: |00⟩, |01⟩, |10⟩, |11⟩ 22 (4) states

Qutrits: |00⟩, |01⟩, |02⟩, |10⟩, 32 (9) states
|11⟩, |12⟩, |20⟩, |21⟩, |22⟩

Table 6.2: Number of states for a pair of two qubits and two qutrits

Qutrits have been demonstrated to exhibit greater resilience to errors [65]. However,
their implementation and manipulation pose significant challenges. Nevertheless, in
the context of emerging Quantum Computer designs, the utilization of qutrits could
potentially yield a even higher advantage.

95

A.1. QUANTUM COMPUTING

A.1.3 Quantum Circuits

Single qubit gates

Gates acting on a single qubit are described by 2×2 complex unitary matrices acting
on the C2 vector resulting in a rotation of the vector state in the Bloch sphere:

Name Symbol Matrix U |0⟩ U |+⟩

Pauli X X

(︃
0 1

1 0

)︃
→ →

Pauli Y Y

(︃
0 −i
i 0

)︃
→ →

Pauli Z Z

(︃
1 0

0 −1

)︃
→ →

Hadamard H
1√
2

(︃
1 1

1 −1

)︃
→ →

Phase gate S

(︃
1 0

0 i

)︃
→ →

π/8 T

(︃
1 0

0 ei
π
4

)︃
→ →

Table 6.3: Main single qubit gates. From left to right: the name, their symbolic
representation in a quantum circuit, the matricial representation of the operator, the
action of the gate on the state |0⟩, the action of the gate on the state |+⟩.

A generalization of the Pauli Gates above (Pauli X, Pauli Y and Pauli Z) are the
parametrized rotations RX(θ), RY (θ), and RZ(θ) which rotate the state vector by
an angle θ/2 around the axes x, y and z respectively.

96

Appendix

RX(θ) = e−iθX/2 = cos
θ

2
I− i sin

θ

2
X =

(︃
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)︃
(6.9)

RY (θ) = e−iθY/2 = cos
θ

2
I− i sin

θ

2
Y =

(︃
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)︃
(6.10)

RZ(θ) = e−iθZ/2 = cos
θ

2
I− i sin

θ

2
Z =

(︃
e−i(θ/2) 0

0 ei(θ/2)

)︃
(6.11)

The three parametrized gates above represents the building blocks for Quantum
Machine Learning. Infact just like classical Machine Learning, in Quantum Machine
Learning one must find through an optimization procedure, the most optimal param-
eters set of parameters (weights of a Neural Network for classical Machine Learning,
and parameters of these gates for Quantum Machine Learnng) such that the output
of the circuit is the most optimal one, given its input.

Other than the parametrized gates, one other crucial component for QML are the
Multi qubit gates, which are gates that act on multiple qubits at once, building
entanglement among the involved qubits. Entanglement makes the qubits achieve
complex cooperative behaviours, which is a required phenomena for solving non-
trivial problems.

97

A.1. QUANTUM COMPUTING

Multi qubit gates

The interplay between qubits is created via multi-qubit gates. A two-qubit gate
operates on both a control qubit and a target qubit.
The roles of control and target qubits reference the behaviour of the gates for the
trivial cases with no superposition. Consider the truth table of the Controlled-NOT
(CNOT) gate for example:

Input Output
|control⟩ ⊗ |target⟩ |control⟩ ⊗ |target⟩

|0⟩ ⊗ |0⟩ |0⟩ ⊗ |0⟩
|0⟩ ⊗ |1⟩ |0⟩ ⊗ |1⟩
|1⟩ ⊗ |0⟩ |1⟩ ⊗ |1⟩
|1⟩ ⊗ |1⟩ |1⟩ ⊗ |0⟩

control

target

Table 6.4: Truth table of the CNOT gate.

In this case with no superposition, this gate applies a Pauli X (bit-flip) operation on
the target gate if the control is |1⟩, while leaving the control gate unchanged.
The Controlled-Not (CNOT) gate and the Controlled-Z (CZ) gate are the most
common used multi qubit gates. The symbolic and matrix representations are shown
in Table 6.5 ⎛⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎠
Z

⎛⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎠
Controlled-NOT Controlled-Z

Table 6.5: The two most common controlled gates: on the left the Controlled-NOT
(CNOT), on the right the Controlled-Z (CZ).

Universality

To construct a Quantum Computer capable of performing any conceivable operation,
it is not necessary to include every gate discussed in the preceding sections. A set

98

Appendix

of gates that allows for the (approximate) expression of any unitary operation is
referred to as universal.
Some universal quantum gate sets are:

• The parametrized gates RX(θ), RY (θ), RZ(θ), the phase-shift gate P (φ) and
CNOT;

• The Hadamard Gate H, Phase Gate S, T-gate and CNOT;

Single qubit gate on multiple qubits

As shown in the preceding sections, a single qubit gate is represented by a 2 × 2

matrix due to its application on a two-component vector representing the qubit’s
state.
For example:

|0⟩ X |1⟩ → X|0⟩ =
[︃
0 1

1 0

]︃ [︃
1

0

]︃
=

[︃
0

1

]︃
(6.12)

Applying a single qubit gate to a specific qubit becomes ambiguous when multiple
qubits are involved. The procedure to build the correct operator is quite similar for
concatenating multiple quantum states as seen in the section A.1.2, some examples
are:

X
I⊗X =

⎡⎢⎢⎣1×
(︃
0 1

1 0

)︃
0×

(︃
0 1

1 0

)︃
0×

(︃
0 1

1 0

)︃
1×

(︃
0 1

1 0

)︃
⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎦

X X ⊗ I =

⎡⎢⎢⎣0×
(︃
1 0

0 1

)︃
1×

(︃
1 0

0 1

)︃
1×

(︃
1 0

0 1

)︃
0×

(︃
1 0

0 1

)︃
⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤⎥⎥⎦
H

X

X ⊗H = 1√
2

⎡⎢⎢⎣0×
(︃
1 1

1 −1

)︃
1×

(︃
1 1

1 −1

)︃
1×

(︃
1 1

1 −1

)︃
0×

(︃
1 1

1 −1

)︃
⎤⎥⎥⎦ = 1√

2

⎡⎢⎢⎣
0 0 1 1

0 0 1 −1

1 1 0 0

1 −1 0 0

⎤⎥⎥⎦
99

A.1. QUANTUM COMPUTING

Example: Bell Circuit

With the tools shown in the last sections, it is possible to construct the Quantum
Circuit that can evolve the starting state |00⟩ into the Bell State 1√

2
(|00⟩+ |11⟩)

The following circuit is analyzed in the section 1.3 to explain the formation of en-
tanglement from a Information Theory perspective.

|0⟩
Bell Circuit

|0⟩

|00⟩+ |11⟩√
2

B̂|00⟩ = |00⟩+ |11⟩√
2

(6.13)

The circuit capable of performing this operation is the following:

H

Figure 6.6: Circuit representation of the Bell circuit.

Which is matricial form is:

B̂ = (CNOT)(H ⊗ I)

=
1√
2

⎡⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣1×

[︃
1 0

0 1

]︃
1×

[︃
1 0

0 1

]︃
1×

[︃
1 0

0 1

]︃
−1×

[︃
1 0

0 1

]︃
⎤⎥⎥⎦

=
1√
2

⎡⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
−1 −0 −1 −0

−0 −1 −0 −1

−1 −0 −1 −0

−0 −1 −0 −1

⎤⎥⎥⎦ =
1√
2

⎡⎢⎢⎣
1 0 1 0

0 1 0 1

0 1 0 −1

1 0 −1 0

⎤⎥⎥⎦ (6.14)

Which applied to the state |00⟩, it outputs the desired state:

B̂|00⟩ = 1√
2

⎡⎢⎢⎣
1 0 1 0

0 1 0 1

0 1 0 −1

1 0 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1

0

0

0

⎤⎥⎥⎦ =
1√
2

⎡⎢⎢⎣
1

0

0

1

⎤⎥⎥⎦ =
|00⟩+ |11⟩√

2
(6.15)

100

Appendix

A.1.4 Types of Quantum Computers

Fundamentally, any quantum two-level system can be classified as a quantum com-
puter. Currently, there are several distinct variations of quantum computers, each
manipulating different quantum mechanical phenomena. As of the present moment,
the main types of qubits are as follows:

• Superconducting The basic building block of a superconducting qubit is a
Josephson junction. It consists of two superconducting materials at low tem-
perature separated by a thin insulating barrier. The two distinct energy levels
|0⟩ and |1⟩ correspond to the flow of current in the junction. Superposition is
obtained by applying external contro micro-wave signals and the gates are sim-
ulated by modifying the amplitude of the states with those microwave signals.

• Photonic The state of a qubit is encoded in the properties of a single photon,
such as its polarization, and gates are simulated by optical devices.

• Neutral atoms The internal energy levels of neutral atoms serve as the qubits.
Typically, two energy levels are chosen to represent the qubit states, such as
the ground state and an excited state and they are manipulated by applying
laser beams with specific frequencies and intensities.

• Trapped ions Qubits are implemented using the internal energy levels of
individual ions that are trapped via electromagnetic fields and laser are used
to carefully manipulate their state.

• Quantum dots Qubits are implemented using quantum dots, which are small
semiconductor structures that can confine and manipulate electrons. The states
are represented by the energy levels of electron that are confined within the
quantum dot. This confinement creates discrete energy levels.

Currently, there is no universally superior implementation of quantum computers.
Each type of quantum computer has its own set of advantages and disadvantages. For
instance, superconducting quantum computers show promise in terms of scalability
but necessitate extremely low temperatures (∼ 1 mK) and are more susceptible
to decoherence. On the other hand, photonic quantum computers do not require
low temperatures, significantly reducing operational costs. However, establishing
entanglement between photons has proven to be a challenging task.

Given the many types of quantum computer available The DiVincenzo criteria were

101

A.1. QUANTUM COMPUTING

formulated to outline the key requirements for building a practical and functional
quantum device.

DiVincenzo’s criteria

DiVincenzo’s criteria, proposed by David P. DiVincenzo in 2000, form a set of require-
ments that must be satisfied for the successful realization of a quantum computer.
They consist of five essential rules:

1. A scalable physical system with well-characterized qubit.

2. The ability to initialize the state of the qubits to a simple fiducial state: ensuring
the consistent behavior of a model heavily relies on the reliable production of its
initial state. Typically, the desired starting state is the state in which each qubit is
|0⟩, which is achieved by allowing the system to anneal to its ground state.

3. Long relevant decoherence times: due to their inherent fragility, quantum states
are highly susceptible to decoherence, resulting from interactions with the surround-
ing environment, collapsing the state and losing any "quantumness" to it. To effec-
tively work with a quantum system, it is crucial to maintain its coherence for as long
as possible, minimizing the detrimental effects of decoherence.

4. A "universal" set of quantum gates: as discussed before, an universal set of gates
is required to freely manipulate the state.

5. A qubit-specific measurement capability.

102

	Introduction
	Quantum Computing for High Energy Physics
	Introduction to Machine Learning
	Quantum Machine Learning
	Entanglement

	Jet Physics at LHCb
	The LHCb experiment and jet identification
	b- and c-jets formation
	Jets reconstruction

	Jet identification with Quantum Machine Learning
	Data-set
	Classical model: (Gradient) Boosted Decision Trees
	Software implementation for jet tagging on quantum models
	Quantum Models
	QML Performance

	Benchmarking of entropy production in a quantum classifier
	The Barren Plateau problem in QML
	Entropy productions

	Entanglement-based models for b- and c-jet tagging
	Characteristic circuits
	Feature importance
	Correlation from entanglement

	Conclusions
	Future developments in heavy jet tagging

	Bibliography
	Appendix
	Quantum Computing

