

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale

«Valutazione delle proprietà antighiaccio di ricoprimenti a base di silice modificata»

Tutor universitario: Prof. Alessandro Martucci

Laureando: Giacomo Rosson

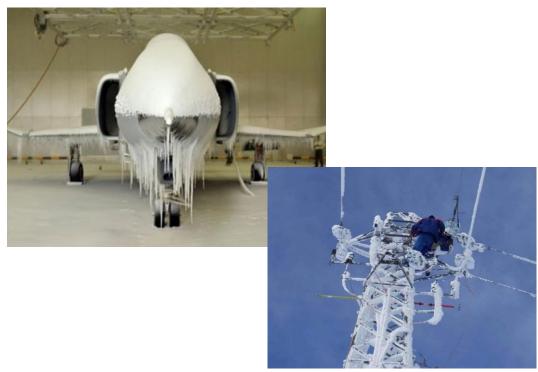
Padova, 09/07/2024

Introduzione e Obiettivi del Lavoro

www.dii.unipd.i

Ghiacciamento problematico:

- Aeronautica;

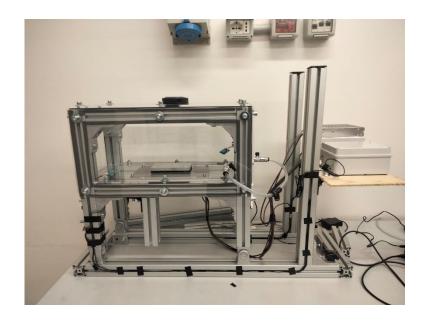

- Infrastrutture;

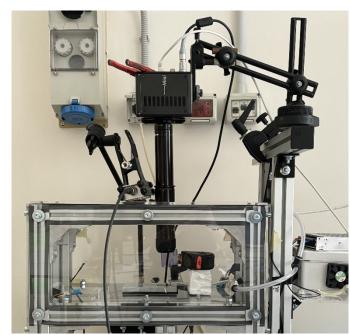
- Sistemi energetici.

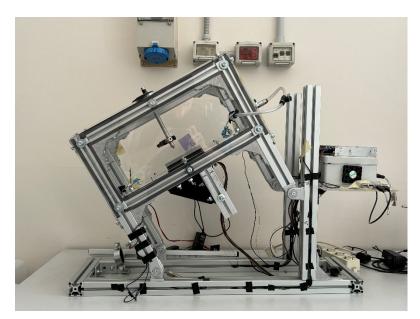
Strategie di de-icing e anti-icing.

Caratteristiche superfici ghiacciofobiche:

- Idrorepellenza;
- Delay of ice formation;
- Low ice adhesion.




-O-

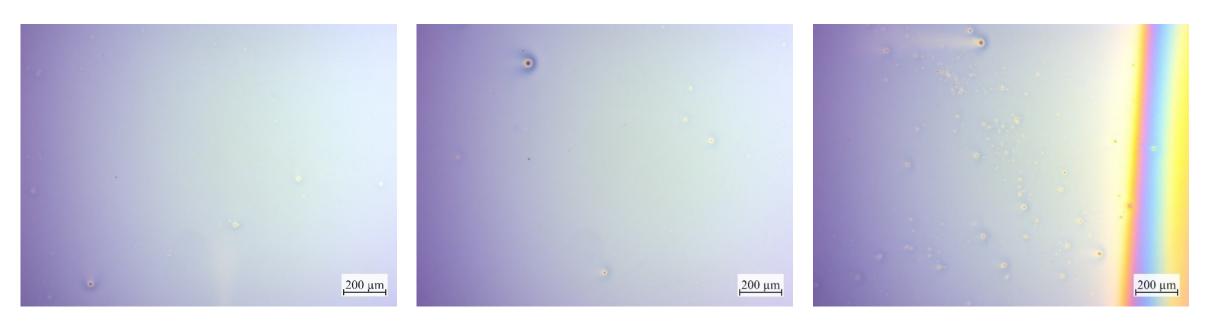

Caratterizzazione di ricoprimenti a base di silice modificata, portando a compimento test e a RT e sottozero, con uno sguardo maggiormente critico verso le proprietà ghiacciofobiche.

Camera climatica home-made, nelle configurazioni per ice delay (a sx) e la valutazione del numero dei siti di nucleazione e dell'angolo di scorrimento (al centro e a dx, rispettivamente)

MATERIALI

	Quantità sperimentali	mol% silani
EtOH	10.6534 g	
TEOS [ml]	1.55	34.9
MTES [ml]	2,4	60.6
	Agitazione per 30' a 500 rpm	
HAc [ml]	0.383	
OTES [ml]	0.285	4.5
	Agitazione per 30' a 500 rpm	
HNO ₃ [ml]	1.3	
Volume totale [ml]	19.420	

Stirring: 24h


Dip coating: velocità = 5 cm/min, RH = 20-30%, RT

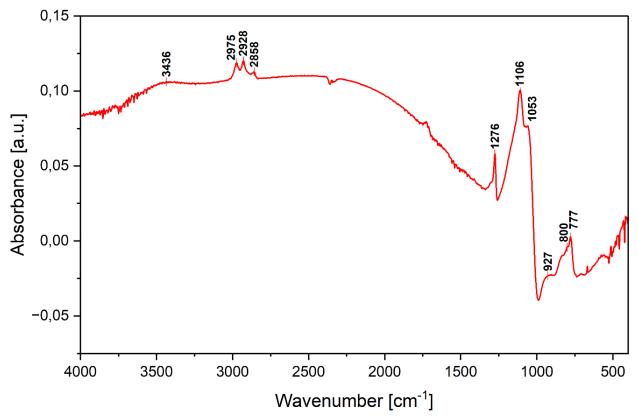
Trattamento termico: 1h a 150°C

Microscopia ottica

Immagini al microscopio ottico (5x) di diversi campioni di MTO-2: primo campione (a sx), quarto campione (al centro e a dx), rispettivamente al centro e in corrispondenza del bordo.

Ellissometria

$$h_s=135.7\pm 2\,nm$$

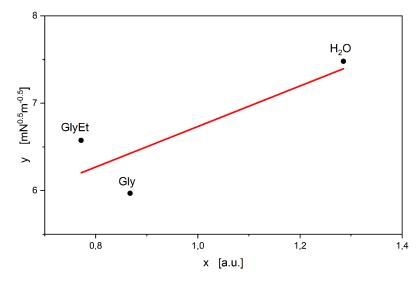


RISULTATI — SPETTROSCOPIA FT-IR

Numero d'onda [cm ⁻¹]	Tipo di vibrazione
777	Si-CH ₃ bending
800	Si-O-Si bending
927	Si-OH
1053-1106	Si-O-Si stretching
1276	Si-CH ₃ stretching
2858	C-H stretching
2928-2975	-CH ₃ stretching
3436	О-Н

Spettro FT-IR del rivestimento MTO-2.

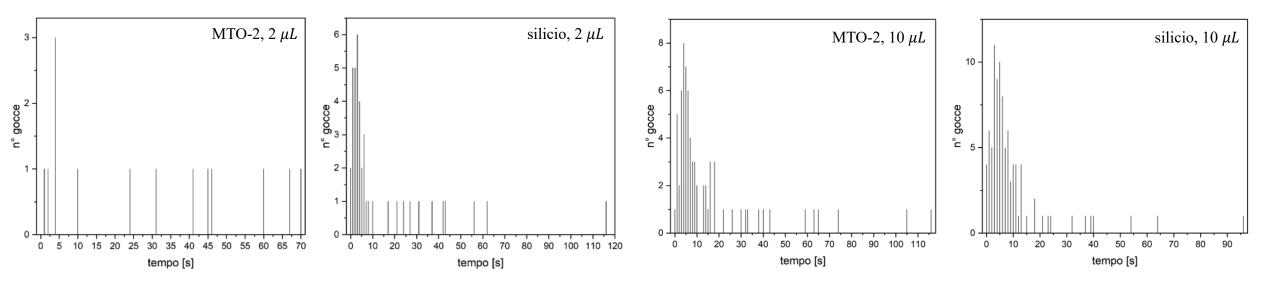
DIPARTIMENTO DI INGEGNERIA INDUSTRIALE


Contact angles

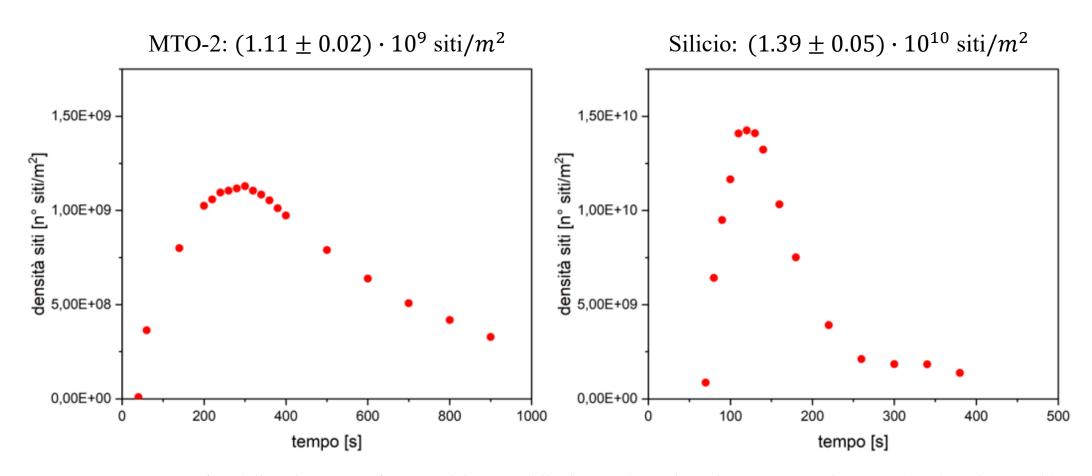
 Statico [°]	ACA [°]	RCA [°]	Isteresi [°]
82.1 ± 1.5	89.7 ± 1.0	70.2 ± 1.7	19.5

Incremento di ~30° rispetto alle medesime proprietà valutate per silicio.

Surface Energy

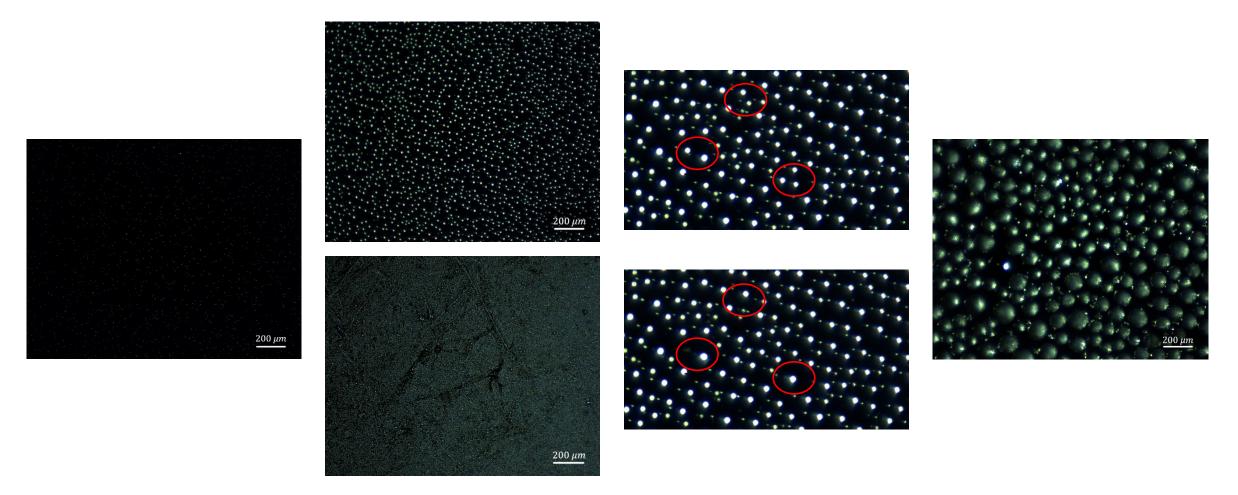

$$\gamma_s = 24.86 \, mN/m$$
 $\gamma_s^p = m^2 = 19.48 \, mN/m; \quad \gamma_s^d = q^2 = 5.38 \, mN/m$
 $y = \frac{\gamma_l(1 + \cos\theta)}{2\sqrt{\gamma_l^d}}; \quad x = \frac{\sqrt{\gamma_l^p}}{\sqrt{\gamma_l^d}}$

Rappresentazione grafica del modello di OWRK.



Volume [μL]	Media tempi MTO-2 [<i>s</i>]	N° gocce con $t_g > 120 s$	Media tempi silicio [s]	N° gocce con $t_g > 120 s$
2	29.2	86	13.3	55
4	30.9	73	15.7	29
6	23.0	55	15.1	22
10	15.9	28	10.4	7

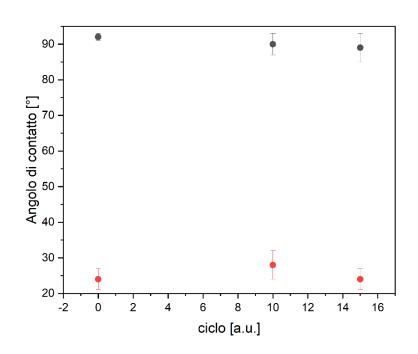
Rappresentazione grafica dei tempi di ghiacciamento di gocce d'acqua di 2 e 10 μ L su MTO-2 (1/3) e silicio (2/4), escluse le gocce aventi $t_g > 120$ s.



Rappresentazione grafica dell'andamento in funzione del tempo della densità di siti di nucleazione attivi di MTO-2 (a sx) e silicio (a dx).

Immagini (zoom 7x) dei siti di nucleazione di MTO-2, ricavate dai video relativi al processo di attivazione. Sx: 60 s, MTO-2. Centro sx: confronto dei plateaux; sopra, 280 s, MTO-2; sotto, 120 s, silicio. Centro dx: particolare nucleazione; sopra, 600 s, sotto, 602 s, MTO-2. Dx: 1140 s, MTO-2.

RISULTATI — SLIDING ANGLE E FROSTING


Sliding angle

Temperatura [°C]	RH [%]	Angolo di scivolamento [°]
25	34	30
15	10	45
0	11	50
-5	11	50

Frosting

-20°C per 20'

Rappresentazione grafica della variazione degli angoli di contatto di MTO-2 in funzione del ciclo di ghiacciamento – sghiacciamento. In nero riportato l'ACA, in rosso l'isteresi.

11

MTO-2

Probabilità di ghiacciamento ridotta

Minore densità dei siti di nucleazione

Scivolamento di acqua a tutte le temperature valutate

SILICIO

Maggiore probabilità di ghiacciamento

Maggiore densità dei siti di nucleazione

Non si registra scivolamento

12

OUTLOOKS

PDA e NPs

Substrato rivestito di PDA, che garantisce l'adesione delle NPs e favorisce lo sghiacciamento per effetto fototermico

SLIPS – slippery lubricant-infused porous surface Eccellente idrorepellenza, isteresi molto bassa e angoli di scivolamento <5° Proprietà antighiaccio e anticorrosione

SCALS – solid covalently-attached liquid surface Bassa isteresi (<5°) Proprietà antighiaccio