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Abstract

In the face of climate change and evolving environmental regulations, effective

management and forecasting of sewage water systems (SWS) under various

scenarios have become important. These systems wield significant influence

over urban flood control and water quality treatments. In this context, a Data-

Driven Digital Twin (DT) is developed specifically for a small SWS basin located

in northern Italy. This basin encompasses a sewage network, featuring Doppler

sensors that measure water velocity, pressure (depth), and temperature every six

minutes. Additionally, rain gauges provide minute-by-minute data. Given the

operational conditions of these sensors, occasional low-quality measurements

are inevitable.

To address this issue, a Neural Network (NN) is designed, trained, and inte-

grated into the DT capable of identifying anomalous values, attributing potential

causes (e.g., sensor contamination), and suggesting accurate replacements. This

research explores regressive neural network models approaches: a convolutional

layer neural network (CNN), CNN with Long Short-Term Memory (LSTM) ap-

proach, and a CNN model with residual connection. Models are all replicate

the SWS configuration and share the same training data. These models are

rigorously evaluated under scenarios involving missing data, such as sensor re-

moval, and both consistently exhibit a high general accuracy rate exceeding 90%.

This project not only showcases the successful development and application of

the DT but also underscores the importance of collaboration between industry,

government, and academia in addressing critical environmental challenges.
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1
Introduction

1.1 Resource Management in History

Throughout history, managing resources has always been a challenging task

for humanity. People have found and developed many methods to store, pre-

serve, and manage resources for later use according to the conditions of the

time. In today’s conditions, various methods have been developed for the op-

eration of water management systems. In recent years, the growing need for

more affordable and efficient water management solutions has led to significant

innovations. Investments in smart systems have surged, with the global smart

water systems market set to double in the next five years (Rezaei Kalvani and

Celico, 2023). These requirements triggered human beings in resource manage-

ment and always forced them to find a better method. In this way, it has become

important for people to use more effective and smarter systems.

1.2 Smart Water Systems in Use

Smart water systems which will be mentioned as SWS, are comprehensive

networks consisting of advanced water meters and integrated data systems.

These systems are designed to meet the needs of facilities of different sizes and

geographical locations, offering a versatile solution for efficient water manage-

ment. Their main function is to provide continuous and real-time monitoring

of water flow in the network. Beyond simply measuring consumption, they are
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1.3. MACHINE LEARNING IN WATER MANAGEMENT

equipped with the intelligence to detect and promptly address potential issues

such as leaks, pressure irregularities, and unusual consumption patterns. Im-

portantly, these systems are not limited to utility operators; they extend their

benefits to the end-users as well. With user-friendly interfaces and mobile appli-

cations, customers gain the ability to monitor their own water usage in real-time.

This not only empowers them with insights into their consumption habits, but

also encourages responsible water use, ultimately contributing to conservation

efforts and reducing unnecessary waste (Li et al., 2020).

1.3 Machine Learning in Water Management

As the need for efficient water management solutions has grown in the latest

years, individuals often design specific frameworks to interpret their systems

using a variety of tools. As tools continue to improve in the last decades, the use

of neural networks has also gained momentum (Huang et al., 2021). Predictive

neural networks, a part of machine learning, are valuable tools for reducing

environmental harm in water management. The application of machine learning

in water resources has grown recently (Miao et al., 2021). In this study, machine

learning models are developed to clean and understand complex interactions in

SWS using these approaches, namely Convolutional Neural Networks (CNNs)

and Long Short-Term Memory (LSTM) combined with CNN, as well as CNN

with residual connections. The review was conducted in three different ways.

In this way, these approaches are built on these two primary reasons. Firstly,

it was to enhance the quality and accuracy of our results by utilizing various

techniques. Secondly, it served as a validation process, confirming the reliability

and consistency of our findings across different methodologies. Our goal was

to provide robust insights tailored to the field of water management, ensuring

that our research is both dependable and practical.
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2
Background

2.1 Water Resource Management Challenges

Water resource management is a complex field characterized by inherent

uncertainties, especially in predicting inflow patterns, which demands a proba-

bilistic approach. To address this challenge, a probabilistic approach has become

essential. In recent years, Machine learning has rapidly evolved into a versatile

and powerful tool applicable across various scientific domains (Rozos, 2019).

2.2 Use of Machine Learning on Water Resource

Management

Machine learning, often abbreviated as ML, is fundamentally defined as a

computer’s ability to analyze data. This approach allows computers to examine

and learn from large amounts of data and use that learning to predict future

events. It relies on mathematical and statistical methods to provide intelligent

solutions to complex problems such as optimizing sewer systems. It has proven

to be a valuable tool in sewage water systems and it provides smart solutions

to complex issues (Zhu et al., 2022). ML employs various mathematical and

statistical methods to predict how sewage systems function by analyzing past

data patterns and relationships. It’s especially handy when dealing with intri-

cate problems that involve complex processes and extensive possibilities, which

traditional approaches might struggle to manage efficiently. In recent years, ML

3



2.3. USE OF SUPERVISED LEARNING

has found various uses in water-related challenges, like predicting water quality

in rivers, lakes, and groundwater. Different algorithms, such as artificial neural

networks (ANNs), support vector machines (SVM), random forests (RF), and

decision trees (DT), have been used to enhance water quality predictions (Chen

et al., 2020).

In the field of Water Resource Management (WRM), the application of Ma-

chine Learning has become increasingly crucial. ML encompasses various al-

gorithms, broadly categorized as supervised, unsupervised, and reinforcement

learning, each offering unique capabilities. These algorithms provide predic-

tive power, enabling us to estimate outcomes based on historical data, and they

excel in handling complex and uncertain systems, like those in water resource

management. The use of ML in WRM offers the capability to predict future

events, which is essential for optimizing control, performance evaluation, and

decision-making in this dynamic domain. By leveraging ML, WRM can benefit

from data-driven insights and more accurate estimations, ultimately leading to

improved resource management and planning (Ghobadi and Kang, 2023).

2.3 Use of Supervised Learning

Supervised learning is one of the building blocks of machine learning. In

supervised learning, the algorithm is trained on a labeled dataset. The target

of the dataset is labeled. Basically, the algorithm learns from examples that

match input data with corresponding output labels. The goal is for the model

to generalize from these labeled data and make accurate predictions for new,

unseen data. In scenarios where water is used, supervised learning can be

used to predict certain parameters, for example, predicting water quality or

optimizing sewage systems (Xu and Liang, 2021).

Regression is a subset of supervised learning and is used especially when

you want to predict a continuous outcome. In the context of water management,

regression can be used to estimate the volume of water flow or the concentration

of pollutants. The main importance of regression in the machine and deep

learning projects is its ability to model the relationship between input features

and a continuous target variable, making it possible to make precise predictions

for quantitative outcomes in water-related scenarios (Ghobadi and Kang, 2023).
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CHAPTER 2. BACKGROUND

2.4 Use of Machine Learning on Water Resource

Management

Deep learning, often abbreviated as DL, is a sub-branch of machine learning

based on artificial neural networks and provides a major enhancement in this

field. In contrary to the traditional machine learning methods, deep learning

involves neural networks with multiple layers, also known as artificial neural

networks (ANNs). This method involves deep neural networks designed to au-

tomatically extract meaning from large and complex datasets. DL stands out for

its ability to better understand data and resolve complex relationships. In this

way, DL can be used effectively, especially in large-scale and complex datasets

by allowing us to obtain more accurate predictions and inferences. In addi-

tion, DL offers the ability to recognize complex patterns through hierarchical

learning (Sit et al., 2020). Deep learning in water resources management, par-

ticularly represented by Convolutional Neural Networks (CNNs), specializes

in understanding complex patterns and relationships in diverse and dynamic

water datasets.

2.5 Use of Convolutional Neural Networks

For these resource management and planning issues, Convolutional Neural

Networks (CNNs) mark a significant step forward in computational technology.

These networks are adept at spotting complex patterns within data, a crucial

ability for numerous applications. At the heart of this lies the convolution

operation, which extracts time-related features from the data, allowing us to

make important predictions (Van et al., 2020).

To harness the power of CNNs, it is essential to define and train the network

architecture using suitable data. This process results in a neural network with

a convolutional layer, capable of recognizing both simple and complex relation-

ships between input and output. Additionally, CNNs often include pooling

layers, which help reduce data size while preserving essential spatial relation-

ships (Ghobadi and Kang, 2023).

Incorporating CNNs and LSTMs into SWS is akin to an infrastructure trans-

formation, enabling these systems to operate intelligently. In a field as dynamic

as water resource management, where optimizing control and performance
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2.6. SMART WATER SYSTEMS

evaluation is paramount, these technologies provide an innovative edge. By

introducing CNNs and LSTMs, we equip SWS with the capacity to learn from

its continuous data streams, enabling quasi-real-time decision-making. This

transition isn’t just about augmenting efficiency; it’s a groundbreaking shift in

how we manage water resources. With all these, SWS are not just pipe networks;

they are intelligent, dynamic resource management solutions that can adapt to

an ever-changing environment (Ishida et al., 2021).

2.6 Smart Water Systems

Switching our focus to smart sewage water systems (SWS), these essential

infrastructures excel in the efficient collection, transportation, and treatment

of wastewater emanating from residential, industrial, and commercial sources.

Their primary mission revolves around streamlining the sewage treatment pro-

cess, mitigating environmental contamination, and preserving public health

(Otaki et al., 2007).

SWS is crucial for public health and cleanliness. They work by collecting

and transporting wastewater through a system of pipes, sewers, and treatment

facilities. These treatment plants clean the wastewater by removing harmful

substances and germs before releasing it safely. Properly managing sewage

systems is essential to prevent urban flooding, protect water quality, and support

sustainable city growth.
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3
Network, Data and Sensors

3.1 Data Collection

The data used in this research were sourced from a comprehensive network

of measurement instruments that was strategically implemented by Gruppo

CAP. Gruppo CAP is a prominent utility company, which manages the water

infrastructures of the Milan province. This project has been held for a duration

of three years in order to create and monitor the system. The objective of this

deployment was to monitor and gain insights into the entire territory managed

by Gruppo CAP. The district within the vibrant city of Milan is seen in 3.1.

The focal point of this extensive monitoring initiative was to construct a dig-

ital twin (DT) of the sewage network, an ambitious endeavor that holds great

promise for the field of smart water management. This digital twin represents a

technologically advanced replica of the physical sewage infrastructure. It inge-

niously integrates a real-time fluid dynamic model, hence enabling predictive

capabilities that can significantly enhance decision-making and overall system

efficiency.

The term digital twin refers to the virtual counterpart of a real-world system

or process and in this context serves as a breakthrough in sewer network man-

agement. The digital twin for the Sesto San Giovanni sewer network includes

a highly advanced, real-time fluid dynamics model that mimics the behavior of

wastewater as it flows through the network. The use of deep learning regression

techniques further increases the capabilities of this digital twin.

7







3.2. SENSORS

This sensor is known for its ease of installation, which reduces the need

for additional construction. Moreover, it offers the flexibility to extend cables

without any problems. The sensor performs superiorly even in harsh conditions,

including very dirty and corrosive environments. Additionally, its compatibility

with transmitter types such as PCM F and OCM F creates a comprehensive flow

measurement system. This advanced technology plays a fundamental role in

this study’s quest to improve sewage system management.

However, like many precision devices, these sensors face various challenges.

These include problems such as contamination of the sensor, which can lead to

loss of velocity readings, and failures in the pressure compensator, which lead to

drifts in water levels. These meters may also encounter challenges with varying

levels of suspended sediment density. Their performance tends to decrease as

they approach their operating limits, especially in applications involving level

and velocity measurements. The sensor is illustrated in 3.3.

Figure 3.3: Nivus KDA Doppler Sensor.

Additionally, the network is equipped with three rain gauges. Data collec-

tion intervals on the network range from 3 to 6 minutes, with data transfers

occurring every 4 hours. The HD2013 rain gauge is a robust and reliable tool

for measuring rainfall. Its durability allows it to withstand even the harshest

weather conditions, ensuring accurate and reliable performance in harsh envi-

ronments. The working principle of the tipping bucket rain gauge is simple.

It uses the tipping bucket mechanism that fills and unloads according to the

amount of precipitation. Each time the tilting mechanism moves, it activates a

reed contact that records the amount of rainfall. An important advantage of this

design is that it is self-sufficient. It works without needing a constant power

supply. Power is only required at low ambient temperatures that may require

heating. The rain gauge is illustrated in 3.4.

10



CHAPTER 3. NETWORK, DATA AND SENSORS

Figure 3.4: HD2013 Rain Gauge.

3.3 Kriging

Kriging is a robust geostatistical interpolation technique that finds valuable

application in environmental data analysis. This method becomes particularly

advantageous when dealing with unevenly distributed data points, such as

observations obtained in various geographical locations. This situation is often

encountered when rain gauges are used to measure rainfall amounts in different

regions. In this project, ordinary kriging is used to adjust the rainfall intensity

according to the distance to the measurement nodes, as shown by equation 3.1,

3.2, and 3.3. This approach not only improves the neural network models ability

to estimate missing data but also increases the precision of the neural network

models estimates by minimizing errors. Ordinary Kriging serves as a valuable

asset when it comes to handling complex spatial variations in environmental

data. It provides an efficient and effective solution to tackle these complex

challenges, providing more accurate and reliable results in environmental data

analysis.

&(G0) = /̂(G0) − /(G0) (3.1)

= [,) − 1] ·
[

/(G1) · · · /(G# ) /(G0)
])

(3.2)

=

#
∑

8=1

F8(G0) · [/(G8) − /(G0)] (3.3)

For this Kriging process, in the data engineering part, Kriging calculation

function is custom defined. OrdinaryKriging method is available for Python

in the pykrige.ok library. The function takes the dataset, measurement points,

11



3.3. KRIGING

and rain gauge data as input for the function. Equal precipitation is checked

in the data. If the data are equal throughout the rain gauges, then Kriging is

not needed and missing values are filled in by averaging the rain gauges that

have been measured. Kriging is performed for cases where there is a difference

in the data. For each measurement point, the precipitation value at that point

is estimated using a model based on observations from other points. Kriging

estimates for each measurement point are stored and returned in a dictionary.

These forecasts include the amount of precipitation at specific coordinates. In

summary, this code uses the Kriging method to estimate rainfall amounts at

specific measurement points based on observations from other points.
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4
Methods

4.1 Data Preparation

Data preparation is a basic and important stage in data analysis. This is the

process where raw data is carefully organized and formatted to ensure it is ready

for meaningful analysis. In the context of this research, data preparation plays

a very important role in terms of data reliability and accuracy. Through this

rigorous process, data is refined, ensuring that it is not only clean and consistent

but also reliable as the basis for the subsequent analysis work.

One of the first steps in data preparation is to resample the data at consis-

tent 6-minute intervals. This standardization is very important because some

measurement sites initially operated at a 3-minute sampling frequency, then

switched to 6 minutes during the measurement campaign.

Additionally, data preparation includes addressing inconsistencies or inac-

curacies in measurements. For example, issues such as measurement resets

and occasionally empty cumulative values are fixed, especially in the context of

precipitation measurements. The importance of handling null values correctly

during these operations cannot be denied. It is very important to avoid any

confusion between the original null values and the null values that may have

arisen temporarily during data processing. This comprehensive data prepara-

tion process forms the basis of the research as it ensures that the data is both

accurate and in a format suitable for meaningful analysis. This process makes

research findings more robust and reliable, allowing us to move forward with

confidence in further detailed analysis.

13



4.2. DATA ENGINEERING

4.2 Data Engineering

Data engineering is a collection of data processing techniques that form the

basis of improving the performance of deep learning models. Essentially, this

is the stage where the work on the raw data is completed. Raw data is collected

for improvement by potentially creating new parameters to improve the overall

performance of the models. This preliminary data curation is a critical step in

this research and paves the way for more advanced data analysis techniques.

It is crucial to ensure the reliability of the data before it is used to support any

conclusions. This highlights the importance of effective data cleansing in this

context. Each measurement point periodically records information on various

properties. Among the most important are the velocity of water flow (v) and

water level (l), as well as the quality diagnostic parameter (q), which gives

insight into the accuracy of the velocity measurement. In addition, parameters

such as water temperature (t) and rain intensity (i) are also monitored. The rain

intensity recorded using rain gauges is calculated for each measurement point

via Kriging interpolation. When rain occurs, it affects the level and velocity of

water, and temperature can act as an indicator of precipitation, as fluctuations in

temperature can be attributed to rainy conditions. There is also a concentration

period, which refers to the time it takes for rain to reach the measurement point in

the sewage since it has touched the ground. This concentration period inherently

depends on local urbanization factors, in particular the impermeability of the

soil.

Mainly, the data engineering coding process starts with data upsampling/-

downsampling in this study. With the defined get entire range function, it

enables the data frame to be expanded to a full-time range at a certain fre-

quency. This function expands the data frame at the specified frequency using

a specified time interval. Then, timestamps are edited and converted into the

appropriate time period. Upsampling is done with the resampling of the data.

The defined function takes data from sensors with a certain sampling rate and

expands the time series according to these rates. Besides, the function fills NaN

values with the created values by upsampling. Upsampling/downsampling is

done in order to process time series data by sampling at a certain frequency and

filling in missing data appropriately basically.

Also, another important point of view on data is wet geometry data. Wet

geometry data need to be defined and data engineering needs to be done on
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that. The defined function that calculates wet geometries calculates wet areas

and related properties based on the geometric properties for each given mea-

sure point. The function retrieves geometric information from the database.

Depending on the geometry of the measurement point, it calculates wet areas

and the properties of these areas with a specific algorithm. Then, it adds these

calculated features and fields to the values of the measurement point within

certain time periods and returns a dictionary containing wet area calculations

and related properties.

Another defined calculate wet time function calculates the wet time (the time

the levels the sewage are affected by a rain event) for each sensor. The function

determines the starting and ending points of precipitation from the database

data. It determines the wetness on the ground due to the effect of precipitation

within a certain period, estimated considering the dimension of the tributary

basin. A certain level, a threshold of wetness on the ground determines the start

and end times. Then, it creates a mask containing this information and adds

this mask to the relevant data frame. These two specified functions perform the

operations of editing the data of each given measurement point, calculating its

geometric properties, and determining the wet time.

Data scaling is the process of editing variable values to present data in a for-

mat suitable for machine and deep learning models. Because of this, data scaling

improves model performance by standardizing variables in different units and

ranges. First, non-dimensionalized scaling brings data into a specific range or

dimensionless form. This means expressing data in a non-unit (dimensionless)

form over a certain range of scales.

In order to scale the velocity (v) data, firstly, any raw negative values are

excluded, because the particular condition of this network leads to consider

negative velocity highly unlikely. Also, the values smaller than the measurement

error of the sensor are excluded, i.e. values smaller than 0.06 m/s. The velocity

is then scaled to the 95th percentile of all measured values in the measurement

campaign. Because although extremely fast flows are possible in theory, it is not

reasonable to scale these values because they are so rare. These affect learning

metrics as they can greatly affect model learning by increasing the skewness of

the distribution (Jeni et al., 2013).
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� = 95th Percentile of + (4.1)

Escaled =

E

�

(4.2)

V contains each value of all velocity values greater than 0.06 m/s here. The

symbol � represents the 95th percentile from measurements of velocity values.

That is, 95% of the speed values are less than this threshold value. This marks

the limit of speed values that are generally rare, falling outside the top 5% of the

overall distribution of the velocity.

In the second formula, the symbol E represents a single velocity value. This

formula gives a proportional value of a speed value to that measurement relative

to the overall percentile limit of velocity measurements. This indicates the posi-

tion of a particular velocity within the overall velocity distribution. For example,

if this proportional value is greater than 1, this velocity value is an abnormal

value above the 95% limit of the overall velocity distribution. Conversely, if this

proportional value is less than 1, this speed value is considered a normal value

below the 95% limit of the general velocity distribution.

Non-dimensionalize scaling is a scaling technique that ensures the homo-

geneity of the dataset by transforming variables into a specific range. The cus-

tom defined scale linear function performs a normalization operation by linearly

scaling a variable to a specified range, usually in the range [0, 1]. Specifically,

it performs this scaling using the minimum and maximum values of the given

variable. The other custom defined scale non dimension function specifically

handles features and inputs such as ’area’ and ’hr’. This function makes these

features dimensionless by scaling them to specific values over specific time pe-

riods. Then they are scaled by the number of observations, and other columns

are scaled by values in certain range as [0, 1]. This scaling information is stored

for later to check the model’s result in terms of physical unit measures.

Seasonality is a concept that generally refers to the change of a time series

within a certain periodic pattern or repetition. Seasonality of a time series refers

to regular changes or patterns within a specific temporal period. Seasonality

usually occurs during specific periods of time, such as months, weeks, or days

in the year. Also, seasonality can be considered a separate component from the

trend of a time series or random fluctuations. Seasonal patterns often reflect

recurring events or impacts over a period of time. Thats why based on this con-
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cept, the seasonality interval data are separated within the dataset. In order to

do seasonality analysis, observations within a certain time period are examined.

Regular patterns and changes over a period of time are identified. These pat-

terns often show periodic repetitions. These differences are so important based

on typical season weather behaviors or continuous rainy intervals. The seasonal

pattern is distinguished from the general trend of the time series and random

fluctuations. Thus, the specific effects of the seasonal pattern can be better un-

derstood. In the end, defined calculate seasonality function applies seasonality

calculations such as adding virtual values or detrending. Since seasonality is an

important component in time series analysis, defining and managing it correctly

can contribute to a better understanding of the time series and more accurate

forecasting of future values.

In the last part of the data engineering process, tensors are generated for

both input features and output targets by taking into account specified look-

back and look-ahead times. Input tensors are generated with a custom function

for the neural network model. The function contains a specific look-back and

look-ahead time and saves them as numpy files. Then, it also creates charts for vi-

sualization. Also, another tensor-making function creates y_tensors, regression

target tensor based on the specified output parameters, and saves them.

4.3 Input Data Explanation

The neural network model input are given below. These parameters are the

basic features used for training the model and making predictions.

Water level is the first feature for the input of the neural network model. The

water level is indicated by "l" and is the value that determines the water level

in the pipe. The water level is important to understand the degree of filling of

the pipe, and it is an important parameter for further calibrate fluid-dynamic

models. The water level indicates how full or empty the pipe is.

The water flow’s velocity is the value that determines the speed of water in

the pipe. Flow rate indicates how fast water moves from one point to another at

a given time. This parameter is important to calculate the flow-rate, and it is an

important parameter for further calibrating fluid-dynamic models. The water

flow’s velocity is indicated by "v".

The third feature "area" represents the wetted cross-sectional area inside the

pipe and indicates the portion of the inner surface of the pipe in contact with
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the fluid. This value is calculated depending on the shape and dimensions of

the pipe. When evaluating water flow, the internal area of the pipe is important

because it determines the flow rate.

On the other hand, "hr" (hydraulic radius) represents the ratio between the

wet cross-sectional area and the wetted perimeter of the pipe. It signifies the

proportion of the perimeter for which the wet area is in contact with the wall of

the pipe. In this project, it is calculated with this formula 4.3.

HR =

Area

Wetted Perimeter
(4.3)

There is this physical quantity is used in the Manning equation. The Manning

Equation is a fluid mechanics equation that includes factors such as the area, the

hydraulic radius, a coefficient that takes into account the wall roughness, and

the slope of the pipe, if the uniform motion approximation is applicable, hence

if both spatial and temporal acceleration is negligible. This equation is used to

evaluate the movement and flow rate of liquid inside the pipe. "Area" and "hr"

are frequently used parameters in the Manning Equation 4.4 and are important

indicators for understanding the behavior of the liquid in the pipe.

& =

1

=
�'2/3(1/2 (4.4)

In this equation, Q is the flow rate, n is the Manning friction coefficient, A

is the wet cross-sectional area (area), R, hydraulic radius, and S represents the

energy gradient. With this equation, the relation of these two parameters can

be understood and also determined.

The Fourier transform in equation 4.5 is basically used to separate a time-

varying signal into frequency components. In this case, the current level data

already exhibits a time-varying nature. However, thanks to the Fourier trans-

form, periodic or recurring patterns can be detected underlying this change.

The virtual level is obtained by Fourier transform in order to better represent

the recurring patterns within this time series, that is, daily, weekly, or seasonal

changes. This indicates what time of day or period the time falls on, which

determines periods of time when human activity is busy or not. This added

virtual level better represents changes over different periods of time, allowing

the model to learn time-dependent patterns more precisely. This allows changes

over time to be detected more accurately and to react more sensitively to these
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5
Regression Models

5.1 Data Loading

The data loading process is a fundamental step in data science and machine

learning projects and serves as the first stage for data preparation and analysis.

This process involves obtaining and preparing data for subsequent modeling

and analysis.

The data, stored in numpy format, is accessed from specific data files cor-

responding to each measurement point and data type. Numpy is a library in

Python for performing high-performance computations on multi-dimensional

arrays and matrices. Numpy format, on the other hand, refers to a specific file

format used for storing data in a way that’s compatible with the numpy library.

It allows efficient storage and sharing of data, making it particularly useful for

handling large datasets. These data are loaded into a Python data structure,

typically a dictionary. This data structure contains components for each mea-

surement point, including "X" (input data), "Y" (target data), and "dates" (date

information).

5.2 Data Cleaning

Data cleaning is applied primarily to "X" (input data). If the data contains

missing or nonsensical values, such as "NaN" or "-9999," these values are re-

placed with "NaN" or filled forwards and backwards to ensure that the dataset
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is free from incomplete or corrupted entries.

NaN, refers to Not-a-Number, is a term used in mathematics to represent

the undefined or unrepresentable value of a number or data. It is commonly

used in numerical data analysis to indicate situations where a value is invalid,

missing, or uncomputable. NaN serves as a symbol or notation to indicate that

a particular value does not produce a valid result in mathematical operations

such as dividing by zero.

-9999, on the other hand, is a synthetic or placeholder data value frequently

used in the literature. It is often used to indicate missing or unidentified data in

a dataset. This value relates to situations where actual data is missing or cannot

be measured for any reason. It is often used to account for measurement errors,

missing data points, or technical problems during data collection.

These placeholder values, such as -9999, should be taken into account during

data cleansing and processing. Developing strategies to handle missing or erro-

neous data is crucial in many data science applications where such placeholder

values are frequently encountered during data analysis or modeling.

5.3 Data Partition

The dataset is usually divided into training, validation, and testing subsets.

%70 of the data is used for training and %15 of the data is used for validation

and %15 of the data is used for test. This part allows the machine learning model

to be trained using one subset, while the performance of the model is evaluated

on another subset. The data loading process is responsible for creating and

preparing these partitioned datasets.

This process marks a critical initial step in any data analysis or machine

learning project. These steps are necessary to ensure proper loading, cleaning,

and splitting of data, with consequences for the overall success and reliability

of the project.

5.4 Hyperparameters

Hyperparameters can be considered as the settings of a machine/deep learn-

ing model. Hyperparameters are the essential values that user can control how

a model or algorithm behaves, it they also can be considered as setting a person-
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ality for machine/deep learning models. For instance, these settings basically

manage the number of neurons in each layer (nodes), the size of the data/feature

windows (kernel), how the model approaches the data (strides), the learning rate

(how fast the model learns), and many other aspects.

Choosing the correct hyperparameters is crucial because these hyperparam-

eters significantly impact how well the models perform. The right settings

cause the machine learning models to work effectively and produce good re-

sults. However, incorrect settings can make your model act weirdly. That’s

why tuning these hyperparameters correctly is an important decision. It often

involves some trial and error.

Essentially, experimenting is done with different settings in order to see

what set works the best. These settings can also help with speeding up learning,

preventing overfitting (when the model fits the training data too closely), and

other important aspects of model training.

In summary, hyperparameters are the internal settings of machine/deep

learning models. Setting them correctly helps the machine learning model

understand data better and generate better results.

5.5 Overfitting

In the machine learning world, one of the most important phenomena called

overfitting, happens when a machine learning model learns the training data too

well. As an example, it is studying for a test by memorizing the exact answers,

without understanding the underlying concepts. This is an important issue

because when the model encounters new, unseen data, it struggles to give the

correct answers.

In other words, overfitting occurs when a model becomes too specialized in

the training data. It starts capturing the noise or random fluctuations in the

data, thinking these are important patterns. As a result, the predictions will

not perform well on data it has not seen before because it is too focused on the

specific quirks of the training data.

To avoid overfitting, it is crucial to strike a balance. The model is preferred to

learn the general patterns in the data without getting lost in the details. This can

be done by adjusting hyperparameters, increasing the amount of training data,

or using techniques like dropout or regularization. The goal is to ensure that

the model can apply what it has learned to new, unseen data effectively, just like
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understanding the concepts behind the test questions rather than memorizing

answers.

Based on these aspects, this study underscores the significance of hyper-

parameter calibration and configuration as fundamental components of the re-

search methodology. These issues serve as a compass that guides the next stages

of the study in the model setting part. Adjusting the network layers and arrang-

ing the hyperparameters reflects our determination to ensure the robustness and

effectiveness of the model.

5.6 Importing Hyperparameters

Before the model setting, hyperparameters are important respectively how

they will be used in the model. This is a fundamental step in configuring a

neural network, and it introduces and accesses the key hyperparameters crit-

ical to the model’s architecture and performance. These hyperparameters are

respectively, including the number of nodes, kernel size, strides, learning rate,

factor, patience, minimum ratio, epochs, and batch size, play a pivotal role in

shaping the neural network’s capabilities. Selecting these hyperparameters for

our model, a task efficiently executed through the utilization of TensorFlow is

pivotal in crafting a neural network that can robustly meet the specific demands

of our application. The strategic choice of hyperparameter values profoundly

impacts the network’s ability to learn, generalize, and perform with the utmost

accuracy. By delving into the specifics of each hyperparameter and enlight-

ening their significance and influence on the model’s behavior and outcomes,

respectively they are underscored.

5.6.1 Nodes

The hyperparameter of nodes determines the number of neurons used in

a neural network for one layer. A higher number of nodes allows the neural

network model to capture more complex patterns and relationships within the

data, but it can also lead to increased computational complexity and potential

overfitting. The practice of selecting the number of nodes as powers of 2 in a

neural network is rooted in computational efficiency and structural simplicity.

By sticking to this practice, calculations align with the binary system, enhancing

computational efficiency and memory usage. Moreover, it results in a straight-
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forward, symmetric structure, aiding in model management and understanding.

Even though this guideline is common for lots of studies and projects, it is not a

strict rule and can be adjusted based on the specific requirements of the problem

in use. In this study it is examined to determine to be 16 or 32 after testing both

configurations. Using 16 nodes provided similar results while being computa-

tionally less demanding, making it a more practical choice instead of using as

32.

5.6.2 Kernel Size

The kernel hyperparameter refers to the size of the filter used in convolutional

layers. It plays a crucial role in feature extraction. Larger kernel sizes capture

more extensive features, while smaller sizes focus on finer details in the data. In

this work, the kernel is set to 3. In this case, a kernel size of 3 means a 3x3 filter

is applied in the convolution operation. Larger kernel sizes capture broader

features but come at a higher computational cost. A 3x3 kernel is effective in

capturing local patterns in the data. For instance, it is adept at recognizing

small, intricate details in the input data. Additionally, it’s computationally

efficient and requires fewer parameters compared to larger kernel sizes, which

can be advantageous for faster model training and less risk of overfitting.

5.6.3 Strides

Strides hyperparameter determine how the filter moves across the input data

during convolution. A smaller stride captures more information but increases

computational requirements, while a larger stride reduces the output size and

might result in information loss. The strides value is set to 2. A value of 2

implies that the filter moves 2 pixels at a time. Larger strides reduce the output

size but might lead to information loss. Choosing 2 is also a common behavior

to help in simplifying the model and speeding up the computation.

5.6.4 Learning Rate

The learning rate is a crucial hyperparameter in the training of neural net-

works because the learning rate determines the step size at which the model’s

weights are updated during the optimization process. It plays a pivotal role in
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5.6.8 Epochs

Epochs are a pivotal element of the training process for neural network

models. Epochs represent the number of complete passes the neural network

model makes through the entire training dataset. Training for an increased

number of epochs allows the model to ingest and adapt from the data more

comprehensively, potentially resulting in improved performance. However, it is

vital to note that this improvement is not boundless. Excessive epochs can have

negative consequences, leading mainly to overfitting.

In this study, the neural network model is intentionally trained for 2000

epochs. The selection of this substantial epoch count is founded on careful con-

sideration of various hyperparameters like learning rate, factor, and patience.

The model continues to train until it reaches a saturation point determined by

these hyperparameters. It is crucial to strike a balance; the number of epochs is

judiciously set to optimize performance while mitigating the risk of overfitting.

An epoch signifies one complete cycle through the entire training dataset. The

key principle here is that extending training to more epochs can bolster perfor-

mance, yet it simultaneously heightens the potential of overfitting, a challenge

meticulously addressed in this work.

5.6.9 Batch Size

Batch size is also an important hyperparameter of the training process of a

neural network, determining the number of samples utilized in each iteration.

Its selection plays a crucial role in model training. In this work, the batch size

is configured to be 1024, indicating that during each iteration of training, the

model processes 1024 samples.

Choosing this particular batch size is the result of an intentional decision.

A larger batch size can potentially speed the training process up by reducing

the frequency of weight updates. This leads to a more efficient utilization of

computational resources, as fewer updates consume less memory. However, a

larger batch size also requires a higher memory capacity.

Backward, smaller batches provide more frequent weight updates, which

can enhance the model’s adaptability. Nevertheless, they require more memory

and can lead to more extended training durations due to the increased update

frequency.
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In this study, a batch size of 1024 is adopted for several reasons. Firstly, the

server’s Random Access Memory (RAM) is robust, easily accommodating this

batch size. Secondly, it strikes a balance between training efficiency and com-

putational resource utilization. By opting for a larger batch size than common

selections like 64, 128, 256, or 512, the training process remains relatively speedy

while efficiently leveraging the server’s high RAM capacity. This choice is made

with the goal of optimizing both computational resource use and training ef-

ficiency. In the conclusion part, there is a comparison graph of 1024 and 2048

batch sizes.

5.6.10 Dropout

Dropout is a technique often employed in neural network training to mitigate

overfitting. It involves temporarily removing, or "dropping out," a fraction of

neurons during each training iteration. This procedure prevents the network

from becoming overly reliant on specific neurons and, in turn, enhances its gener-

alization capabilities. In the present study, a dropout rate of 0.2 is implemented.

This means that during training, approximately 20% of neurons are randomly

deactivated in each iteration, providing a controlled level of regularization to

prevent overfitting. This technique complements the other hyperparameters,

such as learning rate, in fine-tuning the model and is a fundamental element in

ensuring its robust performance.

Dropout is not typically considered a hyperparameter in the same category

as learning rate, batch size, or the number of hidden layers. Instead, dropout is

a regularization technique used during the training of neural networks.

Hyperparameters are settings or configurations that are determined before

the training process begins, and they directly impact the training process. Ex-

amples of hyperparameters include learning rate, batch size, and the number of

neurons in a layer.

Dropout, on the other hand, is a regularization technique that is applied

during training to prevent overfitting. It is a technique used to regulate the

flow of information in the neural network by randomly deactivating a certain

percentage of neurons during each training iteration. While dropout involves

setting a dropout rate (e.g., 0.2 to deactivate 20% of neurons), it’s more of a

regularization method than a hyperparameter.

So, in summary, dropout is not typically considered a hyperparameter; it’s a
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regularization technique used alongside hyperparameters to improve the train-

ing and generalization of a neural network.

5.7 Loss Function in Neural Networks

Loss function, also known as the cost function, is an important phenomenon

in the training process of neural networks. The loss function acts as the guide

for the neural network during the learning process, quantifying the error or

cost associated with the model’s predictions. The objective of training aims to

minimize this cost, narrowing the gap between predicted outputs and actual

inputs of the neural network model.

For regression tasks, the common loss functions are Mean Squared Error

(MSE) and Root Mean Squared Error (RMSE). MSE measures the average of the

squared differences between predicted and actual values. MSE is widely used to

assess the accuracy of regression models. On the other hand, RMSE is the square

root of MSE, providing a measure of the standard deviation of these differences.

RMSE is often preferred as it presents errors in the same units as the predicted

values, offering a more intuitive understanding of the neural network model’s

performance.

5.8 Custom Loss Function In This Project

A special loss function has been prepared for a unique purpose in this project

and this regression task. This specialized custom loss function computes the

RMSE, a common metric for assessing the variance between model predictions

and actual values in regression tasks. In addition to this common technique, a

mask is used. This mask is a reasonable addition that handles scenarios where

the true values (y_true) are indicated as -9999, which is a common practice when

dealing with missing or invalid data. The mask ensures that only valid data

points (where y_true is not equal to -9999) contribute to the loss calculation.

This feature is particularly valuable when working with real-world datasets

where missing or invalid data points can pose challenges. This new custom

loss function ignores the -9999 values, as they should not influence the loss

computation. This approach effectively handles missing data during the training

of your model.
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5.9.2 ReduceLROnPlateau

The ReduceLROnPlateau callback dynamically adjusts the learning rate based

on the model’s performance. It does this by monitoring the validation loss. If no

improvement is observed in the validation loss for a specific number of epochs

(as defined by the patience parameter), the learning rate is decreased by a factor

(factor). This process aims to help the model converge effectively by fine-tuning

the learning rate as training progresses.

5.9.3 TensorBoard

The TensorBoard callback enables powerful visualization during training.

It logs various metrics such as loss, accuracy, and more. These metrics are

then visualized using TensorBoard, which provides insights into the model’s

performance and helps identify potential issues like overfitting.

Figure 5.4: TensorBoard interface.
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5.9.4 EarlyStopping

The EarlyStopping callback is designed to prevent overfitting. It monitors

the validation loss, and if there is no improvement over a specified number of

epochs (controlled by patience), it stops training early. Additionally, this callback

allows you to restore the model’s weights to the best achieved during training,

ensuring that you save the most optimal model.

Collectively, these callbacks are crucial in optimizing and monitoring the

training process of your neural network model, ensuring that you achieve the

best performance while preventing overfitting and other potential issues. This

comprehensive use of callbacks is fundamental to a successful deep learning

pipeline.

5.10 Convolutional Neural Network Model Archi-

tecture

The first model is designed as the CNN regression model for time-series data

and uses Conv1D layers for feature extraction. The Conv1D function is part of

the Keras library, which is integrated into the TensorFlow deep learning frame-

work. It is accessed and imported through TensorFlow and Keras libraries. This

function is a one-dimensional convolution function, and it is a neural network

operation that applies a filter to input data along a single dimension, capturing

local patterns or features within sequential data. The general model architecture

includes input layers for multiple measurement points, convolutional layers for

feature extraction, and output layers for predictions.

Convolutional layers are primarily useful for time series analysis due to their

effectiveness in recognizing temporal patterns within data. This is achieved by

sharing parameters, reducing complexity, and facilitating robust feature learning

even across variations. Additionally, in deeper architectures, these layers capture

hierarchical features by starting from basic models and gradually learning more

complex data features.

Conv1D is a type of convolutional layer used in Convolutional Neural Net-

works, which are primarily associated with sequential data such as time series

and text data rather than image data. CNNs are designed to handle grid-

structured data. Images and other multi-dimensional data can be given as an
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example to this. However, when sequential data or time series data is achieved

or encountered in a project or study, such as audio signals, text, or even one-

dimensional sensor data, a modification is required. In this case, Conv1D is

used to adapt the convolution operation to the one-dimensional nature of the

data.

Conv1D implements one-dimensional convolutions and it is specifically de-

signed for sequences and time series. Filters of Conv1D are applied to a small

part of the input data at a time by sliding this filter across the entire array. This

operation allows the neural network to detect local patterns in the data when

making it suitable for capturing features within that sequential data. Conv1D

is applied using libraries like TensorFlow or Keras in Python and in this study,

it is applied in this way. Since sequential data in time series format was used as

input from various measurement points in this study, Conv1D is chosen as an

effective layer for feature extraction from these sequential data sets. The aim is

to capture meaningful temporal patterns and dependencies in the data.

At first, the shape of the input data is determined and it will be used as the

tensor shape. This tensor shape variable represents the shape of the training data

for a single measurement point. The reason for using tensors is fundamental

in deep learning due to their ability to represent and process input and output

data efficiency. Tensors are multi-dimensional arrays that provide an all-around

structure for handling complex mathematical operations in neural networks.

Afterward, three lists store the input layers, output layers, and intermediate

layers to be concatenated, respectively. Also, the measurement points are looped

for each measurement point (mp) to be performed in these layers. For each

measurement point, an input layer is created. These input layers receive the

data for each measurement point from iterative mp loops.

In the following step is the most crucial one. For each measurement point,

a series of five convolutional layers is added. These layers are important for

extracting features from the input data. In these convolutional layers, there are

set key parameters such as kernel size, activation function, strides, and padding.

These parameters define how the convolution is performed. Nodes, strides, and

the kernel size are mentioned in the previous hyperparameter section.
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5.10.1 Activation Function

An activation function is the fundamental component that makes the neural

network become non-linear. Besides, it allows the neural network to learn from

complex patterns and make decisions for the prediction output. It determines

the output of a node or neuron and whether it is activated or not. Without

activation functionality, a neural network becomes limited to linear transforma-

tions, making it less capable of learning complex patterns and relationships in

data. There are several types to define the activation function. Basically, they

are the sigmoid function, hyperbolic tangent (tanh) function, Rectified Linear

Unit (ReLU) function, and Leaky ReLU function.

Sigmoid function is represented as (x) and it is a mathematical function that

maps any real-valued number to a value between 0 and 1. That is why the

output of the sigmoid function range is accepted as (0, 1). The real reason for

using it in the final phase of the layers is, that it maps the output to a probability

range. Therefore, the sigmoid function is used in the output layer of binary

classification and logistic regression models. The reason for this study is a

regression task, the sigmoid function is used in the last, final convolution layer

of each model architecture. Its formula 5.1 is given below.

�(G) =
1

1 + 4−G
(5.1)

The Hyperbolic Tangent (tanh) function is a mathematical function that is

also used in neural networks. It is similar to the sigmoid function but it maps

the outputs as real-valued numbers to a range between -1 and 1, (-1, 1). This

characteristic makes it zero-centered, which can be beneficial for optimization

in determined conditions.

tanh(G) =
4G − 4−G

4G + 4−G
(5.2)

In neural networks, tanh is often used to ensure nonlinearity in hidden

layers. It performs particularly well when the data distribution has negative

and positive values. Like the sigmoid function, tanh is used to compress the

output of a neuron, a node, into a specific range, allowing the network to model

complex relationships in the data.

The Rectified Linear Unit (ReLU) function is a very commonly used activation

function in the hidden layer of the neural networks. Contrary to the sigmoid
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function, the range of the ReLU function is [0, ). For any positive input, ReLU

returns the input value, and for any negative input, it returns zero. ReLU

ensures non-linearity by ensuring that the input signal is directly positive and

zero otherwise. This function is defined as below.

5 (G) = max(0, G) (5.3)

ReLU has been widely used in neural network architectures due to its sim-

plicity and efficiency. It helps reduce the problem of lost slope, allowing faster

and more effective training. Zero outputs for negative inputs also cause sparsity

in the network, which can be useful in certain cases. Due to its advantageous

cases, it is also used in the hidden layers of all neural network architectures of

this study.

Leaky ReLU (Rectified Linear Unit) is an activation function that is also used

in neural networks. It operates similarly to the traditional ReLU but with a key

differentiation. This difference is that it allows a small, non-zero gradient for

negative inputs, preventing the dying ReLU problem. In this function, if the

input is positive, it remains unchanged, but if it is negative, i is multiplied by

a small positive constant (). This controlled linearity for negative values helps

avoid issues with inactive neurons in deep networks, making Leaky ReLU an

important option for several applications.

Padding adds extra pixels around the input, preventing information loss at

the borders. ’valid’ (no padding) can reduce output size, while ’same’ (zero-

padding) maintains spatial dimensions. In this study, with padding=’causal’, it

is specific padding useful for sequence data because sequence data is used as

the input, preventing future data influence. Basically, causal padding is used to

maintain the temporal order of data.

After all these iterative layers for each measurement point, these layers are

concatenated. In this step, the concatenation process combines the features

extracted from each measurement point into a single tensor.

Afterwards, two additional convolutional layers are added. The first one has

32 nodes and the second convolutional layer has 64 nodes. The aim of this step in

order to enhance the model’s capacity to capture progressive complex patterns

and features in the last convolutional layer before the Global Max Pooling Layer.

Between these two layers, there is so important regularization layer used, it is

called as Dropout layer.
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5.11 CNN - LSTM Model Architecture

Long Short-Term Memory (LSTM) is a type of recurrent neural network

(RNN) layer. It particularly stands for processing and making predictions based

on sequential data. LSTM is highly effective at capturing dependencies over

time, making it an excellent choice when working with time series data. The

reason for this is that LSTM and CNN combine this architecture and is also

being investigated.

As the second neural network model architecture, LSTM layers at the begin-

ning of this neural network are initialized. The LSTM layer is utilized in Keras

and TensorFlow by importing the library and calling the layer directly using

tensorflow.keras.layers.LSTM. It is a part of the Keras library within TensorFlow

and can be easily accessed and configured within a neural network model.

In the beginning, the input layer and the LSTM layer are defined for each

measurement point (mp) in the network for the dataset. The LSTM layer has

64 units and returns sequences, which means it provides output at each time

step. This setup is suitable for learning from the sequential nature of your data.

For the function, the number of 64 is used for LSTM units input. This number

specifies the number of memory cells or units within the LSTM layer and it can

be changed due to the use cases. A higher number of units allows the LSTM

layer to capture more complicated patterns within the sequential data. A higher

number than 64 may cause computational complexity and a less number than 64

may cause the data understandability of the LSTM layers. Due to this situation,

the number of 64 is selected in this study. There is another attribute called as

return sequences that is marked as True. This signifies that the LSTM layer

returns sequences rather than just the final output. This is an important point

that the subsequent layers also require sequential data as input, as is often the

case in this kind of sequence prediction task.

In the following, after the LSTM layer, the process goes with a similar archi-

tecture to the previous CNN model. Convolutional layers are used for feature

extraction and they are especially beneficial for identifying local patterns in the

dataset. Therefore, five convolutional layers again are applied to each mea-

surement point’s input. Between those CNN layers, in order to regularize the

neurons, the Dropout technique is applied with the rate of 0.2 here. Afterward,

the GlobalMaxPooling1D layer takes the stage after the consecutive convolu-

tional layers. It is again in order to reduce the dimensionality of the data by
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5.12 CNN Model With Residual Connections Archi-

tecture

Residual connections also can be named as skip connections, provide alter-

nate ways for information flow and transition in a neural network. Characteris-

tically, each layer in a neural network receives the output of the previous layer.

However, in a residual connection, the input from an earlier layer is directly

added to the output of the following layer. This creates a shortcut or redundant

path that allows the network to bypass certain layers in the neural network.

By mentioning the advantages, the main advantage of these connections oc-

curs in reducing the vanishing gradient problem that is often encountered in

very deep networks during training. When the neural networks grow deeper, the

gradients can decrease during the back propagation which can prohibit effective

learning. Residual connections provide shorter paths for gradient propagation,

facilitating smoother gradient flow and thus aiding the optimization process.

This method makes it easier to train deeper neural networks by preserving gra-

dients, allowing the neural network model to learn more complex features and

improving overall performance. In this model architecture, residual connections

are incorporated and mainly they are applied as follows.

Residual connection in a neural network implemented in Python using li-

braries like Keras or TensorFlow. In Keras or TensorFlow, the Add() function

is used to sum the tensor outputs from different layers. This function creates a

Keras tensor or TensorFlow operation that adds the values of the inputs, and in

the case of residual connections, it allows the addition of the output of one layer

to another. The Add() function is part of the functional API in Keras, and it’s

utilized to merge layers or tensor outputs within a neural network model.

The model implementation starts again with the definition of the input layers

as in previous models. These are applied for each measurement point. For each

measurement point, five convolutional layers are added similarly to previous

models. The distinguishable part of this architecture from others is the usage

of residual connections. After the five convolutional layers, the results are

concatenated using the Concatenate layer. This step brings together the features

extracted from each convolutional layer.

Afterward, two convolutional layers in a sequence are followed by the inser-

tion of the output from the previous Concatenate layer. This sequence is called
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5.13 Model Compilation

In order to configure a neural network before the training step, compilation

is the essential process. Depending on the library usage, there is a method

provided by Keras as part of TensorFlow that is specifically used to compile the

Keras model. This function from the Keras library within TensorFlow, allows

the user to define fundamental parameters required for the training phase. It

requires three primary arguments: the optimizer function, the loss function,

and optional metrics.

The choice of optimizer defines the method used to update the model pa-

rameters during training to minimize the resulting and computed loss function.

The optimizer can be chosen from a variety of options and each has different

characteristics that affect training speed and model performance. The adap-

tive nature of the Adam optimizer is particularly useful in scenarios where the

data distribution may change over time or the gradients of different parameters

may be poorly distributed. This adaptability often helps to converge faster and

more efficiently than traditional optimizers such as Stochastic Gradient Descent

(SGD). Furthermore, the Adam optimizer adaptively adjusts the learning rates

for each parameter based on the average of its past gradients. This adaptability

is particularly suited to dynamic or changing data conditions, which is crucial

when dealing with a system such as a sewage network where data patterns may

change depending on environmental factors or specific network conditions.

The Adam optimizer combines the advantages of both AdaGrad and RM-

SProp. For sewage networks, conditions, and data points can have varying

importance and frequent changes. Adam’s combination of adaptive learning

rates and momentum allows for more balanced and efficient updates to the pa-

rameter space of the neural network model. Besides, in practical use cases in the

deep learning world, Adam optimizer has showcased efficient performance, es-

pecially in environments where data characteristics fluctuate. The self-adapting

learning rate can handle varying gradient magnitudes, and this optimizer is

capable of improving model convergence. Lastly, the Adam optimizer provides

customization by enabling the user in order to fine-tune parameters like learning

rates and betas for different scenarios. This flexibility strengthens the optimiza-

tion process that is specifically designed for the subtle dynamics of networks,

meeting potential changes and requirements in the system.

To summarize, the choice of Adam optimizer in complex network-related
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projects provides adaptability, efficiency, and the ability to handle potential

variations and changes in system data, making it a suitable choice to optimize

the performance of the neural network. The other input of the compilation

process is the loss function. It measures how well the model performs on

training data. During training, the goal is to minimize this function, and the

selection for this regression task is made and defined as a specific loss function

in the earlier stages.

The last input is the metrics and it is optionally used. Normally, metrics like

accuracy or precision can be used to monitor the model’s performance during

training. However, for this study, observation is made based on the loss function.

At the end of the model compilation, to sum up, the compile function al-

lows customization with optional arguments for metrics or loss weights. By

configuring the neural network model using this function, the neural network

becomes ready for the subsequent training phase, defining how it learns from

the provided data.

5.14 Model Fitting

Model fitting is the training phase of a deep learning model on a given

dataset, where the model adjusts its parameters to make predictions and capture

underlying patterns. All the sections described earlier have been organized for

this part of the study. Through an iterative process, the model learns from the

training data, aiming to minimize the difference between predicted and actual

outcomes, consequently optimizing its ability to make accurate predictions on

new, unseen data.

Data inputs and outputs are initialized according to a multi-stage iteration of

training, validation, and testing partition. As the training parameters, the batch

size and the epoch number are given to the fit function. Batch size specifies

the number of samples processed before the neural network model’s internal

parameters are updated. The epochs variable denotes the number of complete

passes through the training dataset. The details of these parameters are given

before. Fit function has a verbose mode that the verbose argument determines

the level of output displayed during the training process. In this task, it is set

to 1. It means that it shows a progress bar for each epoch. Besides, the shuffle

parameter is set to False, and it provides that the data’s order remains unchanged

during the training process. When working with time-based data, the shuffle
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is generally set to False setting. This move ensures that the sequence of events

remains in its original order. For tasks involving time series, like forecasting

in sewage network systems in this work case, maintaining this time order is

important. This allows the neural network model to accurately learn patterns

and dependencies over time, helping to make more reliable forecasts.

In summary, this fit method runs the training loop for the defined number of

epochs by updating the neural network model’s weights based on the defined

optimizer function and loss function set during the compilation stage. The

performance metrics as custom loss function are evaluated and recorded on

both training and validation datasets throughout the training process.

5.15 Model Evaluation and Prediction

Predict function is used from the Keras and TensorFlow libraries. This

function works by using a trained neural network to make predictions based

on new or unseen data. This method plays a significant role in evaluating

model performance and generating forecasts.

At the first stage, evaluate function is used from the Keras and TensorFlow li-

brary. This assesses the neural network model’s performance on the test dataset.

This function typically computes loss and accuracy metrics, depending on the

model’s configuration, providing insight into how well the model generalizes to

unseen data. For this study, it goes on the custom loss function.

In the prediction phase, the predict function generates the predictions on the

dataset. It employs the trained model to produce forecasted outputs for the three

different phases: training, validation, and testing datasets. These predictions are

made and evaluated against the actual outputs to assess the model’s accuracy,

generalization, and suitability for the specific task at hand.
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6
Conclusions

In the conclusion part, the aim is mentioned again and the related results and

their explanations are explained. In this SWS, data from the measurement points

corresponding to this project task SES 07, SES 08, and SES 12 are utilized. As

depicted in the network diagram, the data from these three measurement points

(SES 07, SES 08, and SES 12) holds significance. Challenges arising from sensor

issues, measurement errors, or environmental complexities are meticulously

addressed to ensure a comprehensive understanding of the network and data,

minimizing errors in the process.

Before presenting the optimal results, illustrative examples of well-predicted

parameters are provided for each model. These examples aim to demonstrate

the effective performance of the three distinct model architectures.
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