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Chapter 1

Abstract

The Minimalist Foundation is a foundation for constructive mathematics obtained from
Martin-Löf's type theory by de�ning primitive propositions so that choice principles are
not validated.

It was ideated by Maria Emilia Maietti and Giovanni Sambin in 2005 ([8]) and completed
to a two-level system by Maietti in 2009 ([7]).

In this thesis we show that in the intensional level of the Minimalist Foundation (for
short mTT) we can prove Hedberg's theorem stating that types whose propositional equality
is decidable enjoy the principle of uniqueness of identity proofs.

The proof is obtained by adapting the original proof by Hedberg in [13] to the Minimalist
Foundation. As a consequence we show that no choice principle is needed to prove the
theorem.

It is important to have shown this theorem for mTT because it is expected to imply -
as in Homotopy Type Theory - that the classical principle of excluded middle is not valid
in the extension of the Minimalist Foundation with the addition of a collection of sets and
Vladimir Voevodsky's Univalent Axiom - stating an equivalence between isomorphisms on
a set with the set of identity proofs of the equality of the set with itself (thought of as a
code of a universe).

This thesis is divided into two parts: a cultural section (chapters 2, 3 and 4), writ-
ten by Maietti and taken from [4], explaining the origins and motivations of type theory
and its di�erent versions and a section (chapter 5) introducing the preliminaries to then
demonstrate Hedberg's theorem inspired by what was done in Homotopy Type Theory (see
[13]).
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Chapter 2

The Type Theory

Today's type theory is a branch of both mathematics and computer science. The main
object of study of the type theory is the formal system which classify the mathematical
entities through the "types" and their elements called "terms". It was originally introduced
by Bertrand Russell in early twentieth century as a reliable foundation of mathematics in
response to the contradictions noted in some set formulations.

2.1 Distinctive properties of the type theory

We underline some characteristics that distinguish the type theories from the theories of
axiomatic sets in the style of Zermelo-Fraenkel.

Distinction between types and their elements. The main novelty of the type
theory with respect to the theories of axiomatic Zermelo-Fraenkel ensembles, including
those in constructive version, is that while in the latter both the mathematical entities and
their elements are without distinction sets (for example the number "3" is a set as much
as the set of natural numbers), in type theory the elements of the types generally are not
types and are described separately, and evenly the equalities between types and between
terms are described separately, even if in a mutually recursive way between them.

Primitive de�nition of function of Church lambda-calculus.

Another very relevant aspect that distinguishes many of the current type theories from
set theory is the adoption of the notation of Church Lambda-calculus that allows to de�ne
functions primitively as lambda-terms by associating them with a type that establishes the
domain and codomain. If the type theory has enough constructs to interpret the logic of
the �rst order with the possibility of de�ning functional relations, then one can ask whether
any functional relation R(x, y) (x ∈ A, y ∈ B) de�nable in the theory between two types A,
B describes the graph of a lambda-function with domain A and codomain B. The principle
that a�rms that every functional relation is the graph of a lambda-function goes under the
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8 CHAPTER 2. THE TYPE THEORY

name of axiom of unique choice and it is not derivable in all the type theories (for example
it is not derivable in the "Minimalist Foundation" described later.

Multiple interpretations of type theory: set, computation, logic. Some type
theories admit more than one interpretation which explains the nature of their types and
terms:

• A set interpretation according to which types represent sets and their terms the
corresponding elements. This interpretation allows to consider the type theory as a
set theory.

• A computational interpretation according to which types are seen as types of. pro-
gramming language data and their terms as programs which produce outputs of their
data type. This interpretation allows to consider the type theory as a programming
language.

• A logical interpretation according to which types represent propositions and their
terms encodings of their demonstrations. This interpretation allows to consider the
type theory as a logical calculation.

Typically the type theories admit computational interpretation for all types while only
some types are seen as sets and still others like propositions.

Propositions as types. The reading mentioned in the previous entry according to
which logical propositions can be represented as types of theirs demonstrations coded by
appropriate terms was introduced by H. Curry. It allows us to represent logical connectives
like type builders. For example the implication corresponds to the type of lambda-calculus
functions between the type of the antecedent and that of the consequent. In addition, the
abstraction operation of a proposition in a proof that allows us to deduce an implication
corresponds to the lambda-abstraction of the Church lambda-calculus relative to the term
encoding the initial derivation.

The correspondence between propositions and types and between proofs of a proposition
and typed terms is very natural if the Prawitz natural deduction formalism is adopted as a
formal system for propositional deductions.

Predicates as types.

An important novelty of Russell's type theory with respect to set theory it was to adopt
Frege's idea of representing a predicate P (x) as a propositional function from a domain
of de�nition of the variable x, represented as a type, with values in a type of all the
propositions.

If the type theory admits the de�nition of a single proposition as a type in the sense of
Curry, then the type of propositions is actually a type of types, sometimes called "universe"
of propositions.
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Further developing this idea, W. Howard and N. de Bruijn �rst and P. Martin-Löf
then introduced in type theory the representation of predicates as dependent types. This
representation has in turn inspired a great innovation inconceivable in the formalisms of
logic and set theory then known. This novelty consists in de�ning predicates that depend
on types that are themselves predicates or propositions or predicates dependent on proofs
of propositions/predicates coded as terms.

Consistent with the representation of predicates as dependent types also the universal
and existential quanti�cations and even propositional equality can be de�ned in type theory
as constructors of dependent types. In particular the intensional representation of the type
of propositional equality in Martin-Löf's Type Theory allowed to establish important links
between the type theory and the theory of topographical homotopia that we will brie�y
deal with in following.
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Chapter 3

Martin-Löf's Type Theory

In the 1970s, Per Martin-Löf introduced a type theory called Intuitionistic Type Theory.
Currently this theory is simply called Martin-Löf's Type Theory and in the following
we will refer to it with MLTT.

A relevant aspect of theMLTT theory that has attracted the interest of both computer
scientists and mathematicians as well as philosophers and linguists, and in recent years also
of a medal winner Fields as Vladimir Voevodsky, is described in a publication by Martin-
Löf from 1982 entitled "Computer programming and constructive mathematics" in which
the author proposes his type theory of both as a paradigm of a programming language
and at the same time as a set theory suitable for formalizing constructive mathematics, for
example constructive analysis developed by E. Bishop, with the possibility of extracting
the computational content of constructive demonstrations through programs. This double
identity of MLTT as a "foundation for mathematics" and "(functional) programming lan-
guage" inspired the introduction of programs called proof-assistant able to help a user to
formalize a math demonstration within computer using the MLTT language.

Description of types and terms through judgments. Martin-Löf's type theory
MLTT is not described as a theory of �rst-order logic such as for example the set theory of
Zermelo-Fraenkel. MLTT is instead described in a primitive way through four main forms
of judgments

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

to which a judgment is added to derive the Γ contexts of the form

Γ cont

The contexts include the empty list and lists of assumptions in the form

x1 ∈ A1, x2 ∈ A(x1), ...xn ∈ An(x1, ..., xn1)

with a telescopic trend, in the sense that in such lists the �rst assumption a left consists
of a variable x1 typed with a closed type A1, while the second assumption consists of a

11
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variable x2 typed with a type A(x1) which may depend from the assumption x1 and so on
up to the last assumption given by the variable xn which is typed with a type that may
depend on all previous assumptions.

Furthermore the meaning of the four main forms of judgments is the following:

• the judgement A type [Γ] states that A is a type in the context Γ;

• the judgement A = B type [Γ] states that the type A is equal by de�nition to the
type B in the context Γ;

• the judgement a ∈ A [Γ] states that the term a is of type A in the context Γ;

• the judgement a = b ∈ A [Γ] states that the term a of type A is equal by de�nition
to the term b also of type A in the context Γ.

The type theory then consists of inference rules to derive Γ and then contexts judgments
in the forms listed above. These judgments of Martin-Löf's Type Theory admit at least
two interpretations: a computational and a set one. They also allow an interpretation of
the connectives and quanti�ers of intuitionistic logic.

According to the computational interpretation the types are identi�ed as types of data
and their elements as programs dependent on context input.

According to the set interpretation, the types not depending on a context represent sets
and context-dependent types represent families of sets indexed by the context while their
elements are simply seen as elements of the set or family of sets indexed by the context.

The interpretation of logical connectives and logical quanti�cations given by Martin-
Löf in his type theory is an extension of that given by Curry and Howard. According to
this interpretation some types represent propositions dependent on a context, that is, they
represent predicates and their elements are proof-term or encodings of their demonstrations
depending on the assumptions of the context on which they are de�ned.

The variety of interpretations of the concept of type and its elements presented is at
the base of the connections of the theory of types with logic, computer science and math
foundation.

3.1 Set theory in the Martin-Löf's Type Theory.

We will underline all the characteristic aspects of the Martin-Löf type theory as a set theory
of constructive mathematics.

Predicativity of the Martin-Löf Type Theory.

All types of MLTT in its various versions are predicative in the sense that they are all
inductively generated by constructors to whom it is associated an induction principle with
a recursive scheme to de�ne functions from the type introduced to values in types already
de�ned previously.
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The inductive de�nition scheme of MLTT types and terms follows that of the natural
deduction of Gentzen-Prawitz through introduction rules to which they are associated,
according to a uniform scheme, rules of elimination and rules of de�nitive equality of the
manufacturers introduced.

Two forms of equality between terms. A novelty peculiar to Martin-Löf's type
theory is the distinction of two forms of equality between terms and types. We have already
mentioned that, in MLTT, given two terms of type A under a certain context

a ∈ A [Γ] b ∈ A [Γ]

we can express on them a judgment of de�nitional equality

a = b ∈ A [Γ]

which, we recall, also says that the terms a and b are computationally equal. But given the
aforementioned terms within MLTT we can also form a type dependent on propositional
equality

Id(A, a, b) type [Γ]

which is to be considered as a real proposition whose elements denote proofs of the propo-
sition of equality of the term a with b. In particular if we can derive a proof-term p of this
type, or if we succeed to derive a judgment of the type in the theory

p ∈ Id(A, a, b) [Γ]

then we can conclude that the term a is propositionally equal to the term b.
Martin-Löf introduced two di�erent versions of his type theory

• an intensional version;

• an extensional version.

that are distinguished precisely by the rules of propositional equality in relation to the fact
of being able to make equivalent the derivability of de�nitional equality a = b ∈ A [Γ]
between two terms a ∈ A [Γ] and b ∈ A [Γ] with validity of their propositional equality
through a proof-term, for example p, for which derives p ∈ Id(A, a, b) [Γ].

The extensional version of the Martin-Löf's Type Theory.

This version is characterized by the fact that de�nitional equality of two terms is equivalent
to the validity of the relative propositional equality in the same terms.

The intensional version of the Martin-Löf's Type Theory.

This version is called intensional in that the de�nitional equality of two terms only implies
the existence of a proof-term of the propositional equality relative to the same terms and
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admits examples of terms that are equal from a propositional point of view but are not
de�nitional equal or in other words they are not computationally identical. Another feature
of the intensional version is that it is not said that proof-terms of the propositional equality
type are unique, that is, the so-called proof-irrelevance holds for the type propositional
equality; indeed for this type it is said that is proof-relevance.

Dependence of the equality type on other equality types. A further peculiar
characteristic of the propositional equality type introduced by Martin-Löf in all its versions
is that the type propositional equality may depend on the proof-term of any proposition,
including another propositional equality type. In other words we can consider the proposi-
tional equality type of the propositional equality type of two terms

Id(Id(A, a, b), p, q) type [Γ]

and then the propositional equality type of the propositional equality type of an other
equality type of two terms

Id(Id(Id(A, a, b), p, q), l, k) type [Γ]

and so on by iterating the propositional equality type at will. This dependence gives rise
to a sort of in�nitive structure of weak groupoid.



Chapter 4

Univalent Foundation and Homotopy

Type Theory

Vladimir Voevodsky in 2006 built a model of Martin-Löf's intensional type theory in sim-
plicial sets. This model, called "homotopic", exalts in an original way two peculiar charac-
teristics of Martin-Löf's propositional equality type

• its proof-relevance;

• the possibility of forming the propositional equality type of other propositional equal-
ity types thus allowing to associate each type with one in�nitary structure of weak
groupoid.

According to the homotopic model the types are interpreted as types of homotopy of topo-
logical spaces and propositions are homotopic types of their proofs. In particular, this model
valids an axiom called univalence that is the main feature of the Univalent Foundation pro-
posed by Voevodsky. The idea of the Univalent Foundation has inspired the introduction of
theHomotopy Type Theory, in shortHoTT, as extension of the Martin-Löf type theory
with the axiom of univalence which essentially it guarantees that isomorphic structures can
be considered equal. This theory appears ideal for developing a synthetic version and con-
structive theory of classical homotopy since the axiom of univalence essentially asserts that
the propositional equality type of two types thought as topological spaces is homotopically
equivalent to homotopic equivalences between the two types.

An important advancement in type theory o�ered by the Homotopy Type Theory is the
conception of the so-called higher inductive types built according to an inductive generation
scheme that besides generating the elements of the new type it also generates elements of
its propositional equality type that represents the homotopic theory. In particular these
types include the generation of speci�c types of quotients.
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Chapter 5

The Minimalist Foundation

The Minimalist Foundation, in brief MF, is a formal two-tier system conceived by Maria
Emilia Maietti and Giovanni Sambin in 2005. It is intended as a foundation basic for con-
structive mathematics that has the property of being compatible with the most important
constructive foundations known in the literature. Both of its levels are Martin-Löf depen-
dent type theories. In the following we set out some reasons motivating the construction of
MF, his main peculiarities and in what MF di�ers from the Martin-Löf's Type Theory.

Why introduce a minimalist foundation. The idea of building one foundation
for constructive mathematics di�erent from those in literature and also equipped with two
levels, it is mainly due to two needs:

• the need to introduce a formal language that is as similar as possible to that of
informal mathematical practice without giving up interpreting it in natural way in
an intensional type theory, like that of Martin-Löf, whose demonstrations have an
obvious computational content and can be easily veri�ed at the computer by a proof-
assistant;

• the need to provide the constructive mathematics of a minimalist foundation compat-
ible with the most relevant constructive foundations known in the literature, given
the absence of a common reference foundation for constructive mathematicians as the
set theory of Zermelo-Fraenkel for classic mathematicians and the presence of con-
structively acceptable principles in some constructive foundations but not in others.

Concept of two-level foundation.

In order to satisfy these needs it was proposed as a notion of a foundation for constructive
mathematics a formal two-tier system with:

1. an intensional level consisting of an intensional theory with a computational interpre-
tation that makes evident the extraction of the computational content of his demon-
strations; this level, if based on a type theory like the intensional one of Martin-Löf,

17
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can be thought of as the basis of a proof-assistant for interactive computer formaliza-
tion of his tests;

2. an extensional level consisting of a set theory in a language close to the usual math-
ematical practice and equipped with an interpretation in the intensional level able
to restore at the intensional level the computational information not present at the
extensional level, thus proving that the extensional level is obtained by abstraction
from intensional one according to the principle of forget-restore. More speci�cally,
as in the example of the Minimalist Foundation, it is required that the sets of the
extensional level result interpretable in the intensional level as quotients of sets of
the intensional level and in particular the predicates of the extensional level result
interpretable as trivial quotients of the corresponding predicates at the intensional
level.

This division seems to recall the two versions of Martin-Löf's Type Theory. In fact,
both the intensional and the extensional level of the Minimalist Foundation are described
as particular theories of the Martin-Löf types based on its intensional and extensional
versions respectively.

Main di�erences between the type theories MF and the Martin-Löf's Type

Theory. We brie�y mention some distinctive features of MF compared to the Martin-Löf's
theory:

• both MF levels are compatible with predicative and classical theories, in the sense
that their extensions with the principle of excluded middle are still predicative, con-
trary to the Martin-Löf type theory that with the addition of classical principles
becomes impredicative;

• both MF levels are independent from choice axioms and choice rules, including the
unique choice axiom and the unique choice rule, as a result of the fact that the
propositions are de�ned as primitive types;

• the intensional MF type theory can be interpreted in the most relevant theories of
known intensional types preserving the intended meaning of sets and propositions;

• the extensional MF type theory is interpretable in the most relevant ones set the-
ories known as foundations for constructive mathematics or classical preserving the
intended meaning of sets and propositions;

• the intensional level of MF is predicative in the sense of S. Feferman about the order
su�cient to prove its consistency;

• MF is intended as a basic system for developing reverse mathematics for constructive
mathematics; therefore MF is not intended as a foundation exhaustive to develop
all possible constructive mathematics but rather like a minimalist foundation to be
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extended appropriately with any extra set construction necessary for development
desired mathematician (in particular with all the possible de�nitions of inductive and
coinductive sets and propositions useful for a predicative formalization of constructive
mathematics).

5.1 The intensional level mTT

The typed calculus mTT is written in the style of Martin-Löf's Type Theory by means of
the usual four kinds of judgements, that is the type judgement (expressing that something
is a speci�c type), the type equality judgement (expressing when two types are equal),
the term judgement (expressing that something is a term of a certain type) and the term
equality judgement (expressing the de�nitional equality between terms of the same type),
respectively, all under a context Γ. The precise rules of mTT are given in [7]. Types include
collections, sets, propositions and small propositions and hence the word type is only used
as a meta-variable, namely

type ∈ {col, set, prop, props}

Therefore, in mTT types are actually formed by using the following judgements:

A set [Γ] A col [Γ] A prop [Γ] A props [Γ]

The general idea is to de�ne a many-sorted logic, but now sorts include both sets and
collections. The main di�erence between sets and collections is that sets are those collections
that are inductively generated, namely those whose most external constructor is equipped
with introduction and elimination rules, and all of their collection components are so.
According to this view it is allowed that elimination rules of sets act also towards collections.
These sets will be closed under the empty set, the singleton set, strong indexed sums,
dependent products, disjoint sums, lists. These constructors are formulated as in Martin-
Löf's type theory with the modi�cation that their elimination rules vary on all types. In
order to view sets as collections, we add the rule set-into-col

A set
A col

The logic of the theory is described by means of propositions and small propositions. Small
propositions are those propositions closed only under intuitionistic connectives and quan-
ti�cation over sets. To express that a small proposition is also a proposition we add the
subtyping rule props-into-prop

A props
A prop

Since we restrict our consideration only to mathematical propositions, it makes sense to
identify a proposition with the collection of its proofs. To this purpose we add the rule
prop-into-col
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A prop

A col

However, proofs of small propositions are inductively generated. Hence, small propositions,
are though of as sets of their proofs by means of the rule props-into-set

A props
A set

The rules props-into-set and prop-into-col allow us to form the strong indexed sum of
a small propositional function φ(x) props [x ∈ A], or simply of a propositional function,∑

x∈A
φ(x)

both on sets and on collections. Given that we will de�ne a subset as the equivalence class
of a small propositional function, then the props-into-set rule is relevant to turn a small
propositional function on a set into a set, and hence to represent functions between subsets
and to represent families indexed on a subset. The same can be said about subcollections.
Moreover, the identi�cation of a proposition with the collection (or set) of its proofs allows
also to derive all the induction principles for propositions depending on a set, because set
elimination rules can act towards all collections including propositions.

Below we give some examples of mTT entities, recalling that the entire mTT system
along with its rules can be found in [7] and for easiness, the piece of context common to
all judgements involved in a rule is omitted and typed variables appearing in a context are
meant to be added to the implicit context as the last one.

5.2 True proposition

Between the two truth values, only the false proposition is prede�ned in mTT. Thus, we
show that the true proposition can be constructed with the rules of mTT.

We de�ne the true proposition as > := ⊥ → ⊥ while its formation rule is

F->) > props

and the introduction rule is
I->) ? ∈ >
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5.3 Propositional Equality

Another type of proposition is the propositional equality. There are various ways to describe the propositional equality
and one of these is Leibniz propositional equality whose elimination rule is a restricted form of the elimination rule of the
Martin-Löf propositional equality:

Leibniz Propositional Equality

A col a ∈ A b ∈ AF-Id)
Id(A, a, b) prop

a ∈ AI-Id)
idA(a) ∈ Id(A, a, a)

C(x, y) prop [x ∈ A, y ∈ A] a ∈ A b ∈ A p ∈ Id(A, a, b) c(x) ∈ C(x, x) [x ∈ A]
E-Id)

ElId(p, c) ∈ C(a, b)

C(x, y) prop [x ∈ A, y ∈ A] a ∈ A c(x) ∈ C(x, x) [x ∈ A]
C-Id)

ElId(idA(a), c) = c(a) ∈ C(a, a)

To interpret logic in type theory, and in particular to make theorems valid with equality of intuitionistic predicative logic,
it is su�cient to interpret predicative equality with the propositional equality of Leibniz described above, that is the
prede�ned propositional equality. However, the elimination of Leibniz equality is not exactly the associated inductive
elimination to its introduction rules. The propositional equality formulated by Martin-Löf has an elimination rule that
approximates better the induction associated with the introduction rule of the propositional equality. This equality is
described by the following rules:

Martin-Löf's Propositional Equality

A col a ∈ A b ∈ AF-IdML)
IdML(A, a, b) prop

a ∈ AI-IdML)
idA(a) ∈ IdML(A, a, a)
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C(x, y, z) prop [x ∈ A, y ∈ A, z ∈ IdML(A, x, y)] a ∈ A b ∈ A p ∈ IdML(A, a, b) c(x) ∈ C(x, x, idA(x)) [x ∈ A]
E-IdML)

ElIdML
(p, c) ∈ C(a, b, p)

C(x, y, z) prop [x ∈ A, y ∈ A, z ∈ IdML(A, x, y)] a ∈ A c(x) ∈ C(x, x, idA(x)) [x ∈ A]
C-IdML)

ElIdML
(idA(a), c) = c(a) ∈ C(a, a, idA(a))

There is another description of the propositional equality, called Propositional Equality with Path Induction, whose
rules include an elimination rule that turns out to be the rule of elimination associated with the introduction rule:

Propositional Equality with Path Induction

A col a ∈ A b ∈ AF-Idp)
Idp(A, a, b) prop

a ∈ AI-Idp)
idA(a) ∈ Idp(A, a, a)

C(y, z) prop [y ∈ A, z ∈ Idp(A, a, y)] a ∈ A b ∈ A p ∈ Idp(A, a, b) c ∈ C(a, idA(a))
E-Idp)

ElIdp(p, c) ∈ C(b, p)

C(y, z) prop [y ∈ A, z ∈ Idp(A, a, y)] a ∈ A c ∈ C(a, idA(a))
C-Idp)

ElIdp(idA(a), c) = c ∈ C(a, idA(a))

De�nition 5.3.1 (Equivalence of types). A type A is said to be equivalent to a type B in mTT if we can derive two terms

pf1 ∈ B [x ∈ A] and pf2 ∈ A [y ∈ B].

De�nition 5.3.2 (Isomorphism of types). A type A is said to be isomorphic to a type B in mTT if two terms

f(x) ∈ B [x ∈ A] g(y) ∈ A [y ∈ B]

can be derived such that there are proof-term pf1 and pf2 whereby they are derived:

pf1 ∈ Id(A, x, g(f(x))) [x ∈ A] pf2 ∈ Id(B, y, f(g(y))) [y ∈ B]
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Theorem 5.3.1. Leibniz Propositional Equality, Martin-Löf's Propositional Equality and Propositional Equality with Path

Induction are equivalent.

Proof. We prove this statement in a circular way, �rstly we show that given a term for Leibniz Propositional Equality we
have one for Martin-Löf's Propositional Equality

IdML(A, x, y) prop [x ∈ A, y ∈ A] a ∈ A b ∈ A p ∈ Id(A, a, b) idA(x) ∈ IdML(A, x, x) [x ∈ A]
E-Id)

ElId(p, (x).idA(x)) ∈ IdML(A, a, b)

Next we show that given a term for Martin-Löf's Propositional Equality we have one for Propositional Equality with Path
Induction

Idp(A, x, y) prop [x ∈ A, y ∈ A, z ∈ IdML(A, x, y)] a ∈ A b ∈ A q ∈ IdML(A, a, b) idA(x) ∈ Idp(A, x, x) [x ∈ A]
E-IdML)

ElIdML
(q, (x).idA(x)) ∈ Idp(A, a, b)

In the end we show that given a term for Propositional Equality with Path Induction we have one for Leibniz Propositional
Equality

Id(A, a, y) prop [y ∈ A, z ∈ Idp(A, a, y)] a ∈ A b ∈ A r ∈ Idp(A, a, b) idA(a) ∈ Id(A, a, a)
E-Idp)

ElIdp(r, idA(a)) ∈ Id(A, a, b)

Theorem 5.3.2. Martin-Löf's Propositional Equality and Propositional Equality with Path Induction are isomorphic.

Proof. We call

f(r) := ElId(ElIdp(r, idA(a)), (x).idA(x)) ∈ IdML(A, a, b) [r ∈ Idp(A, a, b)]
g(q) := ElIdML

(q, (x).idA(x)) ∈ Idp(A, a, b) [q ∈ IdML(A, a, b)]

Firstly, for r ∈ Idp(A, a, b) we construct the following prooftree:

Id(Idp(A, a, y), z, g(f(z))) prop [y ∈ A, z ∈ Idp(A, a, y)] a ∈ A b ∈ A r ∈ Idp(A, a, b) π1
E-Idp)

ElIdp(r, c) ∈ Id(Idp(A, a, b), r, g(f(r)))
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where π1 is the prooftree easily constructed using C-Id), subT) and conv) and knowing that

idIdp(A,a,a)(idA(a)) ∈ Id(Idp(A, a, a), idA(a), idA(a))

in order to obtain that idIdp(A,a,a)(idA(a)) is also a term for Id(Idp(A, a, a), idA(a), g(f(idA(a)))). Conversely we have:

Id(IdML(A, x, y), z, f(g(z))) prop [x ∈ A, y ∈ A, z ∈ IdML(A, x, y)] a ∈ A b ∈ A q ∈ IdML(A, a, b) π2
E-IdML)

ElIdML
(q, (x).c(x)) ∈ Id(IdML(A, a, b), q, f(g(q)))

where π2 is the prooftree easily constructed using C-Id), subT) and conv) and knowing that

idIdML(A,x,x)(idA(x)) ∈ Id(IdML(A, x, x), idA(x), idA(x)) [x ∈ A]

in order to obtain that idIdML(A,x,x)(idA(x)) is also a term for Id(IdML(A, x, x), idA(x), f(g(idA(x))) [x ∈ A].

Theorem 5.3.3. Equivalence of Martin-Löf's Propositional Equality and Propositional Equality with Path Induction rules

Proof. First of all we see that formation and introduction rules are exactly the same. Now, one of the hypothesis of
E-IdML) and C-IdML) is that C(x, y, z) is a proposition for every x, y ∈ A and z ∈ IdML(A, x, y) so clearly we have that
also C(a, y, z) with a ∈ A �xed.

C(a, y, z) prop [y ∈ A, z ∈ IdML(A, a, y)] a ∈ A b ∈ A p ∈ Idp(A, a, b) c ∈ C(a, a, idA(a))
E-Idp)

ElIdp(p, c) ∈ C(a, b, p)

C(a, y, z) prop [y ∈ A, z ∈ IdML(A, a, y)] a ∈ A c ∈ C(a, a, idA(a))
C-Idp)

ElIdp(idA(a), c) = c ∈ C(a, a, idA(a))

So we have shown that Propositional Equality with Path Induction rules imply Martin-Löf's Propositional Equality rules.
Then, the converse:

c ∈ C(a, idA(a)) π1
E-→)

Ap→(ElIdML
(p, λ→w

C(x,idA(x)).w), c) ∈ C(b, p)

where π1 is

C(x, idA(x))→ C(y, z) prop [x ∈ A, y ∈ A, z ∈ IdML(A, x, y)] a ∈ A b ∈ A p ∈ IdML(A, a, b) π2
E-IdML)

ElIdML
(p, λ→w

C(x,idA(x)).w) ∈ C(a, idA(a))→ C(b, p)
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and π2 is

w ∈ C(x, idA(x)) [x ∈ A,w ∈ C(x, idA(x))]
I-→)

λ→w
C(x,idA(x)).w ∈ C(x, idA(x))→ C(x, idA(x)) [x ∈ A]

while the conversion rule is

c ∈ C(a, idA(a)) w ∈ C(a, idA(a)) [w ∈ C(a, idA(a)] C(a, idA(a)) prop
βC-→)

Ap→(λ→w
C(a,idA(a)).w, c) = c ∈ C(a, idA(a))

We will omitt subscripts ML and p while dealing with Martin-Löf's Propositional Equality and Propositional Equality
with Path Induction since they are equivalent to Leibniz Propositional Equality.

5.3.1 Properties

Below we give some useful properties of the propositional equality.

Lemma 5.3.1 (Inverse). For every collection A, every a, b ∈ A and p ∈ Id(A, a, b) there is a term p−1 ∈ Id(A, b, a), such
that (idA(a))−1 = idA(a) ∈ Id(A, a, a) for each a ∈ A.

Proof. The proof follows from the following prooftrees:

Id(A, y, x) prop [x ∈ A, y ∈ A] a ∈ A b ∈ A p ∈ Id(A, a, b) idA(x) ∈ Id(A, x, x) [x ∈ A]
E-Id)

ElId(p, (x).idA(x)) ∈ Id(A, b, a)

Id(A, y, x) prop [x ∈ A, y ∈ A] a ∈ A idA(x) ∈ Id(A, x, x) [x ∈ A]
C-Id)

ElId(idA(a), (x).idA(x)) = idA(a) ∈ Id(A, a, a)

Lemma 5.3.2 (Concatenation). For every collection A, every a, b, c ∈ A and every p ∈ Id(A, a, b) and q ∈ Id(A, b, c)
there is a proof-term p · q ∈ Id(A, a, c), such that idA(a) · idA(a) = idA(a) ∈ Id(A, a, a) for any a ∈ A.

Proof. The proof follows from the following prooftree:
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q ∈ Id(A, b, c) π1
E-∀)

Ap∀(Ap∀(ElId(p, (x).λ∀z
A.λ∀w

Id(A,x,z).w), c), q) ∈ Id(A, a, c)

where π1 is

c ∈ A π2E-∀)
Ap∀(ElId(p, (x).λ∀z

A.λ∀w
Id(A,x,z).w), c) ∈ ∀w∈Id(A,b,c)Id(A, a, c)

π2 is

∀z∈A∀w∈Id(A,y,z)Id(A, x, z) prop [x ∈ A, y ∈ A] a ∈ A b ∈ A p ∈ Id(A, a, b) π2
E-Id)

ElId(p, (x).λ∀z
A.λ∀w

Id(A,x,z).w) ∈ ∀z∈A∀w∈Id(A,b,z)Id(A, a, z)

π3 is

π4 ∀w∈Id(A,x,z)Id(A, x, z) prop [x ∈ A, z ∈ A]
I-∀)

λ∀z
A.λ∀w

Id(A,x,z).w ∈ ∀z∈A∀w∈Id(A,x,z)Id(A, x, z) [x ∈ A]

and π4 is

w ∈ Id(A, x, z) [x ∈ A, z ∈ A,w ∈ Id(A, x, z)] Id(A, x, z) prop [x ∈ A, z ∈ A,w ∈ Id(A, x, z)]
I-∀)

λ∀w
Id(A,x,z).w ∈ ∀w∈Id(A,x,z)Id(A, x, z) [x ∈ A, z ∈ A]

while the conversion rule is

idA(a) ∈ Id(A, a, a) w ∈ Id(A, a, a) [w ∈ Id(A, a, a)] Id(A, a, a) prop [w ∈ Id(A, a, a)]
βC-∀)

Ap∀(Ap∀(ElId(idA(a), (x).λ∀z
A.λ∀w

Id(A,x,z).w), a), idA(a)) = idA(a) ∈ Id(A, a, a)

Lemma 5.3.3. Suppose A is a collection, that a, b, c, d ∈ A and that p ∈ Id(A, a, b) and q ∈ Id(A, b, c) and r ∈ Id(A, c, d).
We have the following terms:

1. pf1 ∈ Id(Id(A, a, b), p, p · idA(b)) and pf2 ∈ Id(Id(A, a, b), p, idA(a) · p)

2. pf2 ∈ Id(Id(A, b, b), p−1 · p, idA(b)) and pf3 ∈ Id(Id(A, a, a), p · p−1, idA(a))

3. pf3 ∈ Id(Id(A, a, b), (p−1)−1, p)
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4. pf5 ∈ Id(Id(A, a, d), p · (q · r), (p · q) · r)

Proof. We prove these statements with Path Induction:

1.
Id(Id(A, a, y), z, z · idA(y)) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A b ∈ A p ∈ Id(A, a, b) π1

E-Id)
ElId(p, idId(A,a,a)(idA(a))) ∈ Id(Id(A, a, b), p, p · idA(b))

where π1 is obtained from idA(a) = idA(a) · idA(a) ∈ Id(A, a, a). The other equality is proven similarly.

2.
Id(Id(A, y, y), z−1 · z, idA(y)) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A b ∈ A p ∈ Id(A, a, b) π2

E-Id)
ElId(p, idId(A,a,a)(idA(a))) ∈ Id(Id(A, b, b), p−1 · p, idA(b))

where π2 is obtained from (idA(a))−1 · idA(a) = idA(a) ∈ Id(A, a, a). The other equality is similar.

3.
Id(Id(A, a, y), (z−1)−1, z) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A b ∈ A p ∈ Id(A, a, b) π3

E-Id)
ElId(p, idId(A,a,a)(idA(a))) ∈ Id(Id(A, a, b), (p−1)−1, p)

where π3 is obtained from ((idA(a))−1)−1 = idA(a) ∈ Id(A, a, a).

4.
Id(Id(A, a, y), p · (q · z), (p · q) · z) prop [y ∈ A, z ∈ Id(A, c, y)] c ∈ A d ∈ A r ∈ Id(A, c, d) π4

E-Id)
ElId(r, idId(A,a,c)(p · q)) ∈ Id(Id(A, a, d), p · (q · r), (p · q) · r)

where π4 is the prooftree obtained from idId(A,a,c)(p · q) ∈ Id(Id(A, a, d), p · q, p · q) and applying subT) and conv) in
order to obtain that idId(A,a,c)(p · q) ∈ Id(Id(A, a, d), p · (q · idA(c)), (p · q) · idA(c))

Lemma 5.3.4. Suppose that f(x) ∈ B [x ∈ A] is a function. For any a, b ∈ A and p ∈ Id(A, a, b) there is a term

pf ∈ Id(B, f(a), f(b)).

Moreover, for each a ∈ A we have f(idA(a)) = idB(f(a)).

Proof. We construct the following prooftree:
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Id(B, f(x), f(y)) prop [x ∈ A, y ∈ A] a ∈ A b ∈ A p ∈ Id(A, a, b) idB(f(x)) ∈ Id(B, f(x), f(x)) [x ∈ A]
E-Id)

ElId(p, (x).idB(f(x))) ∈ Id(B, f(a), f(b))

Id(B, f(x), f(y)) prop [x ∈ A, y ∈ A] a ∈ A idB(f(x)) ∈ Id(B, f(x), f(x)) [x ∈ A]
C-Id)

ElId(idA(a), (x).idB(f(x))) = idB(f(a)) ∈ Id(B, f(a), f(a))

Set f(p) := ElId(p, (x).idB(f(x))) ∈ Id(B, f(a), f(b)) [p ∈ Id(A, a, b)]

Lemma 5.3.5 (Transport). Suppose that P is a proposition family over a collection A and that p ∈ Id(A, a, b). Then

there is a term p∗ ∈ P (a)→ P (b).

Proof. Since P is a proposition family over A, P (a) is a proposition for every a ∈ A and then we have:

P (a) prop [x ∈ A] P (b) prop [y ∈ A]
F-→)

P (x)→ P (y) prop [x ∈ A, y ∈ A] a ∈ A b ∈ A p ∈ Id(A, a, b) π
E-Id)

ElIdp(p, (x).λ→z
P (x).z) ∈ P (a)→ P (b)

where π is

z ∈ P (x) [x ∈ A, z ∈ P (x)] P (x) prop [x ∈ A]
I-→)

λ→z
P (x).z ∈ P (x)→ P (x) [x ∈ A]

Set p∗ := ElIdp(p, (x).λ→z
P (x).z) ∈ P (a)→ P (b) [p ∈ Id(A, a, b)]

Corollary 5.3.4. (idA(a))∗ is the identity:

Proof. We have seen before that P (a)→ P (a) is a proposition.

P (a) prop [x ∈ A] P (b) prop [y ∈ A]
F-→)

P (x)→ P (y) prop [x ∈ A, y ∈ A] a ∈ A π
C-Id)

ElIdp(idA(a), (x).λ→z
P (x).z) = λ→z

P (a).z ∈ P (a)→ P (a)
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5.4 Natural numbers

In our foundation we can construct the set of natural numbers N with the rules of mTT; in fact, the principal idea is to
de�ne N as List(N1) and to derive its rules from List ones. We start constructing the Formation rule; for S) we know that
N1 is a set and then we have

N1 setF-list)
List(N1) set

We can now de�ne N := List(N1).
Next, in order to build elements of N, we use Introduction rules, I1-list) and I2, as follows:

N setI1-list) ε ∈ N

n ∈ N ? ∈ N1I2-list)
cons(n, ?) ∈ N

Let 0 := ε and succ(n) := cons(n, ?) be the "zero" and the "successor". We obtain the remaining rules of N eliminating
the assumptions that hold in our foundation. Summing up we have:

F-N) N set

I1-N) 0 ∈ N

n ∈ NI2-N)
succ(n) ∈ N

A(x) col [x ∈ N] n ∈ N a ∈ A(0) b(x, y) ∈ A(succ(x)) [x ∈ N, y ∈ A(x)]
E-N)

ElN(n, a, b) ∈ A(n)

A(x) col [x ∈ N] a ∈ A(0) b(x, y) ∈ A(succ(x)) [x ∈ N, y ∈ A(x)]
C1-N)

ElN(0, a, b) = a ∈ A(0)

A(x) col [x ∈ N] n ∈ N a ∈ A(0) b(x, y) ∈ A(succ(x)) [x ∈ N, y ∈ A(x)]
C2-N)

ElN(succ(n), a, b) = b(n,ElN(n, a, b)) ∈ A(succ(n))
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5.4.1 Properties

Now, we de�ne a propositional family:

props col m ∈ N π1 π2E-N)
ElN(m,ElN(n,>,⊥), (y).ElN(n,⊥, y)) ∈ props

where π1 is

props col n ∈ N > ∈ props ⊥ ∈ propsE-N)
ElN(n,>,⊥) ∈ props

and π2 is

props col n ∈ N ⊥ ∈ props y ∈ props [y ∈ props]
E-N)

ElN(n,⊥, y) ∈ props [y ∈ props]

We call

code(m,n) := ElN(m,ElN(n,>,⊥), (y).ElN(n,⊥, y)) ∈ props [m ∈ N, n ∈ N]

By conversion rule C-N) we have:

code(0, 0) = >
code(succ(m), 0) = ⊥
code(0, succ(n)) = ⊥

code(succ(m), succ(n)) = code(m,n)

We also de�ne by recursion a dependent function r(n) ∈ code(n, n), for all n ∈ N

code(x, x) col [x ∈ N] n ∈ N ? ∈ code(0, 0) π3
E-N)

ElN(n, ?, (y).y) ∈ code(n, n)

where π3 is

y ∈ code(succ(x), succ(x)) = code(x, x) [x ∈ N, y ∈ code(x, x)]
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We call

r(n) := ElN(n, ?, (y).y) ∈ code(n, n) [n ∈ N]

and by C-N) we have:

r(0) = ?

r(succ(n)) = r(n)

Theorem 5.4.1. For all m,n ∈ N we have that Id(N,m, n) and code(m,n) are equivalent propositions.

Proof. For all m,n ∈ N and p ∈ Id(N,m, n) we have

p∗(r(m)) ∈ code(m,n)

we call

encode(m,n, p) := p∗(r(m)) ∈ code(m,n) [m ∈ N, n ∈ N]

Conversely, we de�ne

p ∈ code(m,n) π1
E-→)

Ap→(ElN(m, pf2, pf3), p) ∈ Id(N,m, n)

where π1 is

code(x, n)→ Id(N, x, n) col [x ∈ N] m ∈ N π2 π3
E-N)

ElN(m, pf2, pf3) ∈ code(m,n)→ Id(N,m, n)

where pf2 := ElN(n, λ→z
>.idN(0), λ→w

⊥.r0(w)) and π2 is

code(0, y)→ Id(N, 0, y) col [y ∈ N] n ∈ N π4 π5
E-N)

ElN(n, λ→z
>.idN(0), λ→w

⊥.r0(w)) ∈ code(0, n)→ Id(N, 0, n)

Recalling that code(0, 0) = > and code(0, succ(y)) = ⊥ for every y ∈ N we have that π4 is

idN(0) ∈ Id(N, 0, 0) > prop Id(N, 0, 0)prop
I-→)

λ→z
>.idN(0) ∈ > → Id(N, 0, 0)



32
C
H
A
P
T
E
R
5.

T
H
E
M
IN
IM

A
L
IS
T
F
O
U
N
D
A
T
IO
N

and π5 is

w ∈ ⊥ [w ∈ ⊥] Id(N, 0, succ(y)) prop [y ∈ N]
E-Fs)

r0(w) ∈ Id(N, 0, succ(y)) [y ∈ N, w ∈ ⊥] ⊥ prop Id(N, 0, succ(y)) prop [y ∈ N]
I-→)

λ→w
⊥.r0(w) ∈ ⊥ → Id(N, 0, succ(y)) [y ∈ N]

While we have pf3 := ElN(n, λ→v
⊥.r0(v), Ap∀(λ∀u

code(x,n)→Id(N,x,n).pf1) and that π3 is

code(succ(x), y)→ Id(N, succ(x), y) col [x ∈ N, y ∈ N] n ∈ N π6 π7
E-N)

ElN(n, λ→v
⊥.r0(v), Ap∀(λ∀u

code(x,n)→Id(N,x,n).pf1) ∈ code(succ(x), n)→ Id(N, succ(x), n) [x ∈ N, u ∈ code(x, n)→ Id(N, x, n)]

where π6 is similar to π5 and, recalling that code(succ(x), succ(y)) = code(x, y) for every x, y ∈ N we have that π7 is

u ∈ code(x, n)→ Id(N, x, n) [x ∈ N, u ∈ code(x, n)→ Id(N, x, n)] π8
E-∀)

Ap∀(λ∀u
code(x,n)→Id(N,x,n).pf1, u) ∈ code(x, y)→ Id(N, succ(x), succ(y)) [x ∈ N, y ∈ N, u ∈ code(x, n)→ Id(N, x, n)]

n ∈ N π9 ∀u∈code(x,y)→Id(N,x,y)code(x, y)→ Id(N, succ(x), succ(y)) prop [x ∈ N, y ∈ N]
βC-∀)

λ∀u
code(x,n)→Id(N,x,n).pf1 ∈ ∀u∈code(x,n)→Id(N,x,n)code(x, y)→ Id(N, succ(x), succ(y)) [x ∈ N, y ∈ N]

π9 is

π10 code(x, y)→ Id(N, succ(x), succ(y)) prop [x ∈ N, y ∈ N]
I-∀)

λ∀u
code(x,y)→Id(N,x,y).pf1 ∈ ∀u∈code(x,y)→Id(N,x,y)code(x, y)→ Id(N, succ(x), succ(y)) [x ∈ N, y ∈ N]

where pf1 := λ→v
code(x,y).succ(Ap→(u, v)) and π10 is

π11 code(x, y) prop [x ∈ N, y ∈ N] Id(N, succ(x), succ(y)) prop [x ∈ N, y ∈ N]
I-→)

λ→v
code(x,y).succ(Ap→(u, v)) ∈ code(x, y)→ Id(N, succ(x), succ(y)) [x ∈ N, y ∈ N, u ∈ code(x, y)→ Id(N, x, y)]
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where π11 is

succ(Ap→(u, v)) ∈ Id(N, succ(x), succ(y)) [x ∈ N, y ∈ N, u ∈ code(x, y)→ Id(N, x, y), v ∈ code(x, y)]

that is obtained by the following prooftree

v ∈ code(x, y) [x ∈ N, y ∈ N, v ∈ code(x, y)] u ∈ code(x, y)→ Id(N, x, y) [x ∈ N, y ∈ N, u ∈ code(x, y)→ Id(N, x, y)]
E-→)

Ap→(u, v) ∈ Id(N, x, y) [x ∈ N, y ∈ N, u ∈ code(x, y)→ Id(N, x, y), v ∈ code(x, y)]

As a result we will use later, we show the following:

Theorem 5.4.2 (Peano Axioms). Peano Axioms hold in mTT, that is the following statements hold:

1. 0 is a term for N

2. For every n ∈ N, succ(n) is a term for N

3. For every m,n ∈ N, there is a term pf1 ∈ Id(N, succ(m), succ(n))→ Id(N,m, n);

4. For every n ∈ N, there is a term pf2 ∈ ¬Id(N, 0, succ(n)).

Proof. 1. It is the I1-N) rule;

2. It is the I2-N) rule;

3. We construct:

π1 Id(N, succ(m), succ(n)) prop Id(N,m, n) prop
I-→)

λ→z
Id(N,succ(m),succ(n)).decode(m,n, encode(m,n, z)) ∈ Id(N, succ(m), succ(n))→ Id(N,m, n)

Where π1 is the term

decode(m,n, encode(m,n, z)) ∈ Id(N,m, n) [z ∈ Id(N, succ(m), succ(n))]

in fact we have

encode(m,n, z) ∈ code(succ(m), succ(n)) = code(m,n) [z ∈ Id(N, succ(m), succ(n))]
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4. Recalling that code(0, succ(n)) = ⊥ we have:

encode(0, succ(n), x) ∈ ⊥ [x ∈ Id(N, 0, succ(n))] > prop Id(N, 0, succ(n)) prop
I-→)

λ→x
Id(N,0,succ(n)).encode(0, succ(n), x) ∈ ¬Id(N, 0, succ(n))

5.5 Uniqueness of identity proofs and Hedberg's Theorem

De�nition 5.5.1 (UIP). The collection A satis�es the property of uniqueness of identity proofs if for all a, b ∈ A and

p, q ∈ Id(A, a, b) we have a term pf ∈ Id(Id(A, a, b), p, q).

Here is another equivalent characterization, involving Streicher's "Axiom K" ([11]):

De�nition 5.5.2 (Axiom K). A collection A satis�es Axiom K if for all a ∈ A and p ∈ Id(A, a, a) we have a term

pf ∈ Id(Id(A, a, a), p, idA(a)).

Theorem 5.5.1. A collection A satis�es UIP if and only if satis�es Axiom K

Proof. Clearly Axiom K is a special case of UIP:

a ∈ AI-Id)
idA(a) ∈ Id(A, a, a)

a ∈ A pf1 ∈ ∀b∈A∀q∈Id(A,a,b)Id(Id(A, a, b), p, q)
E-∀)

Ap∀(pf1, a) ∈ ∀q∈Id(A,a,a)Id(Id(A, a, a), p, q)
E-∀)

Ap∀(Ap∀(pf1, a), idA(a)) ∈ Id(Id(A, a, a), p, idA(a))

Conversely, we have:

∀p∈Id(A,a,y)Id(Id(A, a, y), p, z) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A b ∈ A q ∈ Idp(A, a, b) pf2 ∈ ∀p∈Id(A,a,a)Id(Id(A, a, a), p, idA(a))
E-Id)

ElIdp(q, pf) ∈ ∀p∈Id(A,a,b)Id(Id(A, a, b), p, q)

Lemma 5.5.1. There is a term ρ ∈ ∀x∈A ∈ ¬¬Id(A, x, x).

Proof. To obtain a term for ¬¬Id(A, x, x) we can construct the following prooftree:
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x ∈ A [x ∈ A]

I-Id)
idA(x) ∈ Id(A, x, x) [x ∈ A] z ∈ ¬Id(A, x, x) [x ∈ A, z ∈ ¬Id(A, x, x)]

E-→)
Ap→(z, idA(x)) ∈ ⊥ [x ∈ A, z ∈ ¬Id(A, x, x)]

I-→)
λ→z

¬Id(A,x,x).Ap→(z, idA(x)) ∈ ¬¬Id(A, x, x) [x ∈ A] ¬¬Id(A, x, x) prop [x ∈ A]
I-∀)

λ∀x
A.λ→z

¬Id(A,x,x).Ap→(z, idA(x)) ∈ ∀x∈A ∈ ¬¬Id(A, x, x)

We call
ρ := λ∀x

A.λ→z
¬Id(A,x,x).Ap→(z, idA(x)) ∈ ∀x∈A ∈ ¬¬Id(A, x, x)

and
r := λ→z

¬Id(A,a,a).Ap→(z, idA(a)) = ρ(a) ∈ ¬¬Id(A, a, a)

Theorem 5.5.2. If a collection A has the property that ¬¬Id(A, a, b) → Id(A, a, b) for any a, b ∈ A, then A satis�es

Axiom K.

Proof. For every a ∈ A and p ∈ Id(A, a, a), we take a term f ∈ ∀a∈Id(A,a,a)(¬¬Id(A, a, a)→ Id(A, a, a)) and then, recalling
that p∗ is the transport along p previously de�ned, we construct the following prooftree:

Id(Id(A, y, y), z∗(f(a, r)), f(y, z∗(r))) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A p ∈ Id(A, a, a) π1
E-Id)

ElId(p, idId(A,a,a)(f(a, r))) ∈ Id(Id(A, a, a), p∗(f(a, r)), f(a, p∗(r)))

where π1 is the prooftree constructed by taking idId(A,a,a)(f(a, r)) ∈ Id(Id(A, a, a), f(a, r), f(a, r)) and using subT) and
conv) rules to obtain that idId(A,a,a)(f(a, r)) is also a term for the proposition

Id(Id(A, a, a), (idA(a))∗(f(a, r)), f(a, (idA(a))∗(r)))

Now we construct two other terms that concatenated with

pf1 = ElIdp(p, idId(A,a,a)(f(a, r))) ∈ Id(Id(A, a, a), p∗(f(a, r)), f(a, p∗(r)))

will result in a term for the proposition Id(Id(A, a, a), f(a, r) · p, f(a, r)). The �rst one is obtained from this prooftree:

Id(Id(A, a, a), f(y, z∗(r)), f(y, ρ(y))) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A p ∈ Id(A, a, a) π2
E-Id)

ElId(p, idId(A,a,a)(f(a, r))) ∈ Id(Id(A, a, a), f(a, p∗(r)), f(a, r))
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where π2 is the prooftree similar to π1 constructed by taking idId(A,a,a)(f(a, r)) ∈ Id(Id(A, a, a), f(a, r), f(a, r)) and using
subT) and conv) rules to obtain that idId(A,a,a)(f(a, r)) is also a term for the proposition

Id(Id(A, a, a), f(a, (idA(a))∗(r)), f(a, r))

Notice that the terms obtained in π1 and π2 are the same so they are those for the propositions

Id(Id(A, a, a), p∗(f(a, r)), f(p∗(a, r))) Id(Id(A, a, a), f(a, (idA(a))∗(r)), f(a, r)).

The second is constructed seeing that

(idA(a))∗(f(a, r)) = f(a, r) = f(a, r) · idA(a)

for C-Id), so there is a

pf4 ∈ Id(Id(A, a, a), (idA(a))∗(f(a, r)), f(a, r) · idA(a))

Id(Id(A, y, y), z∗(f(a, r)), f(a, r) · z) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A a ∈ A p ∈ Id(A, a, a) π3
E-Id)

ElId(p, idId(A,a,a)(f(a, r))) ∈ Id(Id(A, a, a), p∗(f(a, r)), f(a, r) · p)

Once again the proofterm is very similar and it can be shown to be (pf1)
−1.

So, in order to obtain a term for Id(Id(A, a, a), f(a, r) · p, f(a, r)), we just need to concatenate the terms obtained
before:

(pf1)
−1 · pf1 · pf1 = pf1 ∈ Id(Id(A, a, a), f(a, r) · p, f(a, r))

We set q := f(a, r) for brevity.

q ∈ Id(A, a, a) π4
E-∀)

Ap∀((ElId(q, c), q) ∈ Id(Id(A, a, a), q−1 · (q · p), q−1 · q)

where π4 is:

∀z∈Id(A,a,y)Id(Id(A, y, a), z−1 · (q · p), z−1 · q) prop [y ∈ A, z ∈ Id(A, a, y)] a ∈ A q ∈ Id(A, a, a) π5
E-Id)

ElIdp(q, c) ∈ ∀w∈Id(A,a,a)Id(Id(A, a, a), q−1 · (q · p), q−1 · q)
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and π5 is the prooftree constructed noticing that, for the properties of the inverse and concatenation, there are

pf2 ∈ Id(Id(A, a, a), (idA(a))−1 · (q · p), q · p) pf3 ∈ Id(Id(A, a, a), (idA(a))−1 · q, q)

so we have:
pf4 := pf2 · pf1 · (pf3)−1 ∈ Id(Id(A, a, a), (idA(a))−1 · (q · p), (idA(a))−1 · q)

and then the bottom of the prooftree π4 is:

λ∀idA(a)Id(A,a,a).pf4 ∈ ∀idA(a)∈Id(A,a,a)Id(Id(A, a, a), (idA(a))−1 · (q · p), (idA(a))−1 · q)

We call pf5 := Ap∀((ElId(q, c), q) ∈ Id(Id(A, a, a), q−1 · (q · p), q−1 · q).
In the end, for the properties of the inverse and concatenation, we have terms:

pf6 ∈ Id(Id(A, a, a), p, idA(a) · p)
pf7 ∈ Id(Id(A, a, a), idA(a), q−1 · q)
pf8 ∈ Id(Id(A, a, a), (q−1 · q) · p, q−1 · (q · p))

Moreover we have also pf9 ∈ Id(Id(A, a, a), idA(a) · p, (q−1 · q) · p) from pf12. Lastly to obtain a proofterm for Axiom K
we just need to concatenate:

pf6 · pf8 · pf9 · pf5 · (pf7)−1 ∈ Id(Id(A, a, a), p, idA(a))

Notice that seeing f(a, r) ∈ Id(A, a, a) as a path from point a of the space A in itself and deriving

pf1 ∈ Id(Id(A, a, a), f(a, r) · p, f(a, r))

means that f(a, r) has a �xed point p that is every p is a �xed point of f(a, r).

Lemma 5.5.2. For any collection α and p ∈ α ∨ ¬α, we have a term pf ∈ ¬¬α→ α.

Proof. p ∈ α ∨ ¬α x ∈ α [x ∈ α]

y ∈ ¬α [y ∈ ¬α] z ∈ ¬¬α [z ∈ ¬¬α]
E-→)

Ap→(z, y) ∈ ⊥ [y ∈ ¬α, z ∈ ¬¬α]
E-Fs)

r0(Ap→(z, y)) ∈ ¬α [y ∈ ¬α, z ∈ ¬¬α]
E-∨)

El∨(p, (x).x, (y).r0(Ap→(z, y))) ∈ α [z ∈ ¬¬α]
I-→)

λ→z
¬¬α.El∨(p, (x).x, (y).r0(Ap→(z, y))) ∈ ¬¬α→ α
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Theorem 5.5.3 (Hedberg). If A has decidable equality, then A satis�es UIP.

Proof. If A has decidable equality, it follows that ¬¬Id(A, a, b)→ Id(A, a, b) for any a, b ∈ A. Since Axiom K is equivalent
to UIP, Hedberg's theorem follows from the previous theorem.

Theorem 5.5.4. The set N of natural numbers has decidable equality, and hence satis�es UIP.

Proof. We proceed by induction on m and case analysis on n:

Id(N, x, n) ∨ ¬Id(N, x, n) col [x ∈ N] m ∈ N π1 π2
E-N)

ElN(m, a, b) ∈ Id(N,m, n) ∨ ¬Id(N,m, n)

Case m = 0 (π1)

Id(N, 0, z) ∨ ¬Id(N, 0, z) col [z ∈ N] n ∈ N π3 π4
E-N)

ElN(n, inl∨(idN(0)), inr∨(pf1)) ∈ Id(N, 0, n) ∨ ¬Id(N, 0, n)

a := ElN(n, inl∨(idN(0)), inr∨(pf1))

Subcase m = 0 and n = 0 (π3)

0 ∈ NI-Id)
idN(0) ∈ Id(N, 0, 0) Id(N, 0, 0) prop ¬Id(N, 0, 0) prop

I1-∨)
inl∨(idN(0)) ∈ Id(N, 0, 0) ∨ ¬Id(N, 0, 0)

Subcase m = 0 and n = succ(z) (π4)

π5 Id(N, 0, succ(z)) prop [z ∈ N] ¬Id(N, 0, succ(z)) prop [z ∈ N]
I2-∨)

inr∨(pf1) ∈ Id(N, 0, succ(z)) ∨ ¬Id(N, 0, succ(z)) [z ∈ N, y ∈ Id(N, 0, z) ∨ ¬Id(N, 0, z)]

and π5 is pf1 ∈ ¬Id(N, 0, succ(z)) [z ∈ N] which is the validity of the fourth Peano Axiom.

Case m = succ(x) (π2)
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Id(N, succ(x), z) ∨ ¬Id(N, succ(x), z) col [x ∈ N, z ∈ N] n ∈ N π6 π7

E-N)
ElN(n, pf2, Ap∀(y, pf3)) ∈ Id(N, succ(x), n) ∨ ¬Id(N, succ(x), n) [x ∈ N, y ∈ Id(N, x, n) ∨ ¬Id(N, x, n)]

b := ElN(n, pf2, Ap∀(y, pf3))
Subcase m = succ(x) and n = 0 (π6)

pf2 in π6 is obtained similarly to π4

Subcase m = succ(x) and n = succ(z) (π7)

y ∈ Id(N, x, n) ∨ ¬Id(N, x, n) [x ∈ N, y ∈ Id(N, x, n) ∨ ¬Id(N, x, n)] π8
E-∀)

Ap∀(y, pf3) ∈ Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, y ∈ Id(N, x, n) ∨ ¬Id(N, x, n)]

pf3 := λ∀y
Id(N,x,n)∨¬Id(N,x,n).El∨(y, pf4, pf5) and π8 is

n ∈ N π9 ∀y∈Id(N,x,z)∨¬Id(N,x,z)Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N]
βC-∀)

λ∀y
Id(N,x,n)∨¬Id(N,x,n).El∨(y, pf4, pf5) ∈ ∀y∈Id(N,x,n)∨¬Id(N,x,n)Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N]

π9 is

π10 Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N, y ∈ Id(N, x, z) ∨ ¬Id(N, x, z)]
I-∀)

λ∀y
Id(N,x,z)∨¬Id(N,x,z).El∨(y, pf4, pf5) ∈ ∀y∈Id(N,x,z)∨¬Id(N,x,z)Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N]

π10 is

Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) col [x ∈ N, z ∈ N] π11 π12 π13

El∨(y, pf4, pf5) ∈ Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, y ∈ Id(N, x, y) ∨ ¬Id(N, x, y)]

we have
π11 := y ∈ Id(N, x, z) ∨ ¬Id(N, x, z) [x ∈ N, z ∈ N, y ∈ Id(N, x, y) ∨ ¬Id(N, x, y)]

and
pf4 := inl∨(succ(v)) ∈ Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, v ∈ Id(N, x, z)]

and π12 is

π14 Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N] ¬Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N]
I1-∨)

inl∨(succ(v)) ∈ Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, v ∈ Id(N, x, z)]
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where π14 is
succ(v) ∈ Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, v ∈ Id(N, x, z)]

while
pf5 := inr∨(λuId(N,succ(x),succ(z)).Ap→(w, pf6(u))) [x ∈ N, z ∈ N, w ∈ ¬Id(N, x, z)]

and π13 is

π15 Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N] ¬Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N]
I2-∨)

inr∨(λuId(N,succ(x),succ(z)).Ap→(w, pf6(u))) ∈ Id(N, succ(x), succ(z)) ∨ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, w ∈ ¬Id(N, x, z)]

where π15 is

π16 Id(N, succ(x), succ(z)) prop [x ∈ N, z ∈ N] ⊥ prop
I-→)

λuId(N,succ(x),succ(z)).Ap→(w, pf6(u)) ∈ ¬Id(N, succ(x), succ(z)) [x ∈ N, z ∈ N, w ∈ ¬Id(N, x, z)]

and π16

π17 w ∈ ¬Id(N, x, z) [w ∈ ¬Id(N, x, z)]
E-→)

Ap→(w, pf6(u)) ∈ ⊥ [x ∈ N, z ∈ N, u ∈ Id(N, succ(x), succ(z)), w ∈ ¬Id(N, x, z)]

where π17 is
pf6(u) ∈ Id(N, x, z) [x ∈ N, z ∈ N, u ∈ Id(N, succ(x), succ(z))]

that holds for the third Peano Axiom.



Chapter 6

Conclusions

From the validity of Hedberg's theorem in mTT shown here we conclude that no choice
principle is needed to prove the theorem, since these are not valid in mTT.

It is important to have shown this theorem for mTT because it is expected to imply -
as in Homotopy Type Theory - that the classical principle of excluded middle is not valid
in the extension of the Minimalist Foundation with the addition of a collection of sets and
Voevodsky's Univalent Axiom - stating an equivalence between isomorphisms on a set with
the set of identity proofs of the equality of the set with itself (thought of as a code of a
universe).
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