

Università Degli Studi Di Padova

Dipartimento di Tecnica e Gestione dei Sistemi Industriali

Tesi di Laurea Magistrale in Ingegneria dell'Innovazione del Prodotto

ANALISI NUMERICHE E TEORICHE DI PROVINI INTAGLIATI SOGGETTI A MODO I+III: APPLICAZIONE DEL RAGGIO FITTIZIO.

Relatore: Ch.mo Prof. Filippo Berto

Correlatore: Ing. Alberto Campagnolo

Laureando: Oscar Scortini

Anno Accademico 2014/2015

Sommario

SOMMARIO
INTRODUZIONEIII
1. Obiettivi: III
2. Lista dei Simboli:
3. Frame Analitico:
3.1. CONFIGURAZIONI DI INTAGLI A V ED APPLICAZIONE DEL RAGGIO FITTIZIO PRESENTI IN LETTERATURA: VIII
3.2. Intaglio a V con foro alla radice soggetto a condizione di carico
MISTA: XIV
3.2.1. DISTRIBUZIONE DELLE TENSIONI DI FRONTE ALL'INTAGLIO A V CON FORCALLA RADICE: XIV
3.2.2. DISTRIBUZIONE DELLE TENSIONI IN PROSSIMITÀ DELL'APICE
DELL'INTAGLIO A V CON FORO ALLA RADICE SOGGETTO A CARICO
COMBINATO DI MODO I+III:XVI
3.2.3. CRITERIO DELLA TENSIONE NORMALE PER L'APPLICAZIONE
DELL'APPROCCIO DEL RAGGIO FITTIZIO:XIX
3.2.3.1. TENSIONE MEDIA:
3.2.3.2. Determinazione della Massima Tensione principale
SULL'INTAGLIO CON RAGGIO FITTIZIO $ ho_f$:XX
3.2.3.3. Determinazione del Raggio Fittizio d'Intaglio $ ho_f$ e del
FATTORE DI SUPPORTO S:XX
3.2.4. DISTRIBUZIONE DELLE TENSIONI DI FRONTE ALL'INTAGLIO A V CON FORC
ALLA RADICE:XXII

3.2.5. Intaglio a V con foro alla radice di raggio f	ITTIZIO SOGGETTO
A MODO MISTO DI CARICO I+II:	XXVI
Capitolo Primo	1
Il metodo del raggio fittizio applicato a provini indebolit	ΓΙ DA INTAGLI A V
LATERALI E SOGGETTE A SOLLECITAZIONI DI MODO MISTO I + III	1
1. Descrizione:	1
2. Intaglio laterale:	4
3. CALCOLO DI $K_I \to K_{III}$:	5
4. CALCOLO DELLA TENSIONE MEDIA ALL'INTAGLIO $\overline{\sigma}$:	8
5. CALCOLO DELLA TENSIONE SUL BORDO DELL'INTAGLIO FITTIZIO TRA ELEMENTI FINITI:	
6. Determinazione di $\sigma_{1,max}(\rho_f)$ e $\overline{\sigma}(\rho,\rho^*)$ e Calcolo del loro Sco	OSTAMENTO: 19
7. Conclusioni:	27
Capitolo Secondo	28
IL METODO DEL RAGGIO FITTIZIO APPLICATO A PIASTRE INDEBOLIT	e da intagli a V
LATERALI E SOGGETTE A SOLLECITAZIONI DI MODO MISTO I + II	28
1. Descrizione:	28
2. Intaglio laterale:	32
3. CALCOLO DI K _I E K _{II} :	33
4. CALCOLO DELL'ANGOLO DI PROPAGAZIONE DELLA CRICCA θ_0 E MASSIMA TEORICA ALL'INTAGLIO σ_{th}	
5. CALCOLO DELLA TENSIONE SUL BORDO DELL'INTAGLIO FITTIZIO TRA ELEMENTI FINITI:	
6. CALCOLO DEL K_t :	42
7. Conclusioni:	45
Bibliografia	47

Introduzione

1. OBIETTIVI:

Gli obiettivi di questo lavoro sono di estendere il metodo del raggio fittizio a provini indeboliti da intagli a V laterali e soggetti a sollecitazioni di :

- modo misto I+III valutandone la deviazione tra il valore teorico della tensione $\overline{\sigma}(\rho,\rho^*) \text{ con quello numerico } \sigma_{1,max}(\rho_f) \text{ ottenuto utilizzando un software di calcolo agli elementi finiti.}$
- modo misto I+II valutandone la deviazione tra il valore teorico $\overline{K}_{\rm t}$ con quello numerico $K_{\rm t}(\rho_{\rm f})$ ottenuto utilizzando un software di calcolo agli elementi finiti.

2. LISTA DEI SIMBOLI:

a	notch depth
K_1	notch stress intensity factor of mode 1 loading
K_2	notch stress intensity factor of mode 2 loading (in-plane shear)
K_3	notch stress intensity factor of mode 3 loading
$K_{1\rho}$	generalised notch stress intensity factor of mode 1 loading
$K_{2\rho}$	generalised notch stress intensity factor of mode 2 loading
$K_{3\rho}$	generalised notch stress intensity factor of mode 3 loading
K_{t}	theoretical stress concentration factor
$K_{\rm t,rh}$	stress concentration factor of root hole by notch parallel nominal stress
$K_{\rm t}(ho_{ m f})$	theoretical stress concentration factor of the fictitious notch
$\overline{K}_{\mathrm{t}}$	averaging stress concentration factor of the real notch
$l_{ m f}$	arbitrary length parameter
M	mode ratio
r	polar coordinate
S	microstructural support factor
w	plate width
X	Cartesian coordinate
y	Cartesian coordinate
α	semi-notch opening angle
β	notch inclination angle
Δ	relative deviation
λ_1	Williams' eigenvalue for mode 1 stress distribution at V-notches
λ_2	Williams' eigenvalue for mode 2 stress distribution at V-notches
λ_3	Williams' eigenvalue for mode 3 stress distribution at V-notches
θ	polar coordinate
θ_0	crack propagation angle
ρ	real notch radius
$\rho*$	microstructural support length
$ ho_{ m f}$	fictitious notch radius
$\overline{\sigma}$	notch stress averaged over $ ho^*$
$\sigma_{ m max}$	maximum notch stress
$\sigma_{\!\! n}$	nominal stress at remote boundary
$\sigma_{\! ext{th}}$	theoretical notch stress
$\sigma_{\!\scriptscriptstyle{ heta}}$	tangential stress

 σ_r radial stress

FE Finite Element

FNR Fictitious Notch Rounding

MSED Minimum Strain Energy Density

MTS Maximum Tangential Stress

SCF Stress Concentration Factor

SED Strain Energy Density

3. Frame Analitico:

Le pubblicazioni presenti in letteratura sul concetto del raggio fittizio (FNR) affrontano separatamente il puro modo I e il puro modo III. Il metodo del raggio fittizio prende le sue origini da lavori pionieristici sviluppati da Neuber [1-3], ove il concetto alla base del metodo non è più legato ad un criterio di punto, ma a quello di campo, infatti, la tensione massima teorica dovuta all'intaglio a spigolo vivo o fortemente appuntito, non caratterizza la resistenza dell'intera struttura, ma come sviluppato da Neuber, è l'intera distribuzione delle tensioni di fronte all'apice dell'intaglio ad influire sul cedimento dell'intera struttura. Pertanto, il parametro chiave del metodo di Neuber è la tensione media su una breve distanza radiale nel caso di intagli a spigolo vivo o su una piccola distanza perpendicolare dal bordo della cricca nel caso di intagli arrotondati (con raggio reale dell'intaglio ρ).

La menzionata distanza, ρ^* , è generalmente chiamata "lunghezza microstrutturale di supporto" ed è un parametro dipendente dal materiale in esame. Ad un alto regime di cicli di fatica, l'idea di base del concetto del FNR è di determinare la tensione media d'intaglio dovuta direttamente dalla fatica (senza la tensione media dovuta all'intaglio) eseguendo le analisi di tensione all'intaglio con un raggio fittizio d'intaglio ρ_f dato da:

$$\rho_f = \rho + s\rho^* \tag{1}$$

In letteratura il metodo del raggio fittizio è stato applicato ad intagli a V sollecitati rispettivamente a modo I e modo III [5,6] utilizzando le tensioni dovute all'intaglio [1,4] ottenendo un fattore di supporto s risultato essere funzione

dell'angolo di apertura 2α , la sperimentazione su larga scala utilizzando un grande numero di configurazioni di intagli e di valori della lunghezza microstrutturale di supporto ha convalidato il metodo in argomento.

E' importante ricordare che per affrontare i problemi dovuti alla frattura fragile l'idea della tensione media dovuta all'intaglio fu originariamente proposta da Wiegarth [7] ed in seguito approfondita da Weiss [8], mentre Neuber nel 1936 diede la formalizzazione matematica del metodo [9] fornendone un quadro teorico generale.

Esiste una correlazione tra il concetto della tensione mediata dovuta all'intaglio ed all'approccio della distanza critica proposto e successivamente utilizzato da Peterson [10], Lazzarin e co-autori [11], Taylor e Susmel [12-16]. Radaj [17,18], riferendosi ad una versione semplificata del metodo di Neuber, propose di applicare l'approccio del raggio fittizio per le valutazioni di resistenza a fatica dei giunti saldati considerando le condizioni peggiori corrispondenti ad un raggio d'intaglio $\rho=0$ mm, impostando una lunghezza microstrutturale di supporto $\rho^*=0.4$ mm ed un fattore di supporto s=2.5 ottenendo un $\rho_f=1.00$ mm.

Recentemente, per le valutazioni di resistenza delle saldature, è stata proposta una procedura standardizzata da utilizzare nelle raccomandazioni di progettazione dell'Istituto Internazionale di Saldatura (IIW) considerando un $\rho_f=1.00\,$ mm [19] ed i lavori [20,21] hanno dimostrato l'applicabilità dell'approccio a differenti strutture saldate, mentre un altro lavoro [22,23] è stato dedicato all'applicazione dell'approccio FNR agli intagli con foro alla radice soggetti a puro modo I.

Tutti questi lavori hanno sfruttato il vantaggio fornito da alcune espressioni in forma chiusa derivate dagli intagli a V con foro alla radice [24] e partendo dallo stesso insieme di equazioni è stata effettuata una estensione al puro modo III [25].

I casi di modo misto di carico I+II e I+III sono risultati estremamente complessi se confrontati con i casi più semplici di modi puri, questa complessità

nella trattazione è dovuta al fatto che la massima tensione avviene al di fuori della linea di bisettrice dell'angolo d'intaglio, infatti, i primi tentativi di analisi dei modi misti di carico [26] sono stati eseguiti su intagli semplici soggetti a condizioni di carico di puro modo II ricorrendo ad un fattore di supporto s, a una metodologia numerica e solo per alcune tipologie d'intaglio [27].

In letteratura sono presenti due criteri per determinare il più probabile angolo di propagazione della cricca, la massima tensione tangenziale (MTS) secondo il criterio di Erdogan-Sih [28] e la minima energia di deformazione (MSED) criterio secondo Sih [29].

Il concetto del raggio fittizio è stato analiticamente risolto per gli intagli a V con foro alla radice, utilizzando le equazioni in forma chiusa ottenute in riferimento [24], solo nel caso di cricca centrale sollecitata a condizione di carico mista I+II [30,31], mentre, a causa della sua complessità, risulta ancora irrisolto il problema degli intagli laterali. Una recente revisione dell'approccio del raggio fittizio comprendente anche i recenti sviluppi appena menzionati è stata effettuata nei riferimenti [32,33]. Attualmente, approfittando della cornice analitica disponibile [24], l'applicazione dell'approccio del raggio fittizio nei puri modi di carico è ben sviluppata e risolta [22-23,25], mentre i problemi derivanti da condizioni di carico misti, nel piano ed al di fuori del piano, rimangono aperti a causa della loro complessità. La principale difficoltà è la dipendenza del parametro di supporto s dal parametro di *mode mixity* che è legato all'intensità dei carichi applicati, ma anche alla configurazione geometrica.

Lo scopo del presente lavoro è di fornire una base per l'applicazione dell'approccio del raggio fittizio nel caso di condizioni di carico di modo misto considerando il combinato effetto di modo I e modo III con differenti intensità tra i due modi. Il vantaggio di questo caso rispetto al caso nel piano di carico di modo misto è che la direzione più critica è quella lungo la linea di bisettrice dell'intaglio, permettendoci di ottenere una soluzione relativamente semplice del problema. Consideriamo intagli a V con foro alla radice, sia nella configurazione reale che in quella fittizia, mentre gli intagli a spigolo vivo sono il caso limite ottenuto quando il raggio reale d'intaglio alla radice tende a zero. Per determinare il fattore di

supporto s, il metodo proposto richiede la soluzione numerica delle equazioni che governano il fenomeno, molte tabelle e diagrammi presentano questi valori come una funzione del rapporto di modo M per diversi angoli di apertura 2α .

3.1. CONFIGURAZIONI DI INTAGLI A V ED APPLICAZIONE DEL RAGGIO FITTIZIO PRESENTI IN LETTERATURA:

Le sei varianti presenti in letteratura ed utilizzate dagli autori per l'applicazione del concetto del raggio fittizio dell'intaglio a V sono brevemente descritte in questo paragrafo:

Nella prima variante, Fig.1, è considerato un intaglio a V arrotondato o appuntito con propagazione della cricca lungo la bisettrice dell'angolo di apertura. Le tensioni dovute all'intaglio sono mediate sulla distanza ρ^* lungo la linea di bisettrice. La tensione media $\overline{\sigma}$ (o $\overline{\tau}$) è equiparata alla massima tensione σ_{max} (o alla τ_{max}) del raggio fittizio dell'intaglio raccordato. Questa è la metodologia utilizzata dagli autori [5,6] per gli intagli arrotondati, compresi gli intagli a V soggetti a carico di tensione (modo I) o fuori dal piano soggetto a carico di taglio (modo III).

La metodologia consiste nei seguenti passaggi che corrispondono a quelli eseguiti da Neuber [1-3]:

- quantificare la relativa tensione σ (o τ) lungo la linea di bisettrice dell'angolo di apertura dell'intaglio (che è il percorso che la cricca prende quando è soggetta a condizioni di carico di modo 1 o modo 3) da espressioni in forma chiusa per intagli acuti arrotondati a V;
- determinare la tensione media $\overline{\sigma}$ (o $\overline{\tau}$) lungo ρ^* (altre espressioni in forma chiusa);
- risolvere l'equazione $\overline{\sigma}(\rho, \rho^*) = \lim_{\rho^* \to 0} \overline{\sigma}(\rho = \rho_f, \rho^*) = \sigma_{\max}(\rho_f)$ o l'equazione $\overline{\tau}(\rho, \rho^*) = \lim_{\rho^* \to 0} \overline{\tau}(\rho = \rho_f, \rho^*) = \tau_{\max}(\rho_f)$, al fine di ricavare il raggio fittizio ρ_f come una funzione ρ^* , ρ e 2α ;
- ricavare il fattore $s = (\rho_f \rho)/\rho^*$ che è in generale dipendente da 2α .

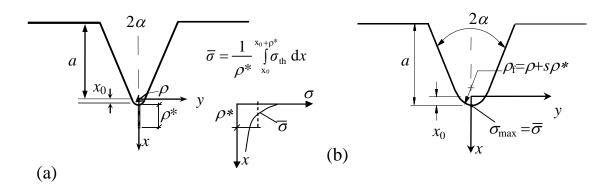


Fig. 1: Metodo del raggio fittizio applicato ad una tensione di carico (modo I): intaglio con arrotondamento reale con tensione mediata lungo ρ^* (a) e sostituzione dell'arrotondamento reale dell'intaglio con il raggio fittizio $\rho_{\rm f}$ ottenendo $\sigma_{max} = \overline{\sigma}$ (b)

Nella seconda variante, Fig.2, è considerato un intaglio a V a spigolo vivo con propagazione della cricca all'esterno della linea di bisettrice dell'angolo di apertura. Le tensioni dovute all'intaglio sono mediate sulla distanza ρ^* secondo l'angolo θ_0 di propagazione della cricca assunto sotto la condizione di carico di modo II. La tensione media $\overline{\sigma}$ è equiparata alla massima tensione σ_{max} del raggio fittizio dell'intaglio raccordato che si verifica fuori dalla linea di bisettrice dell'angolo di apertura dell'intaglio. Questa metodologia, basata su una procedura iterativa puramente numerica, è quella utilizzata da Berto e Lazzarin [5,6] per gli intagli a spigolo vivo a V soggetti ad una sollecitazione di taglio piana. In questa ricerca, il criterio della massima tensione normale (Rankine), il criterio dell'energia di distorsione (Von Mises) e il criterio dell'energia totale di deformazione (Beltrami) sono stati considerati come criteri di rottura, sotto le condizioni di tensione piana e deformazione piana. Al fine di determinare l'angolo di propagazione sotto la condizione di carico di modo II, sono stati utilizzati i criteri della massima tensione tangenziale (MTS) e quello della minima densità di energia di deformazione (MSED), estendendone la loro applicabilità per cricche a intagli a V.

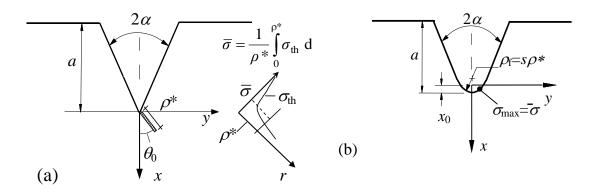


Fig. 2: Metodo del raggio fittizio applicato ad un piano di taglio di carico (modo II): intaglio reale a spigolo vivo con tensione mediata lungo ρ^* in direzione della propagazione della cricca (a) e sostituzione dell'arrotondamento dell'intaglio con il raggio fittizio ρ_f ottenendo $\sigma_{max} = \overline{\sigma}$ (b)

Nella terza variante, Fig.3, è nuovamente considerato un intaglio a V con propagazione della cricca lungo la linea di bisettrice dell'angolo di apertura. Ora l'intaglio è costituito da un foro alla radice di raggio pari al raggio fittizio. Questa variante è stata applicata al modo di carico I in Rif.[19,20] ed alla condizione di carico di modo III in Rif. [22]. In questa metodica, l'inizio dell'analisi della tensione dovuta all'intaglio e dell'analisi della tensione media è l'apice del'intaglio (ρ =0) al contrario della metodologia di Neuber. La metodologia della tensione media e della tensione equivalente è stata applicata nel seguente modo:

- quantificare la relativa tensione σ (o τ) lungo la linea di bisettrice dell'angolo di apertura dell'intaglio (che è il percorso che la cricca prende quando è soggetta a condizioni di carico di modo 1 o modo 3) da espressioni in forma chiusa per intagli acuti arrotondati a V;
- determinare la tensione media $\overline{\sigma}$ (o $\overline{\tau}$) lungo ρ^* (altre espressioni in forma chiusa);
- risolvere l'equazione $\overline{\sigma} = \sigma_{max}$ (o $\overline{\tau} = \tau_{max}$) essendo la tensione massima ottenuta nel raggio fittizio conseguenza dell'insieme di equazioni disponibili per gli intagli a V con foro alla radice [21], al fine di ricavare il raggio fittizio ρ_f come una funzione ρ^* e 2α ;
- ricavare il fattore $s = (\rho_f \rho)/\rho^*$ che è in generale dipendente da 2α .

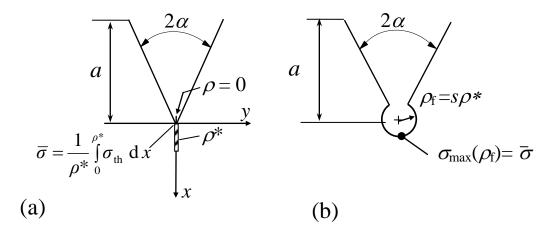


Fig. 3: Concetto del raggio fittizio applicato ad intagli soggetti a tensione (modo I): intaglio a spigolo vivo con tensione media lungo ρ^* (a) e sostituito con intaglio con foro alla radice di raggio fittizio pari a ρ_f ottenendo $\sigma_{max}=\overline{\sigma}$ (b).

Nella quarta variante [19-20,22], Fig.4, è stata utilizzata la metodologia di Neuber per gli intagli a V soggetti a condizioni di carico di modo I e modo III, considerando l'intaglio a V con foro alla radice e le specifiche equazioni in forma chiusa per quel caso [21]. La metodologia ripete i passi della variante 1, ma si riferisce ad una differente forma di intaglio a V.

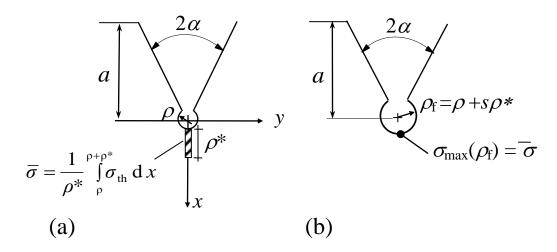


Fig. 4: Concetto del raggio fittizio applicato ad intagli soggetti a tensione (modo I): intaglio con foro alla radice con tensione media lungo ρ^* (a) e sostituito con intaglio con foro alla radice di raggio fittizio pari a ρ_f ottenendo $\sigma_{max} = \overline{\sigma}$ (b).

Nella quinta variante, Fig.5, è nuovamente considerato un intaglio a V con propagazione della cricca al di fuori della linea di bisettrice dell'angolo di apertura. Adesso l'intaglio a V è costituito da un foro alla radice con il raggio pari al raggio fittizio. In questa variante viene utilizzata la metodologia utilizzata da Neuber per gli intagli a V soggetti a condizioni di carico di modo I e modo III, considerando l'intaglio a V con foro alla radice e le specifiche equazioni in forma chiusa per quel caso [21]. Le procedure della tensione media e della tensione equivalente rimangono le stesse della variante 3 e l'angolo di propagazione della cricca è stato determinato utilizzando il criterio della massima tensione tangenziale (MTS) o il criterio della minima densità di energia di deformazione (MSED). Questa variante è alla base del metodo applicato all'apice dell'intaglio a V soggetto ad una sollecitazione di taglio piana in Rif. [27].

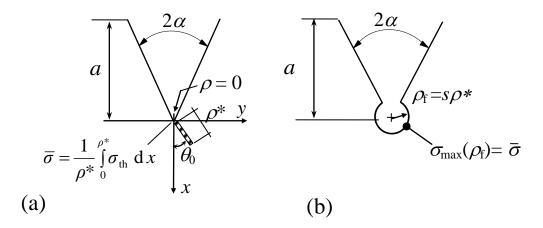


Fig. 5: Concetto del raggio fittizio applicato ad intaglio soggetto a sollecitazione piana di taglio (modo II): intaglio reale appuntito con tensione media lungo ρ^* in direzione della propagazione della cricca (a) e sostituito con un intaglio con foro alla radice con raggio pari al raggio fittizio ρ_f ottenendo $\sigma_{max} = \overline{\sigma}$ (b).

Nella sesta variante, Fig.6, è considerato un intaglio a V con un foro alla radice con propagazione della cricca al di fuori della linea di bisettrice dell'angolo di apertura. Inoltre, l'intaglio a V è costituito da un foro alla radice con la dimensione del raggio fittizio. La tensione media e la tensione equivalente sono ottenute come prima. Questa variante è la base del metodo applicato agli intagli a V con foro alla radice soggetti a sollecitazione di taglio piana [27].

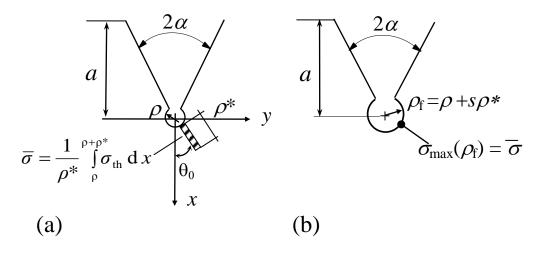


Fig.6: Concetto del raggio fittizio applicato a una sollecitazione di taglio piana (modo II): intaglio reale con foro alla radice con tensione media lungo ρ^* in direzione della propagazione della cricca (a) e sostituito con intaglio con foro alla radice di dimensione pari al raggio fittizio ρ_f ottenendo $\sigma_{max} = \overline{\sigma}$ (b)

La sesta variante sarà la base per il metodo utilizzato d'ora in poi nelle condizioni di carico misto. L'angolo di propagazione della cricca θ_0 , che dipende dal rapporto di modo M, è valutato in base al criterio della minima tensione tangenziale. A causa della complessità del problema, solo il criterio della massima tensione normale di rottura, ottenuto dal comportamento fragile dei materiali, è applicato nel presente lavoro. I risultati ottenuti si applicano per le condizioni di tensione piana e di deformazione piana.

3.2. Intaglio a V con foro alla radice soggetto a modo misto

Usando il criterio della tensione normale è stato sviluppato un metodo analitico per valutare il raggio fittizio d'intaglio ρ_f ed il fattore di supporto s come funzione del rapporto di modo M. Il metodo si riferisce alla sesta variante descritta in precedenza (vds. Fig.6) dove il raggio reale alla radice ρ è sostituito con il raggio fittizio ρ_f .

3.2.1. DISTRIBUZIONE DELLE TENSIONI DI FRONTE ALL'INTAGLIO A V CON FORO ALLA RADICE:

Riferendoci alla figura 3a, la distribuzione delle tensioni dovute alla condizione di carico di modo I possono essere espresse nel seguente modo:

dove K_1 è il fattore di intensificazione delle tensioni definito secondo Gross e Mendelson [26] ed è definito nel seguente modo:

$$K_1 = \sqrt{2\pi} \lim_{r \to 0} \sigma_{\theta} r^{1-\lambda_1}$$
 (3)

e λ_1 è l'autovalore di Williams [27] mentre χ_1 è un parametro ausiliare legato all'angolo di apertura dell'intaglio 2α . I parametri riportati nell'equazione (2) sono riassunti in tabella 1.

	Modo I		Modo II		
2α (°)	λ_1 χ_1		λ_2	χ_2	
0	0.5	1	0.5	1	
30	0.501	1.071	0.598	0.921	
45	0.505	1.166	0.66	0.814	
60	0.512	1.312	0.731	0.658	
90	0.544	1.841	0.909	0.219	
135	0.674	4.153	1.302	-0.569	

Tabella 1: Parametri ausiliari $\chi_1~e~\chi_2$ dipendenti dall'angolo di apertura $2\alpha.$

Lungo la linea di bisettrice dell'intaglio (θ =0) l'insieme di equazioni che definiscono la distribuzione delle tensioni in un intorno dell'apice dell'intaglio viene così semplificato:

$$\begin{cases} \sigma_{\theta} \\ \sigma_{r} \\ \tau_{r\theta} \end{cases}_{\rho=0} = \frac{1}{\sqrt{2\pi}} \frac{r^{\lambda_{1}-1} K_{1}}{(1+\lambda_{1})+\chi_{1}(1-\lambda_{1})} \begin{bmatrix} \left(1+\lambda_{1}\right) \\ \left(3-\lambda_{1}\right) \\ 0 \end{bmatrix} + \chi_{1} \left(1-\lambda_{1}\right) \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \tag{4}$$

Considerando ora la $\sigma_{\theta\theta}$ lungo la bisettrice otteniamo la seguente espressione semplificata:

$$\sigma_{\theta} = \frac{K_1}{\sqrt{2\pi}} r^{\lambda_1 - 1} \tag{5}$$

Riferendoci all'intaglio mostrato in figura 3a, la distribuzione delle tensioni dovute ad un condizione di carico di modo III in prossimità dell'apice dell'intaglio può essere espressa come segue:

$$\begin{split} \tau_{zr} &= \frac{K_3}{\sqrt{2\pi}} \ r^{\lambda_3 - 1} \sin(\lambda_3 \theta) \\ \tau_{z\theta} &= \frac{K_3}{\sqrt{2\pi}} \ r^{\lambda_3 - 1} \cos(\lambda_3 \theta) \end{split} \tag{6}$$

Considerando ora la tensione $\tau_{z\theta}$ lungo la bisettrice dell'angolo di apertura dell'intaglio otteniamo:

$$\tau_{z\theta} = \frac{K_3}{\sqrt{2\pi}} r^{\lambda_3 - 1} \tag{7}$$

Quindi per la condizione di carico di modo III, il fattore di intensificazione delle tensioni lineare elastico è definito come:

$$K_3 = \sqrt{2\pi} \lim_{r \to 0} r^{1-\lambda_3} \tau_{zv} (r, \varphi = 0)$$
 (8)

cioè, come una estensione naturale del fattore di intensificazione di Gross e Mendelson definito per il modo I e Modo II.

3.2.2. DISTRIBUZIONE DELLE TENSIONI IN PROSSIMITÀ DELL'APICE DELL'INTAGLIO A V CON FORO ALLA RADICE SOGGETTO A CARICO COMBINATO DI MODO I+III:

Viene ora considerato un intaglio a V con foro alla radice soggetto a carico di modo I. Considerando le relative condizioni al contorno, le componenti di tensione sono ottenute in modo simmetrico da Rif. [21]:

$$\sigma_{\theta\theta} = \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_1 - 1}}{(1 + \lambda_1) + \phi_1(\gamma)} \left\{ \cos(1 - \lambda_1)\theta \left[(1 + \lambda_1) + \widetilde{\psi}_{11}(\theta) \left(\frac{\rho}{r}\right)^{2\lambda_1} + \widetilde{\psi}_{12}(\theta) \widetilde{\chi}_{11}(\theta) \left(\frac{\rho}{r}\right)^{2\lambda_1 + 1} \right] + \phi_1(\gamma) \cos(1 + \lambda_1)\theta \left[1 + (1 - \lambda_1) \left(\frac{\rho}{r}\right)^{2\lambda_1} + \left(2 + \lambda_1\right) \left(\frac{\rho}{r}\right)^{2(\lambda_1 + 1)} \right] \right\}$$

$$(9)$$

I termini ausiliari nell'equazione (9) hanno la seguente forma:

$$\widetilde{\psi}_{11}(\theta) = \left[2\sin\lambda_1\theta\cos(\lambda_1 - 1)\theta + (1 - \lambda_1)\sin(2\lambda_1 - 1)\theta\right]/\sin\theta \tag{9.1}$$

$$\widetilde{\psi}_{12}(\theta) \times \widetilde{\chi}_{11}(\theta) = 2(2 - \lambda_1) / \left[1 + \frac{\tan \lambda_1 \theta}{\tan(1 - \lambda_1) \theta} \right]$$
(9.2)

$$\widetilde{\psi}_{12}(\theta) \times \widetilde{\chi}_{12}(\theta) = 2(2 - \lambda_1) / \left[\frac{\tan(\lambda_1 - 1)\theta}{\tan(\lambda_1 \theta)} - 1 \right]$$
(9.3)

mentre il parametro λ_1 è l'autovalore di Williams relativo al modo I, che dipende dall'angolo di apertura dell'intaglio 2α , ed il generico fattore di intensificazione delle tensioni dovute all'intaglio $K_{1\rho}$ può essere espresso nel seguente modo:

$$K_{1\rho} = \frac{\sqrt{2\pi}r^{1-\lambda_1}\sigma_{\theta\theta}(r,0)\left[(1+\lambda_1) + \phi_1(\gamma)\right]}{\left\{g_1 + g_2\left(\frac{\rho}{r}\right)^{2\lambda_1} + g_3\left(\frac{\rho}{r}\right)^{2\lambda_1+1} + g_4\left(\frac{\rho}{r}\right)^{2\lambda_1+2}\right\}}$$
(10)

I parametri ausiliari contenuti nelle equazioni (9), (9.1-9.3) e (10) sono riportati nella tabella 2 come funzione dell'angolo di apertura 2α o del suo sostituto 2γ , mentre i parametri $\tilde{\chi}_{11}$ e $\tilde{\chi}_{12}$ si trovano in Rif. [21]

2α (°)	0	30	45	60	90	120	135
γ (rad)	3.1416	2.8798	2.7489	2.6180	2.3562	2.0944	1.9635
λ_1	0.5000	0.5015	0.5050	0.5122	0.5445	0.6157	0.6736
ϕ_1	0.5000	0.5338	0.5770	0.6401	0.8388	1.1538	1.3556
g_1	2.0000	2.0352	2.0820	2.1523	2.3833	2.7696	3.0292
g_2	1.2500	1.2705	1.3006	1.3486	1.5116	1.7638	1.9030
g_3	1.5000	1.4942	1.4800	1.4514	1.3260	1.0639	0.8659
g ₄	1.2500	1.3352	1.4453	1.6081	2.1342	3.0181	3.6243
λ_2	0.5000	0.5982	0.6597	0.7309	0.9085	1.1489	1.3021
ϕ_2	1.5000	1.4723	1.3510	1.1396	0.4178	-0.6744	-1.3110
h_1	1.6250	1.6422	1.6639	1.6941	1.7782	1.8873	1.9451
h_2	-0.7500	-0.6011	-0.5393	-0.4849	-0.3921	-0.3079	-0.2614
h ₃	-1.8750	-2.0411	-2.1246	-2.2092	-2.3861	-2.5794	-2.6837

Tabella 2: Parametri ausiliari che descrivono le componenti di tensione lungo la bisettrice dell'angolo di apertura dell'intaglio a V con foro alla radice soggetto a carico di modo I e II.

La componente di tensione σ_{θ} lungo la bisettrice dell'angolo di apertura dell'intaglio a V con foro alla radice soggetto a carico di tensione è:

$$\begin{split} \sigma_{\theta} &= \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_{1}-1}}{(1+\lambda_{1}) + \chi_{1}(1-\lambda_{1})} \left\{ \left[(1+\lambda_{1}) + (5\lambda_{1} - 2\lambda_{1}^{2} - 1) \left(\frac{\rho}{r}\right)^{2\lambda_{1}} + 2(1-\lambda_{1})(2-\lambda_{1}) \left(\frac{\rho}{r}\right)^{2\lambda_{1}+1} \right] + \\ &+ \chi_{1}(1-\lambda_{1}) \left[1 + \left(1-\lambda_{1}\right) \left(\frac{\rho}{r}\right)^{2\lambda_{1}} + \left(2+\lambda_{1}\right) \left(\frac{\rho}{r}\right)^{2(\lambda_{1}+1)} \right] \right\} \end{split} \tag{11}$$

La massima tensione sul bordo dell'intaglio può essere espressa nella seguente forma [24]:

$$\sigma_{\text{max}}(\rho_f) = 4 \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{\rho_f^{\lambda_1 - 1} [1 - \chi_1(\lambda_1 - 1)]}{(1 + \lambda_1) + \chi_1(1 - \lambda_1)}$$
(12)

Quando il raggio d'intaglio ρ tende a zero, $K_{1\rho}$ tende alla modalità I ed il fattore di intensificazione dovuto all'intaglio tende a K_1 .

Considerando l'intaglio a V con foro alla radice sottoposto a carico di modo III, le componenti di tensione all'esterno della modalità piana sono prese dal Rif. [21]:

Introduzione

$$\tau_{zr} = \frac{\tau_{max}}{2} \left(\frac{r}{\rho}\right)^{\lambda_3 - 1} \sin(\lambda_3 \theta) \left[1 - \left(\frac{\rho}{r}\right)^{2\lambda_3}\right]$$

$$\tau_{z\theta} = \frac{\tau_{max}}{2} \left(\frac{r}{\rho}\right)^{\lambda_3 - 1} \cos(\lambda_3 \theta) \left[1 + \left(\frac{\rho}{r}\right)^{2\lambda_3}\right]$$
(13)

o, in alternativa, nella forma:

$$\tau_{zr} = \frac{K_{3\rho}}{\sqrt{2\pi}} r^{\lambda_3 - 1} \sin(\lambda_3 \theta) \left[1 - \left(\frac{\rho}{r} \right)^{2\lambda_3} \right]$$

$$\tau_{z\theta} = \frac{K_{3\rho}}{\sqrt{2\pi}} r^{\lambda_3 - 1} \cos(\lambda_3 \theta) \left[1 + \left(\frac{\rho}{r} \right)^{2\lambda_3} \right]$$
(14)

Il generico fattore di intensificazione delle tensioni dovute all'intaglio $K_{3\rho}$ può essere espresso nel seguente modo:

$$K_{3\rho} = \frac{\sqrt{2\pi}\tau_{\text{max}}}{2}\rho^{1-\lambda_3} \tag{15}$$

La massima sollecitazione di taglio, che è anche uguale alla massima tensione principale all'apice dell'intaglio, è la seguente:

$$\tau_{\text{max}} = \frac{2K_{3p}}{\sqrt{2\pi}} \rho^{\lambda_3 - 1} \tag{16}$$

Quando $2\alpha=0$ e $\rho\rightarrow0$, otteniamo:

$$\tau_{zr} = \frac{K_{III}}{\sqrt{2\pi r}} \sin\left[\frac{\theta}{2}\right]$$

$$\tau_{z\phi} = \frac{K_{III}}{\sqrt{2\pi r}} \cos\left[\frac{\theta}{2}\right]$$
(17)

Quando il raggio d'intaglio ρ tende a zero, $K_{3\rho}$ tende alla modalità III ed il fattore di intensificazione dovuto all'intaglio tende a K_3 .

3.2.3. CRITERIO DELLA TENSIONE NORMALE PER L'APPLICAZIONE DELL'APPROCCIO DEL RAGGIO FITTIZIO:

3.2.3.1. TENSIONE MEDIATA:

Considerando la σ_{θ} lungo la linea di bisettrice dell'angolo di apertura dell'intaglio posso ottenere la seguente espressione:

$$\sigma_{\theta} = \frac{K_1}{\sqrt{2\pi}} r^{\lambda_1 - 1} \tag{18}$$

Considerando la $\tau_{z\theta}$ lungo la linea di bisettrice dell'angolo di apertura dell'intaglio posso ottenere la seguente espressione:

$$\tau_{z\theta} = \frac{K_3}{\sqrt{2\pi}} r^{\lambda_3 - 1} \tag{19}$$

Nella condizione di carico di modo I considerando $\sigma_{th} = \sigma_{\theta}$ lungo la direzione di più probabile propagazione della cricca secondo il criterio della massima tensione tangenziale (MTS) ed integrando σ_{th} da 0 a ρ_1^* l'espressione della tensione media è:

$$\overline{\sigma} = \frac{1}{\rho_1^*} \int_0^* \sigma_{th} \, dx = K_1 \frac{(\rho_1^*)^{\lambda_1 - 1}}{\lambda_1 \sqrt{2\pi}}$$
 (20)

Nella condizione di carico di modo III considerando $\sigma_{th} = \tau_{z\theta}$ lungo la direzione di più probabile propagazione della cricca secondo il criterio della massima tensione tangenziale ed integrando σ_{th} da 0 a ρ_3^* l'espressione della tensione media è:

$$\overline{\sigma} = \frac{1}{\rho_3^*} \int_0^{\rho_3^*} \sigma_{th} \, dx = K_3 \frac{(\rho_3^*)^{\lambda_3 - 1}}{\lambda_3 \sqrt{2\pi}}$$
 (21)

ove ρ_1^* è la lunghezza microstrutturale di supporto sotto la condizione di carico di modo I che può essere in linea di principio differente da ρ_3^* , che è la lunghezza microstruttrale di supporto sotto una condizione

di carico di torsione (modo III). Per un materiale fragile come spiegato [46] è possibile considerare $\rho_1^* = \rho_3^* = \rho^*$, quindi in condizioni di carico misto (I+III) utilizzando il principio di sovrapposizione degli effetti valido in ipotesi di condizioni lineari elastiche è possibile scrivere:

$$\overline{\sigma} = K_1 \frac{\left(\rho^*\right)^{\lambda_1 - 1}}{\lambda_1 \sqrt{2\pi}} + K_3 \frac{\left(\rho^*\right)^{\lambda_3 - 1}}{\lambda_3 \sqrt{2\pi}} \tag{22}$$

3.2.3.2. Determinazione della Massima Tensione principale sull'intaglio con Raggio Fittizio ρ_f :

Consideriamo ora il caso di allargare il raggio d'intaglio a ρ_f , utilizzando ancora una volta il principio di sovrapposizione degli effetti la massima tensione principale all'apice dell'intaglio può essere ottenuta dalle equazioni (12) e (16), quindi avrò:

$$\sigma_{1,\max}(\rho_f) = 4 \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{\rho_f^{\lambda_1 - 1} [1 - \chi_1(\lambda_1 - 1)]}{(1 + \lambda_1) + \chi_1(1 - \lambda_1)} + \frac{2K_{3\rho}\rho_f^{\lambda_3 - 1}}{\sqrt{2\pi}}$$
(23)

3.2.3.3. Determinazione del Raggio Fittizio d'Intaglio ρ_f e del Fattore di Supporto s:

 $L'equazione \quad \overline{\sigma}(\rho,\rho^*) = \sigma_{l,max}\!\!\left(\!\rho_f\right) \quad risulta \quad dalla \quad seguente$ equazione:

$$K_{1} \frac{\left(\rho^{*}\right)^{\lambda_{1}-1}}{\lambda_{1} \sqrt{2\pi}} + K_{3} \frac{\left(\rho^{*}\right)^{\lambda_{3}-1}}{\lambda_{3} \sqrt{2\pi}} = 4 \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{\rho_{f}^{\lambda_{1}-1} \left[1 - \chi_{1}(\lambda_{1}-1)\right]}{(1+\lambda_{1}) + \chi_{1}(1-\lambda_{1})} + \frac{2K_{3\rho}\rho_{f}^{\lambda_{3}-1}}{\sqrt{2\pi}}$$
(24)

Risolvendo l'equazione (24) è possibile, con $K_{1\rho} = K_1$ e $K_{3\rho} = K_3$, determinare il raggio fittizio ρ_f e successivamente il fattore di supporto s, utilizzando la seguente espressione ottenuta dall'eq. (1):

$$s = \frac{\rho_f - \rho}{\rho^*} \tag{25}$$

L'assumere $K_{1\rho}=K_1$ e $K_{3\rho}=K_3$ permette di considerare i casi di intagli a spigolo vivo nelle condizioni peggiori per le valutazioni di resistenza. Il fattore di supporto s nelle condizioni di modo misto di carico, risulta essere una funzione del fattore di intensificazione di modo I e modo III. L'equazione (25) può essere risolta in generale per ogni rapporto K_3/K_1 dei fattori di intensificazione delle tensioni dovuti all'intaglio. Il rapporto di modo M è basato sul rapporto χ dei fattori di intensificazione delle tensioni χ e χ

$$\mathbf{M} = \frac{2}{\pi} \arctan \chi \tag{26}$$

$$\chi = \frac{K_3}{K_1} \ell_f^{\lambda_3 - \lambda_1} \tag{27}$$

Per una condizione di carico di puro modo I risulta che M=0 e per una condizione di carico di puro modo III risulta che M=1. Le dimensioni dei fattori di intensificazione delle tensioni dovute all'intaglio dipendono dai relativi autovalori λ_1 o λ_3 , che in generale non sono identici, nell'eq. (27) è stato introdotto un parametro di lunghezza ℓ_f con la condizione che ℓ_f =1 in accordo con [31]. L'ipotesi semplificativa, $K_{1\rho} = K_1$ e $K_{3\rho} = K_3$, assunta per i calcoli analitici, permette di evitare una proceduta iterativa per la determinazione del fattore microstrutturale di supporto s e del raggio fittizio ρ_f . Questa è l'ipotesi implicita utilizzata da Neuber senza introdurre esplicitamente tensioni intensificazione delle fattore di [1],approssimativamente vera solo quando il raggio fittizio alla base della radice dell'intaglio è sufficientemente piccolo. Dalla definizione data al parametro di lunghezza ℓ_f è possibile esprimere l'equazione (24) in una forma generica ed elegante che permette di osservare in modo più chiaro i parametri coinvolti:

$$\left(\frac{\rho^*}{\ell_f}\right)^{\lambda_1 - 1} \overline{k}_1 + \chi \overline{k}_3 \left(\frac{\rho^*}{\ell_f}\right)^{\lambda_3 - 1} = \left(\frac{\rho_f}{\ell_f}\right)^{\lambda_1 - 1} \widetilde{k}_1 + \chi \left(\frac{\rho_f}{\ell_f}\right)^{\lambda_3 - 1} \widetilde{k}_3 \tag{28}$$

Dove la dipendenza dell'angolo di apertura dell'intaglio 2α viene omessa e le costanti $\overline{K}_1(\cdot)$, $\overline{K}_3(\cdot)$, $\widetilde{K}_1(\cdot)$, $\widetilde{K}_3(\cdot)$ sono combinazioni adimensionali di quelle contenute nell'eq. (24)

Le costanti sono le seguenti:

$$\overline{k}_1 = \frac{1}{\lambda_1} \qquad \overline{k}_3 = \frac{1}{\lambda_3} \tag{29a}$$

$$\tilde{k}_1 = 4 \frac{\left[1 - \chi_1(\lambda_1 - 1)\right]}{(1 + \lambda_1) + \chi_1(1 - \lambda_1)} \qquad \tilde{k}_3 = 2$$
(29b)

Osservando l'equazione (24) si comprende immediatamente che la determinazione del raggio fittizio ρ_f è ottenuta dai valori di 2α , ρ^*e χ , l'equazione (28) può essere ulteriormente semplificata utilizzando come assunzione il seguente valore $\ell_f = 1$, ottenendo:

$$(\rho *)^{\lambda_1 - 1} \overline{k}_1 + \chi \overline{k}_3 (\rho *)^{\lambda_3 - 1} = (\rho_f)^{\lambda_1 - 1} \widetilde{k}_1 + \chi (\rho_f)^{\lambda_3 - 1} \widetilde{k}_3$$
(30)

3.2.4. DISTRIBUZIONE DELLE TENSIONI DI FRONTE ALL'INTAGLIO A V CON FORO ALLA RADICE:

Viene ora studiato un intaglio a V con foro alla radice soggetto a carico di modo I, considerando le relative condizioni al contorno, le componenti di tensione sono ottenute in modo simmetrico da Ref. [24]:

$$\sigma_{\theta\theta} = \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_{1}-1}}{(1+\lambda_{1}) + \phi_{1}(\gamma)} \left\{ \cos(1-\lambda_{1})\theta \left[(1+\lambda_{1}) + \widetilde{\psi}_{11}(\theta) \left(\frac{\rho}{r} \right)^{2\lambda_{1}} + \widetilde{\psi}_{12}(\theta) \widetilde{\chi}_{11}(\theta) \left(\frac{\rho}{r} \right)^{2\lambda_{1}+1} \right] + (31.1) + \phi_{1}(\gamma)\cos(1+\lambda_{1})\theta \left[1 + (1-\lambda_{1}) \left(\frac{\rho}{r} \right)^{2\lambda_{1}} + \left(2 + \lambda_{1} \right) \left(\frac{\rho}{r} \right)^{2(\lambda_{1}+1)} \right] \right\}$$

$$\begin{split} \sigma_{rr} &= \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_1 - l}}{(1 + \lambda_1) + \phi_1(\gamma)} \Biggl\{ \cos(l - \lambda_1) \theta \Biggl[(3 - \lambda_1) - \widetilde{\psi}_{11}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_1} - \widetilde{\psi}_{12}(\theta) \widetilde{\chi}_{11}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_1 + l} \Biggr] + \\ &+ \phi_1(\gamma) \cos(l + \lambda_1) \theta \Biggl[(3 + \lambda_1) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_1} - l - \Bigl(2 + \lambda_1 \Bigr) \Biggl(\frac{\rho}{r} \Biggr)^{2(\lambda_1 + l)} \Biggr] \Biggr\} \end{split}$$

$$\begin{split} \tau_{r\theta} &= \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_1 - 1}}{(1 + \lambda_1) + \phi_1(\gamma)} \Biggl\{ sin(1 - \lambda_1) \theta \Biggl[(1 - \lambda_1) + \widetilde{\psi}_{11}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_1} + \widetilde{\psi}_{12}(\theta) \widetilde{\chi}_{12}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_1 + 1} \Biggr] + \\ &+ \phi_1(\gamma) sin(1 + \lambda_1) \theta \Biggl[(1 + \lambda_1) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_1} + 1 - \Bigl(2 + \lambda_1 \Biggl) \Biggl(\frac{\rho}{r} \Biggr)^{2(\lambda_1 + 1)} \Biggr] \Biggr\} \end{split}$$

I termini ausiliari nelle equazioni (31.1-31.3) hanno la seguente forma:

$$\widetilde{\psi}_{11}(\theta) = \left[2\sin\lambda_1\theta\cos(\lambda_1 - 1)\theta + (1 - \lambda_1)\sin(2\lambda_1 - 1)\theta\right]/\sin\theta \tag{32.1}$$

$$\widetilde{\psi}_{12}(\theta) \times \widetilde{\chi}_{11}(\theta) = 2(2 - \lambda_1) / \left[1 + \frac{\tan \lambda_1 \theta}{\tan(1 - \lambda_1) \theta} \right]$$
(32.2)

$$\widetilde{\psi}_{12}(\theta) \times \widetilde{\chi}_{12}(\theta) = 2(2 - \lambda_1) / \left[\frac{\tan(\lambda_1 - 1)\theta}{\tan \lambda_1 \theta} - 1 \right]$$
(32.3)

I parametro λ_1 è l'autovalore di modo I di Williams, che dipende dall'angolo di apertura dell'intaglio 2α . Il generico fattore di intensificazione delle tensioni dovuto all'intaglio $K_{1\rho}$ può essere espresso nel seguente modo:

$$K_{1\rho} = \frac{\sqrt{2\pi}r^{1-\lambda_{1}}\sigma_{\theta\theta}(r,0)\left[(1+\lambda_{1})+\phi_{1}(\gamma)\right]}{\left\{g_{1}+g_{2}\left(\frac{\rho}{r}\right)^{2\lambda_{1}}+g_{3}\left(\frac{\rho}{r}\right)^{2\lambda_{1}+1}+g_{4}\left(\frac{\rho}{r}\right)^{2\lambda_{1}+2}\right\}}$$
(33)

I parametri ausiliari contenuti nelle equazioni (31.1-31.3), (32.1-32.3) e (33) sono presi dalla Tabella 2 come funzione dell'angolo di apertura dell'intaglio 2α o il suo sostituto 2γ , mentre i parametri $\tilde{\chi}_{11}$ e $\tilde{\chi}_{12}$ sono ricavati dal lavoro in Rif. [24].

Quando il raggio d'intaglio ρ tende a zero, $K_{1\rho}$ tende al fattore di intensificazione delle tensioni dovuto all'intaglio di modo I, K_1 , come definito da Gross e Mendelson [35].

$$K_1 = \sqrt{2\pi} \lim_{r \to 0} \sigma_{\theta} r^{1-\lambda_1} \tag{34}$$

Viene ora studiato un intaglio a V con foro alla radice soggetto a carico di modo II, le componenti di tensione per l'antimetrico modo di carico sono prese da Ref. [24]:

$$\begin{split} \sigma_{\theta\theta} = & -\frac{K_{2\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_2-l}}{(1-\lambda_2) + \varphi_2(\gamma)} \Biggl\{ \sin(l-\lambda_2) \theta \Biggl[(\lambda_2+l) - \widetilde{\psi}_{2l}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2} - \widetilde{\psi}_{22}(\theta) \widetilde{\chi}_{22}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2+l} \Biggr] + \\ & + \varphi_2(\gamma) \sin(l+\lambda_2) \theta \Biggl[1 + (l-\lambda_2) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2} + \Bigl(2 + \lambda_2 \Biggl(\frac{\rho}{r} \Biggr)^{2(\lambda_2+l)} \Biggr] \Biggr\} \end{split} \tag{35.1}$$

$$\begin{split} \sigma_{\pi} &= -\frac{K_{2\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_2 - 1}}{(1 - \lambda_2) + \varphi_2(\gamma)} \Biggl\{ sin(1 - \lambda_2) \theta \Biggl[(3 - \lambda_2) + \widetilde{\psi}_{21}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2} + \widetilde{\psi}_{22}(\theta) \widetilde{\chi}_{22}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2 + 1} \Biggr] + \\ &- \varphi_2(\gamma) sin(1 + \lambda_2) \theta \Biggl[1 - (3 + \lambda_2) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2} + \Bigl(2 + \lambda_2 \Biggl(\frac{\rho}{r} \Biggr)^{2(\lambda_2 + 1)} \Biggr] \Biggr\} \end{split}$$

$$\begin{split} \tau_{r\theta} &= -\frac{K_{2\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_2 - 1}}{(1 - \lambda_2) + \varphi_2(\gamma)} \Biggl\{ \cos(1 - \lambda_2) \theta \Biggl[(1 - \lambda_2) - \widetilde{\psi}_{21}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2} - \widetilde{\psi}_{22}(\theta) \widetilde{\chi}_{21}(\theta) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2 + 1} \Biggr] + \\ &+ \varphi_2(\gamma) \cos(1 + \lambda_2) \theta \Biggl[1 + (1 + \lambda_2) \Biggl(\frac{\rho}{r} \Biggr)^{2\lambda_2} - \left(2 + \lambda_2 \Biggl(\frac{\rho}{r} \Biggr)^{2(\lambda_2 + 1)} \Biggr] \Biggr\} \end{split}$$

I termini ausiliari nelle equazioni (35.1-35.3) hanno la seguente forma:

$$\widetilde{\psi}_{21}(\theta) = \left[(1 - \lambda_2) \sin(2\lambda_2 - 1)\theta - 2\cos\lambda_2 \theta \sin(1 - \lambda_2)\theta \right] / \sin\theta \tag{36.1}$$

$$\widetilde{\psi}_{22}(\theta) \times \widetilde{\chi}_{21}(\theta) = 2(2 - \lambda_2) / \left[1 + \frac{\tan \lambda_2 \theta}{\tan(1 - \lambda_2)\theta} \right]$$
(36.2)

$$\widetilde{\psi}_{22}(\theta) \times \widetilde{\chi}_{22}(\theta) = 2(2 - \lambda_2) / \left[\frac{\tan(\lambda_2 - 1)\theta}{\tan\lambda_2 \theta} - 1 \right]$$
(36.3)

Dove il parametro λ_2 è l'autovalore di Williams, che è dipendente dall'angolo 2α di apertura dell'intaglio. Il generico fattore di intensificazione delle tensioni dovuto all'intaglio $K_{2\rho}$ può essere espresso nel seguente modo:

$$K_{2\rho} = \frac{\sqrt{2\pi}r^{1-\lambda_2}\tau_{r\theta}(r,0)}{\left[1 + h_1\left(\frac{\rho}{r}\right)^{2\lambda_2} + h_2\left(\frac{\rho}{r}\right)^{2\lambda_2+1} + h_3\left(\frac{\rho}{r}\right)^{2\lambda_2+2}\right]}$$
(37)

I parametri ausiliari contenuti nelle equazioni (35.1-35.3), (36.1-36.3) e (37) sono presi dalla Tabella 2 come una funzione dell'angolo 2α di apertura del'intaglio o del suo sostituto 2γ , mentre i parametri $\tilde{\chi}_{21}$ e $\tilde{\chi}_{22}$ sono reperiti dal lavoro in Rif. [24].

Quando il raggio d'intaglio ρ tende a zero, $K_{2\rho}$ tende al fattore di intensificazione delle tensioni dovuto all'intaglio di modo II, K_2 , definito secondo la seguente espressione:

$$K_2 = \sqrt{2\pi} \lim_{r \to 0} \tau_{r\theta} r^{1-\lambda_2}$$
 (38)

E' importante sottolineare che la proprietà di $K_{2\rho}$ di convergere al fattore di intensificazione delle tensioni per gli intagli a spigolo vivo, K_2 , quando il raggio dell'intaglio tende a zero, è una caratteristica dell'insieme delle equazioni per intagli a V con foro alla radice utilizzate in Rif. [24], altri insiemi di equazioni [38, 39] utilizzati nell'intaglio a V raccordato con differenti forme non hanno questa proprietà come studiato in Rif. [40]. Occorre, inoltre, puntualizzare che l'andamento oscillante dei fattori generalizzati di intensificazione delle tensioni dovuto all'intaglio, $K_{1\rho}$ e $K_{2\rho}$, descritto in [39] viene superato utilizzando le equazioni riportate in Rif. [24] ottenendo un andamento costante dei fattori generalizzati ricavati dalle espressioni (33) e (37) come funzione della distanza r.

3.2.5. INTAGLIO A V CON FORO ALLA RADICE DI RAGGIO FITTIZIO SOGGETTO A MODO MISTO DI CARICO I+II:

Viene ora considerato un intaglio a V con foro alla radice di raggio fittizio ρ_f soggetto a modo di carico I e II. Utilizzando le equazioni (31.1) e (35.1) la tensione tangenziale $\sigma_{\theta\theta}$ può essere scritta come segue:

$$\begin{split} \sigma_{\theta\theta} &= \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_1 - 1}}{(1 + \lambda_1) + \phi_1(\gamma)} \Biggl\{ \cos(1 - \lambda_1) \theta \Biggl[(1 + \lambda_1) + \widetilde{\psi}_{11}(\theta) \biggl(\frac{\rho}{r} \biggr)^{2\lambda_1} + \widetilde{\psi}_{12}(\theta) \widetilde{\chi}_{11}(\theta) \biggl(\frac{\rho}{r} \biggr)^{2\lambda_1 + 1} \Biggr] + \\ &+ \phi_1(\gamma) \cos(1 + \lambda_1) \theta \Biggl[1 + (1 - \lambda_1) \biggl(\frac{\rho}{r} \biggr)^{2\lambda_1} + \bigl(2 + \lambda_1 \biggl(\frac{\rho}{r} \biggr)^{2(\lambda_1 + 1)} \Biggr] \Biggr\} + \\ &- \frac{K_{2\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_2 - 1}}{(1 - \lambda_2) + \phi_2(\gamma)} \Biggl\{ \sin(1 - \lambda_2) \theta \Biggl[(\lambda_2 + 1) - \widetilde{\psi}_{21}(\theta) \biggl(\frac{\rho}{r} \biggr)^{2\lambda_2} - \widetilde{\psi}_{22}(\theta) \widetilde{\chi}_{22}(\theta) \biggl(\frac{\rho}{r} \biggr)^{2\lambda_2 + 1} \Biggr] + \\ &+ \phi_2(\gamma) \sin(1 + \lambda_2) \theta \Biggl[1 + (1 - \lambda_2) \biggl(\frac{\rho}{r} \biggr)^{2\lambda_2} + \bigl(2 + \lambda_2 \biggr) \biggl(\frac{\rho}{r} \biggr)^{2(\lambda_2 + 1)} \Biggr] \Biggr\} \end{split}$$

Utilizzando il criterio della Massima Tensione Tangenziale (MTS), l'angolo di propagazione della cricca θ_0 è ottenuto dalla seguente condizione:

$$d\sigma_{\theta}/d\theta = 0 \tag{40}$$

Il campo di tensioni tangenziale $\sigma_{\theta\theta}$ ottenuto dall'espressione (39) dipende dalla posizione variabile di r e θ , in modo tale che la condizione $d\sigma_{\theta}/d\theta^{\circ} = {}^{\circ}0$ determini senza ambiguità l'angolo di propagazione della cricca a meno di una ben specificato valore di r. L'angolo di propagazione della cricca θ_0 aumenta all'aumentare della distanza r, poiché al crescere della distanza dall'apice dell'intaglio risulta maggiore il contributo del modo II rispetto a quello di modo I.

In questo lavoro, come in [31], per valutare l'angolo di propagazione della cricca sono stati impostasti i valori ρ =0 (configurazione peggiore) e r=0.005 mm. Sostituendo i valori impostati è possibile ottenere:

$$d\sigma_{\theta}(\rho = 0, r = 0.005)/d\theta = 0$$
 (41)

Verrà mostrato che lo specifico valore di r permetterà di abbinare i valori di *s* ottenuti per la pura modalità di carico I [23] e quelli della modalità

di carico II [30]. Utilizziamo ora il criterio della massima tensione per determinare la tensione media $\overline{\sigma}$ e quello della massima tensione tangenziale per determinare l'angolo θ_0 di propagazione della cricca. Utilizzando l'equazione (39) otteniamo la massima tensione teorica dovuta all'intaglio $\sigma_{th}(r,\theta_0)$ ed è determinata la tensione media $\overline{\sigma}$ lungo la direzione di propagazione della cricca θ_0 :

$$\overline{\sigma} = \frac{1}{\rho^*} \int_{\rho}^{\rho + \rho^*} \sigma_{th}(r, \theta_0) dr \tag{42}$$

L'integrale definito indicato in equazione (42) è stato prima risolto in forma indefinita separandolo nelle due componenti, quella di modo I e quella di modo II (*ii1 e ii2*), e solo allora è stato risolto in forma definita (*di1 e di2*).

Gli integrali indefiniti riferiti rispettivamente al modo I ed al modo II, sono scritti come segue:

$$\begin{split} &iil(r,\theta_0) = \frac{1}{\rho^*} \int \sigma_{\theta\theta} dr = \frac{K_{1\rho} r^{\lambda_1-2}}{\sqrt{2\pi} \rho^* \lambda_1 (1+\lambda_1+\phi_1)} \times \left\{ \phi_1 \cos \left((\lambda_1+1)\theta_0 \right) \left(r^2 + \left(\frac{\rho}{r} \right)^{2\lambda_1} \left(r^2 (\lambda_1-1) - \lambda_1 \rho^2 \right) \right) + \right. \\ &\left. + \frac{r \cos \left[(1-\lambda_1)\theta_0 \right]}{\lambda_1+1} \left[r (1+\lambda_1)^2 - \left(\frac{\rho}{r} \right)^{2\lambda_1} (\lambda_1 \rho \widetilde{\psi}_{12}(\theta_0) \widetilde{\chi}_{11}(\theta_0) + r (1+\lambda_1) \widetilde{\psi}_{11}(\theta_0)) \right] \right\} \end{split}$$

$$\begin{split} ii2(r,\theta_0) &= \frac{1}{\rho^*} \int \sigma_{\theta\theta} dr = -\frac{K_{2\rho} r^{\lambda_2-2}}{\sqrt{2\pi} \rho^* \lambda_2 (1-\lambda_2+\varphi_2)} \times \left\{ \varphi_2 \sin \left((\lambda_2+1)\theta_0 \right) \left(r^2 + \left(\frac{\rho}{r} \right)^{2\lambda_2} \left(r^2 (\lambda_2-1) - \lambda_2 \rho^2 \right) \right) + \right. \\ &\left. + \frac{r \sin \left[(1-\lambda_2)\theta_0 \right]}{\lambda_2+1} \left[r (1+\lambda_2)^2 + \left(\frac{\rho}{r} \right)^{2\lambda_2} (\lambda_2 \rho \widetilde{\psi}_{22}(\theta_0) \widetilde{\chi}_{22}(\theta_0) + r (1+\lambda_2) \widetilde{\psi}_{21}(\theta_0)) \right] \right\} \end{split}$$

Gli integrali definiti riferiti rispettivamente al modo I ed al modo II, risultano come segue:

$$\operatorname{dil}(\rho, \rho^*, \theta_0) = \operatorname{iil}(\rho + \rho^*, \theta_0) - \operatorname{iil}(\rho, \theta_0) \tag{45}$$

$$di2(\rho, \rho^*, \theta_0) = ii2(\rho + \rho^*, \theta_0) - ii2(\rho, \theta_0)$$
(46)

A causa della lunghezza della espressione finale le forme esplicite degli integrali definiti di1 e di2 vengono omesse.

Il limite del valore della tensione media $\overline{\sigma}$ per $\rho^* \to 0$ (e $\rho = \rho_f$) è:

$$\lim_{\substack{\rho^* \to 0 \\ \rho = \rho_f}} dil(\rho, \rho^*, \theta_0) = \frac{\rho_f^{\lambda_1 - 1} K_{1\rho} \left\{ 4 \cos \left[\left(1 + \lambda_1 \right) \theta_0 \right] \phi_1 + \cos \left[\left(1 - \lambda_1 \right) \theta_0 \right] \left(1 + \lambda_1 + \widetilde{\psi}_{12}(\theta_0) \widetilde{\chi}_{11}(\theta_0) + \widetilde{\psi}_{11}(\theta_0) \right) \right\}}{\sqrt{2\pi} (1 + \lambda_1 + \phi_1)} \tag{47}$$

$$\lim_{\substack{\rho^* \to 0 \\ \rho = \rho_f}} di2(\rho, \rho^*, \theta_0) = \frac{\rho_f^{\; \lambda_2 - 1} K_{2\rho} \left\{ 4 \sin \left[\left(1 + \lambda_2 \right) \theta_0 \right] \phi_2 + \sin \left[\left(1 - \lambda_2 \right) \theta_0 \right] \left(1 + \lambda_2 - \widetilde{\psi}_{22}(\theta_0) \widetilde{\chi}_{22}(\theta_0) - \widetilde{\psi}_{21}(\theta_0) \right) \right\}}{\sqrt{2\pi} (+\lambda_2 - \phi_2 - 1)} \tag{48}$$

E' importante osservare che le equazioni (47) e (48) possono essere ottenute dalla equazione (39) introducendo opportunamente i valori di $r=\rho_{\rm f}$, $\rho=\rho_{\rm f}$ e $\theta=\theta_0$, e può essere affermato analiticamente utilizzando il teorema dell'Hopital. L'equazione $\bar{\sigma}(\rho,\rho^*)=\lim_{\rho^*\to 0}(\bar{\sigma})$, secondo la procedura indicata da Neuber [1,3], risulta come segue con di1 (ρ,ρ^*,θ_0) e di2 (ρ,ρ^*,θ_0) secondo le equazioni (45-46):

$$di1(\rho, \rho^*, \theta_0) - di2(\rho, \rho^*, \theta_0) =$$

$$\frac{\rho_{f}^{\lambda_{1}-1}K_{1\rho}\left\{4\cos\left[\left(1+\lambda_{1}\right)\theta_{0}\right]\phi_{1}+\cos\left[\left(1-\lambda_{1}\right)\theta_{0}\right]\left(1+\lambda_{1}+\widetilde{\psi}_{12}(\theta_{0})\widetilde{\chi}_{11}(\theta_{0})+\widetilde{\psi}_{11}(\theta_{0})\right)\right\}}{\sqrt{2\pi}(1+\lambda_{1}+\phi_{1})}\\ -\frac{\rho_{f}^{\lambda_{2}-1}K_{2\rho}\left\{4\sin\left[\left(1+\lambda_{2}\right)\theta_{0}\right]\phi_{2}+\sin\left[\left(1-\lambda_{2}\right)\theta_{0}\right]\left(1+\lambda_{2}-\widetilde{\psi}_{22}(\theta_{0})\widetilde{\chi}_{22}(\theta_{0})-\widetilde{\psi}_{21}(\theta_{0})\right)\right\}}{\sqrt{2\pi}(+\lambda_{2}-\phi_{2}-1)}$$

$$(49)$$

Risolvendo l'equazione (49), con $K_{1\rho} = K_1$ e $K_{2\rho} = K_2$, è possibile determinare il raggio fittizio ρ_f e con esso, il valore del fattore di supporto s utilizzando l'espressione ottenuta dalla equazione (1):

$$s = \frac{\rho_f - \rho}{\rho^*} \tag{50}$$

Il fattore di supporto s in condizioni di carico di modo misto risulta essere una funzione del fattore di intensificazione delle tensioni di modo I e modo II e dell'angolo di propagazione della cricca θ_0 . L'equazione (49) può essere risolta in generale per qualsiasi rapporto $K_{2\rho}/K_{1\rho}$ dei fattori di intensificazione delle tensioni dovute all'intaglio e l'angolo di propagazione

della cricca θ_0 inizialmente dipende da questo rapporto. Il rapporto di modo M è basato sul rapporto χ dei fattori di intensificazione delle tensioni dovute all'intaglio $K_{2\rho}$ e $K_{1\rho}$:

$$M = \frac{2}{\pi} \arctan \chi \tag{51}$$

$$\chi = \frac{K_{2\rho}}{K_{1\rho}} \ell_f^{\lambda_2 - \lambda_1} \tag{52}$$

Quando mi trovo nelle condizioni di carico di puro modo I il valore del rapporto di modo è M=0 e quando sono nelle condizioni di carico di puro modo II ottengo M=1. La dimensione dei fattori di intensificazione delle tensioni dovute all'intaglio dipende dai relativi autovalori λ_2 o λ_1 , che non sono in generale identiche, nella equazione (52) è introdotta una lunghezza arbitraria ℓ_f con la condizione $\ell_f=1$. Nel caso di intagli a spigolo vivo, $\rho=0$, l'equazione (49) può essere utilizzata sostituendo a $K_{1\rho}=K_1$ e $K_{2\rho}=K_2$, mentre θ_0 rimane l'angolo di propagazione della cricca. Nelle valutazioni di resistenza gli intagli appuntiti sono considerati come le condizioni peggiori. La seguente espressione è valida per χ , aggiornando l'equazione (52):

$$\chi = \frac{K_2}{K_1} \ell_f^{\lambda_2 - \lambda_1} \tag{53}$$

L'ipotesi semplificata, $K_1=K_{1\rho}$ e $K_2=K_{2\rho}$, assunta per i calcoli analitici, permette di evitare una proceduta iterativa per la determinazione del fattore microstrutturale di supporto s e del raggio fittizio ρ_f . Questa è l'ipotesi implicita utilizzata da Neuber [1], ma è approssimativamente vera solo quando il raggio fittizio alla base della radice dell'intaglio è sufficientemente piccolo. Per grandi valori di ρ_f , $K_{1\rho}$ e $K_{2\rho}$ non corrispondono a K_1 e K_2 [23, 40].

Dalla definizione data al parametro di lunghezza ℓ_f è possibile esprimere l'equazione (39) in una forma generica ed elegante che permette di osservare in modo più chiaro i parametri coinvolti:

$$\left(\frac{\rho^*}{\ell_f}\right)^{\lambda_1-1} \left[\overline{k}_1\left(\frac{\rho}{\rho+\rho^*},\theta_0\right) - \overline{k}_1(\mathbf{l},\theta_0)\right] + \chi \left(\frac{\rho^*}{\ell_f}\right)^{\lambda_2-1} \left[\overline{k}_2\left(\frac{\rho}{\rho+\rho^*},\theta_0\right) - \overline{k}_2(\mathbf{l},\theta_0)\right] = \left(\frac{\rho_f}{\ell_f}\right)^{\lambda_1-1} \widetilde{k}_1(\theta_0) + \chi \left(\frac{\rho_f}{\ell_f}\right)^{\lambda_2-1} \widetilde{k}_2(\theta_0)$$
(54)

Dove la dipendenza dell'angolo di apertura dell'intaglio 2α viene omessa e le funzioni $\overline{K}_1(\cdot)$, $\overline{K}_2(\cdot)$, $\widetilde{K}_1(\cdot)$, $\widetilde{K}_2(\cdot)$ sono combinazioni adimensionali di quelle contenute nell'eq. (39). L'equazione (54) così formulata rende immediatamente comprensibile che i parametri incogniti ρ_f e θ_0 sono determinati conoscendo i valori di 2α , ρ , ρ^* e χ . Inoltre, le incognite si riducono al rapporto ρ_f/ρ^* e θ_0 e i valori noti si riducono a 2α , ρ/ρ^* e χ utilizzando come assunzione il valore $\ell_f=1$:

$$\overline{k}_{1}\left(\frac{\rho}{\rho+\rho*},\theta_{0}\right) - \overline{k}_{1}(1,\theta_{0}) + \chi\left[\overline{k}_{2}\left(\frac{\rho}{\rho+\rho*},\theta_{0}\right) - \overline{k}_{2}(1,\theta_{0})\right] = \left(\frac{\rho_{f}}{\rho*}\right)^{\lambda_{1}-1}\widetilde{k}_{1}(\theta_{0}) + \chi\left(\frac{\rho_{f}}{\rho*}\right)^{\lambda_{2}-1}\widetilde{k}_{2}(\theta_{0})$$
(55)

IL METODO DEL RAGGIO FITTIZIO APPLICATO A PROVINI INDEBOLITI DA INTAGLI A V LATERALI E SOGGETTI A SOLLECITAZIONI DI MODO MISTO I + III

1. DESCRIZIONE:

Il presente lavoro estende il concetto del raggio fittizio (FNR) a sollecitazioni di modo misto di carico I+III e fornisce una soluzione al problema come funzione del rapporto M. Il concetto alla base del metodo del raggio fittizio (FNR) prende le sue origini da lavori pionieristici di Neuber [1-3] ed è stato esposto per la prima volta nell'articolo [31] applicato a piastre indebolite da intagli a V centrati e soggetti a modo misto, utilizzando la geometria mostrata nella sottostante figura.

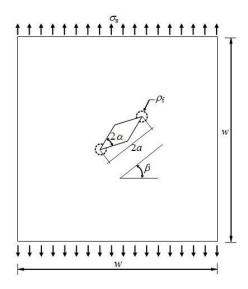
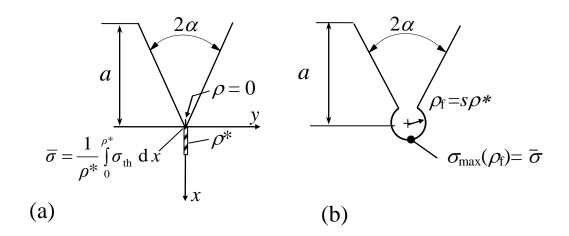


Fig. 7: Geometria della piastra con doppio intaglio a V centrale, dimensioni w = 100 mm e $2a = 10\sqrt{2}$ mm

Dove la dimensione del raggio fittizio ρ_f è determinata come funzione del raggio di raccordo dell'intaglio ρ , della lunghezza microstrutturale di supporto ρ^* e

dall'angolo di apertura dell'intaglio stesso. Il fattore microstrutturale di supporto s è considerato indipendente dal ρ^* , pertanto, il raggio fittizio è espresso dalla seguente relazione:


$$\rho_f = \rho + s\rho^*$$

Sono stati studiati intagli a V non raccordati, aventi $\rho=0$ mm, poiché questa tipologia d'intaglio risulta essere la più critica per la resistenza del componente, anche se, nella quasi totalità dei casi reali il raggio di raccordo non è mai uguale a 0 mm, come ipotizzato, ma può essere molto piccolo e, pertanto, può essere approssimato a tale valore a favore di sicurezza.

Nella condizione di carico in esame, modo misto I+III, come in [31], utilizzo il criterio Maximum Tangential Stress (MTS) per valutare l'angolo di propagazione della cricca impostando ρ =0 (configurazione peggiore) e r=0.005 mm, ottenendo dalla equazione (41) un valore di θ_0 =0.

$$d\sigma_{\theta}(\rho = 0, r = 0.005)/d\theta = 0$$
 (41)

Pertanto, utilizzerò la terza variante presente in letteratura.

Per determinare la tensione media, secondo le due condizioni di carico avrò per il modo I $\sigma_{th} = \sigma_{\theta}$ e il modo III $\sigma_{th} = \tau_{z\theta}$, quindi, integrando rispettivamente da 0 a ρ_1^* la tensione teorica dovuta al modo II e da 0 a ρ_3^* la tensione teorica dovuta al modo III ed imponendo per un materiale fragile come spiegato [46] è possibile considerare $\rho_1^* = \rho_3^* = \rho^*$, quindi in condizioni di carico misto (I+III) utilizzando il principio di

sovrapposizione degli effetti valido in ipotesi di condizioni lineari elastiche è possibile scrivere, come già enunciato in precedenza:

$$\overline{\sigma} = K_1 \frac{\left(\rho^*\right)^{\lambda_1 - 1}}{\lambda_1 \sqrt{2\pi}} + K_3 \frac{\left(\rho^*\right)^{\lambda_3 - 1}}{\lambda_3 \sqrt{2\pi}} \tag{22}$$

È possibile determinare il raggio fittizio il raggio fittizio ρ_f risolvendo l'equazione (24):

$$K_{1}\frac{\left(\rho^{*}\right)^{\lambda_{1}-1}}{\lambda_{1}\sqrt{2\pi}}+K_{3}\frac{\left(\rho^{*}\right)^{\lambda_{3}-1}}{\lambda_{3}\sqrt{2\pi}}=4\frac{K_{1\rho}}{\sqrt{2\pi}}\frac{\rho_{f}^{\lambda_{1}-1}\left[1-\chi_{1}(\lambda_{1}-1)\right]}{(1+\lambda_{1})+\chi_{1}(1-\lambda_{1})}+\frac{2K_{3\rho}\rho_{f}^{\lambda_{3}-1}}{\sqrt{2\pi}}\tag{24}$$

imponendo l'ipotesi semplificativa $K_{1\rho}=K_1$ e $K_{3\rho}=K_3$

2. Intaglio laterale:

In questo lavoro è stato analizzato un insieme di provini assialsimmetrici indeboliti da un intaglio a V laterale su ciascuno dei due lati verticali.

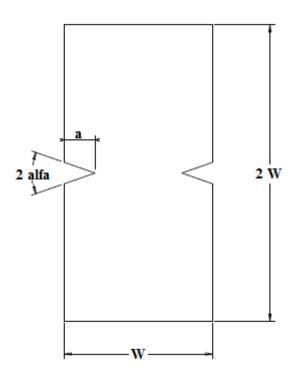
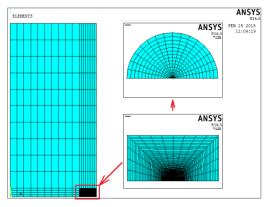


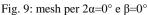
Fig. 8: Piano mediano del provino cilindrico con intaglio a V, schizzo non in scala.

In particolare sono stati considerati i seguenti parametri geometrici:

- Angolo di apertura dell'intaglio $2\alpha = 0^{\circ}$, 30° , 45° , 60° , 90° , 135°
- Lunghezza dell'intaglio 2a = 20 mm
- Angolo di inclinazione $\beta = 0^{\circ}$
- diametro w = 200 mm

Per realizzare le analisi agli elementi finiti delle varie geometrie da esaminare è stato utilizzato il codice di calcolo ANSYS® vers. 14.5 e grazie alle simmetrie del componente in esame rispetto all'asse verticale ed orizzontale è stato possibile indagare una geometria ridotta ad un quarto, infatti, è stato sufficiente imporre dei vincoli di simmetria sugli assi stessi, semplificando la creazione e la risoluzione del modello.


A causa dell'elevato numero di geometrie da indagare i modelli sono stati realizzati ricorrendo al linguaggio APDL (Ansys Parametric Design Language) che permette al variare di alcuni parametri (apertura dell'intaglio 2α e valore del raggio fittizio) di realizzare nuovi modelli da investigare con un notevole risparmio di risorse e tempo. L'elemento utilizzato è l'elemento assialsimmetrico a 8 nodi denominato PLANE 83 nella libreria degli elementi di Ansys.


3. CALCOLO DI $K_I \to K_{III}$:

I fattori di intensificazione delle tensioni K_1 , K_3 vengono ottenuti da modelli agli elementi finiti partendo dai valori nodali delle tensioni dovute alle condizione di carico di modo I e III lungo la "path" in direzione della linea di bisettrice dell'angolo di apertura dell'intaglio 2α . Si realizza, pertanto, una mesh molto fitta in prossimità dell'apice dell'intaglio, utilizzando un concentration keypoint attorno al quale viene creata una mesh di tipo free.

L'utilizzo di una mesh con queste caratteristiche è fortemente consigliata in prossimità degli apici degli intagli, poiché gli elementi vengono creati radialmente rispetto l'apice in esame diminuendo di dimensione avvicinandosi ad esso.

Vediamo ora alcune mesh in prossimità dell'apice dell'intaglio per le diverse geometrie:

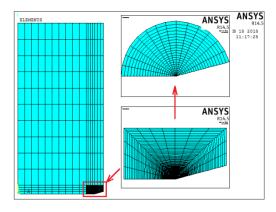


Fig. 10: mesh per $2\alpha = 30^{\circ}$ e $\beta = 0^{\circ}$

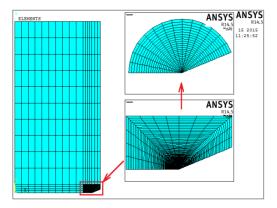


Fig. 11: mesh per $2\alpha\!\!=\!\!45^\circ$ e $\beta\!\!=\!\!0^\circ$

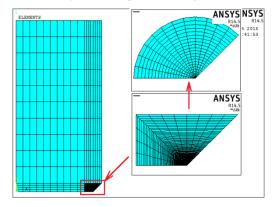


Fig. 13: mesh per $2\alpha \!\!=\!\! 90^\circ$ e $\beta \!\!=\!\! 0^\circ$

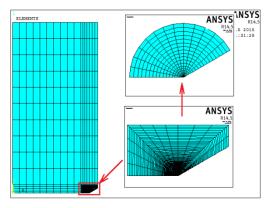


Fig. 12: mesh per $2\alpha{=}60^{\circ}$ e $\beta{=}0^{\circ}$

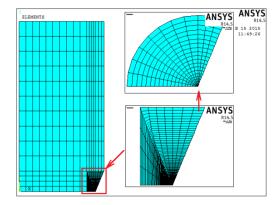


Fig. 14: mesh per $2\alpha \!\!=\!\! 135^{\circ}$ e $\beta \!\!=\!\! 0^{\circ}$

Una volta realizzata la mesh, occorre creare un sistema di riferimento locale centrato all'apice dell'intaglio e ruotato di un angolo pari all'angolo di inclinazione β e rispetto ad esso vengono calcolate le tensioni σ_{θ} e τ_{zy} lungo bisettrice dell'intaglio.

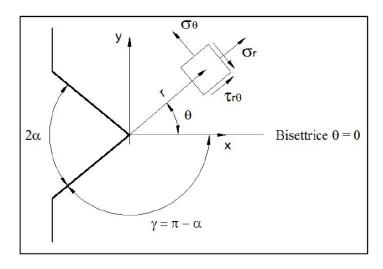


Fig. 4: Sistema di riferimento locale

Utilizzando le espressioni analitiche di Gross e Mendelson determiniamo i degli NSIFs:

$$K_1 = \lim_{r \to 0} \sqrt{2\pi} \cdot r^{1-\lambda_1} \cdot \sigma_{\theta\theta}$$

$$K_3 = \lim_{r \to 0} \sqrt{2\pi} \cdot r^{1-\lambda_3} \cdot \tau_{zy}$$

con λ_1 e λ_3 funzioni degli angoli di apertura dell'intaglio 2α .

4. Calcolo della Tensione Media all'intaglio $\overline{\sigma}$:

La Tensione Media, una volta determinati i fattori K_1 e K_3 , nel caso di sollecitazioni di modo misto I+III può essere scritta come segue:

$$\overline{\sigma} = K_1 \frac{\left(\rho^*\right)^{\lambda_1 - 1}}{\lambda_1 \sqrt{2\pi}} + K_3 \frac{\left(\rho^*\right)^{\lambda_3 - 1}}{\lambda_3 \sqrt{2\pi}}$$

con λ_1 e λ_3 autovalori di Williams.

Mentre, il raggio fittizio e determinato risolvendo l'equazione (24) sostituendo $K_{1\rho}=K_1$ e $K_{3\rho}=K_3$:

$$K_{1} \frac{\left(\rho^{*}\right)^{\lambda_{1}-1}}{\lambda_{1} \sqrt{2\pi}} + K_{3} \frac{\left(\rho^{*}\right)^{\lambda_{3}-1}}{\lambda_{3} \sqrt{2\pi}} = 4 \frac{K_{1}}{\sqrt{2\pi}} \frac{\rho_{f}^{\lambda_{1}-1} \left[1 - \chi_{1}(\lambda_{1} - 1)\right]}{(1 + \lambda_{1}) + \chi_{1}(1 - \lambda_{1})} + \frac{2K_{3}\rho_{f}^{\lambda_{3}-1}}{\sqrt{2\pi}}$$

Nella tabella 3 sono riportati per ciascuna geometria analizzata i valori di K_1 , K_3 , ρ^* , ρ_f , σ_{nom} , τ_{nom} e σ_{nom} , τ_{nom} .

Tabella 3: 2a = 20mm, d = 200 mm

2α	β	\mathbf{K}_1	K_3	1	2	ρ*	ρ_f	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
0	0	664	155	0.5	0.5	0.05	0.0987536	100	25	0.25
0	0	664	310	0.5	0.5	0.05	0.0898956	100	50	0.5
0	0	664	465	0.5	0.5	0.05	0.0837303	100	75	0.75
0	0	664	619	0.5	0.5	0.05	0.0792249	100	100	1
0	0	664	774	0.5	0.5	0.05	0.0757528	100	125	1.25
0	0	664	929	0.5	0.5	0.05	0.073013	100	150	1.5
0	0	664	1084	0.5	0.5	0.05	0.0707968	100	175	1.75
0	0	664	1239	0.5	0.5	0.05	0.068968	100	200	2
0	0	664	1394	0.5	0.5	0.05	0.0674334	100	225	2.25
0	0	664	1548	0.5	0.5	0.05	0.0661354	100	250	2.5
0	0	664	1858	0.5	0.5	0.05	0.0640306	100	300	3
0	0	664	2477	0.5	0.5	0.05	0.0611285	100	400	4
0	0	664	3097	0.5	0.5	0.05	0.0592171	100	500	5
0	0	664	3716	0.5	0.5	0.05	0.0578672	100	600	6
0	0	664	4335	0.5	0.5	0.05	0.0568619	100	700	7
0	0	664	4955	0.5	0.5	0.05	0.0560831	100	800	8
0	0	664	5574	0.5	0.5	0.05	0.0554638	100	900	9
0	0	664	6193	0.5	0.5	0.05	0.054959	100	1000	10

2α	β	K_1	K_3	1	2	ρ*	$\rho_{\rm f}$	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
0	0	664	155	0.5	0.5	0.1	0.197507	100	25	0.25
0	0	664	310	0.5	0.5	0.1	0.179791	100	50	0.5
0	0	664	465	0.5	0.5	0.1	0.167461	100	75	0.75
0	0	664	619	0.5	0.5	0.1	0.15845	100	100	1
0	0	664	774	0.5	0.5	0.1	0.151506	100	125	1.25
0	0	664	929	0.5	0.5	0.1	0.146026	100	150	1.5
0	0	664	1084	0.5	0.5	0.1	0.141594	100	175	1.75
0	0	664	1239	0.5	0.5	0.1	0.137936	100	200	2
0	0	664	1394	0.5	0.5	0.1	0.134867	100	225	2.25
0	0	664	1548	0.5	0.5	0.1	0.132271	100	250	2.5
0	0	664	1858	0.5	0.5	0.1	0.128061	100	300	3
0	0	664	2477	0.5	0.5	0.1	0.122257	100	400	4
0	0	664	3097	0.5	0.5	0.1	0.118434	100	500	5
0	0	664	3716	0.5	0.5	0.1	0.115734	100	600	6
0	0	664	4335	0.5	0.5	0.1	0.113724	100	700	7
0	0	664	4955	0.5	0.5	0.1	0.112166	100	800	8
0	0	664	5574	0.5	0.5	0.1	0.110928	100	900	9
0	0	664	6193	0.5	0.5	0.1	0.110282	100	1000	10

2α	β	K_1	K_3	2	2	ρ*	$ ho_{ m f}$	σ_{nom}	$ au_{nom}$	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm¹-λ3]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
0	0	664	155	0.5	0.5	0.2	0.395014	100	25	0.25
0	0	664	310	0.5	0.5	0.2	0.359582	100	50	0.5
0	0	664	465	0.5	0.5	0.2	0.334921	100	75	0.75
0	0	664	619	0.5	0.5	0.2	0.3169	100	100	1
0	0	664	774	0.5	0.5	0.2	0.303011	100	125	1.25
0	0	664	929	0.5	0.5	0.2	0.292052	100	150	1.5
0	0	664	1084	0.5	0.5	0.2	0.283187	100	175	1.75
0	0	664	1239	0.5	0.5	0.2	0.275872	100	200	2
0	0	664	1394	0.5	0.5	0.2	0.269734	100	225	2.25
0	0	664	1548	0.5	0.5	0.2	0.264542	100	250	2.5
0	0	664	1858	0.5	0.5	0.2	0.256123	100	300	3
0	0	664	2477	0.5	0.5	0.2	0.244514	100	400	4
0	0	664	3097	0.5	0.5	0.2	0.236868	100	500	5
0	0	664	3716	0.5	0.5	0.2	0.231469	100	600	6
0	0	664	4335	0.5	0.5	0.2	0.227447	100	700	7
0	0	664	4955	0.5	0.5	0.2	0.224332	100	800	8
0	0	664	5574	0,5	0,5	0.2	0.221855	100	900	9
0	0	664	6193	0,5	0,5	0.2	0.220564	100	1000	10

2α	β	\mathbf{K}_1	K_3	λ_1	λ_3	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\ \sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	701	703	[mm]	[mm]	[MPa]	[MPa]	
0	0	664	155	0.5	0.5	0.3	0.592521	100	25	0.25
0	0	664	310	0.5	0.5	0.3	0.539374	100	50	0.5
0	0	664	465	0.5	0.5	0.3	0.502382	100	75	0.75
0	0	664	619	0.5	0.5	0.3	0.475349	100	100	1
0	0	664	774	0.5	0.5	0.3	0.454517	100	125	1.25
0	0	664	929	0.5	0.5	0.3	0.438078	100	150	1.5
0	0	664	1084	0.5	0.5	0.3	0.424781	100	175	1.75
0	0	664	1239	0.5	0.5	0.3	0.413808	100	200	2
0	0	664	1394	0.5	0.5	0.3	0.4046	100	225	2.25
0	0	664	1548	0.5	0.5	0.3	0.396812	100	250	2.5
0	0	664	1858	0.5	0.5	0.3	0.384184	100	300	3
0	0	664	2477	0.5	0.5	0.3	0.366771	100	400	4
0	0	664	3097	0.5	0.5	0.3	0.355302	100	500	5
0	0	664	3716	0.5	0.5	0.3	0.347203	100	600	6
0	0	664	4335	0.5	0.5	0.3	0.341171	100	700	7
0	0	664	4955	0.5	0.5	0.3	0.336498	100	800	8
0	0	664	5574	0.5	0.5	0.3	0.332783	100	900	9
0	0	664	6193	0.5	0.5	0.3	0.330828	100	1000	10

2α	β	\mathbf{K}_1	K_3	2	1	ρ*	$ ho_{ m f}$	σ_{nom}	$ au_{\text{nom}}$	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
30	0	665	158	0.501	0.54545	0.05	0.105177	100	25	0.25
30	0	665	316	0.501	0.54545	0.05	0.0986852	100	50	0.5
30	0	665	475	0.501	0.54545	0.05	0.0938085	100	75	0.75
30	0	665	633	0.501	0.54545	0.05	0.0900547	100	100	1
30	0	665	791	0.501	0.54545	0.05	0.0870599	100	125	1.25
30	0	665	949	0.501	0.54545	0.05	0.0846156	100	150	1.5
30	0	665	1107	0.501	0.54545	0.05	0.082583	100	175	1.75
30	0	665	1266	0.501	0.54545	0.05	0.0808563	100	200	2
30	0	665	1424	0.501	0.54545	0.05	0.0793888	100	225	2.25
30	0	665	1582	0.501	0.54545	0.05	0.0781187	100	250	2.5
30	0	665	1898	0.501	0.54545	0.05	0.0760307	100	300	3
30	0	665	2531	0.501	0.54545	0.05	0.0730527	100	400	4
30	0	665	3164	0.501	0.54545	0.05	0.0710348	100	500	5
30	0	665	3797	0.501	0.54545	0.05	0.0695775	100	600	6
30	0	665	4430	0.501	0.54545	0.05	0.0684756	100	700	7
30	0	665	5062	0.501	0.54545	0.05	0.0676145	100	800	8
30	0	665	5695	0.501	0.54545	0.05	0.0669211	100	900	9
30	0	665	6328	0.501	0.54545	0.05	0.0663516	100	1000	10

2α	β	\mathbf{K}_1	K_3	2	2	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
30	0	665	158	0.501	0.54545	0.1	0.209881	100	25	0.25
30	0	665	316	0.501	0.54545	0.1	0.196682	100	50	0.5
30	0	665	475	0.501	0.54545	0.1	0.186831	100	75	0.75
30	0	665	633	0.501	0.54545	0.1	0.179286	100	100	1
30	0	665	791	0.501	0.54545	0.1	0.17329	100	125	1.25
30	0	665	949	0.501	0.54545	0.1	0.168411	100	150	1.5
30	0	665	1107	0.501	0.54545	0.1	0.164365	100	175	1.75
30	0	665	1266	0.501	0.54545	0.1	0.160935	100	200	2
30	0	665	1424	0.501	0.54545	0.1	0.158025	100	225	2.25
30	0	665	1582	0.501	0.54545	0.1	0.15551	100	250	2.5
30	0	665	1898	0.501	0.54545	0.1	0.151385	100	300	3
30	0	665	2531	0.501	0.54545	0.1	0.145518	100	400	4
30	0	665	3164	0.501	0.54545	0.1	0.141553	100	500	5
30	0	665	3797	0.501	0.54545	0.1	0.138696	100	600	6
30	0	665	4430	0.501	0.54545	0.1	0.136539	100	700	7
30	0	665	5062	0.501	0.54545	0.1	0.134855	100	800	8
30	0	665	5695	0.501	0.54545	0.1	0.1335	100	900	9
30	0	665	6328	0.501	0.54545	0.1	0.132388	100	1000	10

2α	β	\mathbf{K}_1	K_3	λ_1	λ_3	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\ \sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]			[mm]	[mm]	[MPa]	[MPa]	
30	0	665	158	0.501	0.54545	0.2	0.418799	100	25	0.25
30	0	665	316	0.501	0.54545	0.2	0.391969	100	50	0.5
30	0	665	475	0.501	0.54545	0.2	0.372078	100	75	0.75
30	0	665	633	0.501	0.54545	0.2	0.35692	100	100	1
30	0	665	791	0.501	0.54545	0.2	0.34492	100	125	1.25
30	0	665	949	0.501	0.54545	0.2	0.335188	100	150	1.5
30	0	665	1107	0.501	0.54545	0.2	0.327136	100	175	1.75
30	0	665	1266	0.501	0.54545	0.2	0.320326	100	200	2
30	0	665	1424	0.501	0.54545	0.2	0.314559	100	225	2.25
30	0	665	1582	0.501	0.54545	0.2	0.309583	100	250	2.5
30	0	665	1898	0.501	0.54545	0.2	0.301434	100	300	3
30	0	665	2531	0.501	0.54545	0.2	0.289879	100	400	4
30	0	665	3164	0.501	0.54545	0.2	0.282094	100	500	5
30	0	665	3797	0.501	0.54545	0.2	0.276492	100	600	6
30	0	665	4430	0.501	0.54545	0.2	0.27227	100	700	7
30	0	665	5062	0.501	0.54545	0.2	0.268977	100	800	8
30	0	665	5695	0.501	0.54545	0.2	0.26633	100	900	9
30	0	665	6328	0.501	0.54545	0.2	0.264159	100	1000	10

2α	β	\mathbf{K}_{1}	K_3	λ_1	λ_3	ρ*	ρ_{f}	σ_{nom}	$ au_{nom}$	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]			[mm]	[mm]	[MPa]	[MPa]	
30	0	665	158	0.501	0.54545	0.3	0.627339	100	25	0.25
30	0	665	316	0.501	0.54545	0.3	0.586717	100	50	0.5
30	0	665	475	0.501	0.54545	0.3	0.55672	100	75	0.75
30	0	665	633	0.501	0.54545	0.3	0.533928	100	100	1
30	0	665	791	0.501	0.54545	0.3	0.515927	100	125	1.25
30	0	665	949	0.501	0.54545	0.3	0.501353	100	150	1.5
30	0	665	1107	0.501	0.54545	0.3	0.489314	100	175	1.75
30	0	665	1266	0.501	0.54545	0.3	0.479144	100	200	2
30	0	665	1424	0.501	0.54545	0.3	0.47054	100	225	2.25
30	0	665	1582	0.501	0.54545	0.3	0.463125	100	250	2.5
30	0	665	1898	0.501	0.54545	0.3	0.450993	100	300	3
30	0	665	2531	0.501	0.54545	0.3	0.433818	100	400	4
30	0	665	3164	0.501	0.54545	0.3	0.422265	100	500	5
30	0	665	3797	0.501	0.54545	0.3	0.413962	100	600	6
30	0	665	4430	0.501	0.54545	0.3	0.407708	100	700	7
30	0	665	5062	0.501	0.54545	0.3	0.402835	100	800	8
30	0	665	5695	0.501	0.54545	0.3	0.398919	100	900	9
30	0	665	6328	0.501	0.54545	0.3	0.395709	100	1000	10

2α	β	K_1	K_3		•	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
45	0	671	159	0.505	0.57143	0.05	0.110759	100	25	0.25
45	0	671	318	0.505	0.57143	0.05	0.10532	100	50	0.5
45	0	671	477	0.505	0.57143	0.05	0.101115	100	75	0.75
45	0	671	636	0.505	0.57143	0.05	0.0977666	100	100	1
45	0	671	795	0.505	0.57143	0.05	0.0950378	100	125	1.25
45	0	671	954	0.505	0.57143	0.05	0.0927711	100	150	1.5
45	0	671	1113	0.505	0.57143	0.05	0.0908584	100	175	1.75
45	0	671	1272	0.505	0.57143	0.05	0.0892227	100	200	2
45	0	671	1431	0.505	0.57143	0.05	0.0878079	100	225	2.25
45	0	671	1590	0.505	0.57143	0.05	0.0865722	100	250	2.5
45	0	671	1908	0.505	0.57143	0.05	0.0845171	100	300	3
45	0	671	2544	0.505	0.57143	0.05	0.081538	100	400	4
45	0	671	3180	0.505	0.57143	0.05	0.0794825	100	500	5
45	0	671	3817	0.505	0.57143	0.05	0.0779767	100	600	6
45	0	671	4453	0.505	0.57143	0.05	0.0768293	100	700	7
45	0	671	5089	0.505	0.57143	0.05	0.0759247	100	800	8
45	0	671	5725	0.505	0.57143	0.05	0.0751932	100	900	9
45	0	671	6361	0.505	0.57143	0.05	0.0745894	100	1000	10

2α	β	\mathbf{K}_1	K_3	•		ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
45	0	671	159	0.505	0.57143	0.1	0.220934	100	25	0.25
45	0	671	318	0.505	0.57143	0.1	0.209756	100	50	0.5
45	0	671	477	0.505	0.57143	0.1	0.201192	100	75	0.75
45	0	671	636	0.505	0.57143	0.1	0.194421	100	100	1
45	0	671	795	0.505	0.57143	0.1	0.188934	100	125	1.25
45	0	671	954	0.505	0.57143	0.1	0.184396	100	150	1.5
45	0	671	1113	0.505	0.57143	0.1	0.180583	100	175	1.75
45	0	671	1272	0.505	0.57143	0.1	0.177332	100	200	2
45	0	671	1431	0.505	0.57143	0.1	0.174528	100	225	2.25
45	0	671	1590	0.505	0.57143	0.1	0.172085	100	250	2.5
45	0	671	1908	0.505	0.57143	0.1	0.168034	100	300	3
45	0	671	2544	0.505	0.57143	0.1	0.16219	100	400	4
45	0	671	3180	0.505	0.57143	0.1	0.158175	100	500	5
45	0	671	3817	0.505	0.57143	0.1	0.155244	100	600	6
45	0	671	4453	0.505	0.57143	0.1	0.153016	100	700	7
45	0	671	5089	0.505	0.57143	0.1	0.151263	100	800	8
45	0	671	5725	0.505	0.57143	0.1	0.149847	100	900	9
45	0	671	6361	0.505	0.57143	0.1	0.14868	100	1000	10

2α	β	\mathbf{K}_{1}	K_3	2	1	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
45	0	671	159	0.505	0.57143	0.2	0.440662	100	25	0.25
45	0	671	318	0.505	0.57143	0.2	0.417707	100	50	0.5
45	0	671	477	0.505	0.57143	0.2	0.40028	100	75	0.75
45	0	671	636	0.505	0.57143	0.2	0.386601	100	100	1
45	0	671	795	0.505	0.57143	0.2	0.375578	100	125	1.25
45	0	671	954	0.505	0.57143	0.2	0.366506	100	150	1.5
45	0	671	1113	0.505	0.57143	0.2	0.358909	100	175	1.75
45	0	671	1272	0.505	0.57143	0.2	0.352455	100	200	2
45	0	671	1431	0.505	0.57143	0.2	0.346904	100	225	2.25
45	0	671	1590	0.505	0.57143	0.2	0.342079	100	250	2.5
45	0	671	1908	0.505	0.57143	0.2	0.334103	100	300	3
45	0	671	2544	0.505	0.57143	0.2	0.322646	100	400	4
45	0	671	3180	0.505	0.57143	0.2	0.314812	100	500	5
45	0	671	3817	0.505	0.57143	0.2	0.30911	100	600	6
45	0	671	4453	0.505	0.57143	0.2	0.304786	100	700	7
45	0	671	5089	0.505	0.57143	0.2	0.30139	100	800	8
45	0	671	5725	0.505	0.57143	0.2	0.298651	100	900	9
45	0	671	6361	0.505	0.57143	0.2	0.296396	100	1000	10

2α	β	K_1	K_3		•	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
45	0	671	159	0.505	0.57143	0.3	0.659909	100	25	0.25
45	0	671	318	0.505	0.57143	0.3	0.62495	100	50	0.5
45	0	671	477	0.505	0.57143	0.3	0.598556	100	75	0.75
45	0	671	636	0.505	0.57143	0.3	0.577925	100	100	1
45	0	671	795	0.505	0.57143	0.3	0.561355	100	125	1.25
45	0	671	954	0.505	0.57143	0.3	0.547756	100	150	1.5
45	0	671	1113	0.505	0.57143	0.3	0.536394	100	175	1.75
45	0	671	1272	0.505	0.57143	0.3	0.526759	100	200	2
45	0	671	1431	0.505	0.57143	0.3	0.518486	100	225	2.25
45	0	671	1590	0.505	0.57143	0.3	0.511304	100	250	2.5
45	0	671	1908	0.505	0.57143	0.3	0.499453	100	300	3
45	0	671	2544	0.505	0.57143	0.3	0.482475	100	400	4
45	0	671	3180	0.505	0.57143	0.3	0.470896	100	500	5
45	0	671	3817	0.505	0.57143	0.3	0.462484	100	600	6
45	0	671	4453	0.505	0.57143	0.3	0.456113	100	700	7
45	0	671	5089	0.505	0.57143	0.3	0.451114	100	800	8
45	0	671	5725	0.505	0.57143	0.3	0.447087	100	900	9
45	0	671	6361	0.505	0.57143	0.3	0.443773	100	1000	10

2α	β	K_1	K_3	2	2	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm¹- ^λ 3]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
60	0	677	159	0.512	0.6	0.05	0.118772	100	25	0.25
60	0	677	318	0.512	0.6	0.05	0.114325	100	50	0.5
60	0	677	477	0.512	0.6	0.05	0.110772	100	75	0.75
60	0	677	635	0.512	0.6	0.05	0.107884	100	100	1
60	0	677	794	0.512	0.6	0.05	0.105463	100	125	1.25
60	0	677	953	0.512	0.6	0.05	0.103415	100	150	1.5
60	0	677	1112	0.512	0.6	0.05	0.101661	100	175	1.75
60	0	677	1271	0.512	0.6	0.05	0.100141	100	200	2
60	0	677	1430	0.512	0.6	0.05	0.0988118	100	225	2.25
60	0	677	1588	0.512	0.6	0.05	0.0976458	100	250	2.5
60	0	677	1906	0.512	0.6	0.05	0.0956694	100	300	3
60	0	677	2541	0.512	0.6	0.05	0.0927524	100	400	4
60	0	677	3177	0.512	0.6	0.05	0.0906964	100	500	5
60	0	677	3812	0.512	0.6	0.05	0.0891732	100	600	6
60	0	677	4448	0.512	0.6	0.05	0.0879962	100	700	7
60	0	677	5083	0.512	0.6	0.05	0.0870619	100	800	8
60	0	677	5718	0.512	0.6	0.05	0.0863013	100	900	9
60	0	677	6354	0.512	0.6	0.05	0.085669	100	1000	10

2α	β	\mathbf{K}_{1}	K_3	2	2	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\ \sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
60	0	677	159	0.512	0.6	0.1	0.236919	100	25	0.25
60	0	677	318	0.512	0.6	0.1	0.227669	100	50	0.5
60	0	677	477	0.512	0.6	0.1	0.22036	100	75	0.75
60	0	677	635	0.512	0.6	0.1	0.21447	100	100	1
60	0	677	794	0.512	0.6	0.1	0.209568	100	125	1.25
60	0	677	953	0.512	0.6	0.1	0.205446	100	150	1.5
60	0	677	1112	0.512	0.6	0.1	0.201933	100	175	1.75
60	0	677	1271	0.512	0.6	0.1	0.198903	100	200	2
60	0	677	1430	0.512	0.6	0.1	0.196262	100	225	2.25
60	0	677	1588	0.512	0.6	0.1	0.193953	100	250	2.5
60	0	677	1906	0.512	0.6	0.1	0.190057	100	300	3
60	0	677	2541	0.512	0.6	0.1	0.184343	100	400	4
60	0	677	3177	0.512	0.6	0.1	0.180341	100	500	5
60	0	677	3812	0.512	0.6	0.1	0.177391	100	600	6
60	0	677	4448	0.512	0.6	0.1	0.175119	100	700	7
60	0	677	5083	0.512	0.6	0.1	0.173321	100	800	8
60	0	677	5718	0.512	0.6	0.1	0.17186	100	900	9
60	0	677	6354	0.512	0.6	0.1	0.170648	100	1000	10

2α	β	K_1	K_3	2	2	ρ*	ρ_{f}	σ_{nom}	$ au_{nom}$	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
60	0	677	159	0.512	0.6	0.2	0.472531	100	25	0,25
60	0	677	318	0.512	0.6	0.2	0.453314	100	50	0,5
60	0	677	477	0.512	0.6	0.2	0.438298	100	75	0,75
60	0	677	635	0.512	0.6	0.2	0.426307	100	100	1
60	0	677	794	0.512	0.6	0.2	0.416397	100	125	1,25
60	0	677	953	0.512	0.6	0.2	0.408116	100	150	1,5
60	0	677	1112	0.512	0.6	0.2	0.401094	100	175	1,75
60	0	677	1271	0.512	0.6	0.2	0.395062	100	200	2
60	0	677	1430	0.512	0.6	0.2	0.389826	100	225	2,25
60	0	677	1588	0.512	0.6	0.2	0.385264	100	250	2,5
60	0	677	1906	0.512	0.6	0.2	0.377594	100	300	3
60	0	677	2541	0.512	0.6	0.2	0.366419	100	400	4
60	0	677	3177	0.512	0.6	0.2	0.358643	100	500	5
60	0	677	3812	0.512	0.6	0.2	0.352936	100	600	6
60	0	677	4448	0.512	0.6	0.2	0.348556	100	700	7
60	0	677	5083	0.512	0.6	0.2	0.345099	100	800	8
60	0	677	5718	0.512	0.6	0.2	0.342296	100	900	9
60	0	677	6354	0.512	0.6	0.2	0.339975	100	1000	10

2α	β	\mathbf{K}_1	K_3	1	2	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
60	0	677	159	0.512	0.6	0.3	0.707609	100	25	0.25
60	0	677	318	0.512	0.6	0.3	0.67815	100	50	0.5
60	0	677	477	0.512	0.6	0.3	0.655286	100	75	0.75
60	0	677	635	0.512	0.6	0.3	0.637125	100	100	1
60	0	677	794	0.512	0.6	0.3	0.62218	100	125	1.25
60	0	677	953	0.512	0.6	0.3	0.609736	100	150	1.5
60	0	677	1112	0.512	0.6	0.3	0.599214	100	175	1.75
60	0	677	1271	0.512	0.6	0.3	0.590201	100	200	2
60	0	677	1430	0.512	0.6	0.3	0.582392	100	225	2.25
60	0	677	1588	0.512	0.6	0.3	0.575602	100	250	2.5
60	0	677	1906	0.512	0.6	0.3	0.564214	100	300	3
60	0	677	2541	0.512	0.6	0.3	0.547681	100	400	4
60	0	677	3177	0.512	0.6	0.3	0.53622	100	500	5
60	0	677	3812	0.512	0.6	0.3	0.52783	100	600	6
60	0	677	4448	0.512	0.6	0.3	0.521403	100	700	7
60	0	677	5083	0.512	0.6	0.3	0.516338	100	800	8
60	0	677	5718	0.512	0.6	0.3	0.512237	100	900	9
60	0	677	6354	0.512	0.6	0.3	0.508843	100	1000	10

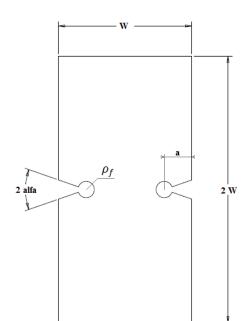
2α	β	K_1	K_3	2	1	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
90	0	690	155	0.544	0.6667	0.05	0.153447	100	25	0.25
90	0	690	309	0.544	0.6667	0.05	0.150478	100	50	0.5
90	0	690	464	0.544	0.6667	0.05	0.147977	100	75	0.75
90	0	690	619	0.544	0.6667	0.05	0.145854	100	100	1
90	0	690	774	0.544	0.6667	0.05	0.144007	100	125	1.25
90	0	690	928	0.544	0.6667	0.05	0.142394	100	150	1.5
90	0	690	1083	0.544	0.6667	0.05	0.140983	100	175	1.75
90	0	690	1238	0.544	0.6667	0.05	0.139723	100	200	2
90	0	690	1392	0.544	0.6667	0.05	0.138596	100	225	2.25
90	0	690	1547	0.544	0.6667	0.05	0.137584	100	250	2.5
90	0	690	1857	0.544	0.6667	0.05	0.135843	100	300	3
90	0	690	2476	0.544	0.6667	0.05	0.133166	100	400	4
90	0	690	3094	0.544	0.6667	0.05	0.13121	100	500	5
90	0	690	3713	0.544	0.6667	0.05	0.129713	100	600	6
90	0	690	4332	0.544	0.6667	0.05	0.128532	100	700	7
90	0	690	4951	0.544	0.6667	0.05	0.127577	100	800	8
90	0	690	5570	0.544	0.6667	0.05	0.126788	100	900	9
90	0	690	6189	0.544	0.6667	0.05	0.126126	100	1000	10

2α	β	\mathbf{K}_1	K_3	2	2	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
90	0	690	155	0.544	0.6667	0.1	0.306329	100	25	0.25
90	0	690	309	0.544	0.6667	0.1	0.3000018	100	50	0.5
90	0	690	464	0.544	0.6667	0.1	0.294768	100	75	0.75
90	0	690	619	0.544	0.6667	0.1	0.290329	100	100	1
90	0	690	774	0.544	0.6667	0.1	0.28655	100	125	1.25
90	0	690	928	0.544	0.6667	0.1	0.2832544	100	150	1.5
90	0	690	1083	0.544	0.6667	0.1	0.280389	100	175	1.75
90	0	690	1238	0.544	0.6667	0.1	0.277843	100	200	2
90	0	690	1392	0.544	0.6667	0.1	0.275581	100	225	2.25
90	0	690	1547	0.544	0.6667	0.1	0.273557	100	250	2.5
90	0	690	1857	0.544	0.6667	0.1	0.270098	100	300	3
90	0	690	2476	0.544	0.6667	0.1	0.264828	100	400	4
90	0	690	3094	0.544	0.6667	0.1	0.261015	100	500	5
90	0	690	3713	0.544	0.6667	0.1	0.258119	100	600	6
90	0	690	4332	0.544	0.6667	0.1	0.255848	100	700	7
90	0	690	4951	0.544	0.6667	0.1	0.254019	100	800	8
90	0	690	5570	0.544	0.6667	0.1	0.252514	100	900	9
90	0	690	6189	0.544	0.6667	0.1	0.251255	100	1000	10

2α	β	\mathbf{K}_1	K_3	2	2	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
90	0	690	155	0.544	0.6667	0.2	0.611451	100	25	0.25
90	0	690	309	0.544	0.6667	0.2	0.59806	100	50	0.5
90	0	690	464	0.544	0.6667	0.2	0.587061	100	75	0.75
90	0	690	619	0.544	0.6667	0.2	0.577864	100	100	1
90	0	690	774	0.544	0.6667	0.2	0.570104	100	125	1.25
90	0	690	928	0.544	0.6667	0.2	0.563388	100	150	1.5
90	0	690	1083	0.544	0.6667	0.2	0.557588	100	175	1.75
90	0	690	1238	0.544	0.6667	0.2	0.552466	100	200	2
90	0	690	1392	0.544	0.6667	0.2	0.547939	100	225	2.25
90	0	690	1547	0.544	0.6667	0.2	0.543907	100	250	2.5
90	0	690	1857	0.544	0.6667	0.2	0.537056	100	300	3
90	0	690	2476	0.544	0.6667	0.2	0.526717	100	400	4
90	0	690	3094	0.544	0.6667	0.2	0.519308	100	500	5
90	0	690	3713	0.544	0.6667	0.2	0.513722	100	600	6
90	0	690	4332	0.544	0.6667	0.2	0.509365	100	700	7
90	0	690	4951	0.544	0.6667	0.2	0.505871	100	800	8
90	0	690	5570	0.544	0.6667	0.2	0.503007	100	900	9
90	0	690	6189	0.544	0.6667	0.2	0.500617	100	1000	10

2α	β	\mathbf{K}_{1}	K_3	2	2	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
90	0	690	155	0.544	0.6667	0.3	0.916061	100	25	0.25
90	0	690	309	0.544	0.6667	0.3	0.895283	100	50	0.5
90	0	690	464	0.544	0.6667	0.3	0.878352	100	75	0.75
90	0	690	619	0.544	0.6667	0.3	0.864285	100	100	1
90	0	690	774	0.544	0.6667	0.3	0.852482	100	125	1.25
90	0	690	928	0.544	0.6667	0.3	0.842313	100	150	1.5
90	0	690	1083	0.544	0.6667	0.3	0.833566	100	175	1.75
90	0	690	1238	0.544	0.6667	0.3	0.82587	100	200	2
90	0	690	1392	0.544	0.6667	0.3	0.819086	100	225	2.25
90	0	690	1547	0.544	0.6667	0.3	0.813062	100	250	2.5
90	0	690	1857	0.544	0.6667	0.3	0.802861	100	300	3
90	0	690	2476	0.544	0.6667	0.3	0.78755	100	400	4
90	0	690	3094	0.544	0.6667	0.3	0.776638	100	500	5
90	0	690	3713	0.544	0.6667	0.3	0.768444	100	600	6
90	0	690	4332	0.544	0.6667	0.3	0.762073	100	700	7
90	0	690	4951	0.544	0.6667	0.3	0.756978	100	800	8
90	0	690	5570	0.544	0.6667	0.3	0.752809	100	900	9
90	0	690	6189	0.544	0.6667	0.3	0.749336	100	1000	10

2α	β	K_1	K ₃	2	2	ρ*	ρ_{f}	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
135	0	645	133	0.674	0.8	0.05	0.486567	100	25	0.25
135	0	645	266	0.674	0.8	0.05	0.488907	100	50	0.5
135	0	645	399	0.674	0.8	0.05	0.490975	100	75	0.75
135	0	645	532	0.674	0.8	0.05	0.492815	100	100	1
135	0	645	665	0.674	0.8	0.05	0.494464	100	125	1.25
135	0	645	798	0.674	0.8	0.05	0.495948	100	150	1.5
135	0	645	932	0.674	0.8	0.05	0.497302	100	175	1.75
135	0	645	1065	0.674	0.8	0.05	0.498524	100	200	2
135	0	645	1198	0.674	0.8	0.05	0.49964	100	225	2.25
135	0	645	1331	0.674	0.8	0.05	0.500663	100	250	2.5
135	0	645	1597	0.674	0.8	0.05	0.502476	100	300	3
135	0	645	2129	0.674	0.8	0.05	0.505378	100	400	4
135	0	645	2662	0.674	0.8	0.05	0.507603	100	500	5
135	0	645	3194	0.674	0.8	0.05	0.509356	100	600	6
135	0	645	3726	0.674	0.8	0.05	0.510777	100	700	7
135	0	645	4259	0.674	0.8	0.05	0.511953	100	800	8
135	0	645	4791	0.674	0.8	0.05	0.512939	100	900	9
135	0	645	5323	0.674	0.8	0.05	0.513779	100	1000	10


2α	β	K_1	K ₃			ρ*	ρ_{f}	σ_{nom}	$ au_{nom}$	τ_{nom}/σ_{nom}
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
135	0	645	133	0.674	0.8	0.1	0.973587	100	25	0.25
135	0	645	266	0.674	0.8	0.1	0.978608	100	50	0.5
135	0	645	399	0.674	0.8	0.1	0.983	100	75	0.75
135	0	645	532	0.674	0.8	0.1	0.986875	100	100	1
135	0	645	665	0.674	0.8	0.1	0.990319	100	125	1.25
135	0	645	798	0.674	0.8	0.1	0.9934	100	150	1.5
135	0	645	932	0.674	0.8	0.1	0.996192	100	175	1.75
135	0	645	1065	0.674	0.8	0.1	0.998698	100	200	2
135	0	645	1198	0.674	0.8	0.1	1.00098	100	225	2.25
135	0	645	1331	0.674	0.8	0.1	1.00305	100	250	2.5
135	0	645	1597	0.674	0.8	0.1	1.00671	100	300	3
135	0	645	2129	0.674	0.8	0.1	1.01251	100	400	4
135	0	645	2662	0.674	0.8	0.1	1.0169	100	500	5
135	0	645	3194	0.674	0.8	0.1	1.02034	100	600	6
135	0	645	3726	0.674	0.8	0.1	1.0231	100	700	7
135	0	645	4259	0.674	0.8	0.1	1.02538	100	800	8
135	0	645	4791	0.674	0.8	0.1	1.02728	100	900	9
135	0	645	5323	0.674	0.8	0.1	1.02889	100	1000	10

2α	β	K_1	K_3	1	2	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
135	0	645	133	0.674	0.8	0.2	1.94815	100	25	0.25
135	0	645	266	0.674	0.8	0.2	1.9589	100	50	0.5
135	0	645	399	0.674	0.8	0.2	1.96822	100	75	0.75
135	0	645	532	0.674	0.8	0.2	1.97636	100	100	1
135	0	645	665	0.674	0.8	0.2	1.98353	100	125	1.25
135	0	645	798	0.674	0.8	0.2	1.98991	100	150	1.5
135	0	645	932	0.674	0.8	0.2	1.99565	100	175	1.75
135	0	645	1065	0.674	0.8	0.2	2.00077	100	200	2
135	0	645	1198	0.674	0.8	0.2	2.00539	100	225	2.25
135	0	645	1331	0.674	0.8	0.2	2.0096	100	250	2.5
135	0	645	1597	0.674	0.8	0.2	2.01695	100	300	3
135	0	645	2129	0.674	0.8	0.2	2.02849	100	400	4
135	0	645	2662	0.674	0.8	0.2	2.03714	100	500	5
135	0	645	3194	0.674	0.8	0.2	2.04385	100	600	6
135	0	645	3726	0.674	0.8	0.2	2.04921	100	700	7
135	0	645	4259	0.674	0.8	0.2	2.05359	100	800	8
135	0	645	4791	0.674	0.8	0.2	2.05724	100	900	9
135	0	645	5323	0.674	0.8	0.2	2.06032	100	1000	10

2α	β	\mathbf{K}_1	K_3	1	2	ρ*	$ ho_{ m f}$	σ_{nom}	τ_{nom}	$\tau_{\text{nom}}/\ \sigma_{\text{nom}}$
(°)	(°)	[MPa mm $^{1-\lambda_1}$]	[MPa mm $^{1-\lambda_3}$]	λ_1	λ_3	[mm]	[mm]	[MPa]	[MPa]	
135	0	645	133	0.674	0.8	0.3	2.92313	100	25	0.25
135	0	645	266	0.674	0.8	0.3	2.93992	100	50	0.5
135	0	645	399	0.674	0.8	0.3	2.95435	100	75	0.75
135	0	645	532	0.674	0.8	0.3	2.9669	100	100	1
135	0	645	665	0.674	0.8	0.3	2.97791	100	125	1.25
135	0	645	798	0.674	0.8	0.3	2.98765	100	150	1.5
135	0	645	932	0.674	0.8	0.3	2.99638	100	175	1.75
135	0	645	1065	0.674	0.8	0.3	3.00415	100	200	2
135	0	645	1198	0.674	0.8	0.3	3.01114	100	225	2.25
135	0	645	1331	0.674	0.8	0.3	3.01748	100	250	2.5
135	0	645	1597	0.674	0.8	0.3	3.02853	100	300	3
135	0	645	2129	0.674	0.8	0.3	3.04575	100	400	4
135	0	645	2662	0.674	0.8	0.3	3.05859	100	500	5
135	0	645	3194	0.674	0.8	0.3	3.06849	100	600	6
135	0	645	3726	0.674	0.8	0.3	3.07637	100	700	7
135	0	645	4259	0.674	0.8	0.3	3.0828	100	800	8
135	0	645	4791	0.674	0.8	0.3	3.08813	100	900	9
135	0	645	5323	0.674	0.8	0.3	3.09263	100	1000	10

5. CALCOLO DELLA TENSIONE SUL BORDO DELL'INTAGLIO FITTIZIO TRAMITE ANALISI AGLI ELEMENTI FINITI:

L'inserimento di un arco di raggio ρ_f centrato all'apice dell'intaglio modifica la geometria oggetto dello studio, mentre il considerare intagli a V non raccordati ($\rho=0$) semplifica la relazione (1) da $\rho_f=\rho+s\rho^*$ a $\rho_f=s\rho^*$ come già enunciato nell'articolo di riferimento [31].

La nuova geometria da analizzare è rappresentata nella sottostante figura.

Fig. 5: Piano mediano del provino cilindrico con intaglio a V modificato dalla presenza del raggio ρ_f centrato nell'apice dell'intaglio, *schizzo non in scala*.

Dopo aver impostato tutti i parametri geometrici, la tensione nominale $\sigma_n = 100 \, MPa$ e $\tau_n = 25 \div 1000 \, \text{MPa}$, per ciascuna configurazione, viene calcolata numericamente la tensione principale sul bordo dell'intaglio. Nelle seguenti figure vengono riportati alcuni esempi di *'contour plot'* della tensione principale al variare dell'angolo di apertura.

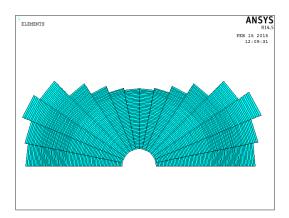


Fig. 16: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per 2α = 0° e β = 0°

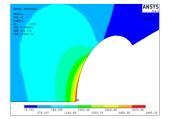


Fig. 17: Tensione dovuta alla condizione di carico di modo I

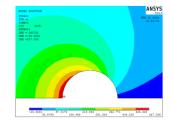


Fig. 6: Tensione dovuta alla cond. di carico di modo III

Capitolo Primo

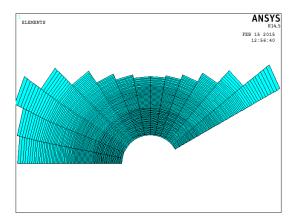


Fig. 19: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per 2α =60° e β =0°

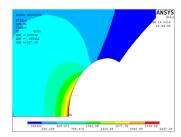


Fig. 20: Tensione dovuta alla condizione di carico di modo I

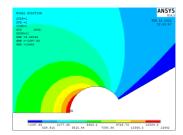


Fig. 20: Tensione dovuta alla cond. di carico di modo III

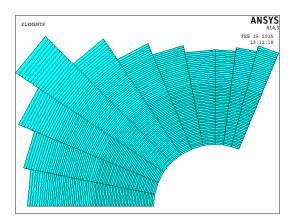


Fig. 21: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per 2α =135° e β =0°

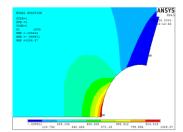


Fig. 22: Tensione dovuta alla condizione di carico di modo I

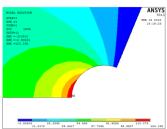


Fig. 23: Tensione dovuta alla cond. di carico di modo III

6. Determinazione di $\sigma_{1,max}(\rho_f)$ e $\overline{\sigma}(\rho,\rho^*)$ e Calcolo del loro Scostamento:

Una volta determinata la tensione principale in corrispondenza del bordo dell'intaglio caratterizzato dal raggio fittizio e la tensione teorica mediata lungo la direzione di propagazione della cricca posso determinare lo scostamento tra il valore teorico e quello numerico ottenuto utilizzando il codice di calcolo ANSYS®, verificando la veridicità ed il campo di applicazione della equazione $\overline{\sigma}(\rho, \rho^*) = \sigma_{l,max}(\rho_f)$.

Tabella 4: 2a = 20mm, d = 200 mm

2α	β	ρ*	$ ho_{ m f}$	τ_{nom}/σ_{nom}	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
0	0	0.05	0.0987536	0.25	2922	3003	2.7
0	0	0.05	0.0898956	0.5	3475	3557	2.3
0	0	0.05	0.0837303	0.75	4029	4110	2.0
0	0	0.05	0.0792249	1	4578	4662	1.8
0	0	0.05	0.0757528	1.25	5131	5215	1.6
0	0	0.05	0.073013	1.5	5684	5768	1.4
0	0	0.05	0.0707968	1.75	6237	6320	1.3
0	0	0.05	0.068968	2	6790	6873	1.2
0	0	0.05	0.0674334	2.25	7343	7425	1.1
0	0	0.05	0.0661354	2.5	7893	7977	1.1
0	0	0.05	0.0640306	3	8999	9082	0.9
0	0	0.05	0.0611285	4	11208	11291	0.7
0	0	0.05	0.0592171	5	13420	13500	0.6
0	0	0.05	0.0578672	6	15629	15708	0.5
0	0	0.05	0.0568619	7	17838	17916	0.4
0	0	0.05	0.0560831	8	20050	20125	0.4
0	0	0.05	0.0554638	9	22259	22333	0.3
0	0	0.05	0.054959	10	24467	24542	0.3

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	τ_{nom}/σ_{nom}	σ(ρ, ρ*) [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$	Δ (%)
0	0	0.1	0.197507	0.25	2066	2155	4.1
0	0	0.1	0.179791	0.5	2457	2550	3.6
0	0	0.1	0.167461	0.75	2849	2944	3.2
0	0	0.1	0.15845	1	3237	3337	3.0
0	0	0.1	0.151506	1.25	3628	3731	2.8
0	0	0.1	0.146026	1.5	4019	4125	2.6
0	0	0.1	0.141594	1.75	4410	4518	2.4
0	0	0.1	0.137936	2	4802	4912	2.3
0	0	0.1	0.134867	2.25	5193	5306	2.1
0	0	0.1	0.132271	2.5	5581	5699	2.1
0	0	0.1	0.128061	3	6363	6486	1.9
0	0	0.1	0.122257	4	7925	8060	1.7
0	0	0.1	0.118434	5	9489	9633	1.5
0	0	0.1	0.115734	6	11051	11206	1.4
0	0	0.1	0.113724	7	12613	12780	1.3
0	0	0.1	0.112166	8	14177	14353	1.2
0	0	0.1	0.110928	9	15739	15926	1.2
0	0	0.1	0.110282	10	17357	17471	0.7

2α	β	ρ*	$ ho_{ m f}$	τ_{nom}/σ_{nom}	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,\max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
0	0	0.2	0.395014	0.25	1461	1560	6.3
0	0	0.2	0.359582	0.5	1738	1842	5.7
0	0	0.2	0.334921	0.75	2014	2125	5.2
0	0	0.2	0.3169	1	2289	2406	4.9
0	0	0.2	0.303011	1.25	2566	2688	4.6
0	0	0.2	0.292052	1.5	2842	2970	4.3
0	0	0.2	0.283187	1.75	3119	3252	4.1
0	0	0.2	0.275872	2	3395	3533	3.9
0	0	0.2	0.269734	2.25	3672	3815	3.7
0	0	0.2	0.264542	2.5	3946	4096	3.7
0	0	0.2	0.256123	3	4500	4659	3.4
0	0	0.2	0.244514	4	5604	5785	3.1
0	0	0.2	0.236868	5	6710	6911	2.9
0	0	0.2	0.231469	6	7814	8037	2.8
0	0	0.2	0.227447	7	8919	9162	2.7
0	0	0.2	0.224332	8	10025	10288	2.6
0	0	0.2	0.221855	9	11129	11413	2.5
0	0	0.2	0.220564	10	12273	12519	2.0

2α	β	ρ*	ρ_{f}	$\tau_{nom}/\;\sigma_{nom}$	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,\max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
0	0	0.3	0.592521	0.25	1193	1300	8.2
0	0	0.3	0.539374	0.5	1419	1533	7.5
0	0	0.3	0.502382	0.75	1645	1766	6.9
0	0	0.3	0.475349	1	1869	1999	6.5
0	0	0.3	0.454517	1.25	2095	2232	6.1
0	0	0.3	0.438078	1.5	2321	2465	5.9
0	0	0.3	0.424781	1.75	2546	2698	5.6
0	0	0.3	0.413808	2	2772	2930	5.4
0	0	0.3	0.4046	2.25	2998	3163	5.2
0	0	0.3	0.396812	2.5	3222	3395	5.1
0	0	0.3	0.384184	3	3674	3861	4.8
0	0	0.3	0.366771	4	4576	4791	4.5
0	0	0.3	0.355302	5	5479	5721	4.2
0	0	0.3	0.347203	6	6380	6650	4.1
0	0	0.3	0.341171	7	7282	7580	3.9
0	0	0.3	0.336498	8	8185	8510	3.8
0	0	0.3	0.332783	9	9087	9440	3.7
0	0	0.3	0.330828	10	10027	10354	3.2

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\sigma_{nom}$	σ̄(ρ, ρ*) [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
30	0	0.05	0.105177	0.25	2812	2874	2.1
30	0	0.05	0.0986852	0.5	3263	3327	1.9
30	0	0.05	0.0938085	0.75	3717	3781	1.7
30	0	0.05	0.0900547	1	4168	4234	1.6
30	0	0.05	0.0870599	1.25	4619	4687	1.5
30	0	0.05	0.0846156	1.5	5070	5141	1.4
30	0	0.05	0.082583	1.75	5521	5594	1.3
30	0	0.05	0.0808563	2	5975	6048	1.2
30	0	0.05	0.0793888	2.25	6426	6502	1.2
30	0	0.05	0.0781187	2.5	6877	6955	1.1
30	0	0.05	0.0760307	3	7779	7862	1.0
30	0	0.05	0.0730527	4	9586	9676	0.9
30	0	0.05	0.0710348	5	11393	11490	0.8
30	0	0.05	0.0695775	6	13200	13305	0.8
30	0	0.05	0.0684756	7	15007	15119	0.7
30	0	0.05	0.0676145	8	16811	16933	0.7
30	0	0.05	0.0669211	9	18618	18747	0.7
30	0	0.05	0.0663516	10	20425	20561	0.7

2α	β	ρ*	$ ho_{ m f}$	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
30	0	0.1	0.209881	0.25	2000	2071	3.4
30	0	0.1	0.196682	0.5	2329	2403	3.1
30	0	0.1	0.186831	0.75	2660	2735	2.7
30	0	0.1	0.179286	1	2989	3067	2.5
30	0	0.1	0.17329	1.25	3318	3400	2.4
30	0	0.1	0.168411	1.5	3647	3732	2.3
030	0	0.1	0.164365	1.75	3977	4064	2.1
30	0	0.1	0.160935	2	4308	4396	2.0
30	0	0.1	0.158025	2.25	4637	4729	1.9
30	0	0.1	0.15551	2.5	4966	5061	1.9
30	0	0.1	0.151385	3	5624	5725	1.8
30	0	0.1	0.145518	4	6943	7055	1.6
30	0	0.1	0.141553	5	8262	8384	1.5
30	0	0.1	0.138696	6	9580	9713	1.4
30	0	0.1	0.136539	7	10899	11043	1.3
30	0	0.1	0.134855	8	12215	12372	1.3
30	0	0.1	0.1335	9	13534	13701	1.2
30	0	0.1	0.132388	10	14852	15031	1.2

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$\tau_{nom}/\;\sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
_ (/	\ /		. ,	0.25			
30	0	0.2	0.418799	0.25	1422	1506	5.6
30	0	0.2	0.391969	0.5	1662	1751	5.0
30	0	0.2	0.372078	0.75	1904	1996	4.6
30	0	0.2	0.35692	1	2144	2240	4.3
30	0	0.2	0.34492	1.25	2385	2485	4.3
30	0	0.2	0.335188	1.5	2625	2729	3.8
30	0	0.2	0.327136	1.75	2865	2974	3.7
30	0	0.2	0.320326	2	3107	3218	3.5
30	0	0.2	0.314559	2.25	3347	3463	3.4
30	0	0.2	0.309583	2.5	3587	3708	3.3
30	0	0.2	0.301434	3	4067	4197	3.1
30	0	0.2	0.289879	4	5030	5175	2.8
30	0	0.2	0.282094	5	5992	6154	2.6
30	0	0.2	0.276492	6	6954	7132	2.5
30	0	0.2	0.27227	7	7916	8111	2.4
30	0	0.2	0.268977	8	8877	9089	2.3
30	0	0.2	0.26633	9	9839	10067	2.3
30	0	0.2	0.264159	10	10801	11046	2.2

2α	β	ρ*	$ ho_{ m f}$	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
30	0	0.3	0.627339	0.25	1165	1260	7.5
30	0	0.3	0.586717	0.5	1365	1465	6.8
30	0	0.3	0.55672	0.75	1566	1670	6.2
30	0	0.3	0.533928	1	1766	1875	5.8
30	0	0.3	0.515927	1.25	1966	2081	5.5
30	0	0.3	0.501353	1.5	2165	2286	5.2
30	0	0.3	0.489314	1.75	2365	2491	5.1
30	0	0.3	0.479144	2	2566	2696	4.8
30	0	0.3	0.47054	2.25	2766	2902	4.7
30	0	0.3	0.463125	2.5	2966	3107	4.5
30	0	0.3	0.450993	3	3365	3517	4.3
30	0	0.3	0.433818	4	4165	4338	4.0
30	0	0.3	0.422265	5	4966	5159	3.8
30	0	0.3	0.413962	6	5766	5980	3.6
30	0	0.3	0.407708	7	6566	6801	3.5
30	0	0.3	0.402835	8	7365	7622	3.4
30	0	0.3	0.398919	9	8165	8444	3.3
30	0	0.3	0.395709	10	8966	9265	3.2

2α	β	ρ*	$ ho_{ m f}$	τ_{nom}/σ_{nom}	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,\max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
45	0	0.05	0.110759	0.25	2736	2784	1.7
45	0	0.05	0.10532	0.5	3137	3187	1.6
45	0	0.05	0.101115	0.75	3538	3590	1.5
45	0	0.05	0.0977666	1	3939	3993	1.4
45	0	0.05	0.0950378	1.25	4339	4396	1.3
45	0	0.05	0.0927711	1.5	4740	4799	1.2
45	0	0.05	0.0908584	1.75	5141	5221	1.5
45	0	0.05	0.0892227	2	5542	5605	1.1
45	0	0.05	0.0878079	2.25	5943	6007	1.1
45	0	0.05	0.0865722	2.5	6343	6410	1.0
45	0	0.05	0.0845171	3	7145	7216	1.0
45	0	0.05	0.081538	4	8748	8828	0.9
45	0	0.05	0.0794825	5	10351	10440	0.8
45	0	0.05	0.0779767	6	11957	12052	0.8
45	0	0.05	0.0768293	7	13560	13664	0.8
45	0	0.05	0.0759247	8	15163	15276	0.7
45	0	0.05	0.0751932	9	16767	16888	0.7
45	0	0.05	0.0745894	10	18370	18500	0.7

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\sigma_{nom}$	σ̄(ρ, ρ*) [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$	Δ (%)
45	0	0.1	0.220934	0.25	1955	2012	2.8
45	0	0.1	0.209756	0.5	2253	2312	2.6
45	0	0.1	0.201192	0.75	2550	2615	2.5
45	0	0.1	0.194421	1	2848	2912	2.2
45	0	0.1	0.188934	1.25	3146	3213	2.1
45	0	0.1	0.184396	1.5	3444	3513	2.0
45	0	0.1	0.180583	1.75	3742	3813	1.9
45	0	0.1	0.177332	2	4039	4114	1.8
45	0	0.1	0.174528	2.25	4337	4414	1.7
45	0	0.1	0.172085	2.5	4635	4714	1.7
45	0	0.1	0.168034	3	5231	5315	1.6
45	0	0.1	0.16219	4	6422	6517	1.5
45	0	0.1	0.158175	5	7613	7719	1.4
45	0	0.1	0.155244	6	8806	8920	1.3
45	0	0.1	0.153016	7	9997	10122	1.3
45	0	0.1	0.151263	8	11188	11324	1.2
45	0	0.1	0.149847	9	12379	12526	1.2
45	0	0.1	0.14868	10	13571	13728	1.1

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$ [MPa]	σ _{1,max} (ρ _f) [MPa]	Δ (%)
45	0	0.2	0.440662	0.25	1397	1467	4.8
45	0	0.2	0.417707	0.5	1618	1692	4.3
45	0	0.2	0.40028	0.75	1840	1917	4.0
45	0	0.2	0.386601	1	2061	2141	3.8
45	0	0.2	0.375578	1.25	2282	2366	3.5
45	0	0.2	0.366506	1.5	2503	2591	3.4
45	0	0.2	0.358909	1.75	2725	2816	3.2
45	0	0.2	0.352455	2	2946	3040	3.1
45	0	0.2	0.346904	2.25	3167	3265	3.0
45	0	0.2	0.342079	2.5	3388	3490	2.9
45	0	0.2	0.334103	3	3831	3940	2.8
45	0	0.2	0.322646	4	4716	4839	2.5
45	0	0.2	0.314812	5	5601	5739	2.4
45	0	0.2	0.30911	6	6487	6638	2.3
45	0	0.2	0.304786	7	7372	7538	2.2
45	0	0.2	0.30139	8	8257	8437	2.1
45	0	0.2	0.298651	9	9143	9337	2.1
45	0	0.2	0.296396	10	10028	10236	2.0

2α (°)	β (°)	ρ* [mm]	$ ho_{\mathrm{f}}$ [mm]	$\tau_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$ [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$	Δ (%)
45	0	0.3	0.659909	0.25	1148	1229	6.6
45	0	0.3	0.62495	0.5	1334	1419	6.0
45	0	0.3	0.598556	0.75	1520	1609	5.6
45	0	0.3	0.577925	1	1706	1800	5.2
45	0	0.3	0.561355	1.25	1892	1990	4.9
45	0	0.3	0.547756	1.5	2078	2181	4.7
45	0	0.3	0.536394	1.75	2264	2371	4.5
45	0	0.3	0.526759	2	2450	2561	4.4
45	0	0.3	0.518486	2.25	2636	2752	4.2
45	0	0.3	0.511304	2.5	2822	2942	4.1
45	0	0.3	0.499453	3	3194	3323	3.9
45	0	0.3	0.482475	4	3937	4085	3.6
45	0	0.3	0.470896	5	4681	4847	3.4
45	0	0.3	0.462484	6	5426	5609	3.3
45	0	0.3	0.456113	7	6170	6371	3.2
45	0	0.3	0.451114	8	6914	7133	3.1
45	0	0.3	0.447087	9	7658	7895	3.0
45	0	0.3	0.443773	10	8402	8657	2.9

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$\tau_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$	$\sigma_{1, ext{max}}(ho_{ ext{f}})$	Δ (%)
60	0	0.05	0.118772	0.25	2626	2667	1.5
60	0	0.05	0.114325	0.23	2977	3019	1.4
60	0	0.05	0.110772	0.75	3327	3371	1.3
60	0	0.05	0.107884	1	3675	3724	1.3
60	0	0.05	0.105463	1.25	4026	4076	1.2
60	0	0.05	0.103415	1.5	4376	4428	1.2
60	0	0.05	0.101661	1.75	4726	4781	1.1
60	0	0.05	0.100141	2	5077	5133	1.1
60	0	0.05	0.0988118	2.25	5427	5486	1.1
60	0	0.05	0.0976458	2.5	5775	5838	1.1
60	0	0.05	0.0956694	3	6476	6543	1.0
60	0	0.05	0.0927524	4	7876	7952	1.0
60	0	0.05	0.0906964	5	9277	9362	0.9
60	0	0.05	0.0891732	6	10677	10772	0.9
60	0	0.05	0.0879962	7	12078	12181	0.9
60	0	0.05	0.0870619	8	13478	13591	0.8
60	0	0.05	0.0863013	9	14877	15001	0.8
60	0	0.05	0.085669	10	16279	16411	0.8

2α	β	ρ*	$ ho_{ m f}$	τ_{nom}/σ_{nom}	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
60	0	0.1	0.236919	0.25	1888	1935	2.4
60	0	0.1	0.227669	0.5	2154	2202	2.2
60	0	0.1	0.22036	0.75	2419	2470	2.1
60	0	0.1	0.21447	1	2683	2738	2.0
60	0	0.1	0.209568	1.25	2949	3006	1.9
60	0	0.1	0.205446	1.5	3214	3273	1.8
60	0	0.1	0.201933	1.75	3480	3541	1.7
60	0	0.1	0.198903	2	3745	3809	1.7
60	0	0.1	0.196262	2.25	4011	4077	1.6
60	0	0.1	0.193953	2.5	4275	4345	1.6
60	0	0.1	0.190057	3	4806	4880	1.5
60	0	0.1	0.184343	4	5866	5951	1.4
60	0	0.1	0.180341	5	6929	7023	1.3
60	0	0.1	0.177391	6	7990	8094	1.3
60	0	0.1	0.175119	7	9052	9166	1.2
60	0	0.1	0.173321	8	10112	10237	1.2
60	0	0.1	0.17186	9	11173	11309	1.2
60	0	0.1	0.170648	10	12235	12380	1.2

2α	β	ρ*	$ ho_{ m f}$	τ_{nom}/σ_{nom}	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,\max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
60	0	0.2	0.472531	0.25	1358	1417	4.1
60	0	0.2	0.453314	0.5	1559	1621	3.8
60	0	0.2	0.438298	0.75	1761	1825	3.5
60	0	0.2	0.426307	1	1961	2029	3.4
60	0	0.2	0.416397	1.25	2162	2233	3.2
60	0	0.2	0.408116	1.5	2363	2438	3.0
60	0	0.2	0.401094	1.75	2564	2642	2.9
60	0	0.2	0.395062	2	2766	2846	2.8
60	0	0.2	0.389826	2.25	2967	3050	2.7
60	0	0.2	0.385264	2.5	3167	3254	2.7
60	0	0.2	0.377594	3	3569	3663	2.5
60	0	0.2	0.366419	4	4373	4480	2.4
60	0	0.2	0.358643	5	5178	5297	2.2
60	0	0.2	0.352936	6	5982	6114	2.2
60	0	0.2	0.348556	7	6787	6932	2.1
60	0	0.2	0.345099	8	7591	7749	2.0
60	0	0.2	0.342296	9	8395	8566	2.0
60	0	0.2	0.339975	10	9200	9383	2.0

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$ [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
60	0	0.3	0.707609	0.25	1120	1189	5.8
60	0	0.3	0.67815	0.5	1292	1364	5.3
60	0	0.3	0.655286	0.75	1463	1539	5.0
60	0	0.3	0.637125	1	1633	1713	4.7
60	0	0.3	0.62218	1.25	1804	1888	4.5
60	0	0.3	0.609736	1.5	1975	2063	4.3
60	0	0.3	0.599214	1.75	2146	2238	4.1
60	0	0.3	0.590201	2	2317	2413	4.0
60	0	0.3	0.582392	2.25	2488	2588	3.8
60	0	0.3	0.575602	2.5	2658	2762	3.8
60	0	0.3	0.564214	3	3001	3112	3.6
60	0	0.3	0.547681	4	3684	3812	3.4
60	0	0.3	0.53622	5	4369	4512	3.2
60	0	0.3	0.52783	6	5052	5211	3.1
60	0	0.3	0.521403	7	5736	5911	3.0
60	0	0.3	0.516338	8	6420	6611	2.9
60	0	0.3	0.512237	9	7103	7310	2.8
60	0	0.3	0.508843	10	7788	8010	2.8

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
90	0	0.05	0.153447	0.25	2221	2259	1.7
90	0	0.05	0.150478	0.5	2473	2513	1.6
90	0	0.05	0.147977	0.75	2724	2767	1.5
90	0	0.05	0.145854	1	2975	3020	1.5
90	0	0.05	0.144007	1.25	3226	3274	1.4
90	0	0.05	0.142394	1.5	3478	3527	1.4
90	0	0.05	0.140983	1.75	3728	3781	1.4
90	0	0.05	0.139723	2	3980	4034	1.3
90	0	0.05	0.138596	2.25	4232	4288	1.3
90	0	0.05	0.137584	2.5	4484	4541	1.3
90	0	0.05	0.135843	3	4986	5048	1.3
90	0	0.05	0.133166	4	5991	6062	1.2
90	0	0.05	0.13121	5	6995	7076	1.1
90	0	0.05	0.129713	6	8000	8090	1.1
90	0	0.05	0.128532	7	9005	9101	1.1
90	0	0.05	0.127577	8	10011	10117	1.0
90	0	0.05	0.126788	9	11017	11131	1.0
90	0	0.05	0.126126	10	12022	12145	1.0

2α	β	ρ*	$ ho_{ m f}$	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
90	0	0.1	0.306329	0.25	1637	1673	2.1
90	0	0.1	0.3000018	0.5	1837	1875	2.0
90	0	0.1	0.294768	0.75	2037	2076	2.0
90	0	0.1	0.290329	1	2236	2278	1.8
90	0	0.1	0.28655	1.25	2435	2480	1.8
90	0	0.1	0.2832544	1.5	2635	2681	1.7
90	0	0.1	0.280389	1.75	2833	2883	1.7
90	0	0.1	0.277843	2	3033	3085	1.7
90	0	0.1	0.275581	2.25	3233	3286	1.6
90	0	0.1	0.273557	2.5	3433	3488	1.6
90	0	0.1	0.270098	3	3831	3891	1.5
90	0	0.1	0.264828	4	4629	4698	1.5
90	0	0.1	0.261015	5	5426	5504	1.4
90	0	0.1	0.258119	6	6224	6311	1.4
90	0	0.1	0.255848	7	7022	7117	1.3
90	0	0.1	0.254019	8	7820	7924	1.3
90	0	0.1	0.252514	9	8618	8730	1.3
90	0	0.1	0.251255	10	9416	9537	1.3

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$ [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
90	0	0.2	0.611451	0.25	1207	1248	3.3
90	0	0.2	0.59806	0.5	1366	1409	3.0
90	0	0.2	0.587061	0.75	1524	1570	2.9
90	0	0.2	0.577864	1	1683	1731	2.8
90	0	0.2	0.570104	1.25	1841	1892	2.7
90	0	0.2	0.563388	1.5	1999	2053	2.6
90	0	0.2	0.557588	1.75	2157	2214	2.6
90	0	0.2	0.552466	2	2315	2374	2.5
90	0	0.2	0.547939	2.25	2474	2535	2.4
90	0	0.2	0.543907	2.5	2633	2696	2.4
90	0	0.2	0.537056	3	2949	3018	2.3
90	0	0.2	0.526717	4	3582	3662	2.2
90	0	0.2	0.519308	5	4215	4306	2.1
90	0	0.2	0.513722	6	4848	4949	2.0
90	0	0.2	0.509365	7	5481	5593	2.0
90	0	0.2	0.505871	8	6115	6237	2.0
90	0	0.2	0.503007	9	6748	6880	1.9
90	0	0.2	0.500617	10	7382	7524	1.8

2α	β	ρ^*	$ ho_{ m f}$	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
90	0	0.3	0.916061	0.25	1011	1058	4.5
90	0	0.3	0.895283	0.5	1149	1200	4.2
90	0	0.3	0.878352	0.75	1288	1341	4.0
90	0	0.3	0.864285	1	1426	1483	3.8
90	0	0.3	0.852482	1.25	1564	1624	3.7
90	0	0.3	0.842313	1.5	1703	1765	3.6
90	0	0.3	0.833566	1.75	1840	1907	3.5
90	0	0.3	0.82587	2	1979	2048	3.4
90	0	0.3	0.819086	2.25	2117	2190	3.3
90	0	0.3	0.813062	2.5	2256	2331	3.2
90	0	0.3	0.802861	3	2532	2614	3.1
90	0	0.3	0.78755	4	3085	3180	3.0
90	0	0.3	0.776638	5	3638	3746	2.9
90	0	0.3	0.768444	6	4191	4312	2.8
90	0	0.3	0.762073	7	4745	4878	2.7
90	0	0.3	0.756978	8	5298	5443	2.7
90	0	0.3	0.752809	9	5851	6009	2.6
90	0	0.3	0.749336	10	6404	6575	2.6

2α	β	ρ*	$ ho_{ m f}$	τ_{nom}/σ_{nom}	$\overline{\sigma}(\rho, \rho^*)$	$\sigma_{1,max}(\rho_f)$	Δ (%)
(°)	(°)	[mm]	[mm]		[MPa]	[MPa]	
135	0	0.05	0.486567	0.25	1135	1153	1.6
135	0	0.05	0.488907	0.5	1255	1275	1.6
135	0	0.05	0.490975	0.75	1376	1398	1.5
135	0	0.05	0.492815	1	1497	1520	1.5
135	0	0.05	0.494464	1.25	1618	1642	1.5
135	0	0.05	0.495948	1.5	1738	1765	1.5
135	0	0.05	0.497302	1.75	1860	1887	1.4
135	0	0.05	0.498524	2	1981	2009	1.4
135	0	0.05	0.49964	2.25	2101	2132	1.4
135	0	0.05	0.500663	2.5	2222	2254	1.4
135	0	0.05	0.502476	3	2464	2499	1.4
135	0	0.05	0.505378	4	2947	2989	1.4
135	0	0.05	0.507603	5	3431	3478	1.4
135	0	0.05	0.509356	6	3914	3968	1.4
135	0	0.05	0.510777	7	4397	4457	1.4
135	0	0.05	0.511953	8	4880	4947	1.3
135	0	0.05	0.512939	9	5363	5437	1.3
135	0	0.05	0.513779	10	5846	5926	1.3

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(\rho, \rho^*)$ [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
135	0	0.1	0.973587	0.25	914	933	2.0
135	0	0.1	0.978608	0.5	1019	1040	2.0
135	0	0.1	0.983	0.75	1124	1147	2.0
135	0	0.1	0.986875	1	1229	1254	2.0
135	0	0.1	0.990319	1.25	1334	1362	2.0
135	0	0.1	0.9934	1.5	1439	1469	2.0
135	0	0.1	0.996192	1.75	1545	1576	1.9
135	0	0.1	0.998698	2	1650	1683	1.9
135	0	0.1	1.00098	2.25	1756	1790	1.9
135	0	0.1	1.00305	2.5	1861	1898	1.9
135	0	0.1	1.00671	3	2071	2112	1.9
135	0	0.1	1.01251	4	2491	2541	1.9
135	0	0.1	1.0169	5	2913	2970	1.9
135	0	0.1	1.02034	6	3333	3399	1.9
135	0	0.1	1.0231	7	3754	3828	1.9
135	0	0.1	1.02538	8	4175	4257	1.9
135	0	0.1	1.02728	9	4595	4686	1.9
135	0	0.1	1.02889	10	5016	5115	1.9

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	$ au_{nom}/\ \sigma_{nom}$	$\overline{\sigma}(ho, ho^*)$ [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
135	0	0.2	1.94815	0.25	737	761	3.2
135	0	0.2	1.9589	0.5	828	856	3.2
135	0	0.2	1.96822	0.75	920	951	3.2
135	0	0.2	1.97636	1	1011	1045	3.3
135	0	0.2	1.98353	1.25	1103	1140	3.3
135	0	0.2	1.98991	1.5	1194	1235	3.3
135	0	0.2	1.99565	1.75	1286	1330	3.3
135	0	0.2	2.00077	2	1378	1425	3.3
135	0	0.2	2.00539	2.25	1469	1519	3.3
135	0	0.2	2.0096	2.5	1561	1614	3.3
135	0	0.2	2.01695	3	1744	1804	3.3
135	0	0.2	2.02849	4	2110	2183	3.4
135	0	0.2	2.03714	5	2477	2563	3.4
135	0	0.2	2.04385	6	2843	2942	3.4
135	0	0.2	2.04921	7	3209	3322	3.4
135	0	0.2	2.05359	8	3576	3701	3.4
135	0	0.2	2.05724	9	3942	4081	3.4
135	0	0.2	2.06032	10	4308	4460	3.4

2α (°)	β (°)	ρ* [mm]	ρ _f [mm]	τ_{nom}/σ_{nom}	$\overline{\sigma}(ho, ho^*)$ [MPa]	$\sigma_{1, ext{max}}(ho_{ ext{f}})$ [MPa]	Δ (%)
135	0	0.3	2.92313	0.25	650	681	4.6
135	0	0.3	2.93992	0.5	734	770	4.7
135	0	0.3	2.95435	0.75	818	859	4.7
135	0	0.3	2.9669	1	903	948	4.8
135	0	0.3	2.97791	1.25	987	1037	4.8
135	0	0.3	2.98765	1.5	1072	1126	4.8
135	0	0.3	2.99638	1.75	1157	1215	4.8
135	0	0.3	3.00415	2	1241	1304	4.9
135	0	0.3	3.01114	2.25	1325	1394	4.9
135	0	0.3	3.01748	2.5	1410	1483	4.9
135	0	0.3	3.02853	3	1578	1661	4.9
135	0	0.3	3.04575	4	1916	2018	5.0
135	0	0.3	3.05859	5	2254	2374	5.0
135	0	0.3	3.06849	6	2592	2731	5.1
135	0	0.3	3.07637	7	2929	3087	5.1
135	0	0.3	3.0828	8	3267	3444	5.1
135	0	0.3	3.08813	9	3605	3801	5.1
135	0	0.3	3.09263	10	3942	4158	5.2

7. CONCLUSIONI:

Il soggetto del nostro lavoro è stato un insieme di provini cilindrici indeboliti da intagli a V laterali non raccordati soggetti a sollecitazioni di modo misto I+III.

Abbiamo applicato il metodo del raggio fittizio (FNR) seguendo la metodologia utilizzata nell'articolo di Berto F., Lazzarin P. e Radaj D. [31], ottenendo risultati molto interessanti. Infatti, le analisi eseguite agli elementi finiti sulle differenti geometrie hanno permesso di ottenere i vari valori della tensione sul bordo dell'intaglio $\sigma_{1,max}(\rho_f)$ e di poterli confrontare con quelli della tensione media $\overline{\sigma}(\rho,\rho^*)$ verificando la validità della equazione $\overline{\sigma}(\rho,\rho^*) = \sigma_{1,max}(\rho_f)$.

Si può, notare che:

- il variare dell'angolo di apertura 2α non influenza le deviazioni relative (Δ %), rimanendo sempre comprese in una banda molto ristretta con uno scostamento massimo dell' 8.2 %;
- il valore numerico $\sigma_{1,\text{max}}(\rho_f)$ ottenuto dal software di calcolo risulta sempre maggiore di quello teorico $\overline{\sigma}(\rho,\rho^*)$ evidenziando il rispetto del regime di sicurezza.

Quindi, nel caso di provini intagliati cilindrici indeboliti da intagli a V non raccordati ($\rho = 0$) soggetti a sollecitazioni di carico di modo I+III, il metodo [31] del raggio fittizio (*FNR*) è risultato corretto con un errore < 8.2% permettendo, così, di estenderlo alla tipologia in esame ed aprendo contestualmente un nuovo possibile percorso nello studio della particolare problematica.

IL METODO DEL RAGGIO FITTIZIO APPLICATO A PIASTRE INDEBOLITE DA INTAGLI A V LATERALI E SOGGETTE A SOLLECITAZIONI DI MODO MISTO I + II

1. DESCRIZIONE:

Il concetto del raggio fittizio (FNR) applicato a piastre indebolite da intagli a V centrati e soggetti a modo misto è stato esposto per la prima volta nell'articolo [31], utilizzando la geometria mostrata nella sottostante figura.

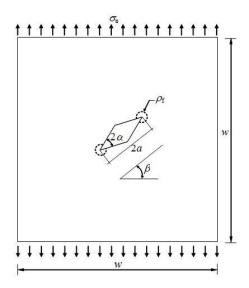


Fig. 24: Geometria della piastra con doppio intaglio a V centrale, dimensioni w=100~mm e $2a=10\sqrt{2}~\text{mm}$

Dove la dimensione del raggio fittizio ρ_f è determinata come funzione del raggio di raccordo dell'intaglio ρ , della lunghezza microstrutturale di supporto ρ^* e dall'angolo di apertura dell'intaglio stesso. Il fattore microstrutturale di supporto s è

considerato indipendente dal ρ^* , pertanto, il raggio fittizio è espresso dalla seguente relazione:

$$\rho_f = \rho + s\rho^*$$

Nel articolo in argomento sono stati studiati intagli a V non raccordati, aventi $\rho=0$ mm, poiché questa tipologia d'intaglio risulta essere la più critica per la resistenza del componente, anche se, nella quasi totalità dei casi reali il raggio di raccordo non è mai uguale a 0 mm, come ipotizzato, ma può essere molto piccolo e, pertanto, può essere approssimato a tale valore a favore di sicurezza. L'elaborato di Lazzarin P., Berto F. e Radaj D. fornisce i valori del fattore microstrutturale di supporto s, il quale dipende dal rapporto tra le sollecitazioni di modo I e II.

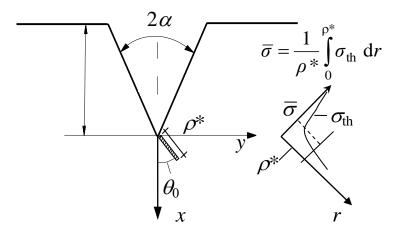


Figura 25: Angolo di propagazione della cricca e tensione mediata sulla lunghezza ρ^* per un intaglio a V non raccordato

Nel caso di intaglio a V soggetto a sollecitazioni di modo I e II, la tensione normale alla bisettrice dell'intaglio $\sigma_{\theta\theta}$ può essere scritta come:

$$\begin{split} \sigma_{\theta\theta} &= \frac{K_{1\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_1-1}}{(1+\lambda_1)+\varphi_1(\gamma)} \Biggl\{ \cos(1-\lambda_1)\theta \Biggl[(1+\lambda_1)+\widetilde{\psi}_{11}(\theta) \biggl(\frac{\rho}{r}\biggr)^{2\lambda_1} + \widetilde{\psi}_{12}(\theta)\widetilde{\chi}_{11}(\theta) \biggl(\frac{\rho}{r}\biggr)^{2\lambda_1+1} \Biggr] + \\ &+ \varphi_1(\gamma)\cos(1+\lambda_1)\theta \Biggl[1+(1-\lambda_1)\biggl(\frac{\rho}{r}\biggr)^{2\lambda_1} + \Bigl(2+\lambda_1\biggl)\biggl(\frac{\rho}{r}\biggr)^{2(\lambda_1+1)} \Biggr] \Biggr\} + \\ &- \frac{K_{2\rho}}{\sqrt{2\pi}} \frac{r^{\lambda_2-1}}{(1-\lambda_2)+\varphi_2(\gamma)} \Biggl\{ \sin(1-\lambda_2)\theta \Biggl[(\lambda_2+1)-\widetilde{\psi}_{21}(\theta)\biggl(\frac{\rho}{r}\biggr)^{2\lambda_2} - \widetilde{\psi}_{22}(\theta)\widetilde{\chi}_{22}(\theta)\biggl(\frac{\rho}{r}\biggr)^{2\lambda_2+1} \Biggr] + \\ &+ \varphi_2(\gamma)\sin(1+\lambda_2)\theta \Biggl[1+(1-\lambda_2)\biggl(\frac{\rho}{r}\biggr)^{2\lambda_2} + \bigl(2+\lambda_2\biggr)\biggl(\frac{\rho}{r}\biggr)^{2(\lambda_2+1)} \Biggr] \Biggr\} \end{split}$$

Mentre per determinare la direzione di propagazione della cricca è stato utilizzando il criterio della Maximum Tangential Stress, infatti, basandoci sul citato criterio (MTS), la direzione di propagazione della cricca θ_0 è ottenuta dalla seguente relazione, dove r definisce la distanza dall'apice dell'intaglio:

$$\frac{\partial \sigma_{\theta\theta}(\rho=0, r=0.005)}{\partial \theta} = 0$$

In questo studio è stato scelto il valore r=0.005 mm, si può inoltre notare che all'aumentare di tale distanza aumenta anche l'angolo di propagazione θ_0 in quanto cresce il contributo dovuto alle sollecitazioni di modo II rispetto al modo I.

A partire dalla definizione delle tensioni $\sigma_{\theta\theta}$, conoscendo il valore dell'angolo di propagazione θ_0 a una distanza r, è possibile calcolare la Maximum Theoretical Notch Stress $\sigma_{th}(r,\theta_0)$ e di conseguenza si può ricavare la tensione mediata $\bar{\sigma}$ nella direzione θ_0 come:

$$\bar{\sigma} = \frac{1}{\rho^*} \int_{0}^{\rho + \rho^*} \sigma_{th}(r, \theta_0) dr$$

e calcolarne il relativo

$$\overline{K_t} = \frac{\overline{\sigma}}{\sigma_n}$$

Questo valore viene infine confrontato con il fattore di concentrazione teorico delle tensioni $\overline{K_t}(\rho_f)$, calcolato considerando la tensione principale posta sul bordo dell'intaglio avente il raggio fittizio di dimensione ρ_f , la cui formulazione è la seguente:

$$\overline{K_t}(\rho_f) = \frac{\sigma_{max}(\rho^*, s)}{\sigma_n}$$

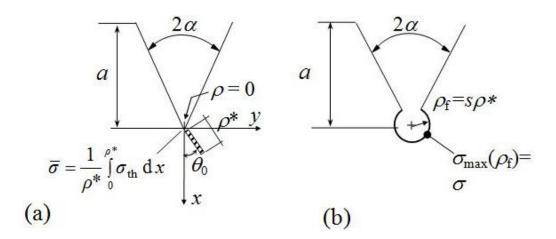


Fig. 26: Geometria dell'intaglio reale (a) e geometria dell'intaglio a V modificata inserendo un arco di raggio ρ_f centrato all'apice dell'intaglio stesso (b)

Nell'articolo sono riportati i valori del fattore microstrutturale di supporto s, i quali sono funzione dei fattori di intensificazione delle tensioni K_1 e K_2 e dell'angolo di propagazione della cricca θ_0 .

L'obiettivo del lavoro è quello di confermare che i valori di s trovati dal metodo proposto e basato sul criterio MTS può essere usato con sufficiente accuratezza in un range limitato di valori ρ^* .

I $\overline{K_t}$ e $\overline{K_t}(\rho_f)$ sono stati quindi calcolati per valori ρ^* che variano da 0.05 a 0.3 mm.

2. Intaglio laterale:

In questo lavoro è stato analizzato un insieme di piastre indebolite da un intaglio a V laterale su ciascuno dei due lati verticali, utilizzando il medesimo processo di calcolo, gli stessi valori del parametro s e lo stesso valore del raggio fittizio descritti nell'articolo per ciascuna geometria in esame [31].

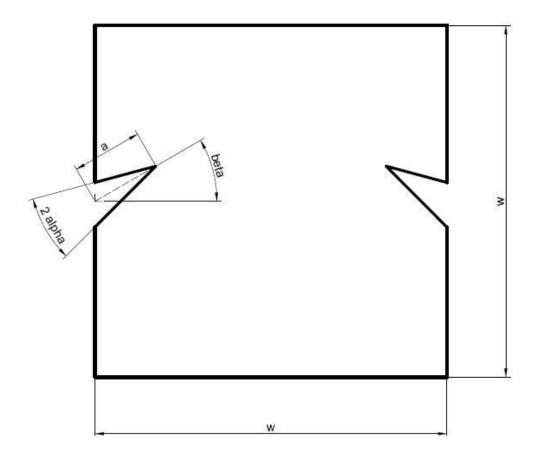


Fig. 7: Geometria della piastra indebolita da intagli a V laterali e inclinati

In particolare sono stati considerati i seguenti parametri geometrici:

- Angolo di apertura dell'intaglio $2\alpha = 0^{\circ}$, 30° , 45° , 60°
- Lunghezza dell'intaglio $2a = 10\sqrt{2}$ mm
- Angolo di inclinazione $\beta = 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$
- Larghezza della piastra w = 100 mm

Occorre evidenziare che il caso costituito da $2\alpha = 60^{\circ}$ e $\beta = 60^{\circ}$ non è stato preso in esame, poiché a causa della particolare combinazione degli angoli uno dei due lati dell'intaglio si posizionava perpendicolarmente all'asse orizzontale realizzando una geometria completamente diversa.

Per realizzare le analisi agli elementi finiti delle varie geometrie da esaminare è stato utilizzato il codice di calcolo ANSYS® vers. 14.5 e grazie alla simmetria del componente in esame rispetto all'asse verticale è stato possibile indagare una geometria ridotta alla sua metà, infatti, è stato sufficiente imporre dei vincoli di simmetria sull'asse stesso, semplificando la creazione e la risoluzione del modello.

A causa dell'elevato numero di geometrie da indagare i modelli sono stati realizzati ricorrendo al linguaggio APDL (Ansys Parametric Design Language) che permette al variare di alcuni parametri (apertura dell'intaglio 2α ed angolo di inclinazione β) di realizzare nuovi modelli da investigare con un notevole rispsrmio di risorse e tempo. L'elemento utilizzato è l'elemento a 8 nodi denominato PLANE 183 nella libreria degli elementi di Ansys.

3. CALCOLO DI $K_I \to K_{II}$:

Analogamente a quanto indicato nel Capitolo Primo al 3° Paragrafo i valori dei fattori di intensificazione delle tensioni K_1 e K_2 , per ciascuna geometria, sono determinati partendo dai valori nodali delle tensioni lungo una "path" in direzione della bisettrice dell'angolo di apertura dell'intaglio 2α .

L'utilizzo di una mesh di tipo free, creata con il comando concentration keypoint, è fortemente consigliata in prossimità degli apici degli intagli, perché genera elementi radialmente che diminuiscono di dimensione avvicinandosi ad essi.

Vediamo ora alcune mesh in prossimità dell'apice dell'intaglio per le diverse geometrie:

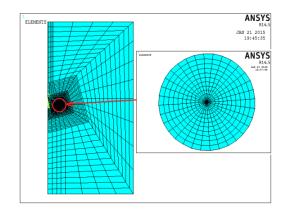


Fig. 28: mesh per $2\alpha \!\!=\!\! 0^{\circ}$ e $\beta \!\!=\!\! 15^{\circ}$

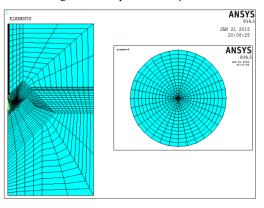


Fig. 30: mesh per $2\alpha\!\!=\!\!0^{\circ}$ e $\beta\!\!=\!\!45^{\circ}$

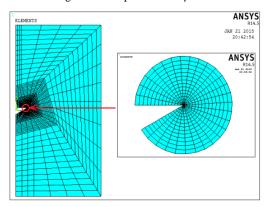


Fig. 32: mesh per 2α =30° e β =15°

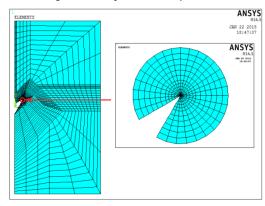


Fig. 34: mesh per 2α =30° e β =45°

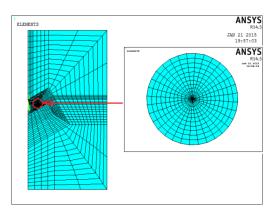


Fig. 29: mesh per $2\alpha \!\!=\!\! 0^{\circ}$ e $\beta \!\!=\!\! 30^{\circ}$

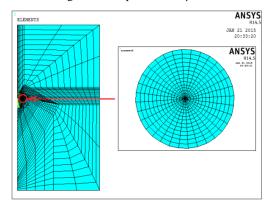


Fig. 31: mesh per $2\alpha=0^{\circ}$ e $\beta=60^{\circ}$

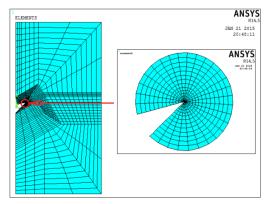


Fig. 8: mesh per $2\alpha=30^{\circ}$ e $\beta=30^{\circ}$

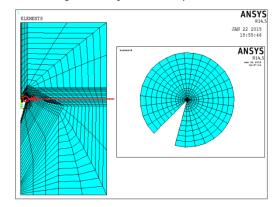


Fig. 35: mesh per $2\alpha=30^{\circ}$ e $\beta=45^{\circ}$

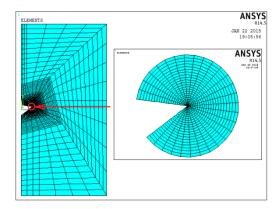


Fig. 9: mesh per 2α = 45° e β = 15°

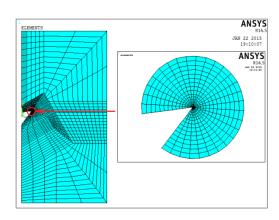


Fig. 10: mesh per 2α =45° e β =30°

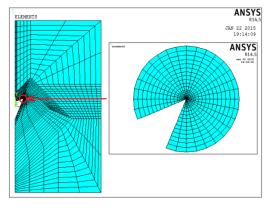


Fig. 11: mesh per $2\alpha\!\!=\!\!45^\circ$ e $\beta\!\!=\!\!45^\circ$

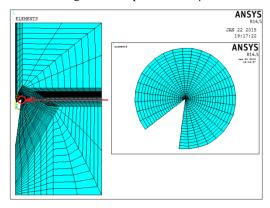


Fig. 12: mesh per $2\alpha\!\!=\!\!45^\circ$ e $\beta\!\!=\!\!60^\circ$

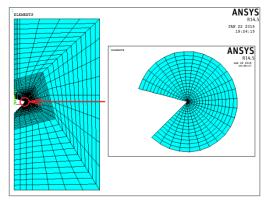


Fig. 40: mesh per 2α = 60° e β = 15°

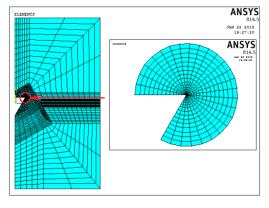


Fig. 41: mesh per $2\alpha\!\!=\!\!60^\circ$ e $\beta\!\!=\!\!30^\circ$

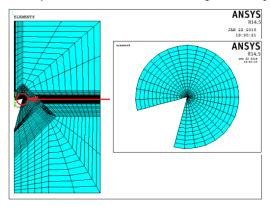


Fig. 42: mesh per $2\alpha=60^{\circ}$ e $\beta=45^{\circ}$

Una volta realizzata la mesh, occorre creare un sistema di riferimento locale centrato all'apice dell'intaglio e ruotato di un angolo pari all'angolo di inclinazione β e rispetto ad esso vengono calcolate le tensioni σ_{θ} e $\tau_{r\theta}$ lungo bisettrice dell'intaglio.

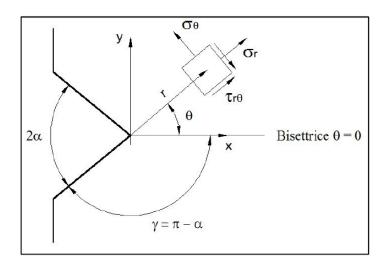


Fig. 43: Sistema di riferimento locale

Utilizzando le espressioni analitiche di Gross e Mendelson determiniamo i degli NSIFs:

$$K_1 = \lim_{r \to 0} \sqrt{2\pi} \cdot r^{1-\lambda_1} \cdot \sigma_{\theta\theta}$$

$$K_2 = \lim_{r \to 0} \sqrt{2\pi} \cdot r^{1-\lambda_2} \cdot \tau_{r\theta}$$

con λ_1 e λ_2 funzioni degli angoli di apertura dell'intaglio $2\alpha.$

4. CALCOLO DELL'ANGOLO DI PROPAGAZIONE DELLA CRICCA θ_0 E DELLA TENSIONE MASSIMA TEORICA ALL'INTAGLIO σ_{th} :

Una volta determinati i valori dei fattori di intensificazione delle tensioni è stato possibile ricavare l'angolo di propagazione della cricca, annullando la derivata della tensione normale alla bisettrice dell'intaglio.

Tale tensione, nel caso di sollecitazioni di modo misto I+II può essere scritta come funzione dell'angolo θ nel seguente modo [16]:

$$\sigma_{\text{th}(\mathbf{r},\theta)} := \frac{1}{\sqrt{2\pi}} \frac{r^{\lambda_{I}-1} \cdot K_{I}}{1 + \lambda_{I} + \chi_{I} \cdot (1 - \lambda_{I})} \left((1 + \lambda_{I}) \cdot \text{Cos}[(1 - \lambda_{I}) \cdot \theta] + \chi_{I}(1 - \lambda_{I}) \right)$$

$$\cdot \text{Cos}[(1 + \lambda_{I}) \cdot \theta] + \frac{1}{\sqrt{2\pi}} \frac{r^{\lambda_{II}-1} \cdot K_{II}}{1 - \lambda_{II} + \chi_{II} \cdot (1 + \lambda_{II})} \left(-(1 + \lambda_{II}) \cdot \text{Sin}[(1 + \lambda_{II}) \cdot \theta] \right)$$

$$-\lambda_{II} \cdot \theta] - \chi_{II} \cdot (1 + \lambda_{II}) \cdot \text{Sin}[(1 + \lambda_{II}) \cdot \theta])$$

con λ_I e λ_{II} autovalori di Williams, χ_I e χ_{II} che rispettivamente valgono

$$\chi_I = -\frac{\sin[(1-\lambda_I)q\pi/2]}{\sin[(1+\lambda_I)q\pi/2]}$$

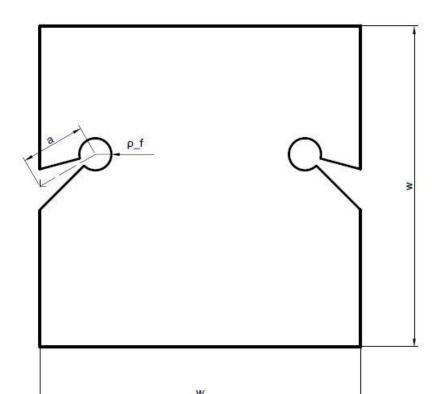
$$\chi_{II} = -\frac{\sin[(1 - \lambda_{II})q\pi/2]}{\sin[(1 + \lambda_{II})q\pi/2]}$$

Il valore di θ_0 viene determinato annullando la derivata della tensione $\sigma_{\text{th}(r,\theta)}$ rispetto all'angolo θ a una distanza r = 0.005 mm:

$$\theta_0 = \frac{\partial \sigma_{\text{th}_{(0.005,\theta)}}}{\partial \theta} = 0$$

Una volta determinati gli angoli di propagazione della cricca per ciascuna geometria è possibile determinare la tensione mediata lungo la direzione θ_0 , al variare dei valori ρ^* come:

$$\bar{\sigma} = \frac{1}{\rho^*} \int\limits_{\rho}^{\rho + \rho^*} \sigma_{th}(r, \theta_0) dr$$


Nelle tabelle che seguono sono riportati per ciascuna geometria analizzata i valori dei fattori di intensificazione delle tensioni K_1 e K_2 , con le relative unità di misura, e l'angolo di propagazione della cricca corrispondente.

 $2a = 10*\sqrt{2}$ mm, w = 100 mm

2α	β	K_1	K_2	λ_1	λ_2	θ ₀ (°)
(°)	(°)	(MPa mm $^{1-\lambda 1}$)	(MPa mm ^{1-λ2})			
0	15	489	75	0.500	0.500	-16,7075
	30	422	137	0.500	0.500	-30,8107
	45	319	166	0.500	0.500	-41,0776
	60	211	155	0.500	0.500	-47,9469
30	15	489	85	0.501	0.598	-11,9024
	30	420	156	0.501	0.598	-23,1352
	45	320	188	0.501	0.598	-32,0139
	60	198	165	0.501	0.598	-38,8694
45	15	494	89	0.505	0.660	-9,2643
	30	422	162	0.505	0.660	-18,3097
	45	316	193	0.505	0.660	-26,3104
	60	187	162	0.505	0.660	-32,9080
60	15	496	90	0.512	0.731	-6,5794
	30	419	162	0.512	0.731	-13,4777
	45	306	187	0.512	0.731	-19,9595
	60	//	//	//	//	//

5. CALCOLO DELLA TENSIONE SUL BORDO DELL'INTAGLIO FITTIZIO TRAMITE ANALISI AGLI ELEMENTI FINITI:

L'inserimento di un arco di raggio ρ_f centrato all'apice dell'intaglio modifica la geometria oggetto dello studio, verranno ora utilizzati gli stessi valori di s e considerati intagli a V non raccordati ($\rho=0$) che semplificano la relazione da $\rho_f=\rho+s\rho^*$ a $\rho_f=s\rho^*$ come nell'articolo di riferimento [15].

La nuova geometria da analizzare è rappresentata nella sottostante figura.

Fig. 44: Piastra con intaglio a V modificata dalla presenza del raggio ρ_f centrato nell'apice dell'intaglio.

Dopo aver impostato tutti i parametri geometrici e la tensione nominale $\sigma_n = 100 \, MPa$, per ciascuna configurazione, viene calcolata numericamente la tensione principale sul bordo dell'intaglio. Nelle seguenti figure vengono riportati alcuni esempi di 'contour plot' della tensione principale al variare dell'angolo di apertura e dell'angolo di inclinazione dell'intaglio.

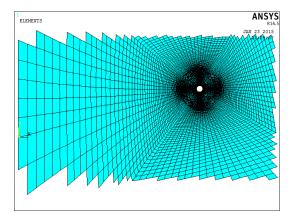


Fig. 45: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per $2\alpha=0^{\circ}$ e $\beta=15^{\circ}$

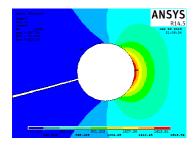


Fig. 46: Tensione principale per ρ_f =0.117 per 2 α =0° e β =15°

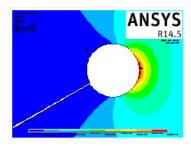


Fig. 47: Tensione principale per ρ_f =0.124 per 2 α =0° e β =30°

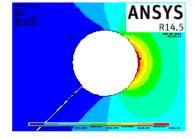


Fig. 13: Tensione principale per ρ_f =0.132 per 2 α =0° e β =45°

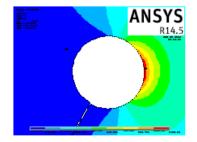


Fig. 49: Tensione principale per ρ_f =0.138 per 2α =0° e β =60°

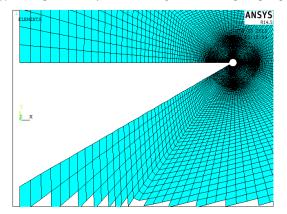


Fig. 50: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per 2α =30° e β =15°

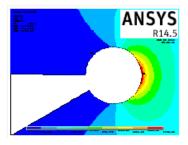


Fig. 51: Tensione principale per $\rho_f\!=\!0.124$ per $2\alpha\!=\!30^{\circ}$ e $\beta\!=\!15^{\circ}$

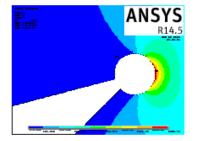


Fig. 52: Tensione principale per ρ_f =0.149 per 2 α =30 $^{\circ}$ e β =30 $^{\circ}$

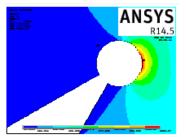


Fig. 53: Tensione principale per ρ_f =0.181 per 2α =30° e β =45°

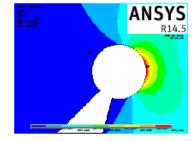


Fig. 54: Tensione principale per ρ_f =0.220 per 2α =30° e β =60°

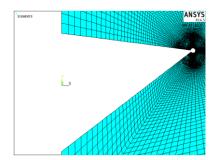


Fig. 55: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per 2α =45° e β =15°

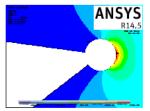


Fig. 56: Tensione principale per ρ_f =0.128 per 2 α =45 $^{\circ}$ e β =15 $^{\circ}$

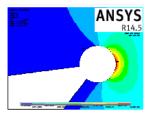


Fig. 57: Tensione principale per ρ_f =0.158 per $2\alpha\!\!=\!\!45^\circ$ e $\beta\!\!=\!\!30^\circ$

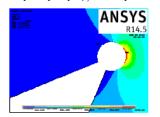


Fig. 58: Tensione principale per ρ_f =0.212 per 2α =45° e β =45°

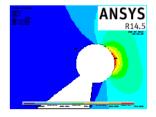


Fig. 59: Tensione principale per ρ_f =0.304 per 2 α =45 $^{\circ}$ e β =60 $^{\circ}$

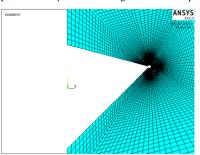


Fig. 60: mesh di porzione di piastra interessata dall'intaglio con arco di raggio ρ_f per 2α =60° e β =15°

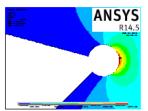


Fig. 61: Tensione principale per ρ_f =0.133 per 2α =60° e β =15°

Fig. 62: Tensione principale per ρ_f =0.162 per 2α =60° e β =30°

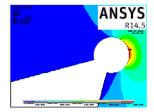


Fig. 63: Tensione principale per ρ_f =0.240 per 2 α =60 $^{\circ}$ e β =45 $^{\circ}$

6. CALCOLO DEL K_t :

Una volta determinate le tensioni principali in corrispondenza del bordo dell'intaglio caratterizzato dal raggio fittizio e le tensioni teoriche mediate lungo la direzione di propagazione della cricca si possono determinare i relativi fattori teorici di concentrazione delle tensioni considerando la tensione nominale σ_n . Si otterranno dunque in questo modo i valori di

$$\overline{K_t} = \frac{\overline{\sigma}}{\sigma_n}$$

e di

$$K_t(\rho_f) = \frac{\sigma_{max}(\rho^*, s)}{\sigma_n}$$

per ciascuna geometria presa in esame.

Per estendere i limiti di applicabilità del metodo proposto, riducendo sostanzialmente le deviazioni tra i fattori teorici di concentrazione delle tensioni, il valore del $\overline{K_t}$ determinato grazie agli NSIFs K_1 e K_2 è stato combinato con l'effetto di concentrazione delle tensioni provocato dall'intaglio fittizio $K_{t,eh}$, dovuto a sollecitazioni parallele alla bisettrice dell'intaglio.

Viene suggerita in questo senso una relazione empirica valida per angoli di apertura dell'intaglio $0^{\circ} \le 2\alpha \le 60^{\circ}$:

$$K_{t,eh} = f_1(\beta) \cdot f_2(\theta_0) = \frac{1 - \cos(2\beta)}{2} \cdot 3.0 \frac{1 - \cos(\theta_0)}{2}$$

dove il fattore 3.0 richiama la soluzione di Kirsh.

Possono venire quindi comparati i valori di $K_t(\rho_f)$ trovati come soluzione dalle analisi FEM con quelli ottenuti dalla formulazione teorica $\overline{K_t} + K_{t,eh}$.

Nelle tabelle seguenti sono riportati e confrontati tali valori per ciascuna configurazione geometrica presa in esame.

	(°) 15	0.152			()		$\overline{K_t}$	$K_{t,eh}$	$\overline{K_t} + K_{t,eh}$	$K_t(\rho_f)$	
		0.152			(mm)	(mm)	**t	it,en	nt i nt,en	$\mathbf{n}_{l}(\mathbf{p}_{l})$	(%)
			0.096	2.33	0.05	0.117	18.0410	0.0042333	18.0452	18.17	0.7
					0.1	0.233	12.7569	0.0042333	12.7611	13.12	2.7
					0.2	0.467	9.0205	0.0042333	9.0247	9.58	5.8
					0.3	0.700	7.3652	0.0042333	7.3694	8.05	8.4
3	30	0.324	0.199	2.49	0.05	0.124	17.1135	0.0528249	17.1663	16.92	-1.5
					0.1	0.249	12.1010	0.0528249	12.1538	12.17	0.1
					0.2	0.498	8.5567	0.0528249	8.6096	8.91	3.4
					0.3	0.746	6.9865	0.0528249	7.0394	7.51	6.3
4	45	0.519	0.305	2.64	0.05	0.132	14.8142	0.1843088	14.9985	14.81	-1.3
					0.1	0.264	10.4752	0.1843088	10.6595	10.75	0.8
					0.2	0.527	7.4071	0.1843088	7.5914	7.96	4.6
					0.3	0.791	6.0479	0.1843088	6.2322	6.76	7.8
6	60	0.736	0.404	2.77	0.05	0.138	11.3725	0.3708717	11.7434	11.9	1.3
					0.1	0.277	8.0416	0.3708717	8.4124	8.82	4.6
					0.2	0.553	5.6862	0.3708717	6.0571	6.7	9.6
					0.3	0.830	4.6428	0.3708717	5.0137	5.46	8.2
30 1	15	0.173	0.109	2.49	0.05	0.124	17.6918	0.002156	17.6940	17.56	-0.8
					0.1	0.249	12.5491	0.002156	12.5513	12.67	0.9
					0.2	0.497	8.9027	0.002156	8.9049	9.3	4.2
					0.3	0.746	7.2836	0.002156	7.2857	7.83	7.0
3	30	0.372	0.227	2.98	0.05	0.149	16.1096	0.0300995	16.1397	15.26	-5.8
					0.1	0.298	11.5032	0.0300995	11.5333	11.13	-3.6
					0.2	0.596	8.2185	0.0300995	8.2486	8.24	-0.1
					0.3	0.894	6.7528	0.0300995	6.7829	6.99	3.0
4	45	0.589	0.339	3.62	0.05	0.181	13.4016	0.113857	13.5155	12.31	-9.8
					0.1	0.362	9.6479	0.113857	9.7618	9.16	-6.6
					0.2	0.725	6.9517	0.113857	7.0655	6.94	-1.8
					0.3	1.087	5.7412	0.113857	5.8550	5.98	2.1
6	60	0.834	0.443	4.39	0.05	0.220	9.2498	0.2487039	9.4985	8.87	-7.1
					0.1	0.439	6.7120	0.2487039	6.9607	6.88	-1.2
					0.2	0.878	4.8756	0.2487039	5.1243	5.5	6.8
					0.3	1.317	4.0462	0.2487039	4.2949	4.89	12.2

2α	β	χ	M	S	ρ*	ρ_f				$K_t(ho_f)$	Δ
(°)	(°)				(mm)	(mm)	$\overline{K_t}$	$K_{t,eh}$	$\overline{K_t} + K_{t,eh}$		(%)
45	15	0.181	0.114	2.56	0.05	0.128	17.2367	0.001308	17.2380	17.21	-0.2
					0.1	0.256	12.2624	0.001308	12.2637	12.48	1.8
					0.2	0.511	8.7261	0.001308	8.7274	9.18	5.0
					0.3	0.767	7.1524	0.001308	7.1537	7.74	7.6
-	30	0.385	0.234	3.16	0.05	0.158	15.4776	0.0189489	15.4965	14.6	-6.1
					0.1	0.316	11.0937	0.0189489	11.1126	10.74	-3.5
					0.2	0.631	7.9597	0.0189489	7.9786	8.01	0.4
					0.3	0.947	6.5581	0.0189489	6.5770	6.82	3.6
-	45	0.611	0.349	4.24	0.05	0.212	12.3694	0.0775563	12.4470	11.04	-12.8
					0.1	0.424	8.9599	0.0775563	9.0375	8.35	-8.3
					0.2	0.848	6.5022	0.0775563	6.5798	6.46	-1.8
					0.3	1.272	5.3952	0.0775563	5.4727	5.62	2.6
-	60	0.87	0.456	6.08	0.05	0.304	7.9694	0.1802245	8.1496	7.16	-13.8
					0.1	0.608	5.8384	0.1802245	6.0187	5.75	-4.7
					0.2	1.217	4.2878	0.1802245	4.4681	4.77	6.3
					0.3	1.825	3.5837	0.1802245	3.7639	4.36	13.7
60	15	0.181	0.114	2.65	0.05	0.133	16.7978	0.0006604	16.7985	16.78	-0.1
					0.1	0.265	12.0025	0.0006604	12.0032	12.22	1.8
					0.2	0.530	8.5790	0.0006604	8.5797	9.02	4.9
					0.3	0.795	7.0503	0.0006604	7.0509	7.62	7.5
-	30	0.388	0.235	3.25	0.05	0.162	14.5455	0.0103073	14.5558	14.02	-3.8
					0.1	0.325	10.4632	0.0103073	10.4735	10.41	-0.6
					0.2	0.649	7.5368	0.0103073	7.5471	7.85	3.9
					0.3	0.974	6.2251	0.0103073	6.2354	6.71	7.1
-	45	0.613	0.35	4.79	0.05	0.240	11.0783	0.0449684	11.1233	9.83	-13.2
					0.1	0.479	8.0522	0.0449684	8.0971	7.6	-6.5
					0.2	0.958	5.8684	0.0449684	5.9134	6.01	1.6
					0.3	1.438	4.8837	0.0449684	4.9286	5.31	7.2

7. CONCLUSIONI:

Il soggetto del nostro lavoro è stato un insieme di piastre indebolite da un intaglio a V laterale non raccordato su ciascuno dei due lati verticali e soggette a sollecitazioni di modo misto I+II, ove abbiamo applicato il metodo del raggio fittizio (FNR) utilizzando i valori del fattore microstrutturale di supporto s ed i raggi fittizi ρ_f ottenuti nell'articolo di Berto F., Lazzarin P. e Radaj D. [15].

Le analisi eseguite agli elementi finiti sulle differenti geometrie hanno permesso di confrontare i valori dei fattori teorici di concentrazione delle tensioni $K_t(\rho_f)$ ottenuti dai modelli con intaglio fittizio con quelli ottenuti dalla tensione mediata $\overline{K_t}$ lungo la direzione di propagazione della cricca θ_0 calcolata per i modelli aventi l'intaglio reale corretti con $K_{t,eh}$.

Si può, infatti, notare che al crescere dell'angolo di apertura 2α e di quello d'inclinazione β le deviazioni relative (Δ %) non risultano più comprese in una banda del 10%, infatti, come già evidenziato nell'articolo [15], sebbene i risultati ottenuti con il metodo del raggio fittizio siano incoraggianti, è preferibile utilizzare direttamente i metodi basati sulla tensione mediata lungo la direzione di propagazione della cricca θ_0 , il calcolo degli NSIFs di modo I e modo II oppure la densità di energia di deformazione valutata in un volume di controllo (SED).

Quindi, il metodo del FNR è una procedura sufficientemente corretta per le valutazioni preliminari di resistenza di un componente intagliato e comunque con angoli di apertura 2α non superiore a 30° ed un angolo di inclinazione β non superiore a 45° , oltre tali aperture il divario tra i valori teorici e quelli ottenuti supera il 10% e quindi è inaccettabile.

- [1] Neuber H. Kerbspannungslehre, 2nd ed. Berlin: Springer-Verlag; 1958.
- [2] Neuber H. Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen. Konstruktion 1968; 20: 245-251.
- [3] Neuber H. Kerbspannungslehre, 3rd ed. Berlin: Springer-Verlag; 1985.
- [4] Filippi S, Lazzarin P, Tovo R. Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int J Solids Struct 2002; 39: 4543-4565.
- [5] Berto F, Lazzarin P, Radaj D. Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part I: Basic stress equations. Eng Fract Mech 2008; 75: 3060-3072.
- [6] Berto F, Lazzarin P, Radaj R. Fictitious notch rounding concept applied to sharp V-notches: evaluation of the microstructural support factor for different failure hypotheses. Part II: Microstructural support analysis. Eng Fract Mech 2009; 76:1151-1175.
- [7] Wieghardt K. Über das Spalten und Zerreiβen elastischer Körper. Z. Mathematik u. Physik 1907; 55: 60-103; translated in English by H.P. Rossmanith, Fatigue Fract Engng Mater Struct 1995; 18: 1371-1405.
- [8] Weiss V. Eine Bruchmechanik für Kerben. Schweiz Arch Angew Wiss Techn 1971; 37: 1-7.
- [9] Neuber H. Zur Theorie der technischen Formzahl. Forsch Ing Wes 1936; 7: 271-274.
- [10] Peterson RE. Relation between stress analysis and fatigue of metals. Proc. SESA 11 (1950) 199-206.
- [11] Lazzarin P, Tovo R, Meneghetti G. Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity. Int J Fatigue 1997; 19:647-657.
- [12] David Taylor Geometrical effects in fatigue: a unifying theoretical model *International Journal of Fatigue*, *Volume 21, Issue 5, May 1999*, *Pages 413-420*
- [13] Luca Susmel, David Taylor A simplified approach to apply the theory of critical distances to notched components under torsional fatigue loading *International Journal of Fatigue*, *Volume 28, Issue 4, April 2006, Pages 417-430*.
- [14] L. Susmel, D. Taylor On the use of the Theory of Critical Distances to predict static failures in ductile metallic materials containing different geometrical features *Engineering Fracture Mechanics*, *Volume 75*, *Issue 15*, *October 2008*, *Pages 4410-4421*
- [15] Luca Susmel, David Taylor The Theory of Critical Distances to estimate the static strength of notched samples of Al6082 loaded in combined tension and torsion. Part II: Multiaxial

- static assessment Engineering Fracture Mechanics, Volume 77, Issue 3, February 2010, Pages 470-478.
- [16] Susmel L, Taylor D, The Theory of Critical Distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading International Journal of Fatigue, Volume 33, Issue 7, July 2011, Pages 900-911
- [17] Radaj D. Näherungsweise Berechnung der Formzahl von Schweiβnähten. Schw Schn 1969; 21: 97-105, and 1969; 21:151-158.
- [18] Radaj D. Design and Analysis of Fatigue Resistant Welded Structures, Cambridge: Abington Publishing; 1990.
- [19] Hobbacher A. (Ed.) Fatigue Design of Welded Joints and Components. Abington Publishing, Cambridge, UK, 1996 (IIW Doc. XIII-1539/XV-845-96) and update 2008 (IIW Doc. XIII-2151-07/XV-1254-07). Weld Res Coun, New York, Bull 520, 2009.
- [20] M. Malikoutsakis and G. Savaidis Fatigue assessment of thin-welded joints with pronounced terminations Fatigue & Fracture of Engineering Materials & Structures Volume 37, Issue 7, July 2014, Pages: 782–799.
- [21] E. Shams, M. Malikoutsakis, G. Savaidis and M. Vormwald Notch stress and fracture mechanics based assessment of fatigue of seam weld ends under shear loadingFatigue & Fracture of Engineering Materials & StructuresVolume 37, Issue 7, July 2014, Pages: 740– 750.
- [22] Berto F, Zappalorto M. Fictitious notch rounding concept applied to V-notches with endholes under mode 1 loading. Int J Fract 2011;171:91–98.
- [23] Berto F, Zappalorto M. The fictitious notch rounding approach applied to V-notches with root holes subjected to mode 1 loading. J Strain Anal 2012; 47:176–186.
- [24] Zappalorto M, Lazzarin P. <u>In-plane and out-of-plane stress field solutions for V-notches with end holes</u>. Int J Fract 2011; 168: 167-180.
- [25] Berto F. Fictitious notch rounding concept applied to V-notches with end holes under mode 3 loading. Int J Fatigue 2012;38:188–193.
- [26] Radaj D, Zhang S. On the relations between notch stress and crack stress intensity in plane shear and mixed mode loading. Eng Fract Mech 1993; 44: 691-704.
- [27] Berto F, Lazzarin P. <u>Fictitious notch rounding approach of pointed V-notch under in-plane shear</u>. Theor Appl Fract Mech 2010; 53: 127-135.
- [28] Erdogan F, Sih CG. On the crack extension in plates under plane loading and transverse shear. J Basic Eng, 1963; 85: 519-525.
- [29] Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 1974; 10: 305-321.

- [30] Berto F, Lazzarin P, Radaj D. Fictitious notch rounding concept applied to V-notches with root holes subjected to in-plane shear loading. Engng Fract Mech 2012; 79; 281-294.
- [31] Berto F, Lazzarin P, Radaj D. Fictitious notch rounding concept applied to V-notches with root hole subjected to in-plane mixed mode loading Engng Fract Mech 2014; <u>Volume 128</u>, September 2014, Pages 171–188.
- [32] Radaj D, Lazzarin P, Berto F. Generalised Neuber concept of fictitious notch rounding. Int J Fatigue 2013; 51: 105-115.
- [33] Radaj D, Vormwald M. Advanced Methods of Fatigue Assessment. Berlin: Springer-Verlag 2013.
- [34] Williams ML. Stress singularities resulting from various boundary conditions in angular corners on plates in tension. J Appl Mech 1952; 19: 526-528.
- [35] Gross R, Mendelson A. Plane Elastostatic Analysis of V-notched plates. Int J Fract Mech 1972; 8: 267-276.
- [36] Hasebe N and Kutanda, Y. Calculation of stress intensity factors from stress concentration factor. Eng Fract Mech 1978;10:215–221.
- [37] M.L. Dunn, W. Suwito, S. Cunningham Stress intensities at notch singularities. Eng. Fract. Mech, 57 (1997), pp. 417-430.
- [38] Lazzarin P, Tovo R. A unified approach to the evaluation of linear elastic fields in the neighbourhood of cracks and notches. Int J Fract 1996; 78: 3-19.
- [39] Lazzarin P, Filippi S, A generalized stress intensity factor to be applied to rounded V-shaped notches. Int J Solids Struct 2006;43: 2461–2478.
- [40] Lazzarin P, Zappalorto M, Berto F. Generalised Stress Intensity Factors for rounded notches in plates under in-plane shear loading. Int J Fract 2011; 170: 123-144.
- [41] Lazzarin P, Berto F, Radaj D. Fatigue-relevant stress field parameters of welded lap joints: Pointed slit tip compared with keyhole notch Fatigue Fract Eng Mater Struct 2009; 32:713-735.
- [42] Lazzarin P, Berto F, Ayatollahi MR. Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading. Fatigue Fract Eng Mater Struct 2013; 36:942-945.
- [43] Berto F, Lazzarin P. A review of the volume-based Strain Energy Density approach applied to V-notches and welded Structures. Theor Appl Fract Mech 2009; 52: 183-194.
- [44] Radaj D, Lazzarin P, Berto F. Fatigue assessment of welded joints under slit-parallel loading based on strain energy density or notch rounding, Int J Fatigue 2009; 31: 1490-1504.
- [45] Radaj D, Berto F, Lazzarin P Local fatigue strength parameters for welded joints based on

Bibliografia

- strain energy density with inclusion of small-size notches, Eng. Fract. Mech. 2009; 79: 1109-1130.
- [46] Berto F, Lazzarin P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater Sci Eng R 2014; 75:1-49.
- [47] Lazzarin P, Berto F, Zappalorto M. <u>Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications</u>. Int J Fatigue 2010; 32:1559-1567.