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1. INTRODUCTION AND THESIS OBJECTIVES 
 
 
1.1 INTRODUCTION 

In recent years, increasing ecological problems, connected with the presence of hydrocarbons in the 

environment, are observed. A serious issue is the remediation of soil contaminated with 

hydrocarbons derivatives originated by accidents or in places where specific working activities use 

hydrocarbons (i.e. oil-refineries, military bases, machine-shops, oil-pumps, place for machine 

demolition). 

Hydrocarbons are found in the environment as hydrophobic pollutants like crude petrol, diesel, 

lubricants and fuels. 

Most of the publications are addressed to the problem of removing hydrocarbon pollutants for the 

aquatic environment (Rosenberg et al., 1992; Turchi et al., 1993; Turchi and Mehos, 1992; Berry 

and Mueller, 1994). The removal of hydrocarbons from soil is still a rarely discussed problem. 

The conventional methods currently used for hydrocarbons removal (such as combustion, 

extraction, biological methods) are not perfect. Their disadvantages are: low efficiency, long time of 

the process, secondary pollution of environment and high costs. Hence, it is necessary to search for 

alternative complementary methods in order to remove hydrocarbons from the environment. 

Recently, there have been many publications connected with the application of semiconductors as 

photocatalysts and different light sources as activators of the process of organic pollutants 

degradation (Kaneko and Okura, 2002; Canle et al., 2012). 

This study is related to an Italian soil which has been contaminated by an unknown mixture of 

petroleum hydrocarbons supplied by RE.AL. Spa, a company that deals with contaminated sites 

remediation, environmental investigation and ecological emergency. 

 

 

1.2 THESIS OBJECTIVES 

The aim of this study is to investigate the availability of photocatalytic methods for hydrocarbons 

degradation in the soil. 

In particular the thesis involves the evaluation of many experimental parameters (such as reaction 

time, TiO2 amount, pH, influence of H2O2 ) in order to optimize the process which was previously  

preliminarily tested (Burigo, 2014) demonstrating that photocatalysis mediated by TiO2 

nanoparticles and UV lamps was able to reduce the hydrocarbons content in the contaminated soil. 
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A further topic of the thesis is to check the possible formation of by-products, which could be, in 

principle, more dangerous than the starting pollutants. 

Moreover, he results will be compared with those of other oxidative degradation processes. 

The final target is to propose an efficient process to apply in addition to other methods for soil 

remediation in order to reach the law limits. 

It is to remember that D.Lgs 152/2006, Part IV, V, Annex 5 (Table 1) reports the limits of 

concentration of > C12 hydrocarbons in soil matrix (50mg/kg for green areas; 750 mg/kg for 

industrial areas). 
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Figure 2.1.1. Energy gap and valence and conduction band of a semiconductor. [Licciulli et al. 2006]. 

 
The formation of the mobile energy carriers is possible due to three mechanisms: 

• The thermal excitation: if the energy gap is < 0.5 eV , the process may promote an electron 

from the VB to the CB; 

• The photoexcitation: the electron promotion from the VB to the CB may occur thanks to an 

absorption of a photon, as long as hν > Eg; 

• The doping: with additional elements able to reduce the energy gap with the oxidation or the 

reduction of the absorbed specie on the semiconductor surface. 

If the photon has an energy hν > Eg, an electron, e¯, is promoted from the VB to the CB leaving 

behind a positive lacuna h⁺. In the semiconductors some of these pairs e¯ - h⁺  diffuses among the 

particle catalytic surface and take part to the photochemical reaction with the absorbed molecules: 

the donor D and the acceptor A. 

The following reactions show how lacunas h⁺ can oxidize donor molecules (1), while CB electrons 

can reduce electron acceptor. 

 

D + h⁺ → D•⁺                                                                                                                                              (1) 

A + eˉ → A•ˉ                                                                                                                                              (2) 

 

A peculiar property of metal oxides semiconductors is the strong oxidant capacity of the lacuna h⁺, 

which can react with the absorbed water on their surface. This leads to the formation of an highly 

reactive •OH radical as reported in the following reaction (3) 

H2O + h⁺ → •OH + H⁺                                                                                                                                      (3) 
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after the super-oxide radical generation:  

  

•O2
‐  + H2O → HO2 + OH

−                                                                                                                                (8)  

HO2 + e
−→ HO2−                                                                                                                                               (9)  

 

At the end hydroxyl radicals are formed:  

 

OH− + h+→ •OH                                                                                                                                              (10) 

The process can be schematized as follows (Figure 2.1.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.3. Schematization of the photocatalytic process [Lazar et al., 2012]. 

 

The process of charge transfer is very important in the analysis of the whole process efficiency. 

Also, beside this aspect,  the process efficiency depends  on the ability of adsorption of substances 

to be degraded on the photocatalyst particle surface. 

The latter, is a critical point because the extremely reactive radicals formed have a short lifetime, so 

that they are characterized by a short radius of diffusion in the eventual solution present. 

At the same time,it is important that the desorption of the oxidized molecules is fast to let the active 

sites become free to accommodate new molecules. 
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Also the success of the process is due to the energy of the incident photons and not on their 

intensity, meaning that even few of them having the necessary energy are able to stimulate the 

photocatalytic activity (Tobaldi, 2009). 

As for the process kinetic,  it follows a Langmuir – Hinshelwood one, where the reaction rate R is 

proportional to the extent of overlap of the absorbed species θ, according to the following equation: 

 

 1  

Where: 

• k = reaction constant; 

• K = adsorption coefficient; 

• C = reactant concentration. 

When the reactant concentration is low the term KC is negligible (with respect to 1) and the 

reaction can be modeled as a pseudo 1st order kinetic. 

 

2.2  THE CATALYST : TiO2 

Titanium dioxide is the most investigated semi-conductor material for the photocatalysis 

applications and it is the one considered in this case study.  

The TiO2 used here is commercial P25 developed by the company Evonik Degussa. The nominal 

size of the nanoparticles is about 21 nm and agrees with the features included in the product card 

present in Evonik database. The specific surface area is about 50±15m2/g (Evonik). 

An ideal catalyst must have some minimum requirements (Kaneko and Okura, 2002): 

 

• high crystallinity; 

• larger surface area,  that correspond to a higher rate of surface reaction of e- and h+.  

If the specific surface increases, without changing the surface properties, also the rate of reaction 

increases because the amount of substrates adsorbed on the photocatalyst is higher. Titania is an 

oxide semiconductor that has a high reactivity and it can be chemically activated by sunlight too. In 

fact through the direct absorption of the incident photons, it may participate in photochemical 

surface processes. This high photocatalytic activity, due to its chemical and physical characteristics, 

has been the subject of numerous studies from as early as 1972 in Japan, but the analysis of the 

process has intensified especially in recent years. In particular, TiO2 was the most effective catalyst, 

compared to other employees, in the degradation of many contaminants of interest. 
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The practical importance of titanium dioxide is demonstrated by its use in electro-chemical 

processes and as a pigment for paints and polymers. The optical and electronic properties of TiO2 

have numerous applications in gas sensors, antireflection coatings for solar cells and energy 

conversion processes in photo - chemistry. 

Peculiarities of this semiconductor are that it is relatively inexpensive to produce in large amounts, 

available in nature, chemically stable, not harmful, biocompatible and with a more efficient 

photoactivity (Kaneko and Okura, 2002). During the photocatalysis the titania maintain its 

properties, in fact the process takes place without the support is degraded, and a continuous and 

constant effectiveness over time is guaranteed.  

The titanium dioxide exists in three different crystal structures, rutile, anatase and brookite          

(Figure 2.2), and an amorphous phase. Brookite has an orthorhombic structure, the other two forms 

instead have a tetragonal structure containing three distorted octahedra, in particular the structure of 

tetragonal rutile contains two molecules of TiO2 for primitive cell. Rutile and anatase are the most 

common forms in nature. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. TiO2  crystalline structures (a) rutile , (b) anatase, (c) brookite [Lazar et al., 2012]. 
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The refractive index (n) is defined as the ratio between the speed of light in vacuum and in the 

material and for rutile worth 2.76 while for anatase worth 2.52. 

 
Table 2.2.  Typical physical and mechanical properties of titania. 

Property  Value 

Density  4 gcm‐3 
Porosity  0% 

Modulus of rupture  140MPa 
Compressive strength  680MPa 

Poisson’s ratio  0.27 
Fracture toughness  3.2 Mpa.m‐1/2 
Shear modulus  90GPa 

Modulus of elasticity  230GPa 
Microhardness (HV0.5)  880 

Resistivity (25°C)  1012 ohm.cm 
Resistivity (700°C)  2.5x104 ohm.cm 

Dielectric constant (1MHz)  85 
Dissipation factor (1MHz)  5x10‐4 

Dielectric strength  4 kVmm‐1 
Thermal expansion (RT‐1000°C)  9 x 10‐6 
Thermal conductivity (25°C)  11.7 WmK‐1 

 

Despite  the performance of pure anatase as photocatalyst, according to the literature, the mixture of 

anatase and rutile exhibits a greater photocatalytic activity, thanks of the combination of the 

respective energy gaps (Kaneko and Okura,2002; Kim et al., 2012). 

Increasing of the efficiency of photocatalytic titanium oxide is one of the main goals of scientific 

research that has as its object this particular material. It is possible, in fact, acting on different 

aspects involved in the overall photocatalytic process as, for instance, the capacity of absorption and 

desorption of the molecules on the photocatalyst, the rate of charge transfer at the interface and the 

absorption spectrum of the material.  

Titanium dioxide may also be doped with different elements metal ions such as alkaline earth 

metals Ca2 +, Sr2 + and Ba2 +, transition metals V +, Cr +, Mn +, Fe + (Yamashita H., Harada et al. 

2001), Fe3 +, Cr6 +, Mn2 +, Cr3 +, CO2 +, CO3 +, Mo5+ (Brezová, Blazkova et al. 1997; Dvoranová, 

Brezová et al. 2002; Carp, Huisman et al., 2004) and Al3 + (Teodorescu, Blanchin et al . 1999), Ga3 

+, In3 + (Wang, Cheng et al. 1999), Ag+ (Herrmann, Tahiri et al. 1997), Ru3 + (Choi, Termin et al. 

2002), Nd5 + (Wang, Cheng et al. 1999) , Sb5 + (Moon, Takagi et al., 2001) and rare earths (La3 +, 

Ce3 +, Er3 +, Pr3 +, Gd3 +, Nd3 +, Sm3+) (Carp, Huisman et al. 2004). Also, titanium dioxide can be 

doped with N and with C in order to let it be active in presence of visible light (380-760 nm),               
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Another very interesting property of titania is super-hydrophilicity, which manifests itself on the 

surface of the material after exposure to UV light. The super-hydrophilicity and hydrophobicity are 

the two main ways to achieve self-cleaning materials. The wettability of a solid with water, where 

the air is the surrounding medium, depends on the relationship existing between the surface tensions 

at the interface (air-water, water-solid, solid-to-air). The relationship between these voltages, 

determines a contact angle θ. 

If θ is zero the wetting is complete, if it has a value of 180° the coverage is incomplete. To obtain 

hydrophilic surface θ must decrease resulting in a higher adhesion.  

Water-repellency possessed by the surfaces of plants has long been known. Recently, the 

correlation between microstructure, wettability and pollutants, in particular, using the lotus leaves, 

has been studied. This area with its micro-irregularities shows contact angles higher than 130°, then 

the adhesion of water is particularly low.  

By transferring the microstructure of materials used for practical applications, it is possible to 

develop super-hydrophobic surfaces. When water is in contact with these surfaces is contracted 

immediately into droplets. Particles of pollutants adhere to the surface of the droplets and are 

removed when they roll. 

If TiO2 in the anatase crystalline form is exposed to UV light, contact angles < 1° are obtained. 

These materials have the rare property to attract rather than repel it .  

This characteristic is called super - hydrophilicity in which practically water stays flat on the 

surface instead of forming droplets. If the exposure stops, the super-hydrophilic behavior remains 

for about two days.  

In addition, the UV illumination of titania leads to the formation of potent agents with the ability to 

oxidize and decompose many types of bacteria and organic and inorganic materials.  
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2.3 ENVIRONMENTAL APPLICATIONS OF PHOTOCATALYSIS : WATER & AIR DEPURATION 

 

2.3.1 Water depuration 

The presence of organic compounds in industrial wastewater is a serious environmental problem. 

These substances are generally removed with the use of absorbent or coagulant treatments, but, 

according to the new laws need to be matched by other processes.  

An alternative to the conventional methods is represented by advanced oxidation processes (AOPs) 

based on the generation of highly reactive species such as hydroxyl radicals (•OH) which result  

from the photocatalytic process. 

The literature concerning the water depuration by means of photocatalysis using TiO2 is very wide 

and the case studies can be summarized as follows (Table 2.3.1). 

 

Table 2.3.1. Literature case studies regarding water treatment using TiO2 mediated photocatalysis. 

Contaminant Photocatalytic system Reference
Dyes 

Reactive violet 5 
UV/Anatase powder              

(Sigma Aldrich) 
Chung et al., 2009 

Blue 9, Red 51& Yellow 23  Solar/TiO2 (Evonik Degussa P25)  Dias et al., 2009 
Methyl orange  UV/TiO2 on glass  Lopez et al., 2010 
Methylene blue  UV/TiO2 (Merck) on volcanic ash  Esparza et al., 2010 
Rhodamine B  UV/TiO2 bilayer  Zhuang et al., 2010 

Pesticides & herbicides 
Organophosphate & 
Phosphonoglycine 

UV/TiO2 immobilized on silica 
gel 

Echavia et al., 2009 

Azimsulfuron  UV/TiO2 coated on glass rings  Pelentridou et al.,  2009 

Swep residues 
Simulated sunlight/TiO2 (Evonik 

Degussa P25) 
Fabbri et al., 2009 

Pharmaceuticals & cosmetics 
Electrocoagulation & 

UV/TiO2/H2O2 
Boroski et al., 2009 

 
UV/TiO2 (Aeroxide P25) 

Rizzo et al., 2009
Radjenovic et al., 2009 
Choina et al., 2010 

TiO2/Fe3O4 & TiO2/SiO2/Fe3O4  Alvarez et al., 2010 
Benzylparaben  UV/TiO2 (Evonik Degussa P25)  Lin et al., 2011 

Drugs 
Oxolinic acid  UV/TiO2 (Evonik Degussa P25)  Giraldo et al., 2010 

Atenolol & propranolol  UV/Commercial TiO2  Hapeshi et al., 2010 

 
Solar/TiO2 (six commercial 

samples)/H2O2 
Ioannou et al., 2011 

Ciprofloxacin, ofloxacin, norfloxacin &  UV/TiO2 (Evonik Degussa P25)  An et al., 2010 
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Enrofloxacin
Simulated solar/TiO2 P25  Li et al., 2012 

Lamivudine  UV/TiO2 (Evonik Degussa P25)  An et al. 2011 

Oxytetracycline  UV/TiO2 (Evonik Degussa P25)  Pereira et al., 2011 

Others 
N,N‐diethyl‐m‐toluamide               

(Insect repellent) 
UV/TiO2 (Evonik Degussa P25) 

Medana et al., 2011
Adams et al., 2009 

β‐naphthol  UV/TiO2‐SiO2  Qourzal et al., 2009 

15 emerging contaminants 
Solar UV/TiO2 coated on glass 

spheres 
Miranda‐Garcia et al., 

2010 
Grey water  UV/TiO2 (Aeroxide P25)  Sanchez et al., 2010 

Microcystins (Cyanotoxin)  UV/TiO2 film 
 

Antoniou et al., 2008
Sharma et al., 2012 

UV/Doped TiO2  Graham et al., 2010 
UV/ Nitrogen doped TiO2  Triantis et al., 2012 

Lipid vesicles & E. coli cells  UV/TiO2 (Evonik Degussa P25)  Darlymple et al., 2011 
Bacterial colony  UV/TiO2 on titanium beads  Amarjargal et al.,  2012 

Paper mill wastewater  UV/TiO2‐coated bio‐film  Li et al., 2011 
Solar/TiO2  Ghaly et al., 2011 

Endocrine disrupting compounds  UV/TiO2 (Evonik Degussa P25)  Zhang W. et al., 2012 

Municipal waste water 
Solar/sol‐gel TiO2 & Evonik 

Degussa P25 
Miranda‐Garcia  et al., 

2011 

Chlorophenols 
UV/TiO2 (Evonik Degussa P25) 

doped with Zr4+ 
Venkatachalam et al.,        

aaaa2006 

Visible light/ TiO2 nanoparticles Cheng et al. , 2007

 

 

2.3.2 Air depuration  

From literature, it is noticeable that the number of scientific publications dedicated to photocatalytic 

air treatment is significantly lower than the number of the ones related to photocatalytic water 

treatment.  

Yet, this comparison is reversed when considering the number of relevant patents (Paz, 2010). 

This indicates a growing interest in the implementation of photocatalysis for air treatment purposes, 

which surpasses that of water treatment. 

As for indoor air treatment, which is basically any air-containing environment that is at least 

partially disconnected from outside environment, in a manner that the physical conditions 

prevailing are different, in terms of gas composition, temperature, pressure and so on.  

In the majority of the cases, the levels of pollutants in the confined places are above the ambient 

concentrations outside.  

Table 2.3.1. ( continued). 
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Indoor environment term is relevant not only to buildings, but also to underground garages, 

vehicles, aircrafts, storehouses and similar. The indoor air environment is, at least to some extent, 

controllable. The control can be obtained by a variety of means, some of which can be very simple, 

such as open a window, whereas others can be quite sophisticated.  The variety of chemicals which 

can be emitted indoors is enormous. Investigations of gaseous contaminants in buildings, have 

shown that the concentrations of individual species are in the order of 0.1 parts per million by 

volume (ppmv), and that the total concentration of VOCs is between 0.5 and 2.0ppmv                 

(Obee, 1995). Among the contaminants can be found formaldehyde, acetaldehyde, aromatic 

compounds, hydrocarbons, NOx and CO. Photocatalysis seems to be well-suited for the purification 

of indoor air, in particular if compared with purification of water. To this, one may add the 

possibility of using photocatalysis for both VOCs mineralization and bacterial disinfection, upon 

addition of metallic nanoparticles. At any case, the photocatalytic market is still dominated by 

products utilizing super - hydrophilicity and by self-cleaning surfaces (some of which claim to have 

air purification properties). Indoor air treatment is carried out usually by using apparatuses through 

which air is circulated. Such systems contain a blower or an air-pump, a particulates filter or an 

electrostatic precipitator, a light source and a photocatalyst such as presented in Figure 2.3.2. 

 

 
 

Figure 2.3.2. A schematic view of a photocatalytic indoor air treatment device. Changes 
may vary from product to product. (A) fan, (B) particulates (HEPA) filter, (C) photocatalyst, 
(D) light source, (E) activated carbon filter (optional) and (F) ionizer generator (optional). 

 

It is common that the photocatalyst is fixed on a substrate, either in a three dimensional porous 

structure or a honeycomb-type construction to reduce pressure drop. 

The photocatalytic air treatment reactors can be classified according to their geometry or according 

to the way by which the photocatalyst is introduced into the reactor. In terms of geometry the most 

common are tubular, annular and flat plate types of reactors. In terms of the photocatalyst type and 

arrangement of the photocatalyst within the reactors one finds a large variety of types. Can be found 

powder layer reactors and fluidized bed reactors (usually in a tubular geometry) were among the 
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first to be used. Coated wall-parallel flow reactors and honeycomb/foam monolithic reactors are 

probably the most abundant products nowadays. One may also find packed bed reactors, plasma 

driven reactors and permeable layer reactors. Another way for indoor air treatment uses 

photocatalytic surfaces such as painted walls or transparently coated windows. In that case, 

operation relies on natural convection, or on circulation of air by air-conditioning systems. The light 

source in this case can be either the regular light source of the indoor space or low intensity diffused 

solar light entering the indoor space. 

As regards instead outdoor air treatment the main task is to use large area construction objects as 

platforms for air decontamination. For instance, those platforms can be walls, roofs, roads, 

pavements, bridges and buildings. Photocatalysis can be specifically adequate for outdoor treatment 

of NOx, emitted at large by vehicles, as the nitric acid formed during the photocatalytic oxidation 

can be washed away by rain. The photocatalyst can be applied in various forms including in situ 

made concrete objects and over-coated thin layers. Quite often, these types of coatings are referred 

as “self-cleaning coatings”, since photocatalytic coatings on construction materials act also to 

prevent the adsorption of soot or dust that tend to stick to grimy surfaces. 

Outdoor air treatment differs from indoor air treatment by the type of contaminants consisting in 

principally less VOCs and more NOx, CO and SOx, by the use of solar light as the dominant 

irradiation source, by the fact that the primary task of the photocatalytic platforms is to serve for 

construction (unlike indoor-air treatment devices that are especially constructed and designed for air 

cleaning) and not less important, by their visibility to the general public. An example of application 

of titania in concrete is schematized in the following Figure 2.3.2.a. 

 

  

 

 

 

 

 

Figure 2.3.2.a.  Schematization of the mechanism of action of the photocatalytic concrete  
[Ministry of transportation, Ontario]. 

 

Table 2.3.2. summarizes the main experiments conducted in air treatment by means of 

heterogeneous photocatalysis with titania. 
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Table 2.3.2.  Literature case studies regarding air treatment using TiO2 mediated photocatalysis. 

Contaminant  Photocatalytic system Reference 

Ethanol  UV/TiO2 (Evonik Degussa P25) 
doped with Fe,Pd and Cu 

Araña et al. , 2004

Toluene  UV/TiO2                         
(Millenium Chemicals S5‐300B) 

Demeestere et al. , 2008

  UV/TiO2 pellets Bouzaza et al. , 2002
Toluene and trichloroethylene  UV/TiO2 (Evonik Degussa P25) 

doped with Pt and Ag 
Young et al. , 2008

  UV/TiO2 gel (Evonik Degussa
P25) 

Keshmiri et al. , 2006

Trichloroethylene UV/TiO2 (Evonik Degussa P25) Mohseni, 2005
Toluene, n‐hexane and n‐butyl 

acetate 
UV/TiO2 (Kronos VLP7000) Moulis et al. , 2013

VOCS  UV/TiO2                         
(Millenium Chemicals PC500) 

Deveau et al. , 2007

  UV/TiO2‐coated fibers glass 
mesh (Matrix Photocatalytic) 

Pichat et al. , 2000

  UV/TiO2‐SiO2 pellets Zou et al. , 2006
“Bacteria”  UV/TiO2 (Evonik Degussa P25) Huang et al. , 2009
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3. STATE OF THE ART IN THE THESIS FIELD: SOIL REMEDIATION 

 

The soil remediation by means of photocatalytic process using TiO2 is a quite new object of interest 

and it is less discussed in literature compared with the air and water depuration explained before. In 

literature, many publications on ferric oxides mediated photocatalysis in a soil matrix are found. 

The photodegradation of bisphenol-A on the surface of iron oxides has been studied showing that 

the process depended strongly on pH value and light source (UV light > visible light). The 

degradation was greatly promoted by the addition of organic acids and alumina (Li et al., 2006;              

Li et al., 2007). The addition of transition metal cations, including Cu2+, Ni2+ and Mn2+, could 

accelerate 2-mercaptobenzothiazole photodegradation in the γ-Fe2O3/oxalate suspension under            

UV-A light irradiation (Wang et al., 2008).  

The degradation of PAHs and organochlorine pesticide on soil surface in the presence of Fe2O3 

using UV light source was investigated (Zhang et al., 2011) also in combination with TiO2               

(Zhang et al., 2006; Zhao et al., 2004). It was observed that, generally, humic substances inhibit the 

photocatalytic degradation, while the degradation rate increases with the soil pH value.  

In any case, the photocatalysis mediated by TiO2  is a technology in ongoing development as shown 

by quite recent papers. The case studies can be summarized in the following Table 3.1. 

 
Table 3.1. Literature case studies regarding soil remediation using TiO2 mediated photocatalysis. 

Contaminant  Photocatalytic system  Reference  Contamination 
Contamination 

amount 

Pesticide         

Diuron 
Sunlight/TiO2 

(Evonik Degussa P25) 
Higarashi et al., 

2002 (a) 
induced  0.1 mg/g soil 

Pesticide swep and 
surfactancts 

UV/ TiO2 
(Evonik Degussa P25) 

Fabbri et al., 2009 
(b) 

induced  0.13 mg/g soil 

Aromatic 
compounds 
(benzene, 

chlorobenzene, 
naphtol…) 

 

Simulated sunlight/ 
TiO2 

(Evonik Degussa P25) 

Fabbri et al., 2008 
(c) 

real  0.3 mg/g soil 

PAH  UV/TiO2 nanoparticles 
Zhang L. et al., 

2008 (d) 
induced  0.04 mg/g soil 

  UV/TiO2 
Karaca et al., 2013 

(e) 
induced  0.04 mg/g soil 

  UV/TiO2 
Karaca [a] et al., 

2014 (f) 
induced  0.04 mg/g soil 
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  UV/TiO2/DEA 
Karaca [b] et al., 

2014 (g) 
induced  0.04 mg/g soil 

(anthracene)  UV/TiO2 
Karam et al., 2014 

(h) 
induced  0.04 mg/g soil 

(pyrene)  UV/TiO2 nanoparticles 
Zhang L. et al., 

2010 (i) 
induced  0.04 mg/g soil 

  UV/TiO2 nanoparticles 
Dong et al. , 2010 

[b] (j) 
induced  0.04 mg/g soil 

(pyrene, 
phenathrene) 

UV/TiO2 nanoparticles 
Dong et al., 2010 

[a] (k) 
induced  0.04 mg/g soil 

  UV/TiO2 
Yang et al., 2014 

(l) 
induced  0.3 mg/g soil 

(phenanthrene) 
Visible light/ TiO2 
nanoparticles 

Hanzhong et al., 
2012 (m) 

induced  0.1 mg/ g soil 

Oil  Sunlight/TiO2 slurry 
Hamerski et al., 

1999 (n) 
induced  0.7 mg/g soil 

PCB  UV/TiO2/surfactants  Zhu et al., 2012 (o)  induced  0.03 mg/g soil 

Bacteria  Visible light/ TiO2‐Pt 
Chen et al., 2012 

(p) 
induced  0.02mg/g soil 

Phytotoxic 
substances 

UV/TiO2 
Qiu et al., 2013 

(q) 
induced  0.1 mg/g soil 

Chlorophenols  UV/TiO2/surfactant 
Davezza et al., 

2013 (r) 
induced  0.03mg/g soil 

Sulfonylurea 
herbicide residues 

UV/TiO2/ZnO 
UV/VIS light 

Fenoll et al., 2013 
(s) 

induced  0.2 mg/g soil 

Herbicides (ureas)  UV/TiO2/ZnO 
Fenoll et al., 2014 

(t) 
induced  0.1 mg/g soil 

Dioxin  UV/TiO2  Binh et al., 2014(u)  induced  0.03 mg/g soil 

Cr (VI)  UV/TiO2 
Lopez‐Vasquez et 

al., 2013 (v) 
induced  0.11mg/g soil 

  UV/TiO2 
Barrera‐Diaz et al., 

2012 (w) 
induced  0.1mg/g soil 

 

The most important thing to underline in the soil remediation context is that in most of the case 

studies the soil samples are artificially contaminated just to see the potential efficiency of the 

photocatalytic process in real case studies. 

The only case in Table 3.1 related to a real contaminated soil is the one reported in the article by 

Fabbri et al. of 2008, dealing with a site contaminated by aromatic compounds. 

This is consistent to the fact that this is an ongoing developing technology, therefore before being 

applied it must be tested. This concept is remarked in all the papers in the literature. 

But, at the same time it is a drawback, due of the existence of a lack of knowledge. 

  Table 3.1. (continued). 
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In particular because of in real contaminated sites mixture of pollutants are present and not only a 

single specie, it is therefore more difficult to verify, or less, the possible effectiveness of the 

process, because each component reacts in a different way. 

Another problem can be presented by the fact that different soils can behave in a different way, so 

that a deep examination of the influence of the different compounds present in the soil could be 

useful in order to optimize the photocatalytic process. 

In accordance to the reference with IDs (c), (d), (e), (f), (g), (h), (i), (j), (k) ,(l), (m), (p), (q) and (r), 

the degradation of aromatic compounds, including polycyclic aromatic hydrocarbons and 

chlorophenols is reported. The TiO2/UV light is in general considered an efficient method for the 

significant reduction of hydrocarbons (up to 95%) in addition to soil cleaning in the presence of 

surfactants. The influence of different parameters has been investigated such as: 

• Wavelength (a, d); 

• pH (d); 

• Soil particle size (i); 

• Humic acids concentrations (i); 

• TiO2 amount, crystallinity and morphology (f, k, p);  

• Presence of H2O2 (j); 

• Light intensity (j); 

• Presence of additional ions as reagents (e, m); 

• Presence of surfactants (c, g, l, o, p, r); 

• Temperature (f, h); 

Also, the photocatalytic degradation of pesticides and herbicides (carbamates, ureas, dioxins) was 

studied (b, q, s, t, u) observing significant enhancing of the degradation efficiency if TiO2 is mixed 

with ZnO (s, t); the in-situ photocatalytic reduction of Cr(VI) in contaminated soil was studied                

(v, w). 

An important aspect to remark is that, in many cases (a, b, c, g, h, l, o, t, u), the UV/TiO2 mediated 

photocatalysis regards soils contaminated with persistent hydrocarbons pollution. More precisely, 

this methodology is  implemented after other ones that are cheaper or, anyway, it is applied in a old 

contaminated soils which contamination was higher in the beginning. 
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4. INSTRUMENTS AND METHODS 

 

4.1   TYPICAL PHOTOCATALYTIC EXPERIMENT 

In a typical photocatalytic experiment 5g of polluted soil, different amounts of TiO2 (P25 by Evonik 

Evonik Degussa) mixed with 5 mL of deionized water were used (Figure 4.1).  

 

 
Figure 4.1. Photocatalysis preparation: a) weighting, b) mixing. 

 

This mixture was then irradiated with UV lights under the device shown in Figure 4.1.1. 

 

 
Figure 4.1.1. Device utilized to irradiate the samples:  a) open, b) closed. 

 

The UV lamps were put at a distance of 300 mm above the sample. 
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The UV lights characteristics are summarized as below (Figure 4.1.2). 

 

 
Figure 4.1.2. UV lamps technical features. 

 

All the experiments have been carried out either using UV lamps and without, in order to compare 

each result with the corresponding reference (blank). During the irradiation, it was observed that the 

water evaporated (typically every 8 hours), thus additional water (10 mL) was mixed whenever the 

sample dried. 

At the end of the experiment, both samples (blank and sample) were subjected to an extraction  

(Figure 4.1.3) which is a separation method of substances (the hydrocarbons) from soil matrix. It 

was carried out by using hexane (100mL) and stirring the mixture for 24 hours at room temperature.  

It is to note that in the official method for the analysis of hydrocarbons > C12 in soil reported in 

ISPRA Manual 75/2011, the extraction is carried out with acetone/n-heptane for 1 hour under 

stirring followed by a GC – MS determination.  

After the extraction, the mixture was filtered (Whatman filter n° 597) obtaining a solution and a 

solid. The solid was dried and analyzed, if necessary, while the solution was taken to dryness with a 

Rotavapor. 10mL of acetone were added in order to prepare the solution to analyze by GC – MS. 
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Figure 4.1.3. a) extraction, b) filtration, c) drying. 

 

 

4.2   ROTAVAPOR  

The main components of a rotary evaporator are:  

• an evaporation flask containing the solution to be evaporated;  

• a thermostatic bath, in which plunges the evaporation flask to keep the solution to a suitable 

and desired temperature; 

• a motorized mechanism, able to put in rotation the evaporation flask; 

• a vacuum system, to substantially reduce the pressure within the evaporator system; 

• an inclined condenser that provides to knock down the vapors which develops;  

• a condensate-collecting flask at the bottom of the condenser, which catch the distilling 

solvent after it re-condenses.  

The flasks, the capacitor and connecting elements between these are made of glass, and the entire 

system mounted must guarantee a perfect vacuum seal.  

The device used for the research was a Rotavapor BÜCHI Waterbath B-480 (Figure 4.2). 
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Figure 4.2. BÜCHI Rotavapor Waterbath B-480. 

 

 

 

4.3   GC‐MS: GAS CHROMATOGRAPHY – MASS SPECTROMETRY (Skoog, Holler, & Crouch, 2009) 

To the dried sample obtained from the Rotavapor, 10 mL of pure acetone were added which sweeps 

up the remained hydrocarbons in the flask. Then, with a micro syringe were taken 0.4 µL of the 

solution and injected in a Gas chromatography–mass spectrometry (GC-MS) device                 

(Figure 4.3). This latter is an analytical method that combines the features of gas-liquid 

chromatography and mass spectrometry to identify different substances within a test sample.  

Initially the sample underwent to the gas chromatography (GC), in which it is breakdown in the 

constituting molecules, according to their chemical properties in the mixture and their relative 

affinity for the stationary phase of the column. This occurs while the sample travels around the 

length of the column. The molecules obtained are retained by the column and then elute comes off 

from the it at different times, called the retention time. This allows the mass spectrometer (MS) 

downstream to capture, ionize, accelerate, deflect, and detect the ionized molecules separately. 
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Figure 4.3. Carlo Erba GC-MS and general operational scheme. 

 

The GC-MS analysis was carried out using a Carlo Erba Instruments AUTO / HRGC / MS 1000 

MS, as a gas chromatograph coupled to a mass spectrometer detector Carlo Erba Instruments                   

MS QMD 1000. The interpretation of the chromatogram was performed with the provided program 

management of the device, equipped with the NIST and Wiley libraries. 

The typical GC – MD settings were: 

• Range of T° = [80°C – 280°C] with first minute maintaining 80°C and then increasing the 

temperature with a rate of 10°C /min; 

• Splitless; 

• Column: DB5-HS Agilent J&W (5% diphenyl-, 95% dimethilesiloxane); 

• Carrier: He (1cc/min); 

• Detector 500; 

• Mass detected: from 50 to 350; 

 

4.4   SEM: SCANNING ELECTRON MICROSCOPE (Skoog, Holler, & Crouch, 2009) 

The scanning electron microscope (SEM) is a type of electronic microscope which uses a focused 

electron beam to analyze a small squared area of a sample by moving along subsequent parallel 

lines. Some electrons are reflected, the so called scattered, and some others penetrate the surface of 

the sample and are absorbed by the atoms producing electrically excited ions; these ions can return 

at their fundamental state through secondary electrons emissions (fluorescence). These emissions 

can be detected and analyzed in order to obtain information on the typology and composition of the 

sample. In particular the measurement of secondary electrons allows to study the morphology of the 

sample while the measurement of backscattered electrons in addition to producing an image of the 

sample gives information on its composition because their emission is related to the atomic number 
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of the specimen with its different parts displayed in varied darkness according to their density. The 

image can be studied directly by the operator or photographed with a camera. 

A schematization of the instrument is reported below (Figure 4.5). 

 
Figure 4.5. TEM operational scheme. 

 

 

4.6  FT‐IR: FOURIER TRANSFORM INFRARED SPECTROMETER (Silverstein, Webster,  Kiemle,2005) 

The FT-IR spectroscopy is a vibration absorption spectroscopy (Figure 4.6).  It works according to 

the fact that when a molecule is struck by an IR beam of appropriate wavelength, induces a 

variation in the level of vibration energy by lengthening or shortening the chemical bond 

(stretching), or by changing the bond angle (bending). This absorption is characteristic of each 

functional group, which allows to use this phenomenon for qualitative analysis, according to the 

following equation: 
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Figure 4.6.2. FT-IR PerkinElmer Spectrum100. 
 

 

4.7  TEMPERATURE SENSORS  

The capillary tube temperature sensor, (thermocouple) is a probe which monitors the temperature of 

a sample. It consists of two dissimilar conductors that contact each other at one or more spots. It 

produces a voltage when the temperature of one of the spots differs from the reference temperature 

at other parts of the circuit. 

The little capillary, that contains the two conductors, (Fig. 4.7 (a)) in contact with the sample 

transmits the temperature value to a receiving control unit (Fig. 4.7(b)) that instantaneously 

monitors the read value to a computer screen to which it is connected (Fig. 4.7 (c)).  

 

 

Figure 4.7 a) thermometric probe , b) receiving control unit, c) the whole apparatus. 
 

By the receiving control unit it is possible to adjust the frequency of sampling.  

The receiving control unit utilized in this study was a HP 34970A Data Acquisition / Data Logger 

Switch Unit. 
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4.8  XRD 

The X-ray diffraction (XRD) is a non-destructive technique used for the qualitative and quantitative 

analysis of crystalline materials in solid state. Using this analytical technique it is possible record 

the X-rays diffracted by crystalline materials. Each material produces a diffraction spectrum that 

forms a fingerprint making possible the identification of an unknown material for comparison with 

a library of spectra of known substances. Basically, the X-ray diffraction is obtained as a reflection 

of a beam of X-rays from a family of atomic planes parallel and equidistant, following Bragg's law. 

 

2d sen θ = nλ 

d= λ/2sen θ 

where : 

• d is the spacing between diffracting planes; 

• θ is the incident angle;  

• n is any integer; 

• λ is the wavelength of the beam.  

 

When a beam of monochromatic X-rays with a wavelength (wavelength of the radiation that is 

produced by an X-ray tube) is incident on a lattice plane with an angle θ there is a diffraction if the 

path of the rays reflected by successive planes (with a distance d) and a multiple of the wavelength. The 

study of the intensity of diffraction at various angles (setting by the device) allows to identify the 

symmetry of the crystal and the size of its unit cell. 

 

Figure 4.8. Scheme of X-ray diffraction. 
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5. MATERIALS 

 

5.1 TITANIA CHARACTERIZATION 

The photocatalyst used for this study is the TiO2 P25 developed by the company Evonik Degussa. 

The powder was studied in the previous work (Burigo, 2014) with a transmission electron 

microscopy (TEM) and with XRD. The output images given by TEM are reported in Figure 5.1. 

The nominal size of the nanoparticles is about 21 nm and agrees with the characteristics included in 

the product card present in Evonik database. The specific surface area is about 50±15m2/g (Evonik). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. TEM images of TiO2 P25. 
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The composition of TiO2 and the ratio between anatase and rutile was evaluated with XRD. 

In Figure 5.1.1  and in Table 5.1 the diffractogram and the main peaks are reported.  

 
Figure 5.1.1. X-ray diffractometer (XRD) pattern of TiO2 Evonik Degussa P25: the blue line is the difractogram of the 

TiO2 P25 powder, red line regarding anatase phase and green line rutile phase. 

 

Table 5.1. XRD peaks of TiO2. 

2theta  intensity 

25.3  995.43 

27.45  153.73 

36.04  78.45 

37.8  192.52 

38.5  85.27 

48.03  276.48 

53.98  160.29 
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Peak at 8.901: Aliphatic hydrocarbon iso-C13 

 
 

 

 

Peak at 9.334: Aliphatic hydrocarbon C13 

 
 

 

Peak at 10.217: Aliphatic hydrocarbon iso-C14 

 
 

 

Peak at 10.851: Aliphatic hydrocarbon C14 
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Peak at 11.718: Aliphatic hydrocarbon C15 

 

 

 

 

Peak at 12.251: Aliphatic hydrocarbon C16 

 

 

 

 

 

 

 

 

Peak at 12.851: Aliphatic hydrocarbon C17 

 
 

 

Peak at 13.584: Aliphatic hydrocarbon C18 
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Peak at 14.184: Aliphatic hydrocarbon iso-C19 

 
 

 

 

Peak at 14.834: Aliphatic hydrocarbon C19 

 
 

 

 

Peak at 14.901: Aliphatic hydrocarbon C20 

 
 

 

Peak at 16.018: Aliphatic hydrocarbon C21 
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Peak at 17.135: Aliphatic hydrocarbon C22 

 

 

 

 

Peak at 18.218: Aliphatic hydrocarbon C23 

 
 

 

Peak at 19.235: Aliphatic hydrocarbon C24 

 
 

 

Peak at 20.218: Aliphatic hydrocarbon iso-C25 
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Peak at 21.235: Aliphatic hydrocarbon C25 

 
 

 

 

 

Peak at 22.352: Aliphatic hydrocarbon C26 

 
 

The pollutants are all long-chain aliphatic hydrocarbons from C11 to C26. No aromatic compounds 

are present. 

It is possible to note that for lighter compounds (retention time < 10 minutes, from C11 to C14) both 

the normal and corresponding isomers are present: in general iso-isomers are more volatile giving 

rise to the firsts peak of the couples. For instance, the peak at time 7.201 corresponds to the                

iso-isomer of dodecane (C12) and the peak at 7.701 to the normal dodecane. For higher molecular 

weight hydrocarbons the masses reported for the base peaks in the spectra correspond, reasonably, 

to the loss of a fragment  -C2H4 or  -C2H5 followed by progressive loss of  -CH2.  

Starting from ions at m/z 113 (corresponding to C8) loss of hydrogen is observed with the formation 

of ions at m/z 111 from which fragments-CH2 are progressively lost. 
The soils obtained after the extractions Figure 5.2.5, Figure 5.2.6, Table 5.1.2) and the original 

Re.al. sample (Figure 5.2.3, Figure 5.2.4, Table 5.1.1) were then analyzed with ESEM 

(Environmental Scanning Electron Microscope) in order to verify, with a comparison between 

them, the efficiency of the extractions and to show the morphology of the samples. 

 



  Photodegradation of a hydrocarbons contaminated soil: a lab scale study   

41 
 

 
Figure 5.2.3. ESEM of Re.al. polluted soil (RE.AL soil sample): morphology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.4. Spectra of elements in Re.al. soil sample by ESEM. 
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Table 5.1.1. Quantification of elements in Re.al. soil sample by SEM. 

 

 

 

. 

Figure 5.1.5. ESEM of soil sample after 3 extractions: morphology. 
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Figure 5.1.6. Spectra of elements of soil sample after 3 extractions by ESEM. 
 

Table 5.1.2. Quantification by SEM of the elements in soil sample after 3 extractions. 
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The ESEM analysis has confirmed that the extraction was successful because the percentage of 

carbon is decreased from 15,87% to 11,35%. The remaining percentage is due to carbon compounds 

that occur naturally in soils like humic acids and CaCO3.  

The remained soil was studied also with XRD device. The result is reported in Figure 5.1.7  and the 

main bands with the respective intensity in Table 5.1.3. 

 

Figure 5.1.7.  X-ray diffractometer (XRD) pattern of Re.al. soil sample. 

 

Table 5.1.3. XRD peaks of Re.al. soil sample after 3 extractions. 

2theta  intensity 
6  164 

8.85  154.55 
19.89  86.94 
20.85  195.99 
22  101.88 

26.65  651.45 
29.44  328.77 
30.94  996.96 
39.45  124.96 
41.14  141.07 
50.48  254.25 
50.57  252.68 
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It was noticeable that the soil sample was a mixture and by comparing the bands with the library it 

was possible to underline the main bands present, characteristics of oxides, phosphates, silicates and 

carbonate. In Figure 5.1.8  is reported as example the analogy of some silicates with the bands of 

the soil sample (blue line) and in Figure 5.1.9  the analogy of some carbonate                   

(Zhang Y.X. et al., 2014). 

 

 
Figure 5.1.8. X-Ray diffractometer (XRD) pattern of Re.al. soil and the overlay of different silicates graphs. 
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Figure 5.1.9. X-Ray diffractometer (XRD) pattern of Re.al. soil and the overlay of different carbonates graphs. 
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6. THE PHOTOCATALYTIC EXPERIMENTS: RESULTS 

Different experimental parameters have been evaluated: the experiments are described in this 

section. 

6.1 EVALUATION OF THE INFLUENCE OF THE REACTION TIME 

 

EXP. 1: 5g soil; 5mL deionized water; 10% TiO2 w/w ; 24h; no light (Blank). 

In a Petri dish 5g of contaminated soil and 0.5g of TiO2 were mixed together with 5mL of deionized 

water. 

The mixture was left in the dark for 24 hours. Then, 100 mL of hexane were added to the sample 

and it was stirred for other 24 hours for the hydrocarbons extraction. 

The sample was subsequently filtered with a Whatman filter 597 and the filtrate was taken to 

dryness by means of a Rotavapor. 

10 mL of pure acetone were then added to the flask and then 0.4 µL were injected in a GC – MS for 

the analysis.  

 

EXP. 2: 5g soil; 5mL deionized water; 10% TiO2 w/w ; 24h; UV light. 

The mixture of soil, titania and deionized water was irradiated under the UV lamps for 24 hours. 

After about 4hours from the beginning, 10 mL of deionized water have been added being the 

sample dried. The addition of 10 mL of water was repeated other two times during the irradiation. 

After 24 hours the extraction was performed with 100mL of hexane. Thus, the sample was filtered, 

taken to dryness and analyzed with GC – MS. 

 

 

The GC – MS chromatograms for EXP.1 and EXP.2 are reported in the following Figure 6.1.1. 
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Figure 6.1.1. Superimposition of the GC- MS chromatograms related respectively to EXP.1 (red) and EXP.2 (blue). 

 

The quantitation of the process efficiency reported in Table 6.1.1., has been performed calculating 

the ratios between the integral of each peak with the C20 one, which wasn’t resulted to be degraded. 

 

Table 6.1.1. Degradation degree % calculated for the hydrocarbons present in the EXP.1 and EXP.2. 

Specie  Retention 
time [min] 

EXP.1 (Blank)
[integral i‐th/reference 

integral] 

EXP.2
[integral i‐th/reference integral] 

Degradation %

C12  8,093  0,133  / 100
C13  9,293  0,149  / 100
C14  10,943  0,195  0,0520071 73,35
C15  11,343  0,614  0,21396026 65,13
C16  12,210  0,715  0,489841563 31,49
C18  13,677  0,128  0,127660482 0,49
C19  14,193  0,647  0,578586986 10,64
C20  15,493  1  1 0

 

EXP. 3: 5g soil; 5mL deionized water; 10% TiO2 w/w ; 48h; no light (Blank). 

 

EXP. 4: 5g soil; 5mL deionized water; 10% TiO2 w/w ; 48h; UV light. 
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The procedure followed for EXP.3 and EXP.4 was the same of EXP.1 and EXP.2 respectively with 

the only difference that in EXP.3 the sample was put in dark conditions for 48 hours, while the 

sample in EXP.4 was irradiated for the same amount of hours. 

The GC – MS chromatograms for EXP.3 and EXP.4 are reported in the following Figure 6.1.2. 

 

Figure 6.1.2. Superimposition of the GC- MS chromatograms related respectively to EXP.3 (red) and EXP.4 (blue). 

 

The related evaluation of the process efficiency is reported in Table 6.1.2. 

Table 6.1.2. Degradation degree % calculated for the hydrocarbons present in the EXP.3 and EXP.4. 

Specie  Retention 
 Time [min] 

EXP.3 (Blank)
  [integral i‐th/reference integral] 

EXP.4                          
[integral i‐th/reference integral] 

Degradation %

C10  5,142  0,3217 / 100
C11  6,026  0,6696 / 100
C12  6,459  0,2982 / 100
C13  8,476  0,8968 0,021196486 100
C14  10,360  1,0000 0,027234695 97,28
C15  11,393  0,1678 0,069918694 58,32
C16  12,226  0,2921 0,172031067 41,11
C18  13,526  0,9197 0,8923 2,98
C19  14,337  0,0893 0,082101217 8,04
C20  15,227  0,4725 0,432271892 8,52
C21  16,077  1  1 0
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The results (Table 6.1.1. and 6.2.2) indicate that a non significant improve of the degradation 

efficiency is achieved by performing the photo degradation for longer time than 24 hours. 

 

 

6.2 EVALUATION OF THE INFLUENCE OF TiO2 AMOUNT 

After the optimization of the time of irradiation of the sample to the UV lights, it was decided to 

optimize the % w/w of TiO2 in the sample preparation. 

 

EXP. 5: 5g soil; 5mL deionized water; 5% TiO2 w/w ; 24h; no light (Blank). 

 

EXP. 6: 5g soil; 5mL deionized water; 5% TiO2 w/w ; 24h; UV light. 

The procedure followed for EXP.5 and EXP.6 was the same of the previous experiments. 

The GC – MS chromatograms for EXP.5 and EXP.6 are reported in the following Figure 6.2.1. 

 

Figure 6.2.1. Superimposition of the GC- MS chromatograms related respectively to EXP.5 (red) and EXP.6 (blue). 
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The related evaluation of the process efficiency is reported in Table 6.2.1. 

Table 6.2.1. Degradation degree % calculated for the hydrocarbons present in the EXP.5 and EXP.6. 

Specie  Retention 
time [min] 

EXP.5 (Blank)
[integral i‐th/reference integral] 

EXP.6
[integral i‐th/reference integral] 

Degradation 
% 

C12  8,143  0,254437 / 100

C13  9,343  0,230648 / 100

C14  10,993  0,301592 0,093366 69,04

C15  11,393  1,03963 0,412955 60,27
C16  12,276  0,383314 0,235148 38,65
C17  12,860  1,146583 0,860765 24,92
C18  13,743  0,193038 0,170354 11,75

C19  14,260  1 1 0
C20  15,560  1,350074 1,338983 0,82

 

EXP. 7: 5g soil; 5mL deionized water; 15% TiO2 w/w ; 24h; no light (Blank). 

 

EXP. 8: 5g soil; 5mL deionized water; 15% TiO2 w/w ; 24h; UV light. 

 

The GC – MS chromatograms for EXP.7 and EXP.8 are reported in the following Figure 6.2.2. 

 

Figure 6.2.2. Superimposition of the GC‐ MS chromatograms related respectively to EXP.7 (red) and EXP.8 (blue). 
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The related evaluation of the process efficiency is reported in Table 6.2.2. 

Table 6.2.2. Degradation degree % calculated for the hydrocarbons present in the EXP.7 and EXP.8. 

Specie  Retention 
 Time [min] 

EXP.7 (Blank)
[integral i‐th/reference integral] 

EXP.8
[integral i‐th/reference integral] 

Degradation %

C11  6,493  0,632954823 / 100

C12  7,559  0,650679198 / 100
C13  9,109  0,779945587 / 100
C14  10,343  0,947863736 0,075099 92,07
C15  11,776  0,473446884 0,107766 77,23
C16  12,276  1,847977193 0,442611 76,04

C17  12,876  0,928399226 0,378673 59,21

C18  14,177  0,136266535 0,065581 51,87
C19  14,793  1  1 0
C20  15,827  0,092005327 0,074818 18,68

C21  15,977  0,689217415 0,074818 89,14

 

Before fixing the 15% w/w of titania, it was wanted to verify again the process performance, so the 

experiments EXP.7 and EXP.8  were replicated in respectively EXP.9 and EXP.10. 

 

EXP. 9: 5g soil; 5mL deionized water; 15% TiO2 w/w ; 24h; no light (Blank). 

 

EXP. 10: 5g soil; 5mL deionized water; 15% TiO2 w/w ; 24h; UV light. 

The results from  the GC – MS are reported in the Figure 6.2.3 below. 

 

Figure 6.2.3. Superimposition of the GC- MS chromatograms related respectively to EXP.9 (red) and EXP.10  (blue). 
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The degradation efficiency calculations are reported in Table 6.2.3. 

 

Table 6.2.3. Degradation degree % calculated for the hydrocarbons present in the EXP.9 and EXP.10. 

Specie  Retention 
 Time [min] 

EXP.9 (Blank)
[integral i‐th/reference integral] 

EXP.10
[integral i‐th/reference integral] 

Degradation %

C11  6.342  0.496387 / 100
C12  7.426  0.748069 / 100
C13  9.093  0.989808 / 100
C14  10.360  1.258011 0.219131 82.58
C15  11.826  0.710251 0.176653 75.12
C16  12.343  3.349823 1.15894 65.40
C17  12.943  1.538403 0.496876 67.70
C18  14.260  0.299325 0.096346 67.81
C19  14.893  1 1 0
C20  16.077  1.781188 0.07326 95.88
C21  16.160  0.18638 0.07326 60.69

 

In Figure 7.1.2. (paragraph 7), a more detailed analysis on the TiO2 % w/w is reported, considering 

also the ones from EXP.1 and EXP.2 carried out with 10% w/w of TiO2, showing that the highest 

degradation efficiency has been achieved with 15% w/w of TiO2. 

 

 

6.3 TEMPERATURE 

In order to evaluate the influence of the heating released by the UV lamps irradiation on the 

degradation of hydrocarbons in the mixture the following two experiments (EXP.11 and EXP.12) 

have been carried out to exclude an evaporation process. Furthermore, a preliminary indication of 

the thermal balance of the photocatalytic process can be obtained. 

 

EXP.11: 10g soil; 10mL deionized water; 8h; UV light. 

 

EXP. 12: 10g soil; 10mL deionized water; 15% TiO2 w/w ; 8h; UV light. 
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Particularly, in these experiments the temperature profile for each one was measured thanks to a 

temperature sensor (paragraph 4.7) which recorded automatically the temperature value every 30 

seconds. 

Also in EXP.11 and EXP.12 the samples were fed with 10mL of deionized water after 4h due to the 

water evaporation. 

In Figure 6.3.1 and 6.3.2. are respectively reported the temperature profile of EXP.11 and EXP.12. 

 

 
Figure 6.3.1. Temperature profile related to the EXP.11. 

 

 

 

Figure 6.3.2. Temperature profile related to the EXP.12. 
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6.4 EVALUATION OF THE INFLUENCE OF H2O2 AMOUNT 

To evaluate the effect of the H2O2 in the process efficiency were carried out the following 

experiments: 

 

EXP.13: 5g soil; 5mL H2O; 15% TiO2 w/w; 24h; no light (Blank). 

EXP.14: 5g soil; 5mL H2O; 15% TiO2 w/w; 24h; UV light. 

 

The procedure followed for the EXP.13 and EXP 14. Was the same as the one for the experiments 

in the paragraph 6.2. 

The degradation efficiency calculated, according to the output data from GC – MS, is reported in 

the following Figure 6.4.1. 

 
Figure 6.4.1. Hydrocarbons degradation at the end of the test for EXP.13-14. 

 

 

 

EXP.15: 5g soil; 5mL H2O2 2*10
‐2 M (in 5mL); 15% TiO2 w/w; 24h; no light (Blank). 

EXP.16: 5g soil; 5mL H2O2 2*10
‐2 M (in 5mL); 15% TiO2 w/w; 24h; UV light. 
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The degradation efficiency calculated for these experiments is reported in  Figure 6.4.2. 

 
Figure 6.4.2. Hydrocarbons degradation at the end of the test for EXP.15‐16. 

 

EXP.17: 5g soil; 5mL H2O2 5*10
‐2 M (in 5mL); 15% TiO2 w/w; 24h; no light (Blank). 

EXP.18: 5g soil; 5mL H2O2 5*10
‐2 M (in 5mL); 15% TiO2 w/w; 24h; UV light. 

 

The degradation efficiency calculated for these experiments is reported in  Figure 6.4.3. 

 
Figure 6.4.3. Hydrocarbons degradation at the end of the test for EXP.17-18. 
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EXP.19: 5g soil; 5mL H2O2 10
‐1 M (in 5mL); 15% TiO2 w/w; 24h; no light (Blank). 

EXP.20: 5g soil; 5mL H2O2 10
‐1  M (in 5mL); 15% TiO2 w/w; 24h; UV light. 

 

The degradation efficiency calculated for these latter experiments is reported in  Figure 6.4.4. 

 
 Figure 6.4.4. Hydrocarbons degradation at the end of the test for EXP.19-20. 

 

 

 

 

EXP.21: 5g soil; 5mL H2O2 1
 M (in 5mL); 15% TiO2 w/w; 24h; no light (Blank). 

EXP.22: 5g soil; 5mL H2O2 1
 M (in 5mL); 15% TiO2 w/w; 24h; UV light. 

 

The degradation efficiency calculated for these latter experiments is reported in  Figure 6.4.5. 
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Figure 6.4.5. Hydrocarbons degradation at the end of the test for EXP.21-22. 

 

EXP.23: 5g soil; 5mL H2O2 (8.8
 M) ; 15% TiO2 w/w; 24h; no light (Blank). 

EXP.24: 5g soil; 5mL H2O2 (8.8
 M); 15% TiO2 w/w; 24h; UV light. 

 

The degradation efficiency calculated for these latter experiments is reported in  Figure 6.4.6. 

 

Figure 6.4.6. Hydrocarbons degradation at the end of the test for EXP.23-24. 
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From the reported results in this paragraph, it is possible to observe that the highest degradation 

efficiency is reached using [H2O2] =  5*10-2 M. Therefore, this latter concentration was used to 

carry out all the subsequent experiments. A more detailed analysis on the H2O2 evaluation is 

presented in paragraph 7.1.4. 

 

 

6.5 EVALUATION OF pH INFLUENCE 

After the hydrogen peroxide, the pH condition were evaluated. 

To measure the contaminated soil pH, a sample of 10g was taken and it was mixed for 30 minutes 

with deionized water, according to the standard ASTM procedure D 4972-01. 

The pH of the slurry was measured either with litmus paper and pH meter. 

The results obtained were: 6.6 – 6.9 (litmus paper 1), 6.5 – 7 (litmus paper 2), 7.31 (pH meter 1), 

7.47 (pH meter 2). For all the measurements performed in the different experiments, a pH meter has 

been used. Therefore, 5 different samples (plus their related blank) at 5 different pH conditions 

were prepared. 

 

EXP.25:  5g  soil;  5mL  H2SO4  1.04*10
‐3  M  (  =  1.02*10‐2  g  H2SO4  in  100  mL  deionized  H2O);                  

pH = 3.43; 15% TiO2 w/w; 24h; no light (Blank) . 

 

EXP.26:  5g  soil;  5mL  H2SO4  1.04*10
‐3  M  (  =  1.02*10‐2  g  H2SO4  in  100  mL  deionized  H2O);                  

pH = 3.36; 15% TiO2 w/w; 24h; UV light. 

 

After the usual procedure the samples in both the experiments were analyzed with the GC – MS. 

From the calculations of the degradation efficiencies, Figure 6.5 has been obtained. 
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Figure 6.5. Hydrocarbons degradation at the end of the test for EXP.25-26. 

 

 

 

EXP.27:  5g  soil;  5mL  H2SO4  1.04*10
‐4  M  (  =  1.02*10‐2  g  H2SO4  in  1L  deionized  H2O);                     

pH = 5.11; 15% TiO2 w/w; 24h; no light (Blank) . 

 

EXP.28:  5g  soil;  5mL  H2SO4  1.04*10
‐4  M  (  =  1.02*10‐2  g  H2SO4  in  1L  deionized  H2O);                     

pH = 5.27; 15% TiO2 w/w; 24h; UV light. 

 

 

 

 

The degradation efficiency of the hydrocarbons calculated for these latter experiments is reported in  

Figure 6.5.1. 
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Figure 6.5.1. Hydrocarbons degradation at the end of the test for EXP.27-28. 

 

 

 

EXP.29: 5g soil; 5mL deionized H2O; pH = 7.29; 15% TiO2 w/w; 24h; no light (Blank) . 

 

EXP.30: 5g soil; 5mL deionized H2O; pH = 7.16; 15% TiO2 w/w; 24h; UV light. 

 

 

From the calculations of the degradation efficiencies of EXP.29 and EXP.30, Figure 6.5.2. below 

has been obtained. 
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Figure 6.5.2. Hydrocarbons degradation at the end of the test for EXP.29-30. 

 

 

 

EXP.31:  5g  soil;  5mL  NaOH  1*10‐5 M  (  =  4.*10‐4  g  NaOH  in  1L  deionized  H2O);  pH  =  8.85;                     

15% TiO2 w/w; 24h; no light (Blank) . 

 

EXP.32:  5g  soil;  5 mL  NaOH  1*10‐5 M  (  =  4.*10‐4  g  NaOH  in  1L  deionized  H2O);  pH  =  9.21;                     

15% TiO2 w/w; 24h; UV light. 

 

 

The degradation efficiency of the hydrocarbons calculated for these latter experiments is reported in  

Figure 6.5.3. 
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Figure 6.5.3. Hydrocarbons degradation at the end of the test for EXP.31-32. 

 

 

 

 

EXP.33: 5g soil; 5mL NaOH 1*10‐4 M  ( = 4.*10‐4 g NaOH  in 100 mL deionized H2O); pH = 10.73;                     

15% TiO2 w/w; 24h; no light (Blank) . 

 

EXP.34: 5g soil; 5 mL NaOH 1*10‐4 M ( = 4.*10‐4 g NaOH  in 100 mL deionized H2O); pH = 10.87;                     

15% TiO2 w/w; 24h; UV light. 

 

 

 

From the calculations of the degradation efficiencies of EXP.33 and EXP.34,  Figure 6.5.4. has 

been obtained. 
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Figure 6.5.4. Hydrocarbons degradation at the end of the test for EXP.33-34. 

 

According to the result obtained from the experiment in this paragraph, it has been decided to 

proceed the experimental evaluation of the process parameters without adjusting the soil pH. 

A more precise discussion about the pH evaluation is reported in paragraph 7.1.5. 

 

 

 

6.6 EVALUATION OF THE EFFICIENCY OF DIFFERENT SOLVENTS FOR EXTRACTION 

The photocatalytic process could produce polar and non polar products. Thus, the extraction process 

with hexane was compared with the extraction using acetone (EXP. 35) and isopropyl alcohol 

(EXP. 36). 

 

EXP.35: 5g soil; 5mL H2O2  5*10
‐2 M; 15% TiO2 w/w; 24h; no light . 

 

EXP.36: 5g soil; 5mL H2O2  5*10
‐2 M; 15% TiO2 w/w; 24h; no light . 
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The procedure to carry out and analyze EXP.35 and EXP.36 was the usual one, with the only 

difference that in the extraction step was used, instead of hexane, respectively isopropyl alcohol 

(100 mL) for EXP.35 and acetone (100mL) for EXP.36. 

The chromatograms of EXP.35 and EXP.36 in output from GC – MS were finally compared with 

the one of EXP.7, in which the extraction was performed using hexane (100mL). 

The results are reported respectively in Figure 6.6 (EXP 35) anf Figure 6.6.1 (EXP.36). 

 

 

Figure 6.6. Superimposition of the GC- MS chromatograms related respectively to EXP.7 (red) and EXP.35 (blue). 
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Figure 6.6.1. Superimposition of the GC- MS chromatograms related respectively to EXP.7 (red) and EXP.36 (blue). 

 

It was observed that the chromatograms of isopropyl alcohol and acetone, reported respectively in 

Figure 6.6 and Figure 6.6.1, are superimposable with that for hexane extraction, indicating that no 

additional by products are found during the photo degradation. For this reason, all the experiments 

have been carried out with hexane as solvent in the extraction step. 

 

 

6.7 OPTIMIZED PARAMETERS 

A further experiment was carried out with all the optimized parameters found in the previous 

experiments. 

 

 

EXP.37: 5g soil; 5mL H2O2  5*10
‐2 M; 15% TiO2 w/w; 24h; no light (Blank). 

 

EXP.38: 5g soil; 5mL H2O2  5*10
‐2 M; 15% TiO2 w/w; 24h; UV light . 

 

 

 

After the usual procedure, the EXP.37 and EXP.38 were analyzed with GC – MS giving the 

following results reported in Table 6.7. 



  Photodegradation of a hydrocarbons contaminated soil: a lab scale study   

67 
 

Table 6.7. Degradation degree % calculated for the hydrocarbons present in the EXP.37 and EXP.38. 
Peak  Retention 

Time 
[min] 

EXP.37 
[integral i‐th/ 

reference integral] 

EXP.38 
[integral i‐th/ 

reference integral] 

Degradation 
% 

tetrachloroethane  3.543  1  1  ‐ 
C13  8.078  0.127613966  0  100.00 
C14  9.761  0.332062338  0.025243025  92.40 
C15  11.328  0.431738818  0.054298595  87.42 
C17  12.812  0.407265514  0.078848629  80.64 
C18  14.196  0.286251224  0.088788707  68.98 
C19  14.796  0.125006238  0.02854704  77.16 
C20  15.513  0.336518956  0.141990544  57.81 
C21  16.030  0.021386948  0.005570964  73.95 
C22  16.747  0.143524708  0.121256682  15.52 
C23  17.930  0.106577251  0.106082462  0.46 
C24  19.047  0.079630222  0.072534988  8.91 
C25  20.131  0.050984906  0.032607914  36.04 
C26  22.160  0.316837001  0.021108279  93.34 
C27  23.177  0.102652029  0.011068386  89.22 

 

 

 

6.8  PHOTOCATALYTIC DEGRADATION IN THE PRESENCE OF HYDROPHYLIC SOLVENTS  

       (THF AND DIOXANE) 

 

In order to improve the homogeneity of the catalytic process, photodegradation reactions have been 

carried out in the presence of THF and dioxane, to achieve the hydrocarbons solubilization in the 

mixture H2O/solvent. 

 

EXP.39: 5g soil + 20 mL of THF (mix for 1h); 5mL H2O; 5% TiO2 w/w; 24h; no light (Blank) . 

 

EXP.40: 5g soil + 20 mL of THF (mix for 1h); 5mL H2O; 5% TiO2 w/w; 24h; UV light . 

 

 

EXP.41: 5g soil + 20 mL of dioxane (mix for 1h); 5mL H2O; 15% TiO2 w/w; 24h; no light (Blank). 

 

EXP.42: 5g soil + 20 mL of dioxane (mix for 1h); 5mL H2O; 15% TiO2 w/w; 24h; UV light . 
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From  Figure 6.8 it can be observed that the effect of THF enhance the degradation performance, 

while Figure 6.8.1. shows that dioxane is not effective in the hydrocarbons degradation process. 

Therefore, it seems that THF, rather than dioxane, is suitable to improve the process efficiency. 

Anyway, no one of the two can be concretely implemented due to their high cost and their negative 

environmental impact. 
 

6.9  FURTHER QUANTITATIVE EVALUATIONS 

 

a) An internal standard evaluation 

In order to have a quantitative evaluation of the hydrocarbons degradation in the soil:  

10µL of tetrachloroethane as internal standard were added to the 10mL of acetone solution to 

analyze (see paragraph 4.1). 

A typical chromatogram is reported in Figure 6.9. 

 
Figure 6.9. The tetrachloroethane peak in the GC – MS chromatogram. 

 

It was decided to use this compound as internal standard due to its noticeable presence in the       

GC-MS analysis, consisting in a peak between the acetone one and the hydrocarbons curve           

(Figure 6.9). Other standards were tried (i.e. toluene, chlorobenzene and carbon tetrachloride) but 

the tetrachloroethane was better positioned in the GC-MS chromatograms. An experiment in order 

to observe the results obtained with the addition of internal standard was performed. 

 

EXP.43: 5g soil; 5mL deionized H2O; 15% TiO2 w/w; 24h; no light (Blank). 

EXP.44: 5g soil ; 5mL deionized H2O; 15% TiO2 w/w; 24h; UV light . 
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The chromatogram in output from GC – MS are reported in Figure 6.9.1. 

 

Figure 6.9.1. Chromatogram superimposition of EXP.43 (red) and EXP.44 (blue). 

The degradation efficiency was comparable with the one obtained in the EXP.10. 

b) Determination of the pollution amount 

 

An extraction process was carried out in the starting polluted soil (EXP.45). 

 

EXP.45:  5g soil; extraction with hexane (100 mL, 24h). 

 

The sample was therefore analyzed with GC – MS using 10μL of internal standard. 

Therefore, knowing the amount of moles of standard present, the quantification of the hydrocarbons 

species inside the sample was possible according to the following proportion: 

 

   9.47 10          

 

Results of EXP.45 are reported in Table. 6.9. 

c) Evaluation of the degradation efficiency  

After EXP.45, it was performed another one: 
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EXP.46: 5g soil ; 5mL H2O2  5*10
‐2 M; 15% TiO2 w/w; 24h; UV light. 

 

EXP.46 has been carried out in the same conditions of EXP.45, but the sample was irradiated for 24 

hours under the UV lights. In this way, after the analysis of EXP.46 and considering EXP.45 as 

reference, it was possible to quantify the degradation efficiency for each hydrocarbons specie. The 

results of EXP.45 and EXP.46 are summarized in the following Table 6.9, Table 6.9.1 and 6.9.2. 

 
Table 6.9. Degradation degree % calculated for the hydrocarbons present in the EXP.45 and EXP.46. 

Peak Retention time 
[min] 

EXP.45 
[integral i‐th/ 

Standard integral] 

EXP.46 
[integral i‐th/ 

Standard integral] 

Degradation % 

tetrachloroethane 3.543  1  1    
C12 8.078  0.127613966  /  100 
C13 9.278  0.128599146  /  100 
C14 9.761  0.332062338  0.032380468  90.25 
C15 10.945  0.130245987  0.035931244  72.41 
C16 11.328  0.431738818  0.126538718  70.69 
C17 12.812  0.407265514  0.05984235  85.31 
C18 13.696  0.069571531  0.036713054  47.23 
C19 14.196  0.286251224  0.169696761  40.72 
C20 14.796  0.125006238  0.078794808  36.97 
C21 16.747  0.143524708  0.096206466  23.04 
C23 18.160  0.28353544  0.26246634  7.43 
C24 19.177  0.175588121  0.153223442  12.74 
C25 20.177  0.080582228  0.072356264  10.21 

 

 

Table 6.9.1. Hydrocarbons moles calculation in the Re.al. soil and after 24 h of photocatalysis. 
Specie EXP.45 

[moles] 
EXP.46 
[moles] 

Degraded moles C degraded 
moles 

C12 1.2085E‐05  0  1.2085E‐05  0.000145021 
C13 1.21783E‐05  0  1.21783E‐05  0.000158318 
C14 3.14463E‐05  3.06643E‐06  2.83799E‐05  0.000397318 
C15 1.23343E‐05  3.40269E‐06  8.93161E‐06  0.000133974 
C16 4.08857E‐05  1.19832E‐05  2.89024E‐05  0.000462439 
C17 3.8568E‐05  5.66707E‐06  3.2901E‐05  0.000559317 
C18 6.58842E‐06  3.47673E‐06  3.1117E‐06  5.60106E‐05 
C19 2.7108E‐05  1.60703E‐05  1.10377E‐05  0.000209716 
C20 1.18381E‐05  7.46187E‐06  4.37622E‐06  8.75244E‐05 
C21 1.35918E‐05  9.11075E‐06  4.48104E‐06  9.41018E‐05 
C23 2.68508E‐05  2.48556E‐05  1.99524E‐06  1.90398E‐05 
C24 1.66282E‐05  1.45103E‐05  2.11794E‐06  5.08304E‐05 
C25 7.63114E‐06  6.85214E‐06  7.78999E‐07  1.9475E‐05 

TOTAL 0.000257734  0.000106457  0.00015  0.0024 
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Table 6.9.2. Hydrocarbons mass calculation in the Re.al. soil and after 24 h of photocatalysis. 
Specie EXP.45 

[g] 
EXP.46 

[g] 
C12 0.002054457  0 
C13 0.002240814  0 
C14 0.006226368  0.000607153 
C15 0.002614871  0.00072137 
C16 0.009240161  0.002708207 
C17 0.009256331  0.001360097 
C18 0.00167346  0.000883088 
C19 0.007264942  0.004306836 
C20 0.003338342  0.002104247 
C21 0.00402317  0.002696783 
C23 0.008699661  0.008053202 
C24 0.00562033  0.004904468 
C25 0.00268616  0.002411953 

TOTAL 0.064939065  0.030757404 

 

From the reported calculation about EXP.45, it possible to observe that the amount of hydrocarbons 

pollutants in 5g of Re.al. contaminated soil is 0.065 grams, so it represents about the 1.23% w/w. 

The result of the comparison between EXP.45 and EXP.46 indicates that the total hydrocarbons 

amount after 24 hours of photocatalysis decreases for about 53% w/w. 

Another quantification of the degradation efficiency was performed by analyzing the dried soils 

from EXP.3 (Blank) and EXP.4 with ESEM. 

The analyses obtained are reported in Figure 6.9.2., Figure 6.9.3 and Figure 6.9.4. for EXP.3, while 

the analyses related to EXP.4 are reported in Figure 6.9.5., Figure 6.9.6., and Figure 6.9.7. 

 

 

 

 

 

 

 

 

Figure 6.9.2. ESEM of the EXP.3: morphology. 
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Figure 6.9.3. Spectra of elements of the EXP.3. 
 

 

 

 

Figure 6.9.4. ESEM characterization of the elements constituting EXP.3. 
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Figure 6.9.5. ESEM of the EXP.4: morphology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9.6. Spectra of elements of the EXP.4. 
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Figure 6.9.7. ESEM characterization of the elements constituting EXP.4. 

 

From the RFX data it can be observed that C content decreases from 24.55% to 8.58% w/w. It is 

noteworthy that the two methods gave different results (with GC – MS hydrocarbons reduction of 

53% w/w, with RFX – ESEM hydrocarbons degradation of 65% w/w). Anyhow, both results are 

good being the two techniques completely different. 

 

d) Evaluation of the degradation products 

Assuming that the degradation process gives CO2 as the most relevant final product, it has been 

tried to capture the CO2 formed in a typical experiment (EXP.47) and compare its amount with the 

expected one. 

 

EXP.47: 5g soil; 5mL deionized water, 15% w/w TiO2; 24 h; UV lights. 

 

The capture of CO2 was carried out using the device shown in Figure 6.9.10. 



  Photodegradation of a hydrocarbons contaminated soil: a lab scale study   

76 
 

 

Figure 6.9.10. Device used to evaluate the CO2  production from the process. 

CO2 was bubbled inside the flask containing a NaOH and water solution (2g NaOH in 10mL H2O). 

It is known that the following reaction occurs: 

 

 2   

 

The suspension formed in (A) (see Figure 6.9.10) was dried for 24 hours at RT in the air. 

Thus, the solid Na2CO3 was weighted (3.35 g) (Figure 6.9.11). 

 

 
Figure 6.9.11. Solid Na2CO3 in Petri dish. 

 

The same quantity of NaOH in 10mL of water was left in the air at RT for the same time. The solid 

Na2CO3 obtained by reaction with CO2 of air alone was weighted (3.24 g). 

Na2CO3 was identified on the basis of FT – IR spectra (Figure 6.9.12 and Figure 6.9.13). 
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Figure 6.9.12. Reference FT-IR spectra for Na2CO3  (SDBS, Spectral Database for Organic Compounds). 

 

 

Figure 6.9.13. Spectra of the sample from the FT-IR analysis: NaCO3  from air alone [pink] and 

 NaCO3 from air and after photocatalysis  [black]. 

 

The Na2CO3 formed by a typical photocatalytic process is about 0.1 g corresponding                   

to almost 1*10-3 moles. This value is of the same order of magnitude of the one found from the 

comparison of the data reported in Table 6.9.1 (2*10-3 moles) of EXP.45 (starting soil) and EXP.46 

(photocatalyzed soil). 
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6.10 COMPARISON WITH OTHER AOPs METHODS (FENTON AND PHOTO‐FENTON) 

 

 

a) Fenton oxidation processes 

 

The Fenton reactions were carried out (EXP. 48, EXP.49) according to the procedure illustrated in 

Xu J. et al., 2011, due to its similar procedures in samples preparations and analysis. 

 

EXP.48: 10g soil; 40mL H2O; 10mL (6.98 mmol/L) FeSO4∙7H2O; 179mg citric acid; 2.5 mL 30% 

zzzzzzzzH2O2; closed and stirred flask; 3 days; RT. 

 

EXP.49: 10g soil; 40mL H2O; 10mL (6.98 mmol/L) FeSO4∙7H2O; 179mg citric acid; 2.5 mL 30% H2O2   

zzzzzzzz (plus an addition at the 4th day); closed and stirred flask; 7 days; RT. 

 

At the end of the reaction time the organic phase was extracted with hexane (100mL) with the same 

procedure used in the previous experiments. Both EXP.48 and EXP.49 were analyzed with the            

GC – MS and therefore compared with Exp.37, assumed as blank. 

The results are reported in Table 6.10. 

 
Table 6.10. Degradation degree % calculated for the hydrocarbons present in the EXP.48 and EXP.49. 

  Degradation % 
Peak RetentionTime  

[min] 
EXP.48 EXP.49 

tetrachloroethane 3.543 - - 
C13 8.078 7.62 79.62 
C14 9.761 27.53 66.37 
C15 11.328 6.69 56.53 
C17 12.812 0.00 46.09 
C18 14.196 0.00 28.75 
C19 14.796 0.00 0.00 
C20 15.513 0.00 3.79 
C21 16.030 0.00 0.00 
C22 16.747 0.00 0.00 
C23 17.930 53.03 61.61 
C24 19.047 0.00 0.00 
C25 20.131 0.00 0.00 
C25 21.164 0.00 0.00 
C26 22.160 46.56 83.85 
C27 23.177 0.00 72.58 
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b) Photo – Fenton oxidation processes 

 

A photo-Fenton was carried out according to a similar procedure of the one illustrated in                   

Sa da Rocha et al., 2012. 

 

EXP.50: 10g soil; 40mL H2O; 10mL (6.98 mmol/L) FeSO4∙7H2O; 179mg citric acid; 2.5 mL 30% H2O2   

zzzzzzzz 15% TiO2; stirring; 8 hours ; UV lamps. 

 

The system used to carry out the experiment is shown in Figure 6.10. 

 
Figure 6.10. Device used to carry out the photo-Fenton reaction. 

 

After 8 h of UV irradiation, the organic phase was extracted with hexane (100mL). 

At the end the sample was analyzed with GC – MS and the results were compared with EXP.37 

assumed as blank (Table 6.10.1). 
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Table 6.10.1. Degradation degree % calculated for the hydrocarbons present in EXP.50. 

      Degradation % 
Peak RetentionTime  EXP.50 

[min] 
tetrachloroethane 3.543   

C13 8.078 19.22 

C14 9.761 52.78 

C15 11.328 48.91 

C17 12.812 37.22 

C18 14.196 13.03 

C19 14.796 0 

C20 15.513 0 

C21 16.03 0 

C22 16.747 0 

C23 17.93 48.06 

C24 19.047 0 

C25 20.131 0 

C25 21.164 0 

C26 22.16 92.23 

C27 23.177 86.73 
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The histogram above shows that the degradation efficiency of the photocatalytic process occurring 

respectively for 24 h (EXP.1 (blank), EXP.2) and 48 h (EXP.3 (blank), EXP.4) is quite comparable, 

which leads to the choice of 24 hours as irradiation time of the sample. The results of the 

degradation percentages related to the species above C20 are not reported because they didn’t 

degrade at all.  

This time of exposure was used to evaluate the subsequent parameter, in order to reach, step by 

step, an optimized procedure.  

Another observation should be done concerning the specific degradation of each hydrocarbons 

specie. In fact it is possible to see that the lightweight hydrocarbons, such as C12 and C13 are 

completely degraded, the medium weight ones (C14 to C16) are averagely degraded and the 

heavyweight ones ( > C20 ) are not degraded. This is in agreement with the expected process 

performance, because the lighter chains are more easily degraded due to their simpler structure and 

their higher “compatibility” with water, while increasing the structural complexity the degradation 

efficiency is lower. Thus, it is possible to conclude that the photo degradation process, under these 

experimental conditions, is effective overall for the lightweight hydrocarbons chains. 

 

 

 

7.1.2 Evaluation of the influence of TiO2 amount 

The second parameter optimized was the % w/w of the titania with the respect to the soil weight. 

Looking at the scientific literature, Dong et al., 2010 [a], in the scientific paper titled 

“Photocatalytic degradation of phenantrene and pyrene on soil surfaces in the presence of 

nanometer rutile TiO2 under UV irradiation” , stated that the optimal catalyst dosage was 2% of 

TiO2 in order to achieve the best degradation performances. In the previous study on this soil 

(Burigo, 2014) was instead shown that a % of 5% w/w of TiO2 represented the optimal one. In this 

work higher titania percentages were tried in order to see if the process would be more effective. 

Therefore, two experiments with 5% TiO2 w/w (EXP.5 (blank) and EXP.6) and 15% TiO2 w/w 

(EXP.7 (blank) and EXP.8) were carried out. The results obtained were then compared with the 

ones from the experiment with 10% TiO2 (w/w) (EXP.1 (blank) and EXP.2)  (see Figure 7.1.2). 
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Figure 7.1.2. Degradation degree of  hydrocarbons using the  5% (EXP.6),10% (EXP.2) and 15% w/w (EXP.8) of 

titania in the soil samples. In EXP.6 and 2 aren’t reported the >C20 hydrocarbons degradation because they were null . 

 

It can be observed that the higher efficiency in the degradation process was obtained by using 15% 

w/w of TiO2 (EXP.8). Higher titania percentages were not investigated due to the fact that too high 

increasing of the volume of the reactants is not practically implementable. 

The degradation efficiency decreases with the increase of the hydrocarbons molecular weight, apart 

for the C24 and C26 species, in which is observed an increase. A reasonable explanation can be the 

fact that the species C24 and C26 are the branched isomers, more reactive towards radical process. 

 

 

7.1.3 Temperature 

Temperature effect was checked for two reasons: 

• To achieve a preliminary evaluation concerning the exo or endothermal effect of the 

photocatalytic process. If the process is endothermic, for instance, it means that it absorbs 

energy (as heat), hence, increasing the temperature of the process would increase its 

efficiency. 

• To evaluate the possible hydrocarbons evaporation. According to the paragraph 6.3, it is  

possible to observe that the starting temperature for the both two samples is about 24°C and 

rise up to an average of 43°C for the sample without the titania (EXP.11), and to 45°C for 

the sample with it (EXP.12).  

Thus, as first observation, it can be noted that, even if the difference in the two system temperature 

is narrow, the sample with titania (EXP.12) develops a quite little increasing in the  temperature 
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(≈2°C) with respect to the experiment without it (EXP.11). That could be explained as a very small 

exothermic effect. The detailed evaluation of the thermal balance of the process is suggested to be 

developed in a subsequent study. 

As concerning the second task, according to the chemistry of the hydrocarbons, the boiling point 

increases with the molecular weight, thus with the chain length (Figure 7.1.3). 

 

 
Figure 7.1.3. Typical boiling points of the hydrocarbons [Elmhurst.edu]. 

 

The figure below shows that the undecane, for instance, has a boiling temperature of 196°C. This is 

sufficient to prove that at 43-45°C occurs no hydrocarbons evaporation in the soil because the 

species of concern range between C11 to C26-27. 
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7.1.4 Evaluation of the influence of H2O2 amount 

The influence of the hydrogen peroxide (H2O2) effect was another parameter to optimize. It is 

recognized in fact that the H2O2 is a strong oxidant agent, therefore, should help the degradation.  

In the literature, few and controversial results are reported concerning the influence of the presence 

of hydrogen peroxide. 

In the case of decolouration of the anionic azo-dye Reactive Orange 16, the UV-C irradiation in the 

presence of H2O2/TiO2 was almost 5 times faster than the one with only TiO2, but was slower than 

the one with only H2O2 (Egerton et al., 2014). 

In another case study, the photolytic degradation of microcystin-LR in aqueous solutions, the 

system H2O2/TiO2/UV removed completely the toxin together with many by-products                   

(Cornish et al., 2000). 

It was observed that a little amount of H2O2 was good enough to speed up the photo degradation 

with TiO2 of 2-chloroaniline (Chu et al., 2007). 

The photocatalytic degradation of 2,4-dichlorophenol in TiO2 suspension was studied in the 

presence of additional oxidants, observing that H2O2 enhanced the photocatalytic process                  

(Meliàn et al., 2013) 

Thus, it was of interest to evaluate the influence of the presence of H2O2 under the described 

experimental conditions (paragraph 6.4) 

In the photocatalytic reaction H2O2 acts as electron acceptor which is more efficient than oxygen. 

It reacts with the conduction band electrons and it generates hydroxyl radicals which are necessary 

for photomineralisation of the organic pollutants, in accordance with the following equation (12): 

 

H2O2 + eCB
‐  → HO• + HO‐                                                                                                                             (12) 

 

There are other reaction by which hydroxyl radicals can also be produced, although reaction only 

takes place at λ < ≈ 300 nm with maximum absorption taking place at 220 nm (13, 14). 

 

H2O2 + •O2
‐ → HO• + HO‐ + O2                                                                                                                     (13) 

 

H2O2 + hν → 2HO• + O2                                                                                                                                        (14) 

 

 



  Photodegradation of a hydrocarbons contaminated soil: a lab scale study   

86 
 

The results of the experiments described in the paragraph 6.4 are reported in the graphs below 

(Figure 7.1.4 , Figure 7.1.4.a). 

 

 

Figure 7.4.1. Degradation degree of  hydrocarbons related to the different H2O2 concentrations for the species between 

C11 to C19 . 

 

 

Figure 7.4.1.a. Degradation degree of  hydrocarbons related to the different H2O2 concentrations for the species 

between C20 to C26. 

 

It can be observed from the reported graphs that for C13 and C14 complete degradation was achieved 

with a hydrogen peroxide concentration of 5*10-2 M (EXP.18).  
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For the heavier weight hydrocarbons, > C14, hydrogen peroxide concentration of 5*10-2 M 

(EXP.18) represents the one giving the best degradation, which decreases at higher concentrations. 

This result proved that the hydrogen peroxide concentration is not important in the degradation of 

the lightweight hydrocarbons chains, while became more significant for the medium weight ones; 

moreover, it is effective for the heavyweight chains but only at certain concentrations, because at 

low and high ones the degradation efficiency is not improved. 

The H2O2 concentration of 5*10-2 M was utilized in all the optimized experiments. The trend is like 

the one observed in the literature, but more precise analyses should be conducted in a further study. 

Considering the Figure 7.4.1 and Figure 7.4.1.a, it can be observed that the degradation of the 

hydrocarbons is almost above the 70% for all the recognized hydrocarbons species.  

 

 

7.1.5 Evaluation of pH influence 

The influence of pH in the degradation efficiency of the process was studied. 

In literature are present few results on this regard. 

In the case of the degradation of 2,4-dichlorophenol in TiO2 suspensions, an optimum trend of the 

degradation for  pH 5 was observed (Meliàn et al., 2013). 

In another case of degradation of chlorinated aniline in a H2O2/TiO2/UV system, a decrease of the 

degradation efficiency of the photocatalytic process was underlined in alkaline conditions. 

It is remembered that, after having checked the soil pH in a slurry matrix with deionized water 

(ASTM D4972-01), the soil pH was adjusted by adding, to the deionized water used to feed the 

sample, an acid (H2SO4 96%) or a base (NaOH) respectively in order to obtain acidic or alkaline 

conditions in the sample. 

Particularly, EXP.26 (EXP.25 as blank) and EXP.28 (EXP.27 as blank) were performed under 

acidic conditions, EXP.30 (EXP.29 as blank) under neutral conditions while EXP.32 (EXP.31 as 

blank) and EXP.34 (EXP.33 as blank) under alkaline conditions. 

The results of the above experiments were therefore compared in the following Figure 7.1.5. 
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Figure 7.1.5. Degradation degree of hydrocarbons at different pH. 

 

It is noticeable from Figure 7.1.5,  that the degradation is complete for the C11, C12 and C13 species 

at any pH conditions. From the C14 to the C26 specie, the largest degradation is observed at pH 7, 

thus indicating that the soil pH doesn’t need to be adjusted to improve the photo degradation 

performance. 

 

7.1.6 Optimized parameters 

In Figure 7.1.5 the results of the hydrocarbons degradation carried out with all the optimized 

parameters are reported. 

More precisely, the optimized conditions are summarized as follows: 

 

• 24 hours of irradiation of the sample to the UV lights; 

• 15% w/w of TiO2 to be dosed; 

• No temperature adjustment; 

• H2O2 concentration of 5*10-2 M; 

• pH 7 (No pH adjustment). 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

EXP. 26 EXP.28 EXP. 30 EXP. 32 EXP. 34

Degradation
degree, %

C11

C12

C13

C14

C15

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26



  Photodegradation of a hydrocarbons contaminated soil: a lab scale study   

89 
 

 
Figure 7.1.5. Degradation efficiencies of hydrocarbons in EXP.37 and EXP.38. 

 

A degradation of more than 50% involves the majority of the hydrocarbons species, even for two of 

the heaviest ones (C26 and C27) inside the sample. 

For C22 – C25 the lower degradation with respect to the other hydrocarbons will be studied in the 

future. 

 

 

7.2 EVALUATION OF THE DEGRADATION EFFICIENCY 

 

The quantitative analysis described in paragraph 6.9 allowed to achieve relevant results: 

• It was possible to measure the pollution degree of the soil: 1.23% w/w (in 5g) (“b”section); 

• In this case, the soil contains about 13g/kgsoil of heavy hydrocarbons (> C12) which, after 

the photocatalytic process, decreases to about 6g/kgsoil. Even if the final soil results to be 

extremely polluted with respect to the law limits (D.Lgs 152/2006), the photocatalysis can 

be proposed to be performed after a first cleaning treatment (i.e. soil washing). It is to 

remember that the efficiency of the photocatalytic process is strictly connected to the 
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concentration of the starting pollutants which, if too high, can saturate the catalyst (Dong et 

al., 2010 [a]). 

• It was demonstrated that the degradation efficiency is about 53-65% (“c” section); 

• It was proved that reasonably the most relevant degradation product is CO2 (“d” section) in 

agreement with the observation that the GC – MS chromatograms of the post-photocatalysis 

samples do not show new signals with respect the starting ones.  

 

7.3 COMPARISON WITH OTHER AOPs METHODS 

With the previously described experiments a significant degradation of hydrocarbons having a 

carbon chain between C11 to C21 was recognized, while for the heavier weight ones the degradation 

was lower. Therefore, it was of interest to verify if other advanced oxidation processes (AOPs) 

could be more effective than the photocatalysis under experimental conditions. 

In particular, were carried out experiments under Fenton and photo-Fenton conditions. 

Fenton's reagent is a solution of hydrogen peroxide and an iron catalyst that is often used 

to oxidize contaminants or waste waters. Fenton's reagent can be used to destroy organic 

compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE) (Venny et al., 2012).  

The oxidant species are •OH which are the primary reactive specie in degradation of organic 

pollutants such as PAHs (Gan et al., 2009, Xu J.et al., 2011). 

A general scheme of the Fenton reaction is following reported (Fig.41, Venny et al., 2012). 

 

 
 

Figure 7.3. General scheme of a Fenton reaction. 
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The Fenton reaction is a process that involves many side reactions (Venny et al., 2012) among 

which principal radical initiation (Eqs. (15) and (16)), radical propagation (Eqs. (17) and (18)), 

termination (Eqs. (19)-(21)), reaction with intermediates (Eqs. (22)-(29)), carbonate species                   

(Eqs. (30)-(35)) and natural organic matter (NOM) (Eq.(36)) are included. 

H2O2 + Fe
2+ → Fe3+ + •OH + OH‐                                                                                                                  (15) 

Fe3+ + H2O2 → Fe2+ + HO2
• + H+                                                                                                                   (16) 

•OH + RH → R• + H2O                                                                                                                                   (17) 

R• + H2O2 → ROH + •OH                                                                                                                              (18) 

•OH + Fe2+ → Fe3+ + OH‐                                                                                                                               (19) 

•OH + H2O2 → H2O + HO2
•                                                                                                                           (20) 

•OH + •OH → H2O2                                                                                                                                       (21) 

Fe2+ + HO2
• → Fe3+ + HO2

‐                                                                                                                            (22) 

Fe3+ + HO2
•  → Fe2+ + O2 +2H

+                                                                                                                      (23) 

HO2
•  + H2O2 → H2O + •OH + O2                                                                                                                  (24) 

HO2
•  + HO2

•  → H2O + O2                                                                                                                             (25) 

O2•
‐ + Fe3+ →  Fe2+ + O2                                                                                                                                (26) 

O2•
‐ + Fe2+ +2H+ → Fe3++ H2O2                                                                                                                    (27) 

HO2
•  + O2•

‐ + H2O → H2O2 + O2 + OH
‐                                                                                                       (28) 

•OH + HO2
•  → H2O + O2                                                                                                                              (29) 

CO2 (g) + H2O ↔ H2CO3 (aq)                                                                                                                       (30) 

H2CO3 (aq) ↔ HCO3
‐ + H+                                                                                                                            (31) 

HCO3
‐ + •OH → CO3•

‐ + OH‐                                                                                                                         (32) 

CO3•
‐ + H2O2 → HO2

•  + HCO3
‐                                                                                                                     (33) 

2CO3•
‐ → products                                                                                                                                        (34) 

CaCO3(s) + H
+ ↔ Ca2+ + HCO3

‐                                                                                                                    (35) 

NOM + •OH → products                                                                                                                              (36) 

 

The Fenton reaction has been widely applied in the remediation of contaminated soil from organic 

pollutants due to its relative simplicity and operability at ambient pressure and temperature (Venny 

et al., 2012). Anyway, the conventional Fenton reaction (CF) is not applied for in situ intervention 

due to the low pH requirement (pH 2-4) and the low mobility by which the reagent is characterized. 

Also, narrow pH changes cause a sharp reduction of the Fe2+ - H2O2 efficiency. 
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From a practical point of view the reaction is modified by means of some catalysts addiction, excess 

of hydrogen peroxide and addiction of Fe chelator. 

The reaction are therefore categorized as Conventional - Fenton (CF), Fenton - Like (FL) and 

Modified - Fenton (MF) oxidation, depending respectively on how much the reaction is modified 

from the conventional one. 

The list of the advantages and the disadvantages of Fenton oxidation techniques can be summarized 

as follows (Venny et al., 2012): 

 

Advantages: 

• Applicable to a wide range of contaminants such as PCBs, PAHs, pesticides, 

pentachlorophenol (PCP), benzene, toluene, ethylene, xylene (BTEX); 

• Iron is highly abundant and non-toxic, H2O2 is easy to handle and environmentally benign; 

• Shorter treatment time than other technique e.g. bioremediation; 

• Contaminants can be destroyed in situ, on-site or off-site; 

• Insensitive to external disturbances e.g. contaminant load; 

• Heat released from reactions enhance mass transfer, reaction rate and microbial activity; 

• Reactions sub-products are usually more biodegradable and soluble than parent compounds; 

 

Disadvantages: 

• Harmless organic matters in the soils may also be oxidized during the course of the 

oxidation; 

• Less economic than bioremediation when large quantity of oxidant is needed; 

• Oxidant must be introduced near the contaminated zones; 

• Natural oxidant demand may be high in some soil matrices; 

• Wastage of oxidants may occur due to the presence of naturally occurring organic and 

inorganic oxidizable fraction in soils; 

• Oxidant handling and delivery problems arise due to exothermic reaction and aquifer 

heterogeneities. Gas generated acts as a potential hazard; 

• Cause immobilization of inorganics with reactive species in treatment wall; 

 

The scientific literature is abundant in case studies of soil remediation by means of Fenton reaction, 

in particular the method proposed by Xu J. et al., 2011 which deals with an enhanced 

bioremediation of an oil contaminated soil by graded modified Fenton oxidation, was of interest. 
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Beside the bioremediation, this article was taken as a reference in this work because the preparation 

of the samples followed a similar procedure of the one used in this study. 

After the Fenton reaction, it has been decided to test also a photo-Fenton process one by integrating 

the TiO2 and the UV lights. In photo-Fenton type processes, where the reactions presented in the 

equations 1-4, 11, and 15-36 occur, additional sources of OH radicals should be considered: through 

photolysis of H2O2, and through reduction of Fe3+ ions under UV light (Eqs. 37 and 38): 

 

H2O2 + hν → •OH + •OH                                                                                                                               (37) 

Fe3+ + H2O + hν → Fe2+ + •OH + H+                                                                                                             (38) 

 

These reactions have been proven to be more efficient than the other photocatalytic processes but 

the disadvantages of the process are the low pH values required (iron precipitates at higher pH 

values) and the fact that iron has to be removed after treatment. Concerning the use of the photo-

Fenton reaction for the soil remediation, in literature the state of the art is reported in Table 7.3. 

 
Table 7.3. State of the art concerning the use of photo-Fenton process for soil remediation at lab scale. 

Contaminant  System Reference 

Crude oil  Visible light (Philips 20 W)

UV‐A (Higuchi, F20T10 20W),  

UV‐C (Philips 20W),  FeSO4∙7H2O, 

H2O2, irradiation time 6,9,12 h 

Sa da Rocha et al., 2012

PAHs  Sunlight, FeSO4∙7H2O,

H2O2, irradiation time 8 h 

de S. e Silva et al., 2008 

TNT  Photo‐reactor  Heraeus  TQ150  model  plus 

water  cooled mercury  lamp  (150 W),  H2SO4 

(to  decrease  pH),  ferrous  ions  in  solution, 

H2O2, irradiation time 70 min. 

(Coupled with soil flushing with cyclodextrin) 

Yardin et al., 2006 

DDT ‐ DDE  Sunlight, FeSO4∙7H2O, H2O2, irradiation time 

6 h. 

(Coupled with soil washing with surfactants) 

Villa et al., 2010 
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In Figure 7.3.1. the results of the degradation experiments described in paragraph 6.10                  

(EXP.49, EXP.50) are compared with one carried out under the optimized photocatalytic conditions 

(EXP.38). 

 

 
Figure 7.3.1. Degradation efficiencies of hydrocarbons in EXP.49, EXP.50 and EXP.38. 

 

In general the efficiency of the photocatalysis (TiO2 15% / H2O2) is higher than Fenton and               

photo-Fenton conditions. 

As for C23, these latter processes were more active. 
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Considering the comparison with other well known AOPs, photocatalysis under optimized 

experimental conditions demonstrates to be more active. 

Nevertheless the results of the study strongly suggest further investigation concerning,                   

in particular, the influence of the nature of the soil in terms of salts content, of the presence of 

additional semiconductors such as ZnO and Fe2O3 and surfactants. 

Furthermore, the degradation of C22 – C25 hydrocarbons requires deeper analysis, in particular C23. 

An important aspect to study in the future is the thermal balance of the whole process by means of a 

series of exothermic and endothermic reactions. 

As for a large scale application two aspects must be improved: (i) The reaction rates by enhancing 

the catalyst activity and (ii) the use of sunlight. Reasonably, this task would be reached by the 

catalyst optimization (i.e. doping TiO2). 

The integration of the photocatalytic process with a traditional cleaning method (i.e. soil washing) 

could be an useful approach to let the soil comply with the law limits (D.Lgs 152/2006, Part IV, V, 

Annex 5 (Table 1)). 
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