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Abstract

The rapid growth of the Internet of Things (IoT) in different scenarios
has led to the acquisition of large-scale IoT data. The time-critical ex-
traction of meaningful information from such data is very important
for a large range of applications such as environmental monitoring or
vehicular traffic management, to name a few. The objective of this
thesis is to build a clustering model to inspect the structural proper-
ties of a dataset composed of different IoT signal types and to clas-
sify these through unsupervised clustering algorithms. To this end, a
feature-based representation of the signals is computed, obtaining a
high dimensional feature space. Different feature selection algorithms
from the literature are then used to obtain reduced feature spaces, so
as to decrease the computational cost and the memory demand, while
retaining most of the precision of classifiers built on top of the full
feature set. Thus, the IoT signals are clustered using Self-Organizing
Maps (SOM), which explore and assemble knowledge from the multi-
class dataset, while also providing a convenient visualization tool. The
performance of the proposed SOM-based approach is attained for dif-
ferent feature selection algorithms, achieving good classification accu-
racies.
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Chapter 1

INTRODUCTION

1.1 The Internet of Things

We live in the post-PC era. The number of people using the Internet is
growing rapidly. In many places, different types of objects equipped
with sensors can be found. Smartphones, PCs, vehicles, houses and
handheld devices are interconnected in such a way that our everyday-
life and environment adapt in a more interactive and informative man-
ner. Consequently, the environment that surrounds us is becoming in-
creasingly smarter. This leads to the concept of “smart environment”,
which was defined by the forefather of Ubiquitous Computing, Mark
Weiser [1], as:

“A physical world that is richly and invisibly interwoven with
sensors, actuators, displays, and computational elements, embed-
ded seamlessly in the everyday objects of our lives, and connected
through a continuous network”.

This is the underlying essence of the Internet of Things (IoT) paradigm,
a term that was first conceived by Kevin Asthon [2]. To take full ad-
vantage of the available Internet technology, there is a need to deploy
large-scale, platform-independent, wireless sensor network (WSN) in-
frastructures that include data management and processing, actuation
and analytics. Recent advances in technologies such as micro-electro-
mechanical systems, wireless communications, and digital electronics
have resulted in the development of small devices having the ability
to sense, compute, and communicate wirelessly over short distances
[3][4]. These small, low cost and low powered sensors spatially dis-
tributed in every environment, will bring the connectivity to even the
smallest objects installed in any kind of context, at an affordable cost.
Smart devices that sense ambient temperature and control heating and
cooling systems, sensors that manage digital features in vehicles, pace-
makers for heart control and location devices that monitor the where-
abouts of many types of equipment will produce a multitude of data
that will spread all over to the Internet, and empower a new wave of
technological developments through cloud computing, smartphones
and new software applications. However, we underline that such large
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amount of data will often be highly unstructured, ambiguous, and in-
adequate for direct use in decision making tasks. Nevertheless, some
structure, although hidden, is often present in the raw data. This struc-
ture is also often useful to the development of context or data-driven
applications that learn from past experience. Thus, mining useful in-
formation from unstructured and raw data appears to be a necessary
step for the successful accomplishment of tasks, such as planning, de-
cision making and strategy building.

The use of Machine Learning techniques has been rapidly expand-
ing to many application areas. The aim is to implement efficient al-
gorithms that are capable of extracting valuable information from IoT
data streams. This is why, one of the most interesting topics in data
analysis, is how to optimally use this extracted information to improve
aspects in the everyday-life of individuals or in the businesses run by
companies.

A typical challenge, however, is represented by the limited power
capability of IoT sensors, which are often battery powered, and to the
consequent need of extending their battery life. Therefore, special at-
tention has to be paid to the design of algorithms that are computa-
tionally efficient. At the design level, particular care must be taken for
the energy-optimization. New, compact devices with extremely low-
power circuitry and energy efficient architectures and protocol suites,
as well as energy storage sources coupled with energy transmission
and harvesting methods, capable of computing data reduction based
on the correlation of sensed readings can efficiently reduce the amount
of required transmissions and thus improve the conservation of en-
ergy. As a matter of fact, efficient algorithms for data compression and
clustering are needed in order to make such a design effective.

1.2 Background and motivation

he ever growing quantity of data that is collected everyday calls for
efficient methods that are able to jointly tackle the problems of data
analysis and storage. This thesis takes inspiration from this and in-
vestigates the underlying information in a given dataset composed of
temporal signals collected from diverse fields, such as medicine, envi-
ronmental monitoring, demography and biology.

To reach our goal, the Matlab HCTSA framework has been used to
extract the feature representation of the signals in the dataset.

The work in this thesis relates to the unsupervised classification of
signals in a given IoT dataset. Our two main contributions are: first,
we compare different state-of-art feature selection algorithms taken
from the literature and use them to obtain a reduced set of features.
Second, we implement a clustering model combining three techniques,
in particular:
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• a Self-Organizing Map (SOM) for its capability to combine vector
quantization and projection, and for being an excellent visualiza-
tion tool (often as a 2-dimensional lattice) of the clustered feature
space.

• a hierarchical clustering used on top of the SOM to get a better
resolution and understanding of the clustering attained by the
SOM.

• a classifier that transfers the unsupervised Self-Organizing Map
method into a structured and supervised classification setting
able to extract performance evaluations on unseen data once the
SOM is stable (i.e., after a training process).

This thesis is organized as follows. In Chapter 2, we illustrate the
dataset of the different IoT signals that are taken into consideration,
and describe the different techniques used to extract meaningful fea-
tures from them. In Chapter 3, we provide a general literature review
about the algorithms used in this thesis, specifically analyzing them
in their relation to clustering. In Chapter 4, a detailed explanation of
the self-organizing map is presented. In Chapter 5, we describe the
methodologies implemented and the set up for the classification and
visualization of Self-Organizing Map and hierarchical clustering. In
Chapter 6, numerical results of our experiments are discussed. Finally,
in Chapter 7 we draw the conclusions and provide some possible fu-
ture research directions.
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Chapter 2

DATA ANALYSIS

2.1 Time Series

Time series, measurements of a quantity taken over time, are mea-
sured and analyzed across the scientific disciplines such as bio-signals
in healthcare, gas analysis in chemical industries, rates of inflation in
economics and atmospheric air temperature in climate science. In this
thesis, signals gathered from different IoT scenario are considered. The
enormous amount of data produced everyday has attracted extensive
research interests. Researchers are working on finding efficient models
solution and algorithms to tackle the problem of data analysis. The ex-
traction of useful information from a number of time series is a funda-
mental passage to deal with the ever-growing need to boost data stor-
age by using new compression mechanism and efficient transmission
of data. Many instruments have been used from various summary
statistics, to time-series models [5][6]. Time-series clustering and clas-
sification has conventionally been addressed by defining a distance
metric approach that involves the comparison of the sequential values
of time series. There are essentially two main challenges in time-series
classification: the selection of an appropriate representation of the time
series, and the selection of a suitable measure of dissimilarity or prox-
imity.

The most straightforward representation of a time series is based
on its time-domain form, then distances between time series relate to
differences between the time-ordered measurements themselves. A
traditional approach to the classification of time series problem used
in data mining community, focus on classifying short time series which
encode meaningful patterns. This approach is referred to as instance-
based classification [7], where new time series are classified by match-
ing them to similar instances of time series with a known classification
(Fig. 2.1). The above method has the advantage of being easy when the
modeling of a specific test instance is required but has the drawback
of having high computational load when the task is performed.

An alternative approach, called feature-based classification, which
consists in representing time series in a more robust and efficient way,
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FIGURE 2.1: Instance-based classification involves mea-
suring the distance between pairs of time series repre-
sented as an ordered set of measurements in the time
domain. The upper portion displays two time series,
while in the lower portion, shaded part illustrates the

distance between the two signals.

uses an extracted set of attributes, or features that summarize time se-
ries properties and thereby transform the temporal problem to a static
one [7]. This approach is more suited for time series corresponding
to streams of data rather than the short pattern-like time series typi-
cally studied in temporal data mining. A peculiarity of this alterna-
tive method is the possibility to represent long sequences of time sam-
ples into a d-dimensional vector, where d is the number of features ex-
tracted from the input data. An important advantage of feature-based
method is that clustering and classification algorithms can be used di-
rectly on the features, rather than the temporal representation of the
times series. Moreover feature selection algorithms can reduce the ini-
tial set of features (extracting the most relevant ones) and potentially
give applications the ability to improve their performance and reduce
their complexity and computational time. The feature-based represen-
tation scheme is graphically described in Fig. 2.2.

In the next section we present the full dataset used in the exper-
iment, section 2.3 introduces a Matlab framework used to automate
the process of features extraction. In section 2.4 some features selec-
tion algorithms that are used in this work are briefly defined.
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FIGURE 2.2: An alternative approach, involves repre-
senting time series using a set of features that summa-
rize their properties. A reduced set of features is pro-
duced by features selection. A classifier can use the re-
duced feature-based representation of the time series to

classify new time series.

2.2 Database

In this thesis, for the clustering problem, several types of signals taken
from different systems and measured in many different ways are an-
alyzed, to infer their intrinsic structure. The data are categorized and
stored from three major domain: biomedical domain, in which data are
signals collected from medical devices, environmental domain in which
data are signals collected from outdoor/indoor devices and structural
domain, in which data are signals collected by devices deployed to ver-
ify buildings stability. A further division of the data into different
groups is made, based on the signal type. So each domain is struc-
tured as follow:

• biomedical database is subdivided into: Diastolic Arterial Blood
Pressure (ABPdias), Accelerometer Lateral direction (AccelLat-
eral), Accelerometer Sagittal direction (AccelSagittal), Accelerom-
eter Vertical direction (AccelVertical), Breathing waveform (Breath-
ing), Electrocardiogram (ECG), Heart Rate (HR), Intra Cranial
Pressure (ICP), Photoplethysmogram (PPG), Pulse rate (Pulse),
RR interval (RR).

• environmental database organized as: Humidity rate (Humidity),
Solar irradiance (Solar), Superficial Temperature (SurfTemp), Tem-
perature (Temp), Wind Direction(WindDir) ,WindSpeed (Wind-
Speed).
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• structural database is subdivided into: Alarm rate (Alarm), Strain
rate (Strain), Raw Reading measurement (RawReading).

The strings in the parenthesis are quick references to each respective
group. In Table 2.1 we list the different signals used in our experi-
ments, including the number of instances in each group and a numeric
label used in our algorithm for groups identification.

The different signals in the dataset we are dealing with have some
important issues. They come with different number of samples, in
multiple cases data are missing and others have discontinuities, noisy
and degraded area caused by failures in the system of acquisition.
To deal with this problems prior to any elaboration, every signal has
passed through a pre-processing stage in which degraded and discon-
tinuities areas have been removed to reduce the level of corruption
in the feature representation. From the initial database of signals, a
new dataset has been created and it is composed by the same num-
ber of time series for each subcategory. To be more precise, 100 time
series with a length of 500 samples from each subcategory has been
selected. The subset of 500 consecutive samples, as well as the starting
point from which this 500 consecutive samples has been extracted, has
been chosen randomly from randomly chosen time series. In this way
a most general and unbiased representation of the signals is chosen
such that the results can be as much reliable and accurate as possi-
ble. It is worth noting that the number of samples should be chosen
wisely: a low value could make the feature computation unreliable
(e.g. statistical features like correlation, mean and variance need a suf-
ficient number of samples) however a high value can raise the level of
noise and outliers as well as the computational complexity. Finally the
created dataset is composed by 2000 time series, build by taking 100
time series from each of the 20 groups forming the initial dataset. Note
that noisy signals and outliers are still include in this final dataset, this
poses a fair challenging environment for the unsupervised clustering
algorithm.

2.3 Features extraction

Feature extraction is the part of the thesis in which we actually de-
rived the features from our dataset outlined in section 2.2. To extract
the feature-based representation of each time series in the database we
used the Highly Comparative Time Series Analysis (HTCSA) MAT-
LAB framework, an assembled library of time-series analysis opera-
tions [7]. Each operation is an algorithm that summarizes a time se-
ries with a single real number. The framework contains a set of over
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Name class/label instances(#)
ABPDias 1 100
AccelLateral 2 100
AccelSagittal 3 100
AccelVertical 4 100
Alarm 5 94
Breathing 6 100
ECG 7 100
HR 8 99
Humidity 9 99
ICP 10 100
PPG 11 100
Pulse 12 96
RR 13 100
RawReading 14 97
Solar 15 100
Strain 16 97
SurfTemp 17 100
Temp 18 98
WindDir 19 100
WindSpeed 20 99

TABLE 2.1: Data signals types in the dataset, the labels
and the number of signals in each class.
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9000 different operations that define various time-series properties, in-
cluding basic statistics of the distribution (e.g., location, spread, mea-
sures of Gaussianity, properties of outliers), linear correlations (e.g.,
autocorrelations, Fourier power spectrum measures), information the-
oretic and entropy measures (e.g., auto-mutual information, Approxi-
mate Entropy, Lempel-Ziv complexity), methods from nonlinear time-
series analysis (e.g., correlation dimension, Lyapunov exponent es-
timates), and model fits (e.g., goodness of fit and parameter values
from autoregressive moving average (ARMA) and state space mod-
els) [7]. All of these analysis methods are encoded algorithmically as
operations. Each operation, ρ, is an algorithm that takes a time series
x = (x1, x2, · · · , xd), as input, and outputs a single real number, i.e.,
ρ : Rd −→ R. After applying all the different operations to each time
series, an initial set of features is derived. From this initial set a cleans-
ing operation is made to remove some “special values”, resulting in a
final set of features which is smaller than the initial one. “special val-
ues” output operations are for example infinities, imaginary numbers,
NaNs, or values that may not be appropriate to be applied to a given
time series, e.g., when a time series is too short, or when a positive-
only distribution is being fit to data that is not positive.

2.3.1 Normalization

A challenging environment where several types of time series are mixed
together, like in our dataset, produces many time-series operations
with different distributions of outputs. Choosing the right transforma-
tion that allows them to be compared meaningfully is of crucial impor-
tance. In particular, when calculating distances between feature vec-
tors, the range of outputs of all operations should be similar so that all
operations are weighted equally. For this reasons the features have to
be normalized to avoid difficulties that stem from their measurement
in different units. There are a number of possible transformations that
can be applied to different sets of operation outputs, e.g., z-score, lin-
ear rescaling to the [0,1] interval and nonlinear rescaling to the [0,1] in-
terval. The MATLAB framework, that we adopted, produce distribu-
tions of operation outputs that are often multi-modal, and frequently
contain significant outliers. To handle this issue it utilizes an outlier-
robust sigmoidal transform, that is less sensitive to outliers than the
other transformation [8]. Formally we have

f̂ =

{
1 + exp

[
−f−median(f)

1.35× iqr(f)

]}−1
, (2.1)

where f̂ represents the normalized output of a given operation across
all time series, f is the raw output, median(f) is the sample median of
f, and iqr(f) is its interquartile range. After the application of Eq.( 2.1),
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FIGURE 2.3: Matrix representation of the database.

the results are linearly rescaled to the unit interval so that every oper-
ation has the same range of normalized outputs (from 0 to 1).

2.3.2 Notation and Matrix representation

All available operations of the HCTSA toolbox have been applied to
the 2000 time series in the dataset and the resulting output is com-
posed of 1979 feature vectors each one with a dimension of 4957 fea-
tures. The final dataset is smaller compare to the initial one because
some time series and operations have been removed due to their “spe-
cial values”. Each operation is then normalized using Eq. 2.1 and the
entire dataset can be represented as an n× d matrix F defined as;

F = (f̂1, f̂2, ..., f̂n) ∈ Rn×d, (2.2)

where n is the number of feature vectors and d is the dimensionality of
the features space. Let X = {x1, x2, ..., xn} be the set of feature vectors
in the database and f = {f1, f2, ..., fd} be the set of features, such that
F is the conventional matrix representation where elements of X rep-
resent rows and elements of f represent columns (see Fig. 2.3).
In Fig. 2.4 a graphical representation of the dataset is shown, where
each row represent a time series, each column represent a feature and
the color represent the normalized values.

2.4 Features selection

Time series classification in feature-based representation is character-
ized by data instance which are typically described by a large number
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FIGURE 2.4: Database representation, operations are the
features while Time series are the signals. All data are
normalized between [0,1] and the values are colored ac-

cording to the colorbar on the right side.

of features. Most of these features are irrelevant or redundant, which
negatively affects the efficiency and the effectiveness of the learning
algorithm. The selection of relevant features is a crucial task which
can be used to allow a better understanding of the data or improve the
performance of the learning process. Given a particular dataset with
high dimensionality, it is not possible to select feature manually. More-
over, features selected for a given application usually don’t fit well as
best features for other applications. Furthermore, for many applica-
tions, the mechanisms underlying the data are not well understood,
making it difficult to develop a well-motivated set of features for clus-
tering/classification task.

Our objective is to find an automatic and reliable way to select fea-
tures that best represent the structure of our database. The process of
feature selection is completely data-driven and does not require any
knowledge of the dynamical mechanisms underlying the time series
or how they were measured [7]. As outlined in section 2.3.2 the frame-
work we used produce 4957 different features for each time series in
the database. That is an enormous amount of features to be processed
directly and leads to what is commonly referred to as the curse of di-
mensionality. This weakens the reliability of the trained analysis sys-
tems because of the over fitting that may occur during the training
process of the data. This thesis objective is to cluster different IoT sig-
nals with different characteristic, the statistical property of these sig-
nals can have an enormous impact on the success of the clustering
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algorithm. If the properties of each signal fails to express the statisti-
cal regularity exploited by the learning algorithm, then learning will
fail. Since we are not able to use all extracted features, different fea-
ture selection algorithms are used to build a subset of relevant fea-
tures that best represent the statistic of the signals in order to reduce
the complexity and the computational time. It is important to note that
because they use different approaches, these algorithm produce differ-
ent results, which consequently produce different performances when
applied to the classification process. Each of these feature selection al-
gorithm is well defined and has the potential to be a fully automatic
and computationally tractable process.

The benefits we obtained from applying these feature selection al-
gorithms for clustering and classification include a reduction in the
amount of data needed to achieve learning, improved predictive ac-
curacy, learning of knowledge that is more compact and easily under-
stood, and reduced execution time.

In Chaper 7, a comparison is performed among these different ap-
proaches in order to assess which one gives the best performance for
the classification purpose.

2.4.1 Feature selection types

Existing feature selection methods typically fall into two broad cate-
gories: filter method and wrapper method. Within both categories, al-
gorithms can be further differentiated between supervised and unsu-
pervised feature selection. Supervised feature selection scheme is de-
fined when the dataset has known label while unsupervised feature
selection scheme exploit the local structure of data distribution to se-
lectively find the optimal features.

2.4.1.1 Filter methods

In the filter approach the feature selection method is independent of
the classification algorithm to be applied to the selected features and
assess the relevance of features by looking only at the intrinsic proper-
ties of the data. In most cases a feature relevance rank is built, and low-
ranking features are removed. The subset of features left after feature
removal is presented as input to the classification algorithm. Filter ap-
proach has the advantage to execute fast, to be computationally simple
and to easily scale to high-dimensional datasets. Moreover, the filter
approach is independent of the classification algorithm so feature se-
lection needs to be performed only once, and then different classifiers
can be evaluated. The principals drawbacks of filter methods are that
they ignore the interaction with the classification algorithm. Moreover
most of the proposed approaches are univariate which means that each
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feature is considered separately, thereby ignoring feature correlations.
Lastly, they do not handle noise (i.e., corrupted or incomplete data),
which may lead to worse classification performance when compared
to other types of feature selection algorithms.

2.4.1.2 Wrapper methods

The optimal feature subset should depend on the specific biases and
heuristics of the classification algorithm. Based on this assumption, in
the wrapper method the feature selection method uses the result of the
classification algorithm to determine how good a given feature subset
is. In this setup, a search procedure in the space of possible feature
subsets is defined, and various subsets of features are generated and
evaluated. Thus the quality of the best feature subset is directly mea-
sured by the performance of the classification algorithm applied. The
advantages of wrapper method include the interaction between fea-
ture subset search and model selection, and the ability to take into ac-
count feature correlations. The principals drawbacks of this approach
is the high risk of overfitting and high computational demand. Be-
sides, this wrapper approach tends to be much slower than the filter
approach, as the classification algorithm is applied to each feature sub-
set considered by the search.

2.4.1.3 Comparison of the two methods

Wrappers often give better results than filters because of the retro-
active error correcting information form the classification algorithm.
However, the evaluation performed by the classification algorithm on
each and every possible set of features makes wrappers less general
than filters because the feature selection process is tightly coupled with
a learning algorithm and must be repeated when switching from one
learning algorithm to another. Filters on the other hand usually exe-
cute many times faster than wrappers, and therefore stand a much bet-
ter chance of scaling to databases with a large number of features than
wrappers do. In general, filters do not require to be re-executed when
changing the learning algorithm and can sometimes provide the same
benefits for learning as wrappers do. A filter can provide pre-selection
for a wrapper to achieve a better performance for a particular learning
algorithm. In such a way wrapper process will likely result in a shorter
and faster search.
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2.4.2 Feature selection algorithms

In the following subsections different feature selection algorithms used
for the task of clustering and classification are outlined. Recall the no-
tation used in section 2.2, let the usual f = {f1, f2, · · · , fd}, be the ini-
tial feature set of our dataset, f̃ = {f̃1, f̃2, · · · , f̃m} ⊆ f, with m ≤ d, the
reduced feature set and C the n-dimensional vector representing the
classes (or groups) of the signals (see table 2.1). fi is the ith individual
feature of f and fi(j) is the jth component of fi. Likewise, C(j) is the
jth class component in vector C.

2.4.2.1 Greedy forward feature selection (GFS)

The greedy forward feature selection algorithm is a wrapper and su-
pervised selection method used by the HCTSA framework and works
as follows [8]:

• (i) Given the initial feature set f , a classifier computes the classi-
fication scores of all individual features, fi, and the feature with
the highest classification score is selected as the first feature in
the reduced set, denoted as f̃1.

• (ii) The classification scores of all features in combination with
f̃1 are calculated and the feature that, in combination with f̃1,
produces the highest classification score is chosen next as f̃2 and
added to the reduced set.

• (iii) The procedure is repeated, choosing the operation that pro-
vides the greatest improvement in classification score at each it-
eration until a termination criterion is reached, yielding the re-
duced set of m features: f̃ . For iterations at which multiple fea-
tures produce equally good classification scores, one of them is
selected at random.

The algorithm terminates at the point at which the improvement in
the classification score of the training set upon adding an additional
feature drops below a certain threshold, or when the training set mis-
classification rate drops to 0 (after which no further improvement is
possible). Another stopping criterion is to decide the size of the reduce
set by terminating the algorithm at a prefixed number of features.

2.4.2.2 Mutual Information (MI)

This section introduces the principles of information theory by focus-
ing on entropy and mutual information and explains the reasons of
their use in feature selection. Mutual information (MI) based feature
selection is a filter method which is relatively simple and efficient to
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use, for such reason it is vastly utilized. It evaluates the “information
content” of each individual feature with respect to the data classes and
selects a subset of relevant features. Let consider the entropy (a mea-
sure of a random variable uncertainty and a measure of the average
amount of information required to describe it) H(C) of the class vec-
tor. If the probabilities for the different classes are P (c); c = 1, 2, ..., n;
then the initial uncertainty of the class vector is;

H(C) = −
n∑
c=1

P (c) log2 P (c), (2.3)

while the average uncertainty knowing each feature vector of the set f
is the conditional entropy;

H(C|f) = −
d∑

k=1

P (fi)

(
n∑
c=1

P (c|fi) log2 P (c|fi)

)
, (2.4)

where P (c|fi) is the conditional probability for class c given the feature
vector fi. Formally mutual information is defined as;

I(C; f) = H(C)−H(C|f), (2.5)

and it is symmetric with respect to C and f and, sometime it is reduced
to the following expression:

I(C; f) = I(f;C) =
∑
c,i

P (c, fi) log2

P (c, fi)

P (c)P (fi)
. (2.6)

Therefore MI measures the amount by which the knowledge provided
by the feature decreases the uncertainty about the class. The MI algo-
rithm is described by the following procedure:

• (i) Given the initial feature set f , an empty set f̃ , for each feature
f ∈ f compute I(C; f) (the MI between the feature and the signal
class).

• (ii) Find the feature f̃ that maximizes I(C; f), add it to the re-
duced set f̃ and consider f without the selected f for the next
search.

• (iii) Repeat the procedure until |̃f | = m ≤ d.

2.4.2.3 Relief-F

RELIEF [9] and its multi-class extension Relief-F [10] select features by
the use of pattern based learning to assign a relevance weight to each
feature in order to separate pattern from different classes. A feature
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receive a strong weight if it differentiates between patterns from dif-
ferent classes and has the same value for patterns of the same class.
Features are ranked by weight and those that exceed a user-specified
threshold are selected to form the final subset. Assume that a pattern
x is randomly selected from n data samples. Then the score of the f th

feature Wf is defined by Relief as,

Wf = Wf −
diff(f, x, nH)2

n
+
diff(f, x, nM)2

n
, (2.7)

where nH is the nearest-hit which is the closest same-class pattern and
nM is the nearest-miss which is the closest different-class pattern. The
function diff calculates the difference between two patterns for a given
feature. When features are discrete the difference is defined as either 1
(the values are different) or 0 (the values are the same), while for con-
tinuous features the difference is the actual difference normalized to
the interval [0, 1]. Dividing by n guarantees that all weights Wf are
in the interval [-1, 1]. Basic RELIEF algorithm does not handle incom-
plete data and performs only on two class estimation problems. Relief-
F is an enhancement to RELIEF that enables it to cope with multi-
class, noisy and incomplete domains. Since the estimate Wf of the
feature f is an approximation of difference of probabilities, to increase
their reliability Relief-F searches for k nearest hits/misses instead of
only one nearest hit/miss and averages the contribution of all k near-
est hits/misses. And instead of randomly select one nearest-miss nM
from different class, in order to deal with the multi-class issue, Relief-F
selects one nearest-miss M(c) for each different class in class vector C
and averages their contribution for updating the estimate Wf . The av-
erage is weighted with the prior probability of each class P (c) leading
to the final updating function [10]:

Wf = Wf −

k∑
j=1

diff(f, x, nHj)

n× k
+ (2.8)

+

∑
c 6=class(x)

[
P (c)

1− P (class(x))

k∑
j=1

diff(f, x,Mj(c))

]
n× k

.

2.4.2.4 Unsupervised Discriminative Feature Selection (UDFS)

UDFS [11] is an unsupervised feature selection algorithm which ana-
lyzes features jointly and simultaneously utilizing discriminative in-
formation and local structure of data distribution. The objective of the
algorithm is to select a subset with size m ≤ d which contains the most
representative features. As a result, the data patterns represented by
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the selected features can well preserve the discriminative and geomet-
rical structure as the data represented by the original d-dimensional
features. Since label information is unavailable for unsupervised fea-
ture selection, a discriminative clustering method, which is designed
for seeking the most linearly separated clusters through a multi-output
regularized linear regression model is used to detect the cluster struc-
ture and so predicting the clusters label.

In order to select the most discriminative features so that the sepa-
rability between these clusters is maximized, for each pattern xi, a local
set Nk(xi) is constructed and comprise xi and its k nearest neighbors
xi1 , ..., xik . Denote Xi = [xi, xi1 , ..., xik ] as a local data matrix. From [11]
it is assumed that there is a linear classifier W ∈ Rd×c which classifies
each data pattern to a predicted output class and a local discrimina-
tive score for each pattern is defined. The induced regression problem,
which is defined through the UDFS objective function, can be formu-
lated as follows:

min
WTW=I

Tr(W TMW ) + γ‖W‖2,1, (2.9)

where for an arbitrary matrix A ∈ Rr×p, the l2,1-norm is defined as;

‖A‖2,1 =
r∑
i=1

√√√√ p∑
j=1

A2
ij. (2.10)

The regularization term ‖W‖2,1 controls the capacity of W and also
ensures that W is sparse in rows, making it particularly suitable for
feature selection. The orthogonal constraint, W TW = I , is imposed to
avoid arbitrary scaling and avoid the trivial solution of all zeros. M
is the term that includes all the dependencies relative to the data local
structure. If wi denotes the ith row of W , i.e., W = [w1, ..., wd]T , the
objective function shown in Eq. ( 2.9) can be also written as

min
WTW=I

Tr(W TMW ) + γ

d∑
i=1

‖wi‖2. (2.11)

From Eq. (2.11) it can be seen that many rows of the optimal W shrink
to zeros. Consequently, for a data vector xi, x′

i = W Txi is a new repre-
sentation of xi using only a small set of selected features. Alternatively,
each feature fi|di=1 can be ranked according to ‖wi‖2 in descending or-
der and top ranked features can be selected.
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Chapter 3

GENERAL OVERVIEW

3.1 Artificial neural networks

Artificial neural networks (ANNs), are an attempt to mimic the struc-
ture of a biological system, the human brain, in a computer environ-
ment. It therefore represents one of the most promising computational
tools in the artificial intelligence research area. For this reason some
aspects of the way in which the brain perform information processing
will be reviewed in the next paragraph.

Human brain can be described as a biological neural network, a
highly complex, nonlinear and massively parallel information pro-
cessing system with an interconnected web of processing elements
transmitting elaborate patterns of electrical signals. The processing
elements are a type of cells that does not regenerate, unlike cells in the
rest of the body. That is why these cells are assumed to be the ones that
allow humans and others mammals to think, remember or recall previ-
ous experiences in everyday living. These cells, called neurons, are es-
timated to be approximatively 10 billion in the human brain and form
60 trillion connections [12]. With the capability to organize theses cells,
the brain can perform certain computations (e.g., pattern recognition,
perception, and motor control) many times faster than the fastest dig-
ital computer in existence today. Consider, the human vision, for ex-
ample, the brain routinely accomplishes perceptual recognition tasks
(e.g., recognizing a familiar face embedded in an unfamiliar scene) in
approximatively 100-200 ms, whereas tasks of much lesser complexity
take a great deal longer on a powerful computer. If we compare com-
puter and the brain, it can be noted that, theoretically, the latter should
be slower than the former: in fact, computer chip comprises elements
with a switching time of nanoseconds while the brain contains neu-
rons, with a switching time of only milliseconds. However, the brain
makes up for the relatively slow rate of operation by having a truly
staggering number of neurons with massive interconnections between
them. The key feature of the brain, which makes it an enormously
efficient structure, is represented by its plasticity [13] [14], i.e., the abil-
ity to adapt the neural connections (by creating new connections and
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modifying the existing ones) to the surrounding environment and then
supply the information needed to interact with it.

The fundamental information-processing unit of a biological neu-
ral networks is the neuron. A typical structure of a generic brain neu-
ron is shown in Figure 3.1 and consists of four elements, dendrites,
synapses, cell body (or soma), and axon. Axons are the transmission
lines, and dendrites are the receptive zones, both constitute two types
of cell filaments that extrude from the soma; an axon, which comes out
of the soma through the axon hillock, has a smoother surface, fewer
branches, and greater length, whereas a dendrite (so called because of
its resemblance to a tree) has an irregular surface and more branches
(that get thinner the more they are far from the soma). Incoming signal
from a neuron is transferred to another neuron by a special connec-
tion called the synapse. Such connection can usually be found at the
dendrites of a neuron, sometimes also directly at the soma. This pro-
cess of communication between two neurons (the presynaptic neuron
and the postsynaptic neuron), is called neurotransmission or synaptic
transmission [15] and typically involves electro-chemical signal from
the axon of the presynaptic neuron to the dendrites (or soma) of the
postsynaptic neuron. The structure of the cell body of every neuron
is enclosed by a plasma membrane which is semipermeable to certain
electrically charged ions. The membranes of the cells exhibit different
degrees of permeability for each one of these ions. The permeability is
determined by the number and size of pores in the membrane, the so-
called ionic channels. Channels are principally permeable to sodium,
potassium or calcium ions. The specific permeability of the membrane
leads to different distributions of these ions in the interior and the ex-
terior of the cells. This produce a voltage difference across the mem-
brane, called the membrane potential. A typical neuron’s membrane
potential, in resting state, is about -70 mV. To maintain this potential an
ionic pump guarantees that the concentration of ions does not change
with time. A neural signal in the presynaptic neuron is initiated when
its membrane potential reach a threshold potential of about -55 mV.
The signal is an electric impulse called an action potential and travels
rapidly along the cell’s axon reaching its terminals, at the synapses.
There, neurotransmitters produced by a chemical process, bind to the
receptors of the postsynaptic neuron affecting its membrane potential,
as a result, the signal is transmitted to the postsynaptic neuron.

3.1.1 Structure of an artificial neuron

The ANN, which is usually implemented by using electronic compo-
nents or simulated in software on a digital computer, is an adaptive
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FIGURE 3.1: Biological neuron: two tipically connected
neurons.

machine designed to model the way in which the brain works. How-
ever, the purpose of artificial neurons and, consequently, neural net-
works, is not to completely resemble biological neurons or the ner-
vous system. Rather, ANNs are created in an attempt to understand
the mechanism that enables humans to solve problems that traditional
computing cannot. With the help of the artificial equivalent of the
brain neurons, ANNs are used to solve a variety of problems (e.g.,
pattern recognition, classification [16], prediction [17], optimization,
associative memory and control [18]). ANNs consist of a large num-
ber of neurons linked together by a large number of weighted con-
nections, called synaptic weights that encode the network’s experiential
knowledge from the surrounding environment. This is done through
a learning (or training) process defined as learning algorithm and con-
sist in tuning these inter-neurons connections in an orderly fashion,
according to the data given as input to the network [12]. In 1943 Mc-
Culloch, a neuroscientist, and Pitts, a logician [19] proposed a math-
ematical model for the artificial neuron, which is presented in Figure
3.2. Three basic elements of the neuron model can be identified:

• A set of synapses, each of which is characterized by a weight or
strength. More precisely, a signal xj at the input of synapse j
connected to neuron k is multiplied by the synaptic weight wkj .
The synaptic weight of an artificial neuron may lie in a range that
includes negative as well as positive values.

• An adder (or linear combiner) for summing the input signals,
weighted by the respective synaptic weights of the neuron.

• An activation function limiting the amplitude of the output of a
neuron. This function limits the permissible amplitude range of
the output signal to some finite value.
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FIGURE 3.2: Structure of an artificial neuron.

The artificial neuron presented in Figure 3.2 contains an externally ap-
plied bias bj which has the effect of increasing or lowering the net input
of the activation function, depending on whether it is positive or neg-
ative, respectively. Mathematically a neuron k can be described by its
output function yk [12]:

yk = φ

(
d∑
j=1

wkjxj + bj

)
, (3.1)

where xj , j = 1, 2, .., d are the input signals;wkj are the synaptic weights
of neuron k; bj is the bias; φ(·) is the activation function; yk is the out-
put signal of the neuron. The activation function defines the output of

a neuron k in terms of vk = uj + bj =
d∑
j=1

wkjxj + bj which is referred

to as the induced local field. Then, Eq. (3.1) maybe reformulated as
yk = φ(vk). In Figure 2.4 two basic types of activation functions are
presented, namely the Threshold function, Sigmoid function.

• The threshold function (or Heaviside function), given by:

φ(v) =

{
1 if v ≥ 0

0 if v < 0.

• The sigmoid function, whose graph is ‘S’-shaped and which is by
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FIGURE 3.3: Typically used activation functions: (a)
Threshold function. (b) Sigmoid function for varying

slope parameter α.

far the most common form of activation function used in the con-
struction of neural networks. An example of the sigmoid func-
tion is the logistic function, defined by

φ(v) =
1

1 + e−αv
, (3.2)

where α is the slope parameter. It has desired asymptotic prop-
erties and is a strictly increasing function that shows smooth-
ness. In the limit, as the slope parameter approaches infinity, the
sigmoid function becomes simply a threshold function. While a
threshold function assumes the value of 0 or 1, a sigmoid func-
tion assumes a continuous range of values from 0 to 1. Note also
that the sigmoid function is differentiable, whereas the threshold
function is not.

3.1.2 Network architectures

The manner in which the neurons are structured, i.e., the network archi-
tecture, is intimately linked with the learning algorithm used to train
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the network. We may therefore speak of learning algorithms used in
the design of neural networks as being structured. In general, the net-
work architectures are layered and may be identified in two major cat-
egories: Feed-forward networks and Feedback networks.

• In Feed-forward network there is only a one-directional flow of
the signal, from input to output. There is no feedback, which
means a layer is not affected by the components outputs of the
same layer or by the components outputs of successive layers.
This method associates inputs with outputs in a straightforward
manner. Two types of feed-forward networks can be distinguished:
single-layer feed-forward networks and multi-layer feed-forward
networks.

– The single-layer feed-forward network is the simplest form
of layered network. This network has an input layer of
source nodes that projects to an output layer of computa-
tional neurons, but not vice versa. In Figure 3.4 the case of
four nodes in both the input and output layers is illustrated.
It is called a single-layer network, because there is only one
output layer of computation nodes, i.e., neurons.. The input
layer is not taken into account because it does not perform
any computation.

– The multi-layer feed-forward network, shown in Figure
3.5, distinguishes itself by the presence of one or more hid-
den layers, whose computation nodes are correspondingly
called hidden neurons or hidden units; the term “hidden” refers
to the fact that this part of the neural network is not directly
seen from either the input or output of the network. The
task of the hidden units is to ensure the connection between
the external input and the network output in some useful
manner. The addition of hidden layers enables the network
to extract higher-order statistics from its input. In a rather
loose sense, the network acquires a global perspective de-
spite its local connectivity, due to the extra set of synaptic
connections and the extra dimension of neural interactions
[14]. The source nodes supply the network with the input
vectors of information, or activation patterns, which are the
input signals for the second layer of neurons, or the first
hidden layer. The output signals of the second layer are fed
to the third layer and so on for the rest of the network. The
neurons in each layer of the network have as their inputs the
output signals of the preceding layer only. The set of output
signals of the neurons in the final layer, output layer of the
network represents the overall answer of the network to the
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FIGURE 3.4: Feedforward network: represented with a
single layer of neurons.

activation pattern introduced to the nodes in the first, input
layer.

• In Feedback Network signals can travel in both directions by
introducing loops in the network. It distinguishes itself from a
feed-forward neural network in that it has at least one feedback
loop that can be viewed as a single layer of neurons composing
the network, where each neuron feeds its output signal back to
the inputs of all other inputs. Feedback networks are dynamic
systems that can be very powerful and complicated. They oper-
ate by continuously changing they state until they reach an equi-
librium point. The equilibrium point is maintain until the input
changes and a new equilibrium needs to be found. Feedback ar-
chitectures are also referred to as interactive or recurrent networks,
although the latter term is often used to denote feedback connec-
tions in single-layer structures.

3.2 The learning paradigms

Given a task, neural network require a learning algorithm to operate.
Learning in neural networks can be describe by using the formulation
made by Mendel and McClaren in 1970 [11].

Learning is a process by which the free parameters of a neural network are
adapted through a continuing process of stimulation by the environment
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FIGURE 3.5: Feedforward network: a multi-layer net-
work represented with one hidden layer and one output

layer of neurons.

in which the network is embedded. The type of learning is determined by
the manner in which the parameter changes take place.

During the occurrence of the learning process, in neural network, the
updating of the network structure and synaptic weights is performed
such that the network achieves the specified goals of the application
of interest. The values of the synaptic weights are usually obtained by
learning from an available set of input signals often defined as training
set. The training set is composed of patterns or examples provided by
the real world and used as inputs to the neural network. Such patterns
can be labeled, in which case, each pattern is represented as an input sig-
nal paired with a corresponding desired response (i.e., target output) or
unlabeled, where patterns are input signals with unknown target output.
The performance of the network is smoothed with time by the iterative
updates of the weights and heavily depends on the specific architec-
ture and also on the learning process. For the design of an ANN the
choice of these latter two constitute a crucial task.
In a broad sense, learning processes in neural networks, can be distin-
guished in two modes:

• Supervised learning (or learning with a teacher) is a process
used to infer knowledge in a training set, which is composed
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by a pair corresponding to an input pattern and a specific de-
sired response. The goal is to build a general model (i.e., the net-
work structure) during training phase that will be able to identify
novel patterns presented at its input. Conceptually, the learning
process adjusts the network parameters under the combined in-
fluence of the examples and the error signal, which is defined
as the difference between the desired response and the actual
response of the network. This adjustment is carried out itera-
tively in a step-by-step fashion with the aim of minimizing the
error signal in accordance with an appropriate statistical crite-
rion. The training goes on until the network reaches stability,
where changes in the synaptic weights are no further noticed or
significant. Supervised learning is sometime called learning with
a teacher because the teacher or supervisor is aware of the envi-
ronment in which the process is taking place. Thus, the teacher
provides assistance and help to the learning process to improve
the minimization of the error signal. Supervised learning is par-
ticularly used in the field of classification to deal with categorical
instances and in regression for continuous instance-based pre-
diction.

• Unsupervised learning (or learning without a teacher) some-
times self-organized learning contrary to the supervised learning
performs on training set with unlabeled examples. Therefore, no
prior statistics of the data jointly with their category labels are
known. Hence, no teacher is there to oversee the learning pro-
cess. The goal is to collect the examples into categories based
only on their observable features, such that each category con-
tains objects that share some important properties. In some cases,
provision is made for a task-independent measure of the quality
of representation that the network is required to learn, and the
free parameters of the network are optimized with respect to that
measure. Once the network has become tuned to the statistical
regularities of the input data, it develops the ability to form in-
ternal representations for encoding features of the input data and
thereby create new categories automatically.

This thesis focus on unsupervised clustering and classification of IoT
signals through the use of self-organizing maps (SOMs), which is a
particular case of artificial neural network. In Chapter 4, a detail review
of the SOM architecture and the corresponding learning algorithms
is presented. The principles behind self-organized learning on which
SOM is built, is outlined in the following section.
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3.2.1 Self-Organized learning

An important goal of unsupervised learning is to learn from its envi-
ronment (i.e., unlabeled inputs) and, through training, to improve its
performance in such a way that the underlying structure of the data is
unveiled and well represented. The principles on which it is based are
described in the following [12]:

Principle 1. Self-amplification

This first principle of self-organization states the following:
Modifications in the synaptic weights of a neuron tend to
self-amplify in accordance with Hebb’s postulate of learning, which is
made possible by synaptic plasticity.

At the local level, for a single neuron, the modifications of the
synaptic weights must be based on available pre-synaptic and
post-synaptic signals for self-amplification to occur. The require-
ments of self-amplification and locality specify a feedback mecha-
nism, by means of which a strong synapse leads to the coincidence
of pre-synaptic and post-synaptic signals. In turn, the synapse is
increased in strength by such a coincidence. The mechanism de-
scribed here is the very essence of Hebbian learning.
The oldest and most famous of all learning rules is certainly the
Hebb’s postulate of learning; it is named in honor of the neuropsy-
chologist Hebb. Hebb’s book The Organization of Behavior (1949)
asserts the following (p. 62):

When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process
or metabolic changes take place in one or both cells such that A’s
efficiency as one of the cells firing B is increased.

Thus the modification of the weights of a cell A, will gain ma-
jor efficiency through a feedback mechanism from influencing a
near neuron B. This explains the plasticity of neurons in a self-
organized network. The statement on Hebb’s postulate of learn-
ing is made in a neurobiological context. These requirements can
be expanded and rephrased in a two-part rule according to [20]
[21].

1. If two neurons on either side of a synapse are activated si-
multaneously (i.e.,synchronously), then the strength of that
synapse is selectively increased.

2. If two neurons on either side of a synapse are activated asyn-
chronously, then that synapse is selectively weakened or elim-
inated.

Such a synapse is called a Hebbian synapse (The original Hebb’s
rule did not containpart 2). An Hebbian synapse can be seen as
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a synapse that uses a time-dependent, highly local, and strongly in-
teractive mechanism to increase synaptic efficiency as a function of the
correlation between the presynaptic and postsynaptic activities. From
this definition, given by [22], the following four key mechanisms
(properties) that characterize Hebbian learning can be deduced:

1. Time-dependent mechanism. This mechanism refers to the fact
that the modifications in a Hebbian synapse depend on the
exact time of occurrence of the presynaptic and postsynaptic
signals.

2. Local mechanism. By its very nature, a synapse is the trans-
mission site where information-bearing signals (represent-
ing ongoing activity in the presynaptic and postsynaptic units)
are in spatiotemporal contiguity. This locally available infor-
mation is used by a Hebbian synapse to produce a local
synaptic modification that is input specific.

3 Interactive mechanism. The occurrence of a change in a Heb-
bian synapse depends on signals on both sides of the synapse.
That is, the Hebbian form of learning depends on “true in-
teraction” between presynaptic and postsynaptic signals in
the sense that we cannot make a prediction from either one
of these two activities by itself. Note also that this depen-
dence or interaction may be deterministic or statistical in na-
ture.

4 Conjunctional or correlational mechanism. One interpretation
of Hebb’s postulate of learning is that the condition for a
change in synaptic efficiency is the conjunction of presynap-
tic and postsynaptic signals. Thus, according to this inter-
pretation, the co-occurrence of presynaptic and postsynaptic
signals (within a short interval of time) is sufficient to pro-
duce the synaptic modification. It is for this reason that a
Hebbian synapse is sometimes referred to as a conjunctional
synapse. For another interpretation of Hebb’s postulate of
learning, we may think of the interactive mechanism charac-
terizing a Hebbian synapse in statistical terms. In particular,
the correlation over time between presynaptic and postsy-
naptic signals is viewed as being responsible for a synaptic
change. Accordingly, a Hebbian synapse is also referred to
as a correlational synapse. Correlation is indeed the basis of
learning [23].

To formulate Hebbian learning in mathematical terms, consider a synap-
tic weight wkj of neuron k with presynaptic and postsynaptic signals
denoted by xj and yk, respectively. The adjustment applied to the
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synaptic weight wkj at time-step n is expressed in the general form
as

∆wkj(n) = wkj(n+ 1)− wkj(n) = f(yk(n), xj(n)), (3.3)

where f(·) is a function of both postsynaptic and presynaptic signals.
The signals xj(n) and yk(n) are often treated as dimensionless. The
function f in Eq. (3.3) admits many forms, a special case and the sim-
plest form of Hebbian learning is described by

∆wkj(n) = ηyk(n)xj(n), (3.4)

where η is a positive constant that determines the rate of learning and
is referred to as the learning-rate. Eq. (3.4) clearly emphasizes the cor-
relational nature of a Hebbian synapse which refers exclusively to ex-
citatory synapses, and has the unfortunate property that it can only
increase synaptic weights by the repeated application of the input sig-
nal (presynaptic activity) xj , thus washing out the distinctive perfor-
mance of different neurons in a network, as the connections drive into
saturation. At that point, no new information will be stored in the
synapse, and selectivity is lost. However, when the Hebbian rule is
augmented by a stabilization rule, (e.g. keeping constant the total
strength of synapses upon a given neuron), it tends to “sharpen" a
neuron’s predisposition, causing its firing to become better and better
correlated with a cluster of stimulus patterns. The stabilization rule is
taken care of in the second principle.

Principle 2. Competition

This second principle of self-organization states the following:
The limitation of available resources, in one form or another, leads to
competition among the synapses of a single neuron or an assembly of
neurons, with the result that the most vigorously growing (i.e., fittest)
synapses or neurons, respectively, are selected at the expense of the
others.

This second principle is made possible by synaptic plasticity (i.e.,
adjustability of a synaptic weight). For a given single neuron
to stabilize, for example, there must be competition among its
synapses for limited resources (e.g., energy) in such a way that
the increase in strength of some synapses in the neuron is com-
pensated for by a decrease in strength of others. Accordingly,
only the “successful” synapses can grow in strength, while the
less successful synapses tend to weaken and may eventually dis-
appear altogether. One way to introduce competition among the
synapses of a neuron is to incorporate some form of normalization
in the learning rule for the adaptation of the synaptic weights. The
basic form of η leads to unlimited growth of the synaptic weights,
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which is unacceptable on physical grounds, so the effect of nor-
malization is essential for stabilization. By re-writing Eq. (3.4) as

wkj(n+ 1) = wkj(n) + ηyk(n)xj(n), (3.5)

normalization is applied as follow [24]:

wkj(n+ 1) =
wkj + ηyk(n)xj(n)(

d∑
j

(wkj + ηyk(n)xj(n))2

)1/2
, (3.6)

where the summation in the denominator extends over the com-
plete set of synapses associated with the neuron k and d is the
cardinality of the synapses. If parameter η is small and a linear
model of neuron k as depicted in Figure 3.6 is used then the de-
nominator of Eq. (3.6) can be expanded as a power series in η,
demonstrating that its final form is [12]

wkj(n+ 1) = wkj(n) + ηyk(n)(xj(n)− yk(n)wkj(n)), (3.7)

where the term yk(n)xj(n) represents the usual Hebbian modifi-
cations to synaptic weight wkj and therefore accounts for the self-
amplification effect dictated by Principle 1 of self-organization.
The negative part −yk(n)wkj(n) is responsible for stabilization in
accordance with Principle 2, which requires competition among
the synapses of the neurons. It is related to a forgetting, or leak-
age term, that is frequently used in learning rules, but with the
difference that it becomes more pronounced with a stronger post-
synaptic signal yk(n).
At the network level, a competitive process may prevail by pro-
ceeding as follows [25]:
• To begin with, the neurons in the network are all the same,

except for some randomly distributed synaptic weights; thus,
the neurons respond differently to a given set of input pat-
terns.

• A specific limit is imposed on the “strength” (e.g., the sum
of synaptic weights) of each neuron in the network.

• The neurons compete with each other in accordance with a
prescribed rule for the right to respond to a given subset of
inputs; consequently, only one output neuron, or one neuron
per group, is active at a time. The neuron that wins the com-
petition is called a winner-takes-all neuron (or winning neuron
or best-matching unit (BMU) ).

In competitive-learning process the output neurons of a neural net-
work compete among themselves for being the one to be active
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FIGURE 3.6: Linear input-output relation for a neuron k
in the network.

(fired). Thus, whereas in a neural network based on Hebbian learn-
ing several output neurons may be active simultaneously, in the
case of competitive learning, only a single output neuron, or one
output neuron per group, is active at any time. It is this feature
that makes competitive learning highly suited to discover those
statistically salient features that may be used to classify a set of
input patterns.
Accordingly, the individual neurons of the network learn to spe-
cialize on sets of similar patterns, and thereby become feature de-
tectors.

Principle 3. Cooperation

This third principle of self-organization states the following:
Modifications in synaptic weights at the neural level and in neurons
at the network level tend to cooperate with each other.

The cooperation may arise because of synaptic plasticity or be-
cause of simultaneous stimulation of presynaptic neurons brought
on by the existence of the right conditions in the external environ-
ment. Consider first the case of a single neuron: a single synapse
on its own cannot efficiently produce favorable events. Rather,
there has to be cooperation among the neuron’s synapses, mak-
ing it possible to carry coincident signals strong enough to ac-
tivate that neuron. At the network level, cooperation may take
place through lateral interaction among a group of excited neurons.
In particular, a neuron that is firing tends to excite the neurons
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in its immediate neighborhood more so than those farther away
from it. Over the course of time, we typically find that a cooper-
ative system evolves through a sequence of small changes from
one configuration to another, until an equilibrium condition is es-
tablished. It is also important to note that in a self-organizing sys-
tem that involves both competition and cooperation, competition
always precedes cooperation.

Principle 4. Structural Information

This fourth, and last principle of self-organization states the fol-
lowing:

The underlying order and structure that exist in an input signal rep-
resent redundant information, which is acquired by a self-organizing
system in the form of knowledge.

Structural information contained in the input data is therefore a
prerequisite to self-organized learning. It is also noteworthy that
whereas self-amplification, competition, and cooperation are pro-
cesses that are carried out within a neuron or a neural network,
structural information, or redundancy, is an inherent characteris-
tic of the input signal. Consider, for example, a voice or video
signal. When such a signal is sampled at a high rate, the resulting
sampled signal is correspondingly found to exhibit a higher de-
gree of correlation between adjacent samples. The meaning of this
high correlation is that, on average, the signal does not change
rapidly from one sample to the next, which, in turn, means that
the signal contains structured, or redundant, information. In other
words, correlation is synonymous with structure and redundancy.
To appreciate the importance of structure, suppose that all the re-
dundant information contained in a signal is completely removed.
What we are then left with is a completely non redundant sig-
nal that is unpredictable and may therefore be indistinguishable
from noise. Given this kind of an input, no self-organizing or
unsupervised-learning system can function.

3.3 Vector quantization: VQ

Vector quantization (VQ) is a lossy data/pattern compression method
based on the concept of block coding, derived from the fundamental
result of Shannon’s rate-distortion theory. The VQ design problem can
be stated as follows. Given a vector source with its statistical proper-
ties known, given a distortion measure, and given the number of code-
vectors, find a codebook and a partition which result in the smallest
average distortion.
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Assume a training data sequence input pattern consisting of N input
vectors:

X = {x1, x2, ..., xN}, (3.8)

with probability density function px(x) and N is assumed to be suffi-
ciently large so that all the statistical properties of the input are cap-
tured by the training data sequence. We assume that the input vectors
are d-dimensional, i.e.,

xi = (xi,1, xi,2, ..., xi,d), i = 1, 2, ..., N. (3.9)

Let L be the number of codevectors and let

C = {y1,y2, ...,yL}, (3.10)

represents the codebook. Each codevector is d-dimensional, i.e.,

yl = (yl,1, yl,2, ..., yl,d), l = 1, 2, ..., L. (3.11)

Let Sl be the decision region associated with codevector yl and let

P = {S1,S2, ...,SL}, (3.12)

denote the partition of the space. If the input vector xi is in the decision
region Sl, then its approximation (denoted by quantization rule q(xi)) is
yl:

q(xi) = yl, if xi ∈ Sl. (3.13)

Assuming a squared-error distortion measure, the average distortion is
given by:

d(xi,yl) = ‖xi − yl‖ =
d∑

k=1

(xik − ylk)2, (3.14)

where ‖.‖ denote the Euclidean distance. A quality measure can be in-
ferred by the mean squared error (MSE) or by the root mean squared error
(RMSE):

MSE = E[d(x,yl)] =
L∑
l=1

∫
Sl
‖u− yl‖

2fx(u)du,

RMSE =
√
E[d(x,yl)] =

√√√√ L∑
l=1

∫
Sl
‖u− yl‖

2fx(u)du.

The design of an optimal VQ can be succinctly defined as follow: given
X and L, determine C and P such that the average distortion is mini-
mized. For C and P to be solution of the above minimization problem,
they must satisfy the following two optimality criteria.
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1. Nearest Neighbor Condition (NNC):

Sl = {x : d(x,yl) ≤ d(x,yj) ∀l 6= j}. (3.15)

This condition implies that the optimal decision region Sl should
consists of all vectors that are closer to yl than to any of the other
codevectors. Hence, eq. (3.13) can equivalently be written as,
Q(x) = argminyl(xi−yl), i.e., yl satisfying the equation is the best
approximated codevector to the input vector xi.

2. Centroid Condition (CC):

yl =

∑
xi∈Sl xipx(xi)∑

xi∈Sl px(xi)
, l = 1, 2, ..., L, (3.16)

This condition says that the codevector yl or centroid should be
the average of all those training vectors that are in decision re-
gion Sl. At least, one training vector should be present into each
decision region and this is accounted by the probability mass
function, px(xi).

The classical vector quantization technique to achieve such a mapping
i.e., that satisfies the above two conditions is the LBG algorithm, intro-
duced in [26].

3.4 Clustering and Classification

In this section, we will review some of the literature on data clustering
and data classification.

3.4.1 Clustering

Clustering is the most popular form of automatic unsupervised data
analysis. It can be viewed as a type of vector quantization process or
summarization in which the detailed data within a data set are abstracted
and compressed to a smaller set of class descriptions, one for each
class, that summarize the characteristics of the data in each data subset
defined as cluster. So clustering is a descriptive data analysis task, that
aims at finding the intrinsic structure in collection of objects by group-
ing them into clusters (homogeneous region), based on the values of
their features, such that those within each cluster are more closely re-
lated to one another than objects assigned to different clusters.

Clustering is an unsupervised learning task. Therefore, given a
data set of unlabelled data a clustering algorithm tries to group them
to more meaningful clusters. As a second step assign a label will be
assigned to each cluster, providing a means for generalizing over the
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data objects and their features, in contrast to supervised learning (i.e.,
classification), where for the data set a label or target is already given
to the patterns (training set). Clustering is very useful especially for
large and high dimensional datasets as it provides a simplification of
the underlying data distribution, and it also helps to uncover hidden
structure and knowledge. A drawback in clustering, is that, the idea
of approximating a group of similar data inputs using few clusters de-
scriptors has the consequence of losing fine details (the same issue is
found in general data compression methods). Since there is no univer-
sal definition of clustering, there is no universal measure with which
to compare clustering algorithms. Many of these algorithms have been
extensively studied in a wide variety of disciplines including signals
processing, information retrieval [27], biology, statistics, pattern recog-
nition, machine learning and data mining [28][29][30].

In cluster analysis an important parameter to be be defined is a
measure of similarity (or dissimilarity) between the individual objects
being clustered. One of the most popular method to measure the sim-
ilarity between two vectors, suppose d-dimensional space, is the Eu-
clidean distance:

d(x1, x2) = ‖x1 − x2‖ =

√√√√ d∑
r=1

(x1r − x2r)2, (3.17)

where ‖·‖ represent the norm.
The clustering criterion then is expressed by a cost function or some
other type of transition rule that assesses the quality of a given group-
ing.

Goal of clustering

The goal of clustering is to inspect the underlying data distribution
structure with the purposes of improving research for understanding
hidden knowledge. In the case of well-separated clusters and few di-
mensional data set (e.g., up to 3-dimensions), an eye inspection us-
ing visualization techniques to better understand the data distribution
can suffice, sometimes. However, when dimensionality start to in-
crease, examining the structure of data become quite difficult. Thereby,
robust clustering algorithms operating in the full-dimensional data
space, with the ability to produce useful output that can be easily in-
spect by users, are needed. Clustering is not an easy task and has to
deal with a variety of problems, some of which are:

• Handling High Dimensionality. Often, complex real-world con-
cepts are accompanied by a large number of features. This force
an estimator (e.g., a classifier) to deal with a high number of fea-
tures to train with and therefor, to be able generalize afterward.
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Within these features, often, many are either redundant or irre
levant and their use usually impacts on the complexity and the
memory demand in implementation.

• Heterogeneity of clusters. Distance based clustering algorithms
tend to find spherical clusters with similar size and density. Clus-
tering algorithms which are able to detect clusters of arbitrary
shape, size, density, and data coverage, would help in gaining
a deeper insight into the different correlations between the fea-
tures which, in turn, can greatly facilitate the decision making
processes.

• Interpretability of the Results. High dimensional spaces are cum-
bersome even for the most advanced visualization techniques.
Many clustering algorithms can produce different results. It is
essential to have cluster descriptors that can be easily assimilated
by the final user.

3.4.2 Different types of clustering

Amongst clustering algorithms there is a distinction based on how
they regroup the objects. In the following, various types of clusterings
are distinguished:

• Hierarchical versus Partitional: partitional clustering is a simple di-
vision of a data set into non-overlapping clusters such that each
object of the dataset is assigned to exactly one cluster. Instead in
hierarchical clustering a nested regrouping is perform, and sub-
clusters are created. This gives hierarchical clustering a tree-base
structure where each node on the tree is the union of its children.
The leaves of the tree are often singleton, i.e., clusters of individ-
ual data objects.

• Exclusive versus Overlapping versus Fuzzy: exclusive clustering as-
signs each object to a single cluster. Which means that a data
object belongs to exactly one cluster. In overlapping (or non-
exclusive) clustering, the general case, an object may be assigned
to multiple clusters. For instance, a grouping of people by age
and sex is exclusive whereas a grouping by disease category is
nonexclusive since a person can have several diseases at the same
time. Finally, in fuzzy clustering, each object belongs to every
cluster with a membership probability value (membership weight)
between 0 (does not belong) to 1 (absolutely belong).

• Complete versus Partial: partial clustering only cluster certain por-
tion of the dataset, the objects of interest and discard the rest. By
contrast, a complete clustering assigns every object to a cluster,
regardless of importance and interest.
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FIGURE 3.7: Different types of clusters.

Figure 3.7 represents different types of clusters in which the majority
are exclusive clusters except for the case in (e) where the second cluster
(right) is overlapping.

3.4.3 Clustering algorithms

This section briefly describes a selection of popular clustering methods
which are categorized based on their cluster model, some listed above.
As already stated, there is no objectively "correct" clustering algorithm.
Often, for a particular problem, it needs to be chosen experimentally,
unless there is a mathematical reason to prefer one cluster type over
another. The following overview will only list the most prominent
examples of clustering algorithms.
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3.4.3.1 k-means

k-means clustering is an unsupervised clustering algorithm, based on
the Vector Quantization (Section 3.3) method. k-means aim is to assign
n inputs to a pre-defined number of clusters k, so that each input be-
longs to the cluster with the nearest mean (or centroid), serving as the
prototype of the cluster. Typically, k initial seeds are randomly selected
and iteratively re-organised by assigning each object to its closest cen-
troid. Then, new means are calculated to be the centroids of the objects
in the new clusters. This process goes on until no further changes take
place, i.e., when the assignments no longer change. The optimizing
criterion in the clustering process is the sum-of-squared error between
the objects in the clusters and their respective centroids. The k-means
algorithm is sensitive to the choice of the initial k value, so at the ini-
tialization k should be a varying parameter to be optimize. k-means
generally works well on datasets with isotropic cluster shape, since it
tends to create compact clusters.

3.4.3.2 Hierarchical clustering algorithms

Hierarchical algorithm divides a data set into a sequence of nested
partitions to obtain a number k of clusters, the hierarchy is cut at the
relevant depth. Depending on whether the clustering is performed
top-down, i.e. from a single cluster (root) to the maximum number of
clusters (singletons), or bottom-up, i.e. from the maximum number of
clusters to a single cluster, two types of hierarchical algorithm can be
distinguished:
Agglomerative hierarchical clustering starts with every single object in a
single cluster. Then it repeats merging the closest pair of clusters ac-
cording to some similarity criteria until all of the data are in one cluster.
There are some disadvantages for agglomerative hierarchical cluster-
ing, such as data pattern that have been incorrectly grouped at an early
stage cannot be reallocated and different similarity measures for mea-
suring the similarity between clusters may lead to different results.
Divisive hierarchical clustering starts with all objects in one cluster and
repeats splitting large clusters into smaller pieces. It has the same
drawbacks as agglomerative hierarchical clustering. Another disad-
vantage of divisive clustering is that it is computationally more prob-
lematic than agglomerative clustering, because it needs to consider all
possible divisions into subsets. In combination with SOM, the agglome-
rative clustering is used to assess the performance of our clustering
approach.

Agglomerative hierarchical clustering

Agglomerative clustering algorithm [31][32] generates clusters by a se-
quence of merge operations in a bottom-up fashion. Agglomeration
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process starts by initializing each input pattern as its own cluster. Then
the two closest clusters based on a certain criterion, often measuring
the proximity between clusters, are merged at each step and the pro-
cess is repeated until the desired number of clusters has been obtained.
There are different possible merging rules on which hierarchical algo-
rithm works and based on their implementation different clustering
solutions can be produced. Usually in hierarchical methods a tree dia-
gram called, dendrogram, which represents the nested grouping of ob-
jects and similarity levels is used to illustrate the result of the cluster-
ing process. The clusters are obtained by cutting the dendrogram at
the desired similarity level. In the general cases where merging rules
are considered, agglomerative hierarchical clustering method can be
divided in the following algorithms: single linkage, complete linkage, un-
weighted pair-group method using averages and Ward’s Linkage. Each of
which is described below.

Let define A and B as two clusters, with cardinality |A| and |B|
respectively, and d(·, ·) the euclidean distance metric defined by Eq.
(3.17)

• Single Linkage method (also known as the connectedness, the min-
imum method or the nearest neighbor method) is one of the sim-
plest hierarchical clustering methods. It considers the distance
between two clusters to be equal to the shortest distance from
any member of one cluster to any member of the other cluster.
The distance is defined by the two most similar objects, mathe-
matically:

D(A,B) = min
x∈A,y∈B

d(x,y), (3.18)

• Complete Linkage method (also called the maximum method or the
furthest neighbor method) Unlike the single-link method, uses the
furthest neighbor distance to measure the dissimilarity between
two clusters as:

D(A,B) = max
x∈A,y∈B

d(x,y), (3.19)

• Average Linkage method is also referred as UPGMA, which stands
for “unweighted pair group method using arithmetic averages”.
In the group average method, the distance between two clusters
is defined as the average of the distances between all possible
pairs of data points that are made up of one data point from each
cluster.

Davg(A,B) =
1

|A| · |B|
∑
x∈A

∑
y∈B

d(x,y), (3.20)

• Ward’s Linkage Ward’s method is also known as the minimum vari-
ance method, implements a merging rule consisting in the mini
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mization of the total within-cluster variance. At each step it finds
the pair of clusters that leads to the minimum increase in the
total within-cluster variance after merging. This increase is a
weighted squared distance between centroids i.e., cluster centers,
based on the Euclidean distance.

∆(A,B) =
|A| · |B|
|A|+ |B|

d(µA, µB)2, (3.21)

where µA and µB are the centroids of the two clusters respectively
and ∆ is the merging cost.

3.4.3.3 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
search for inputs objects whose neighborhoods are within a pre-assign
ε radius that contains at least a minimum number of other inputs equal
to MinPts. A set of core objects with overlapping neighborhoods de-
fine the skeleton of the cluster. Objects lying inside the neighborhood
of core objects without being cores themselves are considered to be the
boundaries of the clusters, while the remaining are labeled as noises
or outliers. DBSCAN can discover arbitrary-shaped clusters, is insen-
sitive to outliers and order of the data input. DBSCAN fails to cluster
dataset with high-dimensional spaces consisting in large differences in
densities and is very sensitive to the input parameters ε and MinPts,
which must be specified by the user.

3.4.3.4 Neural Network

Advanced methods such as neural networks, especially those falling in
the ANNs category (see Section 3.1), e.g. represented by Kohonen self-
organizing maps (SOMs), have been used extensively for both cluster-
ing and classification, and have established that neural networks are
a promising alternative to various conventional clustering methods.
SOM provide a way to represent multidimensional data in a smaller
dimensional space, usually with just one or two dimensions. The pro-
cess of reducing the dimensionality of vectors is similar to the Vector
Quantization. In addition, the Self-organizing map creates a network
able to store information into neurons, such that any topological rela-
tionship within the input data set is maintained.

3.4.4 Classification

Classification is the problem of identifying to which among a set of
clusters a new object (or instance) belongs, on the basis of a dataset
containing objects whose cluster membership, i.e., class-label is known.
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To acquire the knowledge that allows the discrimination of different
clusters, a classifier goes through the learning process. During the
learning process, in the classification task, the set of examples being
treated is divided into two mutually exclusive and exhaustive sets,
called the training set and the test set. The classification process is
correspondingly divided into two phases: training, when a classifica-
tion model is built from the training set and testing, when the model is
evaluated on the test set. In the training phase the algorithm has access
to the values of both examples and the desired response of the training
set, and it uses that information to build a classification model. This
model represents classification knowledge, essentially, a relationship
between examples and classes that allows the prediction of the class of
any unseen example given as input to the previous built model. For
testing, the examples in the test set are unseen data. In the testing
phase, first a prediction of the class for each example is made, then the
algorithm is allowed to see the actual class. By confronting the pre-
dicted class and the actual class a performance curve can be drawn
and analyzed. One of the major goals of a classification algorithm is to
maximize the predictive accuracy obtained by the classification model
when classifying examples in the test set, unseen during training. In
the following the two classifiers used in this work are explained.

3.4.4.1 k-Nearest Neighbors (k-nn)

The k-nn is an instance-based method used to classify an object based
on its distance to each member of the training set. The training ex-
amples are mapped into a multi-dimensional feature space, which is
partitioned into regions by the class labels of the training samples. A
point in the space is assigned to the most frequent class label among
the k-nearest training samples. During the training phase, the algo-
rithm only stores the examples and their class labels. Hence, the k-nn
is considered a supervised method. In the actual classification phase,
a reference dataset is compared with an unknown data. The distance
from the unknown data to the k-nearest neighbors determines its class
assignment by either averaging the class numbers of the k-nearest refe
rence points or by obtaining a majority vote from them.

Let x be an example of a d-dimensional feature space, i.e., an object
to be classified and let, a set of n examples contained in the training set
with known classes. The k-nearest neighbors of x among the n known
examples should be selected first, according to a defined distance, usu-
ally the euclidean distance (see 3.17). Once the k-nearest neighbors of
x have been selected, the class of x is determined by majority vote, i.e.,
the most represented class among k is selected.

class(x) = argmax
i∈S

(ni), (3.22)
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where S is the set representing the regions defined by the class labels
and ni is the score achieved in the region with class i. The choice of
k is very important. In general, larger values of k reduce the effect of
noise on the classification, but make boundaries between classes less
distinct. A good k can be selected by parameter optimization using,
for example, cross-validation. The particular case of k = 1 is called the
nearest-neighbor algorithm, because a test example is simply assigned
to the same class as the nearest example from the training set.

3.4.4.2 SOM-based classifier

As outlined in sub-section 3.4.3.4 the SOM neural network simultane-
ously performs a topology-preserving projection from the input data
space onto a regular two-dimensional grid. Here, we list some of the
reasons of SOM being used as a classifier:

• Weights representing the solution are found by iterative training.

• SOM has a simple structure for physical implementation and in-
terpretation.

• SOM can easily map large and complex distributions.

• The generalization property of the SOM produces appropriate
results for the input vectors that are not present in the training
set

3.4.5 Conclusion

In this thesis work SOM is used as a clustering tool and as classifier for
its powerful visualization and dimensionality reduction capability, for
the topologically ordering property to adequately cluster and classify
different type of signals. An extensive description of its theoretical
aspects is given Chapter 4.
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Chapter 4

SELF-ORGANIZING MAPS

Self-organizing maps (SOM) were introduced by Kohonen [33] [34],
and have become a very popular tool used for visualization of high di-
mensional data spaces, clustering/vector quantization (VQ) and at the
same time spatial ordering preserving of the input data space reflected
by the ordering of the codebook vectors (cluster centroids). The basic
idea of SOM is to map the data patterns onto an n-dimensional grid of
neurons or units. That grid forms what is known as the output space,
as opposed to the input space that is the original space where the data
patterns are, as depicted in Figure 4.1. The neurons in the output layer
are generally arranged in a one or two-dimensional lattice although
most of the implementations of SOM use a rectangular grid of neu-
rons. When even distances between the neurons in the output space
are needed, hexagonal grids are sometimes used. Higher dimensional
grids can be used, but are not common since it is not possible to easily
visualize the output space. During competitive learning process the
neurons become selectively tuned to various input patterns by com-
peting among themselves. The synaptic weights of the neurons that
win the competitions are modified according to an adaptation rule. If
the SOM has been trained successfully, patterns that are close in the
input space will be mapped to neurons that are close (or the same) in
the output space. Thus, SOM is “topology preserving" in the sense that
neighborhoods are preserved through the mapping process. This map-
ping correspond to a particular domain or intrinsic statistical feature of
the input data, without any prior knowledge on the input distribution.
That’s why the name self-organizing map.

Generally, SOM has the same disadvantage of vector quantization,
since no matter how much we train the network, any given input pat-
tern and the neuron it is mapped to will not be equal. Hence there is
some difference between a pattern and its codebook vector represen-
tation. This difference is referred as to quantization error (Qe), and it is
used as a measure of how well the SOM performs. Another meaning-
ful parameter is the topological error (Te), which measure how good
is SOM in clustering similar patterns into near regions of the map
by calculating the distance between the winning neuron and second
winning neuron (i.e., the second nearest neuron to an input data). In
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FIGURE 4.1: Two-dimentional SOM, Kohenen model

cluster analysis SOMs are particularly useful for visualization because
they can be used to explore the groupings and the relations within
high-dimensional data by projecting the data onto a two-dimensional
image that clearly indicates regions of homogeneity. The formation of
the SOM follows a specific procedure starting with the initialization
of the synaptic weights in the network, normalized between 0 and 1,
to overcome the fact that certain variables may overwhelm others in
the learning process. Weights are chosen by randomly picking small
values from a number generator. Accordingly the feature map is not
organized a priori. Once the initialization is finished, the definition of
the SOM follows three important processes; competition, cooperation
and synaptic adaptation [12].

4.1 The SOM algorithm

The tree essential processes that define SOM are summarize as follow:

1. Competition. For each input pattern, the neurons in the network
compute their respective values of a discriminant function.This
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discriminant function provides the basis for competition among
the neurons. The neuron with the largest value of discriminant
function is declared winner of the competition.

2. Cooperation. The winning neuron determines the spatial location
of a topological neighborhood of excited neurons, thereby pro-
viding the basis for cooperation among such neighboring neu-
rons.

3. Synaptic Adaptation. This last mechanism enables the excited neu-
rons to increase their individual values of the discriminant func-
tion in relation to the input pattern through suitable adjustments
applied to their synaptic weights. The adjustments made are
such that the response of the winning neuron to the subsequent
application of a similar input pattern is enhanced.

The two first processes are in accordance with two of the four princi-
ples of self-organization described in section 3.2.1. While a modified
form of the Hebbian learning is instead used in the adaptive process
to account for the principle of self-amplification. As explained in sec-
tion 3.2.1, the presence of redundancy in the input data, though not
mentioned explicitly in describing the SOM algorithm, is essential for
learning, since it provides knowledge about the underlying structure
of the input activation patterns. Descriptions of the processes of com-
petition, cooperation, and synaptic adaptation are detailed in what fol-
lows.

4.1.1 Competition

Let x = (x1, x2, ..., xd) be an input pattern (vector) selected at random
from the input space, where d represent the dimension of the input
space. Let the synaptic-weight of neuron j in the output layer be writ-
ten as

wj = [wj1, wj2, · · · , wjd]T , j = 1, 2, · · · , L, (4.1)

where L is the total number of neurons in the output layer and let n
be the discrete-time coordinate. The best match of the input pattern x
with the synaptic-weight vectors wj , can be found by calculating the
euclidean distance between them, the neuron j that minimize this dis-
tance is selected as the winning neuron or equivalently best-matching
unit (BMU). If we identify this neuron with the index i(x), we may
then determine i(x) by applying the following condition, which sums
up the essence of the competition process among the neurons.

i(x) = argmin
1≤j≤L

‖x(n)−wj(n)‖. (4.2)
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4.1.2 Cooperation

In the cooperative process, a topological neighborhood is defined so
that the winning neuron locates the center of a topological neighbor-
hood of cooperating neurons. In particular, the winning neuron will
excite the neurons in its immediate neighborhood more than those far-
ther away from it. Let hj,i denote the topological neighborhood cen-
tered on winning neuron i and dj,i denote the lateral distance between
the winning neuron i and the excited neuron j. The topological neigh-
borhood hj,i can be a unimodal function of the lateral distance dj,i satis-
fying the following two distinct requirements[12]:

1. hj,i is symmetric about the maximum point defined by dj,i = 0; in
other words, it attains its maximum value at the winning neuron
i for which the distance dj,i is zero.

2. The amplitude of hj,i decreases monotonically with increasing
lateral distance dj,i, and decays to zero as dj,i →∞.

For example a translation invariant function for hj,i that satisfies these
requirements is the Gaussian function

hj,i = exp

(
−
d2j,i
2σ2

)
, (4.3)

where parameter σ is a parameter that measures the degree to which
excited neurons in the neighborhood of the winning neuron partici-
pate in the learning process. Another unique feature of the SOM algo-
rithm is that the size of the topological neighborhood is permitted to
shrink with time. This requirement is satisfied by making the width
σ of the topological neighborhood function hj,i decrease with time. A
popular choice for the dependence of σ on discrete time n is the expo-
nential decay described by

σ(n) = σ0 exp

(
− n
τ1

)
, n = 1, 2, ..., (4.4)

where σ0 is the value of σ at the initiation of the SOM algorithm and
τ1. is a time constant to be chosen by the designer. Correspondingly,
hj,i assumes a time-varying form of its own,

hj,i(n) = exp

(
−

d2j,i
2σ2(n)

)
, n = 1, 2, ..., (4.5)

where σ(n) is defined by Eq.(4.4).
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4.1.3 Adaptation

In this last process, for the network to be self-organizing, the synaptic-
weight vector wj of neuron j must change in relation to the input pat-
tern x. In Hebb’s postulate of learning, stated in section 3.2.1, a synap-
tic weight is increased with a simultaneous occurrence of presynaptic
and postsynaptic activities. However, such behavior of the Hebbian
hypothesis in its basic form is not suitable for the unsupervised learn-
ing being considered here, since changes in connectivities occur in one
direction only, finally driving all the synaptic-weights into saturation.
To overcome this problem, the Hebbian hypothesis is modified by in-
cluding a forgetting term g(yj)wj , where wj is the usual synaptic-weight
vector of neuron j and g(yj) is some positive scalar function of the re-
sponse yj . The constant term in the Taylor series expansion of g(yj)
must be zero, as a requirement. Given such a function, the change to
the weight vector of neuron j in the lattice may be expressed as:

∆wj = ηyjx− g(yj)wj, (4.6)

where η is the learning-rate parameter of the algorithm. The requirement
on g(yj), may be satisfy by a linear function, such as;

g(yj) = ηyj,

and for the winning neuron i(x), Eq. (4.6) can be simplified by setting
the response

yj = hj,i(x).

Finally, given the input pattern x(n) and the synaptic-weight vector
wj(n) of neuron j at time n, we define the updated weight vector
wj(n+ 1) at time n+ 1 as:

wj(n+ 1) = wj(n) + η(n)hj,i(n) (x(n)−wj(n)) , (4.7)

which is applied to all the neurons in the lattice that lie inside the topo-
logical neighborhood of the winning neuron i [34][35][36]. Equation
(4.6) has the effect of moving the synaptic-weight vector wi of the win-
ning neuron i toward the input vector x. Upon repeated presentations
of each input vector also the synaptic-weights vectors of the neurons
in the winner topological neighbors adjust to resemble (in a lesser ex-
tent) the input vector. The converged weight vectors approximate the
input probability distribution function, and can be viewed as proto-
types representing the input data. The learning-rate parameter η(n),
according to the principle of stochastic approximation should start at
some initial value η0 and then decrease gradually with increasing time
n. This requirement can be satisfied by the following expression:

η(n) = η0 exp

(
− n
τ2

)
, n = 1, 2, ..., (4.8)
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where τ2 is time constant of the SOM algorithm.
The adaptation of the synaptic weights in the network, can be decom-
posed in accordance with Eq. (4.6), into two phases: an ordering or
self-organizing phase, followed by a convergence phase. These two
phases of the adaptive process are described below:

1. The learning-rate parameter η(n) used to update the synaptic-
weight vector wj(n) should be time-varying. In particular, dur-
ing the first 1000 iterations or so, of the SOM algorithm, η(n)
should begin with a value close to 0.1; thereafter, η(n) should
decrease gradually, but staying above 0.01. The exact form of
variation of η(n) with n is not critical; linear, exponential, or in-
versely proportional to n function shapes can be used. It is how-
ever during this initial phase of the algorithm that the topologi-
cal ordering of the weight vectors wj(n) takes place. This phase
of the learning process is called the ordering phase. The remaining
iterations of the algorithm are needed principally for the fine tun-
ing of the computational map; this second phase of the learning
process is called the convergence phase. For good statistical accu-
racy, η(n) should be maintained during the convergence phase
at a small value (on the order of 0.01 or less) for a fairly long pe-
riod of time, which is typically thousands of iterations. So, to be
concise a good choice for the described parameters is:

η0 = 0.1,

σ0 = the radius of the lattice,

τ1 =
1000

log σ0
,

τ2 = 1000.

2. For topological ordering of the weight vectors wj(n), to take place,
careful consideration has to be given to the neighborhood func-
tion hj,i. Generally, the function hj,i can be of a variety of shapes
of region around the winning neuron, the most used shapes are
rectangular or hexagonal as shown in Fig. 4.2. In any case, hj,i
usually begins such that it includes all neurons in the lattice and
then gradually shrinks over time. To be specific, during the ini-
tial phase of 1000 iterations or so, when topological ordering on
the synaptic-weight vectors takes place, the radius of hj,i is per-
mitted to shrink linearly with time n to a small value of neigh-
boring neurons. Eventually during the convergence phase of the
algorithm, hj,i should contain only the nearest neighbors of win-
ning neuron i, which may eventually be 1 or 0 neighboring neu-
rons.
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FIGURE 4.2: Different shapes of SOM lattice

4.2 Summary of the SOM algorithm

Three basic steps are involved in the application of the SOM algorithm
after the initialization phase: sampling, similarity matching, and synaptic
weights update. Next these steps are described:

ALGORITHM 1

Require: X : the data set; d: the dimension of the input pattern;
L: the SOM lattice dimension; the number of iterations; η0, σ0, τ1,
τ2: parameters;

1. Initialization. For each neuron j in the lattice initialize the synaptic-
weight vectors wj(0) with small random values.

2. repeat

3. Sampling. Draw a pattern x from X at random;

4. Similarity matching. Find the best-matching (winning) neu-
ron i(x) at time-step n by using the minimum-distance crite-
rion:

i(x) = argmin
1≤j≤L

‖x(n)−wj(n)‖. (4.9)

5. Updating. Adjust the synaptic-weight vectors of all excited
neurons by using the update formula

wj(n+ 1) = wj(n) + η(n)hj,i(x)(n) (x(n)−wj(n)) , (4.10)

where η(n) is the learning-rate parameter and hj,i(x) is the neigh-
borhood function centered around the winning neuron i(x); both
η(n) and hj,i(x) are varied dynamically during learning for best
results.
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6. Until. Continue with step 2 until no noticeable changes in the
synaptic-weight vectors are observed or the maximum number
of iterations is reached.

4.3 Properties of the SOM

Once the SOM algorithm has converged, the result is a topological rep-
resentation of the input data space, in the sense that adjacent neurons
in the lattice will tend to have similar synaptic-weight vectors and will
correspond to a particular class or feature that displays the important
statistical characteristics of the input data.

To begin with, let X denote a spatially continuous input space, the
topology of which is defined by the relationship of its elements, i.e.,
the vectors x ∈ X . Let A denote a spatially discrete output space, the
topology of which is endowed by arranging a set of neurons as the
computation nodes of a lattice. Let Φ denote a nonlinear transforma-
tion called a feature map, which maps the input space X onto the out-
put space A:

Φ : X −→ A, (4.11)

Given an input vector x, the SOM algorithm proceeds by first identi-
fying a best-matching, or winning neuron, i(x) in the output space A,
in accordance with the feature map. The synaptic-weight vector wi of
neuron i(x) may then be viewed as a pointer for that neuron into the
input space X . These two operations are depicted in Fig. 4.3. The
self-organizing feature mapping Φ has some important properties, as
described here:

Property 1. Input Space Approximation
The feature map Φ, represented by the set of synaptic weight vectors
{wj|j = 1, 2, ..., L} in the output spaceA, provides a good approximation
to the input space X .

The basic aim of the SOM algorithm is to store a large set of input
vectors x ∈ X by finding a smaller set of prototypes wj ∈ A, so as to
provide a “good” approximation to the original input space X . The
theoretical basis of the idea is the vector quantization theory, and the
motivation for which this property is interesting is data dimensionality
reduction or data compression (see section 3.3).

Property 2. Topological Ordering
The feature map Φ computed by the SOM algorithm is topologically or-
dered in the sense that the spatial location of a neuron in the lattice corre-
sponds to a particular domain or feature of input patterns.
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FIGURE 4.3: Relationship between feature map Φ and
synaptic-weight vector wi(x) of winning neuron i.
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The topological ordering property is a direct consequence of the weight
update equation that forces the weight vector wi(x) of the winning neu-
ron i(x) to move toward the input vector x. The crucial factor is that the
weight updates also move the weight vectors wj of the closest neigh-
boring neurons j along with the winning neuron i(x). Together, these
weight changes cause the whole output space to become appropriately
ordered. We can visualize the feature map Φ as an elastic or virtual net
with a grid like topology. Each output node can be represented in the
input space at coordinates given by their weights. Then if the neigh-
boring nodes in output space have their corresponding points in in-
put space connected together, the resulting image of the output grid
reveals directly the topological ordering at each stage of the network
training

Property 3. Density Matching
The feature map Φ reflects variations in the statistics of the input distri-
bution: regions in the input space from which the sample training vectors
x are drawn with high probability of occurrence are mapped onto larger
domains of the output space, and therefore with better resolution than
regions of input space from which training vectors are drawn with low
probability.

Let px(x) denote the multidimensional pdf of the random input vector
X, a sample realization of which is denoted by x and let m(x) denote
the map magnification factor, defined as the number of neurons repre-
sented by a small volume dx in the input space X . For the SOM al-
gorithm to match the input density exactly, the following proportionality
relationship is required [37]:

m(x) ∝ px(x) (4.12)

This property implies that if a particular region of the input space con-
tains frequently occurring stimuli, it will be represented by a larger
area in the feature map than a region of the input space where the
stimuli occur less frequently. In general literatures the analysis of Eq.
(4.12) have been made in the case of one-dimensional grids. In such
context we have that the magnification factor m(x) is not proportional
to px(x). In the SOM algorithm the proportionality relationship for the
one-dimensional case becomes [38]:

m(x) ∝ p2/3x (x) (4.13)

Then for the case of one-dimensional and likewise in higher- dimen-
sional grid, SOM fails to achieve the proportionality relationship of
Equation 4.12. Hence, SOM algorithm is an approximation which tends
to over-represent regions of low input density and to under-represent
regions of high input density.
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Property 4. Feature Selection
Given data from an input space with a non-linear distribution, the self
organizing map is able to select a set of best features for approximating
the underlying distribution.

This property is a natural culmination of properties 1 through 3. Prin-
cipal Component Analysis (PCA) is able to compute a dimensionality
reduction of the input by taking advantage of the variance in the train-
ing data. It does this by computing the eigenvector associated with
the largest eigenvalue of the correlation matrix. So PCA is fine when
there’s a linear input-output relation. Instead if the data forms a curved
line or surface, linear PCA won’t work, but a SOM will overcome this
approximation problem by virtue of its topological ordering property.
The SOM provides a discrete approximation finding the so-called prin-
cipal curves or principal surfaces, and may therefore be viewed as a
non-linear feature selector.
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Chapter 5

CLUSTERING OF THE SOM

The main goal of this thesis is to provide an unsupervised clustering
procedure to cluster several real-word signals related to the IoT sce-
nario. To do it we have employed several schemes including a feature
extraction tool, different feature selection algorithms, a SOM classifier,
and an agglomerative hierarchical clustering algorithm (AHC) for the
purpose of efficiently grouping different classes of signals. The clus-
tering is carried out using a two-step approach. The first part consist
in extracting qualitative visual information describing the data struc-
ture property from the SOM. Secondly, quantitative information are
extracted by clustering the SOM using the AHC with a tunable param-
eter. Using this approach results in a reduced computational load of
the algorithm, especially when applied to large dataset, moreover, dif-
ferent preprocessing strategies can be selected in a limited amount of
time. This chapter describes the fundamental steps followed to build
a simulation procedure to obtain the performance that allow us to an-
alyze our algorithm. The procedure of our approach is summarize in
Figure 5.1.

5.1 Data subdivision

In this experiment we used the dataset described in Section 2.2. Af-
ter the feature extraction, all data have been normalized to values be-
tween 0 and 1. To realize our model we divided the dataset into a train
set and test set. Training component is used to power the SOM and
create a codebook, which is then used to evaluate the generalization of
the model, by presenting the test set. The subdivision ratio is impor-
tant mainly because if we use too many signals in the training phase to
produce the codebook, there is a risk of over-fitting, this means that we
will not have the capacity to generalize. And testing on non-general
model leads to results that can not be considered valid. Whereas, if
we use more data in the test phase, our model will have little informa-
tion to learn from, and this leads to a poor classification result. On the
basis of what is expressed we chose to split the dataset using 70% for
the training set and the remaining 30% for the test set. It is to be noted
that this procedure was done on all groups in the dataset. In particular
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FIGURE 5.1: Model building flowchart.
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each individual group was partitioned with a 70/30 ratio to obtain a
balanced proportion of the signals in each of the 20 groups.

5.2 Performance measures

The following map quality measures are used.

• Quantization error (Qe) This error measure the average distance
between each data vector and its BMU, it is a measure of the
map resolution. Thus, the optimal map is expected to yield the
smallest average quantization error.

Qe =
1

N

N∑
i=1

‖xi −wi(x)‖, (5.1)

where N is the number of input pattern, xi is the input pattern
and wi(x) is the winning neuron weight vector.

• Topographic error (Te) This error measure the proportion of data
vectors for which first and second BMU are not adjacent units.
Therefor the lower the topographic error is, the better the Self-
Organizing Map preserves the topology.

Te =
1

N

N∑
i=1

δ(xi), (5.2)

where δ(xi) is 1 if the BMU and the second BMU of xi are not
adjacent. Otherwise it is 0.

In the following some performance measures used for the classifica-
tion process are presented.

• Confusion Matrix

Predicted value
Positive Negative

Real value Positive tp fn
Negative fp tn

Where tp, fp, tn and fn represent respectively, the numbers of
true positive, false positive, true negative and false negative quan-
tity, which are fully described in [39]. The above confusion ma-
trix represent a binary class case. In our case it has been extended
to all classes in the dataset. We have then extracted the following
quantitative average performance measures over all the classes.



60 Chapter 5. CLUSTERING OF THE SOM

– Precision (P), Recall (R) and F-score (F1). They are defined as
follows:

P =
tp

fp+ tp
,

R =
tp

fn+ tp
,

F1 =
2PR

P +R
.

5.3 SOM Classifier

The capacity of SOM to represent the data structure is very important.
A proper analysis of the clusters and evaluation of the performance
depends on that. To use SOM as a classifier we exploit the projection
property for which the input data that usually belong to higher di-
mensional space is forced into many codevectors organized in a two
dimensional structure.
There are two fundamental issues: the first is the non deterministic
nature the clustering and the second is the relationship between the
clusters. As an unsupervised learning method the clustering leads in
general to different results for different simulations. The relationship
between clusters instead can be seen in the planar surface by checking
the distances between the codevectors. However, this relationship is
in general difficult to deduce exactly, since the size of the codevectors
is much bigger than the planar surface size. Despite this, we still have
an insight about the classification regions. In order to have a better
representation of these regions an autolabel mechanism is used. And it
consists in the assignation of class memberships to each neuron in the
map after completion of the training phase, that is, when the synaptic-
weights of the neurons reach stability. The construction of the map
goes through three different steps: the initialization of the map, the
training of the map and finally the autolabel process.

5.3.1 Setup

The first step corresponds to the definition of the initial parameters
of the SOM. This operation can be performed automatically by using
some default initialization function derived from the knowledge of the
training set properties. For example a rule of thumb to select the size of
the SOM is to use the formula 5

√
n, where n defines the number of pat-

tern in the training set. Otherwise the definition can be done manually
by the user. The important parameters defined in section 4.1.3, such as
neighborhood radius, iteration (epochs) and neighborhood function,
are chosen. Generally, the task of defining optimal values for specific
classification parameters is achieved based on simulations. For now,
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for the setup of the classifier, we consider a square map of dimension
L = 10× 10, initial learning rate η0 = 0.9, initial radius σ0 = 5, a Gaus-
sian shaped neighborhood function and an iteration number of 1000
epochs. As for the data pattern, we decided to choose at first few fea-
tures from the data matrix without considering any feature selection
algorithm. Note that for now we do this to test the functionality of the
classifier. When performance is to be taken, some parameters will be
chosen based on performed simulation of the algorithm.
The next step correspond to the training of the map and it is done by
following the algorithm 1 of section 4.2. More precisely, for each epoch
all data pattern in the training set are randomly chosen and feed as in-
put to the SOM, which is trained accordingly. The process is repeated
and at the end of the convergence phase a codebook is defined.
In the third and last part the autolabeling mechanism takes place af-
ter the clustering process finished. In practice, once the codebook is
build, all patterns (with known class membership) are feed again to
the map and each neuron (codevector) stores the number of data pat-
tern for which it is the winning unit. These numbers are stored into
class counter vectors owned by all neurons. After all training patterns
have been presented to the SOM, by majority of the votes for a partic-
ular class on each node a class membership is assigned to that node.
As an example, suppose a neuron is fired prevalently by signals of
class membership 10, after the completion of the counting, by a major-
ity vote that neuron will be assigned to class 10. It should be noted that
the autolabel procedure is the only supervised part of this approach
since the creation of the codebook, and thus the learning process, oc-
curs in a non-supervised context. It is possible by the same nature of
SOM, that some neurons do not have a label assignment since they are
never excited directly. These neurons as we shall see, usually represent
the natural boundary created between the clusters of the map. Once
labels are given to all the neurons, which happens after the training
phase, the classifier is ready to be used in the testing phase for classifi-
cation of unseen data pattern. Fig. 5.2 illustrates the classifier model.

5.3.2 Visualization

A visualization analysis of the input data projected into the codebook
can be done already after the above setup experiment. In fact from Fig.
5.3 and 5.4 we can see how the synaptic-weights are changing from a
casual initial state to a more ordered situation. This behavior confirm
property 1 and 2 of SOMs (see section 4.3). From a more careful look
of the map some grouping can be noticed, similar colors in the map
distinguish similar pattern, so color distribution defines various clus-
ters. This is an unsupervised clustering algorithm, and therefore we
have no direct information on the exact number of clusters, nor their
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FIGURE 5.2: General scheme of the simulation model.
The core of the classifier is represented by the clustering
process by SOM followed by the autolabel procedure.
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distribution in the map. Knowing a priori the structure of our dataset
we can only make preliminary supposition from a first visual inspec-
tion. The ability to pre-analyze the data distribution in a visual way is
one of the strengths of the self-organizing map. In this case the colors
distribution under represent the clusters in the dataset. In fact it can be
noted that the colors are mainly of three or four types, so it is difficult
to see 20 clusters, representing 20 classes as we expected.
When the autolabel procedure is used to extract label information we
can immediately perceive the arrangement of the clusters and the var-
ious classes, as shown in Fig. 5.5a. We also can see outliers, which are
those neurons indicated with zero, because they do not belong to any
class of signals. These neurons are important and vary with different
epoch, especially for small maps and at lower epochs their numbers
can be very substantial and this cause a degrading behavior in the ca-
pability of the model to generalize. As we will show this plays an
important role in the performance of the classifier. A particular to be
noted is that by looking at Fig. 5.5a for 200 epochs some classes are not
even recognized, this gives the idea that in this stage, the map is very
unstable and need more iteration. In fact when we reach 1000 epochs
in Fig. 5.5b a distinct situation appears, even though not all groups are
tightly cluster, the map is able to discriminate at least all the signals
types of our dataset. Another remark is that the way color represen-
tation is used failed to fully grasp the entire grouping situation, this
is mainly due to the fact that we are trying make a visualization of
high dimensional space codevectors using a 3-d dimensional space,
which is clearly inadequate. But for a pre-analysis step, in combina-
tion with the classifier labels information we were able to make some
assumption that we needed to continue in this experiment. One as-
sumption is that from various simulations we noticed that a special
grouping scheme do not change, in fact as depicted in Fig. 5.5b the
structure of the subregion including class 2, 3 and 4 remain the same.
That is to say they are always cluster together, in different combina-
tions but always together. An inspection of a bigger map describes
the same situation for other groups. It is clear that there is a grouping
structure in the dataset, in which some signals have near or the same
statistical property. This confirms some knowledge we had about the
dataset, in fact, some signals are derived from a transformation of raw
data signals that are those actually acquired by the sensor (e.g. Strain
and Alarm are derived from RawReading) while other signals have
very similar statistics (e.g. ABPDias, Pulse, HR and AccelLateral, Ac-
celSagittal, AccelVertical). Under these intuitions we were encourage
to integrate these information in the classifier to assess the results of
various simulations that are discussed in Chapter 6.
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(A) initial state

(B) 200 epochs

FIGURE 5.3: The process of the synaptic-weights up-
date of SOM starting from an initial casual state to an
ordered topology for various epochs in a 10x10 neurons

map size.
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(A) 400 epochs

(B) 1000 epochs

FIGURE 5.4: The process of the synaptic-weights up-
date of SOM starting from an initial casual state to an
ordered topology for various epochs in a 10x10 neurons

map size.
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(A) 200 epochs

(B) 1000 epochs

FIGURE 5.5: After synaptic-weights final update, the
auto labeling result of the SOM classifier for two differ-

ent epochs
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5.4 Two-step clustering

The classifier is used to evaluate the performance but also to optimize
certain parameters. Remember that apart for the labels assignment,
this is an unsupervised learning regime so the actual number of clus-
ters is unknown. Whereas, the SOM visualization power for such a
high dimensional data space is approximative. This brings us to the
last setting stage of our model, which consist in using the agglomera-
tive clustering algorithm (AHC) discussed in section 3.4 to transform
the map from a partitive to an hierarchical structure. After trying all
the merging rules described there, we ultimately choose the average
linkage method, which is the one with he best grouping result. In gen-
eral, the hierarchical algorithm has a cost that depends on the number
of the data input and scales at worst-case as O(N2 logN) [40]. In this
case, AHC is convenient, since the vector quantization of the SOM is
exploited to cluster on codebook. Which is much more faster than to
cluster directly the signals in the dataset.

Thank to the hierarchical structure, a parameter ε tied to some prop-
erty of the data structure is set. Such ε therefore depends on the train-
ing set statistic and is used to decide the inspection level of the hi-
erarchy in order to extract information not present in the SOM parti-
tive clusters. The parameter ε is tunable and it is used to indicate the
level at which the dendrogram should be cut. In particular ε is tied to
the correlation between the clusters produced by the hierarchical algo-
rithm and indicates the cutting level that gives the best performance
on the classifier. At that level the number of clusters can be extracted
and a comparison of the SOM and the hierarchical output can be ex-
ploited to check for similarities. Fig. 5.6b for example shows the result
of the hierarchical clustering of the SOM shown in fig 5.6a by stetting
ε in correspondence of 20 classes. A visual inspection with the labeled
map of Fig. 5.5b shows that the two structures are alike only if cer-
tain groups are considered. In particular, the group formed by classes
(2,3,4), class (6), class (15) and class (7) can be clearly distinguished,
while the other classes are still randomly distributed in a unique block.
This behavior is caused by the fact that the map is trained on overlap-
ping signals class types with the first few features from the raw data
matrix in Fig. 2.4. Due to this overlapping nature the performance
remains very poor at this level. It is to noted that while the map visu-
alization provide some insight into the structure of the dataset, it does
not necessarily explain why a particular dataset is easily separable or
not. In fact, when the classes are projected into clusters of distinguish-
able areas, a separation with a high accuracy is possible for a classifier,
but if the classes are highly overlapping after the projection, it does not
mean the dataset is not separable. Rather, it indicates that classification
for such dataset is difficult. This is not a proof but an indication.
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(A) 1000 epochs

(B) 1000 epochs

FIGURE 5.6: Comparison of SOM (a) and hierarachical
clustering (b) result for 20 classes dataset for a 10x10

map size
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Name Label instances(#)
ABPDias 1 395
Accels 2 300
RawReading 3 288
Temp 4 198
Breathing 5 100
ECG 6 100
Humidity 7 99
PPG 8 100
RR 9 100
Solar 10 100
WindDir 11 100
WindSpeed 12 99

TABLE 5.1: Data signals types in the new dataset with
the labels and the number of signals in each class.

Through various simulations and comparison of the SOM output
with the hierarchical clustering result, we came to the conclusion that
the number of clusters present in the dataset we had to deal with could
be actually less than 20. It also confirms the observations outlined at
the end of section 5.3.2 and it is a mean to also confirms the overlap-
ping behavior of the different clusters, at least when 20 classes are con-
sidered. Some analysis of the results from our simulations showed
that the number of clusters that achieve good performance and an ac-
ceptable signals types differentiability was around 12. Considering all
previous observations and simulations results, we decided to build a
new dataset. For this new dataset signals derived from transforma-
tion made on the raw signals retrieved by the sensors were grouped
together, as well as signals with very similar statistics. In such a way
the new dataset results in a reduced numbers of classes, hence, in a
reduced number of clusters. In Tab. 5.1 a summary of the new dataset
is presented.

In the next chapter results of the simulations to assess the perfor-
mance of the model are given. In particular the comparison amongst
the different feature selection algorithms for the case of 20 and 12
classes are shown. Evaluations of the quality of the different maps in
terms of quantization error and topographic error are derived as well
as the visual results (labels maps) of the classifier when it is derived
from the best performer amongst the feature selection algorithms.
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Chapter 6

EXPERIMENTAL RESULTS

In this chapter various test results performed using the model dis-
cussed in the previous chapter are shown. In particular the feature se-
lection algorithms defined in section 2.4 are tested and compared to as-
sess how the reduction of features affects the clustering and classifica-
tion performance of the model and which one amongst them achieves
the best results. As highlighted in the course of this thesis, dimension-
ality reduction has a strong impact on the computation time as well as
on the storage requirements of the learning process. Hence, the selec-
tion of the reduced set of features is important, and should not change
the particular structure of the data on which it is applied.

To obtain the performance each results is derived by iterating the
learning process for a number of epochs. At different epochs intervals,
the SOM is stopped, and a codebook is created. A classifier is then
automatically built upon this codebook using the training set, as de-
scribed in section 5.3. Once the classifier is ready, the testing set is used
to retrieve classification performance results by using the class labels
information to calculate a confusion matrix from which other quantita-
tive average performance is derived (see section 5.2). Meanwhile, after
the completion of the training process some information regarding the
map behavior are retrieved as well. More precisely, quality measures
regarding the quantization error (Qe) and the topographic error (Te),
defined in section 5.2, are saved and used to comment the classifica-
tion process. The above procedure is done on all the feature selection
algorithms. In particular, in an iterative manner, a subset of features is
selected according to each feature selection algorithm, and fed as train-
ing samples to the map. The number of features to be used at each step
is preset by the user. In this case we have decided to increase the num-
ber of features in an interval from 40 to 200. More features could be
used for the training but that goes with an expense in the computation
time and the memory needed to store the features. In fact, computa-
tion time impacts considerably in the experiments, apart from the time
each training and testing process take, for each feature selection algo-
rithm and each feature number the program is executed 100 times, in
order to assess the average performance.
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In the following sections the testing is done in two part. The first
part of the testing considers the input dataset as it is initially given,
thus by taking into account 20 different classes. Then, the second part
consists on testing the modified dataset with 12 classes (see Tab. 5.1),
derived from the consideration we have made in section 5.3.2 and sec-
tion 5.4. Finally the simulations results of each part are given. We will
go by inspecting the results for different map sizes and for different
training epochs. The initials default parameters used to train the SOM
are: the initial learning rate η0 = 0.9, the initial radius σ0 =

√
L/2,

number of epochs 1000 and the neighborhood function with a Gaus-
sian shape. Prior to each training the map weights are initiated with
small random numbers and the initial state of a map is equal for all the
feature selection algorithms.

6.1 Clustering case: 20 classes

In this section results of the model is given for maps trained on the
dataset of 20 classes. For the moment we will concentrate on the map
with dimension L = 5 × 5, which corresponds to 25 neurons. Fig. 6.1
displays the average precision curves for different feature selection al-
gorithms with respect to the number of the selected features. It can be
seen that the best performing algorithms in terms of average precision
are given by GFS and MI. They have very similar results and perform
greatly better with respect to the others. They initially present a grow-
ing behavior for increasing number of features until they reach a cer-
tain peak value, then in a second time especially for higher number of
features they instead show a decreasing tendency. More particularly at
low features number (i.e., 40 features) the UDFS algorithm present the
worst performance followed by noSEL. It is to be noted that in noSEL
no feature selection algorithm is applied, the features are consecutively
chosen and fed to the map. It is interesting to see that while the gen-
eral trend of the curves is decreasing with the increasing number of
features, the Relief-F and the UDFS continuously increase or maintain
a steady-state behavior. In this scheme noSEL continuously decreases
with the number of features. This behavior however was expected,
since without an adequate selection of relevant features it is difficult
to efficiently represent the structure of the dataset. An important con-
sideration which can be derived is that the overall classification perfor-
mance are very poor. In fact, the best algorithm merely reaches a peak
46% average precision at 60 features. One explanation for this is that
the map size is to small to represent the dataset structure efficiently,
thus different classes end up been fused together. Another issue is
represent by the fact that in this dataset many signals belong to over-
lapped clusters, which cause the classifier to create misplaced classes
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FIGURE 6.1: Average precision vs number of features for
different feature selection algorithms. Comparison for

20 classes with L = 5× 5.

representation. More precisely, when small map sizes are considered
what happens is that during the training phase, the synaptic-weight
vector associated with some neurons (and to the neurons in their vicin-
ity) will take longer to stabilize because they undergo more frequent
and (especially) dissimilar updates. This leads to a not well defined
distribution of the data space in the map, which imply a loss in terms
of generalization ability and causes the misclassification of the signals
in the testing set, which clearly results in a considerable deterioration
of the average performance.

In Fig. 6.2 and in Fig. 6.3 the quality measures of the trained SOM
are shown for different feature selection algorithms. Fig. 6.2 displays
the evolution of the average quantization error as a function of the
number of features considered. This quantity represent the quality
of the vector quantization technique provided by the SOM. It can be
seen that the average quantization error decreases with the increasing
number of features. This is not surprising since the model provided
by the SOM to represent the input data space distribution should be-
come more and more accurate as the number of relevant features used
for training (and thus for shaping the model) increases. In fact, a major
number of discriminant features forces the neurons to be more special-
ized. This creates a better representation of the input data space, thus
allowing a closer distance between each pattern and its BMU.
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FIGURE 6.2: Average quantization error vs number
of features for different features selection algorithms.

Comparison for 20 classes with L = 5× 5.

In Fig. 6.3 the evolution of the average topographic error is repre-
sented against the selected number of features. It is interesting to see
how this quality measure increases with the number of features. The
meaning of this observation is that, in general, increasing the number
of features will result in a more disordered map state. An explanation
for this is given by the fact that for small map sizes many different
signals are forced to be distributed in to small regions. Hence, many
second BMUs end up being in the vicinity of their respective BMUs.
This is particularly evident for the lowest features number. Since the
lower the topographic error is, the better the SOM preserves the topol-
ogy and the better the clusters are formed. This results indicate, as in
the case of Qe in Fig. 6.2, that the relevant features selected by the al-
gorithms MI and GFS are proving to be the best in preserving also the
topology of the maps, meaning better distribution of data space. These
two quality measures are signs of good performing maps and thus of
the production of good classifiers which performance ultimately is re-
flected on the classification process.

Unfortunately for this map size, the quality measures are not very
reliable, since due to the fact that when the number of neurons is small,
a given neuron will be the best matching unit for a greater number
of different signals in the training set, which leads to an under rep-
resented data distribution. It is also unfortunate that the only non-
supervised features selector, UDFS, that would permit a certain degree
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FIGURE 6.3: Average topographic error vs number
of features for different features selection algorithms.

Comparison for 20 classes with L = 5× 5.

of automation, still has the worst quality curve together with Relief-F,
as they keep increasing rapidly with the number of features considered
and especially for high features numbers, above 150 features where the
others tend to get better or at least remain constants.

An interesting comparison between the wrappers and the filters
methods used for this dataset can be outlined. Overall the algorithms
with supervised feature selection greatly outperform the non-supervised
ones. Surprisingly, the filter MI and the wrapper GFS have compara-
ble performance in all the experiments. While noSEL has the worst
results in the classification process and it represents a particular sit-
uation, the UDFS is the worst amongst all feature selection methods.
The filter Relief-F performs in the middle although it is designed to
work on multi-class scenario. We suspect that, the inferior result of
Relief-F especially with respect to the other filter MI is a consequence
of the overlapped nature of the classes in the dataset, for which the al-
gorithm has difficulty to deal with. The particular situation of noSEL
is represented by the fact that although presenting a good quality on
the trained maps with respect to Relief-F and UDFS, it is not able to
produce better results in the classification process.

Until now a map of size L = 5 × 5 have been considered and we
have discovered that its size is not sufficient to accurately represent
the data in the dataset, producing not very reliable results. In fact,
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FIGURE 6.4: Average precision vs number of features for
different features selection algorithms. Comparison for

20 classes with L = 10× 10.

the average precision is very low and the average quality measure Qe
of this map achieves results which also indicate its bad vectors quan-
tization performance. For such reason the size of the map has been
increased to L = 10 × 10 which corresponds to 100 neurons. In Fig.
6.4 the average precision for this case is shown, what can be immedi-
ately said is that the overall evolution of the curves does not change
much. They are very similar to the case in Fig. 6.1 with some no-
ticeable improvements for all the algorithms. Their average precision
have increased at least by the 15%. It is a confirmation of the theory
for which a larger number of neurons provide the SOM the ability to
build a better representation of the data feature space. In this situation
the classifier is able to perform much better. Others slights changes can
be commented, for example the filter method has increase its distance
with respect to the wrapper GFS, and distances between the three last
algorithms are increasing as well. It is to be noted that among all
the results, noSEL has increased the less, reaching an improvement
of only 10%. Relief-F and UDFS are the only algorithms with increas-
ing behavior for higher number of features, this means they still have
to reach their maximum value which correspond to features number
beyond 200. Unfortunately this also corresponds to higher memory
consumption and greater computation time.
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FIGURE 6.5: Average quantization error vs number
of features for different features selection algorithms.

Comparison for 20 classes with L = 10× 10.

As in the previous map size the quality measures were used for the
analysis of the performance of the classification process. For this map
size the same approach is used. In Fig. 6.5 and in Fig. 6.6 the average
Qe and the average Te are represented respectively. They display the
improvements achieved by a major number of neurons in the map. As
Fig. 6.5 shows, when the number of neurons in a map increases, the
average quantization error decreases accordingly. The curves have be-
come flatter, but their overall evolution did not change much, except
for Relief-F which become slightly better. What has changed instead is
that the average Te has become worst especially in the lowest features
number range. In fact by looking at Fig. 6.6 it can be seen that the
evolution of the curves are flatter, with the average Te for MI passing
from 0.14 to 0.18. Hopefully, this does not translate into worst perfor-
mance. The result comes from the fact that for this map the neighbors
of the winning neuron are more spread around it and the topologi-
cal preservation is more stable. Moreover, for larger SOM the neurons
are specialized in training signals (by updating the synaptic-weights)
from the same class membership. Hence, the creation of the clusters
becomes more efficient and each cluster is composed mainly by similar
signals.

In fig. 6.7 the evolution of the average precision with respect to the
number of epochs is shown. This results are obtained using 75 features
on the training set from each feature selection algorithm. In this case
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FIGURE 6.6: Average topographic error vs number
of features for different features selection algorithms.

Comparison for 20 classes with L = 10× 10.

we have extended the number of epochs form 1000 to 2000 to inspect
the learning process behavior at higher training length. It can be noted
that there exist two different phases of the training which are clearly
distinguishable and correspond to the phases discussed in Chapter 4 at
section 4.1.3. The first phase is the ordering phase which goes from 100
to 1000 epochs, here the map undergoes heavy changes in the synap-
tic weights due to the large learning rate, causing the curves to have
the increasing behavior. The second phase is the convergence phase,
in this case what happens is that the synaptic weights of the winning
neurons are dominated by fine adjustments, since the learning rate as-
sumes very small values. Therefore, the curves have a steady-state be-
havior which can be seen in the interval from 1000 to 2000 epochs. As it
is depicted, in the first phase the different feature selection algorithms
show different increasing behavior. GFS and MI increase more rapidly
than the others confirming to have better stabilization and represen-
tations of the data distribution. This is also confirmed by the quality
measures. By looking Fig. 6.8 it can be seen that the quantization error
for these two algorithms have fastest decreasing behaviors toward the
smallest error values and in Fig. 6.9 for the topographic error in which
case they take the lowest errors.
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FIGURE 6.7: Average precision vs number of epochs for
different features selection algorithms. Comparison for

20 classes with L = 10× 10 and 75 features.

An interesting aspect to recall is that of the peculiar situation for
which noSEL achieves better maps quality but produces bad average
precision is still valid also for this map size. This may suggests that, for
this dataset, in the learning process the features selected from noSEL
are able to produce good maps with respect to UDFS and Relief-F but
fails to generalize the model afterward. That is why it performs so
poorly in the test set evaluation. Any way if only the quality mea-
sures are taken into consideration then UDFS is the algorithm with
the poorest performance in producing maps with good qualities. This
may be explained by the fact that feature selection in non-supervised
scenario is very complicated and the performance strongly depend on
the relations between features. In this context it is very important to
deal with the presence of corrupted or incomplete data which play the
fundamental role in degrading the chance of a correct learning pro-
cess. Clearly the features selected by UDFS are not suitable to express
the data structure correctly even though the algorithm achieves better
average precision than noSEL.

In Fig. 6.10 we have plotted the information of the labels produce
by the classifier trained on the MI algorithm using 75 features from
which we have obtained the average precision results of Fig. 6.7. What
can be immediately noted is that the clusters representation is not well
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FIGURE 6.10: The classifier label information when con-
sidering 20 classes with L = 10 × 10 and 75 features for

the MI selection method

defined over the map. Clearly the overlapping nature of certain clus-
ters, like (2), (3) and (4) is distinguishable and represent the strong
correlations amongst many signals of different classes in the dataset.
It can also be seen that some clusters are subdivided between various
regions of the map, for example class (7) and class (19) while others,
like class (11) are simply under-represented.

By using this visual information we have provided the consider-
ations discussed in the previous chapter and had sufficient means to
assess the structure of the dataset and to elaborate the experiments
onto the reduced number of clusters for which results are presented in
the next section.
Going by the fact that we have discovered, from previous results, that
small maps size are not capable to fully define the structure of the
dataset. In the following section we have decided to omit the test-
ing on the L = 5 × 5 map and to concentrate our effort on maps with
higher dimensions.
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6.2 Clustering case: 12 classes

This section presents the simulation results obtained using the new
constructed dataset defined in Tab. 5.1. In this case signals that have
similar or the same statistic were combined together, resulting in a re-
duced number of classes, hence a reduced number of clusters. The
simulations were made as in the previous case starting from a map
initialized to small random real values. The initialization of each map
is equal for all feature selection algorithms. Parameters of the SOM
are, the initial learning rate η0 = 0.9, the initial radius σ0 =

√
L/2 and

the number of epochs 1000.
Fig. 6.11 shows the simulation results on a map of size L = 100

neurons, with a L = 10 × 10 grid representation. The classification
performance of the model for the new dataset are higher compared to
the previous ones, which signify that the classifier performs better on
clusters which are well defined and separable. In fact the average pre-
cision reaches 83% with the MI algorithm, much higher compare to the
20 classes case for the same map. GFS and MI algorithms continue to
confirm to be the best algorithms with MI performing slightly better.
An interesting result is given by Relief-F which now performs sim-
ilarly to the first two algorithms, especially in the range of features
where they reach their peaks (i.e., 60-80 features). The reason behind
this improvement can be explained by the fact that Relief-F is an algo-
rithm conceived to work on multi-class scenarios and performs well
on dataset with good classes separation. Therefore, this result proves
that the new dataset represents the structure of the signals better than
the previous one. In this case the different clusters are statistically well
represented, thus the classifier works on a more stable map where the
clusters are more compact, vary less and are easily identifiable. It can
also be noted that with this dataset the unsupervised method (UDFS)
has the worst performance at fewer features but get better right af-
ter 60 features. It outperforms noSEL and continues to grow without
reaching its peak value. This is normal since UDFS uses discrimina-
tive information and local structure of data distribution to select the
relevant features. This means that UDFS need many more features to
fully grasp the structure of the dataset. But as already said, the use of
a large number features comes with the expense in memory demand
and high computation load. In general noSEL remains the worst in
terms of average precision, especially when considering high features
number. A result like this was expected since one of the objective of
this thesis (see section 2.4) was to demonstrate that feature selection
algorithms have many advantages with respect to using raw data fea-
tures in clustering and classification process. It may be said that even
if it is not among the best performer in this list of algorithm, noSEL in
this situation reaches a performance that is not so bad.
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FIGURE 6.11: Average precision vs number of features
for different features selection algorithms. Comparison

for 12 classes with L = 10× 10.

As in the previous situations, where the quality measures were
used to analyze and to evaluate the performance, also in this case they
have been used to derive considerations for the classification perfor-
mance. In Fig. 6.12 we have plotted the average quantization error
against the selected features. The most obvious change is the drastic
improvement of the Relief-F with respect to the previous 20 classes
case. It is to be remembered that in that case it was inferior even to
noSEL. This improvement also explains why Relief-F has performed
so much better in terms of average precision, in fact it can be seen that
Relief-F has committed much less quantization error. In this case, it
even reaches a level comparable to GFS and MI and proves to be a
good competitor to them.

Overall for the others algorithms Qe does not change much with re-
spect to the previous case when the same map size is considered. For
what concerns the topographic error, Fig. 6.13 shows that the evolu-
tion of the curves remains the same for the majority of the algorithms.
The only exception is represent by Relief-F which has decreased con-
siderably reaching the level of GFS and MI in a confirmation of its im-
provement also for this quality measure. It is to be noted that both in
Fig. 6.12 and in Fig. 6.13 Relief-F has performed better than noSEL and
that is a different result compared to what happened in the previous
20 classes case.
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FIGURE 6.12: Average quantization error vs number
of features for different features selection algorithms.

Comparison for 12 classes with L = 10× 10.
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FIGURE 6.13: Average topographic error vs number
of features for different features selection algorithms.

Comparison for 12 classes with L = 10× 10.
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In Fig. 6.14 and in Fig. 6.15 the maps size have been increased to
15 × 15 which corresponds to 225 neurons and to 20 × 20 which cor-
responds to 400 neurons respectively. This has been done to study the
performance at increasing map size. In general, for what regard the
average precision, what can be noted is that similar behaviors are ob-
tained as in the situation where the map size was increased from 25
neurons to 100 neurons. That is to say that a bigger map leads to the
overall increment of the average precision for all the feature selection
algorithms. This scenario goes on until the map reaches a limit of data
distribution representation and starts to shows not noticeable effects
in the performance. A situation like this happens for example if we
go from the map of size 15 × 15 to the map of size 20 × 20. In fact,
in this situation the average precision shows no noticeable increments.
Moreover, the curves evolution are similar to the ones in Fig. 6.11.
However, there are noticeable changes in the quality measures which
improvements continue to grow when the map size is increased. This
is illustrate in Fig. 6.16 for the quantization error and in Fig. 6.17 for
the topographic error, both are the result of the map trained on 400
neurons. It can clearly be noted for Qe that all the curves have de-
creased to smaller values, which means that they have increase the
map quality. Especially for the three algorithms GFS, MI and Relief-F
which are now below the value 0.01. While for the Te they stay in the
interval value of 0.18-0.22. An other important change to be noted is
the flatness of the curves which indicate that the qualities measures for
this lattice remain comparable for any of the features number consid-
ered. These last quality measures confirm the capacity of larger SOM
to better represent data features space into the lattice. However, there
are limits to the improvements with respect to the growing map size.
What we noticed is that for some bigger maps the SOM starts to over-
represent the data distribution and as a consequence there is a major
presence of outliers neurons (i.e., neurons with zero label) which as
we know reduce the capacity of the model to generalize in the testing
phase.

Now as a post analysis considerations, taking into account the mem-
ory demand and the computational time for some maps conditions, we
can conclude that the most appropriate algorithms are able to distin-
guish and classify the signals at relatively small number of features,
around 60-80 features, giving appreciable average precision of the or-
der of 86% for a map size of 15 × 15. Which is certainly a great ad-
vantage considering the size of the full set of 4957 features for each
signals in the dataset. In this experiment GFS, MI and Relief-F have
proved to be the most appropriate algorithms. But Relief-F and MI
are filters method and have demonstrated to be faster feature selection
algorithms than GFS (a wrapper) and would be the most appropriate
choice in terms of rapidity, hence computational costs.
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FIGURE 6.14: Average precision error vs number of fea-
tures for different features selection algorithms. Com-

parison for 12 classes with L = 15× 15.

number of features
40 60 80 100 120 140 160 180 200

A
ve

ra
g

e 
p

re
ci

si
o

n
 (

%
)

55

60

65

70

75

80

85

90
noSEL
GFS
MI
Relief-F
UDFS

FIGURE 6.15: Average precision error vs number of fea-
tures for different features selection algorithms. Com-

parison for 12 classes with L = 20× 20.
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FIGURE 6.16: Average quantization error vs number
of features for different features selection algorithms.

Comparison for 12 classes with L = 20× 20.
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Comparison for 12 classes with L = 20× 20.
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FIGURE 6.18: The classifier label information for 12
classes with L = 10× 10 and 75 features using MI

In Fig. 6.18 we have plotted the map with the information of the
labels produced by the classifier using the MI feature selection algo-
rithm of Fig 6.11 trained with 75 features, as done in Fig. 6.10 for the
20 classes case. In this case the clusters are better separated and have
a representation that is well defined, even though there are still some
clusters which are subdivided (in a lesser extent with respect to that
of Fig. 6.10), like cluster (10) and cluster (7). As expected, the density
representation of the map reflects the new dataset and it can clearly be
seen that the distribution of the input data space is biased toward the
bigger clusters which contain the major numbers of signals.
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Chapter 7

CONCLUSION

In this thesis the design of an unsupervised clustering model able to
execute the process of grouping IoT signals in clusters and classify
them according to their statistics properties have been proposed. The
analysis was performed on a dataset composed of different signals
coming from different IoTs scenario. A method of features extraction
provided by the Matlab HCTSA framework was employed and dif-
ferent feature selection algorithms taken from the literature have been
tested for the sake of demonstrating their ability to bring advantages
to the clustering and classification process.

The proposed model is obtained using the Kohonen Self-Organizing
Feature map, belonging to the family of the neural network archi-
tectures featuring continuous learning and adaptation capabilities, on
which an original internal classifier has been constructed. Due to the
high number of classes, i.e., clusters, composed of many overlapping
signals present in the first dataset, a very poor classification perfor-
mance was obtained, independently of the feature selection algorithm.
However, by exploiting the powerful visual analysis provide by SOM
and the hierarchical algorithm, a more realistic class representation
dataset was built by grouping the most correlated signals. With the
new dataset all the performance have considerably improved reach-
ing high average precision.

The encouraging results were very helpful for the choice of the
suitable feature selection algorithm, used for the speeding up of the
clustering and classification process of massive datasets. During the
learning process various initialization parameters and maps size has
been studied. We have noticed some disadvantages and some positive
characteristics in the construction and the use of the SOM as a cluster-
ing tool. More precisely, it should be noted that whenever we increase
the number of features, or increase the maps size, the use the SOM
becomes very demanding on computing resources. The visualization
capacity combine with the labels information provided by the classi-
fier helped to distinguish whether different clusters were easily sep-
arable, or were overlapping, giving us the ability to analyze clusters
in the dataset sometime without having a priori informations. When
the SOM is combined with the suitable feature selection algorithm it
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prove to be very efficient in helping for the achievement of higher per-
formance with the benefit of reduced computational cost and memory
use, hence, for the reduction of the energy consumption. For example,
in a wireless network, the management of the energy cost of nodes is
a fundamental issue to deal with. Clustering with the purpose of ex-
tracting reduced by meaningful set of information in order to reduce
retransmission is one way to resolve the issue.

Some possible future research may be to extend the analysis to
more datasets; to employ others feature selection algorithms, espe-
cially the unsupervised methods; to further investigate the procedure
on the features extraction; to enrich the set of performance indexes
to better evaluate the classification result; to extend the optimization
of SOM by considering more parameters and other optimization tech-
niques, such as nested SOMs structure, in order to achieve better clus-
ters separability, and finally to study the impact of different classifica-
tion algorithms.
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