
Università degli Studi di Padova

DIPARTIMENTO DI FISICA E ASTRONOMIA “GALILEO GALILEI”

Corso di Laurea Magistrale in Astronomia

Tesi di laurea magistrale

Ensemble Asteroseismology with the TRILEGAL
and the PARAM codes

An estimate of the systematic errors introduced by stellar models

Candidato:

Piero Dal Tio
Matricola 1130885

Relatore:

Prof.ssa Paola Marigo

Correlatori:
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I N T R O D U C T I O N

Uncertainties in stellar physics have direct consequences in several fields of Astro-
physics, ranging from investigations on exoplanet properties to stellar populations
or galaxy evolution studies. For this reason, it is extremely important to achieve
estimates of stellar parameters (mass, radius and age in particular) as precise as
possible. Science has made great strides in this direction thanks to Asteroseismol-
ogy, the study of stars by observations of their natural, resonant oscillations. The
CNES CoRoT (Convection, Rotation et Transits planétaires, Baglin & Fridlund 2006)
satellite and the NASA Kepler mission (Borucki et al. 2009) have been decisive in
providing the necessary observations. Oscillation frequencies depend indeed on
the internal structure of stars and this fact makes possible precision levels in stellar
parameter estimations which have never been obtained before. In the next future,
other missions like TESS (Transiting Exoplanet Survey Satellite, Ricker et al. 2009)
and PLATO (PLAnetary Transits and Oscillations of stars, Rauer et al. 2014) will
extend the observations to a wider set of targets. These missions are of fundamental
importance for the development of Ensemble Asteroseismology, the application of
Asteroseismology to the study of stellar populations. The so-called solar-like oscilla-
tors, such as main-sequence and especially RGB stars, play a key role in Ensemble
Asteroseismology. Some asteroseismic parameters which describes the oscillation
spectrum of these stars are currently widely used to derive their mass, radius and
age. The derivation method can be based on simple scaling relations (direct method)
or on a bayesian approach (grid-based or Bayesian methods). Bayesian methods can
provide more precise estimates than the direct method, but are they also accurate?
The problem of accuracy comes from the model dependence of Bayesian methods, i.e.
their results are affected by a systematic error component introduced by the choice
of the evolutionary grid used to derive stellar parameters and their credible intervals.
Our aim is to quantify systematic errors when the Bayesian method implemented
in the PARAM code (Rodrigues et al. 2017) is applied on varying the input grid
of evolutionary tracks. The evolutionary tracks considered correspond to models
with different overshooting parameters during the hydrogen-core-burning phase.
We apply the PARAM code to artificial stars generated with the stellar population
synthesis code TRILEGAL (Girardi et al. 2005). The mass, radius and age which
PARAM recovers for each star by using asteroseismic parameters, metallicity and
effective temperature are compared to the original ones providing an estimate of
systematic errors. We did TRILEGAL simulations of some open clusters observed
by the Kepler/K2 Mission and of a sky region representative of a Kepler field. All
artificial stars generated in these simulations are low-mass stars. The results of our
work show not negligible systematic errors, especially for RGB stars ages. A lot of
work should be done in order to investigate deeper the behaviours of systematic
errors. Other evolutionary grids and other mass ranges and compositions should
be considered. Moreover, looking at the incoming measurements of parallaxes from
Gaia satellite (Lindegren et al. 2016), the entire analysis should be repeated by adding
the absolute magnitude as known input information for PARAM.

In Chapter 1 we summarize the main concepts of Stellar Evolution Theory. In
Chapter 2 we introduce Asteroseismology and the asteroseismic parameters ∆ν, νmax
and ∆Π used for our analysis. In Chapter 2 can be found also an overview of the most
important Space Missions for Asteroseismology and of Ensemble Asteroseismology.
In Chapter 3 we provide a general description of the TRILEGAL and the PARAM
codes and we show in detail simulations, evolutionary grids and physical inputs
used in our analysis. Finally, in Chapter 4, we analyze PARAM results for masses,
radii and ages by comparing them with the original values from TRILEGAL. In
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such a way, we quantify systematic errors and we understand if they are negligible
or not with respect to the error contribution coming from the width and shape of
posterior probability density functions outgoing from PARAM. We conclude with a
short discussion about future perspectives.



1 T H E ST E L L A R E VO LU T I O N T H E O RY
I N B R I E F

Treatments of this Chapter mainly follow Hansen et al. (2004), Kippenhahn & Weigert
(1990) and Salaris & Cassisi (2005). Physical principles of mass and momentum
conservation can be considered the starting point for the development of Stellar
Evolution Theory. In fact, they are used to derive two fundamental stellar structure
equations: the equation that relates the mass distribution to the local density and
the hydrostatic equilibrium condition.

1.1 the hydrostatic equilibrium

Let us derive these two equations. Firstly, we assume spherical symmetry, which
implies that all quantities depend only on a radial coordinate in the stellar interior
and also on time in an evolving star. We can adopt the radius (r ∈ [0, R]) of a
spherical shell as radial Eulerian coordinate. The application of mass conservation to
a spherical shell of mass dm, thickness dr, mean radius r and radial velocity v, gives

dm(r, t) = 4πr2ρdr− 4πr2ρvdt (1)

In a static situation (i.e. v = 0; almost always a good approximation), we obtain

dm
dr

= 4πr2ρ (2)

We can define the Lagrangian mass coordinate:

m(r) := mr =
∫ r

0
4πr′2ρdr′ m ∈ [0, M]

and use it instead of the radius, so that Equation 2 becomes

dr
dm

=
1

4πr2ρ
(3)

or with a partial derivative in a non-static situation. Equation 3 is the first funda-
mental equation.
Let’s consider now the equation of motion of a gas element. Gravity and pressure
gradient are the two forces acting, against one another, on the gas element. Hence,
the equation of motion for a cylindrical gas element with the axis along the radial
direction can be easily derived. One obtains

∂2r
∂t2 = −Gm

r2 −
1
ρ

∂P
∂r

(4)

and, thanks to Equation 3, in terms of the mass coordinate becomes

∂2r
∂t2 = −Gm

r2 − 4πr2 ∂P
∂m

(5)

The majority of stars does not show strong structural changes so there must be not
a significant acceleration (r̈ ' 0). This means that stars are usually in hydrostatic

3



4 the stellar evolution theory in brief

equilibrium. Therefore, the condition that holds in hydrostatic equilibrium is (from
Equation 5 in a static situation)

dP
dm

= − Gm
4πr4 (6)

Equations 3 and 6 determine the mechanical behaviour of an isolated, spherically
symmetric star. However, there are three unknown functions of m (i.e. r, P and ρ), so
we need a third equation, the equation of state, which relates the pressure and density
functions. The equation of state depends in general on temperature. Consequently,
mechanical properties depend in general on thermal ones. Only in the special cases
of polytropes (e.g. White Dwarfs can be approximately described with a polytropic
model), the equation of state is independent of temperature.

1.2 the thermal equilibrium

Starting from the condition for hydrostatic equilibrium, we multiply by the volume
V = 4πr3/3 enclosed within the shell and then we integrate over m:∫ M

0

4
3

πr3 dP
dm

dm = −1
3

∫ M

0

Gm
r

dm (7)

Note that

Egr := −
∫ M

0

Gm
r

dm

is the gravitational potential energy and∫ M

0

4
3

πr3 dP
dm

dm =
∫ Psur f

Pcenter
VdP = V P

∣∣∣Psur f

Pcenter
−
∫ Vsur f

0
PdV =

4
3

πR3P(R)−
∫ Vsur f

0
PdV

where the subscript surf indicates values at the surface of the volume V. If we
integrate over the whole star, then P(R) ' 0, so

−
∫ Vsur f

0
P dV =

1
3

Egr or −
∫ M

0

P
ρ

dm =
1
3

Egr (8)

Equation 8 is the general form of the Virial Theorem. The meaning of this theorem
will be more clear if we apply it to an ideal gas for which the internal energy per
unit mass is

u =
3
2

N kB T
M

=
3
2

P V
M

=
3
2

P
ρ

Hence the Virial Theorem becomes

−
∫ M

0

2
3

u dm =
1
3

Egr −→ Eint = −
1
2

Egr

where Eint :=
∫

udm is the total internal energy of the star. Therefore the gravita-
tional potential energy and the internal energy of a star in hydrostatic equilibrium are
strictly connected through the virial theorem: a more tightly bound star must be hot-
ter. A star in hydrostatic equilibrium is bound only if its total energy, Etot = Eint +Egr,
is negative. Thanks to the Virial Theorem we can immediately say that a star made
of ideal gas might exist: Etot = Egr/2 < 0.

We said that gravitationally bound gas spheres must be hot, but a hot gas radiates
and loses energy. The rate of energy loss is the luminosity of stars: L = −dEtot/dt >
0. Therefore the consequences of losing energy are

Etot =
Egr

2
−→

{
Ėgr = −2L < 0 the star contracts
Ėint = L > 0 the star gets hotter
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Roughly speaking, an half of the gravitational energy is lost and an half is used to
heat the star. Anyway, nuclear reactions have not been taken into account yet. If
the rate of nuclear energy production, Lnuc, is equal to the luminosity, then nuclear
burning can compensate the energy loss and the star must conserve both Ėgr and
Ėint. We call this situation thermal equilibrium: the star neither expands nor contracts
and its internal temperature is constant in time. Main-sequence stars are in thermal
equilibrium for example. The thermal equilibrium is broken when the nuclear
burning can’t provide enough energy anymore (fuel exhaustion).

1.3 the timescales of stellar evolution

The dynamical timescale, τdyn is the time a star takes to react to a perturbation of
the hydrostatic equilibrium. A possible estimate of this timescale is the free-fall
timescale:

τdyn ≈
√

R3

GM
≈ 1

2
(Gρ)−1/2

τdyn is usually of the order of hours, hence stars must be very close to hydrostatic
equilibrium.
The thermal timescale, τth is the time a star takes to react to a perturbation of the
thermal equilibrium. A possible estimate of this timescale is the Kelvin-Helmholtz
timescale, i.e. the time to radiate away all the internal energy without burning energy
and at constant luminosity:

τth =
Eint

L
≈ |Egr|

2L
≈ GM2

2RL

It turns out that the reactions are very slow (τth ' 1.5 · 107 yr for the Sun), so we
have not direct observations that test the condition of thermal equilibrium in stars.
We know that the Sun is in thermal equilibrium because we have and estimate of the
Earth’s age that puts constraints to the energy production mechanisms in the Sun.
Finally, the nuclear timescale is the time a star takes to radiate all its nuclear energy
supply (assuming L constant):

τnuc =
Enuc

L
The nuclear timescale is two or three orders of magnitude higher than the thermal
timescale, so stars can reach a state of thermal equilibrium. In conclusion, stars can
be considered to be in both hydrostatic and thermal equilibrium during most of their
lives.

1.4 the equation of state in real stars

Real stars are not completely made of ideal gas. There are other sources of pressure
like radiation and gas degeneracy (electron degeneracy in particular). We can
distinguish different regimes where a pressure source dominates among the others.
Different regimes correspond to different equations of state. These regimes are put
in evidence in Figure 1 in the log T − log ρ plane together with some models of
zero-age main-sequence stars. See the caption for further information.

1.4.1 Specific heats and adiabatic derivatives

It is useful to write the equation of state P = P(ρ, T, Xi) in differential form:

dP
P

= χT
dT
T

+ χρ
dρ

ρ
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Figure 1.: The equation of state for a gas of free particles in the log T − log ρ plane. Dashed lines
separate the regions where radiation pressure, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degeneracy dominate for homogeneous solar
composition (X = 0.7, Z = 0.02). Red lines represent models of zero-age (so homogeneous)
main-sequence stars with mass ranging from 0.1 M� to 100 M�. The star center is located
at the upper extremity and the surface at the lower one. We can see that radiation pressure
dominates at higher masses and electron degeneracy pressure at very low masses. For a
1 M� star, instead, the major contribution comes from ideal gas pressure. Courtesy of O.
Polls (Lecture Notes).

where

χT :=

(
∂ log P
∂ log T

)
ρ, Xi

=
T
P

(
∂P
∂T

)
ρ, Xi

χρ :=

(
∂ log P
∂ log ρ

)
T, Xi

=
ρ

P

(
∂P
∂ρ

)
T, Xi

The subscript Xi means constant composition. In general χT and χρ are functions
of T and ρ, but in the case of weak dependence it results the following equation of
state.

P = P0 ρχρ TχT

With χT = χρ = 1 we obtain the equation of state of an ideal gas, instead χT = 4
and χρ = 0 for a radiation dominated gas.
The definitions of specific heats follow from the first and the second laws of thermo-
dynamics. For a unit mass element we have

dq = T ds = du + P dv = du− P
ρ2 dρ with v = 1/ρ

Now we can define the specific heats and the ratio γ := cP/cV :

cV :=

(
dq
dT

)
v

=

(
∂u
∂T

)
v

cP :=

(
dq
dT

)
P

=

(
∂u
∂T

)
P

− P
ρ2

(
∂ρ

∂T

)
P

(9)

γ = cP/cV =
P

ρ T
χ2

T
χρ

γ = 5/3 for an ideal gas (10)

Let’s introduce now other two important quantities, called adiabatic derivatives, which
allow us to describe the thermodynamic response of a system to adiabatic changes.
The adiabatic exponent, γad, and the adiabatic temperature gradient, ∇ad, measure the
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response of the pressure and of the temperature respectively to adiabatic compression
or expansion (i.e. to a change in density). They are defined as follows:

γad =

(
∂ log P
∂ log ρ

)
ad

∇ad =

(
∂ log T
∂ log P

)
ad

γad and ∇ad are fundamental quantities because the former is related to the dy-
namical stability of stars and the latter to the stability against convection. For
both quantities there are two limiting cases. It can be shown that γad = 5/3 for
non-relativistic particles (also degenerate particles) and γad = 4/3 for extremely
relativistic particles. On the other hand, ∇ad ranges from 0.4 for an ideal gas without
radiation to 0.25 for a radiation-dominated gas. The adiabatic derivatives are related
to the other quantities introduced before through the equation of state.

1.4.2 Ionization

Complete ionization can be assumed in regions where T > 106 K. In this case the
relations we have derived hold. However, in cooler outer layers of stars it is necessary
to consider the state of partial ionization of the gas. In these layers changes in density
or temperature cause changes in the degree of ionization and have strong effects on
thermodynamic properties and so on adiabatic derivatives.
Stars are not isolated systems, so they are not globally in thermodynamic equilibrium,
but the local thermodynamic equilibrium is achieved. Therefore, the Saha’s equation
holds. In particular for hydrogen we have

x2

1− x2 =
(2πme)3/2

h3
(kT)5/2

Pgas
e−χH/kBT

where x is the degree of ionization (i.e. the ratio between the number density of ionized
hydrogen atoms and the total number density of hydrogen atoms) and χH = 13.6 eV
is the ionization energy.
Moreover, in case of partial ionization, the energy of recombination is an additional
source for the internal energy that has to be taken into account, thus

u =
3
2

Pgas

ρ
+ x

χH
mu

=
3
2
(1 + x)RT + x

χH
mu

From the last two equations we see that x increases with T and decreases with Pgas.
Moreover a small increase in T, and so in x, causes a large increase in u. Therefore,
in a condition of partial ionization, a compression of the gas leads to an increase
of u and T does not raise so much with P. This means that ∇ad < 0.4: it presents
a minimum in partial ionization zones and low values of ∇ad, as we will see, can
induce convection. Consequently, the outer layers of stars might be convective.
Finally, it can be demonstrated that also γad decreases in partial ionization zones
and this makes the dynamical stability of the outer layers weaker.

1.5 energy transport in stellar interiors

In stellar interiors energy can be transported outward in two ways: heat diffusion
and convection. However, in order to understand the energy transport in stars, we
firstly have to apply the conservation of energy on a local scale (applied to the whole
star it gives the virial theorem). Let us consider a spherical shell of unit mass. The
first law of thermodynamics states that

du = dq +
P
ρ2 dρ
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and we can say that heat absorbed or released by the shell is

dq =

(
εnuc − εν −

∂l
∂m

)
dt (11)

where εnuc is the rate of nuclear energy production per unit mass, εν is the rate
energy loss per unit mass due to neutrino production, l is the rate at which heat flows
outward the shell. Combining these two relations we obtain another fundamental
equation for stellar evolution:

∂l
∂m

= εnuc − εν −
∂u
∂t

+
P
ρ2

∂ρ

∂t
= εnuc − εν + εgr (12)

where εgr gathers the terms with time derivatives. In thermal equilibrium the
stationary state implies εgr = 0.

1.5.1 Heat diffusion

In stellar interiors photons interact very frequently with matter and transport energy
outward very slowly with random motions. This mechanism is called radiative
diffusion. This flow of energy derives from a gradient in energy density which is
associated with a temperature gradient. The energy flux can be written as follows:

Frad = −1
3

c`∇U = −1
3

c`

(
∂U
∂T

)
V

∇T = −K∇T

where c is the speed of light, ` is the mean free path of photons and K = 1
3 c`
(

∂U
∂T

)
V

is called conductivity. For photons U = aT4, a = 7.56 · 10−15 erg cm−3 K−4 and
` = 1/κρ (κ is an average over frequencies of the absorption coefficient, for example
the Rosseland mean opacity), so

Frad = −K∇T = −4
3

acT3

κρ
∇T

In spherical symmetry F = l/4πr2 and we find

∂T
∂r

= − 3κρl
16πacT3r2 or

∂T
∂m

= − 3κl
64π2acT3r4 (13)

that is the temperature gradient required to carry the entire luminosity only by
radiation. This is another important equation for stellar structure in case of radiative
equilibrium, i.e. in case of pure radiative diffusion as energy transport mechanism.
In conditions of hydrostatic equilibrium we can use Equation 6:

dT
dm

=
dP
dm

dT
dP

= − Gm
4πr4

T
P

d log T
d log P

and we can define the radiative temperature gradient

∇rad =

(
d log T
d log P

)
rad

=
3κlP

16πacGmT4

The energy flux due to heat conduction, the transport of heat through collisions
between gas particles like ions and electrons, has the same expression with a different
conductivity:

Fcd = −Kcd∇T
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However, heat conduction becomes important only for stars in late stages of evolution
with dense degenerate cores and for white dwarfs.

1.5.2 Opacity

The relation between the energy flux of radiative diffusion and the temperature
gradient depends on the opacity, κ. Therefore the opacity has a primary role in
determining the stellar structure. The main sources of opacity are:

• Electron Scattering. κes = σe/(ρ/ne) where σe = 6.652 · 10−25 cm2 is the
Thomson cross-section of electrons and ne the number density of electrons.
This opacity source is important in ionized regions not too dense (high ne, but
not too high density).

• Free-free absorption. It is the inverse process of bremsstrahlung. It can be shown
that κff ∝ ρT−7/2. An opacity law of this form is called Kramers opacity.

• Bound-free absorption. Again we have a Kramers opacity. This process is
important in a temperature range where photons are energetic enough to ionize
atoms but not to keep the gas fully ionized.

• Bound-bound absorption. This source is mainly important for temperatures
lower than 106 K.

• Negative hydrogen ion. It is important in the photosphere of cool stars (T <
104 K). It determines the steepness of the Hayashi line.

1.5.3 Convection - criteria for stability

We have seen that radiative diffusion needs a temperature gradient and that a larger
luminosity corresponds to a larger temperature gradient. However, when∇T reaches
a certain limit then gas becomes unstable to convection. Let us derive a criterion for
stability against convection. We firstly consider a gas element which is perturbed
and displaced outward. The element expands adiabatically in order to be always
in pressure equilibrium with the surroundings. If its density is larger than that of
the ambient, then it will fall inward, otherwise buoyancy forces will accelerate it
outward and convection occurs. The element expands adiabatically, so

δPe

Pe
= γad

δρe

ρe

and the criterion for stability can be expressed as

δρe >
dρ

dr
δr −→ ρe

γad

δPe

Pe
>

dρ

dr
δr

Moreover, since the element is always in pressure equilibrium with the ambient,
δPe =

dP
dr δr, so

1
ρ

dρ

dr
<

1
P

dP
dr

1
γad

−→ d log ρ

d log P
>

1
γad

(14)

If this condition is violated then convection takes place and the hottest and innermost
elements start to move upward transporting their energy. Condition 14 can be
rewritten in a more practical way by using the differential form of the equation of
state P = P(ρ, T, µ):

dP
P

= χT
dT
T

+ χρ
dρ

ρ
+ χµ

dµ

µ
or d log P = χTd log T + χρd log ρ + χµd log µ
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This time we consider also a possible change in the mean molecular weight, µ, i.e. in
composition. χµ is defined as

χµ :=

(
∂ log P
∂ log µ

)
ρ, T

χµ = −1 for an ideal gas

Now, we can easily derive the following relation.

d log ρ

d log P
=

1
χρ

(
1− χT

d log T
d log P

− χµ
d log µ

d log P

)
=

1
χρ

(1− χT∇− χµ∇µ)

where ∇ := d log T/d log P and ∇µ := d log µ/d log P. Moreover, the adiabatic
derivatives are related to each other and it can be shown that

1
γad

=
1

χρ
(1− χT∇ad)

In conclusion, the criterion 14 becomes

∇ < ∇ad −
χµ

χT
∇µ (15)

In the case radiation provides the entire transport of energy then ∇ = ∇rad and we
obtain the Ledoux criterion:

∇rad < ∇ad −
χµ

χT
∇µ (16)

The Schwarzshild criterion descends from the Ledoux criterion and holds only in
chemically homogeneous layers (∇µ = 0):

∇rad < ∇ad (17)

Therefore we expect instability to convection where

∇rad =
3Pκl

16πacGT4m
> ∇ad

This might happen for many reasons:

• The opacity κ is high: like in the outer envelope of cool stars, the Sun included.

• The energy flux and so l/m is high: like near the star center where l/m ' εnuc
and in case of strong and peaked nuclear energy production there might be a
convective core.

• The adiabatic temperature gradient is small: like in partial ionization zones at
low temperature, i.e. in shallow surface layers.

1.5.4 Convection - the mixing length theory (MLT)

The mixing length theory approximately describes the convective motions by means
of gas blobs that move up or down radially over a distance, `m, called mixing length.
At the end of their travel blobs dissolve and achieve the thermal equilibrium with
the ambient. `m is an unknown parameter and it is of the order of the local pressure
scale height HP = |dr/d ln P| = P/ρg. The MLT allows us to estimate the convective
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energy flux. The temperature difference between the blob and its surroundings just
before its dissolution is

∆T = Tblob − Tsurr =

[(
dT
dr

)
blob

− dT
dr

]
`m =

=

[(
− T

HP
∇ad

)
−
(
− T

HP
∇
)]

`m = T
`m

HP
(∇−∇ad)

and the energy flux carried by the blob is

Fconv = vblob ρ∆u = vblob ρcP∆T

where vblob is the average velocity of blobs and ∆u = cP∆T the excess of internal
energy of a blob with respect to the ambient. If we assume that blobs move with a
constant acceleration a along the distance `m, provided by the buoyancy force, then
we can compute an estimate for vblob. In fact

`m =
1
2

at2 =
1
2

(
− g

∆ρ

ρ

)
t2 ' 1

2

(
g

∆T
T

)
t2

hence

vblob ' `m/t '
√

1
2
`mg

∆T
T
'
√

`2
mg

2HP
(∇−∇ad)

and

Fconv = ρcPT

(
`m

HP

)2√
1
2

gHP (∇−∇ad)
3/2

where the quantity ∇−∇ad is called superadiabacity. Convection is and extremely
efficient mechanism of energy transport: it turns out that a small superadiabacity of
the order of 10−5 ÷ 10−7 is sufficient to carry the whole energy flux of the Sun by
convection in the deep stellar interior. Consequently, in analogy with what we have
done for the radiative diffusion, we can write

dT
dm

= − Gm
4πr4

T
P
∇ with ∇ = ∇ad

On the contrary, in the outermost layers superadiabacity is high, but the convective
flux is small because density and temperature are lower than their mean values. At a
certain point, near the surface, radiative diffusion is more efficient even if convection
occurs.
The convective mixing has important consequences in stellar evolution that we can
summarize in two points:

• A star with a convective core has a larger fuel supply (and so e larger lifetime)
because convection brings the products of nuclear burning outward and the
hydrogen of the envelope inward.

• During some events called dredge ups, the convective envelope of a star pen-
etrates deep in the interior and brings up to the surface the nuclear burning
products revealing the nuclear processes that have taken place.

Figure 2 summarizes many concepts we have seen about convection for a 1 M� star.

1.5.5 Convective overshooting

The classical theory of convection, according with the Schwarzschild criterion, sets
the boundary of a convective zone at the surface where ∇ad = ∇rad. On this surface
the acceleration of blobs is null because the buoyancy force vanishes, but blobs still
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Figure 2.: The quantities ∇ad, ∇rad and ∇ in a 1 M� stellar model plotted against log P. If we apply
the Schwarzshild criterion then we immediately realize that the core is radiative and the
envelope convective (the gray bar indicates convective regions). We can also identify the
positions of partial ionization zones looking at the depressions in ∇ad. Note that convection
is efficient only in the deep layers of the envelope where ∇ad ' ∇. It becomes less efficient
in the hydrogen partial ionization zone where ∇ad < ∇ and it is totally inefficient very
near to the surface. Courtesy of O. Polls (Lecture Notes).

have a non-zero velocity so they penetrate a little into the radiative zone before
being stopped. This phenomenon is called convective overshooting. It has the effect to
continuously transport new fuel from a radiative envelope to a convective core with
important consequences on the star evolution. Therefore overshooting affects the
evolution of stars with a convective core during the main sequence, i.e. stars with
M & 1.1 M�. One can try to take overshooting into account in the framework of the
MLT by introducing an estimate of the distance, dov, covered by blobs beyond the
Schwarzschild surface. Usually the unknown overshooting parameter, αov, is defined
so that dov = αov HP and it must be calibrated from observations. We are going to
turn back to this topic in the next sections and in Chapter 3.

1.6 nuclear processes in stars

In this section we rapidly talk about the possible nuclear reactions that take place in
stellar interiors. Let us consider a general reaction of the form X + a → Y + b. Its
cross-section is defined as

σ [cm2] =
number of reactions per second

flux of incident particles a
(18)

If v is the relative velocity between the X and the a particles and denoting by nX
and na their number densities, then the number of reactions per second and per unit
volume is RXa = nX na vσ/(1 + δXa). δXa = 1 if particles X and a are identical and it
is zero otherwise. However, the cross-section depends on v so it is better to use the
average:

〈σ v〉 =
∫ ∞

0
Φ(v)σ(v)v dv =

√
8

πm (kBT)3

∫ ∞

0
σ(E)E exp

(
− E

kBT

)
dE (19)
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where Φ(v) is the normalized Maxwellian velocity distribution1, m = mXma
mX+ma

is the
reduced mass and E = mv2/2. We note that 〈σ v〉 depends only on T, so this quantity
determines the temperature dependence of nuclear reactions. The starting point for
the computation of the cross-section is the geometrical cross-section σg = πλ2 where
λ = h̄/p is the de Broglie wavelength. The detailed calculation of σ for a nuclear
reaction is complicated: the electromagnetic forces, the tunnel effect and possible
resonances must be considered. For example, particles would not pass the Coulomb
barrier at typical stellar temperatures if there was not the tunnel effect. It can be
shown that the tunnel effect probability is approximately given by

P = P0 exp(−bE−1/2) with b = 2π
QX Qae2m1/2

h̄
√

2

where QX and Qa are the charges of two nuclei in that case. In addition, if the energy
of the incoming particle corresponds to a quasi-stationary (i.e. with positive energy)
nuclear level then the reaction probability increases by several orders of magnitude.
We expect from this considerations that the cross-section should be of the form

σ(E) ∝ πλ2P(E)ξ(E)

Where ξ(E) is a function with some peaks that represents the effect of resonances.
Since λ2 ∝ 1/E and P(E) ∝ exp(−bE−1/2), we can write

σ(E) = S(E)
exp(−bE−1/2)

E
(20)

where the astrophysical S-factor, S(E), gathers all the other effects. Therefore Equation
19 becomes

〈σ v〉 =
√

8
πm (kBT)3

∫ ∞

0
S(E) f (E)dE (21)

with

f (E) = exp

(
− E

kBT
− b

E1/2

)
The function f (E) has a significant value only around a certain energy where it
presents a sharp peak called Gamow peak. Moreover, f (E) and consequently the
reaction rate increase very strongly with temperature, instead they decrease strongly
with the charge of the nuclei because of the quantity b.

1.6.1 Nuclear burning cycles

The strong dependence of nuclear reaction rates on temperature implies that the
nuclear fusion processes are well separated and the evolution of a star is divided in
phases characterized by different nuclear burning cycles.

Let’s start talking about hydrogen burning whose net result is the fusion of four
1H nuclei into a single 4He nucleus. However, the simultaneous reaction between
four protons is extremely unlikely, indeed the hydrogen burning happens through a
chain of reactions. There are two possibilities:

• p-p chain: the main nuclear fusion process in the Sun. As shown in the fol-
lowing scheme, this chain has three possible channels, with different energy
release, whose relative frequency depends on temperature and chemical com-
position. The left-hand channel dominates at temperatures T . 1.5 · 107 K like
in the Sun. If QH is the total energy released by the chain and Rppc its rate,
then the energy generation rate per unit mass is εnuc = QH Rppc/ρ except for

1 If the particles velocities follow a Maxwellian distribution (we assume that this is the case) then the
relative velocities also follow a Maxwellian distribution.
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the left channel that produces only one helium atom and so εnuc = QH Rppc/2ρ.

1H + 1H −−→ 2H + e+ + ν

2H + 1H −−→ 3He + γ

3He + 3He −−→ 4He + 2
1H 3He + 4He −−→ 7Be + γ

QH = 26.20

7Be + e– −−→ 7Li + ν 7Be + 1H −−→ 8B + γ

7Li + 1H −−→ 4He + 4He 8B −−→ 8Be + e+ + ν

QH = 25.66 MeV 8Be −−→ 4He + 4He

QH = 19.76 MeV

• CNO cycle: it takes place if C, N and O are already present in the star and if
the temperature is sufficiently high (T & 1.5 · 107 K). If the cycle is stable (i.e.
the rate of production of each nucleus equals its rate of consumption) then
QH = 29.97 MeV. The sequence of the reactions is illustrated in the following
scheme.

*
12C + 1H −−→ 13N + γ

13N −−→ 13C + e+ + ν

13C + 1H −−→ 14N + γ

**
14N + 1H −−→ 15O + γ

15O −−→ 15N + e+ + ν

15N + 1H −−→ 12C + 4He

*

−−→ 16O + γ

16O + 1H −−→ 17F + γ

17F −−→ 17O + e+ + ν

17O + 1H −−→ 14N + 4He

**
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At temperatures T & 108 K the helium burning takes place. Helium is fused into
carbon and oxygen. In reality helium burning occurs in two steps:

4He + 4He←−→ 8Be

8Be + 4He −−→ 12C + γ

and the net effect is the so-called triple− α reaction

3 4He −−→ 12C + γ

whose amount of energy released is Q = 7.275 MeV. Moreover, when the concentra-
tion of carbon becomes high enough then the 12C atoms can react with a further 4He
atom and produce oxygen:

12C + 4He −−→ 16O + γ

This reaction has Q = 7.162 MeV. Therefore the energy released per reaction of the
helium burning is significantly lower than the hydrogen burning one.

In the following list we summarize the main properties of the subsequent burning
processes.

• Carbon burning, T & 5 · 108 K. The most important channels are the following

12C + 12C −−→ 24MG∗ −−→ 20Ne + α Q = 4.616 MeV

−−→ 23Na + p Q = 2.238 MeV

• Neon burning, T ' 1.5 · 109 K. The following chain takes place

20Ne + γ←−→ 16O + α Q = −4.73 MeV
20Ne + α −−→ 24Mg + γ Q = 9.31 MeV

• Oxygen burning, T ' 2.0 · 109 K. The most important channels are the following

16O + 16O −−→ 32S∗ −−→ 28Si + α Q = 9.59 MeV

−−→ 31P + p Q = 7.68 MeV

• Silicon burning, T & 3 · 109 K. It occurs by means of a sequence of photo-
disgregations (γ, α) and α−captures (α, γ). A part of the silicon is transformed
into lighter nuclei and a part into heavier nuclei:

28Si(γ, α) 24Mg(γ, α) 20Ne(γ, α) 16O(γ, α) 12C(γ, α) 2α

28Si(α, γ) 32S(α, γ) 36Ar(α, γ) 40Ca(α, γ) 44Ti(α, γ) 48Cr(α, γ) 52Fe(α, γ) 56Ni

The final composition is dominated by 56Fe because it is the nucleus with the
lowest binding energy.

1.6.2 Neutrino emission

So far we have reported the energy released by the various reactions, but those
values are not comprehensive of the energy lost by neutrino emission. The reason is
that neutrinos cross-section for interaction with the other particles in stellar interiors
is so small that they can travel freely trough the whole star. Hence the energy carried
by neutrinos contributes directly to the energy loss of the star and must be treated
separately. Usually this energy loss is taken into account by subtracting its rate to
εnuc. Other reactions that can produce neutrinos are:

γ + e– −−→ e– + ν + ν e+ + e– −−→ ν + ν
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1.6.3 Composition changes

The rate of nuclear reactions and the element concentrations affect each other. It is
therefore important to find an equation which is able to describe the composition
variations. Let’s start from the variation of the number density of nuclei i which
react with nuclei j: (

dni
dt

)
j

= −(1 + δij) Rij

However, the nucleus i can react with many different kind of nuclei j and other
reactions between other nuclei k and l can produce i−nuclei. Hence, more precisely:

dni
dt

= −∑
j
(1 + δij) Rij + ∑

k,l
Rkl

In practice the mass fractions Xi = ni Aimu/ρ are used instead of the number
densities, so it is more useful the following form:

dXi
dt

= Ai
mu

ρ

(
−∑

j
(1 + δij) Rij + ∑

k,l
Rkl

)
(22)

where Ai is the mass number of nuclei i. If convection takes place then other “mixing
terms” have to be added to the right-hand term.

1.7 the starting point for stellar models

We have derived the fundamental equations for stellar structure and evolution:

∂r
∂m

=
1

4πr2ρ
(23)

∂P
∂m

= − Gm
4πr4 −

1
4πr2

∂2r
∂t2 (24)

∂l
∂m

= εnuc − εν + εgr (25)

∂T
∂m

= − Gm
4πr4

T
P
·

∇rad =
3κlP

16πacGmT4 if ∇rad ≤ ∇ad

∇ if ∇rad > ∇ad

(26)

∂Xi
∂t

= Ai
mu

ρ

(
−∑

j
(1 + δij) Rij + ∑

k,l
Rkl

)
+ mixing terms (27)

These equations are highly non-linear and time-dependent so they have to be solved
numerically. In order to do that, we need also to set initial and boundary conditions.
Firstly, we typically assume hydrostatic equilibrium so r̈ = 0. We remember that
εgr is linked to thermal structure changes (positive in contraction and negative in
expansion phase): if the lifetime of a star is much longer than the thermal timescale
then εgr ' 0. Changes in composition of the most abundant elements are nearly
constant during a nuclear timescale. In conclusion, if the star is both in hydrostatic
and thermal equilibrium (e.g. for zero-age main sequence stars) then only the initial
mass fractions are required to construct the stellar model. On the other hand, if
there is only hydrostatic equilibrium then εgr = −T(∂s/∂t) remains and the function,
s(m, t0), of the specific entropy profile must be added to initial conditions.

For what concerns the boundary conditions at the center (m = 0) we simply
impose r = l = 0 because both density and energy generation rate must not to
diverge. The surface boundary conditions are more complicated. It is useful to
identify the surface with the photosphere, i.e. the surface where the optical depth
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τph =
∫ ∞

Rph
κρdr is equal to 2/3. With an appropriate mean value of the opacity, we

can write τph = κph
∫ ∞

Rph
ρdr. Since it must be

(
dP
dr

)
ph

= −
Gm(Rph)

R2
ph

ρ

we obtain the following boundary conditions

m(Rph) ' M P(Rph) '
GM
R2

ph

∫ ∞

Rph

ρdr =
2
3

GM
κphR2

ph

T(Rph) ' Teff L = 4πR2
phσT4

eff

1.7.1 Homology relations

Stellar structure equations can be solved numerically, but the solutions for different
stars are often similar. We can take advantage of this similarity and use scaling rela-
tions called homology relations to obtain a rough estimate of some stellar parameters.
That is, if we know the parameters of a star then homology relations allow us to
obtain immediately information about the parameters of a second homologous star.
Let’s give the definition of homologous stars.

Definition (Homologous stellar models). Let A and B be two stellar models (of
masses MA and MB, radii RA and RB). Two mass shells are homologous if they
have the same relative mass coordinate x := m/M. The two stellar models are
homologous if the homologous mass shells are located at the same relative radii:

x =
mA
MA

=
mB
MB

−→ rA(x)
RA

=
rB(x)

RB
∀x

This implies that homologous stars must have the same relative mass distribution
and therefore the same relative density distribution. With the definition and the
stellar structure equations we can derive, for homologous models, homology relations
for all variables. Homology relations are often applied to main-sequence stars.

1.8 star formation and pre-main sequence evolution

Since the solutions of the stellar structure equations are not analytic then we will
describe them qualitatively, but firstly we spend some words to explain how stars
arise from molecular clouds. The star formation process can be divided into six
phases:

• Cloud collapse. At the beginning there is a molecular cloud with mass ≈
105 M�, diameter ≈ 10 pc, temperature 10÷ 100 K and number density n =
10 ÷ 300 molecules/cm3. The cloud is in hydrostatic equilibrium with the
surroundings, but a perturbation can break the equilibrium and induce the
cloud collapse. The perturbation may be caused, for example, by a nearby
supernova explosion. The hydrostatic equilibrium is stable against pressure
perturbation if the mass of the cloud is lower than the Jeans mass:

MJ ≈ 4 · 104 M�

(
T

100 K

)3/2(
n

cm−3

)−1/2

In molecular clouds MJ = 103 ÷ 104 M� and there are fragments that exceeds
this mass values undergoing free-fall collapse. However, the free-fall timescale
is of the order of 106 yr because of the low density.
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• Cloud fragmentation. During the collapse the density increases and conse-
quently the Jeans mass decreases. This means that the dimensions of fragments
in the cloud that can collapse decrease: the smallest fragments will be of less
than 0.1 M�.

• Formation of a protostellar core. The increasing density caused the gas to
become opaque to infrared photons. For this reason, the temperature and the
gas pressure also increase and the collapse slows down. At a certain point the
hydrostatic equilibrium is achieved, the contraction of the cloud is quasi-static
and we can say that a protostar is born.

• Accretion. The surrounding gas is attracted by the protostellar core and forms
and accretion disk. The infalling gas increases its gravitational energy heating
the core and radiating. The luminosity provided by the accretion disk is
Lacc = GMṀ/2R where all quantities refer to the protostellar core. This is also
most of the protostar luminosity.

• Dissociation and ionization. At T ≈ 2000 K molecular hydrogen dissociates
and temperature increases only a little with contraction. Therefore hydrostatic
equilibrium is broken and a phase of dynamical collapse follows. The collapse
stops and the equilibrium is restored when the molecular hydrogen has been
completely dissociated. Then temperature rises again until, at 104 K, ionization
of hydrogen and then of helium lead to further phases of dynamical collapse.

• Pre-main sequence phase (PMS). When the accretion slows down or stops we
can talk about a pre-main-sequence star whose luminosity is due to gravitational
contraction. In absence of accretion the surface cools and a temperature
gradient settles in the star.

Pre-main-sequence stars have low temperatures and so high opacity. Therefore
radiative transport is inefficient and the whole star is convective. There are also other
kinds of fully convective stars, but all evolve along an almost vertical line in the H-R
diagram. This line is called Hayashi line and the stars in hydrostatic equilibrium,
but not fully convective, are located to the left. The region to the right, instead, is
forbidden for stars in hydrostatic equilibrium. The position of the Hayashi line in
the H-R diagram depends on mass: increasing mass it moves to higher temperatures.
It turns out that the shape of the Hayashi line is determined by the opacity in the
photosphere. The photospheres of fully convective stars are very cool so the main
source of opacity is the negative hydrogen ion H– . This kind of opacity increases
strongly with temperature and consequently the luminosity varies a lot with even
little changes in temperature. This fact explains the steepness of the Hayashi
line. During its evolution a pre-main-sequence star moves along the correspondent
Hayashi line until the opacity remains high. The temperature slowly rises, but at a
certain moment the central parts become radiative (∇rad < ∇ad): a radiative core
forms. Then the star moves to the left of the Hayashi line in the H-R diagram and
the radiative core grows. Stars with higher mass depart from the Hayashi line at
higher luminosities. When the temperature is high enough the contraction stops,
hydrogen burning starts and the star settles on the zero-age main sequence (ZAMS).
This happens only for masses greater than 0.08 M�. However, several reactions can
take place before the temperature required for hydrogen burning is reached, e.g. the
12C(p, γ) 13N reaction is the origin of the particular shape of the evolutionary track
just before the ZAMS. The Kelvin-Helmholtz timescale gives and estimate of the
pre-main sequence lifetime: this is shorter for more massive stars. In Figure 3 are
shown some evolutionary tracks of pre-main-sequence stars with masses ranging
from 0.3 to 2.5 M�.
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Figure 3.: Pre-main sequence evolutionary tracks for M = 0.3÷ 2.5 M� and the indicated initial
composition from D’Antona & Mazzitelli (1994). The MLT with αov = 1.2 is used. The
dotted lines are called isochrones and connect points of different tracks corresponding to
the same age. The first phase along the Hayashi line and the following evolution to the left
are clearly visible. There are also solid lines which intersect the tracks. Two lines of those,
near the t = 105 yr isochrone, indicate the region in the H-R diagram where the deuterium
burning occurs. The other two lines indicate the region where lithium burning occurs. These
burning processes are further examples of nuclear reactions that occur in the PMS phase.

1.9 the main-sequence phase

1.9.1 The zero-age main sequence

ZAMS stars are in both hydrostatic and thermal equilibrium. Their composition is
nearly homogeneous and so homology relations work rather well. The most common
homology relations are the mass-luminosity and the mass-radius relations:

L ∝ µ4M3 R ∝ µ
ν−4
ν+3 M

ν−1
ν+3

with a value of ν appropriate to the hydrogen burning process that is taking place in
the star (ν ' 4 for pp-chain and ν ' 16 for CNO cycle). In order to obtain a detailed
ZAMS model we have to solve stellar structure equations numerically imposing
hydrostatic and thermal equilibrium. Some examples of ZAMS models are shown in
Figure 4. The central conditions of these models are also interesting (see Figure 4)
because determine the main hydrogen burning process. See the caption of Figure 4

for further information and comments.
For what concerns the convective regions we can divide ZAMS stars into three

groups (consequence of the Schwarzshild criterion for convection):

• fully convective: for M < 0.35 M�. The pp-chain dominates the energy
production, but the low temperature maintains high the opacity in the whole
star inducing convection.

• radiative core and convective envelope: for 0.35 M� < M < 1.2 M�. The
pp-chain dominates the energy production which takes place in a large area.
The temperature in the envelope is still low and so the high opacity induces
convection in the envelope.

• convective core and radiative envelope: for M > 1.2 M�. The CNO cycle
dominates the energy production which is peaked near the center and induces
convection in the core.
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(a) (b)

Figure 4.: Left panel: ZAMS models in the H-R diagram. The masses go from 0.1 to 100 M�. We
can see that, for the same mass, metal-rich models are located at lower temperatures than
metal-poor models. Right panel: the central temperature and density of the same models.
The approximate boundaries of the regions where CNO cycle and pp-chain dominate are
shown. The changes in central temperature and slope due to the different burning processes
are clearly visible. Courtesy of O. Polls (Lecture Notes).

1.9.2 The central hydrogen burning phase

During this phase, stars remain in hydrostatic equilibrium and the evolution is driven
by the changes in composition. In fact the fusion of hydrogen into helium leads to an
increase of µ and so also of the luminosity (remember the mass-luminosity relation).
Since the hydrogen abundance decreases, the central temperature must increase to
keep constant the energy production rate. However, approximately it is εpp ∝ ρT4

and εCNO ∝ ρT18 hence the central temperature does not increase so much. This
means that Tc/µ ∝ Pc/ρc decreases, i.e. Pc must decrease or ρc must increase. What
happens depends again on the burning process:

• stars where the CNO cycle dominates: εCNO ∝ ρT18 so the density can’t
increase so much and Pc must decrease. Consequently, the pressure that
the outer layers exert to the core must decrease too. If the pressure in the
envelope decreases then it must expand to preserve hydrostatic equilibrium.
This explains the decrease in Teff. Moreover, we remember that the cores of
these stars are convective and so they have a larger fuel supply and a larger
main-sequence lifetime than the other main-sequence stars. When hydrogen
is exhausted (red point of the evolutionary track, see Figure 5) the energy
production stops. The star cools and contracts until, in a shell surrounding the
helium core, the temperature reaches again the threshold for the CNO cycle
and the hydrogen-shell burning phase begins. This is the blue final point of the
evolutionary tracks.

• stars where the pp-chain dominates: εpp ∝ ρT4 so the central density increases
more than in the previous case and the envelope needs to expand less. This
explains why low-mass stars do not evolve a lot toward lower temperatures.
The energy production in this case is not peaked near the center and hydrogen
is burned more homogeneously in the core. This behaviour prevents the
sudden contraction before the hydrogen-shell burning phase. For this reason
the evolutionary tracks of low-mass stars have not an hook-like shape.
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Figure 5.: Evolutionary tracks in the H-R diagram during central hydrogen burning of stars with
masses in the range 0.8÷ 20 M� and composition X = 0.7, Z = 0.02. Symbols show
the locations of stars in binary systems with accurately measured M, L and Teff. Different
symbols correspond to different mass range as indicated. Courtesy of O. Polls (Lecture
Notes).

1.9.3 The main-sequence lifetime

Let’s try to derive a relation between the main-sequence lifetime and the star mass.
We have:

dX
dt

= − εnuc

qH

where qH = QH/4mu. We integrate now over all mass shells and we obtain:

dMH
dt

= − L
qH

where MH is the total mass of hydrogen. Finally, we integrate over the main-sequence
lifetime:

∆MH =
1

qH

∫ τMS

0
L dt =

〈L〉τMS

qH

so that
τMS =

∆MHqH
〈L〉

The total mass of hydrogen burned is roughly proportional to the total mass: τMS ∝
M. Since the luminosity does not change a lot during the main-sequence phase,
we can use the mass-luminosity relation for ZAMS models: 〈L〉 ∝ Mη . Therefore
τMS ∝ M1−η approximately. The value of η depends on mass, but in all cases τMS
decreases strongly with mass. The effect of this high dependence is evident in the
color-magnitude diagrams of star clusters: the main-sequence is interrupted at the
turn-off point. The position and the corresponding mass of the turn-off point are
important information in order to estimate the age of the star cluster. These aspects
will be more clear by looking at the isochrone fitting method in Chapter 3.
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1.10 the hydrogen-shell burning phase

In order to describe the post-main sequence evolution it is useful to introduce the
following classification of stars by mass:

• low-mass stars: 0.8 M� < M . MHeF, MHeF := 2 M�. These stars burn
hydrogen in a shell and develop a degenerate helium core. In the H-R diagram
they trace a path called red giant branch (RGB). When the core reach the
necessary mass, at the top of the RGB, helium ignites suddenly: this event is
called helium flash.

• intermediate-mass stars: MHeF . M . Mup, Mup := 8 M�. During the
hydrogen-shell burning the helium core remains non-degenerate and the
ignition of helium is stable (there is not an helium flash). A degenerate carbon-
oxygen core develops during the helium burning phase. At the end, both
low-mass and intermediate-mass stars lose their envelopes and form a CO
white dwarf.

• massive stars: M & Mup. They firstly ignite helium in a non-degenerate core
and then they also ignite carbon in a non-degenerate core. Except for masses
near to Mup, these stars also ignite elements heavier than carbon.

1.10.1 The Schönberg-Chandrasekhar limit

After the main sequence there is not energy production in the core. Therefore either
the energy flow in the core is zero or there is not thermal equilibrium. Null energy
flow means isothermal core, but this condition can be satisfied only if the core mass
is a small fraction of the total mass. The limit value for the ratio Mcore/M is about
0.1 and it is called Schönberg-Chandrasekhar limit. If overshooting is taken into account
then it turns out that intermediate and massive stars can’t have a core in thermal
equilibrium during the entire hydrogen-shell burning phase. Their cores contract
and build up a temperature gradient in order to maintain hydrostatic equilibrium.
Low-mass stars, instead, keep their cores isothermal in another way. Their cores are
degenerate so the energy transport by electron conduction is very efficient and can
keep the core isothermal.

1.10.2 The mirror principle

Let us consider a star with an active burning shell. We said that nuclear burning is
very sensitive to temperature changes so the shell temperature must remain almost
constant to preserve thermal equilibrium. Moreover, for the same reason, the shell
can’t contract or its temperature would increase. Consequently also the shell radius
is nearly constant. Hence, if the core contracts then the shell density must decrease
together with the pressure. If the pressure in the shell decreases then the pressure of
the overlying layers must decrease too. These considerations can be summarized in
the mirror principle:

In a star with an active burning shell, the latter acts as a mirror between
the core and the envelope. In other words, when the core contracts then
the envelope expands and, on the contrary, when the core expands then
the envelope contracts.

1.10.3 The hydrogen-shell burning phase of intermediate-mass and massive stars

We will follow the evolution of a 5 M� star with composition X = 0.7, Z = 0.02 as
representative case of this mass range. In Figure 6 its evolutionary track in the H-R
diagram is shown.
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(a)

(b)

Figure 6.: Panel 6a: evolutionary track of a 5 M� star with composition X = 0.7, Z = 0.02 starting
from the ZAMS and ending at the top of the asymptotic giant branch (overshooting has
not been taken into account). Panel 6b: the Kippenhan diagram of the same evolutionary
track. This diagram shows the changes in the internal structure of the star with time.
The gray areas are convective, light-gray areas are semi-convective (Ledoux criterion holds,
but Schwarzshild criterion not). In red regions there is nuclear burning (dark red for
εnuc > 10L/M and light red for εnuc > 2L/M). Courtesy of O. Polls (Lecture Notes).
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Let’s describe what happens in the various portions.

• A - C. This is the central hydrogen burning phase we have already discussed.
At point C the hydrogen in the core is exhausted and core convection stops.

• C - D. The hydrogen burning shell is active. During this phase the core mass
is below the Schönberg-Chandrasekhar limit so the core remains in thermal
equilibrium and the star evolves slowly. There are not high differences in
temperature and pressure between the core and the envelope so that the
hydrogen shell is rather thick. The helium core grows until it reaches the
Schönberg-Chandrasekhar limit when the contraction accelerates the evolution.
Therefore near point D the envelope expands for the mirror principle and the
temperature and density gradients between core and envelope increase and
the hydrogen shell becomes thinner. The expanding envelope absorbs energy
implying a decrease in luminosity. The evolution along the C-D portion is quick
compared to the main sequence lifetimes: it lasts a few million years. As a
consequence of this fact, it is very difficult to observe stars in this evolutionary
state and this is the origin of the so-called Hertzsprung gap in the H-R diagram.

• D - E. Near point D the expanding envelope decreases its temperature, the
opacity rises and it becomes convective. During the D-E portion the star is a
red giant with a deep convective envelope. This explains why it is located so
close to the Hayashi line. We remember that the temperature does not vary
a lot along the Hayashi line and, in the meanwhile, the core contracts and
the envelope expands so the luminosity increases. At point E the envelope
is deep enough to reach the regions where hydrogen was burned during the
phase A-C so that the nuclear reactions products are brought to the surface:
this event is called (first) dredge-up. As we said before the helium core remains
non-degenerate during the entire hydrogen-shell burning phase. At the end,
at point E, these stars have developed a core with a mass greater than 0.3 M�
(detailed calculations show that this is the lower limit to helium ignition) and
the central temperature is 108 K, high enough to start burning helium. The
helium burning stops the core contraction and so also the envelope expansion.

1.10.4 The hydrogen-shell burning phase of low-mass stars

We will follow the evolution of a 1 M� star with composition X = 0.7, Z = 0.02 as
representative case of this mass range. In Figure 7 its evolutionary track in the H-R
diagram is shown.

Let’s describe what happens in the various portions.

• A - B. This is the central hydrogen burning phase we have already discussed.

• B - C. When the central hydrogen is exhausted the mass core is below the
Schönberg-Chandrasekhar limit so the core remains in thermal equilibrium.
Moreover, the helium core becomes degenerate before the SC-limit is reached
so the thermal equilibrium is never broken thanks to electron conduction.
Consequently the evolution in the B-C phase is much more slow (≈ 2 Gyr for
our star) than that of more massive stars and there is not the Hertzsprung gap.
Again hydrogen is burned in a thick shell, the core contracts and the envelope
expands. At point C the helium core has become degenerate and the envelope
has become convective: the star is close to the Hayashi line. The stars which
are in this evolutionary stage form the subgiant branch, in the H-R diagram of
old star clusters.

• C - F. This is the red giant branch. While hydrogen is burned in the shell,
the helium core grows always in thermal equilibrium. The star evolves along
the Hayashi line until, at point F, when Tcore = 108 K the helium flash occurs.
Helium is ignited with an unstable process due to strong degeneracy.
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• D. This is the point of deepest extension of the convective envelope: the first
dredge-up occurs at this moment.

• E. After the dredge-up the hydrogen-burning shell moves to higher relative
mass coordinate and finds a higher hydrogen abundance left by the convective
envelope. The energy production therefore decreases somewhat together with
the luminosity before continuing the evolution along the Hayashi line. This
phenomenon leads to a larger number of stars in this region of the H-R diagram.
We call this region RGB-bump.

Another important mechanism which affects the evolution during the RGB is mass
loss by stellar wind. The envelope in this phase is indeed weakly bound. Our 1 M�
star loses about 0.3 M� during this phase.

1.11 the helium burning phase

1.11.1 Helium burning in intermediate-mass stars

We proceed with the description of the evolutionary track of Figure 6 starting from
the tip of the RGB (point E). During the entire helium burning phase hydrogen is
burned in a shell. In the case of our 5 M� star, the helium burning phase lasts for
about 22 Myr.

• E - F. At point E the core is non-degenerate and so helium is ignited in a
stable way. Helium burning reactions are highly temperature-dependent so
the energy production is peaked near the center leading to a convective core.
Initially the 3α reaction dominates and then the reaction 12C + α −−→ 16O
also becomes important. In the E-F portion the star is almost convective, the
envelope contracts and the radius decreases with luminosity. In the meanwhile
the envelope becomes radiative and, at point F, the star can move away from
the Hayashi line.

• F - H. The point F is the start of the blue loop (F-H). In the phase F-G the
envelope continues contracting while temperature increases. Near point G
the helium abundance has become rather low (≈ 0.3) and the envelope starts
expanding until point H where the helium abundance is less than ten percent
and the star has become again almost fully convective.

For what concerns the effect of overshooting, this makes larger the core mass
at the end of the main sequence an so also the luminosity contribution of helium
burning. This means that the helium burning phase becomes shorter in presence
of overshooting. Also the temperature extension of the blue loops depend on
overshooting providing useful observational tests.

1.11.2 Helium burning in low-mass stars

We refer to Figure 7. The important difference of low-mass stars and the other
categories is that helium is ignited in a degenerate core leading to the helium
flash. Moreover, all low-mass stars ignite helium at about the same core mass of
≈ 0.45 M�. This means that the luminosity of helium burning low-mass stars is
nearly independent of mass.

the helium flash The helium flash occurs at point F when Tcore ≈ 108 K and
ρcore ≈ 106 g/cm3. The 3α reactions cause a temperature increase rather than a
decrease. This happens because the degenerate pressure is almost independent of
T and so it can’t increase so much when the helium burning starts (no expansion
and no work done). All the energy produced goes into raising the internal energy.
When, like in this case, an increase in temperature causes a further increase in
temperature we talk about thermal runaway. More precisely, the internal energy of
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(a)

(b)

Figure 7.: Panel 7a: evolutionary track of a 1 M� star with composition X = 0.7, Z = 0.02 starting
from the ZAMS and ending at the top of the asymptotic giant branch (overshooting has
not been taken into account). Panel 7b: the Kippenhahn diagram of the same evolutionary
track. This diagram shows the changes in the internal structure of the star with time.
The gray areas are convective, light-gray areas are semi-convective (Ledoux criterion holds,
but Schwarzshild criterion not). In red regions there is nuclear burning (dark red for
εnuc > 5L/M and light red for εnuc > L/M). Courtesy of O. Polls (Lecture Notes).
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degenerate electrons does not increase (it depends on ρ): it is the internal energy of
the non-degenerate ions that increases. The energy production during the helium
flash is extremely high (l ≈ 1010 L�), but it lasts only for a few seconds. As a result,
the star “jumps” from point F to point G in the H-R diagram. The degeneracy,
eventually after some further smaller flashes, is broken and the core then expands,
the envelope contracts for the mirror principle, the energy generation rate decreases.
Thermal equilibrium is reached when the energy generation rate balances the energy
loss rate. The following phase of helium burning (G-H) is stable and lasts for about
120 Myr.

the horizontal branch The position of the star in the H-R diagram during the
phase G-H does not vary so much and, as we have just said, all low-mass stars have
more or less the same luminosity in this phase. Also the temperature is similar
so we see a star concentration in this region of the colour-magnitude diagram of
old stellar populations. This star concentration is called red clump. However, the
effective temperature after the helium flash in some cases depends rather strongly
on the envelope mass (lower masses correspond to higher temperatures). Hence an
horizontal branch (HB) can form in the colour-magnitude diagrams.

pulsational instability Helium-burning stars are often radial pulsators. This is
the case of Cepheids and RR-Lyrae stars. We defer the detailed description of these
variable stars to Chapter 2.

1.11.3 Helium burning in massive stars

The evolution of massive stars during the helium burning phase differs from that of
the low- and intermediate-mass stars in two main aspects:

• For stars with M & 15 M� the mass loss by stellar winds is very important.
Stellar winds lead to the erosion of the outer layers and can be driven by
radiation (i.e. by radiation pressure at the frequencies of absorption lines or on
dust particles) or by stellar pulsations.

• When the helium burning phase ends, low- and intermediate-mass stars can’t
ignite carbon because they have developed a degenerate carbon-oxygen core
and the temperature is not high enough. The cores of massive stars, instead,
reach a temperature greater than 5 · 108 K and undergo non-degenerate carbon
ignition.

Evolutionary tracks of massive stars in the range 12÷ 120 M� are shown in Figure 8.
During the evolution, massive stars do not develop degenerate cores and they are
nearly totally in radiative equilibrium. This explains why the evolution proceeds at
almost constant luminosity.

red supergiants They are cool and luminous stars (see Figure 8) with a high
mass loss by stellar wind up to 10−4 M�/yr. Massive stars with M . 40 M� in the
helium burning phase spend a lot of time as red supergiants. On the other hand,
stars with M & 40 M� show sporadic outbursts with mass loss & 10−3 M� so that
they never become supergiants and they are destined to become Wolf-Rayet stars.
Stars which show these outbursts are called luminous blue variables.

wolf-rayet stars They are stars with both high temperature and luminosity (see
Figure 8). They show strong emission lines which indicate high CNO abundances.
For this reason they are supposed to be the exposed cores of massive stars in the
helium burning phase.
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Figure 8.: Evolutionary tracks of massive stars in the range 12÷ 120 M�. Mass loss and overshooting
(αov = 0.25) are taken into account. The marked regions indicate long-lived evolution
phases: the main sequence and the helium burning phase as red supergiants (log Teff < 4.0)
or as Wolf-Rayet star (log Teff > 4.8). We can see the difference between the evolution
of stars with mass greater and lower than 40 M�. Figure taken from Maeder & Meynet
(1987).

1.12 late evolution

1.12.1 Late evolution of low- and intermediate-mass stars

At the end of the central helium burning phase, low- and intermediate-mass stars
are not hot enough to ignite carbon. The stars are now located at point H in the
H-R diagrams of Figures 6 and 7 and in the Kippenhahn diagram of Figure 9. Point
H is the starting point of the asymptotic giant branch (AGB). The AGB phase can be
divided into three periods:

• Early AGB phase. The carbon-oxygen core contracts and the helium burning
process continues in a shell so that above layers expand. This expansion leads
to a decrease in temperature of the shallower hydrogen-burning shell which
can turn off after some time in stars with M & 4 M�. The core grows and
becomes degenerate.

• Second dredge-up. The envelope expands because of the mirror principle
and, at point K of Figure 9 and for sufficiently high mass, it reaches the mass
coordinate at which there was the hydrogen-burning shell. A dredge-up then
occurs and the products of hydrogen burning (helium by the pp-chain and
nitrogen by the CNO-cycle) are brought to the surface.

• The thermally pulsing AGB phase (TP-AGB). As the core grows the helium-
burning shell approaches the region of the hydrogen-burning shell so that the
helium-burning rate decreases and the above layers contract. This contraction
causes a new ignition of the hydrogen (after point J in Figure 9). The two
burning shells coexist for some time. However the two shells can’t produce
energy at the same rate and soon the helium-burning shell becomes thermally
unstable. The latter shows periodic thermal pulses which induce the nucleosyn-
thesis of carbon, nitrogen and also elements heavier than iron. Moreover, a
strong mass loss driven by pulsations and radiation occurs during the TP-AGB
phase.

The lifetime of the TP-AGB phase is of few million years depending on the
mass loss rate. The mass loss prevents AGB stars to develop a carbon-oxygen core
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Figure 9.: Kippenhahn diagram of the late evolution of a 5 M� star. We can see the point H where
the hydrogen-burning shell extinguish, the point K of the second dredge-up and the point J
where hydrogen is reignited. Courtesy of O. Polls (Lecture Notes).

with mass greater than MCh := 1.46 M�, the Chandrasekhar limit. In fact the entire
hydrogen-rich envelope is removed and carbon will be never ignited.

post-agb evolution After the AGB the H-rich envelope has been almost com-
pletely lost. The star evolves toward higher temperatures at almost constant lumi-
nosity. The hydrogen-burning shell has not been extinguished yet. At Teff > 3 · 104 K
a strong UV flux destroys dust, molecules and ionizes the gas in the surrounding
interstellar medium. The ionized gas (H II in particular) emits radiation and we
talk about a planetary nebula. At Teff ≈ 105 K the hydrogen-burning shell extinguish
definitively and the luminosity starts decreasing. The star finishes its evolution
cooling as a white dwarf of degenerate carbon and oxygen. Nuclear fusion does not
take place so white dwarfs radiates their thermal energy. White dwarfs’ mass is
usually around 0.6 M�.

1.12.2 Late evolution of massive stars

Massive stars develop during the helium-burning phase a non-degenerate carbon-
oxygen core with a mass high enough (> 1.06 M�) to ignite carbon. Then the
evolution proceeds quickly through several nuclear burning phases and core con-
tractions. A lot of heavy elements are produced up to iron and nickel (see Section
1.6). Neutrino energy losses are now important for the cooling process of the core
and speed up its evolution. Only a few thousand years pass from the carbon igni-
tion until the formation of an iron core. In the meanwhile the envelope is almost
decoupled from the core because of the rapid evolution, so the star’s position in the
H-R diagram does not change a lot. At the end of this sequence of burning cycles
the core has an iron nucleus surrounded by many shells made of increasingly lighter
elements. No more energy can be produced by nuclear fusion and the inert core
then collapses and finally explodes.

supernovae The core collapse is arrested by nuclear forces when neutrons become
degenerate. The collapse is not only stopped but also the material bounces back like
a spring. The shock wave which originates in that way throws out the envelope. This
event is called supernova core-collapse. If the initial mass of the star is below 25 M�
then the remnant of this explosion is a neutron star supported by the degenerate
pressure of neutrons, otherwise a black hole forms.
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2.1 introduction

Uncertainties in stellar physics have direct consequences in several fields of Astro-
physics; ranging from investigations on exoplanet properties to stellar populations
or galaxy evolution studies. For this reason, it is extremely important to achieve
estimates of stellar parameters (mass, radius and age in particular) as precise as
possible. Science has made great strides in this direction thanks to Asteroseismol-
ogy, the study of stars by observations of their natural, resonant oscillations. The
CNES CoRoT (Convection, Rotation et Transits planétaires, Baglin & Fridlund 2006)
satellite and the NASA Kepler mission (Borucki et al. 2009) have been decisive in
providing the necessary observations. Oscillation frequencies depend indeed on
the internal structure of stars and this fact makes possible precision levels in stellar
parameter estimations which have never been obtained before. In the next future,
other missions like TESS (Transiting Exoplanet Survey Satellite, Ricker et al. 2009)
and PLATO (PLAnetary Transits and Oscillations of stars, Rauer et al. 2014) will
extend the observations to a wider set of targets. These missions are of fundamental
importance for the development of Ensemble Asteroseismology, the application
of Asteroseismology to the study of stellar populations. This involves studying
similarities and differences in groups of stars by using asteroseismic diagrams, in
which two properties of the oscillation spectra are plotted against one another. In
order to understand Asteroseismology we start developing the Stellar Pulsation
Theory. Derivations in this Chapter mainly follow the treatments of Cox (1980),
Aerts et al. (2010) and Catelan & Smith (2015).

2.2 stellar pulsation theory

We introduce the adiabatic exponents Γ1, Γ2 and Γ3 which can be used instead of the
adiabatic derivatives γad and ∇ad. They are defined as follows:

Γ1 =

(
∂ ln P
∂ ln ρ

)
ad

= γad
Γ2

Γ2 − 1
=

(
∂ ln P
∂ ln T

)
ad

=
1
∇ad

Γ3 =

(
∂ ln T
∂ ln ρ

)
ad

+ 1

and satisfy the relation
Γ1

Γ3 − 1
=

Γ2

Γ2 − 1

2.2.1 The period-mean density relation

Nowadays the existence of a connection between variability of single stars and stellar
oscillations is clear. In this section we describe how a sound wave can travel through
the stellar interior leading to mechanical oscillations. Let’s start with the timescale
of propagation. The sound speed is given by

cs =

√
Γ1P

ρ
(28)

For an ideal gas we have P/ρ = kBT/µmu. Moreover, with µ ≈ 0.6 (solar-like abun-
dances), Γ1 ≈ γ = 5/3 (monoatomic gas) and temperature 45 000 K (characteristic of
the second ionization zones of helium), we obtain cs ≈ 32.3 km s−1. Once we have

31
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derived the radius of a star thanks to some measures, then we can approximate the
propagation timescale as

Π ∼ 2R
cs

With this rough formula we can only predict the order of magnitude of the period
of some variable stars like Cepheids and RR Lyrae. A more precise estimate of the
period is

Π = 2
∫ R

0
dt(r) = 2

∫ R

0

dr
cs(r)

= 2
∫ R

0

dr√
Γ1(r)P(r)/ρ(r)

(29)

but the functions at the denominator have in general a complex form. Hence we
consider the homogeneous case (ρ = ρ and Γ1 constants). In order to derive P(r) in
this case we integrate from r to R the hydrostatic equilibrium condition, Equation 6:

P(R)− P(r) = −2
3

πρ2G(r2 − R2)

but P(R) ≈ 0, so

P(r) = −2
3

πρ2G(R2 − r2)

and Equation 29 becomes the Ritter’s period-mean density relation:

Π
√

ρ =

√
3π

2Γ1G
:= Q (30)

where Q is called pulsation constant. The differences between observed and predicted
periods are now certainly smaller than before. This agreement strongly suggests that
stars for which this relation holds (Cepheids and RR Lyrae at least) radially pulsate.
Let’s investigate deeper radial pulsations.

2.2.2 Basic equations for the description of radial oscillations

The equations listed at the beginning of Section 1.7 have been derived assuming
spherical symmetry so they are useful also for the radial pulsation theory. In this
context, however, we can’t do the same approximations we did in Section 1.7. The
abundances can be kept constant, but the acceleration, r̈, is essential. Moreover, those
equations describe a state of equilibrium if we neglect time derivatives. Pulsations,
instead, are deviations from this state.

Firstly, we find another formulation for the energy conservation Equation 12. We
want to relate dq/dt = (∂u/∂t) + P(∂ρ−1/∂t) = εgr with only two of the variables
ρ, P and T. u is a state variable so it is possible to express u in terms of two of these
three variables. For example, with u = u(ρ, P), we find
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(31)



2.2 stellar pulsation theory 33

Similarly, in the case u = u(P, T), it results

dq
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(32)

and, in the adiabatic case,
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Since (∂u/∂T)ρ = cV , we obtain
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At this point, Equation 25 can be rewritten as

∂ ln T
∂t

= (Γ3 − 1)
∂ ln ρ

∂t
+

1
cV T

(
εeff −

∂l
∂m

)
(35)

where εeff := εnuc− εν is the effective generation rate. Similarly, starting from Equation
31, we obtain

∂ ln P
∂t

= Γ1
∂ ln ρ

∂t
+

ρ

P
(Γ3 − 1)

(
εeff −

∂l
∂m

)
(36)

2.2.3 Perturbation Theory and Linearization

the eulerian and lagrangian descriptions As we have just said, the solu-
tions of the stellar structure equations are nearly time-independent, so we can
neglect time-derivatives and obtain static solutions. We will consider these solutions
as reference and oscillations as perturbations from the equilibrium state. Let us
formalize the concept of perturbation in the Eulerian and Lagrangian descriptions.

In the Eulerian description the reference frame is fixed, independent of the motion.
All physical quantities depend on the position r in the reference frame and on
time. Hence, for every position r we have f = f (r, t) for every physical quantity f
like density, pressure, velocity etc.. As a consequence, time derivatives are partial
derivatives. Let f be a physical quantity at a given coordinate r of the perturbed
model and let f0 be its value at the same coordinate, but in the unperturbed model.
Then, we define the Eulerian perturbation f ′ as

f ′(r, t) := f (r, t)− f0(r, t) (37)

In the Lagrangian description the reference frame is integral with a mass element,
so follows it during the motion. In this case the physical quantities are of the form
fel(t), where the subscript indicates that they refer to a specific mass element. As
a consequence, time derivatives are total derivatives. Let fel be a physical quantity
corresponding to a given mass element of the perturbed model and let fel,0 be its
value for the same element, but in the unperturbed model. Then, we define the
Lagrangian perturbation δ f as

δ f (t) := fel(t)− fel,0(t) (38)
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There is a relation between δ f and f ′ that can be easily derived:

δ f (t) = fel(t)− fel,0(t)

= f (rel, t)− f0(rel,0, t) with rel = rel,0 + δr

= f (rel, t)− f0(rel, t) + f0(rel, t)− f0(rel,0, t)

which, expanding to the first order, becomes

δ f = f ′ +∇ f0 · δr (39)

In our stellar models the independent variable is the radius in the Eulerian descrip-
tion and the mass coordinate in the Lagrangian description. Hereafter we will use
the Lagrangian description unless clear indications, so we suppress the subscript
’el’. The quantity f can be the radial coordinate r. In this case the relative radial
displacement ξ := δr/r0 is often used. If all the perturbations are small (i.e. δ f / f0 � 1
and consequently δ f / f0 ' δ f / f ) then we can neglect all non-linear terms. This is
the fundamental hypothesis of the linear theory.

Now, in order to be able to describe in detail the oscillations, we linearize the
perturbed stellar structure equations. In practice we replace all quantities f present
in the original equations with f0 + δ f (the mass coordinate m is the independent
variable in the Lagrangian description so it has not to be perturbed).

linearization of the perturbed continuity equation Equation 23 is usually
called Continuity Equation and its perturbed form is the following:

∂

∂m
[r0(1 + ξ)] =

1
4πr2

0(1 + ξ)2ρ0(1 + δρ/ρ0)
(40)

Thanks to the binomial expansion, (1 + x)n ' 1 + nx for x � 1, and neglecting
non-linear terms we can easily obtain

4πr2
0ρ0

[
(1 + ξ)

∂r0

∂m
+ r0

∂ξ

∂m

]
= (1− 2ξ)− δρ

ρ0

but Equation 23 gives directly ∂r0/∂m and after the substitution it results

δρ

ρ0
= −3ξ − 4πr3

0ρ0
∂ξ

∂m
(41)

This is the Linearized Continuity Equation. The subscripts ’0’ can be suppressed
since 1� δ f / f0 ' δ f / f .

linearization of the perturbed momentum equation The Momentum Equa-
tion 24 can be linearized in a similar way if we remember that we have assumed
∂ f0/∂t = 0 so that unperturbed quantities depend only on m. The perturbed form is

∂2

∂t2 [r0(1 + ξ)] = −4πr2
0(1 + ξ)2 ∂

∂m

[
P0

(
1 +

δP
P0

)]
− Gm

r2
0(1 + ξ)2

(42)

After some manipulations we obtain the linearized equation:

r0
∂2ξ

∂t2 = −4πr2
0

(
4ξ +

δP
P0

)
dP0

dm
− 4πr2

0P0
∂

∂m

(
δP
P0

)
(43)
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linearization of the perturbed energy conservation equation The per-
turbed form of Equation 36 is

1
P0(1 + δP/P0)

∂δP
∂t

=
Γ1,0(1 + δΓ1/Γ1,0)

ρ0(1 + δρ/ρ0)

∂δρ

∂t
+

ρ0(1 + δρ/ρ0)

P0(1 + δP/P0)
·

·
[

Γ3,0

(
1 +

δΓ3

Γ3,0

)
− 1

] [(
εeff −

∂l
∂m

)
0

+ δ

(
εeff −

∂l
∂m

)]
(44)

In the unperturbed solution dq/dt = εgr = 0 therefore (dl/dm)0 = εeff,0. After
some manipulations we arrive to the linearized equation:

∂

∂t

(
δP
P0

)
= Γ1,0

∂

∂t

(
δρ

ρ0

)
+

ρ0

P0
(Γ3,0 − 1) δ

(
εeff −

∂l
∂m

)
(45)

If we start from Equation 35 we will get

∂

∂t

(
δT
T0

)
= (Γ3,0 − 1)

∂

∂t

(
δρ

ρ0

)
+ (cV,0T)−1 δ

(
εeff −

∂l
∂m

)
(46)

linearization of the perturbed energy transfer equation Firstly we put
Equation 26 in a more convenient form. We consider the radiative case for the
moment, so

l = −64π2acr4T4

3κ

∂ ln T
∂m

(47)

which can be easily linearized differentiating and dividing by itself:

δl
l
= 4ξ + 4

(
δT
T

)
− δκ

κ
+

(
∂ ln T

∂m

)−1
∂

∂m

(
δT
T

)
(48)

2.2.4 The Linear Adiabatic Wave Equation

If heat exchanges do not happen during the oscillation cycle then the process is
adiabatic. This means that dq/dt = 0 also for the perturbed model and implies
δεeff = δ(∂l/∂m). The adiabatic approach is an approximation and it must be
justified. In order to do that, we use the following relation which we do not
demonstrate:

cV
χT

=
P

ρT

(
1

Γ3 − 1

)
(49)

and we use it to rewrite Equation 45:

∂

∂t

(
δP
P

)
= Γ1

∂

∂t

(
δρ

ρ

)
+ χT

δ(εeff − ∂l/∂m)

cV T
(50)

Now we can notice that:

• Γ1 and χT are of the order of unity for non-degenerate gases;

• δ(εeff − ∂l/∂m) is the rate of energy gain or loss;

• cV T is the heat content;

• the ratio cV T/δ(εeff − ∂l/∂m) is the thermal timescale;

• ∂(δρ/ρ)/∂t represents the pulsation timescale.
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The ratio between τth and Π can be estimated as follows:

Π
τth
∼ 1

(Gρ)1/2
RL

GM2 = 10−12 (R/R�)5/2(L/L�)
(M/M�)5/2 (51)

In conclusion τth � Π for the majority of stars so the second term to the right in
Equation 50 can be neglected. This is the only non-adiabatic term so we can say that
we are working in adiabatic approximation. The same approximation can be applied
to Equation 46. Summarizing, in adiabatic approximation we can write:

δP
P0

= Γ1,0
δρ

ρ0
(52)

δT
T0

= (Γ3,0 − 1)
δρ

ρ0
(53)

We are searching for an equation which can predict the oscillation frequencies. This
equation, the Linear Adiabatic Wave Equation (LAWE), can be derived combining the
latter two equation with the linearized continuity and momentum equations. After
some algebraic steps we obtain the following equation:

r0
∂2ξ

∂t2 = 4πr2
0ξ

d
dm

[(3Γ1,0 − 4)P0] +
1
r0

∂

∂m

[
16π2Γ1,0P0ρ0r6

0
∂ξ

∂m

]
(54)

We search solutions of the form ξ(m, t) = η(m) ejσt (i.e. we separate the variables). j
is the imaginary unit and σ will assume the role of angular frequency. At the end,
suppressing subscripts, it results

− 1
r2

d
dm

(
16π2Γ1Pρr6 dη

dm

)
− 4πr

{
d

dm
[(3Γ1 − 4)P]

}
η = σ2 η (55)

which is the LAWE. In the Eulerian description it becomes

− 1
ρr4

d
dr

(
Γ1Pr4 dη

dr

)
− 1

ρr

{
d
dr

[(3Γ1 − 4)P]

}
η = σ2 η (56)

boundary conditions We want solutions to represent standing waves so the
following boundary conditions must be satisfied. It must be δr = 0 at r = 0,
otherwise spherical symmetry will be violated. This condition can be translated
into ∂ξ/∂r = dη/dr = 0 at r = 0, otherwise d2η/dr2 and so ξ will diverge (if we
expand the first term to the left of Equation 56 it will be clear). This central condition
together with Equation 41 expressed in the Eulerian description lead to

3ξ +
δρ

ρ
= 0 at r = 0 (57)

We want the solutions to remain finite also at the surface. In order to formalize this
condition we write Equation 43 in the Eulerian form and we separate the variables.
After rearranging and combining with the hydrostatic equilibrium condition, we
obtain

∂

∂t

(
δP
P0

)
= − 1

P0

dP0

dr

[(
4 +

σ2r3
0

Gm0

)
η +

δP
P0

]
(58)

where we can recognize the inverse of the pressure scale height λP = (d ln P0/dr)−1.
limr→R λP = 0 so ∂(δP/P0)/∂r remains finite at the surface only if(

4 +
σ2r3

0
Gm0

)
η +

δP
P0

= 0 at r = R (59)
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normalization The LAWE’s solutions are determined except for a normalization
factor so that they are usually normalized imposing

η =
δr
r

= 1 at r = R (60)

Now the solutions are completely determined in fact the integration of the LAWE
gives η(m) (or η(r)), then ξ = η ejσt. Moreover, Equation 41 gives the density
perturbation that can be used to derive the pressure and temperature perturbations
through Equations 52 and 53.

eigenvalues and eigenfunctions of the lawe The LAWE with the boundary
conditions discussed above is a Sturm-Liouville problem.

Definition (Sturm-Liouville problem). A Sturm-Liouville equation is a second-order
linear differential equation of the form:

1
a(x)

(
− d

dx

[
b(x)

dy
dx

]
+ c(x) y

)
= λ y λ ∈ C

where a(x) and b(x) are positive functions and c(x) is real. In our case these
functions are defined in an interval with boundary conditions on y and on dy/dt.
If boundary conditions are present then it is a Sturm-Liouville problem. This is an
eigenvalue problem with operator

L(#) = 1
a(x)

(
− d

dx

[
b(x)

d#
dx

]
+ c(x) · #

)

A solution exists only for certain values of λ, the eigenvalues. The solutions are called
eigenfunctions.

In the specific case of the LAWE the eigenvalue problem is

L(η) = σ2 η (61)

with

L(#) := − 1
ρr4

d
dr

(
Γ1Pr4 d#

dr

)
− 1

ρr

{
d
dr

[(3Γ1 − 4)P]

}
# (62)

Referring to the above definition we have x = r, y = η, λ = σ2 and

a(r) = ρr4 (63)

b(r) = −Γ1Pρr4 (64)

c(r) = r3 d
dr

[(3Γ1 − 4)P] (65)

The eigenvalues and the eigenfunctions of a Sturm-Liouville problem have several
properties which also LAWE’s solutions have:

• The eigenvalues σ2 are infinite and a certain eigenfunction corresponds to each
one.

• The eigenvalues of the LAWE are always real. Positive eigenvalues correspond
to periodic solutions with period 2π/σ. Instead, if σ2 < 0 then σ is purely
imaginary and the perturbation ξ = η ejσt grows or is damped exponentially:
it is unstable.

• We denote with n the radial order of the solutions. It results σn < σn+1 and the
lowest angular frequency is σ0 which corresponds to the fundamental mode.
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The eigenfunctions of positive eigenvalues are standing waves and the radial
order is the number of nodes in the interval (0, R).

• The eigenfunctions ηn(r) (and also ξn(r, t)) are orthogonal to each other with
respect to a(r):

∫ R

0
ηh(r)ηk(r)a(r)dr =

∫ M

0
ηh(m)ηk(m)

r2

4π
dm =

Jh
4π

δhk (66)∫ R

0
ξ∗h(r, t)ξk(r, t)a(r)dr =

∫ M

0
ξ∗h(m, t)ξk(m, t)

r2

4π
dm =

Jh
4π

δhk (67)

where

Jn :=
∫ M

0
|ξn|2r2 dm =

∫ M

0
|ξn|2ρ dV (68)

is the oscillatory moment of inertia. Therefore the general solution is a linear
combination of the eigenfunctions.

• The operator L is hermitian:∫ R

0
ηhL(ηk)dr =

∫ R

0
ηkL(ηh)dr

∫ R

0
ξ∗hL(ξk)dr =

∫ R

0
ξkL(ξh)

∗ dr

• The following relation between eigenvalues and eigenfunctions holds:

σ2
n =

1
Jn

∫ M

0
ξ∗n L(ξn)r2 dm (69)

condition for existence of oscillatory solutions We consider for simplic-
ity only the case Γ1 =const. Equation 56 becomes

d
dr

(
Pr4 dη

dr

)
+ r3 3Γ1 − 4

Γ1

dP
dr

η +
r4ρ

Γ1
σ2η = 0 (70)

Now we integrate in dr over the whole star:

r4P
dη

dr

∣∣∣∣∣
R

0

+
3Γ1 − 4

Γ1

∫ R

0
r3 dP

dr
η dr +

σ2

Γ1

∫ R

0
r4ρη dr (71)

but assuming P(R) = 0 and using the hydrostatic equilibrium condition dP/dr =
−ρGm/r2 = −ρg, it results

σ2 = (3Γ1 − 4)

∫ R
0 r3ρgη dr∫ R
0 r4ρη dr

(72)

If η = η0 then it has constant sign in the star so sgn σ2
0 = sgn (3Γ1 − 4). Moreover,

since σn ≥ σ0, we have oscillatory solutions for all the eigenvalues only if Γ1 > 4/3.

the homologous case η =const is a solution of the LAWE. η =const implies
homologous motions. Assuming Γ1 =const we find

− 1
rρ

(3Γ1 − 4)
dP
dr

η = σ2η (73)

If we consider an homogeneous model with constant mean density ρ then

− 1
ρr

dP
dr

=
Gm
r3 =

G
r3

(
4
3

πr3ρ

)
=

4πGρ

3
(74)
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so Equation 73 leads to

σ2 = (3Γ1 − 4)
4πG

3
ρ (75)

Since η =const has not nodes then this eigenvalue must correspond to the funda-
mental mode whose period is

Π =
2π

σ
=

2π

[(3Γ1 − 4)4πGρ/3]1/2 (76)

which confirms the period-mean density relation, Π ∝ (Gρ)−1/2. It is equal to
Ritter’s relation except for a different value of the pulsation constant.

the polytropic case We remember that the equation of state of polytropes is of
the form P = K ργ = K ρ1+1/n with n named polytropic index and K =const. More
centrally concentrated models correspond to higher values of n. For this reason
n = 3 gives a first approximation for main sequence stars, but Cepheids and RR
Lyrae require a polytropic index between 3 and 5, the latter corresponding to a
model with infinite central density. We can combine the continuity equation, the
hydrostatic equilibrium condition and the polytropic relation to obtain

1
ρr2

d
dr

[
r2ρK−2 dρ

dr

]
= −4πG

Kγ
with ρ(r = 0) = ρc and

dρ

dr

∣∣∣∣∣
r=0

= 0 (77)

Now we define two new variables, z and θ, through the following relations:

r = α z with α =

(
n + 1
4πG

Kρ
1
n−1
c

) 1
2

(78)

ρ = ρc θn(z) (79)

so that Equation 77 gives the Lane-Emden equation:

1
z2

d
dz

(
z2 dθ

dz

)
+ θn = 0 (80)

which has an analytic solution only for n = 0, 1, 5. The LAWE can be solved for
polytropic models and it results that

η(R)
η(0)

∼ ρc

ρ
=

1
3

(
− z

θ′n

)
z=z1

(81)

where θ′n = dθ/dz and z1 is the coordinate of the first zero of the function θ(z) which
corresponds to the stellar surface. This ratio depends only on n and increases with n:
more centrally concentrated the model is more shallow are the layers interested by
oscillations. For practical reasons the dimensionless frequency, ω, is usually introduced
in this context:

ω2 =
R3

GM
σ2 (82)

asymptotic analysis If Equation 56 is rewritten in terms of the variable w(r) =
r2(Γ1P)1/2η(r) then it becomes

d2w
dr2 +

[
σ2

cs
s
−Φ

]
w = 0 (83)
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where c2
s = Γ1P/ρ and Φ(r) is a function of r. We search for solutions of the form

w(r) ∝ ejkrr with kr defined by the dispersion relation:

k2
r =

σ2

c2
s
−Φ (84)

Therefore we have oscillatory solutions for σ2 > c2
s Φ. If σ2 � c2

s Φ and so krr � 1,
then we are in aymptotic regime. In this regime the solutions are stationary waves
with an integer or half-integer number of wavelength in the radial range a ≤ r ≤ b
where the regime applies. The number of wavelengths can be measured as follows.

∫ b

a
kr dr = (n + 1)π (85)

where n is the number of nodes in (a, b). We can enter in asymptotic regime if
Φ� 1, in this case kr ' σ/cs and

∫ b

a
kr dr = σ

∫ b

a

dr
cs

−→ σ = (n + 1)π

[ ∫ b

a

dr
cs

]−1

(86)

We define σn=0 = π
[ ∫ b

a
dr
cs

]−1
, hence σn = σ0(n + 1): in asymptotic regime the

oscillation frequencies are equally spaced by σ0. It is important to underline that
the condition krr � 1 is satisfied only for high radial orders. Such a behaviour is
observed for example in the Sun.

2.2.5 Non-adiabatic oscillations

The adiabatic approximation leads to good estimates of the oscillation frequencies,
but we can’t explain how the modes are excited yet. We have to investigate non-
adiabatic effects.

We start multiplying Equation 24 by ∂r/∂t and after rearranging we obtain

1
2

∂(v2)

∂t
=

(
− 4πr2 ∂P

∂m
− Gm

r2

)
∂r
∂t

(87)

Then we integrate in dm over the whole star:

∫ M

0

1
2

∂(v2)

∂t
dm = − d

dt

( ∫ M

0
−Gm

r
dm

)
︸ ︷︷ ︸

=dΩ/dt

− 4πr2P
∂r
∂t

∣∣∣∣∣
M

0︸ ︷︷ ︸
'0

+
∫ M

0
P

∂

∂m

(
4πr2 ∂r

∂t

)
dm

(88)∫ M

0

1
2

∂(v2)

∂t
dm ' −dΩ

dt
+
∫ M

0
P

∂

∂t

(
1
ρ

)
dm (89)

where Ω is the total gravitational potential energy. If we further integrate over a
pulsation cycle it results

W = −
∫ Π

0

dΩ
dt

dt︸ ︷︷ ︸
'0

+
∫ Π

0
dt
∫ M

0
P

∂

∂t

(
1
ρ

)
dm (90)

〈
dW
dt

〉
:=

W
Π

=
1
Π

∫ Π

0
dt
∫ M

0
P

∂

∂t

(
1
ρ

)
dm (91)

Where W is the total mechanical work done during a pulsation cycle that is trans-
formed into kinetic energy and 〈dW/dt〉 is defined as above. Therefore oscillations
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are driven if 〈dW/dt〉 > 0 and are damped otherwise. In general in a star there are
both driving and damping layers. Let’s study the consequences of this condition for
driving. For the first law of thermodynamics we have

∫ Π

0
P

∂

∂t

(
1
ρ

)
dt =

∫ Π

0

dq
dt

dt +
∫ Π

0

∂E
∂t

dt =
∫ Π

0

dq
dt

dt (92)

hence 〈
dW
dt

〉
=

1
Π

∫ Π

0
dt
∫ M

0

dq
dt

dm (93)

Now, since dq/dt = εeff − ∂l/∂m, Equation 36 can be rewritten as

∂ ln P
∂t

= Γ1
∂ ln ρ

∂t
+

ρ

P
(Γ3 − 1)

dq
dt

(94)

Therefore, at maximum compression, we have(
∂ ln P

∂t

)
m.c.

=
ρ

P
(Γ3 − 1)

dq
dt

(95)

Since (Γ3 − 1)ρ/P > 0 then heat gain (dq/dt > 0) during compression means
increase in pressure. So the pressure will be higher during expansion than during
compression leading to positive net work W and driving of pulsations. In conclusion,
in a driving region, heat is gained during compression and consequently oscillations
can’t be exited with pure adiabatic processes. Before exploring the mechanism which
leads to pulsation driving, we look at how the LAWE can be modified in order to
take into account non-adiabatic effects.

the linear non-adiabatic wave equation The derivation starts taking the time
derivative of Equation 43 written with the Eulerian formalism; it results

ρr
∂3ξ

∂t3 = −4
∂ξ

∂t
∂P
∂r
− ∂

∂r

(
P

∂

∂t
δP
P

)
(96)

then we use Equation 45 and the time derivative of Equation 41. We obtain

ρr
∂3ξ

∂t3 = −4
∂ξ

∂t
∂P
∂r

+
∂

∂r

[
PΓ1

(
3

∂ξ

∂t
+ r

∂

∂t
∂ξ

∂r

)
− ρ(Γ3 − 1) δ

(
εeff −

∂l
∂m

)]
(97)

Finally, with ξ(r, t) = η(r) ejσt and after some manipulations we arrive to the Linear
Non-Adiabatic Wave Equation (LNAWE):

jσL(ξ)− jσ3ξ = − 1
rρ

∂

∂r

[
ρ(Γ3 − 1)

(
δεeff −

∂δl
∂m

)]
(98)

where the operator L is exactly the same of Equation 62. The solutions of the LNAWE
are similar to those of the LAWE, but σ is in general a complex number with real and
imaginary part defined by σ = ω + jκ so that ξ(r, t) = η(r) ejωt e−κt. ω = 2π/Π in
this case is the angular frequency, not the dimensionless frequency, and represents
adiabatic contributions. κ is the stability coefficient which determines the rate of
growth or decay of pulsations and represents non-adiabatic contributions. The non-
adiabatic effects will be more clear if we apply the quasi-adiabatic approximation:
ω � |κ|. In this case, the variational principle allows us to use the solutions of
the LAWE to obtain the variation, κ, of σ from the adiabatic frequency. Hence we
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introduce in Equation 98 an adiabatic solution, ξad, we multiply by the latter and we
integrate in r2 dm over the whole star:

jσ
∫ M

0
ξadL(ξad)r2 dm− jσ3

∫ M

0
ξadξadr2 dm =

= −
∫ M

0

ξad
rρ

∂

∂r

[
ρ(Γ3 − 1)

(
δεeff −

∂δl
∂m

)]
r2 dm︸ ︷︷ ︸

:=Cqa

(99)

Since ω � |κ|, we have jσ3 ≈ ω2(jω− 3κ) = ω2(jσ− 2κ). Moreover, we know that
L(ξad) = ω2 ξad so Equation 99 becomes

2ω2κ
∫ M

0
ξ2

adr2 dm = −Cqa (100)

so that

κ = − Cqa

2ω2
∫ M

0 ξ2
adr2 dm

= − Cqa

2ω2 J
(101)

and sgn κ = −sgn Cqa since ω2, J > 0. This means that Cqa is fundamental for our
understanding of the pulsations’ behaviour. This integral can be developed firstly
changing the variable from m to r and integrating by parts, and then using Equations
41 and 53; it results

Cqa =
∫ M

0

(
δT
T

)
ad

(
δεeff −

∂δl
∂m

)
dm (102)

It can be shown that this is equal to 〈dW/dt〉. The demonstration starts from
Equation 93 expanding P(∂(ρ−1)/∂t until the second order and then combining
with Equation 45. Summarizing, in quasi-adiabatic approximation we have sgn κ =
−sgn Cqa = −sgn 〈dW/dt〉. This fact was expected indeed we said that there is
driving when 〈dW/dt〉 > 0 which corresponds to a solution ξ(r, t) = η(r) ejωt e−κt

that grows with time. On the contrary, there is damping if 〈dW/dt〉 < 0 and so
κ > 0.

phase lags The adiabatic theory can’t explain also the phase lags observed between
different physical quantities. For example, we can do the separation of variables in
Equation 45:

δP
P
(r) = Γ1

δρ

ρ
(r)− j

σ
(Γ3 − 1)δ

(
εeff −

∂l
∂m

)
(103)

where the second term to the right is not present in adiabatic approximation, but
justifies the phase lag observed between the pressure and density perturbations.
Moreover, this phase lag is directly connected with the driving condition of heating
during compression.

2.2.6 Driving Mechanisms

In order to identify the possible driving mechanisms we concentrate on Equations
101 and 102. It is clear that the sign of κ is determined by the balance between δεeff
and ∂δl/∂m, and so between energy generation and energy transfer.

the ε-mechanism If the heat gain during compression is due to the increase of
εeff then we talk about ε−mechanism. This mechanism can work because the
energy generation rates strongly depend on temperature which increases during
compression. This increase of εeff depends on the oscillation amplitude. It turns
out, however, that the expected temperature oscillation amplitudes in the nuclear
burning regions of Cepheids RR Lyrae stars are not sufficiently high. Therefore the
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ε−mechanism is not important for classical pulsators. It can have a significant role
in massive stars.

the κ and γ mechanisms These mechanisms are based on energy transfer so we
recall Equation 48. In order to avoid confusion, hereafter we will denote the opacity
with κ and the stability coefficient with κs. We consider an opacity law of the form
κ ∝ ρuT−s which gives

δκ

κ
= u

δρ

ρ
− s

δT
T

(104)

hence, from Equation 26, we obtain

δl
l
= 4ξ − u

δρ

ρ
+ (s + 4)

δT
T

+

(
∂ ln T

∂m

)−1
∂

∂m
δT
T

(105)

Now we find out ξ from Equation 41 and we neglect the terms with spatial derivatives
(often negligible compared to the others):

δl
l
≈ −

[
4
3
+ u

]
δρ

ρ
+ (s + 4)

δT
T

(106)

If we work in quasi-adiabatic approximation then we can use Equation 53 to find
out δρ/ρ; it results (

δl
l

)
qa

≈
[
(s + 4)−

4
3 + u

Γ3 − 1

]
δT
T

(107)

Finally, outside regions where energy production takes place, we can put ∂l/∂m = 0
so that (

∂δl
∂m

)
qa

≈ l
∂

∂m

{[
(s + 4)−

4
3 + u

Γ3 − 1

]
δT
T

}
(108)

We remember that κs must be negative to excite oscillations and this implies that
during compression (δT/T > 0) the quantity ∂δl/∂m must be negative too. Therefore,
according with Equation 108, good driving regions may be those layers where s < 0
or where Γ3 is small. In the former case the opacity increases with increasing
temperature and so traps energy during compression which is realeased during
expansion: this is the κ−mechanism. In the latter case the small value of Γ3 indicates
that a great amount of energy can be gained by the layers in the form of heat: this
is the γ−mechanism. Actually, these two mechanisms work together. In particular,
both the conditions on s and Γ1 are satisfied in partial ionization zones, especially
those of H and He. The reason is that the opacity has a bump in partial ionization
zones and the degree of ionization increases during compression absorbing a great
amount of energy. It turns out that these mechanisms are the origin of pulsations
in many types of stars such as Cepheids, RR Lyrae and δ Scutis which are located
along the so-called instability strip (see Figure 10).

2.2.7 Other Driving Mechanisms

We have seen that the κ and γ mechanisms lead to pulsational instability only under
special conditions. However, there are pulsating stars which do not satisfy those
conditions. Hence other mechanisms must occur. We only mention the Convective
Blocking and the δ mechanisms which are supposed to be active in γ Dor stars and
white dwarfs respectively. We highlight, instead, the stochastic excitation which is
responsible of the oscillations in many stars located below the instability strip, the
Sun included. These stars are not intrinsically unstable, but the convective turbulence
in their outer layers can constantly excite the pulsations. These Solar-like oscillations
have been observed not only in main-sequence stars but also in subgiants and red
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Figure 10: The different types of pulsating stars in
the H-R diagram. Some evolutionary
tracks corresponding to 1, 2, 3, 4, 7, 12
and 20 M� are shown (solid lines). The
short-dashed line is the ZAMS, the dot-
dashed line is the HB and the dotted
line is the path that white dwarfs follow
during their cooling process. In particu-
lar we can see that Cepheids, RR Lyrae
and δ Scutis are aligned along the insta-
bility strip which is the region enclosed
between the two long-dashed lines to
the right. Figure taken from Aerts et al.
(2010).

Figure 11.: The spherical coordinates r, θ, φ and the unit vectors er, eθ , eφ. Credits, “Theoretical
Astrophysics: Asteroseismology”, J. Montalbán.

giants. We are going to explore better the properties of solar-like oscillations in the
next Section.

2.2.8 The Theory of Non-radial Oscillations

Classical variables clearly show radial pulsations, but stars can pulsate also with
non-radial modes. This is the case of the Sun whose non-radial oscillations have been
detected also for very high angular degrees. These oscillations are a fundamental
resource in order to understand the structure of stellar interiors. Let us develop the
basis of the theory behind non-radial oscillations.

We firstly express the perturbation, δr in spherical coordinates (see Figure 11):

δr = δr(r, θ, φ, t) = ξr er + ξθ eθ + ξφ eφ = δr(r, θ, φ) ejσt (109)
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If the perturbation is not purely radial then the linearized equations assume a
different form. The linearized continuity equation becomes

δρ

ρ
+∇ · δr = 0 (110)

δρ

ρ
+

1
r2

∂

∂r
(r2ξr) +

1
r sin θ

∂

∂θ
(sin θ ξθ) +

1
r sin θ

∂ξθ

∂φ
= 0 (111)

The linearized momentum equation becomes

ρ
∂2δr
∂t2 = −∇P′ − ρ∇ψ′ +

ρ′

ρ
∇P (112)

− ρσ2δr =

(
− ∂P′

∂r
− ρ

∂ψ′

∂r
− ρ′ g

)
er +

(
− ρ

r
∂ψ′

∂θ
− 1

r
∂P′

∂θ

)
eθ

+

(
− 1

r sin θ

∂P′

∂φ
− ρ

r sin θ

∂ψ′

∂φ

)
eφ (113)

where P′, ψ′, ρ′ are the Eulerian perturbations of pressure, gravitational potential
and density respectively. We have also written the gradients in spherical coordinates
and we have used the fact that at the equilibrium P = P(r), ρ = ρ(r) and g = g(r) =
−∇ψ. Combining Equations 109 and 113 it is straightforward to derive the following
relations:

σ2ξr =
∂ψ′

∂r
+

ρ′

ρ
g +

1
ρ

∂P′

∂r
(114a)

σ2ξθ =
1
r

∂

∂θ

(
ψ′ +

P′

ρ

)
(114b)

σ2ξφ =
r

sin θ

∂

∂θ

(
ψ′ +

P′

ρ

)
(114c)

Now, combining Equations 111, 114b and 114c we obtain

δρ

ρ
+

1
r2

∂

∂r
(r2ξr)−

1
σ2r2 L 2

(
ψ′ +

P′

ρ

)
= 0 (115)

where the operator L 2 is defined by

L 2 := − 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2 (116)

whose eigenfunctions are the spherical harmonics Ym
l (θ, φ):

L 2Ym
l (θ, φ) = l(l + 1)Ym

l (θ, φ) l ∈N; m ∈ Z | − l ≤ m ≤ l (117)

where l is the angular degree and m is the azimuthal order. The linearized Poisson
Equation is ∇2ψ′ = 4πGρ′ which can be rewritten as

∇2ψ′ =
1
r2

∂

∂r

(
r2 ∂ψ′

∂r

)
− 1

r2 L 2(ψ′) = 4πGρ′ (118)

We want to solve the system of partial differential equations composed by Equations
114a, 115 and 118. In order to do that we separate the radial variable from the angular
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variables. Thus, for a general perturbation X′ we write X′(r, θ, φ) = X′r(r)Ym
l (θ, φ).

If we denote the radial part, X′r(r), only with X′, then the equations just mentioned
become

σ2ξr(r) =
dψ′

dr
+

ρ′

ρ
g +

1
ρ

dP′

dr
(119a)

δρ

ρ
+

1
r2

d
dr

(r2ξr(r))−
l(l + 1)

σ2r2

(
ψ′ +

P′

ρ

)
= 0 (119b)

1
r2

d
dr

(
r2 dψ′

dr

)
− l(l + 1)

r2 ψ′ = 4πGρ′ (119c)

Note that the spherical harmonics and the factor ejσt cancel out so all variables only
depend on r now and hereafter unless specific indications. This is a system with
four unknown variables: ξr(r), ψ′, ρ′ and P′. If we assume adiabatic conditions then
we can use the simple relation δP/P = Γ1(δρ/ρ) and derive new expressions for
δρ/ρ and ρ′/ρ:

δρ

ρ
=

1
Γ1

δP
P

(120)

ρ′ + δr · ∇ρ =
ρ

Γ1P
(P′ + δr · ∇P) (121)

ρ′ +
dρ

dr
ξr =

ρ

Γ1P

(
P′ +

dP
dr

ξr

)
(122)

ρ′

ρ
=

1
Γ1

P′

P
+

(
1
Γ1

d ln P
dr
− d ln ρ

dr

)
ξr (123)

Usually, the following equivalent relations for δρ/ρ and ρ′/ρ are used:

ρ′

ρ
=

1
Γ1

P′

P
+

N2

g
ξr (124)

δρ

ρ
=

1
Γ1

P′

P
− g

c2
s

ξr (125)

where N2 = −g As is the square of the so-called Brunt-Väisälä frequency and

As = −
1
Γ1

d ln P
dr

+
d ln ρ

dr
(126)

is the Schwarzshild discriminant. It can be shown that the buoyancy force per unit
volume acting on a mass element displaced by δr in radial direction with respect to
its equilibrium position is Fb = ρgAsδr. At this point it is clear that As > 0 means
instability to convection and N2 < 0. If there is stability to convection then As < 0
and the mass element oscillates around its equilibrium point with angular frequency
N =

√
−Asg.

Substituting expressions 124 and 125 into Equations 119 and rearranging, it results

1
ρ

dP′

dr
+

P′

ρc2
s

g + (N2 − σ2)ξr = −
dψ′

dr
(127a)

1
r2

d
dr

(r2ξr)−
g
c2

s
ξr +

(
1− S2

l
σ2

)
P′

ρc2
s
=

l(l + 1)
σ2r2 ψ′ (127b)

1
r2

d
dr

(
r2 dψ′

dr

)
− l(l + 1)

r2 ψ′ = 4πGρ

(
P′

ρc2
s
+

N2

g
ξr

)
(127c)
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where S2
l = l(l + 1)c2

s /r2 is the square of the so-called Lamb frequency. In order
to solve this system of ODEs we need four boundary conditions (as many as the
system’s order). We do not consider the case l = 0 which corresponds to radial
oscillations. Again we request regularity at the center. Consequently, it must be

ξr ∝ rl−1 and
P′

ρ′
ψ′ ∝ rl (128)

At the surface we impose δρ = 0 and so δP = P′ + ξr
dP
dr = 0. Finally for the

regularity of ψ′ at the surface it must be

dψ′

dr
+

l(l + 1)
r

ψ′ = 0 (129)

This is another eigenvalue problem (there are solutions only for certain values of σ2),
but it is not a Sturm-Liouville problem. Therefore the eigenvalues can’t be easily
ordered as for radial oscillations. However some properties are still present. If we
define a new operator Lnr such that Lnr(δr) = σ2δr then this operator is linear and
self-adjoint. Moreover, the eigenvalues are real, the eigenfunctions are orthonormal.
For each pair (l, m) there are infinite eigenvalues, σ2

nlm for which the following
relation holds:

σ2
nlm =

∫ M
0 δr∗nlm · Lnr(δrnlm)dm∫ M

0 δr∗nlm · δrnlm dm
(130)

Other properties of non-radial oscillations will be clear if we decompose the dis-
placement δr into two components, radial the first and tangential the second:

δr(r, θ, φ) = ξr(r, θ, φ)er + ξh(r, θ, φ)eh (131)

where amplitude and direction of the tangential component are defined by ξh(r, θ, φ)eh =
ξθ(r, θ, φ)eθ + ξφ(r, θ, φ)eφ. We can separate variables again and from Equations
114b and 114c we obtain:

ξθ =
1

rσ2

(
ψ′ +

P′

ρ

)
∂Ym

l (θ, φ)

∂θ
(132a)

ξφ =
1

rσ2

(
ψ′ +

P′

ρ

)
1

sin θ

∂Ym
l (θ, φ)

∂φ
(132b)

hence

ξh(r, θ, φ) = ξh(r)

(
∂Ym

l (θ, φ)

∂θ
eθ +

1
sin θ

∂Ym
l (θ, φ)

∂φ
eφ

)
(133)

ξh(r) =
1

rσ2

(
ψ′ +

P′

ρ

)
(134)

δr(r, θ, φ, t) =

[
ξr(r)er + ξh(r)

(
eθ

∂

∂θ
+

1
sin θ

eφ
∂

∂φ

)]
Ym

l (θ, φ) ejσt (135)

Let’s explore in detail the geometrical and physical properties of non-radial oscilla-
tions (see also Figure 12):

• The angular degree l is equal to the number of surface nodal lines.

• The azimuthal order m is equal to the number of surface vertical nodal lines
(passing through the poles).

• The radial order n is equal to the number of nodes along the radius, i.e. the
number of nodal surfaces in the stellar interiors.



48 asteroseismology

(a)

(b)

Figure 12.: Panel 12a: representation of non-radial oscillations for some values of angular degree and
azimuthal order as they appear at the surface. The colours indicate regions expanding or
contracting in the radial direction. Note the position of the nodal lines on varying l and
m. The case m = l = 0 is that of radial pulsations. Figure taken from Beck & Kallinger
(2013). Panel 12b: the structure of a non-radial mode inside the star. We can see the nodal
surfaces along the radius inside the star and the repetition of the surface pattern at any
depth.

• Nodal lines are not located only at the surface but at all depths.

• We remember that Ym
l (θ, φ) ∝ ejmφ so δr(r, θ, φ, t) ∝ ej(mφ+σt). If m 6= 0 then

δr ∝ cos(mφ + σt) and consequently waves move around the polar axis with
angular phase velocity (i.e. the angular velocity of vertical nodal lines). Instead,
m = 0 is the case of stationary waves with period Π = 2π/σ.

• The azimuthal order does not appear in the eigenvalue problem so σ2
nlm = σ2

nlm′ .
This degeneration can be broken by effects of rotation and magnetic field.

• Many different oscillations can be active at the same time.

2.3 pressure and gravity modes

In order to interpret solutions of the fourth-order system of differential equations
for non-radial oscillations, we proceed by successive approximations.
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2.3.1 The Cowling Approximation and Trapping

The Cowling Approximation consists in neglecting the perurbation of the gravita-
tional potential, ψ′. This approximation is good for high values of n and l. Indeed,
assuming ψ′(r) ∝ ejnr, Equation 119c becomes

ψ′ = −4πGρ′
[

n2 +
l(l + 1)

r2

]−1

(136)

If we apply this approximation then Equations 127a and 127b become

1
ρ

dP′

dr
+

P′

ρc2
s

g + (N2 − σ2)ξr = 0 (137a)

1
r2

d
dr

(r2ξr)−
g
c2

s
ξr +

(
1− S2

l
σ2

)
P′

ρc2
s
= 0 (137b)

and ξh = P′/(rσ2ρ). As we are going to see, the frequencies N and Sl are crucial.
We have only defined the Lamb frequency, but its physical meaning is simple.
Let k = krer + kheh be the wave number, then Sl is the angular frequency of the
tangential component: Sl = khcs.
Now, since 1

ρ
dP
dr = −g in the unperturbed model and using the definition of the

pressure scale height, HP =
(
− 1

ρ
dP
dr

)−1
, it is easy to demonstrate that g/c2

s =

(Γ1HP)
−1. When this relation is introduced into Equations 137, it results

dP′

dr
= − P′

Γ1HP
+ σ2ρ

(
1− N2

σ2

)
ξr (138a)

2
r

ξr +
dξr

dr
− 1

Γ1HP
ξr +

(
1− S2

l
σ2

)
P′

ρc2
s
= 0 (138b)

We assume that the scale heights and the radius are much greater than the other
quantities, so that

dP′

dr
' σ2ρ

(
1− N2

σ2

)
ξr (139a)

dξr

dr
'
(

S2
l

σ2 − 1

)
P′

ρc2
s

(139b)

At this point, with the same hypothesis, we take the derivative with respect to r of
the last equation. It results

dξ2
r

dr2 '
σ2

c2
s

(
S2

l
σ2 − 1

)(
1− N2

σ2

)
ξr (140)

Since ξr ∝ ejkrr, it must be

K(r) := k2
r =

σ2

c2
s

(
S2

l
σ2 − 1

)(
1− N2

σ2

)
(141)

and consequently ‖k‖2 = k2
r + k2

h = K(r) + l(l + 1)/r2.
Hence there are two possibilities:

• σ2 is greater than or lower than both S2
l and N2: this implies K(r) > 0 so the

solutions are periodic;
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Figure 13.: Some p- and g-modes computed for a polytropic model with index 3. In the left panel
the separation between the two families is clearly visible. Each black square represents a
mode. The radial perturbation amplitudes of the modes marked with coloured circles are
shown to the right. In the right panel we can verify the behaviour of the radial perturbation
amplitude here denoted by ξr. Credits, “Theoretical Astrophysics: Asteroseismology”, J.
Montalbán, adapted from Unno et al. (1989).

• S2
l < σ2 < N2 or N2 < σ2 < S2

l : this implies K(r) < 0 so the solutions grow or
decay exponentially.

Thus the Lamb and the Brunt-Väisälä frequencies have a key role for the propagation
of non-radial oscillations. We say that the modes are trapped in regions whose limits
are determined by the conditions σ = N, Sl .

2.3.2 p-modes and g-modes

There are two families of eigenfunctions which are called p- and g-modes. The p-
modes are modes supported by pressure forces and have a frequency that increases
with n. The g-modes, instead, are supported by gravity and have a frequency that
decreases with n. The two families are separated by a surface gravity mode usually
denoted by f (see Figure 13). The frequency of f is an upper limit for g-modes
and a lower limit for p-modes. Another important difference that we are going to
investigate is the propagation region. As boundary condition at the surface we have
imposed δP = P′ + ξr(∂P/∂r) = 0 so

ξh(R) =
1

Rσ2

(
ψ′(R) +

P′(R)
ρ(R)

)
=

1
Rσ2

(
ψ′(R)− ξr(R)

1
ρ(R)

∂P
∂r

∣∣∣∣∣
r=R

)

=
1

Rσ2

(
ψ′(R) + ξr(R)g(R)

)
(142)

hence, applying the Cowling approximation, we have

ξh(R)
ξr(R)

' g(R)
Rσ2 = ω−2 (143)

where ω is the dimensionless frequency already defined in Paragraph 2.2.4. This
means that p-modes, i.e. high-frequency modes, usually have a significant radial
component at the surface. Let’s give a more detailed description of the propagation
of these modes. We refer to the propagation diagram of Figure 14. In Figure 17 some
examples of eigenfunctions of p-modes and g-modes for a solar model are shown.
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Figure 14.: An example of propagation diagram similar to the solar one. We can easily identify the
regions where p- and g-modes propagate, i.e. above and under the two curves of N2

and S2
l respectively. These regions are often called p- and g-cavity. Credits, “Theoretical

Astrophysics: Asteroseismology”, J. Montalbán, adapted from Hansen et al. (2004).
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Figure 15.: A schematic representation of the propagation of some p-modes. Those modes that propagate
deeper have lower l or/and higher frequency than those that are confined near the surface.
Figure taken from Aerts et al. (2010).

propagation of p-modes The propagation diagram shows the functions S2
l (r)

and N2(r). In Figure 14 are also shown some horizontal lines corresponding to the
modes’ frequencies. We have seen that a mode with angular frequency σ propagates
only where σ2 is greater or lower than both S2

l (r) and N2(r). Therefore we can
immediately understand that for a star with a propagation diagram like this of
Figure 14, there are a group of low-frequency modes, the g-modes, which propagates
preferentially in the inner regions and a group at higher frequencies, the p-modes,
which propagates in the envelope. Therefore the p-modes have in general lower
inertia than the g-modes because of the term ρ|ξn|2 (remember the definition of
oscillatory moment of inertia, Equation 68).

In order to have an idea of how the p-modes propagate inward from the surface,
we can assume for simplicity σ2 � S2

l � N2. Thus

K(r) ' σ2 − S2
l

c2
s

−→ ‖k‖2 = k2
r + k2

h =
σ2

c2
s

(144)

It is clear that the role of the speed of sound is fundamental. Firstly, it is the
propagation velocity (since ‖k‖2 = σ2/c2

s ) and it determines the internal radius of
the propagation region:

σ2 = S2
l −→ r2

in =
l(l + 1)

σ2 c2
s (rin) (145)

Moreover, since cs(r) increases with depth, then k2
r ∝ c−2

s decreases with depth until
it vanishes at r = rin. This means that at r = rin the wave can move only tangentially
with |k| = kh =

√
l(l + 1)/rin. At the surface, instead, kr is considerably greater

than kh. Finally, we highlight that rin depends also on l and σ. We have small
values of rin for small values of l or/and for high values of σ and so n. A schematic
representation of the propagation of p-modes is given in Figure 15.

propagation of g-modes For simplicity we assume that σ2 � S2
l , N2, so that

K(r) ' l(l + 1)
r2

(
N2

σ2 − 1

)
= k2

h

(
N2

σ2 − 1

)
−→ σ2 = N2 k2

h
‖k‖2 (146)

Now we can understand that g-modes can’t propagate in convective regions because
N2 < 0 and so also k2

r < 0 here. Moreover, the radius at which the g-modes reflect
does not depend on l. Its dependence on σ, instead, is more or less important
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Figure 16.: A schematic representation of the propagation of a g-mode. Figure taken from Aerts et al.
(2010).

depending on the details of the internal structure of the star and on the domain of
σ considered. The radial component of the wave number decreases with σ2 and
consequently the radial order decreases with the frequency too. See Figure 16 for a
schematic representation of the propagation of g-modes.

2.4 asymptotic theory

In this Section we want to study the oscillations pattern under asymptotic approxi-
mation.

2.4.1 A second-order differential equation for ξr

We firstly derive a useful relation for ξr. We start from Equations 137 and we derive
the second one without assuming scale heights to be very large. It results

d2ξr

dr2 = −
(

2
r
− 1

Γ1HP

)
dξr

dr
−
[
− 2

r2 −
d
dr

(
1

Γ1HP

)]
ξr

+
1

ρc2
s

(
S2

l
σ2 − 1

)[
ρ(σ2 − N2)ξr −

1
Γ1HP

P′
]
+

d
dr

[(
S2

l
σ2 − 1

)
1

ρc2
s

]
P′ (147)

and combining with Equations 137 we obtain

d2ξr

dr2 = −
(

2
r
− 1

Γ1HP

)
dξr

dr
+

[
− 1

Γ1HP
+

d
dr

ln

∣∣∣∣∣ 1
ρc2

s

(
S2

l
σ2 − 1

)∣∣∣∣∣
]

dξr

dr

+ [−K(r) + h̃(r)]ξr (148)

where h̃(r) is a function of r that gathers all terms not explicitly written. Equation
148 can be written in a more practical form:

d2ξr

dr2 −
d ln f

dr
dξr

dr
+ [K(r)− h̃(r)]ξr = 0 with f (r) =

1
ρr2c2

s

∣∣∣∣∣S2
l

σ2 − 1

∣∣∣∣∣ (149)
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(a) (b)

Figure 17.: Some examples of eigenfunctions of p-modes (panel 17a) and g-modes (panel 17b)
for a solar model. Panel 17a: the characteristics of the selected p-modes are a)
(σ, n, l) = (3310 µHz, 23, 0); b) (σ, n, l) = (3375 µHz, 17, 20); c) (σ, n, l) =
(3234 µHz, 10, 60). For each eigenfunction the asymptotic turning point radius is marked
with an arrow. Panel 17b: the characteristics of the selected g-modes are a) (σ, n, l) =
(110 µHz, −5, 1); b) (σ, n, l) = (103 µHz, −10, 2); c) (σ, n, l) = (100 µHz, −19, 4).
The dotted lines indicate the boundary between core and envelope. Figures taken from Aerts
et al. (2010).

Now we rewrite Equation 149 in terms of the new variable Âr(r) = ξr(r) f−1/2:

d2 Âr

dr2 + [K(r)− h(r)]Âr = 0 with h(r) = h̃(r)− 1
2

d2 ln f
dr2 +

1
4

(
d ln f

dr

)2

(150)

This is the expression we were searching for. It is valid far from the points where
σ2 = S2

l because in their neighbourhoods the logarithmic derivative of f diverges.

2.4.2 The JWKB Analysis

In order to analyze Equation 150 asymptotically, we assume that the solution Âr
varies rapidly compared with equilibrium quantities. This is called JWKB analysis.
We thus consider solutions of the form Âr(r) = a(r)ejφ(r) with φ(r) rapidly varying
so that kr = dψ/dr is large. The amplitude a(r), instead, varies slowly. If we neglect
h(r), which is small compared to K, then Equation 150 becomes identical to Equation
140 except for the variable change and the properties of p- and g-modes remain the
same. Let’s try to substitute Âr(r) with a(r)ejφ(r) in Equation 150 neglecting h(r); it
results

1
2jkra

d2a
dr2 +

1
a

da
dr

+
1

2kr

dkr

dr
= 0 (151)

The asymptotic approximation consists in assuming a(r) = |kr|−1/2 = |K(r)|−1/4 so
that d2a/dr2 = 0, i.e. we neglect d2a/dr2 = 0. At this point the asymptotic solution
is completely determined:

Âr(r) = A|K(r)|−1/4 cos

( ∫ r

rt
K(r′)1/2 dr′ + ϑ

)
for K(r) > 0 (152)
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SlN

Turning point

Figure 18.: Location of the solutions predicted by the JWKB analysis for a p-mode. Figure adapted
from the Lecture Notes on Stellar Oscillations of J. Christensen-Dalsgaard available on
http: // astro. phys. au. dk/ ~jcd/ oscilnotes/ .

and

Âr(r) = |K(r)|−1/4

[
A+ exp

( ∫ r

rt
|K(r′)|1/2 dr′

)
+ A− exp

(
−
∫ r

rt
|K(r′)|1/2 dr′

)]
(153)

for K(r) < 0. The constants A, ϑ, A+, A− ∈ R can be fixed by boundary conditions.
The radius rt is that of the turning point. In this case we assumed an internal turning
point. If an external turning point is present then we can simply exchange the limits
of the integral. It is important to remember that r can’t be too close to the turning
points of p-modes. Again we find oscillatory solutions only for K(r) > 0. To impose
the continuity at the connection between exponential and oscillatory solutions leads
to the following condition for p-modes:∫ R

rt
K(r)1/2 dr = (n + α)π (154)

where α is a phase constant fixed by boundary conditions.

2.4.3 Asymptotic Theory for p-modes

We have seen that for σ2 � S2
l � N2 we have K(r) ' (σ2 − S2

l )/c2
s . Therefore the

frequencies of p-modes approximately satisfy the following equation:∫ R

rt
(σ2 − S2

l )
1/2 dr′

cs
= (n + α)π (155)

with n ∈ N and α phase constant fixed by boundary conditions. Equation 155

implicitly determines the frequencies of modes. We write Equation 155 in a more
practical form:

∫ R

rt

(
1− L2c2

s
σ2r2

)1/2
dr
cs

=
(n + α)π

σ
with L2 = l(l + 1) (156)

http://astro.phys.au.dk/~jcd/oscilnotes/
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Now we define w = σ/L so that

π(n + α)

σ
=
∫ R

rt

(
1− c2

s
r2w2

)1/2
dr
cs
≡ F(w) (157)

where the function F(w) can be derived from observations and then inverted to
obtain cs(r). Now we demonstrate that the second term in the integral of F(w) is
negligible for l small, i.e. when the turning point is close to the center.
Let us consider the quantities I, I1, I2 defined by

I =
∫ R

0

dr
cs
−
∫ R

rt

(
1− c2

s
r2w2

)1/2
dr
cs

=
∫ rt

0

dr
cs︸ ︷︷ ︸

:=I1

+
∫ R

rt

[
1−

(
1− c2

s
r2w2

)1/2]
dr
cs︸ ︷︷ ︸

:=I2

(158)
It can be shown that dcs/dr is zero at the center and, since rt is assumed small, we
can consider cs = cs(r = 0) between the center and rr. Thus

I1 =
∫ rt

0

dr
cs
' rt

cs(0)
' L

σ
=

1
w

(159)

indeed r2
t = l(l + 1)c2

s (rt)/σ2 for p-modes. Moreover, the integrand of I2 is signifi-
cantly different from zero only near the turning point, so we will take cs = cs(r = 0)
also for the computation of I2. Applying the variable change u = cs/wr, it results

I2 '
∫ 0

1

[
1− (1− u2)1/2

](
− 1

wu2

)
du =

1
w

(
π

2
− 1

)
(160)

Hence I = I1 + I2 = π/2w and Equation 155 becomes

π(n + α)

σ
=
∫ R

0

dr
cs
− L

σ

π

2
−→ σ =

(n + L/2 + α)π∫ R
0

dr
cs

(161)

Therefore we have derived an interesting formula for the frequencies of p-modes. A
more rigorous treatment leads to a very similar expression:

νnl =
σnl
2π
'
(

n +
l
2
+

1
4
+ α

)
∆ν (162)

where

∆ν =

[
2
∫ R

0

dr
cs

]−1

(163)

is the large frequency separation, a fundamental quantity for Asteroseismology of
solar-like oscillators.
Equation 162 predicts that at low l the difference in frequency between two modes
with equal l and consecutive n is ∆ν. Moreover, it is easy to see that νnl ' νn−1, l+2.
These characteristics have been observed in solar oscillation modes with period of
about 5 minutes.

If the variation of cs near the core is taken into account then it results

νnl '
(

n +
l
2
+

1
4
+ α

)
∆ν− (AL2 − δ)

∆ν2

νnl
(164)



2.4 asymptotic theory 57

Figure 19.: The sound speed profile (centre) and the dc/dr profile (right) in 1 M� models, on the
ZAMS, in the middle of the MS and at the end of the MS (TAMS). In the TAMS model of
1 M�, the speed of sound shows a bowl near the center due to the convective nature of the
core. Figure taken from Lebreton & Montalbán (2009).

where

A =
1

4π2∆ν

[
cs(R)

R
−
∫ R

0

dcs

dr
dr
r

]
(165)

and neglecting cs(R)/R we obtain

δνnl := νnl − νn−1, l+2 ' −(4l + 6)
∆ν

4π2νnl

∫ R

0

dcs

dr
dr
r

(166)

δνl := 〈δνnl〉n ' (4l + 6)D0 (167)

with

D0 = − 1
4π2

〈
∆ν

νnl

〉 ∫ R

0

dcs

dr
dr
r

(168)

The quantity δνnl is called small separation. We can also write

νnl '
(

n +
l
2
+

1
4
+ α

)
∆ν− l(l + 1)D0 (169)

The reason why our first derivation was inaccurate is that − 1
r

dcs
dr and so D0 are not

negligible because of the composition gradient. It is clear that the small separation
strongly depends on the core properties.

2.4.4 (∆ν, D0) Diagrams

While a main-sequence star evolves the hydrogen abundance in the core decreases
and µ increases. Hence, since the central temperature does not vary a lot during
hydrogen burning, the speed of sound cs ∝ T/µ decreases. In the inner regions
the hydrogen burning is faster so the decrease of cs is faster too. Consequently the
function cs(r) shows a local minimum at the center and dcs/dr is positive in the
core (see Figure 19). Thus inner regions lead to a negative contribution to D0. This
contribution increases with evolution so D0 decreases with evolution and can be
used to estimate the evolution stage of the star. On the other hand ∆ν ∝ τ−1

dyn ∝
√

ρ.
These considerations allow us to use a (∆ν, D0) diagram as an H-R diagram (see
Figure 20).
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Figure 20.: (∆ν, D0) diagram showing evolutionary tracks (filled lines) of stars with masses
0.7, 0.8, 0.9, 1.0, 1.2, 2.0 M�. The large separation, here denoted by ∆ν0, has been com-
puted averaging the difference between modes with l = 0 and consecutive n. The dotted
lines are curves of constant central hydrogen abundance whose value is reported to the right.
Figure taken from the Lecture Notes on Stellar Oscillations of J. Christensen-Dalsgaard
available on http: // astro. phys. au. dk/ ~jcd/ oscilnotes/ .

2.4.5 Asymptotic Theory for g-modes

We have seen that in the case of g-modes with σ2 � S2
l , N2 we can write

K(r) ' l(l + 1)
r2

(
N2

σ2 − 1

)
(170)

Since g-modes usually are confined between two zeros, say r1 and r2, of K(r), then
an expression similar to Equation 155 holds:

∫ r2

r1

K(r)1/2 dr =
∫ r2

r1

L

(
N2

σ2 − 1

)1/2
dr
r

= (n + αg)π (171)

Thus we can write

n + αg

L
= G(σ) with G(σ) =

1
π

∫ r2

r1

(
N2

σ2 − 1

)1/2
dr
r

(172)

Clearly r1 and r2 are the positions of the turning points of the g-cavity, but they
are well-defined only if N2(r) has a single maximum, N2

max, as we are assuming.
Equation 172 gives the following results:

lim
σ→Nmax

G(σ) = 0 lim
L→∞

σ = Nmax (173)

Consequently for high n and low l the frequency is much lower than N in the
g-cavity and we can treat the inner regions near r1 as we have done for p-modes by
using the proportionality of N with r near the center. However the expansion at the
outer turning point needs a complicated method. We only report the final result:

σnl '
L
∫ r2

r1
N dr

r

π(n + l/2 + αg)
(174)

http://astro.phys.au.dk/~jcd/oscilnotes/
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therefore

Πnl =
2π

σnl
' 2π2(n + l/2 + αg)√

l(l + 1)
∫ r2

r1
N dr

r
=

n + l/2 + αg√
l(l + 1)

Π0 (175)

where

Π0 :=
2π2∫ r2

r1
N dr

r
(176)

Hence g-modes with equal l and consecutive n are (approximately) equally spaced
in period:

∆Πnl = Πnl −Πn−1, l '
Π0√

l(l + 1)
(177)

Since N increases with evolution then we expect a decrease of Π0 and so also of ∆Πl .
This fact implies an increase of the number of g-modes per frequency interval.

2.4.6 The propagation diagram during the main sequence and beyond.

As a main-sequence star evolves, it contracts and a composition gradient builds up
because of the hydrogen burning. These facts lead to an increase of N near the
core center (see Figure 21a). Consequently, the characteristic frequency of p-modes
decreases and the maximum frequency permitted of g-modes increases leading to a
significant overlap between the frequency domains of p and g cavities, in particular
in the domain of solar-like oscillators. When the width of the region, called evanescent
zone (see Figure 21b), which separates the g-cavity from the p-cavity is thin enough,
then there might be some modes propagating in both the two cavities. In this case we
talk about mixed modes. Mixed modes are important because they carry information
about the near-core structure and have a detectable amplitude at the surface. As we
are going to see, mixed modes are especially useful for asteroseismology of RGB
and red-clump stars. Figure 22 shows propagation diagrams of a 1.5 M� star during
the RGB and helium-core-burning (HeCB) phases. We can see that the maximum
Brunt-Väisälä frequency increases during the RGB phase and the peak moves toward
the center as the star approaches the RGB tip. Both these effects imply a higher value
of
∫

N dr
r and so lower Π0 and ∆Π according to Equations 176 and 177. In the HeCB

phase the propagation diagram shows the presence of a convective core. In fact
N2 is negative until the border of the core where it suddenly increases because of
the composition gradient. Moreover, the lower central concentration leads to lower
values of N than during the RGB phase. This fact provides a powerful method to
discriminate between RGB and RC stars, the former having lower period spacing
than the latter. The number of mixed modes by frequency interval increases with∫

N dr
r and their expected amplitude decrease with their inertia and hence with the

importance of the evanescent region (see e.g. Montalbán et al. 2013; Montalbán &
Noels 2013).

2.4.7 Echelle Diagram

In order to investigate in detail the properties of the frequency spectrum of oscilla-
tions it is useful to introduce the Echelle Diagram. In this diagram, frequencies are
introduced by expressing them as

νnl = ν0 + k∆ν + ν̃nl (178)

where ν0 is a suitable reference frequency and k is an integer such that ν̃nl ∈ [0, ∆ν[.
An Echelle diagram has ν̃nl on the x−axis and ν0 + k∆ν on the y−axis. If the
asymptotic relation 164 had been exactly satisfied then in Echelle diagrams we
would have seen the points representing the modes organized in perfectly vertical
lines. These vertical lines, called ridges, actually are bent a little (see Figure 23). Each
ridge corresponds to a different value of l. Therefore in Echelle diagrams are visible
both the large and the small separation, the former being the frequency separation
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(a) (b)

Figure 21.: Panel 21a: Propagation diagram during the evolution along the main sequence. The thin,
light coloured lines illustrate the function Sl(r/R) for the indicated values of the angular
degree. Red solid lines show the behaviour of N(r/R) at different evolutionary stages
along the main sequence. The frequency N (here denoted by NBV) increases as the star
evolves and at a certain point mixed modes can appear as shown in Panel 21b. Credits,

“Theoretical Astrophysics: Asteroseismology”, J. Montalbán.

between two subsequent modes belonging to the same ridge (i.e. with the same
angular degree) and the latter being defined as the difference νnl − νn−1, l+2.

Figures 24 and 25 present, instead, the Echelle diagram of a 1.5 M� star throughout
its evolution starting from the main sequence until the HeCB phase. When the star
leaves the main sequence, mixed modes appear in the spectrum modifying the
organization of modes in ridges. As the star evolves along the RGB, the evanescent
zone becomes wider and the coupling between p and g cavities decreases. As a
consequence, highly p-dominated modes appear with a significant amplitude, and
the corresponding Echelle diagram recovers the usual aspect with almost vertical
ridges corresponding to different angular degrees (see Figures 24 and 25, points
dimension is proportional to the mode amplitude). At the HeCB phase, the vertical
structure disappear again, since the smaller evanescent region allows mixed modes
to appear again.

2.4.8 Solar-like Oscillations and Scaling Relations

We report now the results obtained for the Sun as representative case of all solar-
like oscillators (see horizontally barred regions in Figure 10). Figure 26 shows
schematically the solar oscillation modes. The 5-minutes modes have been observed
for sure while the detection of g-modes has not been confirmed yet. The 5-minutes
oscillations are p-modes of radial order between 1 and 20 and angular degree
between 0 and 1500. The so-called fundamental mode f has been observed for high
angular degrees. Keeping l fixed the p-modes are always above the f-mode.
The power spectrum of low-angular degree solar oscillations is shown in Figure 27. It
has been obtained thanks to Doppler velocity measurements in disk-integrated light.
The amplitudes distribution is peaked around the frequency νmax,� ' 3100 µHz.
There are velocity amplitudes up to tens of cm/s and brightness variations up to
8 ppm. In Panel 27b the large and small separations are clearly visible. The large
separation of the Sun is about 135 µHz.
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Figure 22.: Propagation diagram of a 1.5 M� star during the RGB and the HeCB phases. Figures
taken from Montalbán (2013).
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Figure 23.: Echelle diagram for observed solar frequencies obtained with the Birmingham Solar
Oscillation Network (BiSON) (Chaplin et al. 2002), plotted with ν0 = 830 µHz and
∆ν = 135 µHz. Circles, triangles, squares and diamonds are used for modes of degree
l = 0, 1, 2 and 3, respectively. For clarity the points for l = 0 and 2 have been repeated
in the right-hand part of the diagram; the dotted vertical line indicates ∆ν. Figure taken
from the Lecture Notes on Stellar Oscillations of J. Christensen-Dalsgaard available on
http: // astro. phys. au. dk/ ~jcd/ oscilnotes/ .

scaling relations The following homology relations hold:
P

P�
=

(
M

M�

)2(
R

R�

)−4

ρ

ρ�
=

(
M

M�

)(
R

R�

)−3 −→ cs

cs,�
=

(
M

M�

)1/2(
R

R�

)−1/2

(179)

Now, as shown in Ulrich (1986), if we approximate ∆ν with (2R/cs)−1 then we
obtain

∆ν

∆ν�
=

(
M

M�

)1/2(
R

R�

)−3/2

(180)

Moreover, the semi-empirical relation νmax ∝ g/
√

Teff holds (Brown et al. 1991),
hence

νmax

νmax,�
=

(
M

M�

)(
R

R�

)−2(
Teff

Teff,�

)−1/2

(181)

Therefore, if we measure Teff, νmax and ∆ν then we can estimate the mass and radius
of a star with Equations 180 and 181:

R
R�

=

(
νmax

νmax,�

)(
∆ν

∆ν�

)−2(
Teff

Teff,�

)1/2

(182a)

M
M�

=

(
νmax

νmax,�

)3(
∆ν

∆ν�

)−4(
Teff

Teff,�

)3/2

(182b)

which are usually called asteroseismic scaling relations (Kjeldsen & Bedding 1995).
Obviously this is not a rigorous method to derive mass and radius of stars, but it
works quite well and predicts correctly the decrease of νmax and ∆ν with evolution.

http://astro.phys.au.dk/~jcd/oscilnotes/
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Figure 24.: Echelle diagram of a 1.5 M� star during its evolution (Part I). Blue, red and green
points represent modes with angular degree l = 0, 1, 2 respectively. Figures taken from
Montalbán (2013).
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Figure 25.: Echelle diagram of a 1.5 M� star during its evolution (Part II). Blue, red and green
points represent modes with angular degree l = 0, 1, 2 respectively. Figures taken from
Montalbán (2013).
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(a)

(b)

Figure 26.: Panel 26a: observed solar p-modes’ frequencies as a function of l. The 1000σ error
bars are shown. Modes with the same radial order n are aligned and form a ridge.
The lowest ridge corresponds to n = 1. Panel 26b: schematic representation of solar
oscillations. The 5-minutes modes are the p-modes. The f-mode and g-modes whose
detection has been claimed, but not confirmed are also shown. The hatched region indicates
the values of l of the modes that can be observed in disk-integrated light. Indeed this
observational technique averages out modes of high angular degree. Figures taken from
the Lecture Notes on Stellar Oscillations of J. Christensen-Dalsgaard available on http:
// astro. phys. au. dk/ ~jcd/ oscilnotes/ .

http://astro.phys.au.dk/~jcd/oscilnotes/
http://astro.phys.au.dk/~jcd/oscilnotes/
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Figure 27.: Panel 27a: the power spectrum of low-angular degree solar oscillations. It has been obtained
thanks to Doppler velocity measurements in disk-integrated light acquired by the BiSON
Network. We can see the typical gaussian shape of a spectrum dominated by stochastically
excited modes: centered at a frequency νmax and showing the regularities predicted by the
asymptotic theory. Panel 27b: zoom of the central region around 3100 µHz. For each mode
the radial order and the angular degree are indicated. The estimates ∆ν0 and ∆ν1 of the
large separation and the small separation δν0 and δν1 are clearly visible. Figure taken from
Aerts et al. (2010).
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The uncertainties of the estimates provided by these scaling relations are just over
10% in mass and about 5.5% in radius. Moreover, scaling relations provide an
immediate and model-independent method for stellar parameters estimation. We
remember that the mass and the radius are extremely important stellar parameters
because allow the estimate of the age and the absolute magnitude and so of the
distance.

2.5 observational asteroseismology

2.5.1 Observational Techniques

What we need to do Asteroseismology are the frequencies of stellar pulsations. Stellar
oscillations can be observed through photometric measurements of the stellar flux
variations or through spectroscopic measurements of Doppler velocity variations. Of
course different oscillation modes are active at the same time in general. Therefore,
once the time series has been obtained, then a Fourier analysis is necessary to identify
the modes. Although we have a good understanding of the frequency spectrum, we
can’t say the same for what concerns the oscillation amplitudes so almost all the
information come from the frequency pattern. Note that, except for the Sun and
very few cases, we can observe stars only in disk-integrated light so the modes with
high angular degree cancel out and can’t be observed. Also for stars whose disk can
be resolved high-degree modes have not been detected yet. Let us summarize the
main characteristics of the photometric and spectroscopic techniques. The typical
observational results are reported in Tables 1 and 2.

photometry

• Working principle: precise measurement of stellar intensity variations mainly
due to temperature variations.

• Precision level achieved: a few parts per million with space telescopes.

• Main noise sources: Poisson noise. The signal-to-noise ratio (S/N) goes with
the square root of the number of photons collected. However, if we increase
too much the observation time then the frequency resolution of the spectrum
and the Nyquist frequency decrease so the identification of modes becomes
more difficult. Therefore the study of variability for faint stars requires large
telescopes able to collect a large number of photons in a short time. For
bright stars the most important source of noise may not be the Poisson noise,
but atmospheric and instrumental effects or errors introduced during data
reduction and analysis.

• The photometric amplitudes are not the same for every passband because of
the stellar spectrum shape: many stars show higher intensity variations in the
blue than in the red. Moreover, the photometric amplitudes and their phases at
different wavelengths depend on the mode geometry. This property is useful
for mode identification.

spectroscopy

• Working principle: precise measurements of line profile variations mainly due
to Doppler velocity variations.

• Precision level achieved: a few cm/s with ground-based telescopes.

• Instrumental requirements: ideally a line profile should be sampled with 50
points in wavelength and with a S/N above 200. Spectra with such resolutions
can only be obtained from ground-based telescopes.

• Main noise sources: Poisson noise and low-frequency noise due to temperature,
pressure and humidity changes in the spectrograph during the observation.
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Figure 28.: Schematic comparison of PLATO 2.0, CoRoT and Kepler’s fields of view and observa-
tional strategy. Figure taken from the PLATO Assessment Study Report (Yellow Book),
ESA/SRE(2013)5.

2.5.2 Observations of Stellar Oscillations across the H-R Diagram

Although variable stars are more concentrated along the instability strip, if we look
at Figure 10 it is clear that stellar oscillations have been observed at any evolution
stage. We report in Tables 1 and 2 the main characteristics of the various types of
pulsating stars. In the tables ’F’ stands for fundamental radial mode, ’FO’ for first
radial overtone and ’S’ for strange mode oscillations. The S-modes are exited in
strong non-adiabatic conditions due to a great enhancement of the opacity in the
partial ionization zones of helium (the second one) and of heavy elements (Aerts
et al. 2010). An important update in Tables 1 and 2 should be done: during the last
years a great variety of mixed-modes has been observed in red giants, opening a
window to the study of stellar interiors.

2.5.3 The CoRoT Mission

The CoRoT (Convection, Rotation and planetary Transits) Mission is one of the most
important space missions for Asteroseismology and exoplanet hunting together with
the Kepler/K2 Mission. CoRoT started scientific operations on 2 February 2007 and
continuously observed star fields in the Milky Way (see Figure 28) for periods of
up to 6 months. The mission ended on 17 June 2014. The satellite carries an afocal
telescope with a 27-cm lens and a wide-field camera composed of four CCDs that
provides a precision of 10−6 mag. The pointing accuracy is of 0.5” and a field of
view of 2.8◦ × 2.8◦. Table 3 summarizes the main programme details of the mission
for what concerns primary asteroseismic targets. Although stars observed during
exoplanet hunting have lower luminosities, their light curves have been used to
study stellar variability too.

2.5.4 The Kepler and K2 Missions

The Kepler and K2 Missions have been providing the largest collection of light
curves with the quality level requested for Asteroseismology. The K2 Mission is the
extension of the Kepler Mission. The spacecraft hosts a 0.95 m aperture Schmidt
telescope and a CCD array. Originally there were 42 CCDs organized in 21 modules,
but three of the modules have no longer been working since August 2016. Each
module covers 5 square degrees on the sky for a total field of view of 116 square
degrees. Figure 31 shows the single field that was observed during the prime Kepler
mission. Kepler observes in only one, broad bandpass ranging from 420 to 900 nm.
Figure 32 shows the Kepler bandpass compared to the CoRoT’s one and others. The
Kepler Mission, launched in March 2009, had as primary objective the detection of
exoplanet transits in particular around Sun-like stars. Kepler monitored more than
150 000 stars for about four years. Observations cadence can be of 30 min or 1 min
depending on the purpose (e.g. 5-minutes oscillations of a star like the Sun need
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Figure 29.: Mechanical tests on the solar panels of the CoRoT satellite. Figure taken from the official
site of the CoRoT Mission: https: // corot. cnes. fr/ en/ COROT/ index. htm .

Table 3.: Programme details of the CoRoT Mission for what concerns primary asteroseismic targets.

Long runs Short runs

Observing run duration 150 d 20÷ 30 d
Number of stars per run 10 10

Magnitude [6, 9] [6, 9]
Number of observing runs 5 5÷ 10

Frequency resolution 0.1 µHz 0.6 µHz
Total number of targets 50 50÷ 100

Spectral types mostly A, F, G all

the short cadence to be detected). After the loss of a second reaction wheel in May
2013 the Kepler Mission was interrupted, the pointing being possible only within the
orbital plane of the spacecraft. For this reason in May 2014 the K2 Mission started
and it will end in 2017 or 2018. The fields observed during this mission are illustrated
in Figure 33: they are located along the spacecraft’s orbital plane which is near to the
ecliptic’s plane. For each field of view there is a dedicated observational campaign
that last for about 80 days. Observations’ cadence possibilities are the same of Kepler
Mission. The activities of this second mission are also mainly involved in planet
hunting and stellar polulations studies.

2.6 ensemble asteroseismology

2.6.1 The APOKASC Catalog

Low density red giants show solar-like oscillations with periods of a few days or
weeks. Therefore these oscillations can be detected with the Kepler long cadence. We
have seen that asteroseismic data can be used to estimate masses and radii of stars if
the effective temperature is also available. Then the luminosity L = 4πR2σT4

eff can
be easily computed. Moreover, by taking into account bolometric correction and
extinction the distance can be estimated too.
The APOKASC catalog gathers more than 10 000 giants with asteroseismic and
spectroscopic parameters together with measured apparent magnitudes in several
passbands (e.g. SDSS griz and DDO51 from KIC team, JHKs from 2MASS, the Kepler
magnitude Kp). The asteroseismic data are provided by the Kepler Asteroseismic
Science Consortium (KASC) and the spectroscopic ones by the Apache Point Ob-
srvatory Galactic Evolution Experiment (APOGEE). The stars of APOKASC have

https://corot.cnes.fr/en/COROT/index.htm
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Figure 30.: The Kepler Space Telescope. Figure taken from the official site of the Kepler & K2 Science
Center: https: // keplerscience. arc. nasa. gov/ .

apparent magnitude in the H band between 7 and 11. Some of these stars belong to
the open clusters NGC6791 and NGC6819. Information of about 2000 stars of the
APOKASC catalog are freely available (Pinsonneault et al. 2014). This catalog allows
us to derive precise distances of stars located far from the Solar Neighbourhood and
so to study Galactic Archaeology.

2.6.2 Asteroseismology of Stellar Populations

Such a wide catalog makes possible the application of Asteroseismology to the
study of stellar populations. This involves studying similarities and differences in
groups of stars by using asteroseismic diagrams, in which two properties of the
oscillation spectra are plotted against one another. A classic example of asteroseismic
diagram is that of Figure 35. This diagram demonstrates that ∆ν and νmax are almost
proportional according to Equations 182. Along the RGB ∆ν and νmax decrease
together with temperature as shown in Figures 35, 36 and 37. Another important
asteroseismic diagram is the ∆ν − ∆Π diagram (see Figure 38) which allows us
to easily distinguish between red-clump and red-giant-branch stars thanks to the
sensitivity of ∆Π to the near-core structure. Many interesting articles which analyze
the fields and the stellar clusters observed by Kepler, K2 and CoRoT are present in
literature (see e.g. Corsaro et al. 2012; Miglio et al. 2013; Anders et al. 2017; Miglio
et al. 2016; Stello et al. 2016).

https://keplerscience.arc.nasa.gov/
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Figure 31.: The field that was observed during the prime Kepler mission. Figure taken from the official
site of the Kepler & K2 Science Center: https: // keplerscience. arc. nasa. gov/ .

Figure 32.: The Kepler bandpass. The response curves of MOST, CoRoT and Johnson B, V, R, I
filters are shown for comparison. The Johnson’s passbands have been scaled so that their
maximum is at 100% transmission. The spectra of an A2V star and of a M2V star, scaled
to have equal flux in the V passband, are also shown. Figure taken from Rowe et al. (2009).

https://keplerscience.arc.nasa.gov/
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Figure 33.: The fields observed during the campaigns of the K2 Mission until 2018. Figure taken
from the official site of the Kepler & K2 Science Center: https: // keplerscience. arc.
nasa. gov/ .

Figure 34.: Kepler fields (squares) and fields covered by APOKASC (circles). The red points mark the
positions of the stars whose data are freely available. Figure taken from Rodrigues et al.
(2014).

https://keplerscience.arc.nasa.gov/
https://keplerscience.arc.nasa.gov/
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Figure 35.: The stars of the APOKASC catalog in the ∆ν-νmax diagram. These two quantities decrease
during evolution, indeed cooler stars are preferentially close to the (0, 0) point.

Figure 36.: Solar-like oscillation spectra of five stars observed by Kepler, using its short-cadence data.
The masses of these stars are all around 1 M�. The top two stars KIC 8006161 and KIC
12069424 (16 Cyg A) are main-sequence stars. The third and fourth stars down—KIC
6442183 (HD 183159) and KIC 12508433 are subgiants. The bottom star (KIC 6035199)
lies at the base of the RGB. The decrease of νmax from the main sequence until the base of
the RGB is clearly visible. Figure taken from Chaplin & Miglio (2013).
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Figure 37.: Solar-like oscillation spectra of four stars observed by Kepler, using its long-cadence data.
The masses of these stars are all around 1 M�. KIC 6949816 and KIC 9269772 are both
first-ascent RGB stars. KIC 3100193 and KIC 7522297 are, respectively, RGB and RC
stars sharing similar surface properties. The decrease of νmax moving up from the bottom
of the RGB is clearly visible. Figure taken from Chaplin & Miglio (2013).

Figure 38.: Gravity-mode period spacing ∆Π1 as a function of the pressure-mode large frequency
spacing ∆ν. Kepler’s long-cadence data (LC) have ∆ν ≤ 20.4 µHz. RGB stars are indicated
by triangles; clump stars by diamonds; secondary clump stars by squares. Uncertainties in
both parameters are smaller than the symbol size. The seismic estimate of the mass is given
by the color code. Small gray crosses indicate the bumped periods ∆Πobs measured by
Mosser et al. (2011). Dotted lines are ng isolines. The dashed line in the lower left corner
indicates the formal frequency resolution limit. The upper x-axis gives an estimate of the
stellar radius for a star whose νmax is related to ∆ν according to the mean scaling relation
νmax = (∆ν/0.28)1.33 (both frequencies in µHz). The solid colored lines correspond to a
grid of stellar models with masses of 1, 1.2 and 1.4 M�, from the ZAMS to the tip of the
RGB. Figure taken from Mosser et al. (2012a).



3 T H E T R I L E G A L A N D T H E PA R A M
C O D E S

3.1 stellar population synthesis with trilegal

Let us suppose to look at a certain surface element of the sky with galactic coordinates
(l, b) and solid angle dΩ. The number counts of stars in a given bin of apparent
x-magnitude [mx, mx + dmx] is given by

N(mx, l, b) =

( ∫ ∞

0
r2ρ(r)φ(Mx, r)dr

)
dmx dΩ (183)

where r is the distance along the line of sight, r = (l, b, r), ρ(r) is the stellar density
and φ(Mx, r) is the intrinsic luminosity function, i.e. the distribution of stellar
absolute magnitudes, at the position r. The aim of stellar population synthesis is
to find ρ and φ such that the predicted number counts is in good agreement with
observations in a volume as large as possible. We can simplify the problem by
expressing the density as the sum of three different contributions belonging to each
galaxy component (disk, halo and bulge):

ρ = ρd + ρh + ρb (184)

Each of these components have a density distribution that can be written rather easily.
Moreover, we can assume that the luminosity functions are independent of r, i.e.
φ(Mx, r) = φ(Mx), for each of these components. The TRILEGAL (TRIdimensional
modeL of thE GALaxy) code implements a population synthesis Galaxy star count model.
Such models, starting from a set of evolutionary tracks and suitable distributions
of stellar masses, ages and metallicities, assume a theoretical φ(M). The stellar
density is also expressed as a function of stellar parameters like age and metallicity.
TRILEGAL was originally thought to be able to simulate star counts in several
passband systems and for both very shallow and very deep photometric data. The
synthetic photometry and bolometric corrections are derived from an extended
library of stellar spectra. On the other hand, complete evolutionary sequences are
necessary to cover a wide range of magnitudes.
Let us describe schematically the working principle of TRILEGAL (see Figure 39).
The input datasets are:

• tables of stellar evolutionary tracks comprehensive of bolometric magnitudes,
effective temperatures, surface gravity, core mass, surface chemical composition
and asteroseismic parameters;

• tables of bolometric corrections for all the passbands considered;

• the initial mass function (IMF), φm;

• star formation rate (SFR), ψ(t), and age-metallicity relation (AMR), Z(t), for
each Galaxy component;

• stellar densities and V-extinction as a function of r, i.e. the geometry of the
Galaxy components.

A single run of TRILEGAL executes the following steps:

• Equation 183 is used to predict the number counts in each bin of distance
modulus;

77
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Figure 39.: A general scheme of the TRILEGAL code. The solid arrows refer to steps which are
performed inside TRILEGAL and they lead to the simulation of perfect (i.e. without errors)
photometric data. External scripts can perform additional steps (dashed lines) to simulate
instrumental errors. Figure taken from Girardi et al. (2005).

• for each simulated star the stellar age, metallicity and mass are singled out by
using SFR, AMR and IMF;

• the intrinsic properties (luminosity, effective temperature, surface gravity, etc.)
of the star are derived by interpolating them in the grid of evolutionary tracks,
for the selected initial mass, age, and metallicity;

• the apparent magnitudes are derived by taking into account bolometric correc-
tions, distance modulus and extinction.

The interpolation in the grid of evolutionary tracks is explained below (see Girardi
et al. 2005; Girardi 2016, for further details).

3.2 mesa stellar models with overshooting

In this work we consider three different evolutionary models computed with the
MESA1 (Modules for Experiments in Stellar Astrophysics) code. The evolutionary
tracks were computed by Ben Cooke, currently student at the University of Birm-
ingham, with the physical inputs described in Bossini et al. (2015). These three
models are characterized by three different overshooting parameters during the
H-core burning phase. Convective overshooting and Asteroseismology are indeed
strictly connected. In particular, the period spacing, ∆Π1, of gravity modes with
l = 1 is sensitive to the near-core structure. For sure ∆Π1 can be used to discriminate
between stars in helium-core-burning and in RGB phases. Indeed, as we can see
in the Figures of Section 3.4, HeCB stars have a period spacing larger of about
∼ 200÷ 300 s than that of RGB stars. Then, after the early-AGB phase, it decreases
to similar or smaller values. We want to understand if the choice of the evolutionary
model, i.e. our lack of information about the overshooting phenomenon, leads
to significant systematic errors in the estimates of masses, radii and ages of stars.
As parameter estimation method we use a Bayesian method implemented by the
PARAM code which is described in Section 3.5. We investigate both the cases where
the period spacing is available or not as prior information.
The physical inputs used to compute the evolutionary tracks with the MESA code
are:

• computation starting from the zero-age main sequence (ZAMS) up to the first
thermal pulse of the asymptotic giant branch (TP-AGB);

1 Paxton et al. (2013)
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• Grevesse & Noels (1993) heavy elements partition;

• the OPAL equation of state (Rogers & Nayfonov 2002) and OPAL opacities
(Iglesias & Rogers 1996) augmented by low-temperature opacities from Fer-
guson et al. (2005). C-O enhanced opacity tables are considered during the
helium-core burning (HeCB) phase;

• a table of nuclear reaction rates as in (NACRE, Angulo et al. 1999);

• the Krishna Swamy (1966) model for the atmosphere;

• MLT for the treatment of convection;

• overshooting during the main sequence (αOV,H = 0.0, 0.1, 0.2) and penetrative
convection during the HeCB phase (αOV,He = 0.5) are taken into account in
accordance with Maeder (1975) step function scheme;

• element diffusion, mass loss and rotational mixing are not taken into account;

• the formula Z = Z� 10[Fe/H] with Z� = 0.01756 is used to convert metallicities
[Fe/H] into mass fraction of heavy metals, Z;

• the helium initial mass fraction, Y, is settled by

Y = YP +
∆Y
∆Z

Z (185)

where Yp = 0.2485 is the primordial helium abundance and ∆Y/∆Z = (Y� −
Yp)/Z� = 1.007.

Table 4 summarizes the properties of the models considered and the set of evo-
lutionary tracks used as input for TRILEGAL. In addition to the age, the effective
temperature and the luminosity, also ∆ν and ∆Π are computed along the evolution-
ary tracks. The period spacing is exactly that given by the MESA code. Instead, the
∆ν computed by MESA is substituted by an average large frequency separation, 〈∆ν〉,
which is as close as possible to the observational measurement. More precisely, for
each model along the tracks, the individual radial mode frequencies are computed
with the GYRE code (Townsend & Teitler 2013). A weight w is assigned to the radial
frequencies νn according to the relation:

w = exp

[
− (νn − νmax)2

2σ2

]
with σ = 0.66 ν0.88

max (186)

as described in Mosser et al. (2012b). Finally, 〈∆ν〉 is derived by a linear fitting of the
radial fequencies as a function of the radial order n.

3.2.1 EEPs and interpolation.

TRILEGAL needs as input a set of evolutionary tracks and the positions of the Equiv-
alent Evolutionary Points (EEPs) which mark specific events along the evolutionary
track. The EEPs are important in order to do a correct interpolation in the grid of
evolutionary tracks. In Figure 40 are shown some evolutionary tracks of the MESA
model without overshooting together with their EEPs. When a star have intermedi-
ate values of mass, age and metallicity then TRILEGAL perform an interpolation
between the nearest pairs of equivalent evolutionary points. Interpolations are linear
with log M, log τ, and [M/H] being the independent variables.
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Z0 Y0 M[M�] Maximum
mass step[M�]

0.00176 0.25027 0.6÷ 3.0 0.2
0.00312 0.25164 0.6÷ 3.0 0.2
0.00555 0.25409 0.6÷ 3.0 0.2
0.00987 0.25844 0.6÷ 3.0 0.2
0.01756 0.26618 0.8÷ 3.0 0.3
0.03123 0.27994 1.0÷ 3.0 0.2
0.05553 0.30441 1.0÷ 3.0 0.3

Table 4.: Initial compositions and mass range of the MESA evolutionary tracks with overshooting
parameters αOV,H = 0.0 and αOV,He = 0.5. Grids of evolutionary tracks with the same
combinations of Z0, Y0 and M have been computed for αOV,H = 0.1 and 0.2.
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MESA evolution tracks with αOV,H = 0.0, αOV,He = 0.5, Z0 = 0.01756 and Y0 = 0.26618
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Figure 40.: Three MESA evolutionary tracks with initial parameters αOV,H = 0.0, αOV,He = 0.5,
Z0 = 0.01756, Y0 = 0.26618 and masses M = 2.05, 2.45, 2.85 M�. αOV,H and αOV,He
are the overshooting parameters during the H-core burning and the He-core burning phases
respectively. For clarity the dashed blue track and the dashed black one have been shifted
toward lower temperatures by 1000 K and 2000 K respectively. The red points are the EEPs.
They mark important evolution stages such as the beginning of the main-sequence phase or
the base and the tip of the red-giant branch.
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3.3 isochrone fitting of the open clusters
ngc6791, ngc6819 and m67

We want to apply our analysis to artificial stars belonging to simulated stellar clusters
or Galaxy fields. We chose the open clusters NGC6791, NGC6819 and M67. The first
two have already been observed by Kepler and the latter has been observed during
the K2 Mission. We simulated also an high-latitude Kepler field. In order to simulate
these open clusters we have to derive the global properties (e.g. age and metallicity)
with the isochrone fitting method. Figures from 41 to 49 show the isochrone fitting
of the colour-magnitude diagrams (CMDs) of the already mentioned open clusters.
The straight line of isochrones which connects the tip-RBG region and the red clump
is representative of the helium-flash that stars of this range of masses undergo. See
the captions for further details. In Table 5 we summarize the final estimates of the
global parameters. Just from these figures we can see that models with convective
overshooting during the main sequence in general fit better the CMDs of stellar
clusters. However, it is difficult to identify the correct value of the overshooting
parameter only by using the isochrone fitting method. Asteroseismology may
provide better constraints to overshooting. Anyway, all observational tests about
overshooting must be based on its effects on stellar evolution. Let us list the main
ones:

• the main sequence lasts for a longer time because of the larger amount of
hydrogen available: this fact leads to the difference near the turn-off point
between isochrones of models with and without overshooting;

• a larger increase in luminosity and radius during the main sequence affecting
again the isochrone’s shape around the turn-off;

• at the end of the main sequence the hydrogen-exhausted core mass is greater
than in the case without overshooting: this means larger luminosities and
shorter lifetimes during all post-main-sequence phases except for the HeCB
phase of low-mass stars that undergo the helium-flash.

In particular the connection between asteroseismic parameters and age may guide
us toward a good estimate of the overshooting parameter.

Cluster Age [Gyr] Z µ0 E(B−V)

NGC6819 1.8 0.02 12.1 0.14
NGC6791 7.0 0.03 13.1 0.18

M67 3.5 0.019 9.7 0.015

Table 5.: Final estimates of the global parameters of the open clusters NGC6819, NGC6791 and M67.



82 the trilegal and the param codes

Figure 41.: Isochrone fitting of the CMD of NGC6819. The UBV photometry has been taken from
the WEBDA catalog: https: // www. univie. ac. at/ webda/ . The isochrones belong
to the MESA model with overshooting parameter αOV,H = 0.0. The final estimates of the
global parameters are: Age= 1.8 Gyr, Z = 0.02, µ0 = 12.1, E(B− V) = 0.14. These
global parameters are suitable even if we adopt αOV,H = 0.1, 0.2.

Figure 42.: Isochrone fitting of the CMD of NGC6819. The UBV photometry has been taken from the
WEBDA catalog. The isochrones belong to the MESA model with overshooting parameter
αOV,H = 0.1.

https://www.univie.ac.at/webda/
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Figure 43.: Isochrone fitting of the CMD of NGC6819. The UBV photometry has been taken from the
WEBDA catalog. The isochrones belong to the MESA model with overshooting parameter
αOV,H = 0.2.

Figure 44.: Isochrone fitting of the CMD of NGC6791. The UBV photometry has been taken from
Stetson et al. (2003). The isochrones belong to the MESA model with overshooting
parameter αOV,H = 0.0. The final estimates of the global parameters are: Age= 7.0 Gyr,
Z = 0.03, µ0 = 13.1, E(B−V) = 0.18. These global parameters are suitable even if we
adopt αOV,H = 0.1, 0.2.
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Figure 45.: Isochrone fitting of the CMD of NGC6791. The UBV photometry has been taken from
Stetson et al. (2003). The isochrones belong to the MESA model with overshooting
parameter αOV,H = 0.1.

Figure 46.: Isochrone fitting of the CMD of NGC6791. The UBV photometry has been taken from
Stetson et al. (2003). The isochrones belong to the MESA model with overshooting
parameter αOV,H = 0.2.
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Figure 47.: Isochrone fitting of the CMD of M67. The UBV photometry has been taken from Mont-
gomery et al. (1993). The isochrones belong to the MESA model with overshooting
parameter αOV,H = 0.0. The final estimates of the global parameters are: Age= 3.5 Gyr,
Z = 0.019, µ0 = 9.7, E(B−V) = 0.015. These global parameters are suitable even if we
adopt αOV,H = 0.1, 0.2.

Figure 48.: Isochrone fitting of the CMD of M67. The UBV photometry has been taken from the
Montgomery et al. (1993). The isochrones belong to the MESA model with overshooting
parameter αOV,H = 0.1.
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Figure 49.: Isochrone fitting of the CMD of M67. The UBV photometry has been taken from the
Montgomery et al. (1993). The isochrones belong to the MESA model with overshooting
parameter αOV,H = 0.2.

3.4 simulations with trilegal

Now we have all the necessary input parameters to simulate these open clusters with
TRILEGAL (except for the total mass which has been chosen to give number counts
in agreement with observations). A standard deviation of 0.1 Gyr for the clusters’
ages has been adopted in the simulations. The following pictures show some results
of the simulations. Figures from 50 to 52 refer to the open clusters and Figure 53

refer to a region of the sky of 0.5 deg2 representative of the Kepler field with central
galactic coordinates (l, b) = (76.98, 19.84). See the captions for further details.

3.5 the param code

The asteroseismic scaling relations 182 provide rather good estimates of masses
and radii when ∆ν, νmax and Teff are available. The derivation of masses and radii
through these scaling relations is called direct method. However, even better estimates
can be achieved with the so-called grid-based or Bayesian methods. This improvement
is due to two main reasons: firstly the scaling relations assume that stars are all
homologous to the Sun leading in some cases to significant errors in mass and so in
age; secondly the grid-based methods can take into account additional information
such as the period spacing ∆Π of mixed modes. The PARAM code implements a
Bayesian method which works as follows (da Silva et al. 2006; Rodrigues et al. 2014,
2017):

• the code receive as input a grid of evolutionary tracks like those described in
Chapter 3;

• the code receive the measurements of the known star’s parameters (we used
Teff, ∆ν, νmax, [M/H] and also ∆Π in some cases), let us denote with y this set
of measurements. We note that TRILEGAL derives ∆ν and ∆Π by interpolation
and νmax by using the scaling relation νmax ∝ g/

√
Teff;
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(a)

(b)

(c)

Figure 50.: TRILEGAL simulations of NGC6819 with MESA evolutionary models. A total mass of
7400 M� has been settled.
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(a)

(b)

(c)

Figure 51.: TRILEGAL simulations of NGC6791 with MESA evolutionary models. A total mass of
21800 M� has been settled.
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(a)

(b)

(c)

Figure 52.: TRILEGAL simulations of M67 with MESA evolutionary models. A total mass of
5000 M� has been settled.
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(a)

(b)

(c)

Figure 53.: TRILEGAL simulations of a field with MESA evolutionary models. The central coordinates
of the field are (l, b) = (76.98, 19.84) an its area is of 0.5 deg2. The corresponding Kepler
field is marked with a red point in the insets of the left panels.
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• if we assume that the uncertainties in y are normally distributed then the
Likelihood function can be written as

p(〈y〉, x) = L(〈y〉, I(x)) = ∏
i

1√
2πσyi

exp

(
− (〈yi〉 − yi)

2

2σ2
yi

)
(187)

where 〈yi〉 and σ2
yi

are the mean values and standard deviations of the input
parameters respectively. The vector x = (M, R, log g, τ, Mλ) is the set of
output parameters, i.e. what we would like to compute. x and y are connected
through the isochrones derived from the grid of evolutionary tracks: y = I(x);

• the code computes the Likelihood functions and the prior function, p(x), which
is given by

p(x) = p(M) p(τ) p([M/H]) (188)

where the priors in age and metallicity are uniform distributions in the interval
[106, 1010] yr and the prior in mass is given by the initial mass function derived
in Chabrier (2001), but corrected for the mass lost close to the tip of the RGB
(see Miglio et al. 2012, for details);

• the code computes the posterior probability:

p(x|y) = p(y|x) p(x)
p(y)

(189)

where p(y) is a normalization factor, independent of x, which do not modify
the shape of the posterior probability and so it can be ignored;

• finally the code computes the marginal distributions p(xi|〈y〉) by integrating
p(x|y) over all output parameters, except for xi.

The marginal distributions are the probability density functions of the output param-
eters. We can use the mode or the median of these distributions as our parameters’
estimates (in this work we will use the mode). The uncertainties of our estimates
are provided by computing 68 percent credible intervals. The interpolation between
the input evolutionary tracks is done with the same method used by TRILEGAL
(described in more detail in Marigo et al. 2017). Many tests have been executed in
order to check and explore the potentialities of PARAM (see Rodrigues et al. 2014,
2017).

3.6 simulations with param

The choice of one among the three MESA models available and so the choice of the
overshooting parameter may lead to systematic errors in the determination of stellar
parameters. We want to quantify these errors when the Bayesian method of PARAM
is applied. In order to do that, we adopted the following procedure:

• we choose a TRILEGAL simulation among those showed above;

• for each artificial star we take its effective temperature, metallicity and astero-
seismic parameters (firstly we use ∆ν and νmax for all stars and then we repeat
the whole procedure by taking also ∆Π, but only for RGB and HeCB stars);

• we assign uncertainties to the input parameters according to the typical values
in literature and in the APOKASC and Vrard’s catalogs: 90 K in effective
temperature, 0.1 dex in metallicity 2% in ∆ν and ∆Π and 2.5% in νmax;

• we run PARAM with a grid of evolutionary tracks corresponding to one of the
three MESA models and not necessarily the same of the TRILEGAL simulation;
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• PARAM tries to recover the original parameters of the artificial stars (mass,
radius and age in particular) by using only the information about temperature,
metallicity and asteroseismic parameters;

• as a result, PARAM gives the estimates of the recovered stellar parameters with
their credible intervals.

This procedure has been repeated for all possible combinations of TRILEGAL simu-
lations and PARAM input models. We are going to present and analyze the results
of these computations in Chapter 4.



4 A N A LYS I S A N D C O N C LU S I O N S

4.1 error definitions and plots description

The estimates of stellar parameters provided by PARAM are affected by two kinds
of error. The first contribution comes directly by the application of the Bayesian
method and it is determined by the shape and width of posterior probability density
functions. The second contribution comes from the choice of the stellar model, and
so of the overshooting parameter in our case, given as input to PARAM. We will
take the mode of posteriors as parameter estimates.
Let us define some quantities which will be useful in order to distinguish and evalu-
ate these two contributions. Let EP be the PARAM estimate of a stellar parameter
(the mode of its posterior) and ET its original value in the TRILEGAL simulation.
We will consider only mass, radius and age. Let E68U and E68L be the upper and
lower limits respectively of the 68% credible interval of its posterior. We quantify the
first contribution to error by

σbm =
(E68U − E68L)/2

EP
(190)

and the second one by

σsys =
EP − ET

ET
(191)

and by its absolute value. The distributions of σbm and σsys are showed in two series
of plots, all gathered in the Appendices. Hereafter we will refer to σbm as “PARAM
error”. The plots of the first series (see Appendix A) are like that of Figures 54 and
56. Each plot refers to a specific TRILEGAL simulation indicated in the main title.
For each TRILEGAL simulation there are three different plots for distributions of
masses, radii and ages. The parameter the plot refers to is also written in the main
title. The graph to the left shows the H-R diagram of the TRILEGAL simulation.
The artificial stars are divided into different groups depending on their evolutionary
stage. We will consider only stars belonging to main sequence and sub-giant branch
(label ’1’ of the colorbar), to red-giant branch (label ’3’) and those in HeCB phase
(label ’4’). The 3 × 3 matrix of graphs to the right represents the distributions
of percentage errors, σbm [%], of PARAM results for the chosen stellar parameter
and for all PARAM input grids available. Distributions of the first column were
obtained when PARAM received the grid of evolutionary tracks computed with
the MESA code and adopting αOV,H = 0.0. The distributions of the second and
the third columns were obtained when αOV,H = 0.1, 0.2 was adopted respectively.
Stars belonging to a certain evolutionary stage take part of the distributions of
the dedicated row (note the label ’ES’ = Evolutionary Stage on the far right-hand
side). Finally, blue distributions are obtained when only ∆ν and νmax are used as
asteroseismic parameter in input to PARAM. Red distributions, instead, are obtained
when ∆Π is added to the set of input information (note that these distributions are
not present in the last row because ∆Π can’t be measured for main-sequence stars
and hardly for sub-giants). In each graph of the matrix the medians, written in the
same colour of the distribution they represent, are reported. The plots of the second
series, gathered in Appendix B, are similar (see Figures 55 and 57), but they show
the distributions of the percentage systematic errors, σsys [%]. In this case, denoted
by Meabs, the medians of the distributions of |σsys| [%] are also reported.
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Figure 54.: Distributions of PARAM errors for ages for the TRILEGAL simulation of the Kepler field
with αOV,H = 0.0.
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Figure 55.: Distributions of systematic errors for ages for the TRILEGAL simulation of the Kepler field
with αOV,H = 0.0.



96 analysis and conclusions

45
00

50
00

55
00

60
00

T
eff

[K
]

−
0.

5

0.
0

0.
5

1.
0

1.
5

2.
0

log(L/L�)

1234567

Evolutionary stage

123456
M
e

=
14

.7
2

M
e

=
10

.6
9

α
P

A
R

A
M

O
V
,H

=
0.

0

2468101214
M
e

=
41

.1
0

M
e

=
30

.8
4

0
50

10
0

1020304050607080
M
e

=
53

.1
7

M
e

=
14

.8
4

M
e

=
10

.7
1

α
P

A
R

A
M

O
V
,H

=
0.

1

M
e

=
40

.0
1

M
e

=
30

.5
3

0
50

10
0

M
e

=
53

.2
1

M
e

=
14

.7
8

M
e

=
10

.4
7

α
P

A
R

A
M

O
V
,H

=
0.

2
In

p
u

ts
:

∆
ν,
ν m

a
x

In
p

u
ts

:
∆
ν,
ν m

a
x
,

∆
Π

M
e

=
38

.5
0

M
e

=
30

.3
2

0
50

10
0

M
e

=
53

.3
8

ES = 4 ES = 3 ES = 1

Counts

T
R

IL
E

G
A

L
si

m
u

la
ti

on
of

M
67

w
it

h
α

O
V
,H

=
0.

0
an

d
er

ro
rs

of
P

A
R

A
M

re
su

lt
s

fo
r

ag
es

σ
b

m
(τ

)
[%

]

Figure 56.: Distributions of PARAM errors for ages for the TRILEGAL simulation of M67 with
αOV,H = 0.0.
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Figure 57.: Distributions of systematic errors for ages for the TRILEGAL simulation of M67 with
αOV,H = 0.0.
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4.2 analysis

From the plots in Appendix A and B we can outline some general aspects:

• PARAM errors are in general lower than 10 % in mass, lower than 5 % in radius
and lower than 40 % in age except for low main-sequence stars which have
even greater age errors and often lead to multimodal distributions;

• PARAM errors are in general reduced when ∆Π is also used as input informa-
tion. This is true especially for the age estimates of RGB stars whose errors
decrease of 10 % or even more. Moreover, without using ∆Π, PARAM errors
distributions for RGB stars in the Kepler field are bimodal. The reason is that
PARAM can’t distinguish well between red-clump stars and nearby RGB stars
only by using ∆ν and νmax. In open clusters, distributions do not have a clear
bimodal shape because of the lower star counts than the field;

• for HeCB and RGB stars PARAM errors do not change a lot on varying the
overshooting parameter in PARAM. This fact was expected because, in the mass
range of our artificial stars, the evolutionary tracks with different overshooting
parameters differ to each other until the base of the RGB and then are similar;

• systematic errors in general contribute to the total error less than PARAM ones,
but they are not negligible;

• systematic errors are never null, even if the evolutionary grids of TRILEGAL
and PARAM coincide. The reason is that the choice of the grid is not the only
source of systematic errors, e.g. the mode of posteriors might not be a good
indicator in case of multi-peaked distributions;

• if only ∆ν and νmax are used, then systematic errors do not change a lot on
varying the overshooting parameter in PARAM;

• there are few stars in HeCB phase so it should be better to repeat the entire
analysis accumulating artificial stars from many TRILEGAL simulations with
same inputs before doing statistics with HeCB stars. However, since almost
all our artificial stars undergo the helium-flash, we do not expect estimates of
their parameters to be influenced by effects of overshooting;

• the choice of the correct overshooting parameter is important especially for
RGB stars of open clusters: it leads to decreases of systematic errors up to
about 18 % in age, 6 % in mass and 2.5 % in radius.

Note that the addition of ∆Π leads in some cases to greater systematic errors.
However, to use only ∆ν and νmax is not a good strategy because PARAM errors are
much higher in that case.

4.3 conclusions and future perspectives

Our aim was to quantify systematic errors introduced by the choice of the overshoot-
ing parameter, αOV,H, to adopt for computing the evolutionary grid used as input
to the Bayesian method implemented by the PARAM code. The results of our work
show that in general they contribute to the total error less than PARAM ones, but
they are not negligible. This is true especially for RGB stars, for which we have
observed decreases of systematic errors up to about 18 % in age, 6 % in mass and
2.5 % in radius. Therefore, the choice of the correct overshooting parameter might
be important, in particular for galaxy evolution and for stellar clusters, whose ages
are assumed to be close to their stars ages. A lot of work should be done in order
to investigate deeper behaviours of systematic errors. Other evolutionary grids and
other mass ranges and compositions should be considered. Moreover, looking at the
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incoming measurements of parallaxes from Gaia satellite (Lindegren et al. 2016), the
entire analysis should be repeated by adding the absolute magnitude as known input
information for PARAM. Next in the future, the PLATO Mission will provide great
improvements in stellar parameters estimation thanks to detection of individual
oscillation frequencies. In such a way it will be possible to go beyond the use of ∆ν,
νmax and ∆Π which only describe the global aspects of solar-like oscillations pattern.
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