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Abstract

In this thesis a stability assessments and dynamic simulations in relation to a
Moth Class hydrofoiling sailboat, as exemplified by the Banfi prototype, are
investigated by means of classical control methods. The International Moth is a
single-handed dinghy, which, while moving forward, uses two T-foils to lift the
hull above the water. The model is developed on the basis of simple assumptions,
semi-empirical methods and the available input data was processed through
XFLR5[12]. Stability assessments are carried out with the help of the small
disturbance theory, by analysing the eigenvalues and modes of the linearised
dynamic system. Then, using the a proposal for a pitch displacement autopilot
is made, with the purpose of improving the craft’s dynamics. Finally, with the
help of Matlab [13] software, the dynamic behaviour of the simplified linearised
system faced with canonical reference inputs, such as step and ramp inputs, is
simulated to evaluate the stability of the International Moth when fitted with
different controllers for a pitch displacement autopilot.
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Abstract

In questo elaborato si è valutata, sfruttando gli strumenti froniti dalla teroia
dei controlli automatici, la stabilità di un imbarcazione da regata appartenente
alla International Moth Class Association, in particolare si è usato l’esempio del
prototipo Banfi, progettato dal team studentesco MetisVela UniPD. Le imbar-
cazioni appartenenti a questa classe si distinguono per la presenza di due T-foil
(appendice composta da una sezione verticale e una orizzontale) che generano
la portanza idrodinamica necessaria a sollevare lo scafo al di sopra dell’acqua.

Il modello è sviluppato a posteriori di alcune semplici assunti , utilizzando an-
che risultati empirici. Tutti i dati a disposizione sono stati processati attraverso
il software di simulazione XFLR5 [12]. L’analisi di stabilità è stata effettuata
ricorrendo alla teoria delle piccole perturbazioni, analizzando gli autovalori e i
modi del moto del sistema dinamico lineare.

Infine, utilizzando il software Matlab [13], si è simulata la risposta al bech-
heggio del sistema linearizzato quando riceve input canonici, quali gradino e
rampa, allo scopo di valutare l’efficacia di diversi controllori di beccheggio.
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Introduction

Sailing is an activity that dates back in millennia and has accompanied mankind
in some of its most daring adventures. At present, maritime transportation ac-
counts for the vast majority of long-range transportation and is done mainly by
means of diesel internal combustion generators coupled with electrical motors.
Sailing has become a more leisure-oriented activity, taking the connotation of
an extreme sport when it comes to acrobatic dinghies and foilers. With the
latter expression we indicate all those sailboats which are fitted with winglike
appendages whose sole purpose is to generate a lift force and proceed to heave
the hull of the boat out of the water. This flight configuration allows the boat to
improve its efficiency greatly since it reduces the wet surface of the vessel, thus
reducing hydrodynamic drag. As a matter of fact, foilers rely on the hull’s buoy-
ancy merely for safety purposes and to achieve floating before takeoff. In the
wide panorama of sailing sports, the International Moth Class has had quite a
success among single-crew foilers, becoming the vessel of choice for professional
and semi-professional sailors. The International Moth Class differs from other
sailing classes mainly for its few design restrictions [9], making it very prone
to change and innovation. This has led to it being one of the first and most
proficient classes ever on which hydrofoils have been implemented,as far back
as the early 2000s. At present, these dinghies are achieving speeds as high as
36.5 knots thanks to the submerged foiling appendages which allow them to
fly above the water without displacing any, or very little, while doing so. In
the past a notorious effort has been put into the development of foil profiles to
best suite the requisites of foiling dinghies belonging to the International Moth
Class, but little has been done in the way of stability assessment and control. In
particular, designers new to the foiling environment would find helpful to have
an intuitive guide that explains the underlying correlation between flight qual-
ities and design choices. The case of study is a prototype under development
from the MétisVela UniPD[?] student project for the SuMoth [11] competition,
and measurements, estimates and inertial properties have been derived for such
prototype.

Figure 1: International Moth Class vessel in the act of foiling
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1 Purpose and aim

The purpose of this work is to asses the longitudinal stability of the a foiling
sailboat from the International Moth Sailing Association class. Vessels belong-
ing to this class display a typical symmetrical hydrofoil planeform, in analogy
to what can be observed in STOL (Short Take Off and Landing) and other
commercial aircraft, still substantially differing having just one control surface
on the forward mounted wing.

The aim is to accurately describe the vessel, its geometric and aerodynamic
characteristics through longitudinal stability coefficients. The latter are ob-
tained with the help of the XFLR5 simulation software and have been organised
into stability matrices, necessary for state-space modeling. Most of the meth-
ods and findings used are derived from aeronautical engineering and have been
adjusted to the purpose of this study.

The analysis of the dynamics of the vessel is done by means of the small
disturbance theory and a Simulink representation of the model is developed
from transfer functions.

In the last section a proposal was developed for a PID controller to be
integrated in a pitch displacement autopilot.
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2 Aerodynamic principles

Moth Class vessels make use of two different fluids to achieve flight. Air, through
the wind’s interaction with the sail provides the propulsive thrust and some heel-
ing moment, much as can be observed in conventional sailboats.This interaction
can be very difficult to model satisfying way and thus will be overlooked in this
work. Water, on the other hand, is responsible for the most notable forces and
moments to act on the craft. Due to the different properties of the two fluids,
and the pitching moment of the water-induced effects on the craft, we will focus
on the contribution of the below-the-waterline hydrofoils.

2.1 Reference system and key variations

For the purpose of simplicity all variations are described with reference to the
Center of Gravity of the vessel. The following illustration shows the main move-
ments of the craft and will be used in the mathematical description of the system.

Figure 2: Flight parameters
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2.2 Aerodynamic Nomenclature

The nomenclature used is largely borrowed from aeronautics, with the main
appendages been named (from aft to bow, down up):

1. Rudderfoil (horizontal wing that provides lift to the rear part of the boat)

2. Rudderboard (vertical wing on which the rudderfoil is fixed, provides steer-
ing capabilities)

3. Mainfoil (provides the main lift forces to the boat, has an actuator con-
nected to a moving flap posistioned on the trailing edge)

4. Daggerboard (vertical wing on which the mainfoil is mounted, provides
roll stability to the craft)

Figure 3: Foling Moth vessel schematic configuration

The aerodynamic profiles employed in this design are the following:

• NACA 0012

• NACA 63012A (rudderfoil)
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• NACA 63415 (mainfoil)

• Wortmann FX60100 (mainfoil)

The NACA63415 and Wortmann FX60100 profiles have been used to build
a wing of 1m span, with 0.11m and 0.035m of chord at the root and at the tip
respectively. The NACA63415 was used maily in the central region to support
the intersection with the mast (daggerboard). The NACA63012 was used to
build a wing of 0.7m span, with 0.06m and 0.035m of chord at the root and at
the tip respectively.

2.3 Simulation parameters

The parameters on which aerodynamic simulations have been built are those for

salted water at standard reference conditions (STP), with a density ρ = 1029
kg

m3

and a cinematic viscosity of ν = 1e− 06
m2

s

Figure 4: (a) Top view of the mass distribution (b) Left-side view of the mass
distributions
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3 Static Stability and Control

3.1 Definition of Static Stability

Static stability is the tendency of the system to return to its equilibrium state
after a disturbance. The state of equilibrium of the vessel can be defined as the
state in which there are no moments or forces acting on the center of gravity of
the system (Cmcg

= 0), and can be achieved by flying at trim condition.

Figure 5: Representation of different static stability properties
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3.2 Longitudinal Static Stability

3.2.1 Definition of Longitudinal Static Stability

To attain static stability a restoring moment must be developed when the
craft is displaced from its equilibrium point. Supposing a negative moment
(pitching-down) affects the vessel, it will be required for it to develop a positive
counter-moment to bring itself back to the equilibrium point. Analogously for
a ”pitching-up” disturbance. To ensure such capability, the aircraft pitching
moment curve should have a negative slope.

dCm

dα
< 0 (1)

or equivalently
Cmα

< 0 (2)

Figure 6: Cm plot for the case study
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3.2.2 Contribution of the Craft’s Components

In an aircraft wing, fuselage, tail and propulsion all contribute to the planes
pitching moment curve and it is the in designer’s interest to discriminate the
different contributions. For the purpose of our study the hull’s contribution will
be neglected as it flies through a fluid with very different properties than water.
The focus will be for the most part on the relationship between the stability
coefficients and the geometric and aerodynamic characteristics of the examined
vessel.

Figure 7: Contribution of the various components on the Cm

3.2.3 Wing Contribution

The contribution to the wing in the plane’s static stability can be examined
with the help of a simplified representation, showing the wing as it’s mean
aerodynamic chord.

Figure 8: Simplified representation of the main hydrofoil wing’s contribution to
the pitching moment
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The vertical displacement of the center of gravity is noted zcg. The horizontal
distance form the wing’s leading edge to the aerodynamic center and center of
mass are named xac and xcg respectively. The angle the aerodynamic chord
makes with the fuselage reference line is denoted as iw, angle with which the
wing is mounted to the fuselage.

If we sum the moments about the center of gravity, the following equation
can be obtained:

Mcgw
= Lwcos(αw − iw)[xcg − xac] +Dwsin(αw − iw)[xcg − xac]

+Lwcos(αw − iw)[zcg]−Dwsin(αw − iw)[zcg] +Macw

(3)

Assuming that the angle of attack is small, the following approximation can be
made:

cos(αw − iw) = 1; sin(αw − iw) = αw − iw; CL >> CD; (4)

Zcg >> 0 which divided by 1
2ρV

2Sc yields

Cmcgw
= CLw

cos(αw − iw)(
xcg
c

−
xac
c

) + CDw
sin(αw − iw)(

xcg
c

−
xac
c

)

+CLw
sin(αw − iw)[

zcg
C

]− CDw
cos(αw − iw)(

zcg
c
) + CMacw

= CLw
(
xcg
c

−
xac
c

) + CLw
(αw − iw)[

zcg
C

]− CDw
(
zcg
c
) + CMacw

(5)

Cmcgw
= CLw

(
xcg
c

−
xac
c

) + CLw
(αw − iw)[

zcg
C

]− CDw
(
zcg
c
) + CMacw

(6)

if
CLw

= CL0w
+ CLαw

αw (7)

and
CDw

= CD0w
+ CDαw

αw (8)

we then have

Cmcgw
= CMacw

+ (CL0w
+ CLαw

αw)(
xcg
c

−
xac
c

)+

(CL0w
+ CLαw

αw)
zcg
c
(αw − iw)− (CD0w

+ CDαw
αw)

zcg
c

(9)
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3.2.4 Aft Tail Contribution

The contribution an horizontal aft tail makes to the vessel lift and pitching
moment can be developed with the help of figure, where the mean aerodynamic
chord replaces the tail.

Figure 9: Aft tail contribution

The angle of attack of the tail can be expressed as

αt = αw − iw − ϵ+ it (10)

where ϵ and it are the downwash and incidence angle respectively. Assuming
small angles and neglecting the tail’s drag contribution, the total lift of the wing
and tail can be expressed as

L = Lw + Lt (11)

or

CL = CLw
+ η

St

S
CLt

(12)

where

η =
Qt

Qw
(13)

The value of η can vary in a range 0.8 − 1.2 depending on the tail’s location,
but for the purpose of this study we will freely consider this dynamic pressure
ratio η to be unitary.

The pitching moment due to the tail can be obtained by summing the mo-
ments about the center of gravity.

Mt = −lt[Ltcos(αFRL − ϵ) +Dtsin(αFRL − ϵ)]

−zcg[Dtcos(αFRL − ϵ)− Ltsin(αFRL − ϵ)] +Mact

(14)
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Assuming small angles and CL >> CD the previous equation reduces to:

Mt = −ltLt = −lt
1

2
ρV 2

t St (15)

CMt
=

MT
1
2ρV

2Sc
= −

ltSt

Sc
ηCLt (16)

where Vh = ltSt

(Sc) is called horizontal tail volume ratio. The coefficient CLt
can

be written as:
CLt

= CLαt
αt = CLαt

(αw − iw + it) (17)

where the angle of attack of the tail is written as

αt = αw − iw + it (18)

where no downwash is taken into account. Rewriting the tail contribution yields:

CMcgt
= −VHηCLt

CMcgt
= VHηCLtα

(iw − it − α)
(19)

The tail contribution to the static stability of the airplane (Cmαt
< 0) can

be controlled by proper selection of the volume ratio VH and CLαt
.

3.2.5 Elevator Effectiveness

Pitch attitude can be controlled by means of a flap located on the the vessel’s
forward main wing. When this elevator is deflected, changes in the pitching
moment of the vessel occur. The change in the lift can be expressed as follows:

∆CL = CLαα+ CLδe

δe (20)

where

CLδe

=
dCL

dδe
(21)

The change in pitching moment acting on the vessel can be also written as

∆Cm = Cmδe

δe (22)

where

Cmδe

=
dCm

dδe
(23)

The stability derivative Cmδe

is called elevator control power. Tle larger

the value, the more effective the control is in creating control moment. The
complete pitching moment equation yields

Cm = Cm0
+ Cmαα+ Cmδe

δe (24)

The derivatives CLδe

and Cmδe

are related to aerodynamic and geometric

characteristics. The designer can control the magnitude of the elevator control
power by a proper selection of the flap size.
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3.3 Definition of Dynamic Stability

The study of dynamic stability is concerned with the time history of the motion
of the plant after it is disturbed from its equilibrium point. To achieve dynamic
stability static stability needs to first be ensured. The degree of dynamic stabil-
ity of a system can be specified by the time it takes a disturbance to be reduced
to half its original amplitude, in the presence of positive damping, or the time
it takes a disturbance to double its original amplitude, if the system were to be
negatively damped. In this case, we observe the behaviour of the plant through
4 different state variables, namely ∆u,∆w,∆q,∆θ. Making use of longitudinal
stability derivatives allows to describe accurately the behaviour of the vessel.

Figure 10: Time evolution of stable (left) and unstable (right) non-oscillatory
(top) and oscillatory (bottom) modes of motion

12



4 Description of the control problem

International Moth class hydro-foiling vessels are required to achieve stable flight
at a given height and speed by means of just one control surface positioned
on the trailing edge of the main hydrofoil. The design of this flap and an
evaluation of its effectiveness have been carried out separately. The description
of the vessel’s flight can be very complex and yield a set of 6 non-linear, coupled
differential equations. Thus, after making some simplifications and having made
assumptions on the reference sailing condition, two separate sets of linearised
decoupled equations can be developed. The first describes the plane/vessel’s
longitudinal behaviour, the second describes its lateral behaviour.

4.1 Longitudinal assumptions and Reference Flight Con-
dition

In doing so we assume that the motion of the airplane consists of small deviations
from a steady flight condition. For convenience, the reference flight condition
is assumed to be symmetric and thrust forces are assumed to remain constant.
This resulting in: v0 = p0 = q0 = r0 = ψ0 = Φ0 = 0 Furthermore if the x axis
were to be aligned to the direction of the vessel’s velocity vector, then w0 = 0.

4.2 Derivation of Mathematical Model

The scalar equations for a rigid body with 6 DOF derived from rational me-
chanics can be divided in two groups, one representing the force and the second
the moments’ components and both comprise aerodynamic and gravitational
contributions.

Force equations:

X −mgSθ = m(u̇+ qw − rv) (25)

Y +mgCθSϕ = m(v̇ + ru− pw) (26)

Z +mgCθCϕ = m(ẇ + pv − qu) (27)

Moment equations:

L = Ixṗ− Ixz ṙ + qr(Iz − Iy)− Ixzpq (28)

M = Iy q̇ + rp(Ix − Iz) + Ixz(p2 − r2) (29)

13



N = −Ixz ṗ+ Iz ṙ + pq(Iy − Ix) + Ixzqr (30)

For the purposes of this work the roll rate and yaw rate and their respective
rates will be considered to be null, leaving a simplified version of the equation
of motion.

Force equations:

X −mgSθ = m(u̇+ qw) (31)

Y = mv̇ (32)

Z +mgCθ = m(ẇ − qu) (33)

Moment equations:

L = 0 (34)

M = Iy q̇ (35)

N = 0 (36)

These force and moments are written in terms of body angular velocities.

14



5 Small Disturbance Notation

The set of longitudinal equations developed in the previous chapter can be lin-
earised using small disturbance theory. Introducing small-disturbance notation
allows us to further simplify the equations of motion. All the variables in the
equations of motion are replaced by a reference value, evaluated at reference
trim condition, plus a perturbation value.

The X-force equation

X −mgsinΘ = m(u̇+ qw − rv) (37)

when substituted with the small-disturbance variables gives

X0 +∆X −mgsin(θ0 +∆θ) =

m[
d

dt
(u0 +∆u) + (q0 +∆q)(w0 +∆w)− (r0 +∆r)(v0 +∆v)]

(38)

making a trimmed flight condition flight condition assumption, as in

w0 = v0 = p0 = q0 = r0 = Φ0 = Ψ0 = 0 (39)

neglecting products of disturbance, the X equation becomes:
X0 +∆X −mgsin(θ0 +∆θ) = m∆u̇
applying the:
sin(θ0 +∆θ) = sinθ0cos∆θ + sin∆θcosθ0 = sinθ0 +∆θcosθ0
trigonometric identity yields:
X0 +∆X −mg(sinθ0 +∆θcosθ0) = m∆u̇

If all disturbance quantities are set to zero, we have the reference flight con-
dition in the X body direction:
X0 −mgsinθ0 = 0
This reduces the X- force equation to:
∆X −mg∆θcosθ0 = m∆u̇
The force ∆X is the variation in aerodynamic forces in the X body direction
and can be expressed by means of a Taylor series in terms of the perturbation
variables. Virtually these forces and moments could be expressed as a function
of all the motion variables, but here only significant terms have been retained.

∆X =
∂X

∂u
∆u+

∂X

∂w
∆w +

∂X

∂δe
∆δe (40)

substituting the formula for ∆X in to the equation of motion yields:

∂X

∂u
∆u+

∂X

∂w
∆w +

∂X

∂δe
∆δe −mg∆θcosθ0 = m∆u̇ (41)

or, dividing through by the mass m:

(
d

dt
−Xu)∆u−Xw∆w + (gcosθ0)∆θ = Xδe∆δe (42)
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where Xu = ∂X/∂u/m and so forth.
The Z-force equation:

Z +mgCθ = m(ẇ − qu) (43)

when substituted with the perturbation variables gives:

(Z0 +∆Z) +mgcos(θ0 +∆θ) = m
d

dt
(w0 +∆w)− (q0 +∆q)(u0 +∆u) (44)

We use the trigonometric identity for which
cos(θ0 +∆θ) = cosθ0cos∆θ − sinθ0sin∆θ = cosθ0 −∆θsinθ0.
Neglecting all perturbations’ products and assuming reference flight condition
leaves:

(Z0 +∆Z) +mgcos(θ +∆θ) = m
d

dt
∆w − u0∆q (45)

Setting all perturbation values to 0 gives once again the reference fight con-
dition

Z0 +mgcosθ = 0 (46)

thus reducing the small-perturbation Z-force equation to:

∆Z −mg∆θsinθ0 = m
d

dt
∆w − u0∆q (47)

In analogy to the previous case, the Z-force can be written as a function of the
motion variables, namely:

∆Z =
∂Z

∂u
∆u+

∂Z

∂w
∆w +

∂Z

∂q
∆q +

∂Z

∂δe
∆δe (48)

When substituted in the force equation it gives:

−
∂Z

∂u
∆u+ (m

d

dt
−
∂Z

∂w
)∆w +mg∆θsinθ0 − u0∆q =

∂Z

∂δe
∆δe (49)

When divided by the mass m it gives

−Zu∆u+ [(1− Zẇ)
d

dt
− Zw]∆w − [(u0 + Zq)

d

dt
− gsinθ0]∆θ = Zδe∆δe (50)

where Zu = ∂Z/∂u/m and so forth.

The linear small-disturbance longitudinal set of rigid body equations of mo-
tion will then be:

(
d

dt
−Xu)∆u−Xw∆w + (mgcosθ0)∆θ = Xδe∆δe (51)

−Zu∆u+ [(1− Zẇ)
d

dt
− Zw]∆w − [(u0 + Zq)

d

dt
− gsinθ0]∆θ = Zδe∆δe (52)

−Mu∆u− (Mẇ
d

dt
+Mw)∆w + (

d2

dt2
−Mq

d

dt
)∆θ =Mδe∆δe (53)
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Follows a table with relevant longitudinal derivatives for the study case:

Stability Derivative Parial derivative form Numerical value
Xu ∂X/∂u -0.2881
Zu ∂Z/∂u -14.34
Xw ∂X/∂w 5.978
Zw ∂Z/∂w -106.36
Zẇ ∂Z/∂ẇ 0
Zq ∂Z/∂q -60.17
Mu ∂M/∂u 0.3162
Mw ∂M/∂w -17.766
Mẇ ∂M/∂ẇ 0.017
Mq ∂M/∂q -93.391
Mδe ∂M/∂δe 2.657
Zδe ∂Z/∂δe -12.24

17



6 Stick fixed longitudinal motion

To examine the longitudinal motion of our vessel without any control input
(controls fixed) when disturbed by a perturbation.

6.1 State variable representation

The linearized small-disturbance equations of motion are ordinary linear differ-
ential equations with constant coefficients. These equations can be written as
a set of first-order differential equations, the state-space equations, and mathe-
matically represented as: ẋ = Ax+Bµ where x is the state vector and µ is the
control vector. The matrices A e B contain the plane’s dimensional stability
derivatives, which have been evaluated through the help of the Xfoil software.
Rewriting these equations of motion in the state space form yields:

⎡

⎢

⎢

⎣

∆u̇
∆ẇ
∆q̇

∆θ̇

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

Xu Xw 0 −g
Zu Zw u0 0

Mu +MẇZw Mw +MẇZw Mq +Mẇu0 0
0 0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

∆u
∆w
∆q
∆θ

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

Xδ

Zδ

Mδ +MẇZδ

0

⎤

⎥

⎥

⎦

[︁

∆δ
]︁

The forces and moment derivatives in the matrices have been divided by
the mass of the airplane or the moment of inertia, respectively, in the following
manner:
Xu = ∂X/∂u/m
Mu = ∂X/∂u/Iy and so forth.
The longitudinal stability derivatives in the stability matrix A have been sum-
marized in the following table.

Aij j=1 j=2 j=3 j=4
i=1 -0.06924 1.293 0 -9.81
i=2 -2.886 -27.17 -5.111 0
i=3 0.001467 -0.001467 -203.9 0
i=4 0 0 1 0

(54)

The derivatives belonging to the control matrix B have been evaluated to be
the following:

Bij j=1
i=1 -0.06924
i=2 -2.886
i=3 0.001467
i=4 0

(55)
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6.2 Eigenvalues and Eigenvectors of the stability matrix

The homogeneous solution to equation can be obtained assuming a solution of
the form x = xre

λrt which substituted in ẋ = Ax+Bµ leaves

[λrI−A]xr = 0

where I is the identity matrix.

I=

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

In order to have nontrivial solutions the determinant |λrI − A| must be 0.
The roots are the eigenvalues or characteristic roots. For this purpose the soft-
ware MATLAB has been used to determine the eigenvalues. The eigenvectors
themselves can be determined once the eigenvalues are known, using the follow-
ing relation. [λrI − A]Pij = 0 where Pij is the eigenvector corresponding to
the ijth eigenvalue.

6.2.1 Eigenvalues

The eigenvalues for the stability matrix developed for this vessel are found to
be

λ1 = −0.0186 (56)

λ2 = −15.2460 (57)

λ3/4 = −99.3572± 10.1002i (58)

Namely,two negative real values and two complex values which indicate re-
spectively two exponentially decaying modes of motion and two damped oscilla-
tory modes. These results are obtained with the help of the MATLAB software.

Figure 11: Complex eigenvalues of the stability matrix A
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6.3 Short period approximation

An approximation to the short-period mode of motion can be obtained by as-
suming ∆u = 0 and dropping the X-force equation from the set developed
earlier. The longitudinal state-space equations, with the addition of the control
input, reduce to:

[︃

∆ẇ
∆q̇

]︃

=

[︃

Zw u0
Mw +MẇZw Mq +Mẇu0

]︃ [︃

∆w
∆q

]︃

+

[︃

Zδe

Mδ +MẇZδe

]︃

[︁

∆δe
]︁

Nelson [1] suggests this equation to be written in terms of angle of attack
by using the relationship: ∆α = ∆w

u0

.
Furthermore, from the definition of Mα̇ is

Mα =
1

Iy

∂M

∂α
=

1

Iy

∂M

∂(∆w/u0)
=
u0
Iy

∂M

∂w
= u0Mw (59)

Similarly, it can be showed that:

Zα = u0Zw (60)

and
Mα̇ = u0Mẇ (61)

[︃

∆α̇
∆q̇

]︃

=

[︄

Zα

u0

1

Mα +Mα̇
Zα

u0

Mq +Mα̇

]︄

[︃

∆α
∆q

]︃

+

[︄

Zδ

u0

Mδe +Mα̇
Zδe

u0

]︄

[︁

∆δe
]︁

The eigenvalues of the state equation can be determined by solving the equation
|λI −A| = 0
The characteristic equation for the determinant is

λ2 − (Mq +Mα̇ +
Zα

u0
)λ+Mq

Zα

u0
−Mα = 0 (62)

The following approximated short period roots can be obtained by means of

λsp = (Mq +Mα̇ +
Zα

u0
)/2± [(Mq +Mα̇ +

Zα

u0
)2 − 4(Mq

Zα

u0
−Mα)]

1

2 /2 (63)

or, in terms of the damping and natural frequency

ξsp = −[Mq +Mα̇ +
Zα

u0
]/(2ωsp) (64)

ωsp = [(Mq
Zα

u0
−Mα)]

1

2 (65)
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This can be written in the form:

λ2sp + ζωnλsp + ω2
n = 0 (66)

Computing for the stability derivatives’ value showed earlier, the two eigenvalues
yielded by this short period approximation are:

λ1,2,sp = −ζspωsp± iωsp

√︁

1− ζsp2 = η ± iω = −99.87± 9.072i (67)

Follows a plot of the complex roots associated with the short period approxi-
mation

Figure 12: Complex short period roots of the short period approximation

Once the eigenvalues are known, we can derive period, time and number of
cycles to half-amplitude, which are of great interest when evaluating the plant’s
free response.

Period =
2π

ω
= 0.6925s (68)

t1/2 =
0.69

|η|
= 0.0069s (69)

N1/2 =
t1/2

P
= 9.963e−3 (70)
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6.4 Influence of stability derivatives on short period mo-
tion

Some interesting observations can be made at this point of the analysis. Graph-
ically we can see the effect of stability derivatives on the complex eigenvalues
of the short period roots. Increasing the static stability, represented by the
negative value Mα (described earlier in the chapter about static stability) will
increase the frequency of the short period mode.

Figure 13: Roots of the short period approximation when Mα is increased ten-
fold

On the other hand, increasing Mq +Mα̇ affects the damping of the system
enhancing it.
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6.5 Short Period Dynamics
[︃

∆α̇
∆q̇

]︃

=

[︄

Zα

u0

1

Mα +Mα̇
Zα

u0

Mq +Mα̇

]︄

[︃

∆α
∆q

]︃

+

[︄

Zδ

u0

Mδ +Mα̇
Zδ

u0

]︄

[︁

∆δ
]︁

(71)

Taking the Laplace transform of the state-space equations we have

(s− Zα/u0)∆α(s)−∆q(s) = Zδ/u0∆δe(s) (72)

−(Mα+Mα̇Zα/u0)∆α(s)+[s−(Mq+Mα̇)]∆q(s) = (Mδ+Mα̇Zδ/u0)∆δe (73)

Dividing by ∆δe we obtain two algebraic equations in terms of the transfer

functions ∆α(s)
∆δe(s)

and ∆q(s)
∆δe(s)

:

(s− Zα/u0)
∆α(s)

∆δe(s)
−

∆q(s)

∆δe(s)
= Zδ/u0 (74)

−(Mα +Mα̇Zα/u0)
∆α(s)

∆δe
+ [s− (Mq +Mα̇)]

∆q(s)

∆δe
= (Mδ +Mα̇Zδ/u0) (75)

Dividing the equations by δe(s) we obtain a set of 2 equations in terms of the

transfer functions ∆α(s)
∆δe(s)

and ∆q(s)
∆δe(s)

:

(s−
Zα

u0
)
∆α(s)

∆δe(s)
−

∆q(s)

∆δe(s)
=
Zδe

u0
− (Mα +Mα̇Zα/u0)

∆α(s)

∆δe(s)
+

+[s− (Mq +Mα̇)]
∆q(s)

∆δe(s)
=

= (Mδ +Mα̇Zδ/u0)∆δe

(76)

Solutions for ∆α(s)
∆δe(s)

and ∆q(s)
∆δe(s)

can be achieved using Cramer’s rule for sys-

tems of linear equations that have the same number of equations as variables. In
this manner we are able to derive a relationship between the motion variables
(pitch displacement θ and pitch rate q) and the control input. The transfer
function for the change in pitch rate to the change in elevator angle is

∆α(s)

∆δe(s)
=

⃓

⃓

⃓

⃓

⃓

s− Zα

u0

Zδe

u0

−(Mα +Mα̇
Zα

u0

) Mq +Mα̇

⃓

⃓

⃓

⃓

⃓

⃓

⃓

⃓

⃓

⃓

s− Zα

u0

−1

−(Mα +Mα̇
Zα

u0

) s− (Mq +Mα̇)

⃓

⃓

⃓

⃓

⃓

=
Aαs+Bα

As2 +Bs+ C
(77)
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Figure 14: Root locus of the elevator angle to angle of attack transfer function

Figure 15: Root locus of the elevator angle to pitch rate transfer function

The transfer function for the change in angle of attack to the change in elevator
angle is

∆q(s)

∆δe(s)
=

⃓

⃓

⃓

⃓

⃓

Zδe

u0

−1

Mα +Mα̇
Zα

u0

s− (Mq +Mα̇

⃓

⃓

⃓

⃓

⃓

⃓

⃓

⃓
s− Zα

u0

−1− (Mα +Mα̇
Zα

u0

) s− (Mq +Mα̇)
⃓

⃓

⃓

=
2.657s+ 500.1

s2 + 199.8s+ 10001

(78)
The root locus of the ∆q

∆δe
transfer function was plotted with the help of the

MATLAB software and are presented in the next images.

24



7 Pitch displacement autopilot

The transfer functions modeled previously for short period dynamics can be
used to develop an autopilot for pitch displacement. In particular, bearing in
mind the following relation ∆q = ∆θ̇ , therefore ∆q(s) = s∆θ(s). The following
relation stands :

∆θ

∆δe
=

1

s

∆q

∆δe
=

Aqs+Bq

s[As2 +Bs+ C]
=

2.449s+ 500.1

s3 + 199.6s2 + 1.006e04s
(79)

The plot of the root locus of this transfer function is the following:

Figure 16: Root locus of the transfer function ∆θ/∆δe

The system’s pitch angle feedback loop can be represented in the following
block diagram:

Figure 17: Block diagram representing the system with a PID controller

Were:

R(s) is the reference input
C(s) = E(s)G(s) is the output signal, in our case ∆θ

E(s) = R(s)− C(s) is the error signal
G(s) = C(s)/E(s) is the forward path transfer function

25



Gs(s) =
∆δe
E(s) is the servo flap actuator transfer function

H(s) is the feedback transfer function

For simplicity purposes the feedback gain kg is set to 1, implying the use of an
ideal gyroscope for the pitch angle measurement making the feedback transfer
function H(s) = 1.

The servo motor modeled with a first order system, whose open loop transfer
function is Gs(s) = 1

sT where T is the time constant and has been estimated
to be T = 0.2s. When a unitary feedback loop is implemented in the servo
architecture, the closed loop transfer function becomes:

G(s) =
∆e(s)

∆c(s)
=

Gs(s)

1 +Gs(s)
(80)

or, as equivalently noted in the Simulink model:

Gs(s) =
1

s+ 5
(81)

The open-loop transfer function for the pitch dynamics will be the Laplace
domain product of the servo transfer function and the short period dynamics
previously presented.

G(s) = Gs(s)
∆θ

∆δe
=

∆δe
E(s)

∆θ

∆δe
(82)

The closed loop transfer function for the system with a unitary feedback transfer
function is:

C(s)

R(s)
=

G(s)H(s)

1 +G(s)H(s)
(83)

where the loop transfer function is identified by:

G(s)H(s) =
∆δe
E(s)

∆θ

∆δe
=

2.449s+ 500.1

s4 + 200.6s3 + 1.026e04s2 + 1.006e04s
(84)

and the root locus is presented following.
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Figure 18: Loop transfer function locus

Figure 19: Zoom-in of the loop transfer function root locus

7.1 Control specifications/requirements

The control requirements for the system in study are:

overshoot ≤ 10%
risetime ≤ 1sec

steady state error ≤ 2%
settlingtime ≤ 2sec

7.2 PID Controller Proposal for a Pitch Displacement Au-
topilot

This design would benefit from the introduction of a controller to improve its
natural performance, and a proposal for a PID type of controller was made using
the Ziegler-Nichols method [7]. The general form of the PID transfer function
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is ∆c
∆e = kp + kds+

ki

s ;
kp, ki and kd are the gains of the controller.

Adding a proportional gain kp to the transfer function G(s)H(s) allows us to
determine the value of kpu

, called ultimate gain, for witch the system becomes
marginally stable. The gain at the crossover point can be estimated using the
magnitude criteria:

|s+ 204, 2|kp
|s||s+ 5||s2 + 199.6s+ 1.006e04|

= 1 (85)

The root locus intersects the imaginary axis at s = 8.17i, which substituted in
the previous equation yields :

kpu
= 3852.6 (86)

The period of the undamped oscillation period Tu can be found in the following
manner:

Tu =
2π

ω
= 0.77s (87)

Once these parameters are known it is possible to evaluate the proportional,
integral and derivative gains of the controller with the help of the relationships
developed by Nelson[1].

kp = 2311
ki = 6004
kd = 222.48
An alternative tuning proposal was carried out with the help of the Simulink
software and has yielded the values:

kp = 623.78
ki = 385.43
kd = 102.06

7.2.1 Steady State Error Evaluation

The error signal E(s) can be expressed as E(s) = R(s)
1+G(s)H(s) where R(s) is the

reference signal.
By evaluating the steady state error of the system with a given input we are

able to assess its accuracy. Our system has a pole in the origin of magnitude,
this making it a type 1 system. Practically, the type of the system affects
its capability of reaching a desired reference value accurately unless properly
controlled. In the case of study, the type of the system will guarantee null error
for step unitary reference inputs even while only proportional and derivative
(PD) control is applied, but will show a steady state error for ramp inputs
unless integral control is applied. [img proportional contol error]The value of
the steady state error can be evaluated by means of the final value theorem,
which states:

ess = lim
t→∞

e(t) = lim
s→0

sE(s) (88)
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If we take a step input r(t) = Au(t), whose Laplace transform is R(s) = A/s,
the previous limit becomes

ess = lim
s→0

sE(s) = lim
s→0

s(A/s)

1 +G(s)H(s)
=

= lim
s→0

A

1 +G(s)H(s)
=

A

1 + lims→0G(s)H(s)

(89)

where Kp = lims→0G(s)H(s) takes the name of positional error constant. In
our case Kp = ∞ thanks to the transfer function pole in zero.

Figure 20: Response to ramp input with PD controller

Figure 21: Zoom-in of the response to ramp input, showing constant steady
state error

If we take a step input r(t) = At, whose Laplace transform is R(s) = A/s2,
the limit becomes

In our case, we can appreciate an elimination of the transfer function pole
in zero, and hence Kv = 0.049 yields a steady state error E(s) = A

0.049 which is
proportional to the magnitude of the ramp input, or in other words the steepness
of the ramp.
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Figure 22: Response to ramp input with PD controller

Figure 23: Zoom-in of the response to ramp input, showing constant steady
state error
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8 Conclusions

The representation of the model as carried out in this work is satisfactory for
the purpose of longitudinal stability assessment, and the underlying theory pre-
sented was kept to as straightforward as possible. From the previous evaluation
we can see that the proposed feedback control architecture meets the require-
ments in terms of overshoot, rise time and steady state error. Different pro-
posals for control architectures, can also prove effective. We have seen that a
proportional-derivative controller would also meet control requirements while
tracing a step reference, while PID guarantees better results for more com-
plex reference signals. An alternate proposal could be made for this project’s
pitch control architecture, namely by implementing a pitch rate controller in
an cascaded inner loop for the purpose of controlling more efficiently the pitch
attitude, and this will be kept in consideration for a further development of this
work. The position of the mass of the only crew is an aspect which has been
overlooked in this work, and has been simply modeled as a fixed point mass.
The crew has a crucial role on this type of vessel, providing restoring moment
both in the pitch and in the roll direction, that is around the Y and X body axis.
This behaviour is used do interact with the center of gravity and compensate in
an intuitive way to dynamical behaviour of the vessel. This intuitive corrections
are of the uttermost importance during the transition phase, between the buoy-
ant and flying configuration, and whenever there is a variation in the windspeed,
thus generating a variation in both propulsive forces and heeling momentum.
The compensation is left solely at the sailor which is in charge of balancing the
wind induced moments, and hence they would greatly benefit from having some
insight on the way their positioning affects the flying behaviour of the vessel.
In the work of Eggert [2]a PID controller is also used to implement the posi-
tion of the crew variable: this controller has the aim of mimicking the sailor’s
intuitive corrections within the viable envelope for crew mobility. Investigating
this matter more in depth would yield some valuable practical results regarding
crew positioning at different speeds and gaits.
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