
University of Padova

Department of Mathematics “Tullio Levi-Civita”

Master Thesis in Data Science

Community Detection in Networks

Supervisor Master Candidate
Prof. Marco Formentin Lorenzo Caltran
University of Padova

Student ID
2097200

Academic Year
2023-2024

ii

Abstract

Community detection plays a very important role in understanding the structure and dynamics
of networks, this thesis addresses the challenge of identifying such communities. The first chap-
ter of this dissertation introduces some preliminary concepts, such as the definition of graph,
Markov chains and stationary distributions with all the necessary and sufficient conditions for
their existence and uniqueness; these aspects are going to be crucial for the understanding of
the following chapters. The next three sections deal with three different community detection
algorithms: Louvain, Infomap and Girvan-Newman. After explaining in detail their function-
ing, their properties and their limitations, at the end of each chapter we are going to see some
applications and see how different network partitioning approaches yield very different results.
In the final chapter we are going to study how the community structure in a complex network
of users influences the efficiency of communication by e-mail between them. The aspect that
we want to analyze is the response time defined as the number of units of activity of the receiv-
ing user pertaining to the intervals between a message and its response. The goal is to assess
whether the modular structure of the network influences the probability distribution of the
response times between different communities of users, where said communities are going to
be detected using one of the three methods described in the previous chapters.

v

vi

Contents

Abstract v

1 Preliminary concepts 1
1.1 Introduction to networks and community detection 1
1.2 Introduction to Markov chains and stationary distributions 6

2 Louvain algorithm 15
2.1 Modularity as quality measure of a network’s partition 15
2.2 Louvain’s functioning and pseudo-code 20

2.2.1 Louvain’s complexity and limitations 24
2.3 Application to four different types of networks 27

2.3.1 Unweighted undirected network 27
2.3.2 Weighted undirected network . 28
2.3.3 Unweighted directed network . 28
2.3.4 Weighted directed network . 29

3 Infomap Algorithm 31
3.1 Huffman coding procedure . 31
3.2 The map equation as quality measure of a network’s partition 36
3.3 Infomap’s functioning and pseudo-code 40

3.3.1 Two-level algorithm . 40
3.3.2 Multilevel algorithm . 42
3.3.3 Infomap’s complexity and limitations 43

3.4 Application to four different types of networks 44
3.4.1 Unweighted undirected network 44
3.4.2 Weighted undirected network . 45
3.4.3 Unweighted directed network . 46
3.4.4 Weighted directed network . 47

4 Girvan–Newman algorithm 49
4.1 Hierarchical community detection methods 49
4.2 Edge and vertex betweenness centrality measures 52
4.3 Girvan-Newman’s functioning and pseudo-code 56
4.4 Application to four different types of networks 59

4.4.1 Unweighted undirected network 59

vii

4.4.2 Weighted undirected network . 60
4.4.3 Unweighted directed network . 61
4.4.4 Weighted directed network . 62

5 Application to an e-mail dataset 65
5.1 Preliminary concepts and dataset description 65
5.2 Community detection on the e-mail dataset 69
5.3 Community-level response times analysis 72

6 Conclusions 77

References 79

Acknowledgments 83

viii

1
Preliminary concepts

In this first chapter, we are going to introduce a series of tools that are necessary for a better
understanding of the algorithms.

1.1 Introduction to networks and community detec-
tion

This section focuses on the different types of graphs and the concept of community detection.
The material was taken from [1] and [4].

Definition 1.1.1 An undirected graph is a pair G = (V, E), where V is a set whose elements
are called vertices, and E is a set of unordered pairs (u, v) of vertices, whose elements are called
edges (or links). The vertices u and v of an edge (u, v) are called the edge’s endpoints. The edge is
said to join u and v and to be incident on them. A vertex may belong to no edge, in which case it
is not joined to any other vertex and is called isolated. When an edge (u, v) exists, the vertices u
and v are called adjacent.

A graph can also be called network and from now on we are going to use the two terms inter-
changeably.

1

Figure 1.1: Example of an undirected graph. Picture taken from [2].

Definition 1.1.2 In an undirected graph G, two vertices u and v are called connected if G con-
tains a path from u to v. An undirected graph is said to be connected if every pair of vertices in the
graph is connected .

Definition 1.1.3 A directed graph or digraph is a graph in which edges have orientations, in
particular it is a pair G = (V, E) comprising:

• V, a set of vertices (or nodes)

• E, a set of edges (also called directed edges or directed links), which are ordered pairs of
distinct vertices: E ⊆ {(x , y) | (x , y) ∈ V2, and x ̸= y}

In the edge (x , y) directed from x to y, the vertices x and y are called the endpoints of the edge, x
the tail of the edge and y the head of the edge.

Figure 1.2: Example of a directed graph. Picture taken from [2].

2

Definition 1.1.4 A directed graph G is strongly connected if, for every pair of nodes u and v, it
contains a directed path from u to v and a directed path from v to u for every pair of vertices u, v.

Definition 1.1.5 A weighted graph or a network is a graph in which a number (the weight) is
assigned to each edge. Weighted graphs can also be directed or undirected.

Figure 1.3: Example of a weighted undirected graph. Picture taken from [2].

Definition 1.1.6 Given an unweighted graph G = (V, E), the adjacency matrix A corre-
sponding to G is a square matrix used to represent a finite graph. The elements of the matrix
indicate whether pairs of vertices are adjacent or not in the graph. More precisely:

Aij =

1 if there is an edge from node i to node j

0 otherwise

Proposition 1.1.1 If the graph is undirected, then the adjacency matrix is symmetric.

Proof In an undirected graph, if there is an edge from vertex i to vertex j, then there is also
an edge from vertex j to vertex i. Therefore, Aij = 1 if and only if Aji = 1.
So, ∀ i, j ∈ V Aij = Aji. Hence, the adjacency matrix A is symmetric. □

Definition 1.1.7 Given an weighted graph G = (V, E), the adjacency matrix A correspond-
ing to G is a square matrix used to represent a finite graph. The elements of the matrix indicate
whether pairs of vertices are adjacent or not in the graph. More precisely:

3

Aij =

wij if there is an edge from node i to node j

0 otherwise

Where wij is the weight assigned to the edge (i, j).

Definition 1.1.8 In graph theory, a loop (also called a self-loop or a buckle) is an edge that con-
nects a vertex to itself. A graph is simple if doesn’t contain any loops.

Now we introduce the main concept of this dissertation, which is the concept of community
in a network.

Definition 1.1.9 A network is said to have community structure if the nodes of the network can
be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely
connected internally.

We say that a set of nodes is densely connected if the number of edges |E | ≳ log(|V |), where
| E | is the number of edges and | V | the number of nodes.

Definition 1.1.10 When the entire graph is densely connected then the graph is dense, on the
contrary if it’s not, the graph is sparse.

Communities (also called modules or clusters), are often defined in terms of the partition of
the set of vertices, that is each node is put into one and only one community. However, in some
cases a better representation could be one where vertices are in more than one community, so
in this case we are dealing with overlapping communities.

Figure 1.4: Example of overlapping and non‐overlapping community detection. Picture taken from [3].

Not all graphs have a community structure, one example of such network is the following.

Example 1.1.1 (Random graphs) A random graph, also known as Erdős–Rényi model, indi-
cated as G(n, p), is an undirected graph in which we have n nodes and the probability of connec-
tion between two nodes is equal to p. So we can say that the connection between two nodes can be
expressed as 1{∃ an edge from node i to j} and it’s a Bernoulli random variable with parameter p.

4

Figure 1.5: Example of a Erdős–Rényi graph G(n, p) with n = 200 and p = 1
40 Picture taken from [4].

Definition 1.1.11 In a random graph, a vertex i has degree di if it has di links.
The degree di is a random variable, in fact di =

∑n
j=1, j̸=i 1{∃ a link from i to j}.

We have thatE [di] =
∑n

j=1, j ̸=i E
[

1{∃ a link from i to j}
]
=
∑n

j=1, j̸=i p = (n− 1)p = d.
So di is the sum of n-1 Bernoulli random variables.

In the case of random graphs, we consider them dense if d≳ log(n). With the next proposition
we are going to show that dense graphs are almost regular with probability close to 1, which
means that the degrees of all vertices approximately equal d.

Proposition 1.1.2 Consider an Erdős–Rényi–Gilbert graph G(n, p). For n large enough it
holds that P({|di − d| < δd ∀ i ∈ {1, . . . , n}}) ≥ 1 − ε ∀ δ, ε > 0.

Before proving this Proposition, we need to introduce an inequality necessary for the proof.

Theorem 1.1.1 (Chernoff’s inequality for small deviations) LetX1, . . . ,XN be independent
Bernoulli random variables with parameters pi. Consider their sum SN =

∑N
i=1 Xi and denote

its mean μ = E [SN], then for δ ∈ (0, 1] we have that P(|SN − μ| < δμ) ≤ 2e−cμδ2

We can now proceed with the proof of Proposition 1.1.2

Proof We know that G(n, p) is a dense graph, which means that ∃Dn > 0 such that d =

(n − 1)p ≥ Dnlog(n) for n large enough, where Dn = min{D ∈ R | d ≤ Dlog(n)}. In
our case we can choose Dn such that limn→+∞ Dn = +∞, so we are going to take Dn =

log(n). Now we apply Theorem 1.1.1 with Xj = 1{∃ a link from i to j} ∼ Ber(p) and di = Sn =∑n
j=1, j̸=i Xj. For fixed i we have that P(|di − d| ≥ δd) ≤ e−cdδ2

, with c > 0.
Now we write P({|di − d| < δd ∀ i ∈ {1, . . . , n}}) = 1 − P({∃ i such that |di − d| ≥

5

≥ δd}) ≤ 1 −
∑n

i=1 P(|di − d| ≥ δd) ≤ 1 − 2ne−cdδ2 .
We have to show that for n large enough 2ne−cdδ2

< ε. In fact 2ne−cdδ2
< 2ne−cDnlog(n)δ2

< ε
because e−cDnlog(n)δ2

= O(n−α) for α > 1, so limn→+∞ e−cDnlog(n)δ2
= 0. □

Observation 1.1.1 The fact that in regular graphs all the nodes have a similar amount of con-
nections it less likely for distinct communities to form because there are no nodes with significantly
higher or lower degrees that could act as connectors between communities.

The goal of community detection is to identify these clusters for a better understanding of
the structure and dynamics of the network that we are dealing with.

1.2 Introduction to Markov chains and stationary
distributions

In this section we’re going to introduce the concept of Markov chains, specifically on a type
of Markov chain, which is the random walk. The random walk is going to be one of the focal
points in one of the algorithms that we’re going to discuss. The material was taken from [5].

Definition 1.2.1 AMarkov chain is a sequence {Xn}n∈N of a random variables taking value in
afinite or countable set S that satisfy theMarkov property, which is: ∀Xn+1

0 = (X0, . . . , Xn+1) ∈
∈ Sn+1 and ∀ n ≥ 1 P(Xn+1 = xn+1 |Xn

0 = xn0) = P(Xn+1 = xn+1 |Xn = xn) , where
Xm
n = (Xn, Xn−1, . . . ,Xm) ∀m < n. This property is also called memorylessness.

The conditional probabilities P(Xn+1 = xn+1 |Xn = xn) are called the 1 -step transition proba-
bilities.

Observation 1.2.1 The full law of the chain can be reconstructed if we know the transition prob-
ability and the initial distribution, i.e. P(X0 = x0) ∀ x0 ∈ S

Definition 1.2.2 AMarkov chain is homogeneous if P(Xn+1 = xn+1 |Xn = xn) doesn’t de-
pend on n, so P(Xn+1 = x |Xn = y) = P(Xn = x |Xn−1 = y) ∀ x, y ∈ S and ∀ n ≥ 1

Definition 1.2.3 Given a stochastic process, at each step, the transition matrix P is a square ma-
trix given by P = (pyx)y,x∈S = (P(Xn+1 = y |Xn = x))y,x∈S. If the chain is homogeneous, the
transition matrix is going to be the same at each step.

6

Observation 1.2.2 For a finite state homogeneous Markov chain, the transition matrix is al-
ways stochastic, i.e. all of its rows sum up to 1 and all of its entries are non-negative, this is because
all of the entries represent probabilities.

Let’s now give an example of an homogeneous Markov chain.

Example 1.2.1 (Random walk) A random walk is a random process that describes a path that
consists of a succession of random steps on some mathematical space. An elementary example of a
randomwalk is the randomwalk on the integer number lineZwhich starts at 0, and at each step
moves+1 with probability p and−1 with probability 1 − p. So the sequence of random variables
becomes: {Un}n∈N, where

Ui =

1 with probability p

−1 with probability 1 − p

We then define recursively the states:

S0 = 0

S1 = S0 + U1
...

Sn = Sn−1 + Un
...

It is also possible to have a randomwalk on a finite set, but in this case we are only allowed tomove
forward when we are in the initial state and backwards when we are in the final state.

Figure 1.6: Example of random walk on the set {0, 1, 2, 3, 4}. Picture taken from [6].

7

From now on we are only going to consider homogeneous Markov chains.

Theorem 1.2.1 (Chapman-Kolmogorov equation) GivenanhomogeneousMarkov chainand
the set of states S we have:

pn+m
yx = P(Xn+m = x |X0 = y) =

∑
z∈S

pmzxpnyz

Proof We know that the probability space Ω =
⊔

z∈S{Xn = z}. By the total probability
rule we get:

P(Xn+m = x |X0 = y) = P({Xn+m = x} ∩ Ω |X0 = y)

=
∑
z∈S

P(Xn+m = x, Xn = = z |X0 = y)

=
∑
z∈S

P(Xn+m = x, |Xn = z, X0 = y)P(Xn = z |X0 = y)

Then by the Markovian and the homogeneous property∑
z∈S

P(Xn+m = x, |Xn = z, X0 = y)P(Xn = z |X0 = y)

=
∑
z∈S

P(Xn+m = x |Xn = z)P(Xn = z |X0 = y)

=
∑
z∈S

P(Xm = x |X0 = z)P(Xn = z |X0 = y)

=
∑
z∈S

pmzxpnyz

□
The Chapaman-Kolmogrov equation allows us to associate our n-step transition probabilities
to a matrix of n-step transistion probabilities. Lets define the matrix P(n) = (p(n)ij).

Corollary 1.2.1 P(n) = Pn, where Pn denotes the typical matrix multiplication.

Proof We can rewrite the Chapaman-Kolmogrov equation in matrix form asP(n) = P(m)P(n−m)

∀m ∈ {0, 1, . . . , n− 1}. Now we can induct on n:
It’s apparent that P(1) = P, giving us P(n+1) = P(m)P(n−m).

□

8

Definition 1.2.4 The vector π is called a stationary distribution of aMarkov chainwithmatrix
of transition probabilities P if π has entries πj, where j ∈ S, such that

• π = πP, which is to say that πj =
∑

i∈S πipij ∀ j ∈ S , where pij are the entries of the
transition matrix P. These are also called balance equations;

• πj ≥ 0 ∀ j ∈ S and
∑

j∈S πi = 1

Observation 1.2.3 π being a stationary distribution implies that πPn = π ∀ n ≥ 0.

Proposition 1.2.1 Every finite stateMarkov chain has a stationary probability distribution.

This proposition is a consequence of the following Theorem.

Theorem 1.2.2 (Perron-Frobenius Theorem) If A ∈ Rn×n is non-negative, then:

• ρ(A) is an eigenvalue of A

• There is a non-negative eigenvector x such that Ax = ρ(A)x

Where ρ(A) is the spectral radius of the matrix A.

For stochastic matrices we know that the spectral radius is always 1. In this case, Theorem 1.2.2
states that there exists a stationary distribution.

However, this theorem doesn’t say anything about the uniqueness of the distribution. We
are now going to introduce a series of concepts and results that allow us to study the uniqueness
of such distribution.

Definition 1.2.5 P is irreducible if ∀ x, y ∈ S ∃ n ∈ N such that pnxy > 0

Definition 1.2.6 Let fi = P({∃ n ≥ 1 such that Xn = i }|X0 = i).

• If fi = 1 , i is recurrent

• If fi < 1 , i is transient

AMarkov chain is recurrent if all of its states are recurrent and it’s transient if they are transient.

Observation 1.2.4 Let Ni = |{n ≥ 0 |Xn = i}| be the number of visits to the state i.

• If i is recurrent, then P(Ni = +∞|X0 = i) = 1

9

• If i is transient, then P(Ni = +∞|X0 = i) = 0

Moreover, Ni ∼ Geo(1 − fi), so P(Ni = m |X0 = i) = fmi (1 − fi)

Definition 1.2.7 Let Ti = inf{n ≥ 1 |Xn = i} be the first time visit to state i and mi =

= E [Ti |X0 = i].

• If mi < +∞, then i is positive recurrent

• If i is recurrent and mi = +∞, then i is null recurrent.

AMarkov chain is positive recurrent if all of its states are positive recurrent and it’s null recurrent
if they are null recurrent.

Observation 1.2.5 • If i is recurrent, P(Ti < +∞|X0 = i) = 1

• If i is transient P(Ti = +∞|X0 = i) > 1, then mi = +∞

• If i is recurrent,
∑+∞

n=0 P(Ti = n |X0 = i) = 1

Definition 1.2.8 LetHi = inf {n ≥ 0 |Xn = i} be the hitting to time state i, then the hitting
probability of state j starting from state i is defined as hij = P({∃ n ≥ 0 such that Xn =

= j }|X0 = i).
The expected hitting time ηij of the state j starting from state i is ηij = E

[
Hj |X0 = i

]
Observation 1.2.6 • mk = 1 +

∑
j∈S pkjηjk

• ηik =

 1 +
∑

j∈S pijηjk if i ̸= k

0 if i = k

Proof

• We can write TK = Hk + 1. By using the Markovian property and conditioning over
the first step and we get

mk = E [Tk |X0 = k] = 1 + E [Hk |X0 = k]

= 1 +
∑
j∈S

E [Hk |X1 = j, X0 = k]P(X1 = j |X0 = k)

= 1 +
∑
j∈S

E [Hk |X1 = j] pkj

= 1 +
∑
j∈S

pkjηjk

10

• If i = k, it’s clear that ηii = 0. For i ̸= k, Hk = H′
k, whereH′

k denotes the remaining
time to reach k. So now we follow a similar procedure as in the previous proof

ηik = E [Hk |X0 = i] = 1 + E [H′
k |X0 = i]

= 1 +
∑
j∈S

E [H′
k |X1 = j, X0 = i]P(X1 = j |X0 = i)

= 1 +
∑
j∈S

E [H′
k |X1 = j] pij

= 1 +
∑
j∈S

pijηjk

□

Theorem 1.2.3 If a Markov chain is irreducible and positive recurrent, then a stationary dis-
tribution π exists, is unique, and is given by πi =

1
mi
.

Before proceeding with the proof we need to introduce a Lemma

Lemma 1.2.1 Let {Xn}n be an irreducible and recurrent Markov chain. Then for any initial
distribution and any state j, the P(Hj < +∞) = 1

Proof Let’s arbitrarily fix a state i, since the chain is irreducible, we have pmij > 0, for some
m > 0. Since the chain is recurrent, we know the return probability from j to j is 1, and we
return infinitely many times with probability 1. Using those facts allows us to conclude that:

1 = P(Xn = j for infinitely many n |X0 = j)

= P(Xn = j for some n > m |X0 = j)

=
∑
k∈S

P(Xm = k |X0 = j)P(Xn = j for some n > m |Xm = k, X0 = j)

=
∑
k∈S

pmjkP(Hj < +∞|X0 = k)

where the last line used the Markov property to treat the chain as starting over again when it
reaches some state k at time m. Note that

∑
k∈S pmjk = 1, since that’s the sum of the probabil-

ities of going anywhere in m steps. This means we must have P(Hj < +∞|X0 = k) = 1
whenever pmij > 0, to ensure the final line does indeed sum to 1. But we stated earlier that
pmij > 0, so we indeed have P(Hj < +∞|X0 = j) = 1, as required. □

11

We can now prove Theorem 1.2.3

Proof

• Existence: Suppose that the Markov chain {Xn}n is recurrent. Fix an initial state k, and
let νi be the expected number of visits to i before we return back to k.

νi = E [|{n ≥ 1 |Xn = i and Xm ̸= k ∀m ∈ {1, . . . , n − 1}}| |X0 = k]

= E

[Tk∑
n=1

P(Xn = i |X0 = k)

]

=
+∞∑
n=1

P(Xn = i and Tk ≥ n |X0 = k)

Tk is the return time of Definition 1.2.7. Under this definition, νk = 1, because the
only visit to k is the return to k itself. Since ν is counting the number of visits to different
states in a certain time, it seems plausible that ν suitably normalised could be a stationary
distribution, meaning that ν itself could be a stationary vector.

∑
i∈S

νipij =
∑
i∈S

+∞∑
n=1

P(Xn = i and Tk ≥ n |X0 = k)pij

=
+∞∑
n=1

∑
i∈S

P(Xn = i ,Xn+1 = j and Tk ≥ n |X0 = k)

=
+∞∑
n=1

P(Xn+1 = j and Tk ≥ n |X0 = k)

We can exchange the order of the sums because thanks to Observation 1.2.5, we know
that the recurrence of the chain implies thatTk is finite with probability 1. Now we swap
the visit to k at time Tk with the visit to k at time 0. This means instead of counting the
visits from 1 to Tk, we can count the visits from 0 to Tk − 1.

∑
i∈S

νipij =
+∞∑
n=0

P(Xn+1 = j and Tk - 1 ≥ n |X0 = k)

=
+∞∑

n+1=1

P(Xn+1 = j and Tk ≥ n + 1 |X0 = k)

12

=
+∞∑
n=1

P(Xn = j and Tk ≥ n |X0 = k) = νi.

We now want normalise ν into a stationary distribution by dividing through by
∑n

i=1 νi.
We can do this if

∑n
i=1 νi is finite, but

∑n
i=1 νi is the expected total number of visits to all

states before return to k, which is precisely the expected return timemk. Now we use the
assumption that {Xn}n is positive recurrent, this means that μk is finite, so π =

(
1
mk

)
ν

is a stationary distribution.

• Uniqueness: Suppose the Markov chain is irreducible and positive recurrent, and sup-
pose π is a stationary distribution. We want to show that πi = 1

mi
∀ i ∈ S. Using the

two equations in Observation 1.2.6, we get:∑
i∈S

πiηik =
∑

i∈S, i̸=k

πi +
∑
j∈S

∑
i∈S, i̸=k

πipijηjk (1.1)

The sum on the left can be over all i, since ηkk = 0. If we take the first equality of
Observation 1.2.6 and multiply it by πk we get

πkmk = πk +
∑
j∈S

πkpkjηjk (1.2)

If we sum Equations 1.1 and 1.2 we get:∑
i∈S

πkηik + πkmk =
∑
i∈S

πi +
∑
j∈S

∑
i∈S

πipijηjk

We can now use
∑

i∈S πipij = πj and
∑

i∈S πi = 1 to get∑
i∈S

πkηik + πkmk = 1 +
∑
j∈S

πjηjk

But the first term on the left and the last term on the right are equal, and because the
Markov chain is irreducible and positive recurrent, thanks to Lemma 1.2.1, they are fi-
nite. Thus we’re allowed to subtract them, and we get πkmk = 1, which is πk = 1

mk
.

□

13

Proposition 1.2.2 For an irreducible Markov chain {Xn}n on a finite state space, all the states
are positive recurrent, hence a stationary distribution exists and it’s unique.

Proof Let’s fix a state i, let’s define

h(m)
ij = P(Xn = i for some 1 < n < m |X0 = j)

=
m∑
n=1

P(Xn = i |X0 = j and Xk ̸= i ∀k ∈ {1, . . . , n − 1})

Since the Markov chain is irreducible, limm→+∞ h(m)
ji = hji > 0 ∀j ∈ S, where hji is the same

as in Definition 1.2.8. Hence, since the state space is finite, we can find m ∈ N and δ > 0 such
that h(m)

ji ≥ δ ∀j ∈ S.
But we must have that 1 − h(n)ii ≤ (1 − δ)⌊

n
m⌋, so letting Ti and mi as in Definition 1.2.7 we

have that

mi =
∑+∞

n=0 P(Ti > n+1 |X0 = i) =
∑+∞

n=0 (1−h(n)ii) ≤
∑+∞

n=0 (1−δ)⌊
n
m⌋ = m

δ < +∞

We have now that the chain {Xn}n is irreducible and positive recurrent, so thanks to Theorem
1.2.3, we have a unique stationary distribution given by πi =

1
mi

. □

14

2
Louvain algorithm

The Louvain algorithm is a community detection algorithm and its aim is to maximize modu-
larity, which measures the quality of a network’s partition. The material was taken from [7],
[8], [9], [10], [11], [12], [13], [14] and [19].

2.1 Modularity as quality measure of a network’s
partition

The idea behind this measure is that if the observed number of edges between the two groups
is close to what you would expect if you were to randomly assign them, then there is no specific
pattern between the groups.

In this section we are going to study the measure of modularity in the case of undirected
graphs and then give a generalization for directed graphs.

First of all we need to introduce an example.

Example 2.1.1 (Molloy-Reed model) TheMolloy-Reedmodel (or configurationmodel or null
model) is a method for generating random networks from a given degree sequence and it is ob-
tained in the following way:

• Calculate the degree ki =
∑

j Aij of each vertex, where Aij is the adjacency matrix of the
network;

15

• Unwire nodes by cutting each edge into two halves, called a stubs. The sum of stubs must
be even in order to be able to construct a graph, so we say that the total number of stubs is
2m =

∑
i ki;

• Choose two stubs uniformly at random and connect them to form an edge. Choose another
pair from the remaining 2m − 2 stubs and connect them. Continue until you run out of
stubs. The result is a network with the pre-defined degree sequence.

Figure 2.1: Degree sequence and different network realizations in the undirected configuration model. Picture taken from
[7].

In the directed case, we unwire nodes by breaking edges but keep stubs and their direction so
that nodes keep their in/out degree and then rewire stubs at random, linking output stubs to input
stubs.

Figure 2.2: Degree sequence in the directed configuration model. Picture taken from [7].

16

Observation 2.1.1 The realization of the network changes with the order in which the stubs are
chosen, they might include cycles or self-loops.

Observation 2.1.2 This model assumes that each node can get attached to any other node of the
network. This becomes almost impossible if the network is very large, in fact in reality, a node’s
connections are typically limited to a small fraction of all the other vertices.

Theorem 2.1.1 The probability of having an edge between node i and node j is given by pij =
kikj
2m , where ki and kj are the respective degrees of nodes i and j.

Proof Let us consider each of the ki stubs of node i and create associated indicator variables
1(i,j)k for them, k = 1, . . . , ki with 1(i,j)k = 1 if the k-th stub happens to connect to one of the
kj stubs of node j in this particular random graph. If it does not, then 1(i,j)k = 0. Since the k-th
stub of node i can connect to any of the 2m − 1 remaining stubs with equal probability, and
since there are kj stubs it can connect to associated with node j, then

P(1(i,j)k = 1) = E
[

1(i,j)k

]
=

kj
2m−1

The total number of full edges Nij between i and j is just Nij =
∑ki

k=1 1(i,j)k , so the expected
value of this quantity is

E
[
Nij
]
= E

[∑ki
k=1 1(i,j)k

]
=
∑ki

k=1 E
[

1(i,j)k

]
=
∑ki

k=1
kj

2m−1 =
kikj

2m−1 .

When m is large, we can drop the subtraction of 1 in the denominator above and simply use the
approximate expression kikj

2m for the expected number of edges between two nodes. Addition-
ally, in a large random network, the number of self-loops and multi-edges is extremely small.
Ignoring self-loops and multi-edges allows one to assume that there is at most one edge between
any two nodes. In that case, Nij becomes a binary indicator variable, so its expected value is also
the probability that it equals 1, which means one can approximate the probability of an edge
existing between nodes i and j as kikj

2m . □

Observation 2.1.3 For directed networks, we can prove in a similar way that the probability of
having an edge between node i and node j is given by pij =

kini koutj
m , where kini and koutj are the

in-degree and out-degree of nodes i and j.
The reason why we have m at the denominator instead of 2m is because each stub of node i can
connect only to the stubs with the opposite direction, so the number of available links is m and not
2m.

17

Definition 2.1.1 Modularity is defined as the number of edges falling within groups minus the
expected number in an equivalent network with edges placed at random, like in Example 2.1.1.
In particular it is defined as:

Q =
1

2m
∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj) (2.1)

Where Aij represents the weight of the edge between i and j, ki =
∑

j Aij is the sum of the weights
of the edges attached to vertex i, ci is the community to which vertex i is assigned, the δ-function is

defined as δ(u, v) =

1 if u = v

0 otherwise
For directed networks we get that the modularity is given

by:

Q =
1
m
∑
i,j

(
Aij −

kini koutj

m

)
δ(ci, cj) (2.2)

Observation 2.1.4 The modularity can be either positive or negative, in particular it’s a scalar
value between−1 and 1.
Positive values indicate the possible presence of community structure, thus one can search for com-
munity structure precisely by looking for the divisions of a network that have positive, and prefer-
ably large, values of the modularity.

Observation 2.1.5 Observation 2.1.2 implies that the expected number of edges between two
groups of nodes decreases if the size of the network increases. So, if a network is large enough, the
expected number of edges between two groups of nodes in modularity’s configuration model may
be smaller than one. What this implies is that modularity grows with the size of the graph and
the number of clusters, so Q is not a good measure to compare graphs very different in size.

Proposition 2.1.1 The modularity Q for undirected networks can also be expressed in matrix
form as:

Q =
1

2m
Tr(CBCT) (2.3)

Where Bij = Aij −
kikj
2m and C is community assignment matrix C ∈ Rn1×n2 , where n1 is the

number of communities and n2 the number of nodes, is defined as

Cir =

1 if node i belongs to community r

0 otherwise

18

While for directed networks it can be expressed as:

Q =
1
m
Tr(CBCT) (2.4)

Where C is the same as in the previous equation and Bij = Aij −
kini koutj
m

Proof The proof is based on the fact that the δ-function can be seen as δ(ci, cj) =
∑

r CirCjr,
allowing us to write Q =

∑
i,j
∑

r

(
Aij −

kikj
2m

)
CirCjr = 1

2mTr(CBC
T).

We can prove the formula for the directed case in a similar way. □

Thanks to the previous Proposition we can introduce a method that allows us to calculate this
measure in just a few steps.

Algorithm 2.1 Computation of the modularity Q for undirected networks
input Adjacency matrix A0 of an undirected network G
Compute the sum of the entries D0 = 1TA01
Compute the normalized adjacency matrix A = A0

D0

Compute the normalized degree vector d = A1
Compute the community assignment matrix C
Compute the modularity as Q = Tr(C(A − ddT)CT)

return Q

Observation 2.1.6 Note that D0 = 2m, so each entry of the normalized adjacency matrix A
corresponds to the term aij

2m , where aij is the entry of the original adjacency matrix A0.
Also each entry of the vector d corresponds to the term ki

2m .

We can compute the modularity measure for directed networks by following a similar pro-
cedure.

19

Algorithm 2.2 Computation of the modularity Q for directed networks
input Adjacency matrix A0 of an directed network G
Compute the sum of the entries D0 = 1TA01
Compute the normalized adjacency matrix A = A0

D0

Compute the normalized in-degree vector din = A1
Compute the normalized out-degree vector dout = AT1
Compute the community assignment matrix C
Compute the modularity as Q = Tr(C(A − dindTout)CT)

return Q

Observation 2.1.7 Similarly we can note that D0 = m, so each entry of the normalized adja-
cency matrix A corresponds to the term aij

m , where aij is the entry of the original adjacency matrix
A0. Also each entry of the vector din corresponds to the term

kini
m and dout to koutj

m .

Another way to see modularity is by using a probabilistic approach.

Proposition 2.1.2 The modularity Q can be calculated as:

Q = Tr(PCC − pcpTc) (2.5)

Where PCC = CACT, where A and C are computed as in Algorithm 2.1 and 2.2. PCC can be
interpreted as a probability matrix linking communities, its entries are the sum of the links of A
from community i to community j

2.2 Louvain’s functioning and pseudo-code

Definition 2.2.1 A greedy optimization algorithm is an algorithm that makes a locally opti-
mal choice at each step with the hope that these local solutions will lead to a global minimum (or
maximize) of themeasure that it’s trying tominimize (ormaximize). At each step, the algorithm
makes the best possible choice based on the current state without considering the overall problem.

One example of a greedy maximization algorithm is Louvain.

20

Algorithm 2.3 Louvain algorithm
input Network G = (V, E), where V = set of n vertices, E = set of edges.
repeat

Assign each node to its own community M = {mi = {vi} | vi ∈ V}
Compute the modularity Qi for each single node community
while some nodes are moved
for i=0 to n - 1

mnew = bestNewModule(M, vN[i]), where N [i] are the neighboring nodes of i
Move vN[i] to mnew module

end for
end while
if ΔQ > 0

Update M
Update Q

else
return M

end if
until

The algorithm is divided in two phases that are repeated iteratively. Assume that we start
with a weighted network of n nodes. First, each node of the networks form its own community,
so in the initial state the number of communities is the same as the number of nodes. Then,
for each node i we consider the neighbours j of i and we evaluate the gain of modularity that
would take place by removing i from its community and by placing it in the community of j.
The node i is then placed in the community for which this gain is maximum, but only if this
gain is positive. If no positive gain is possible, i stays in its original community. This process is
applied repeatedly and sequentially for all nodes until no further improvement can be achieved
and the first phase is then complete.

Observation 2.2.1 A node can be reconsidered multiple times during the local modularity opti-
mization phase. This means after a node is moved to a new community, it may still be evaluated
again in subsequent iterations to see if moving it again would further increase modularity.

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual
move can improve the modularity.

21

Theorem 2.2.1 The gain in modularity ΔQ obtained by moving an isolated node i into a com-
munity C can easily be computed by:

ΔQ =

(∑
in + 2kini

2m
−
(∑

tot + ki
2m

)2
)

−

(∑
in

2m
−
(∑

tot
2m

)2

−
(

ki
2m

)2
)

(2.6)

Where
∑

in is the sum of the weights of the links inside C,
∑

tot is the sum of the weights of the links
incident to nodes in C, ki is the sum of the weights of the links incident to node i, kini is the sum of
the weights of the links from i to nodes in C and m is the sum of the weights of all the links in the
network.

Proof First, we compute the modularity of the isolated cluster of node i, which we will call
ci. Here we are assuming that there are no loops, and so Aμμ = 0 ∀μ

Qprev
i =

1
2m

Ni=1∑
μ=1

Ni=1∑
ν=1

Aμν −

Ni=1∑
μ=1

kμ
2m

2

= −
(

ki
2m

)2

Next, we compute the modularity of the cluster cj before we have added the new node i, which
is

Qprev
j =

1
2m

Nj∑
μ=1

Nj∑
ν=1

Aμν −

 Nj∑
μ=1

kμ
2m

2

Finally, we compute the modularity of the cluster cj after we have added a new node i:

Qprev
j =

1
2m

Nj+1∑
μ=1

Nj+1∑
ν=1

Aμν −

Nj+1∑
μ=1

kμ
2m

2

We can rewrite the first term as follows:

1
2m

Nj+1∑
μ=1

Nj+1∑
ν=1

Aμν =
1

2m

 Nj∑
μ=1

Nj∑
ν=1

Aμν + 2
Nj+1∑
μ=1

Aμ,Nj+1


=

1
2m

 Nj∑
μ=1

Nj∑
ν=1

Aμν + 2kini


22

We can rewrite the second term as:Nj+1∑
μ=1

kμ
2m

2

=

Nj+1∑
μ=1

Nj+1∑
ν=1

kμkν
(2m)2

=

Nj∑
μ=1

Nj∑
ν=1

kμkν
(2m)2 + 2kNj+1

Nj+1∑
μ=1

kμ
(2m)2 +

(kNj+1)
2

(2m)2

=
1

(2m)2

 Nj∑
μ=1

kμ + kNj+1

 Nj∑
ν=1

kν + kNj+1


=

(∑Nj
μ=1 kμ + kNj+1

2m

)2

Putting this together we have

Qupdated
j =

1
2m

 Nj∑
μ=1

Nj∑
ν=1

Aμν + 2kini

 −

(∑Nj
μ=1 kμ + kNj+1

2m

)2

Putting together the equations for Qprev
i , Qprev

j and Qupdated
j , we can compute the change in

modularity ΔQ for adding an isolated node i to the cluster cj. This is sometimes referred to as
the gain:

ΔQ = Qupdated
j − Qprev

j − Qprev
i

=
1

2m

 Nj∑
μ=1

Nj∑
ν=1

Aμν + 2kini

 −

(∑Nj
μ=1 kμ + kNj+1

2m

)2

−

 1
2m

Nj+1∑
μ=1

Nj+1∑
ν=1

Aμν −

Nj+1∑
μ=1

kμ
2m

2

−
(

ki
2m

)2


We know that Nj + 1 = i and if we define
∑Nj

μ=1 kμ =
∑

tot and
∑Nj

ν=1 Aμν =
∑

in we get
Equation 2.6. □

A similar expression is used in order to evaluate the change of modularity when i is removed
from its community. In practice, one therefore evaluates the change of modularity by removing

23

i from its community and then by moving it into a neighbouring community.
The second phase of the algorithm consists in building a new network whose nodes are now

the communities found during the first phase. To do so, the weights of the links between the
new nodes are given by the sum of the weight of the links between nodes in the corresponding
two communities. Links between nodes of the same community lead to self-loops for this
community in the new network. Once this second phase is completed, it is then possible to
reapply the first phase of the algorithm to the resulting weighted network and to iterate. Let
us denote by “pass” a combination of these two phases. By construction, the number of meta-
communities decreases at each pass, and as a consequence most of the computing time is used
in the first pass. The passes are iterated until there are no more changes and a maximum of
modularity is attained.

Figure 2.3: Visualization of the steps of our algorithm. Each pass is made of two phases: one where modularity is opti‐
mized by allowing only local changes of communities; one where the found communities are aggregated in order to build a
new network of communities. The passes are repeated iteratively until no increase of modularity is possible. Picture taken
from [9].

2.2.1 Louvain’s complexity and limitations

Observation 2.2.2 Note that the matrix C in Equation 2.3 and 2.4 is a binary matrix, hence
Louvain produces only non-overlapping communities, which means that each node can belong to
at most one community.

24

Observation 2.2.3 Note that the order of nodes is selected at random, hence different order of
nodes might yield different results.

One way to mitigate this problem is by using consensus clustering.

Algorithm 2.4 Consensus clustering for Louvain
input Network G = (V, E), where V = set of n vertices, E = set of edges. Threshold value ε
repeat
for i=0 to P− 1

Apply Algorithm 2.3 to the network G
end for
Compute the consensus matrix D, whereDij is the fraction of partitions in which vertices
i and j are assigned to the same cluster in CP

for i, j = 1, . . . , n
if Dij < ε

Set Dij = 0
end if

end for
if Dij = 1 ∀i, j ∈ {1, . . . , n}
return M

else
Update G by creating a new network, where its adjacency matrix is given by D

end if
until

We apply the Louvain algorithm P times to a network and we get different partitions, but
we expect that these are somehow related.

Observation 2.2.4 The condition Dij = 1 ∀i, j ∈ {1, . . . , n} is equivalent to saying that all
the P partitions obtained by applying Louvain P times are the same.

Theorem 2.2.2 (Scalability of Louvain) Louvain is a scalable algorithm as it has complexity
O(nlog(n)), where n is the number of nodes in the network.

25

Proof For each node, the algorithm tries to move the node to a neighboring community if
the move results in an increase in modularity. This process is repeated iteratively for all nodes
until no further improvement can be made. The time complexity for each move is O(1) since
it involves checking a constant number of communities. Each node is considered once per
iteration. In the worst case, each node might be considered for moving O(n) times.

Once the modularity optimization step stabilizes, the algorithm creates a new network where
communities from the previous step are treated as single nodes. This reduces the number of
nodes in the network. The new network is then subjected to the same process of modularity
optimization. If we assume the number of nodes is halved in each phase, the number of phases
would be O(log(n)). □

Definition 2.2.2 The resolution of a community detection algorithm refers to the level of detail
or granularity with which the algorithm identifies communities within a network.

Remark 2.2.1 (Resolution of Louvain) Another implication of Observation 2.1.2, is that if a
network is large enough, the expected number of edges between two groups of nodes in the config-
uration model may be smaller than one. If this happens, a single edge between the two clusters
would be interpreted by modularity as a sign of a strong correlation between the two clusters, and
optimizing modularity would lead to the merging of the two clusters, independently of the clus-
ters’ features. For this reason, optimizing modularity in large networks would fail to detect small
communities, even when they are well defined.

Definition 2.2.3 The resolution limit can be mitigated by controlling the strength of the null
model and we do that by introducing a parameter γ, so now instead of minimizing Equation 2.5
we minimize:

Q = Tr(PCC − γpcpTc)

Observation 2.2.5 γ > 1 increases the number of communities, while γ < 1 decreases it.

26

2.3 Application to four different types of networks

In this section we are going to see different applications of the Louvain algorithm on different
types of graphs, more specifically, we are going to apply the algorithm to each type of network
described in Section 1.1: unweighted undirected, weighted undirected, unweighted directed
and weighted directed. The four networks are the Jazz musicians graph, the Windsurfers graph,
the Macaque rhesus brain graph and the US Congress Twitter graph.

2.3.1 Unweighted undirected network

As a unweighted undirected graph we selected the Jazz musicians graph. This graph represents
a collaboration network between Jazz musicians: each node is a Jazz musician and an edge de-
notes that two musicians have played together in a band. The network is composed by 198
vertexes and 2742 edges. The data was collected from [15].

The algorithm detected 4 communities, where the first one is made by 67 noes, the second
one by 66, the third by 62 and the last by 3.

Figure 2.4: Graphical representation of the modules detected by the Louvain algorithm on the Jazz musicians network.

This partition yields a modularity of 0.43890781537538287.

27

2.3.2 Weighted undirected network

As a weighted undirected graph we selected the Windsurfers network. This graph represents
the interpersonal contacts between windsurfers in southern California during the fall of 1986.
A node represents a windsurfer and an edge between two windsurfers shows that there was a
interpersonal contact and the edge weights indicate the perception of social affiliations majored
by the tasks in which each individual was asked to sort cards with other surfer’s name in the
order of closeness. The network is composed by 43 vertexes and 336 edges. The data was
collected from [16].

The algorithm detected 2 communities, where the first one has 22 noes and the second one
21.

Figure 2.5: Graphical representation of the modules detected by the Louvain algorithm on the Windsurfers network.

This partition yields a modularity of 0.37121605900844046.

2.3.3 Unweighted directed network

As unweighted directed graph we used the Macaque rhesus brain graph, which represents the
brain network of the rhesus macaque. Each node in the graph corresponds to different anatomi-
cal regions of the macaque brain. Each node is a specific area that has been anatomically defined
and is part of the brain’s network. The edges represent the presence of anatomical connections
(white matter tracts) between these brain regions. The network is composed by 242 vertexes
and 4090 edges. The data was collected from [17].

28

The algorithm detected 4 communities, where the first one is contains 88 nodes, the second
one 76, the third 54 and the last 24.

Figure 2.6: Graphical representation of the modules detected by the Louvain algorithm on the Macaque rhesus brain
graph.

This partition yields a modularity of 0.3295535655573555.

2.3.4 Weighted directed network

As weighted directed graph the US Congress Twitter graph was selected: the network repre-
sents the Twitter interaction network for the 117th United States Congress, both House of
Representatives and Senate. The base data was collected via the Twitter’s API, then the empir-
ical transmission probabilities were quantified according to the fraction of times one member
retweeted, quote tweeted, replied to, or mentioned another member’s tweet. These transmis-
sion probabilities represent the weights’ edges. The network is composed by 475 vertexes and
4090 edges. The data was collected from [18].

The algorithm detected 4 communities, where the first one is made by 201 noes, the second
one by 163, the third by 84 and the last by 27.

29

Figure 2.7: Graphical representation of the modules detected by the Louvain algorithm on the US Congress Twitter net‐
work.

This partition yields a modularity of 0.4399847144924596.

30

3
Infomap Algorithm

Infomap is a community detection algorithm and its aim is to mainimize the map equation,
which leans on information theory to give a quality measure of a network’s partition. The
material is taken from [20], [21], [22], [23], [24], [25], [26], [27] and [28].

3.1 Huffman coding procedure

Definition 3.1.1 Aflow-based algorithm for community detection is an algorithmwhich aim is
to model the flow of information, influence, or entities within a network to identify communities
of nodes that have strong connections internally but weaker connections with nodes outside the
community.

One example of such algorithm is Infomap. The main idea behind the Infomap algorithm is
a community detection algorithm that uses community partitions of the graph as a Huffman
code that compresses the information about a random walker exploring the graph.
The first thing we need to do is introduce the Huffman coding procedure.

The central object of this procedure is a random walker exploring the network: just like it
is possible to do a random walk on Z or on a subset, as we’ve seen in Example 1.2.1, it is also
possible to do the same thing on a graph.

Definition 3.1.2 A random walk on G = (V, E) is the following sequence of moves of the
process that starts in some initial node v0 and then a neighbor v1 of v0, is chosen, randomly and

31

independently and then the process moves from v0 to v1. We repeat this process until for some
reasons, the process ends, if that doesn’t happen, the random walk can go on forever.

Observation 3.1.1 If the graph is unweighted, at each step, all the neighboring nodes all have
the same probability of being chosen. For weighted graphs, the probability depends on the values
of the assigned weights.

In any case, the transition matrix for a random walk through a graph is computed in the
following way:

Algorithm 3.1 Computation of the transition matrix P for a random walk through a graph
Adjacency matrix A
d = AT1
P = Adiag−1(d)

If A is a n× n matrix, then 1 is the vector (1, . . . , 1)T, where all the n entries are equal to 1,

while diag−1(d) =


1
d1

0 . . . 0
0 1

d2
. . . 0

...
0 . . . 0 1

dn

, where di is the i-th entry of the vector d.

The probability that the walker transitions between two nodes given by the Markov transition
matrix P.

In most real-world networks, there are regions of the network such that once the random
walker enters a region, it tends to stay there for a long time, and movements between the regions
are relatively rare. This allows us to combinatorially combine codewords into Huffman codes:
we can use a prefix code for each region, and then use a unique codeword for each node within
a community.

Definition 3.1.3 A codeword is a label representing a nodes or a community of the network,
common choices of codewords are sequences of 0 or 1 bits.

Observation 3.1.2 It is possible to reuse node level codewords for each community, this means
that two nodes can have the same codeword, as long as they belong to two different communities.

Definition 3.1.4 The set of the region prefixes form the master codebook.
The set of node codewords form the module codebook.

32

Remark 3.1.1 A straightforward method of assigning codewords to nodes is using short code-
words to common events or objects, and long codewords to rare ones. In the case of a random walk,
we assign shorter codewords to nodes that are visited a lot of times and longer to nodes that are
never or rarely visited.

Let’s look at some examples.

Figure 3.1: The orange line in the first picture shows one sample trajectory. In this example the network is represented
as one big community, which means that the node codewords can’t be repeated and as we can see, each node in the
network is given a unique name. The bits shown under the network in the second picture describe the sample trajectory,
starting with 1111100 for the first node on the walk in the upper left corner, 1100 for the second node, etc., and ending
with 00011 for the last node on the walk in the lower right corner. In this case we are able to represent a 71‐step random
walk in 314 bits. Picture taken from [21].

Let’s now look at a second partition of the same network.

33

Figure 3.2: In this second partition of the same network, we can observe two‐level description of the random walk, in
which major clusters receive unique names, but the names of nodes within clusters are reused, this technique gives us on
average a much shorter description for this network, in fact we can describe the walk by the 243 bits shown under the
network, versus the 314 in the previous example. The codes naming the modules and the codes used to indicate an exit
from each module are shown to the left and the right of the arrows under the network, respectively. The first three bits
111 represent the region prefix and they indicate that the walk begins in the red community, the code 0000 specifies the
first node on the walk, etc. In the second picture we can see reported only the module names, and not the locations within
the modules. Picture taken from [21].

These two examples show how the clustering of the network influence the number of bits
needed to describe a random walk.

Definition 3.1.5 The average number of bits used to describe each step of the random walk is
called known as the average length encoding and it’s denoted as LH(M(m)), whereM is a specific
network partition and m the number of communities of such partition.

Figure 3.3: Average length encoding for the partition of the network in Figure 3.1. Picture taken from [22].

34

Figure 3.4: Average length encoding for the partition of the network in Figure 3.2. Picture taken from [22].

Observation 3.1.3 We can clearly see that, out of the two partitions of the network, the second
one is the optimal one: the four module codebooks are associated with smaller sets of nodes and
shorter codewords, but still with long persistence time and few between-module movements. This
compensates for the extra cost of switching modules and accessing the index codebook.

When we use too few modules, we are effectively still back at the level of using an individual
codeword for every node. On the other hand, when we use too many communities, the number
of prefix codes becomes too large. So we need to find an optimal partition that assigns nodes to
modules such that the information needed to compress the movement of our random walkers
is minimized.

A very important result when it comes the representation of random walks is the Shannon’s
source coding theorem.

Theorem 3.1.1 (Shannon’s source coding theorem) Givenn independent identically distributed
random variables each with entropyH(X) can be compressed intomore than nH(X) bits with neg-
ligible risk of information loss, as n −→ +∞, but if they are compressed into fewer than nH(X)
bits it is very likely that information will be lost, this means that the probability that the original
bits won’t be recoverable from the binary bits is close to 1.

Corollary 3.1.1 This theorem states is that if we use n codewords to describe the n states of a
random variable X that occur with frequencies pi, the average length of a codeword can be no less
than the entropy of the random variable X itself: H(X) = −

∑
pilog(pi) and that the average

number of bits needed to describe a single step in the randomwalk is bounded below by the entropy
H(P), where P is the distribution of visit frequencies to the nodes on the network.

35

Our goal is to find an optimal partition that assigns nodes to communities such that the
information needed to compress the movement of our random walkers is minimized, in par-
ticular what we need to minimize the map equation, which is, as we are going to see in the
next section, a concept that is strictly related to the average length encoding. This is when the
minimzation algorithm comes into place.

3.2 The map equation as quality measure of a network’s
partition

The map equation takes advantage of the duality between finding community structure in net-
works and minimizing the description length of a random walker’s movements on a network,
which is why it’s a good measure of how well a given network partition captures community
structures within the network.

The goal of the Infomap algorithm is going to be minimizing the map equation over all
possible partitions of the network.

Remark 3.2.1 The random walk over a graph is a good approximation of the actual flow of
information through the network, which is why themap equationmeasures the per-step theoretical
lower limit of a modular description of a random walker on a network.

Instead of measuring the average length encoding of a long walk and dividing by the number
of steps, it is more efficient to derive the codelength from the stationary distribution of the
random walker on the nodes and links.

From now on we are going to assume graph to be finite, now thanks to Proposition 1.2.1,
the stationary distribution exists and it’s given by the following Theorem.

Theorem 3.2.1 The stationary distribution of a random walk over a graph G is given by:

pi =
∑
k

pkpik (3.1)

Where the transition probabilities pij are computed in Algorithm 3.1

However, the solution given by the system in Equation 3.1 is not necessarily unique, to en-
sure a unique solution independent of where the random walker starts we need to introduce
the concept of random walks with teleportation.

36

Definition 3.2.1 A random walk through a graph is a Markov chain that works in the same
way as in Definition 3.1.2, with the exception that with probability τ the random walker instead
of moving to a neighboring node, it teleports to a random node.

The transition matrix P is now given by:

Algorithm 3.2 Computation of the transition matrix P’ for a random walk through a graph
with teleportation

Adjacency matrix A
d = AT1
P = Adiag−1(d)
P′ = (1 − τ)M + τq1T

Where each entry qi represents the probability that the random walker teleports to the node
i
By introducing the teleportation parameter τwe add a small probability for the random walker
to jump to any node in the network, regardless of the connectivity, this implies that now there
is a path between every pair of nodes, making the transition matrix irreducible.

Now if we recall Proposition 1.2.2, we get that the stationary distribution not only exists,
but it’s also unique, so independent of the initial state.

Remark 3.2.2 A typical value of the teleportation rate is τ = 0.15, but in practice the clustering
results show only small changes for teleportation rates in the range τ ∈ (0.05, 0.95).

Observation 3.2.1 In undirected networks the results are completely independent of the telepor-
tation rate and identical to results given by Equation 3.1. For directed networks, a teleportation
rate too close to 0 gives results that depend on how the randomwalker was initiated and should be
avoided, but a teleportation value equal to 1 corresponds to using the link weights as the stationary
distribution.

For more robust results that depend less on the teleportation parameter τ, we most often use
teleportation to a node proportional to the total weights of the links to the node.

Theorem 3.2.2 The stationary distribution for a random walk through a graph with teleporta-
tion is given by

pi =
∑
j

pjp′ij = (1 − τ)
∑
j

pjpji + τ
∑

j aji∑
k,j ajk

(3.2)

37

Where p′ij are computed in Algorithm 3.2 and aij are the entries of the original adjacency matrix
A.

To make the results even more robust and independent from the teleportation parameter τ we
a new kind of teleportation.

Definition 3.2.2 Unrecorded teleportation is a type of teleportation scheme in which we do not
explicitly track or record the specific nodes visited during teleportation events. Instead, only the
fact that teleportation occurred is noted, but the individual steps taken during teleportation are
not recorded and that the transitions between nodes only occurs when the walkermoves along edges.

Figure 3.5: Example of recorded and unrecorded teleportation. Picture taken from [23].

Observation 3.2.2 By only keeping tack on the movements along the edges, unrecorded telepor-
tation reduces the noise and focuses more on the network structure.

We capture these dynamics with an extra step without teleportation on a stationary solution
similar to Equation 3.2, but with teleportation to a node proportional to the total weights of
the links from the node, rather than being proportional to the total weights of the links into
the node, like in Equation 3.2.

Theorem 3.2.3 The stationarydistribution for a randomwalk througha graphwithunrecorded
teleportation is given by:

p∗i = (1 − τ)
∑
j

p∗j pji + τ
∑

j aij∑
k,j ajk

Where pij are computed in Algorithm 3.1 and aij are the entries of the original adjacency matrix
A.

38

Definition 3.2.3 The unrecorded visit rates on links qji and nodes pi are defined as:

qji = p∗j pji and pi =
∑

j qji

In the previous section we have seen the Huffman codes, which are optimal in the sense that
there are no other binary codes as close to the theoretical limit given by the Theorem 3.1.1.
However, for identifying the optimal partition of the network, we are only interested in the
compression rate and not the actual codewords, which is why the Infomap algorithm only mea-
sures the theoretical limit given by the map equation.

Observation 3.2.3 To take advantage of the modular structure of the network, the map equa-
tion uses the extra constraint that the only available information from one step to the next is the
currently visitedmodule, or that the randomwalk switches betweenmodules, forcing independent
and identically distributed events within and between modules.

The map equation can be expressed in closed form by invoking Theorem 3.1.1 in for each of
multiple codebooks, and by weighting them by their rate of use.

We can now define the module-transition rates at which the random walker enters and exits
each module.

Definition 3.2.4 • Theprobability of enteringamodule α is givenbyqα↶ =
∑

i∈β ̸=α, j∈α qij

• The probability of exiting a module α is given by qα↷ =
∑

i∈α,j∈β ̸=α qij
Where qij are the unrecorded visit rates given in Definition 3.2.3.

We know have all the objects necessary to define the map equation.

Definition 3.2.5 The map equation is given by:

L(M) = q↶H(Q) +
m∑
α=1

pα⟳H(Pα) (3.3)

Let’s explain each element in the equation:

• L(M) is the per-step description length for module partitionM. That is, for module parti-
tionM of n nodes intommodules, the lower bound of the average length of the code describ-
ing a step of the random walker.

39

• q↶ =
∑m

α=1 qα↶ is the rate at which the index codebook is used. The per-step use rate of
the index codebook is given by the total probability that the random walker enters any of
the m communities.

• H(Q) =
∑m

α=1
qα↶
q↶ log(qα↶q↶) is the frequency-weighted average length of codewords in the

index codebook. The entropy of the relative rates to use the module codebooks measures the
smallest average codeword length that is theoretically possible.

• pα⟳ =
∑

i∈α pi + qα↷ is the rate at which the module codebook α is used, which is given
by the total probability that any node in the module is visited, plus the probability that the
random walker exits the module and the exit codeword is used.

• H(Pα) = − qα↷
pα⟳ log(

qα↷
pα⟳) −

∑
i∈α

pi
pα⟳ log(

pi
pα⟳) is the frequency-weighted average length

of codewords in module codebook α. The entropy of the relative rates at which the random
walker exits module α and visits each node inmodule αmeasures the smallest average code-
word length that is theoretically possible.

Observation 3.2.4 As we can see, unlike in Theorem 3.1.1, we are now able to describe the per-
step description length of a random walk through a graph by taking advantage of the community
structure of the network.

3.3 Infomap’s functioning and pseudo-code

3.3.1 Two-level algorithm

The goal of the Infomap algorithm is to optimize the partition of the graph in a way that would
generally favor shorter random walk descriptions. The algorithm doesn’t target a specific ran-
dom walk, but the resulting community structure should make it more likely that a random
walk description through the graph would be shorter on average.

Infomap works very similarly to the Louvain method: neighboring nodes are joined into
modules, which subsequently are joined into supermodules and so on. A supermodule is a col-
lection of communities that are strongly interconnected or have significant flow of information
between them.

40

Algorithm 3.3 Infomap algorithm
input Network G = (V, E), where V = set of n vertices, E = set of edges. Minimum quality
improvement threshold ε
Calculate the node visit rate for each node v ∈ V
M = {mi = {vi} | vi ∈ V}
Compute L = L(M) in Equation 3.3
repeat

Lprev = L
R = random sequence of integers 1 to n
for i=0 to n - 1

mnew = bestNewModule(M, vR[i])
Move vR[i] to mnew module
Update M
Update L

end for
until Lprev − L < ε
return M

First, each node is assigned to its own community. Then, in random sequential order, each
node is moved to the neighboring module that results in the largest decrease of the map equa-
tion. If no move results in a decrease of the map equation, the node stays in its original module.
This procedure is repeated, each time in a new random sequential order, until no move gener-
ates a decrease of the map equation. Then the network is rebuilt by creating a new network
where the detected communities become the new nodes, once the network is rebuilt with com-
munities as nodes, the algorithm repeats the process of identifying communities or modules.
This process continues iteratively, with each iteration producing a new level of the hierarchical
structure. At each level, the communities detected in the previous level become the nodes for
the next level, and the process of identifying communities within these nodes is repeated.

With this algorithm, a fairly good clustering of the network can be found in very few iter-
ations. It is also possible to improve the algorithm by making sure that the nodes assigned to
the same module are forced to move jointly when the network is rebuilt. As a result, what was
an optimal move early in the algorithm might have the opposite effect later in the algorithm.
Two or more modules that merge together and form one single module when the network is
rebuilt can never be separated again in this algorithm. Therefore, the accuracy can be improved

41

by breaking the modules of the final state of the core algorithm in either of the two following
ways:

• Submodule movements: first, each cluster is treated as a network on its own and the
main algorithm is applied to this network. This procedure generates one or more sub-
modules for each module. Then all submodules are moved back to their respective mod-
ules of the previous step. At this stage, with the same partition as in the previous step but
with each submodule being freely movable between the modules, the main algorithm is
reapplied.

• Single-node movements: first, each node is re-assigned to be the sole member of its own
module, in order to allow for single- node movements. Then all nodes are moved back to
their respective modules of the previous step. At this stage, with the same partition as in
the previous step but with each single node being freely movable between the modules,
the main algorithm is reapplied.

In practice, we repeat the two extensions to the core algorithm in sequence and as long as
the clustering is improved. Moreover, we apply the submodule movements recursively. That
is, to find the submodules to be moved, the algorithm first splits the submodules into subsub-
modules and so on until no further splits are possible. Since the algorithm is stochastic, we can
restart the algorithm from scratch every time the clustering cannot be improved further and
the algorithm stops. By repeating the search more than once the final partition is less likely
to correspond to a local minimum. For each iteration, we keep track of the clustering if the
description length is shorter than the shortest description length recorded before.

3.3.2 Multilevel algorithm

In the two-level algorithm the network is partitioned into only two levels of organization: com-
munities and nodes. It is possible to generalize our search algorithm for the two-level map
equation to recursively search for multilevel solutions. The recursive search operates on a mod-
ule at any level; this can be all the nodes in the entire network, or a few nodes at the finest level.
For a given module, the algorithm first generates submodules if this gives a shorter description
length. If not, the recursive search does not go further down this branch. But if adding sub-
modules gives a shorter description length, the algorithm tests if movements within the module
can be further compressed by additional index codebooks. To test for all combinations, the al-

42

gorithm calls itself recursively, both operating on the network formed by the submodules and
on the networks formed by the nodes within every submodule.

In this way, the algorithm successively increases and decreases the depth of different branches
of the multilevel code structure in its search for the optimal hierarchical partitioning. For every
split of a module into submodules, we use the two-level search algorithm described above.

3.3.3 Infomap’s complexity and limitations

Infomap handles both unweighted and weighted, undirected and directed links, it also can iden-
tify overlapping communities, which means that one particular node can belong to multiple
modules.

Remark 3.3.1 (Scalability of Infomap) Infomap is a scalable algorithm for the following rea-
sons:

• This hierarchical approach of clustering used by the algorithm allows Infomap to handle
large networks because it can reduce the size of the problem by aggregating nodes into mod-
ules

• Since the goal of the algorithm is to represent the network in the most compact way, it is
able to store information about the network structure without requiring excessive memory
resources.

• Infomap can be parallelized, which makes sure that the algorithm is able to process large-
scale networks more efficiently.

Remark 3.3.2 Infomap is able to recognize the random networks described in Example 1.1.1.
This means that the algorithm is capable of distinguishing between networks that have clear com-
munity structures andnetworks that exhibit a random structure, hence lacking a clear community
organization, just like we stated in Proposition 1.1.2.

Remark 3.3.3 (Resolution of Infomap) Infomap is that suffers froma sort of resolution limit,
this means that when a network exhibits strong community structure at a small scale, some algo-
rithms may fail to detect these smaller communities accurately, insteadmerging them into larger
communities.

43

For Infomap, this resolution limit happens because the algorithm’s optimization process is
primarily focused on optimizing the description length of the overall network structure. As a
result, in networks with where there are many strongly connected communities, Infomap may
tend to merge smaller communities into larger ones in order to achieve better overall compres-
sion of information flow.

This can be problematic if the goal is to accurately identify and characterize communities at
all scales within the network. In such cases, the resolution limit of Infomap means that it may
not be able to capture the full extent of the community structure, particularly at finer scales.

3.4 Application to four different types of networks

In this section we are going to see different applications of the Infomap algorithm on different
types of graphs, more specifically, we are going to apply it to the same networks introduced in
Section 2.3 in order to compare the results.

3.4.1 Unweighted undirected network

For the Jazz musicians network, 5 communities were detected by Infomap, where the first one
is made by 135 nodes, the second one by 55, the third by 2, the fourth by 4 and the last by 2.

Figure 3.6: Graphical representation of the modules detected by the Infomap algorithm on the Jazz musicians network.

44

We are now going to compare the results obtained with the Infomap algorithm to the ones
obtained with Louvain.

Algorithm Number of modules Modularity Map equation
Louvain 4 0.43890781537538287 11.761273616050756
Infomap 5 0.038870920032069954 6.910117006606936

Table 3.1: Results of the Infomap and Louvain algorithms on the Jazz musicians network.

We can observe that for the number of clusters detected is stable for both algorithms and as
expected, Louvain yields the highest modularity value, while Infomap yields the lowest value
for the map equation.

3.4.2 Weighted undirected network

For the Windsurfers network, 3 communities were detected by Infomap, where the first one
has 22 nodes, the second one 19 and the third one 2.

Figure 3.7: Graphical representation of the modules detected by the Infomap algorithm on the Windsurfers network.

We are now going to compare the results obtained with the Infomap algorithm to the ones
obtained with Louvain.

45

Algorithm Number of modules Modularity Map equation
Louvain 2 0.37121605900844046 5.535010448869063
Infomap 3 0.20192741378788756 4.5052902422623315

Table 3.2: Results of the Infomap and Louvain algorithms on the Windsurfers network.

We can observe that for the number of communities detected by the algorithms is similar and
once again, from Louvain to Infomap we can observe a decrease for both the and the modularity
value and the map equation.

3.4.3 Unweighted directed network

For the Macaque rhesus brain graph, Infomap detected 6 clusters made by 94, 25, 33, 40, 46
and 4 vertices each.

Figure 3.8: Graphical representation of the modules detected by the Infomap algorithm on the Macaque rhesus brain
graph.

We are now going to compare the results obtained with the Infomap algorithm to the ones
obtained with Louvain.

46

Algorithm Number of modules Modularity Map equation
Louvain 4 0.3295535655573555 11.610916375907639
Infomap 6 0.30617633953173806 6.999063756957538

Table 3.3: Results of the Infomap and Louvain algorithms on the Macaque rhesus brain graph.

Again, the numbers of communities are close and, from Louvain to Infomap, we can observe
a decrease for both the and the modularity value and the map equation, although the decrease
in map equation is not as large as in the other networks.

3.4.4 Weighted directed network

For the US Congress Twitter network, Infomap detected 15 clusters with the following sizes.

Cluster Number of nodes
1 165
2 200
3 48
4 11
5 16
6 10
7 4
8 4
9 5
10 4
11 3
12 2
13 1
14 1
15 1

47

Figure 3.9: Graphical representation of the modules detected by the Infomap algorithm on the US Congress Twitter net‐
work.

We are now going to compare the results obtained with the Infomap algorithm to the ones
obtained with Louvain.

Algorithm Number of modules Modularity Map equation
Louvain 4 0.4399847144924596 11.614856746923584
Infomap 15 0.007693580298894281 7.6239123302314455

Table 3.4: Results of the Infomap and Louvain algorithms on the US Congress Twitter network.

In this case the difference between the number of modules detected by the two algorithms is
very large, also the decrease in modularity from Louvain to Infomap is considerably larger than
with the previous networks, while the values for the map equation are in line with the results
obtained in the other networks.

48

4
Girvan–Newman algorithm

The Girvan-Newman algorithm is a hierarchical method used to detect communities in net-
works. The material was taken from [31], [32], [33], [34], [35], [35], [36] and [37].

4.1 Hierarchical community detection methods

Definition 4.1.1 A hierarchical community detection algorithm (or hierarchical clustering) is
a method used to detect communities in a network by building a hierarchy (or tree structure) of
communities, either by iteratively merging smaller communities into larger ones (agglomerative
approach) or by recursively splitting larger communities into smaller ones (divisive approach).

The first thing we need to do in these type of methods is calculating a weight Wij for every
pair i, j of vertices in the network, which represents how closely connected the vertices are.

Observation 4.1.1 Note that the weight between two vertices i, j is not necessarily the weight of
the adjacency matrix.

Then we take the n vertices in the network, with no edges between them, and add edges
between pairs one by one in order of their weights, starting with the pair with the strongest
weight and progressing to the weakest.

As edges are added, the resulting graph shows a nested set of increasingly large components,
which are represent the communities. The communities can be represented by using a tree in

49

which the lowest level at which two vertices are connected represents the strength of the edge
that resulted in their first becoming members of the same community. A “slice” through this
tree at any level gives the communities that existed just before an edge of the corresponding
weight was added, this type of trees are called dendrograms.

Definition 4.1.2 A dendrogram is a diagram representing a tree. In hierarchical clustering, it
illustrates the arrangement of the clusters produced by the corresponding analyses.

Figure 4.1: Example of a hierarchical clustering tree (or dendrogram). The numbers at the bottom represent the vertices
in the network, and the tree shows the order in which they join together to form communities for a given definition of
the weightWij of connections between vertex pairs. In this example the communities identified in the last “slice” are
{2, 10}, {5, 8}, {9, 1}, {4}, {3}, {6, 7}. Picture taken from [30].

Algorithm 4.1 Hierarchical clustering
input Network G = (V, E), where V = set of n vertices, E = set of edges.
for i, j = 0 to n - 1

Calculate a weight Wij for every pair of vertices
end for
Create an empty graph G’ with the same set of vertices as G and no edges
Sort all pairs (i, j) of vertices by their weights Wij in descending order
for i, j = 0 to n - 1

Add edge (i, j) to the graph G’
end for
return Network G’ = (V, E’)

One possible definition of the weight is the number of node-independent paths between
vertices.

50

Definition 4.1.3 Twopaths that connect the same pair of vertices are said to be node-independent
if they share none of the same vertices other than their initial and final vertices. One can similarly
also count edge-independent paths.

Observation 4.1.2 The number of node-independent (edge-independent) paths between two ver-
tices i and j in a graph is equal to theminimumnumber of vertices (or edges) thatmust be removed
from the graph to disconnect i and j from one another. Thus these numbers are in a sense ameasure
of the robustness of the network to deletion of nodes (or edges).

Another possible way to define weights between vertices is to count the total number of
paths that run between them. However, because the number of paths between any two vertices
is infinite (unless it is zero), one typically weights paths of length l by a factor αl, with α small,
so that the weighted count of the number of paths converges. Thus long paths contribute
exponentially less weight than those that are short.

Definition 4.1.4 This definition of weight is given by:

W =
∞∑
l=0

(αA)l = (I − αA)−1

Proposition 4.1.1 For the sum to converge, we must choose α smaller than the reciprocal of the
largest eigenvalue of A.

Proof For the series to converge, the spectral radius ρ(αA) must be less than 1. This means
maxi |αλi|, therefore |α| < 1

|maxiλi| .
The largest eigenvalue in absolute value of A is λmax = maxi |λi| Thus, we must have
|α| < 1

λmax
. □

Remark 4.1.1 Both definitions of weight have a tendency to separate single peripheral vertices
from the communities to which they should rightly belong. This means that if a vertex is, for
example, connected to the rest of a network by only a single edge then, to the extent that it belongs
to any community, it should clearly be considered to belong to the community at the other end of
that edge. Both the numbers of independent paths and the weighted path counts for such vertices
are small and hence single nodes often remain isolated from the network when the communities
are constructed.

51

4.2 Edge and vertex betweenness centrality measures

One way to solve this problem is by introducing a new centrality measure called betweenness
centrality. Before doing that we need to introduce the concept of shortest path in a graph.

Definition 4.2.1 A path in a graph is a finite or infinite sequence of edges which joins a sequence
of vertices which are all distinct.

Observation 4.2.1 A path in an graph is a sequence of vertices P = (v1, v2, . . . , vn) such that
vi is adjacent to vi+1 (or there is a directed edge from vi to vi+1 if we are dealing with a directed
graph) for 1 ≤ i ≤ n. Such a path P is called a path of length n 1 from v1 to vn.
Let E = {eij}where eij is the edge incident to both vi and vj. Given a real-valued weight function
f : E −→ R, and a graph G, the shortest path from v to v’ is the path P that over all possible n
minimizes the sum

∑n−1
i=1 f(ei,i+1). When each edge in the graph has unit weight or

f : E −→ {1}, this is equivalent to finding the path with fewest edges.

Observation 4.2.2 A path can be either undirected or directed, in the latter case we also call it
a dipath.

Definition 4.2.2 The shortest path between two nodes is a path such that the sum of the weights
of its constituent edges is minimized.

Definition 4.2.3 Betweenness centrality is a measure of centrality in a graph based on shortest
paths. For every pair of vertices in a connected graph, there exists at least one shortest path be-
tween the vertices such that either the number of edges that the path passes through (for unweighted
graphs) or the sum of the weights of the edges (for weighted graphs) is minimized. The betweenness
centrality for each vertex is the number of these shortest paths that pass through the vertex.
The betweenness centrality of a node v in an unweighted graph is given by the expression:

g(v) =
∑
s ̸=v ̸=t

σst(v)
σst

Where σst(v) is the total number of shortest paths from node s to node t and σst is the number of
those paths that pass through v (not where v is an end point).

Observation 4.2.3 Note that the betweenness centrality of a node scales with the number of pairs
of nodes as suggested by the summation indices. Therefore, the calculation may be rescaled by

52

dividing through by the number of pairs of nodes not including v, so that g ∈ [0, 1].
The division is done by the total number of shortest paths between all pairs of nodes, so
(n − 1)(n − 2) for directed graphs and (n - 1)(n - 2)

2 for undirected graphs, where n is the number of
nodes in the network. Note that this scales for the highest possible value, where one node is crossed by
every single shortest path. This is oftennot the case, andanormalization can be performedwithout
a loss of precision: gnormalized(v) =

g(v) - min(g)
max(g) - min(g) . Which results in max(gnormalized(v)) = 1 and

min(gnormalized(v)) = 0. Note that this will always be a scaling from a smaller range into a
larger range, so no precision is lost.

Figure 4.2: Calculation of betweenness centrality of node A. In the first phase we use breadth‐first search to find all the
shortest paths between A and all other nodes. Picture taken from [33].

Figure 4.3: Calculation of betweenness centrality of node A. For each node s we calculate the number of shortest paths
between s and A σ(s, A). Then calculate δ(s |A), the dependency of s on A, we then repeat all the steps for each node.
Picture taken from [33].

53

Algorithm 4.2 Brandes’ algorithm for the computation of the vertex betweenness centrality
in an unweighted network
input Unweighted network G = (V, E), where V = set of n vertices, E = set of edges
Betweenness centrality CB(v) = 0, v ∈ V
Inizialize S as an empty stack and Q as an empty queue
for s ∈ V

Initialize the list of predecessors of shortests paths from s: P(w) is an empty list for all
w ∈ V
Initialize the list of shortest paths from s to every other node: σ(t) = 0, t ∈ V, σ(s) = 1
Initialize the distance of each node from s: d(t) = +∞, t ∈ V, d(s) = 0
Enqueue s in Q
whileQ ̸= ∅

Dequeue v from Q, Push v in S
for v′ ∈ N(v) = {v′ | v′ is a neighbor of v}
if d(v′) = +∞

Enqeue v’ in Q
d(v′) = d(v) + 1

else
σ(v′) = σ(v′) + σ(v)
Append v to P(v’)

end if
end for

end while
δ(v) = 0, v ∈ V
while S ̸= ∅

Pop v’ from S
for v ∈ P(v′)

δ(v) = δ(v) + σ(v)(1 + δ(v′)
σ(v′)

end for
if v′ ̸= s

CB(v′) = CB(v′) + δ(v′)
end if

end while
end for
for v ∈ V

CB(v) = CB(v)
(n−1)(n−2) #for undirected networks

CB(v) = 2 CB(v)
(n−1)(n−2) #for directed networks

end for
return CB(v)

Algorithm 4.3 Computation of the vertex betweenness centrality in a weighted network
input Weighted network G = (V, E), where V = set of n vertices, E = set of edges
Betweenness centrality CB(v) = 0, v ∈ V
Inizialize S as an empty stack and Q as an empty priority queue
for s ∈ V

Initialize the list of predecessors of shortests paths from s: P(w) is an empty list for all
w ∈ V
Initialize the list of shortest paths from s to every other node: σ(t) = 0, t ∈ V, σ(s) = 1
Initialize the distance of each node from s: d(t) = +∞, t ∈ V, d(s) = 0
Enqueue (s, 0) in Q
whileQ ̸= ∅

Dequeue v from Q
for v′ ∈ N(v) = {v′ | v′ is a neighbor of v}
if d(v′) > d(v) + evv′

Enqeue v’ in Q
d(v′) = d(v) + evv′
σ(v′) = σ(v)
Push (v’, d(v’)) from Q

else
σ(v′) = σ(v′) + σ(v)
Append v to P(v’)

end if
end for

end while
δ(v) = 0, v ∈ V
while S ̸= ∅

Pop v’ from S
for v ∈ P(v′)

δ(v) = δ(v) + σ(v)(1 + δ(v′)
σ(v′)

end for
if v′ ̸= s

CB(v′) = CB(v′) + δ(v′)
end if

end while
end for
for v ∈ V

Cb(v) = Cb(v)
(n−1)(n−2) #for undirected networks

Cb(v) = 2 Cb(v)
(n−1)(n−2) #for directed networks

end for
return CB(v)

Observation 4.2.4 Note that Brandes’ algorithm works for unweighted networks, in fact this
algorithm has the assumption that an edge between two nodes has to be either present or absent.
In weighted networks the transaction between two nodes might be quicker along paths with more
intermediate nodes that are strongly connected than paths with fewer weakly-connected interme-
diate nodes. To extend the algorithm to weighted graphs we introduce Algorithm 4.3, where the
shortest paths are calculated using the Dijkstra algorithm, instead of just counting the number of
edges in each path.

Remark 4.2.1 Algorithm 4.2 has complexity O(|V|2log(|V|) + |V||E|)., while Algorithm 4.3
has complexity O(|V||E|), where |V| is the number of nodes N and |E| is the number of edges.

4.3 Girvan-Newman’s functioning and pseudo-code

The Girvan-Newman algorithm, instead of trying to construct a measure that tells us which
edges are most central to communities, it focuses instead on those edges that are least central.
Rather than constructing communities by adding the strongest edges to an initially empty ver-
tex set, we construct them by progressively removing edges from the original graph, so by using
a divisive approach.

This algorithm extends Definition 4.2.3 to the case of edges.

Definition 4.3.1 The edge betweenness of an edge is the number of shortest paths between pairs
of nodes that run along it. If there is more than one shortest path between a pair of nodes, each
path is assigned equal weight such that the total weight of all of the paths is equal to unity. If a
network contains communities or groups that are only loosely connected by a few inter-group edges,
then all shortest paths between different communities must go along one of these few edges. We
can express the edge betweenness as:

bij =
∑

(k,l)∈V2

σkl(i, j)
σkl

Where σkl is the number of shortest paths connecting k to l, and σkl(i, j) is the subset of these includ-
ing edge (i,j).

Definition 4.3.2 Just like the vertex betweenness, the edge betweenness can be normalized to

56

range [0, 1] by using the formula:

bnormalized
ij =

bij – bmin

bmax – bmin

Observation 4.3.1 Betweenness centrality is a good fit for community detection tasks because if a
network contains communities or groups that are connected only by a few intergroup edges, then all
shortest paths between different communities must go along one of these few edges. Thus, the edges
connecting communities will have high edge betweenness. By removing these edges, we separate
groups from one another and so reveal the underlying community structure of the graph.

Observation 4.3.2 If a network contains communities or groups that are only loosely connected
by a few intergroup edges, then all shortest paths between different communitiesmust go along one
of these few edges. Thus, the edges connecting communities will have high edge betweenness. By re-
moving these edges, we separate groups from one another and so reveal the underlying community
structure of the graph.

Figure 4.4: Calculation of edge betweenness. The first steps are the same as in Figure 4.2 and 4.3: we select node H and
find the number of shortest path from the node H to each of the node. Then we to calculate the credit of each edge start‐
ing from the leaf node. The credit of an edge is given by the formula (1 +

∑
IncomingEdgeCredit) ScoreOfDestination

ScoreOfStart ,
where the score of a vertex is the number of shortest paths from the node and H. Picture taken from [37].

57

Figure 4.5: Calculation of edge betweenness. The steps in Figure 4.4 are repeated for all the nodes, after that we sum up
all of the edge credit we computed in the previous step and then divide by 2. Picture taken from [37].

Observation 4.3.3 If there is more than one shortest path between a pair of vertices, each path is
given equal weight such that the total weight of all of the paths is unity.

The Girvan Newman algorithm for community detection has the following steps:

• The betweenness of all existing edges in the network is calculated first.

• The edges with the highest betweenness are removed.

• The betweenness of all edges affected by the removal is recalculated.

• Steps 2 and 3 are repeated until no edges remain

The end result of the Girvan–Newman algorithm is a dendrogram.

Algorithm 4.4 Girvan-Newman algorithm
input Network G = (V, E)
Community assignment M = V
while |E| > 1
for e ∈ E

Calculate edge betweenness
end for
Find the edges with the maximum betweenness CBmax

for e ∈ CBmax

Remove e from G
end for
Update M as the set of the connected components of G

end while
return M

58

Observation 4.3.4 The fact that the only betweennesses being recalculatedare only the oneswhich
are affected by the removal, may lessen the running time of the process. However, the betweenness
centrality must be recalculated with each step, the reason is that the network adapts itself to the
new conditions set after the edge removal. For instance, if two communities are connected bymore
than one edge, then there is no guarantee that all of these edges will have high betweenness. Ac-
cording to the method, we know that at least one of them will have, but nothing more than that is
known. By recalculating betweenness centralities after the removal of each edge, it is ensured that
at least one of the remaining edges between two communities will always have a high value.

Remark 4.3.1 Remark 4.2.1 states the calculation of betweenness for all edges (and for all nodes)
has complexity O(|V|2log(|V|) + |V||E|) for unweighted graphs and O(|V||E|) for weighted
graphs. Because this calculation has to be repeated once for the removal of each edge, the entire algo-
rithm runs in worst-case timeO(|V|3log(|V|) + |V|2|E|) for unweighted graphs andO(|V|2|E|)
for weighted graphs. However, after the removal of each edge, we only have to recalculate the be-
tweennesses of those edges that were affected by the removal, which is at most only those in the same
component as the removed edge. This means that running time may be better than worst-case for
networks with strong community structure (those that rapidly break up into separate components
after the first few iterations of the algorithm).

4.4 Application to four different types of networks

In this section we are going to see different applications of the Girvan-Newman algorithm on
different types of graphs, more specifically, we are going to apply it to the same networks ana-
lyzed in Section 2.3 and 3.4 in order to compare the results.

4.4.1 Unweighted undirected network

Applying the Girvan-Newman algorithm to the Jazz musicians graph we obtain 40 commu-
nities: most of the communities are of smaller sizes, containing between 1 and 4 nodes, while
three of them are made by respectively 49, 59 and 44 nodes.

59

Figure 4.6: Graphical representation of the modules detected by the Girvan‐Newman algorithm on the Jazz musicians
network.

We are now going to compare the results with the two previous algorithms.

Algorithm Number of modules Modularity Map equation
Louvain 4 0.43890781537538287 11.761273616050756
Infomap 5 0.038870920032069954 6.910117006606936
Girvan-Newman 40 0.4050988992046884 119.07819455516743

Table 4.1: Results of the three algorithms on the Jazz musicians network.

We can observe a much higher value of number of communities and map equation for the
Girvan-Newman algorithm, while in terms of modularity, the algorithm gives better results
than Infomap but worse than Louvain.

4.4.2 Weighted undirected network

For the Windsurfers network 6 communities were detected: 21 nodes for the first community,
18 for the second and 1 for the remaining ones

60

Figure 4.7: Graphical representation of the modules detected by the Girvan‐Newman algorithm on the Windsurfers net‐
work.

We are now going to compare the results with the two previous algorithms.

Algorithm Number of modules Modularity Map equation
Louvain 2 0.37121605900844046 5.535010448869063
Infomap 3 0.20192741378788756 4.5052902422623315
Girvan-Newman 6 0.3517397809185141 11.301612762000586

Table 4.2: Results of the three algorithms on the Windsurfers network.

In this case, we also have a higher number of communities and map equation value for the
Girvan-Newman algorithm, although not as high as in the previous case. Once again, it shows
a modularity value almost as good as the Louvain algorithm.

4.4.3 Unweighted directed network

For the Macaque rhesus brain graph 145 communities were obtained, although the two main
communities are two, with one having 84 and the other 15 nodes, while the remaining ones are
singular node clusters.

61

Figure 4.8: Graphical representation of the modules detected by the Girvan‐Newman algorithm on the Macaque rhesus
brain graph.

We are now going to compare the results with the two previous algorithms.

Algorithm Number of modules Modularity Map equation
Louvain 4 0.3295535655573555 11.610916375907639
Infomap 6 0.30617633953173806 6.999063756957538
Girvan-Newman 145 0.07902224400858437 531.3086583722825

Table 4.3: Results of the three algorithms on the Macaque rhesus brain graph.

In this case we can see that Girvan-Newman has the worst performance between the three
algorithms, in fact we can observe a low value for modularity and high value for the map equa-
tion.

4.4.4 Weighted directed network

For the US Congress Twitter network we got 15 resulting communities, although the two main
communities are two, with one having 280 and the other 183 nodes, while the remaining ones
are singular node clusters.

62

Figure 4.9: Graphical representation of the modules detected by the Girvan‐Newman algorithm on the US Congress Twit‐
ter network.

We are now going to compare the results with the two previous algorithms.

Algorithm Number of modules Modularity Map equation
Louvain 4 0.4399847144924596 11.614856746923584
Infomap 15 0.007693580298894281 7.6239123302314455
Girvan-Newman 15 0.38012164654971503 19.591171591664526

Table 4.4: Results of the three algorithms on the US Congress Twitter network.

With the weighted directed network, Infomap and Girvan-Newman yield the same number
of communities, although of different sizes. In terms of modularity the best algorithm is once
again Louvain and for the map equation is Infomap, although Girvan-Newman yields a pretty
high modularity value.

Overall, we can observe that the number of communities detected by Louvain and Infomap
is pretty stable in most cases, while it tends to grow considerably for Girvan-Newman. This is
due to the fact that, as we saw in Remark 2.2.1 and Remark 3.3.3, both Louvain and Infomap
suffer from a resolution problem, which means that they have the tendency of detecting larger
sized communities, while Girvan-Newman does not have this limitation, hence the fact that a

63

lot a lot of the detected communities by the algorithm are very small, which of course influences
the overall number of modules.

As expected, in all of the analyzed networks, the best results in terms of modularity are given
by Louvain. With the exeption of the unweighted directed case, Girvan-Newman detects com-
munities with higher modularity values than Infomap.

In terms of map equation, as expected, Infomap yields the best results, followed by Louvain
and then Girvan-Newman.

64

5
Application to an e-mail dataset

One of the main topics of research in complex networks theory and processes is how the com-
munity structure in real-life networks influences the spread of information, fake news, diseases
and how it affects the efficiency of communication. In this chapter we are going to focus on the
topic of communication by e-mail: the analysis is going to be on a dataset containing e-mail ex-
changes between different users. The focus will be on the response times defined as the number
of units of activity of the receiver pertaining to the intervals between a message and its response
(see Definition 5.1.2). Thanks to the user-level response times analysis done on [38], we know
that for the typical user in the DE1 database, the response time probability density function
is close to a power law with exponent α ≃ −1.5. Our aim is to perform a community-level
analysis, which means that we are going to analyze the response times between communities of
users, rather than between the single agents. The communities are going to be detected using
one of the methods described in the previous chapters. The reasoning behind this analysis is to
get an assessment on whether doing a community-level study instead of a user-level one causes
the probability density function of the response times to deviate from a power law and whether
the exponent α changes.

5.1 Preliminary concepts and dataset description

Before giving a description of our dataset, it’s important that we define a truncated power law
distribution.

65

Definition 5.1.1 Givena positive randomvariable σ, we say that its probability density function
follows a truncated power law distribution if P(σ | α, λ) = σαe− σ

λ , where α < 0 is the power-law
exponent and λ > 0 is the cutoff parameter.

Remark 5.1.1 For values of σ < α the probability density function behaves like a standard
power-law, while for values larger than λ we observe an exponential decay in the distribution.
The focus of this analysis is going to be on estimation of the exponent α.

The exchanges that we’re going to analyze are from the Database DE1, which is an email
database concerning the long-term activity of all the accounts belonging to, and interacting
with, a Department of a large EU university, extending over a period of about two years. In
particular, this dataset contains 6914872 rows and three columns: “Timestamp”, “Sender” and
“Receiver”, where timestamps are given in seconds and senders and receivers are conventionally
numbered, which means that a unique code is assigned to each user.

To select the most relevant users, we have first considered the 500 agents with the largest
number of outgoing messages, and having a ratio r =

#incoming
#outgoing . From these, we have extracted

the 300 agents with the largest number of question-reply pairs (this gives a set of agents with
at least 390 responses each, a large percentage of which have in the order of a few thousand
responses), resulting in a dataframe of 753492 rows.

Figure 5.1: Cleaned DE1 dataset: each row represents a message between two agents at a certain timestamp.

Another important definition is the one of response times.

66

Definition 5.1.2 Given any messageM from any agent B toA, and the first ensuing message
M′ going fromA toB, the response times of agentA are defined through the activity parameter s
ofA by counting the values σ = Δs pertaining to the intervals between the messagesM andM′,
i.e. the number of outgoing messages fromA intervening betweenM andM′.

Figure 5.2: Activity clock for a node in an interaction network. Representation of the node’s temporal activity, in this case
written communication, along the axis of time t for an agentA. Arrows pointing into the t axis mark incoming messages
from the indicated correspondents C1,C2, . . . ofA. Arrows pointing out of the t axis mark response messages fromA
to the same correspondents. The intervals between the outgoing arrows define the response times ofA pertaining to
each correspondent Ci counts the number of outgoing messages fromA. Picture taken from [39].

Figure 5.3: First 223 rows of the DE1 dataset: each row represents a message between two agents at a certain timestamp.

67

Example 5.1.1 Let’s say we want to calculate the response time of themessage at Row 4 in Figure
5.3: we have five units of activity from agent 61 between the message (Row 4) and the response
(Row 223), these five outgoing messages are from Row 219 to Row 223 (we have consider the re-
sponse itself as a unit of activity), so in this case the response time would be 5.

Remark 5.1.2 It is possible that somemessages don’t receive any response, in that case the response
time won’t be computed.

The idea is that, given a fixed agent A, we calculate the response time of every message M
from any other user B to A, the result is a response times vector. If we repeat this process for
every agent we get n response times vectors, where n is the number of agents.

As stated earlier, the studies on [38] allows us to observe the behavior of the probability
density function for the response times of a single user and it’s close to a standard power law
with exponent α ≃ −1.5.

Figure 5.4: Log‐log plot of the response‐time probability density P(σ) of one of the users in the DE1 database. We can
also observe the estimated slope α ≃ −1.519 represented as a dotted line to guide the eye. Red circles indicate the
calculated empirical data; blue crosses represent predictions using the standard power law model P(σ) = σα, where
α = −1.519. The plots were produced by using logarithmic binning. Picture taken from [38].

The first thing that is necessary in order to switch from user-level to cluster-level analysis is
to transform the dataframe into a network, where each user represents a node. Given the graph
we can then apply the three algorithms and select the method that yields the optimal network
partitioning.

In the final section we perform a community-level study of the probability distribution of
the response times: this means that instead of identifying each agent by a unique code, we

68

identify it by the assigned cluster. Instead of having the 300 agents like in the user-level analysis,
we have m, where m is the number of communities of the network partition that we’re going
to utilize.

The last step is to observe if the behavior of the density function actually depends by the
community structure. In order to study this correlation we randomly reassign each vertex to
one the clusters. The random assignment of the vertices is based on a specific probability dis-
tribution: if we have a network of N nodes (in our case N = 300) and the original partition
is into m clusters, where the respective number of nodes in each cluster is n1, . . . , nm, in the
randomization process each vertex is reassigned to cluster i with probability pi = ni

N .
If there is indeed a correlation between the community structure of the network and the re-

sponse times of each cluster, the probability distributions of the response times for each com-
munity should follow distribution similar to a standard or truncated power law, after the ran-
domization process this property should be lost and the probability density function of the
response times should not follow that same distribution.

5.2 Community detection on the e-mail dataset

In order to apply the algorithms, we need to create a network from our original dataset. The
best way to represent our data is by building a weighted directed graph: we create an edge from
User1 to User2 if at certain timestamp User1 sent a message to User2 and the value of assigned
weight is the number of messages that User1 sent to User2.

The results of the Louvain method to our graph is four communities made by 119, 109, 51
and 21 nodes each.

The modularity value for this partition is 0.43131974320099575 and the map equation
value is 10.866464455561054, so we can say that this community assignment is fairly good
according to both metrics.

69

Figure 5.5: Graphical representation of the communities yielded by the Louvain algorithm on the DE1 network.

Remark 5.2.1 Both Infomap and Girvan-Newman return a large number of communities, 27
and 195 respectively, with lots of very small or even singular-node communities. Since we already
know from [38] that the behavior of the probability distribution of the response times for single
users is close to a power law with α ≃ −1.5, our focus is going to be on the network partition
returned by Louvain.

Figure 5.6: Graphical representation of the 27 communities yielded by the Infomap algorithm on the DE1 network.

70

Figure 5.7: Graphical representation of the 195 communities yielded by the Girvan‐Newman algorithm on the DE1 net‐
work: we have 1 large community with 106 nodes and 194 communities with one vertex each.

Now that the community assignment is selected we can proceed the community-level re-
sponse times analysis: in particular we are going to compare how the response times are dis-
tributed when the partitioning is actually based on the modular structure of the network versus
when the partition is created randomly. At the end of this analysis we are going to have an as-
sessment on the influence that the community structure of the DE1 database has on efficiency
of the communication between different clusters.

71

5.3 Community-level response times analysis

In this section we are going to analyze how the community structure of the DE1 network in-
fluences the response times between users belonging to different modules. The first thing we
need to do is create a new version of the DE1 dataset where both the sender and receiver are
mapped to their corresponding community, resulting in two new columns “Community1” and
“Community2”, we are going to denote this dataframe as DE1 community dataset.

Figure 5.8: DE1 community dataset, where each is user is mapped to its corresponding community: Community1 is the
community of the sender, while Community2 is the community of the receiver. For this example, we mapped the nodes
based on the partition in Figure 5.5.

Remark 5.3.1 As we can see from Figure 5.8, in many rows of the DE1 community dataset
Community1 and Community2 are equal, in fact it is very likely that two users that often com-
municate are assigned to the same community. If we have a messageM going from agentA to
A, that row is going to be removed from the dataset.

72

Figure 5.9: On the left we have the first 12 rows of the DE1 community dataset and on the right DE1 cleaned community
dataset, which is obtained after removing all the intra‐community messages from the DE1 community dataset, so by re‐
moving rows 1, 3, 5, 7 and 11 from the original dataframe. The nodes are assigned once again based on the partition in
Figure 5.5.

The focus of our analysis is on the exchanges between members of the same partition, so
discarding intra-community interaction allows us to get a better assessments on the communi-
cation patterns between the different communities.

Definition 5.3.1 Assume that we have a messageM0 from agentA to agent B, a series of mes-
sagesM1,M2, …,Mn from agent B to agentA with timestamps t0 ≤ t1 ≤ · · · ≤ tn and the
first ensuing messageM′ from agentA to agent B with timestamp tn+1 ≥ tn.
The messagesM2, …,Mn are considered reminders and no response times will be calculated for
them, only for the first messageM1.

Let’s look at an example.

73

Figure 5.10: Rows 20 to 30 of the DE1 cleaned community dataset. The nodes are assigned once again based on the
partition in Figure 5.5.

Example 5.3.1 According to Definition 5.3.1, the email at Row 20 would beM0 and the mes-
sages at Rows 22, 25, 26, 28 and 29 are considered reminders, so for these messages the response
time will not be calculated. In this case we only compute the response time of the email on Row 21,
which would be 1, in fact the only unit of activity from agent 2 is at Row 30.

Now we proceed with the calculation of the response times before and after the random-
ization process. The original sizes of four communities are 119, 109, 51 and 21 nodes, which
means that in the randomization process each node is reassigned to Community 1 with prob-
ability 119

300 , to Community 2 with probability 109
300 , to Community 3 with probability 51

300 and
to Community 4 with probability 21

300 ; the result is four communities with 123, 124, 35 and 18
vertices each. By reassigning the nodes according to this probability distribution the number
of nodes in each cluster does not remain exactly the same, but it still allows us to maintain the
communities’ sizes on a larger scale and introduce a component of “noise” in the process at the
same time.

In order to see how close the probability distribution is to a power-law we produced a log-log
plot.

74

Figure 5.11: Log‐log plots of the response‐time probability densities P(σ) where each color represents a different agent.
On the picture on the right the response times were calculated based on the partition yielded by Louvain, on the picture
on the left they were calculated based on the partition yielded by the randomization process. The plots were produced by
using logarithmic binning.

On the left picture the four agents seem to overlap each other for smaller values, while they
deviate from each other for larger values, it seems that the cluster that deviates the most is the
one with the smallest number of vertices (Community 4). On the right we observe a similar
behavior, although the deviation between the agents is not as strong. In order to get a unique
probability function and to get a better assessment on its behavior, for each value of σ in Figure
5.11 we computed the mean of the values of P(σ) of all the agents.

Figure 5.12: Log‐log plots of the mean of the response‐time probability densities P(σ) of all the agents. On the picture
on the right the response times were calculated based on the partition yielded by Louvain, on the picture on the left they
were calculated based on the partition yielded by the randomization process. We can also observe the estimated values
of α as two red lines to guide the eye: one with slope−2 for the standard assignment and one with slope−2.1 for the
random one. For values larger than λ ≃ 14 (straight green line), we can see that in both assignments the distribution
starts to decay exponentially. The plots were produced by using logarithmic binning.

75

From these plots we can observe that, before and after the randomization process, the prob-
ability density function of the response times follow a truncated power law, in fact the points
are arranged in a straight line for lower values of σ, while they decay exponentially for values
larger than λ ≃ 14, also the estimated slope α remains almost the same in both plots.

These results may suggest that the correlation between the community structure and the
response times that we were looking for is not present, in fact the distribution of the response
times for the random assignment is very similar to the distribution of the original partition
yielded by Louvain, which is an unexpected result.

What we were hoping to obtain is a power law-like distribution when using the standard
assignment and a different distribution when the assignment is random. We can conclude is
that the closeness to a truncated power law of the probability distribution is more related to
properties of the network like the degree distribution and connectivity, rather than the specific
community assignment.

It is also important to note that the type of analysis performed is still preliminary and during
the procedure some choices were made arbitrarily, for example in the selection of the algorithm
or with the removal of some of the rows in the dataset, like explained in Remark 5.3.1 and in
Definition 5.3.1; these are all factors that might have influenced the results.

Even if we were not able to observe the expected results, we were still able to find an example
of a real-life network where the efficiency of the communication seems to not be influenced by
the community structure.

76

6
Conclusions

In this thesis, we have studied three of the more heavily used algorithms for the detection of
communities in networks: Infomap, Louvain and Girvan-Newman.

Louvain and Infomap follow a similar approach, as they are both optimization algorithms:
the first operates by maximizing modularity, which is metric of evaluation for networks’ par-
titions; Infomap is a minimization algorithm and the measure of interest is the map equation,
which leans on information theory to give another quality measure of a network’s partition.

Girvan-Newman, on the other hand, is hierarchical clustering method, meaning that it op-
erates by grouping similar objects into clusters based on their distances or similarities, in our
case the grouping is based on a measure called edge betweenness centrality.

The differences between the approaches are highlighted by the application of the algorithms
on four real-life networks: in most of the cases, the number of communities detected by the
first two algorithms are fairly close, while for Girvan-Newman they tend to be much higher.

In the final chapter we studied the effect that the community structure of a complex network
has on communication, which was done by analyzing a dataset containing e-mail exchanges
between different users. The focus of our studies was the response time defined as the number
of units of activity of the receiver pertaining to the intervals between a message and its response.

On [38] we saw that the probability density function of the response times of single users
typically follow a distribution similar to a power law with exponent α ≃ −1.5.

We carried out a community-level analysis in order to see if the behavior of the distribution
of the response times between groups of users is actually different from the one of the response

77

times between single users.
In order to perform this type of analysis we had to build a graph of all the users based on

their interactions in the original dataset, then we applied the Louvain method to detect the
community structure of such network.

After calculating the response times between the four communities detected by Louvain, we
observed that the results are similar to the ones obtained in the user-level analysis on [38]: the
distribution of the average response times of the four agents is very close to a truncated power
law with estimated exponent α ≃ −2.

The final step of our analysis was to randomly reassigning each node to one of the four clus-
ters and compute the response times between the four random communities. The goal of this
randomization process was to see if there is indeed a correlation between the community struc-
ture and the probability density function of the response times or if the two are unrelated. The
results that we obtained suggest the latter hypothesis; in fact the probability density function
obtained with the random assignment is almost the same as the one obtained with network
partitioning yielded by Louvain. If there was a correlation between the communities and the
distribution, reassigning the nodes randomly should “break” the power law, which did not
happen.

This analysis suggests that the similarity to a power law of the probability distribution of
the response times is more related to other properties of the network, like the degree distribu-
tion and connectivity, rather than the specific community assignment and that in this complex
network the communication appears to be unaffected by the community structure.

78

References

[1] https://en.wikipedia.org/wiki/Graph_(discrete_mathematics).

[2] A. Ravikiran, “What is graph in data structure types of graph?” https : / /
www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure.

[3] S. K. Gupta and D. P. Singh, “Cbla: A clique based louvain algorithm for detecting
overlapping community,” Procedia Computer Science, vol. 218, pp. 2201–2209, 2023.

[4] R. Vershynin, High-dimensional probability: An introduction with applications in data
science. Cambridge university press, 2018, vol. 47.

[5] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues.
Springer Science & Business Media, 2013, vol. 31.

[6] https://cs.stackexchange.com/questions/140279/probability-of-reaching-a-state-in-
asymmetric-random-walk.

[7] https://en.wikipedia.org/wiki/Configuration_mode.

[8] https://en.wikipedia.org/wiki/Modularity_(networks).

[9] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of com-
munities in large networks,” Journal of statistical mechanics: theory and experiment, vol.
2008, no. 10, p. P10008, 2008.

[10] M. E. Newman, “Modularity and community structure in networks,”Proceedings of the
national academy of sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[11] E. A. Leicht and M. E. Newman, “Community structure in directed networks,” Physi-
cal review letters, vol. 100, no. 11, p. 118703, 2008.

[12] https://en.wikipedia.org/wiki/Louvain_method.

79

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics
https://www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure
https://www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure
https://cs.stackexchange.com/questions/140279/probability-of-reaching-a-state-in-asymmetric-random-walk
https://cs.stackexchange.com/questions/140279/probability-of-reaching-a-state-in-asymmetric-random-walk
https://en.wikipedia.org/wiki/Configuration_mode
https://en.wikipedia.org/wiki/Modularity_(networks)
https://en.wikipedia.org/wiki/Louvain_method

[13] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex networks,” Scien-
tific reports, vol. 2, no. 1, p. 336, 2012.

[14] A. Mishra and K. Patra, “Domination and independence parameters in the total graph
of zn with respect to nil ideal,” IAENG International Journal of AppliedMathematics,
vol. 50, no. 3, pp. 1–6, 2020.

[15] P. M. Gleiser and L. Danon, “Community structure in jazz,” Advances in complex sys-
tems, vol. 6, no. 04, pp. 565–573, 2003.

[16] L. C. Freeman, S. C. Freeman, and A. G. Michaelson, “On human social intelligence,”
Journal of Social and Biological Structures, vol. 11, no. 4, pp. 415–425, 1988.

[17] K. S. Ambrosen, S. F. Eskildsen, M. Hinne, K. Krug, H. Lundell, M. N. Schmidt, M. A.
van Gerven, M. Mørup, and T. B. Dyrby, “Validation of structural brain connectivity
networks: The impact of scanning parameters,” Neuroimage, vol. 204, p. 116207, 2020.

[18] C. G. Fink, K. Fullin, G. Gutierrez, N. Omodt, S. Zinnecker, G. Sprint, and S. Mc-
Culloch, “A centrality measure for quantifying spread on weighted, directed networks,”
Physica A, 2023.

[19] C. G. Fink, N. Omodt, S. Zinnecker, and G. Sprint, “A congressional twitter network
dataset quantifying pairwise probability of influence,” Data in Brief, 2023.

[20] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical
journal, vol. 27, no. 3, pp. 379–423, 1948.

[21] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal
community structure,” Proceedings of the national academy of sciences, vol. 105, no. 4,
pp. 1118–1123, 2008.

[22] M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equation,” The European
Physical Journal Special Topics, vol. 178, no. 1, pp. 13–23, 2009.

[23] R. Lambiotte and M. Rosvall, “Ranking and clustering of nodes in networks with smart
teleportation,” Physical Review E, vol. 85, no. 5, p. 056107, 2012.

[24] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.

80

[25] M. T. Schaub, R. Lambiotte, and M. Barahona, “Encoding dynamics for multiscale
community detection: Markov time sweeping for the map equation,” Physical Review
E, vol. 86, no. 2, p. 026112, 2012.

[26] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Res-
onance, vol. 11, no. 2, pp. 91–99, 2006.

[27] S.-H. Bae, D. Halperin, J. D. West, M. Rosvall, and B. Howe, “Scalable and efficient
flow-based community detection for large-scale graph analysis,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 11, no. 3, pp. 1–30, 2017.

[28] https://www.mapequation.org/infomap/.

[29] M. Girvan and M. E. Newman, “Community structure in social and biological net-
works,” Proceedings of the national academy of sciences, vol. 99, no. 12, pp. 7821–7826,
2002.

[30] https://it.mathworks.com/help/stats/dendrogram.html.

[31] https://en.wikipedia.org/wiki/Betweenness_centrality.

[32] https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm.

[33] https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides13.pdf.

[34] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical
sociology, vol. 25, no. 2, pp. 163–177, 2001.

[35] https://toreopsahl.com/tnet/weighted-networks/node-centrality/.

[36] https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.

[37] https://medium.com/analytics-vidhya/girvan-newman-the-clustering-technique-in-
network-analysis-27fe6d665c92.

[38] M. Formentin, A. Lovison, A. Maritan, and G. Zanzotto, “Hidden scaling patterns and
universality in written communication,” Physical Review E, vol. 90, no. 1, p. 012817,
2014.

[39] ——, “New activity pattern in human interactive dynamics,” Journal of Statistical Me-
chanics: Theory and Experiment, vol. 2015, no. 9, p. P09006, 2015.

81

https://www.mapequation.org/infomap/
https://it.mathworks.com/help/stats/dendrogram.html
https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Girvan%E2%80%93Newman_algorithm
https://www.cl.cam.ac.uk/teaching/1617/MLRD/slides/slides13.pdf
https://toreopsahl.com/tnet/weighted-networks/node-centrality/
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://medium.com/analytics-vidhya/girvan-newman-the-clustering-technique-in-network-analysis-27fe6d665c92
https://medium.com/analytics-vidhya/girvan-newman-the-clustering-technique-in-network-analysis-27fe6d665c92

82

Acknowledgments

First of all, I would like to thank my supervisor Professor Formentin, who provided a very
interesting topic and was always available to offer advice or answer any questions I had. I would
also like to thank Professor Lovison, who also assisted me during the operational phase of the
dissertation.

I want to give a special thanks to my parents and sister for their constant support throughout
my academic career.

Lastly, a big thank you to all my long-time friends who were there for me in various ways
throughout these past two years, especially Luca, Lorenzo, Edoardo, and Marisol.

83

	Abstract
	Preliminary concepts
	Introduction to networks and community detection
	Introduction to Markov chains and stationary distributions

	Louvain algorithm
	Modularity as quality measure of a network's partition
	Louvain's functioning and pseudo-code
	Louvain's complexity and limitations

	Application to four different types of networks
	Unweighted undirected network
	Weighted undirected network
	Unweighted directed network
	Weighted directed network

	Infomap Algorithm
	Huffman coding procedure
	The map equation as quality measure of a network's partition
	Infomap's functioning and pseudo-code
	Two-level algorithm
	Multilevel algorithm
	Infomap's complexity and limitations

	Application to four different types of networks
	Unweighted undirected network
	Weighted undirected network
	Unweighted directed network
	Weighted directed network

	Girvan–Newman algorithm
	Hierarchical community detection methods
	Edge and vertex betweenness centrality measures
	Girvan-Newman's functioning and pseudo-code
	Application to four different types of networks
	Unweighted undirected network
	Weighted undirected network
	Unweighted directed network
	Weighted directed network

	Application to an e-mail dataset
	Preliminary concepts and dataset description
	Community detection on the e-mail dataset
	Community-level response times analysis

	Conclusions
	References
	Acknowledgments

