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Abstract

Background: Absence seizures, which are also known as petit mal seizures, are the
most common type of seizures in pediatric epilepsy. They appear in several types of
epilepsy and are characterized by impaired consciousness and 3-Hz spike-and-slow-wave
complexes in the electroencephalogram (EEG). The treatment with anti-epileptic drugs
(AEDs) is the result of a very delicate weighting, which leads to a trade-off between the
side effects the drugs are causing and the disapperance of the seizures. the company
Hypo-Safe A/S is currently developing a device, which hopefully will permit to reduce
the number of EEG examinations needed to achieve the optimal medication.
Objective: The project has two biomedical signal processing objectives: seizure on-
set detection and automatic topographic seizure distribution description by means of
statistical measures. Seizure onset detection is directly relevant for the user of the sub-
cutaneously implanted Hypo-Safe EEG apparatus and for medical monitoring purposes.
Automatic topographic distribution description by means of statistical measures is rele-
vant for decision concerning placement of the apparatus.
Methods: An absence seizure detection algorithm based on fractal dimension estima-
tion was designed, implemented and tested together with a topographic evaluation of
absence seizure patterns.
Results: Excluding patients with symptomatic epilepsy it was possible to achieve a SE
of 97% and a FDR of 0.15 FP/h on channel F4-F8. Similar performance could also be
achieved in a few neighboring channels. Therefore for the other patients this area repre-
sents a very good location for placing the Hypo-Safe subcutaneous electrode. In patients
with symptomatic epilepsy it is still possible to find a good location, but they must be
assessed individually and the optimal position will change from patient to patient.
Significance: This is the first study which evaluates the topographic distribution of
absence seizure patterns using an appositely designed seizure detection algorithm.
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Chapter 1

Introduction

Background

The term epilepsy is derived from the ancient Greek epilepsía, which literally means "to
seize". It is a very common neurological disorder which affects about 50 million people
worldwide and as the origin of the word suggests, the disease is characterized by recurrent
seizure strikes [1]. Although 30% of the epileptic patients cannot be treated effectively
with current medications, the remaining 70% can live a normal seizure-free life if treated
properly [2].

Motivation

Absence seizures, which are also known as petit mal seizures, are the most common
type of seizures in pediatric epilepsy. They appear in several types of epilepsy and
are characterized by impaired consciousness and 3-Hz spike-and-slow-wave complexes
[3] in the electroencephalogram (EEG). The EEG is a simultaneous electrical recording
from several electrodes located across the skull. The treatment with anti-epileptic drugs
(AEDs) is the result of a very delicate weighting, which leads to a trade-off between the
side effects the drugs are causing and the disapperance of the seizures. This optimization
process is very ponderous for both the family and the patient due to the frequent visits to
the hospital and subsequent EEG examinations. In order to partly relieve the patients
from this exhaustive process, the company Hypo-Safe A/S is currently developing a
device, which hopefully will permit to reduce the number of EEG examinations at the
hospital significantly. The device is going to be placed on the back of the ear and has
a subcutaneously implanted electrode to monitor the EEG activity. When an EEG
examination is requested, the patient wears the device wear for a given period of time.
A report with the number of automatically detected seizures is then sent to the doctor,
who can consequently instruct the patient on the potential changes in the medication.
A sketch of the device is shown in figure 1.1.
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2 Introduction

Figure 1.1: Sketch of the Hypo-Safe A/S device for seizure detection

Objective

This project has 2 biomedical signal processing objectives:

• First of all an algorithm to perform absence seizure onset detection is developed,
implemented and tested on scalp EEG data (sEEG), since these are data similar to
the ones the device is going to operate with. Different factors are taken into account
when evaluating the algorithm. The most important ones are a high sensitivity (SE)
and a low false positive rate (FPR).

• The second objective is automatic topographic distribution description by means
of statistical measures. The algorithm developed is tested on each of the 19 channel
of the sEEG data available for each patient. The results are then compared and
analyzed in order to find the optimal location of the electrode of the Hypo-Safe
A/S device.

Strategy

These goals are going to be reached starting with an exhaustive state of the art literature
study. The most promising algorithm will then be selected and used as a starting point
for a novel seizure detection approach. Once the implementation is completed a testing
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database of patients with known absences is extracted from the Copenhagen University
Hospital clinical NF database. Seizures and seizures onsets are identified in collaboration
with MD Troels Kjær. The performance is then evaluated both from an overall and a
topographic point of view. This is the first time a topographic study has been conducted
on EEG of epileptic patients with absence seizures. A novel visualization method is
introduced in order to illustrate such an analysis.

Structure

The following two chapters are a mandatory theory introduction to the project, where
EEG and Epilepsy are described in detail to give to the reader the basics required to
comprehend the study. In the fourth chapter the literature study is presented and dis-
cussed. In the fifth chapter the chosen method is analyzed and the modifications made
are illustrated in the subsequent chapter. In the sixth chapter the database created for
this this study is described and commented. The results and discussion are presented in
the last chapters followed by conclusion.





Chapter 2

Epilepsy and Absence Seizures

In the beginning of the chapter a definition and a general introduction to epilepsy and
epileptic seizures are given. Different types of seizures are introduced and their impact
on the patient is described. Later on the focus is moved to absence seizures, in order
to give a better understanding on the physiological process the Hypo-Safe A/S device is
operating with.

2.1 Definition

Giving an exact definition of epilepsy is controversial because the disease cannot be
identified as one condition but rather as a syndrome, where many different symptoms are
present. In [4] and in [1] an early definition of epilepsy and epileptic seizure was given. In
2005 this was further expanded when the International League Against Epilepsy (ILAE)
and the International Bureau for Epilepsy (IBE) reached an agreement on the definition
of these terms [5]:

Epileptic seizure: transient occurrence of signs and/or symptoms due to abnor-
mal excessive or synchronous neuronal activity in the brain [5].

Epilepsy: disorder of the brain characterized by an enduring predisposition to
generate epileptic seizures and by the neurobiologic, cognitive, psychological, and
social consequences of this condition. The definition of epilepsy requires the occur-
rence of at least one epileptic seizure [5].

There are over 40 different types of epilepsy. Each one of them is characterized by its
own specific combination of seizure type, EEG characteristics,typical age of onset and
treatment. It is a very wide topic and analyzing all the types of epilepsy is not in
the scope of this project. In the following section the seizure types are classified in an
internationally recognized scheme and the type of epilepsies related to absence seizures
are described in the subsequent section.

5



6 Epilepsy and Absence Seizures

2.2 Seizure Types

In 1981 ILAE proposed a classification scheme of epileptic seizures [6] that, although
under revision [7], it is still the de facto standard for seizure classification. The scheme,
which is shown in figure 2.1, is based on clinical manifestations and on the EEG rather
than pathophysiology or anatomy. It involves a first main classification between gener-
alised and partial seizures, which are better described in the following subsections.

Figure 2.1: Seizure classification according to ILAE [6]. The main division is between
generalised seizures, which affects the whole brain, and partial seizures, which affects

only a part of the brain.

2.2.1 Generalised Seizures

When the onset is recorded simultaneously in both cerebral hemispheres the seizure is
classified as generalised. Generalised seizures are further classified into :

• Tonic clonic: They are also known as grand mal seizures and they are charac-
terized by generalized tonic extension of the extremities followed by jerking of the
face. The only difference with secondary generalised seizures is the lacking of an
aura.

• Tonic: They consist of tonic extension of the head, trunk and extremities. They
typically occur before falling asleep or just after waking up. In the EEG they are
characterized by a high-frequency electrographic discharge in the beta frequency.

• Atonic: A seizure with a sudden loss of muscle tone, often resulting in falls and
injuries. They are also known as drop seizures.

• Myoclonic and Clonic: Myoclonic seizures are characterized by brief, arrhyth-
mic, jerking movements that last less than a second and often cluster within a few
minutes. If they evolve into rhythmic, jerking movements they are classified as a
clonic seizures.

• Absences: They consists of episodes of impaired consciousness that usually lasts
less then 20 seconds. Being the main focus of our project, they are better analyzed
in the next section.
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2.2.2 Partial Seizures

Partial seizures occurs when the onset begin in a focal area of the cerebral cortex. They
are further classified in:

• Simple: The consciousness of the patient is preserved. A simple partial seizures
include sensory, motor, autonomic, and psychic types, which are alle characterized
by focal EEG changes.

• Complex: During a complex partial seizure the consciousness of the patient is
impaired. They are often preceded by a so called aura, which is just a simple partial
seizure. They typically lasts between 30 and 90 seconds, start with behavioral arrest
and end with staring, automatisms, and postictal confusion.

• Secondary Generalised: It occurs when a simple or complex partial seizures
evolves into a generalised seizure.

2.3 Absence Seizures

This type of seizures were first observed by Poupart in 1705 and defined as petite access
by Tissot in 1770. The term absence was coined and used for the first time by Calmell
in 1824 [8]. As alluded in the introduction they are the most common type of pediatric
seizures, characterized by 3-Hz spike-and-slow-wave complexes in the EEG (see figure
3.7).The classification of absence seizures has been recently revised and simplified by
ILAE [12]. The main division is now simply between typical and atypical absences. The
different characteristics of each of these two types of absence seizures can be observed in
table 2.1.

Table 2.1: Typical and Atypical absence seizures. Clinical and EEG differences.
Information from [12].

Type of Clinical Seizure EEG Findings

Typical absence

- Impairment of conscious-
ness only Usually regular and symmetrical 3 Hz,

possible 2- to 4-Hz
spike-and-slow-wave complexes, and
possible multiple spike-and-slow-wave
complexes

- Mild clonic components
- Atonic components
- Tonic component
- Automatisms
- Autonomic components

Atypical absence

- Changes in tone more
pronounced than those of
typical absence seizure

EEG more heterogeneous than in
typical absence; may include irregular
spike-and-slow-wave complexes, fast
activity, or other paroxysmal activity;
abnormalities bilateral but often
irregular and asymmetric

- Nonabrupt onset or cessa-
tion abrupt

Long absence seizures can be confused with complex partial seizures, especially when
automatisms are presents. In the case of absences, the longer the seizure, the higher is
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Table 2.2: Features of absence and complex partial seizures. Information from [14].

Feature Complex Partial Seizure Absence Seizure
Onset May have simple partial onset Abrupt

Duration Usually >30 s Usually <30 s
Automatisms Present Duration dependent
Awareness No No

Ending Gradual postictal Abrupt

the probability of finding automatisms [14]. In table 2.2 the salient features of absence
and complex partial seizures are compared.

Generalized epilepsies can be classified into idiopathic epilepsies, when the causes are ge-
netic and into symptomatic epilepsies, when the causes are unknown. Absence seizures
can occur both in idiopathic and symptomatic epilepsies. In the case of idiopathic
epilepsy absence seizures are present in:

• Childhood Absence Epilepsy (CAE): characterized by short and frequent seizures
usually between 4 and 20 seconds. In some cases more than one hundred seizures
can be registered per day. The typical age of onset is between 4 and 8 years, with
peaks in the 6-7 years range. [9] [10, pages 106-120].

• Juvenile Absence Epilepsy (JAE): the age of onset is typically between 10 and
17 years with a peak between 10 and 12 years. The semiology of the absences in
this syndrome are very similar to the one in CAE, just the first onset occurs later
and they are much more sporadic. [10, pages 307-312]

• Juvenile Myoclonic Epilepsy (JME): characterized by generalized tonic-clonic
seizures (GTCSs), myoclonic jerks and sometimes by absence seizures. The age of
onset is very wide (8-26 years), but 79% of the cases occur between 12 and 18 years
of age [10, pages 247-258].

In the case of symptomatic generalized epilepsies some differences are present in the
absence seizures. They are often characterized by slow spike-wave complexes of 1.5-2.5
Hz, which are also known as sharp-and-slow-wave complexes. Seizure of this type are
referred to as atypical absence seizures [11].

2.3.1 Treatment

Absence seizures are treated with antiepileptic drugs (AEDs). After the necessary EEG
examinations and subsequent diagnosis, proper medications and dosages are selected.
The objective is to suppress all epileptiform activity and this is rarely achieved the first
time the drugs are prescribed [13]. Since AEDs are relatively toxic and cause several
side effects, reaching the optimal dosage must be achieved in the shortest period of time
as possible. The algorithm presented in the following chapters of this thesis, is designed
for the Hypo-Safe A/S device, which permits to monitor the patient more efficiently.
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Consequently the number of EEG examinations required and the trials before finding
the best dosage can be significantly reduced.





Chapter 3

Normal and Ictal EEG Activity

All data used in this project consists of electroencephalogram (EEG) recordings of epilep-
tic patients. In order to understand what the implemented algorithm is operating with,
a background on electroencephalography must be given. In this chapter the principle
behind EEG recordings is described and the different measuring techniques are analyzed.
Normal EEG activity is then presented and compared to the EEG activity of an epileptic
patient during an absence seizure (ictal EEG).

3.1 Electrical Activity in the Brain

There is an estimated number of 1011 neurons in the brain, each one interconnected
with 1000-100000 synapses to the others. [15].In the cortical gray matter these cells are
called pyramidal neurons. They are electrically active and generate discrete electrical
signals (action potentials) that passes through the axon and activate a neurotransmitter
in the corresponding synapse. The neurotransmitter travels to the designated neuron
(post synaptic neuron) on the other side of the synapse and interacts with the receptor
in the dendrite of that neuron. This interaction generates an electrical current in the post
synaptic neuron. When enough interactions takes place, an action potential is generated
and the process just described repeats itself. In particular, the excitatory and inhibitory
postsynaptic potentials rather than the action potentials are responsible for the recorded
EEG activity. A diagram of a pyramidal neuron is shown in figure 3.1.

3.2 Definition of EEG

Activity of a single neuron cannot be revealed by any existing method. What can be
picked up is the synchronous activity of millions of neurons with similar orientation [15].
EEG is defined as the recording of this electrical activity. This is achieved through a series
of electrodes placed on the surface of the scalp(scalp EEG or sEEG) or under the skull
(intracranial EEG or iEEG). While sEEG is a very common medical procedure, e.g to
diagnose epilepsy, iEEG is only performed in patients with untreatable focal epilepsy in

11
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2. The Brain and Epilepsy

signals from the apical and basal dendrites are summed in the axon hillock (shown as
"the initial segment of PC axon" on figure 2.3) a threshold value will determine whether
an action potential will propagate down the axon. The destination of the action potential
can either be the basal ganglia, cerebellum, brain stem, spinal cord or other different
levels of the cortex in the same or contralateral hemisphere [61, page 636]. Finally, some
axons from the pyramidal cells modify the activity of the thalamus which then can affect
other areas of cortex.

The interplay between the pyramidal cells and other cells in the cerebral cortex is best
understood through figure 2.3. The action potential that starts in the apical dendrite
emerges from an excitatory input. This erupts from a regulatory mechanism like the

Figure 2.3: A cortical pyramidal cell as it exist in the cerebral cortex. The integration of
inhibitory and exhibitory potentials decides whether an action potential will be generated.
Note that the pyramidal cell has one apical dendrite, multiple basal dendrites and one
axon. From [61, Fig. 22.3].

8 © Jonas Henriksen

DTU Electrical Engineering

Figure 3.1: A cortical pyramidal neuron as it exist in the cerebral cortex. The
integration of inhibitory and exhibitory potentials decides whether an action potential

will be generated. From [17].

order to determine the exact focus before the surgery [16]. A comparison between the two
types of EEG is carried out in table 3.1. In intracranial recordings both a high spatial and
temporal resolution are obtained, together with a large SNR, but the procedure is very
invasive. Hypo-Safe A/S device uses a subcutaneously implanted electrode, therefore it
operates with data very similar to sEEG. That is the reason why our analysis from now
on will be limited to sEEG. Most of the concepts are anyway applicable also to iEEG.
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Table 3.1: Comparison of sEEG and iEEG characteristics. Information from [18].

sEEG iEEG
Spatial resolution Low High
Time resolution High High
Susceptibility to artifacts Medium-high Low
SNR Small Large
Type of procedure Noninvasive Invasive
Accessibility High low

3.3 Method and Montages

In most applications 19 electrodes electrodes are employed to record clinical EEG, how-
ever up to 256 electrodes, mounted on a cap or a net, can be used. In order to reduce
impedance and improve the quality of the recording a conductive gel is applied on the
electrodes before the placement on the scalp. The placement usually follows the 10-20
international standard [19], which is described in the next section.

Figure 3.2: An EEG channel is the output of a differential amplifier, whose input is
the signal registered by two EEG electrodes. From [22].

The result of an EEG examination is a certain number of EEG channels, which are
not the result of unipolar measurements from the single electrodes. An EEG channel
is the output of a differential amplifier connected to 2 different electrodes, as it can be
observed from figure 3.2. Therefore there are several ways to display the results of an
EEG examination. Each one of them is referred to as a montage. The most commonly
used ones are shown in table 3.2.

The amplitude of a typical scalp EEG is between 10 µV and 100 µV , while in the case
of an iEEG the voltage obtained is between 20 mV and 40 mV [20].

3.4 The International 10-20 System

An international standard, which establishes the placement of the electrodes in the EEG,
is needed to compare examinations of different subjects to each other. The international
10-20 system was designed for this purpose and it is one of the most widely used method
for electrodes positioning in spontaneous clinical EEG. Other standards exist, e.g. the
Queen Square is used to record the pattern of evoked potential in clinical testings [23].

In the 10-20 system the nasion and the inion are taken as reference to measure the skull
perimeters from front to back and from right to left. These perimeters are then divided
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Table 3.2: Most common montages in EEG. Information from [21].

Montage Description

Bipolar Each channel represents the difference between an elec-
trode and one of its neighbours. Different configura-
tions are possible depending on the pairs of electrodes
chosen. Two very common ones are the Transversal
montage and the Banana montage.

Referential An electrode is chosen as reference and each chan-
nel is the difference between this electrode and desig-
nated electrode. The reference can be chose arbitrarily.
Common choices are positions between the recording
electrodes or an average of the electrodes positioned
on the earlobes.

Average A special case of Referential montage where the refer-
ence is an average of all the available channels.

Laplacian Another special case of Referential montage. This time
the reference is a weighted average of the neighbouring
electrodes.

in 10% and 20% intervals in order to determine the positioning of the electrodes. This is
shown in figure 3.3. Each electrode position is then represented by a letter identifying the
lobe and a number identifying the hemisphere (Odd numbers refers to the left emisphere,
while even numbers refers to the right emisphere). The letter notation is presented in
table 3.3.

Figure 3.3: The international 10-20 system seen from left and above the head. Nasion,
Inion and 10% and 20% intervals are visible. From [24].
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Figure 3.4: The extended international 10-20 system. Standardization by the Amer-
ican Electroencephalographic Society. From [24].

Table 3.3: Lobe notation in the 10-20 System. Information from [24].

Letter Lobe
A Ear lobe
C Central
Pg Nasopharyngeal
P Parietal
F Frontal
Fp Frontal polar
O Occipital
T Temporal

When an EEG examination with higher spatial resolution is required new electrodes are
placed in between the original 10-20 system electrodes. This gives birth to an extended
version of the 10-20 system, where the naming of the new electrodes sites is regulated by
the Modified Combinatorial Nomenclature (MCN). A complete overview of this system
can be observed in figure 3.4.
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3.5 EEG activity

3.5.1 Normal EEG activity

Normal EEG activity shows periodic or rhythmic activity, which is usually classified
according to the frequency bands defined in table 3.4. In figure 3.5 an example of
activity for each one of these bands is shown.

EEG is strongly dependent on the level of consciousness of the subject examined and
in order to better illustrate this fact the EEG associated with various sleep stages is
shown in figure 3.6. Alpha waves usually appears in an awake subject, while theta and
delta waves appear with light and deep sleep respectively. Strong alpha waves instead
are present during auditory and mental arithmetic tasks and Beta waves appears as
background activity during intense mental tasks [26].

Table 3.4: EEG frequency bands. Information from [26].

EEG band Frequency Range [Hz]
Delta (δ) 0.5 - 4
Theta (θ) 4 - 8
Alpha (α) 8 - 13
Beta (β) 13 - 30

Figure 3.5: The most common EEG waves. From [25].
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Figure 3.6: Dependence of the EEG signal on the level of consciousness of the subject.
.From [25].

3.5.2 The Spike and Wave Complex

In an EEG recording also spikes, transients and other type of waves can be present. Each
one of them is usually associated with a nervous disorders. In these project our attention
is focused on patients with absence seizures, whose main characteristic in the EEG is the
spike and slow wave complex, as already discussed in the second chapter.

In these patients usually burst of these complexes are observed, as it can be seen from
the single EEG channel shown in figure 3.7.

Figure 3.7: The spike and wave complexes in a patient with absence seizures. From
[25].
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3.5.3 Artifacts

Signals recorded by the EEG that are not of cerebral origin are called artifacts. Every
EEG signal is inevitably corrupted by these artifacts, which are the main reason why a
trained physician or a neurologist are required to correctly interpret an EEG. The most
common ones include [26]:

• Eye-induced artifacts: includes artifacts cause by eye blinking and eye movement.

• ECG artifacts: The high amplitude QRS complex in the ECG can easily contami-
nate the EEG. That is the reason why in most of the EEG recordings one channel
usually is the ECG signal itself.

• EMG-induced artifacts: artifact caused by the electrical activity produced by the
activation of skeletal muscles.

• Power system interference artifacts : When the electrodes are not properly grounded
a 50 or 60 Hz (depending on the power supply characteristics) noise is introduced
in the EEG.

Artifact removal can be achieved through Independent Component Analysis (ICA). The
signal is separated into source component and the unwanted components generating the
artifacts are removed. However it is a very lengthy procedure and the components to
remove must still be chosen manually [27].



Chapter 4

State of the art Seizure Detection

In order to achieve the main objective of this thesis, which is topographic seizure distribu-
tion, a seizure onset detection algorithm must be developed. In this chapter a definition
of seizure detection is presented together with a state of the art literature study. This
has permitted to identify them most promising method for our purposes, which will be
the starting point for our automatic seizure detection algorithm.

4.1 Definition of Seizure Detection

As described in the previous chapters the manifestation of epileptic seizures occurs in
EEG. An automated seizure detection algorithm must discriminate between seizure and
non-seizure activity on the basis of the EEG characteristics and for each detected seizure
an onset is determined. In figure 4.1 an absence seizure is shown together with the
estimated onset. In order to be able to use an algorithm in a clinical setting the algorithm
should provide a high detection rate, together with a low false positive rate.

Figure 4.1: Example of seizure onset detection. The red line represents the estimated
onset. Signal (in blue) is a one channel EEG signal of a transversal montage representing
a slow spike and wave complex. EEG recording is taken from the data collected for this

thesis.

19
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4.2 Performance Evaluation

Evaluation of the various methods is carried out by comparing the results of the cor-
responding algorithm with the seizures marked by a neurologist or a trained physician.
Quantitative analysis is performed using several performance measures. The most com-
mon used ones are:

• Sensitivity (SE): ratio between the number of detected seizures and the number
of total seizures. It is usually expressed in percentage.

• False Positive Rate (FPR): number of false positive (FP) detection declared by
the algorithm. Usually measured in FP/h.

• Median Detection Delay: Median delay in seconds between the automatically
detected seizure onset and the one marked by the neurologist.

4.3 Overview of the Main Articles

During the project a very careful literature study has been conducted. Several arti-
cles concerning seizure detection were read and analyzed and in this section the five
most promising methods are described. While selecting these articles two important
constraints were taken into account. A selected algorithm must:

• Operate on-line: Our algorithm is going to be designed for a device which has
to operate in real time. On-line detection algorithms have some extra limitations
on the signal processing techniques. The classification processes must be compu-
tationally efficient, use short time windows for analysis and may only use data
occurred before the considered point (causal analysis).

• Be optimized for sEEG data: The Hypo-Safe A/S device is going to operate
with data from a subcutaneously implanted electrode, therefore an algorithm al-
ready optimized for scalp EEG is clearly an advantage. The ideal algorithm should
also have been tested on long term EEG on a fair number of patients because that
gives a realistic simulation of the environment where the device will be employed.

For each one of the algorithms a general overview is given by outlining the method, the
complexity, the performance and the dataset used for testing. Some considerations on
the overall strategy are pointed out at the end of each article. In table 4.1 the algorithms
are summarized to facilitate a comparison between them.

A Patient-Specific Algorithm for the Detection of Seizure Onset in
Long-Term EEG Monitoring: Possible Use as a Warning Device [28]

Authors: Hao Qu and Jean Gotman
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Published: IEEE transactions on biomedical engineering, vol. 44, no. 2, February
1997, manuscript received March 31, 1995; revised September 19, 1996.

Method: A patient specific algorithm to perform seizure onset detection. A mod-
ified nearest neighbour classifier is trained with a seizure EEG and with some non
seizure EEG. Extreme attention has been put in achieving low false detection rates.

Complexity: medium, a modified nearest neighbour classifier is trained on com-
binations of features extracted from the EEG.

Specific/Generic: The method is patient specific. It has to be trained with one
seizure from a patient and then detect all similar seizures.

Performance:
Sensitivity: 100%
FP/h: 0.02
Median detection delay: 9.35

Data set: scalp EEG recordings including 47 seizures in 12 patients. Type of
seizures is not specified.

Considerations: The data set is very small and consist only of 12 patients, so
more extensive testing is required to understand the real capabilities of this method.
Moreover it has an important limitation: it only detects seizures similar to the
template. In epilepsy monitoring, one wants to explore as many kinds of seizures
as possible. Therefore their method cannot replace traditional unbiased seizure
detection which aims at recording all types of seizures.

Patient-Specific Seizure Onset Detection [29]

Authors: Ali Shoeb, Herman Edwards , Jack Connolly , Blaise Bourgeois , Ted
Treves and John Guttag

Published: Proceedings of the 26th Annual International Conference of the IEEE
EMBS San Francisco, CA, USA September 1-5, 2004

Method: The method uses a wavelet decomposition to construct a feature vector
that captures the morphology and spatial distribution of an EEG epoch, and then
determines whether that vector is representative of a patient’s seizure or non-seizure
EEG using the support-vector machine classification algorithm.

Complexity: medium-high, a SVM classifier is trained on combinations of features
extracted from the EEG.

Specific/Generic: patient specific approach in order to exploit the consistency
of an individual patient’s seizure or non seizure EEG.

Performance:
Sensitivity: 94%,
FP/h: 0.22
Median detection delay: 8.0 ± 3.2 s

Data set: 60 h of scalp EEG, including 139 seizures in 36 patients (leave one out
cross validation). Contain focal, lateral, and generalized seizures.
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Considerations: No constraints regarding the types of seizure onsets was imposed;
the dataset contains focal, lateral, and generalized seizure onsets. Furthermore, the
recordings were made in a routine clinical environment, so non-seizure activity and
artifacts such as head/body movement, chewing, blinking, early stages of sleep,
and electrode pops/movement were present. The recordings lasted 35 minutes on
average for 30 patients, so the algorithm has not been tested on long term EEG
monitoring. Patient specificity permits to improve sensitivity but requires a labeled
training set of seizure and non seizure EEG for each patient

A system to detect the onset of epileptic seizures in scalp EEG [30]

Authors: M.E. Saab, J. Gotman

Published: Clinical Neurophysiology 116 (2005) 427–442, accepted 4 August 2004,
available online 18 September 2004

Method: The system is based on determining the seizure probability of a section of
EEG. Wavelet decomposition, feature extraction and data segmentation were em-
ployed to compute the a priori probabilities required for the Bayesian formulation
used in training, testing and operation.

Complexity: medium-high, a bayesian classifier is trained on combinations of
features extracted from the EEG.

Specific/Generic: The system is not patient specific and some patients might
have higher false detection rates than others. In order to reduce those a tunable
threshold is available to manage the trade off between high false detections rates
and seizure detection.

Performance: (before/after tuning)
Sensitivity: 77.9% / 76.0%,
FP/h: 0.86 / 0.34
Median detection delay: 9.8 s / 10.0 s

Data set: 652 h of scalp EEG, including 126 seizures in 28 patients for training,
360 h of scalp EEG, including 69 seizures in 16 patients for testing. Type of seizures
used for training and testing is not specified precisely.

Considerations: The data set includes patients with different types of epilepsy
and seizures. The algorithm is tested on data independent from the training one,
that makes the sensitivity measured accurate and reliable.

Comparison of Fractal Dimension Estimation Algorithms for Epileptic
Seizure Onset Detection [31]

Authors: Georgia E. Polchronaki , Student Member IEEE, Periklis Ktonas Senior
Member, IEEE, Stylianos Gatzonis, Pantelis A. Asvestas Eirini Spanou, Anna Sia-
touni, Hara Tsekou, Damianos Sakas and Konstantina S. Nikita, Senior Member,
IEEE

Published: IEEE transaction, manuscript received July 5, 2008.
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Method: Seizure onset detection is attempted by using two methodologies based
on fractal dimension (FD), which is a natural measure of irregularity of curves.

Complexity: low, it is a direct feature-based detector.

Specific/Generic: The method is not patient specific, anyway a threshold value
has to be employed to run the algorithm. A default threshold value can be used
or the optimum one can be calculated for each patient.

Performance:
Sensitivity: 100% (with optimum threshold)
FP/h: 0.85
Median detection delay: 6.5s

Data set: 244.9 h of scalp EEG recording, 16 seizures in 3 patients. Only patients
with refractory mesial temporal lobe epilepsy.

Considerations: The data set is very small and has only patients with refractory
mesial temporal lobe epilepsy, so the results are not directly comparable with other
studies, a more extensive testing is needed. In order to tune the threshold a training
set and a test set should be used, in this way the results achieved will be more
reliable.

Seizure Detection Using Seizure Probability Estimation: Comparison
of Features Used to Detect Seizures [32]

Authors: Levin Kuhlmann, Anthony N. Burkitt, Mark J. Cook, Karen Fuller,
David B. Grayden, Linda Seiderer and Iven M. Y. Mareels.

Published: Annals of Biomedical Engineering, Vol. 37, No. 10, October 2009 ( c�
2009) pp. 2129– 2145, received 6 February 2009; accepted 29 June 2009; published
on-line 10 July 2009

Method: This method uses the framework developed by Saab and Gotman and
analyses the impact of six additional features, in order to find out the best possible
combinations of three features among the 84 possible.

Complexity: medium-high, a bayesian classifier is trained on combinations of
features extracted from the EEG.

Specific/Generic: The method is based on Saab and Gotman algorithm, so it is
generic as well.

Performance: (original Saab and Gotman/this paper alternative features)
Sensitivity: 79.0% / 81.0%,
FP/h: 0.62 / 0.60
Median detection delay: 21.3 s / 16.9 s

Data set: 525 h of scalp EEG, including 88 seizures in 21 patients (10-fold cross-
validation). Type of Seizures used for training and testing is not specified precisely.

Considerations: Patients had different type of epilepsy and the 10-fold cross
validation method assures high reliability of the results.
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4.4 Choice of a Reference Method

The system developed by Georgia E. Polchronaki et al. [31] has been chosen as reference
method because it is the algorithm which has shown the biggest development potential.
The performance of the method are very good and even though the data set consist only
of 3 patients, 249 hours of long term EEG have been analyzed. However the performance
needs to be validated through a more reliable analysis: training data to tune the algo-
rithm should be independent from test data. This study will be conducted in this thesis
and particular care will be employed in reducing the FP rate. A novel algorithm will be
designed for the detection of absence seizures, using as a starting point this method from
Georgia E. Polchronaki et al., which was tuned and built for patients with refractory
mesial temporal lobe epilepsy (MTLE).

Each one of the other methods analyzed also has its own advantages and drawbacks.
The algorithm from Qu and Gotman [28] showed the best performance, but it could only
detect seizures similar to the chosen template. Shoeb et al. [29] obtained the third best
performance, anyway we have to consider it is a patient specific algorithm and that it
has not been tested on long time EEG. Saab and Gotman [30] and Kuhlmann et al. [32]
algorithm showed a low sensitivity with the advantage of being generic and not patient
specific.





Chapter 5

Fractal Dimension

In this chapter the theoretical background to understand the approach of the algorithm
in [31] is given. The intuitive and formal definition of fractal dimension is explained
together with some examples to illustrate the theoretical concepts. The application to
real world waveform through estimation algorithm is then discussed.

5.1 Intuitive Explanation

At first it is useful to define the concept of topological dimension as the minimum number
of independent parameters necessary to define a set. It is always a natural number and
for example if the set is a plane, it can be proved that its topological dimension is 2. [33]

This definition of topological dimension anyway does not behave properly in highly irreg-
ular set, such as fractals. A fractal is defined as “a rough or fragmented geometric shape
that can be split into parts, each of which is (at least approximately) a reduced-size copy
of the whole” [34]. In order to better characterize these type of sets, the definition of
topological dimension needs an extension: the fractal dimension. This new dimension
is not anymore a natural number but can be e real number in the interval [0, +∞].
Roughly, the fractal dimension of a set can be defined when the following limit exists as
a finite number:

lim
r→0

N(r)

rFD (5.1)

where FD is the fractal dimension and N(r) is the number of balls of radius r necessary
to cover the set.

From this definition it follows that for example a countable set has fractal dimension 0,
while Rn has dimension n.

27
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5.2 Formal Definition

For the sake of precision in this section a more formal definition of fractal dimension is
given. First we need to define the d-dimensional Hausdorff content of S ⊂ X, where X

is a metric space, as the infimum of:

C
d

H(S) = inf

�
�

i

r
d

i | ∃ a cover of S by balls with radius ri > 0

�
, (5.2)

where a ball of radius r and centered at a point p is defined by Br(p) � {x ∈ M | distance(x, p) < r}.

Now we can define the fractal dimension(FD) (also known as Hausdorff dimension or
Hausdorff–Besicovitch dimension ) of X as [35]:

FD(X) = inf
�
d ≥ 0|Cd

H(X) = 0
�

(5.3)

5.3 Examples

In this section some popular fractals waveforms which will be very useful in our analysis
are presented. The step by step proof of the calculation of the fractal dimension is not
discussed but can be found in the corresponding references.

It must be noticed that the fractal dimension of a one dimensional function it holds [36]:

1 ≤ FD ≤ 2, for one dimensional functions.

A straight line has a fractal dimension of 1.

5.3.1 Weiestrass Cosine Function (WCF)

In [37] WCF is defined as :

WH(t) =
+∞�

k=0

γ−kH cos(2πγkt), 0 < H < 1, γ > 1. (5.4)

It can be proven that FD of this function is FD = 2−H. In figure 5.1(a) a WCF with
FD = 1.5 and γ = 5 is shown.

5.3.2 Weierstrass Mendelbrot Cosine Function (WMCF)

A modified version of the Weiestrass Cosine Function is later introduce by Mandelbrot
[38] and is defined as:

W (t) =
+∞�

k=−∞

1− cos(bkt)

b(2−D)k
, 1 < D < 2. (5.5)



5.4. Fractal Dimension of Biomedical Waveforms 29

The corresponding fractal dimension is FD = D. In figure 5.1(b) a WMCF with FD =
1.5 and b = 1.5 is displayed.

5.3.3 Takagi Function (TF)

The Takagi function is defined in [39] as:

K(t) =
+∞�

k=0

a
kφ(bkt), (5.6)

where φ(t) = |bt− round(bt)|, a ∈ [0, 1], a ∈ R, b ∈ Z. With some calculations it can be
proven that its fractal dimension is FD = log(4a)/ log(b) An example with a = 1 and
b = 2 is shown in figure 5.1(c).

5.3.4 Fractional Brownian motion (FBM)

FBM can be modeled as a non stationary stochastic process. A waveform of the desired
FD and can be synthesized with a wavelet based approach as explained in [40]. An
example with FD = 1.5 is shown in figure 5.1(d).

In figure 5.2 three FBM of 1000 samples with increasing values of FD are plotted. It can
be noticed how to a higher value of FD corresponds a more irregular curve.B.S. Raghavendra, D. Narayana Dutt / Computers in Biology and Medicine 39 (2009) 1006–1012 1007

Fig. 1. Synthetic fractal waveforms using, (a) Weierstrass-cosine function, (b) Weierstrass–Mandelbrot cosine function, (c) Takagi function, (d) Fractional Brownian motion.
The length of the waveforms is N = 1024 samples.

(x2, y2) respectively, the Euclidean distance between the points is

computed as dist(s1, s2)=
√
(x1 − x2)

2 + (y1 − y2)
2. The fractal dimen-

sion of the waveform representing the time series is estimated using
the two methods as follows.

2.1.1. Katz's method
According to Katz [1], the fractal dimension of the waveform

representing the time series, can be computed as

Dk = log(n)
log(n) + log(d/L)

,

where L is the total length of the waveform, d is the planar extent of
the waveform, and n = L/ā is the number of steps in the waveform,
ā is the average distance between successive points. The length of
the waveform is L = sum(dist(i, i + 1)), and the planar extent is d =
max(dist(1, i)), where dist(i, j) is the distance between the points i
and j on the waveform.

2.1.2. Higuchi's method
Higuchi's method of computation of fractal dimension of the

waveform is explained as follows [3]. An epoch of the waveform
is represented by y(1), y(2), . . . , y(N), where N is the total number
of samples in the epoch. From the given epoch, knew sub-epochs
are constructed and represented by ykm, each of them is defined as
ykm={y(m), y(m+k), y(m+2k), . . . , x(m+Mk), . . . ,m=1, 2, . . . , k}, where
m and k are integers, indicating initial time and interval time re-
spectively, M=

⌊
(N − m)/k

⌋
, where "a# denotes integer part of a. For

each of the sub-epochs ykm constructed, the average length Lm(k) is
computed as

Lm(k) = 1
k





N − 1
Mk

M∑

i=1

(∣∣y(m + ik) − y(m + (i − 1)k)
∣∣)




 ,

where (N − 1)/Mk is a normalization factor. The length of the epoch
L(k) for the time interval k is computed as the mean of the k values,
for m = 1, 2, . . . , k. That is L(k) =

∑k
m=1Lm(k). If L(k) is proportional to

k−D, the curve describing the shape of the epoch is fractal-like with
the dimension D. Thus, if L(k) is plotted against k, k = 1, . . . , kmax,
on a double logarithmic scale, the points should fall on a straight
line with a slope equal to −D. The least-square linear best fitting
procedure is applied to the graph (ln(1/k), ln(L(k))). The coefficient of
linear regression of the plot of ln(L(k)) versus ln(1/k) is taken as an
estimate of the fractal dimension of the epoch. The value of interval
time used is taken as k=1, 2, 3, 4, and k= [2(j−1)/4] for k larger than 4,

where j=11, 12, 13, . . . and [.] denotes Gauss notation. We have used
ten interval time values to compute Higuchi's fractal dimension.

2.2. Synthetic waveforms

2.2.1. Weierstrass cosine function (WCF)
TheWCF [8] is defined asWH(t)=

∑∞
k=0!

−kH cos(2"!kt), 0<H<1,
where !>1. The function is continuous but nowhere differentiable,
and its fractal dimension is D=2−H. If ! is integer, then the function
is periodic with period one. We synthesized discrete time WCFs of
various fractal dimensions by controlling the parameter H, and by
sampling t ∈ [0,1] at N+1 equidistant points, using a fixed ! = 5 and
truncating the infinite series so that the summation is done only for
0! k! kmax and choosing kmax = 100. Fig. 1(a) shows a waveform
of sampled WCF of fractal dimension 1.5.

2.2.2. Weierstrass Mendelbrot cosine function (WMCF)
This function is derived from Weierstrass–Mandelbrot function

(WMF) W(t) which is a scaling fractal curve [5]. The WMF of frac-
tal dimension D is defined as W(t) =

∑∞
k=−∞(1 − eib

kt)ei#k /b(2−D)k,
1<D<2 , where #n is an arbitrary phase, and each choice of #n
defines a specific function W(t). This function is continuous but has
no derivatives at any point. If we set #n = 0 and taking real part of
W(t) to obtain Weierstrass–Mandelbrot cosine function (WMCF) as
C(t)=

∑∞
k=−∞(1−cos bkt)/b(2−D)k. Fig. 1(b) shows a waveform of dis-

crete time WMCF for the value of fractal dimension equal to 1.5, for
b = 1.5.

2.2.3. Takagi function (TF)
The TF [6] is defined as K(t) =

∑∞
k=0a

k#(bkt), where # is the dis-
tance close to integer, that is #(t) = |bt − round(bt)|, b is an integer
greater than one and a is a real number a ∈ [0,1]. This function is
everywhere continuous but nowhere differentiable if ab"1. We set
b = 2 and a ∈ [1/2,1]. If K(t) is defined with 1/2<a<1 and t ∈ [0,1]
then K(t) has a Bouligand dimension of D = log(4a)/log(b). We syn-
thesize discrete time TF by sampling t ∈ [0, 1] at N+1 equidistant
points using a fixed value of parameter b = 2, with a maximum lim-
iting value kmax =100 and for different values of parameter a, to get
waveforms with different fractal dimension. One sample waveform
is shown in Fig. 1(c).

2.2.4. Fractional Brownian motion (FBM)
Fractional Brownian motions are non stationary and self simi-

lar stochastic processes, which are of great importance for modeling
processes which exhibit long-term dependencies, such as 1/f type

Figure 5.1: Synthetic fractal waveforms using, (a) Weierstrass-cosine function, (b)
Weierstrass–Mandelbrot cosine function, (c) Takagi function, (d) Fractional Brownian

motion. The length of the waveforms is N 1024 samples. From [36].

5.4 Fractal Dimension of Biomedical Waveforms

In all the examples described until now it was possible to calculate the exact fractal
dimension of the waveforms considered. When it comes to real world data, such as EEG
or other biomedical waveforms, it is not possible to compute analytically the FD, which
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Figure 5.2: Synthetic fractal waveforms using Fractional Brownian motion with (a)
FD = 1.1, (b) FD = 1.5, (c) FD = 1.9. The length of the waveforms is N 1000 samples.



5.4. Fractal Dimension of Biomedical Waveforms 31

therefore must be estimated. Various algorithm for fractal dimension estimation exists
but the most used ones are Katz’s and Higuchi’s method, which are described in the
following.

5.4.1 Katz’s Method

In [41] Katz defined a waveform as collection of points pairs (x, y) where the x values
increase monotonically. He notices that real world waveforms can never become convo-
luted enough to fill a plane therefore their fractal dimension is usually confined between
1 and 1.5. Based on his considerations he proposed the following empirical estimate of
fractal dimension:

FD =
log(n)

log(n) + log(d/L)
(5.7)

where n = N − 1, N is the number of point pairs, d is the diameter of the waveform and
L is the length of the curve.

5.4.2 Higuchi’s Method

Higuchi in [42] proposed an alternative method of FD estimation. In a waveform consider
the second coordinate of an epoch of N samples, y(1), .., y(N) and divide it in k sub-
epochs of length M = �(N −M)/k�:

y
m

k
= {y(m), y(m+ k), y(m+ 2k), ..., y(m+Mk)} , m = 1, 2, ..., k, (5.8)

where m and k are integers indicating the initial time and the interval time, respectively.
The length of the curve represented by each sub-epoch Lm(k) is then computed as:

Lm(k) =

��
M

i=1 |y(m+ ik)− y(m+ (i− 1)k)|
�

N−1
Mk

k
(5.9)

where (N − 1)/Mk represents a normalization factor. The length of the curve for the
specified time interval k is therefore defined as:

L(k) =
k�

m=1

Lm(k) (5.10)

If L(k) ∝ k
−D, then the curve has fractal dimension FD = D. Therefore, if the

waveform is a fractal, by plotting k and the corresponding L(k) on a double logarithmic
scale a straight line should be obtained. For real world data this is not the case and
an estimation of FD is given by calculating the slope of the linear best fitting of these
points.
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5.4.3 Comparison

The performance of the two methods have been deeply analyzed on the fractals with
known FD presented in the previous section [36]. The superiority of Higuchi estimation
is clear. Higuchi outperforms Katz’s method in several areas:

• Precision of estimation: In figure 5.3 Katz’s and Higuchi’s method performance
are evaluated for four fractal curves with known FD. As it can be observed esti-
mation using Higuchi’s algorithm is much more accurate.

• Amplitude independence: Higuchi’s method is independent on the amplitude
of the waveform and gives an estimation only based on the shape of the curve.
Katz’s method instead is amplitude dependent, as shown in figure 5.4.

• Sampling frequency dependence: Higuchi’s estimation is less sensitive than
Katz’s estimation to the sampling frequency of the waveforms considered, as pointed
out in figure 5.5

Therefore Higuchi’s method for estimation of fractal dimension will be employed in the
seizure detection algorithm presented in this thesis.
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Fig. 3. Plot of estimated versus theoretical fractal dimension for, (a) Weierstrass-cosine function, (b) Weierstrass–Mandelbrot cosine function, (c) Takagi function (Knopp
function), (d) Fractional Brownian motion.

Table 1
Estimation errors (in percent) in computing fractal dimensions.

WCF WMCF FBM TF

True FD KFDE HFDE KFDE HFDE KFDE HFDE True FD KFDE HFDE

1.0000 0.0006 8.0639 0.0000 1.4814 0.3679 6.2722 1.0000 0.0001 11.8865
1.1000 9.0900 3.8357 9.0908 3.4800 8.7680 2.0237 1.1375 12.0880 8.1144
1.2000 16.6648 1.4370 16.6663 4.4053 16.3434 0.8027 1.2630 20.8251 6.7783
1.3000 23.0728 0.5356 23.0757 3.5835 22.6941 0.1959 1.3785 27.4566 6.3128
1.4000 28.5612 0.5158 28.5669 2.5912 28.0816 0.3699 1.4854 32.6753 5.9279
1.5000 33.3058 0.7450 33.3155 1.6463 32.6675 0.3170 1.5850 36.8955 5.2440
1.6000 37.4200 1.0767 37.4259 0.8727 36.5460 0.0492 1.6781 40.3762 4.1238
1.7000 40.9291 1.2357 40.8569 0.2822 39.7842 0.7953 1.7655 43.2773 2.6293
1.8000 43.6248 0.9284 43.0966 0.1447 42.3711 1.5681 1.8480 45.6827 0.9910
1.9000 44.4221 0.2368 42.2845 0.1559 44.3066 2.4389 1.9260 47.6040 0.7356
2.0000 27.3846 1.0683 30.4517 1.7889 45.5732 4.5369 2.0000 48.9855 2.5194

FD: Fractal dimension, KFDE: Error in Katz FD, HFDE: Error in Higuchi's FD.

the ratio d/L in the Katz equation approaches a constant. Hence the
fractal dimension rapidly decreases towards one.

3.4. Effect of waveform frequency

To test the effect of waveform frequency on its fractal dimen-
sion, we have simulated sinusoidal waves of frequency from 7 to
91Hz, of sampling frequency 1000Hz. The frequency of the waves
is varied from 7 to 91Hz in steps of 2Hz, and fractal dimensions are

computed for the waves, and the results are plotted in the Fig. 6. As
the frequency is increased the degree of space filling of the wave-
form is also increased, and the Higuchi's method is very sensitive to
small increase in frequency of the waveform than Katz method.

3.5. Result on waveform cascades

The effect of changing waveform variance is tested as follows.
The sinusoidal and random waveforms are cascaded as shown in

Figure 5.3: Theoretical fractal dimension (in green ) and estimation using Higuchi’s
and Katz’s algorithm for (a) Weierstrass-cosine function, (b) Weierstrass Mandelbrot

cosine function, (c) Takagi function, (d) Fractional Brownian motion. From [36].
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Fig. 4. Effect of waveform amplitude on fractal dimension estimate, (a) Katz's (b) Higuchi's method.

Fig. 5. Effect of sampling frequency of waveform on fractal dimension estimate for WCF, (a) Katz's (b) Higuchi's method.

Fig. 6. Effect of waveform frequency on fractal dimension, for sinusoidal wave.

Fig. 7. In the first waveform, the variance is constant, and in the sec-
ond waveform the variance of the sinusoid is changed to a higher
value than that of random waves. Moving window estimates of the
fractal dimensions are computed using a window of 100 samples,
with an overlap of 50 samples. The fractograms are also shown in
the plot. In the first case, where the variance is constant, both Katz

and Higuchi's methods have shown decreasing values of fractal di-
mension for sinusoidal segment. Practically, the random waves have
a fractal dimension of two, which is also estimated correctly using
Higuchi's method, and the fractal dimensions of sinusoidal waves
are nearly 1.09. However, in the Katz method the range of variation
of fractal dimension is very less and the estimated values are not
accurate also. In the second case, where the variance of the sinu-
soidal segment is high, both Katz and Higuchi's methods have shown
good performance in detecting changing characteristics in wave-
forms. But, the estimated fractal dimension values of sinusoid waves
have increased in Katzmethod, because of its sensitivity to waveform
amplitude. And the results of Higuchi's methods are similar to that
for case one.

3.6. Result on electroencephalogram

The ten hour sleep electroencephalogram is segmented into 30 s
non overlapping epochs, and fractal dimension of each of the epochs
is computed. The variation of fractal dimension as a function of time
(fractogram) is shown in Fig. 8, for both Katz and Higuchi methods,
along with the hypnogram. The Table 2 shows mean and standard
deviation of fractal dimensions of electroencephalogram at different
sleep stages using the two methods. The hypnogram gives depth
of sleep information as a function of time. As the depth of sleep
increases from stages 1 to 4, more and more delta (0.5–4Hz) waves
of high amplitude appear and the degree of space filling of the
waveform is decreased. The increase in waveform amplitude is

Figure 5.4: Dependence of the estimation of FD on the amplitude using (a) Katz’s
and (b) Higuchi’s method. From [36].
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Fig. 4. Effect of waveform amplitude on fractal dimension estimate, (a) Katz's (b) Higuchi's method.

Fig. 5. Effect of sampling frequency of waveform on fractal dimension estimate for WCF, (a) Katz's (b) Higuchi's method.

Fig. 6. Effect of waveform frequency on fractal dimension, for sinusoidal wave.

Fig. 7. In the first waveform, the variance is constant, and in the sec-
ond waveform the variance of the sinusoid is changed to a higher
value than that of random waves. Moving window estimates of the
fractal dimensions are computed using a window of 100 samples,
with an overlap of 50 samples. The fractograms are also shown in
the plot. In the first case, where the variance is constant, both Katz

and Higuchi's methods have shown decreasing values of fractal di-
mension for sinusoidal segment. Practically, the random waves have
a fractal dimension of two, which is also estimated correctly using
Higuchi's method, and the fractal dimensions of sinusoidal waves
are nearly 1.09. However, in the Katz method the range of variation
of fractal dimension is very less and the estimated values are not
accurate also. In the second case, where the variance of the sinu-
soidal segment is high, both Katz and Higuchi's methods have shown
good performance in detecting changing characteristics in wave-
forms. But, the estimated fractal dimension values of sinusoid waves
have increased in Katzmethod, because of its sensitivity to waveform
amplitude. And the results of Higuchi's methods are similar to that
for case one.

3.6. Result on electroencephalogram

The ten hour sleep electroencephalogram is segmented into 30 s
non overlapping epochs, and fractal dimension of each of the epochs
is computed. The variation of fractal dimension as a function of time
(fractogram) is shown in Fig. 8, for both Katz and Higuchi methods,
along with the hypnogram. The Table 2 shows mean and standard
deviation of fractal dimensions of electroencephalogram at different
sleep stages using the two methods. The hypnogram gives depth
of sleep information as a function of time. As the depth of sleep
increases from stages 1 to 4, more and more delta (0.5–4Hz) waves
of high amplitude appear and the degree of space filling of the
waveform is decreased. The increase in waveform amplitude is

Figure 5.5: Dependence of the estimation of FD on the sampling frequency using (a)
Katz’s and (b) Higuchi’s method. From [36].



Chapter 6

Absence Seizures Database

No publicly available database with absence seizures is available for current research,
therefore part of the workload of this project has been collection and classification of
data from patients with absence epilepsy. In the following the novel database is described
in detail.

6.1 Collection and Classification of Data

Data from patients with known absences have been identified in the clinical NF database
at Copenhagen University Hospital. The data were filtered with an analog bandpass
filter from 0.56 Hz to 70 Hz and are sampled at 200 Hz. Most of the EEG recordings
are in the proprietary data-format of Cadwell, some in the proprietary format of Stellate
Harmonie. They were exported as European standard format (edf), through facilities
available in both softwares, in an anonymized form. Then seizure onset was identified in
collaboration with MD Troels Kjær.

Data from a total of 47 patients were collected. The EEG recordings are between 15 and
150 minutes long, with an average length of about half an hour. In figure 6.2 a sample
recording is shown.

All the recordings consist of 19 channel, 18 EEG channels and one ECG channel. When
exporting to the edf format the recordings were saved in transversal montage, in order
to preserve the topographic information needed to achieve one of the main objective of
this thesis. In figure 6.1 is shown a visualization of the transversal montage and in figure
6.2 an 18 channel sample EEG is shown.

6.2 Patients Selection and Database Description

After consultation with MD Troels Kjær, seizures shorter than 4 seconds were removed
from the database, since these seizures were considered a minor impairment to the health
of the patients. The patients has then been selected depending on the number of seizures

35
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Table 6.1: Overview of the absence seizures database created for this project. In
this table only the patients with at least 4 seizures are shown. The numbering of the
patients refers to the complete database. This database consist of 17 patients for a

total of 103 seizures in 12 hours of EEG recording.

Patient n. Sex Age Diagnosis n. Seizures

8 M 46 Juvenile Myoclonic Epilepsy (JME) 5
9 M 41 Periodic Short Interval Diffuse Discharges (PSIDDs) 5
11 F 17 Juvenile Absence epilepsy (JAE) 6
13 M 10 Childhood Absence epilepsy (CAE) 7
14 M 14 Juvenile Absence epilepsy (JAE) 5
16 F 7 Childhood Absence epilepsy (CAE) 7
17 M 5 Childhood Absence epilepsy (CAE) 7
18 M 9 Childhood Absence epilepsy (CAE) 6
19 F 10 Childhood Absence epilepsy (CAE) 5
20 F 10 Dystrophia Musculorum Congenita 6
23 M 9 Childhood Absence epilepsy (CAE) 6
25 M 10 Childhood Absence epilepsy (CAE) 8
36 M 14 Juvenile Myoclonic Epilepsy (JME) 4
42 F 7 Childhood Absence epilepsy (CAE) 11
43 M 17 Juvenile Myoclonic Epilepsy (JME) 4
46 F 15 Juvenile Myoclonic Epilepsy (JME) 6
51 M 13 Juvenile Absence Epilepsy (JAE) 5

Figure 6.1: Visualization of the transversal montage. For each pair of electrodes of
the montage an arrow pointing at first electrode and ending in the second electrode is

shown.
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in their recording. The algorithm for seizure detection is going to be patient specific,
therefore only patients with at least 4 seizures have been considered, in order to provide
the algorithm enough data for training. After the selection 18 patients are compatible
with the chosen criteria and their clinical informations are available in table 6.1. This
database consist of a total of 107 seizures in 12 hours of EEG recording. Both cases of
idiopathic (CAE, JAE, JME) and symptomatic epilepsy (others) are present.

Figure 6.2: EEG recording in EDF format. An absence seizure is clearly recogniz-
able in the recording. On the left pairs of electrodes corresponding to the transversal

montage are visible.





Chapter 7

Implementation of an Absence

Seizure Onset Detection Algorithm

In this chapter the concept of fractal dimension is exploited to develop an algorithm for
absence seizure onset detection. Inspiration is taken from [31], but in this work several
modifications are introduced and summarized in the end of the chapter.

7.1 Overview

A clear drop of fractal dimension of an EEG epoch during a seizure was already noticed
in [43], where intracranial EEG recordings were taken into examination. In [31] this
concept has been applied to scalp EEG. Using this work as a starting point a novel
detection algorithm optimized for absence seizure detection is implemented.
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Figure 7.1: Architecture of seizure detection algorithm. For each epoch fractal di-
mension is estimated. A seizure onset is declared if FD is below a threshold for a fixed

number epochs.
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An overview of the architecture of the algorithm is shown in figure 7.1. After dividing
the EEG in epochs, fractal dimension is estimated for each one of them. When FD is
below a threshold for a fixed number of epochs, a seizure onset is declared. This concept
is illustrated in figure 7.2.

7.2 Algorithm Input and Channel Constraint

Data used for analysis are scalp EEG recordings from the absence seizure database
described in chapter 6. For each of the patients 18 EEG channels in transversal montage
are available. These channels were already filtered with an analog bandpass filter between
0.5 Hz and 70 Hz embedded in the EEG recording machine. The goal of the bandpass
filter is to remove baseline wandering and other high frequency artifacts. A digital notch
filter has then been applied by the author to the EEG signal, in order to remove potential
power line interference.

The algorithm is designed for the Hypo-Safe A/S device, which will operate with only
one subcutaneously implanted electrode. This impose a constraint on the design of the
algorithm. Seizure detection must be attempted using each EEG channel separately and
not combining the information from the 18 channels, as all of the algorithms analyzed
in chapter 4 do.

7.3 Epoching

In the database seizures shorter than 4 seconds were removed after consultation with
MD Troels Kjær, since they constitute a minor impairment to the health of the patient.
The algorithm has therefore to detect only seizures longer than 4 seconds and the length
of EEG epochs must take into account this fact.

The EEG recordings are segmented into 2 seconds 50% overlapping epochs, which are
long enough to capture the EEG characteristics needed to calculate FD and short enough
to permit detection of 4 seconds seizures. A detection will be triggered when at least 3
epochs has a detected seizure status, as shown in figure 7.2. Overlapping of the epochs
is 50 %, therefore the minimum total seizure time needed for a detection is 4 seconds,
that is exactly the length of the shortest seizure in the database.

7.4 Fractal Dimension Estimation

Fractal dimension is estimated in each one of the epochs with Higuchi’s method, which
present several advantages over Katz’s method, as already discussed in chapter 5. Higuchi’s
method when applied to real biomedical waveforms is not amplitude independent as for
exactly fractal curves. Therefore, before estimating FD, each epoch was divided by its
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Figure 7.2: The three main steps of the seizure onset detector consisting of a FD
estimator, a binary classifier and temporal constraint. FD is calculated for each 2
seconds epoch and it is displayed as green dots at the end of the corresponding epoch.
Red line represents the threshold of the binary classifier. A seizure onset is declared

after three consecutive seizure classified epochs.



42 Implementation of an Absence Seizure Onset Detection Algorithm

variance in order to reduce the epoch amplitude when a seizure occurs. This proce-
dure permits to lower further more FD of high amplitude seizures and simplify seizures
detection.

7.4.1 Parameter Selection

There is one free parameter in Higuchi FD estimation, the interval time parameter k (see
chapter 5.4.2). The approach presented in [36] is followed in this thesis, therefore k is
chosen as:

k = {k1, k2, ..., kN}; ki =





i k ≤ 4�
2

(i−1)
4

�
k > 4

where N is the length of k, which is set to 20.

7.5 Binary classification

Only one EEG channel at a time is used to perform classification and subsequent seizure
detection. Therefore binary classification is performed by selecting a threshold for fractal
dimension in a patient specific way. Values of FD under this threshold are considered
indicators of a seizures activity. When N epochs in a row are classified in a seizure
status, a detection is triggered. N was chosen equal to 3, in order to detect seizure of at
least 4 seconds, as already explained earlier in the chapter.

Since the algorithm is patient specific, only seizures from the same patient can be used
for training and testing. In some cases only 4 seizures are available per patient. In order
to assure an accurate evaluation of the performance of the seizure detection algorithm
also in these cases, leave-one-out cross validation method was employed for training and
testing. Data for each patient are split into as many segments as the number of seizures
for that patient. Each segment must contain a seizure and some non ictal EEG activity.
For this project the splitting points are chosen as the the middle points between two
seizures. The algorithm is now trained in all the segments excepts one, which is used for
testing. The process is then repeated until all segments have been used both for training
and testing. The overall performance is evaluated as the average of all the single run
performance. A graphic illustration of the principle is available in figure 7.3.

Selection of the optimal threshold for each training set was performed by maximizing an
objective function, which for a specific threshold value is defined as:

f = c1 ∗NL<10 + c2 ∗NL>10 − c3 ∗NFP (7.1)

where NL<10 and NL>10 are the number of seizures longer and shorter than 10 seconds
respectively, NFP is the number of false positives and c1, c2, c3 are the weight coefficients.
After consultation with MD Troels Kjær on the Hypo-Safe device requirements, the
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coefficients were chosen as:

c1 = 1, c2 = 2, c3 = 0.5.
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Figure 7.3: Illustration of the leave-one-out cross-validation principle in a patient with
three seizures. Each block (red, blue and green) in the dataset contains one seizure and
some non ictal EEG activity. In the first run, the algorithm is trained on the first two
seizures (red and blue), and tested on data corresponding to the third seizure (green).
This is repeated other two times and the overall performance is evaluated as the average

of all three test runs.
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7.6 Matlab Implementation

The algorithm has been completely implemented in Matlab by the author. A commented
version of the matlab code can be found in appendix B.

7.7 Deviation from Georgia E. Polchronaki et al.

The algorithm and testing procedure presented in this chapter present several modifica-
tions compared to the ones proposed in [31]:

• Patient specificity: The implemented algorithm is patient specific. A patient-
specific detector learns the specific features characterizing a particular patient’s
seizure onsets.

• Single EEG channel: Only one EEG channel is used to attempt seizure detection.
This is due to the constraint imposed by the Hypo-Safe device, which operates with
only one electrode. That is also one of the reasons why a patient specific approach
was chosen.

• FD Estimation: An accurate and stable FD estimation is achieved through
Higuchi’s method. In chapter 5 it was proven to be a much more reliable tool
than Katz’s method.

• Threshold selection: An objective function was created to select the most ap-
propriate threshold.

• Proper training and testing: In [31] the algorithm was trained and tested on the
same data, giving biased performance results. In this thesis instead, as described
in section 7.5, an accurate and statistically reliable leave-one-out cross validation
method was employed.

7.8 Summary of algorithm parameters

As a conclusion of the chapter a summary of the parameters used for the seizure detection
algorithm is given in table 7.1.
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Table 7.1: Summary of the parameters used in the seizure detection algorithm.

Paramter Setting

Input

Data Type sEEG
Sampling frequency 200 Hz
N. electrodes 18
Montage Transversal

Segmentation
Epoch length 2 s
Overlapping 50 %
Window Rectangular

FD estimation k = {k1, k2, ..., kN} ki =

�
i k ≤ 4�
2

(i−1)
4

�
k > 4

Classification

N. Epochs before detection N = 3
First coefficient c1 = 1
Second coefficient c2 = 2
Third coefficient c3 = 0.5





Chapter 8

Results and Discussion

Objective of this chapter is to give an overview of topographic distribution of absence
seizures. Therefore results of the seizure detection algorithm for each EEG channel
are presented and discussed under different angles and a novel visualization method is
introduced. At first performance across all patients in the database are evaluated, then
results are segmented considering the various type of epilepsy that can cause absence
seizures. Along with the discussion a recommendation on the placement of the Hypo-
Safe device is given.

8.1 Visualization Method

In order to present Sensitivity (SE) and False Positive Rate (FPR) for each EEG channel
in an effective way a new visualization method is introduced. Consider a map containing
all electrodes positions of a transversal montage. A circle is positioned between every
two electrodes that constitutes a valid pair in the transversal montage (see figure 6.1).
Color of the circles are related to corresponding FPR, according to the colorbar on the
right. FPR greater than 2 FP/h are merged in one color (white). Size of the circles are
exponentially proportional to sensitivity, in order to emphasize graphically differences in
SE. On the top left a sample circle is visualized: red zone indicate a SE lower than 50 %,
yellow zone a SE between 50 % and 90 %, green zone a SE greater than 90 %. A sample
"head plot" is shown in appendix in figure A.0.

In appendix A performance of the algorithm for each of the 16 patients in the database
are presented using the visualization method described above.

8.2 Overall Performance

Average performance of the algorithm across all patients are visible in figure 8.1 and in
table 8.1. The best performance are found in channels F3-FZ and F4-F8, where a SE

47
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Table 8.1: Average performance across all patients. For each channel average Sensi-
tivity (SE), False Positive Rate (FPR) and their standard deviation σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 17 103 84.1 34.0 0.46 0.71
FP1-FP2 17 103 77.4 37.3 0.66 0.57
FP2-F8 17 103 79.7 38.4 0.55 0.64
F7-F3 17 103 85.0 32.5 0.24 0.25
F3-FZ 17 103 85.6 32.5 0.22 0.20
FZ-F4 17 103 83.8 33.7 0.24 0.29
F4-F8 17 103 85.6 32.6 0.18 0.21
T7-C3 17 103 83.8 32.1 0.35 0.38
C3-CZ 17 103 78.3 37.8 0.53 0.91
CZ-C4 17 103 80.8 34.6 0.32 0.72
C4-T8 17 103 83.6 32.7 0.29 0.35
P7-P3 17 103 84.4 32.3 0.19 0.27
P3-PZ 17 103 77.4 37.9 0.69 0.92
PZ-P4 17 103 76.0 39.4 0.49 0.88
P4-P8 17 103 84.1 32.8 0.26 0.26
P7-O1 17 103 83.4 32.6 0.47 0.58
O1-O2 17 103 52.6 39.4 0.90 1.12
O2-P8 17 103 84.3 32.4 0.39 0.43
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Figure 8.1: Visualization of average performance across all patients. For each channel
average Sensitivity (SE), False Positive Rate (FPR) is visible.
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of 85.65 % and 85.63 % respectively is reached, together with a FPR of 0.22 FP/h and 0.18
FP/h. Standard deviation of SE is very high in all the channels and this makes choosing
a placement for Hypo-Safe device very hard due to this high uncertainty. However it
must be noticed that , out of 17 patients analyzed by the author’s algorithm, 3 patients
are affected by symptomatic epilepsy with atypical absences (patient n 8,9, 20 of table
6.1) that heavily affects the average performance and standard deviation. Therefore in
the following sections performances are analyzed by type of epilepsy.

Median delay in seconds between the automatically detected seizure onset and the one
marked by the neurologist is an other usual performance measure. For this study average
latency across all channels and patients is 6.1 seconds. It is given just for information
purposes, since it is not a relevant parameter for the Hyposafe device and it will not
taken into account anymore.

8.3 Performance by type of Epilepsy

In this section patients are grouped according to their type of epilepsy:

• Childhood Absence Epilepsy (CAE)

• Juvenile Absence Epilepsy (JAE)

• Juvenile Myoclonic Epilepsy (JME)

• Symptomatic Epilepsy with Absence Seizures

Performance of the algorithm are evaluated for each one of these groups.

For CAE and JAE patients (table 8.2 and 8.3) SE is in most of the channel above
90 % with a peak of 98.9% for CAE and 100 %, with a FPR of 0.15 FP/h and 0.18
FP/h respectively. Standard deviation dropped heavily touching a minimum of 3.2% in
channels F4-F8 and C4-T8 for CAE patients. In JAE patients a standard deviation of
0% is reached in some of the channels, but since JAE patients are only 3, this result
is not as significant as the 3.2% with the 8 CAE patients. In JME patients (table
8.4)) performance are comparable but a general increase in the FPR and its standard
deviation across all channels can be noticed. A consistent drop from 50 to 70 % in the
SE accompanied by a huge rise in its standard deviation, is observed in patients with
absence seizures affected by a symptomatic type of epilepsy (8.5). This is due to atypical
absences present in these patients.
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8.3.1 Performance in Patients with CAE

Table 8.2: Average performance across patients with CAE. For each channel average
Sensitivity (SE), False Positive Rate (FPR) and their standard deviation σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 8 55 91.3 18.1 0.26 0.32
FP1-FP2 8 55 81.0 33.4 0.63 0.61
FP2-F8 8 55 86.4 35.0 0.34 0.23
F7-F3 8 55 97.5 7.1 0.22 0.32
F3-FZ 8 55 98.9 3.2 0.17 0.22
FZ-F4 8 55 94.6 15.2 0.18 0.23
F4-F8 8 55 98.9 3.2 0.15 0.17
T7-C3 8 55 97.1 5.6 0.41 0.49
C3-CZ 8 55 93.4 9.2 0.42 0.64
CZ-C4 8 55 94.8 10.2 0.12 0.19
C4-T8 8 55 98.9 3.2 0.28 0.43
P7-P3 8 55 96.4 7.3 0.24 0.34
P3-PZ 8 55 83.4 34.5 0.58 0.69
PZ-P4 8 55 86.4 29.6 0.27 0.65
P4-P8 8 55 97.7 6.4 0.22 0.36
P7-O1 8 55 92.1 11.5 0.45 0.67
O1-O2 8 55 49.1 40.5 0.84 1.40
O2-P8 8 55 98.2 5.1 0.20 0.28
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Figure 8.2: Visualization of average performance across patients with CAE. For each
channel average Sensitivity (SE), False Positive Rate (FPR) is visible.
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8.3.2 Performance in Patients with JAE

Table 8.3: Average performance across patients with JAE. For each channel average
Sensitivity (SE), False Positive Rate (FPR) and their standard deviation σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 3 17 100.0 0.0 0.43 0.22
FP1-FP2 3 17 100.0 0.0 0.77 0.73
FP2-F8 3 17 93.3 11.5 0.48 0.42
F7-F3 3 17 93.3 11.5 0.29 0.13
F3-FZ 3 17 93.3 11.5 0.29 0.13
FZ-F4 3 17 100.0 0.0 0.14 0.17
F4-F8 3 17 93.3 11.5 0.16 0.20
T7-C3 3 17 93.3 11.5 0.43 0.30
C3-CZ 3 17 100.0 0.0 0.18 0.17
CZ-C4 3 17 93.3 11.5 0.14 0.17
C4-T8 3 17 93.3 11.5 0.14 0.17
P7-P3 3 17 93.3 11.5 0.08 0.14
P3-PZ 3 17 93.3 11.5 0.16 0.17
PZ-P4 3 17 100.0 0.0 0.19 0.17
P4-P8 3 17 93.3 11.5 0.35 0.03
P7-O1 3 17 93.3 11.5 0.18 0.17
O1-O2 3 17 86.7 23.1 0.91 1.22
O2-P8 3 17 93.3 11.5 0.18 0.19
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Figure 8.3: Visualization of average performance across patients with JAE. For each
channel average Sensitivity (SE), False Positive Rate (FPR) is visible.
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8.3.3 Performance in Patients with JME

Table 8.4: Average performance across patients with JME. For each channel average
Sensitivity (SE), False Positive Rate (FPR) and their standard deviation σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 3 14 100.0 0.0 0.28 0.25
FP1-FP2 3 14 94.4 9.6 0.56 0.50
FP2-F8 3 14 94.4 9.6 0.61 0.11
F7-F3 3 14 100.0 0.0 0.12 0.20
F3-FZ 3 14 100.0 0.0 0.22 0.25
FZ-F4 3 14 88.8 19.2 0.49 0.57
F4-F8 3 14 100.0 0.0 0.12 0.20
T7-C3 3 14 94.4 9.6 0.12 0.20
C3-CZ 3 14 66.6 57.7 1.29 1.94
CZ-C4 3 14 77.7 38.5 1.13 1.67
C4-T8 3 14 94.4 9.6 0.28 0.25
P7-P3 3 14 100.0 0.0 0.28 0.25
P3-PZ 3 14 88.8 19.2 1.81 1.56
PZ-P4 3 14 72.2 48.1 1.40 1.70
P4-P8 3 14 100.0 0.0 0.33 0.17
P7-O1 3 14 100.0 0.0 0.91 0.74
O1-O2 3 14 63.8 37.6 1.47 0.87
O2-P8 3 14 94.4 9.6 1.04 0.37
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Figure 8.4: Visualization of average performance across patients with JME. For each
channel average Sensitivity (SE), False Positive Rate (FPR) is visible.
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8.3.4 Performance in patients with Symptomatic Epilepsy

Table 8.5: Average performance across patients with symptomatic epilepsy. For each
channel average Sensitivity (SE), False Positive Rate (FPR) and their standard devia-

tion σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 3 17 33.6 57.5 1.22 1.57
FP1-FP2 3 17 28.4 47.6 0.73 0.67
FP2-F8 3 17 33.6 57.5 1.11 1.50
F7-F3 3 17 28.4 47.6 0.37 0.19
F3-FZ 3 17 28.4 47.6 0.30 0.19
FZ-F4 3 17 33.9 57.3 0.23 0.14
F4-F8 3 17 28.2 47.7 0.35 0.35
T7-C3 3 17 28.4 47.6 0.35 0.20
C3-CZ 3 17 28.4 47.6 0.42 0.46
CZ-C4 3 17 33.9 57.2 0.22 0.14
C4-T8 3 17 22.7 38.1 0.47 0.41
P7-P3 3 17 28.3 47.7 0.07 0.13
P3-PZ 3 17 34.0 57.2 0.38 0.34
PZ-P4 3 17 28.2 47.7 0.44 0.44
P4-P8 3 17 22.8 38.0 0.18 0.19
P7-O1 3 17 33.6 57.5 0.40 0.38
O1-O2 3 17 16.8 28.8 0.47 0.41
O2-P8 3 17 28.0 47.9 0.45 0.40
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Figure 8.5: Visualization of average performance across patients with symptomatic
epilepsy. For each channel average Sensitivity (SE), False Positive Rate (FPR) is visible.
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8.4 Performance Excluding Patients with Symptomatic Epilepsy

After examination of the results of the algorithm for each type of epilepsy, it is clear
that symptomatic epilepsy represents a special case to take into account when perform-
ing seizure detection. Therefore it is wise to evaluate performance excluding from the
database patients with symptomatic epilepsy (patient n. 8,9,20). Comparing the results
of table 8.6 to table 8.1 an average rise of 10% in sensitivity is noticeable, together with
a consistent drop in SE standard deviation. Best performance, considering SE, FPR and
their standard deviation, are reached in channel F4-F8 where SE = 97.9 ± 5.7 % and
FPR = 0.15 ± 0.17 FP/h.

8.5 Performance Excluding Patients with Symptomatic Epilepsy

and JME

Also JME represents a particular type of epilepsy with absence seizures, since also genere-
lized tonic clonic seizures and myoclonic jerks are present. Comparing performance in
patients with JAE,CAE and JME, it is noticeable that in patients with Juvenile My-
oclonic Epilepsy an higher FPR across all the channels is present. In table 8.7 perfor-
mance are evaluted excluding patients with symptomatic epilepsy and JME. Taking as
a reference table 8.6, a slightly decrease in FPR can be observed.

8.6 Discussion and Positioning of Hypo-Safe Device Elec-

trode

Results are not directly comparable with other studies for two main reasons. Since
this project is focusing on topographic distribution of absence seizures only one channel
is used to achieve seizure detection, while in all other studies all EEG channels are
exploited in order to increase performance. On the other hand only absence seizures
were analyzed by the presented algorithm. For the sake of completeness a comparison is
anyway attempted. Performance of the algorithm developed in [31] cannot be used as a
reference, since they were calculated without separating training and test. However, as a
point of reference, performance of a patient specific algorithm like Shoeb et al. [29] can
be used. In his paper he claimed a sensitivity of 94 % and a FPR of 0.22 FP/h using all
EEG channels.

In this paper considering all patients in some EEG channels is reached a SE higher than
85% and a FPR lower than 0.22 FP/h (table 8.1). Although good, SE and FPR has a too
high variability(standard deviation) across all patients, therefore it is difficult to make a
recommendation on the placement of the subcutaneous electrode of the Hypo-Safe device
taking into account only these data.
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Table 8.6: Average performance excluding patients with symptomatic epilepsy. For
each channel average Sensitivity (SE), False Positive Rate (FPR) and their standard

deviation σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 14 86 95.0 14.0 0.30 0.28
FP1-FP2 14 86 88.0 26.2 0.64 0.57
FP2-F8 14 86 89.6 26.7 0.43 0.27
F7-F3 14 86 97.1 7.3 0.22 0.26
F3-FZ 14 86 97.9 5.7 0.20 0.20
FZ-F4 14 86 94.6 14.0 0.24 0.32
F4-F8 14 86 97.9 5.7 0.15 0.17
T7-C3 14 86 95.7 7.4 0.35 0.41
C3-CZ 14 86 89.1 26.7 0.55 0.99
CZ-C4 14 86 90.8 18.8 0.34 0.80
C4-T8 14 86 96.7 6.9 0.25 0.34
P7-P3 14 86 96.5 7.4 0.21 0.28
P3-PZ 14 86 86.7 27.1 0.75 0.99
PZ-P4 14 86 86.3 30.3 0.50 0.96
P4-P8 14 86 97.3 6.9 0.27 0.28
P7-O1 14 86 94.1 10.1 0.49 0.63
O1-O2 14 86 60.3 37.7 0.99 1.21
O2-P8 14 86 96.4 7.3 0.38 0.45
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Figure 8.6: Visualization of average performance excluding patients with symp-
tomatic epilepsy. For each channel average Sensitivity (SE), False Positive Rate (FPR)

is visible.
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Table 8.7: Average performance excluding patients with symptomatic epilepsy and
JME. For each channel average Sensitivity (SE), False Positive Rate (FPR) and their

standard deviation σ is reported.

Channel Npatients Nseizures SETOT(%) σSE FPR(FP/h) σFPR

F7-FP1 11 72 93.6 15.7 0.31 0.30
FP1-FP2 11 72 86.2 29.3 0.67 0.61
FP2-F8 11 72 88.3 29.9 0.38 0.28
F7-F3 11 72 96.4 8.1 0.24 0.28
F3-FZ 11 72 97.4 6.4 0.20 0.20
FZ-F4 11 72 96.1 12.9 0.17 0.21
F4-F8 11 72 97.4 6.4 0.15 0.17
T7-C3 11 72 96.1 7.2 0.42 0.43
C3-CZ 11 72 95.2 8.3 0.35 0.55
CZ-C4 11 72 94.4 10.0 0.13 0.17
C4-T8 11 72 97.4 6.4 0.24 0.37
P7-P3 11 72 95.5 8.1 0.19 0.30
P3-PZ 11 72 86.1 29.7 0.47 0.61
PZ-P4 11 72 90.1 25.6 0.25 0.55
P4-P8 11 72 96.5 7.7 0.26 0.31
P7-O1 11 72 92.5 10.9 0.37 0.58
O1-O2 11 72 59.4 39.5 0.86 1.29
O2-P8 11 72 96.9 7.1 0.20 0.25
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Figure 8.7: Visualization of average performance excluding patients with symp-
tomatic epilepsy and JMEacross all patients. For each channel average Sensitivity

(SE), False Positive Rate (FPR) is visible.
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From performance segmentation by different type of epilepsy it has emerged that a huge
increase in SE, FPR can be achieved by excluding patients with symptomatic epilepsy.
From table 8.6 it is clear that the best channel for SE, FDR and standard deviation is F4-
F8 (SE = 97.9 ± 5.7 % and FPR = 0.15 ± 0.17 FP/h.), therefore, considering our data,
the best placement of the Hypo-Safe device electrode is certainly in this area. Channels
C4-T8 and P7-P3 constitues a valid alternative with similar performance and standard
deviation. If CAE patients are considered alone, suggestions for the placement of the
electrode remains the same, channel F4-F8 still has the best performance. Analogous
consideration cannot be done for JAE or JME patients alone, since only three patients
are available for each type of epilepsy. More hours of EEG recording and more patients
would be necessary to give a recommendation based on JAE and JME patients alone.

In patients with symptomatic epilepsy is still possible to find an optimal location for the
Hypo-Safe device electrode, but they must be assessed individually and the location will
vary from patient to patient. For example in patient n.8, although many channel with
low performance are present, in channel T7-C3 a SE of 100 % with FDR of 0.56 Fp/h was
achieved (see table A.15). For patient n.9 a good suggestion with perfect performance
would be channel P4-P8 (see table A.16) while channel FZ-F4 is a good location for
patient n.20 (see table A.17).





Chapter 9

Conclusion

A patient-specific absence seizure onset detection algorithm has been designed, imple-
mented and tested together with a topographic evaluation of seizure patterns. This
analysis permitted to formulate a suggestion on possible locations of the subcutaneously
implanted electrode of Hypo-Safe device for absence seizures monitoring.

The first step involved a precise state of the art literature study, in which the article in [31]
was taken as reference and the algorithm redesigned for absence seizures. A background
on type of epilepsies presenting absence seizures and EEG was given as an introduction
to the project. It was followed by theoretical and practical explanation of the concept of
fractal dimension, which is the main mathematical concept on which the seizure detection
algorithm relies upon. A scalp EEG database was appositely created by the author for
this thesis and since the main objective is topographic distribution of absence seizures
patterns, a transversal EEG montage was employed to preserve topographic information.
Hypo-Safe device will operate with only one EEG channel through a subcutaneously
implanted electrode, so the same constraint had to be respected when designing the
algorithm for seizure detection. After describing the core structure of the algorithm, a
detailed performance evaluation was finally conducted. Only scalp EEG was considered
in this analysis since this is the most similar type of EEG to the one Hypo-Safe device
is working with.

At first overall performance for each EEG channel across all the patients were evaluated.
Although obtaining in most of the channels an average SE higher than 80% and FDR
as low as 0.22 FP/h, their standard deviation was really high due to the performance
variation of the algorithm across patients with different types of epilepsy. Given this
high variability of the results from patient to patient, it was not feasible to formulate a
suggestion for the location of the electrode of the Hypo-Safe device. SE and FDR were
then evaluated for each type of epilepsy with absence seizures. From this segmentation
it has emerged that excluding from the analysis patients with symptomatic epilepsy it
was possible to achieve a SE of 97% and a FDR of 0.15 with a much lower standard
deviation on channel F4-F8. Similar performance could also be achieved in a few neigh-
boring channels. Therefore for patients with CAE, JAE and JME this area represents a
very good location for placing the Hypo-Safe subcutaneous electrode. In patients with
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symptomatic epilepsy it is still possible to find a good location, but they must be assessed
individually and the optimal position will change from patient to patient.

At last, it must be noticed that, although it has been formulated a suggestion for the
location of the electrode of the Hypo-Safe device, before implementation for clinical use
more testing is required. For this study EEG recordings, in most cases, shorter than an
hour were used to evaluate the algorithm performance. The ideal database for this project
would consist of long term EEG recordings of at least one day, where true capabilities of
the algorithm in term of SE and FPR could be evaluated.
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Appendix A

Algorithm Results across all the

Patients

In this Appendix results of the seizure detection algorithm are presented. For each patient
a performance table with numeric results is given, together with a visual representation
of the same results ( see figure A.0 for an explanation of the visualization method).

Patients are ordered by type of epilepsy:

• Childhood Absence Epilepsy (CAE)

• Juvenile Absence Epilepsy (JAE)

• Juvenile Myoclonic Epilepsy (JME)

• Symptomatic Epilepsy with Absence Seizures
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Figure A.0: Illustration of the the visualization method used. Positions of the circles
represents the EEG channel, e.g, a circle between FP7 and FP1 indicate channel FP7-
FP1. Color of the circles are related to corresponding FPR, according to the colorbar on
the right. FPR greater than 2 FP/h are merged in one color (white). Size of the circles
are exponentially proportional to SE. On the top left a sample circle is visualized: red
zone indicate a SE lower than 50 %, yellow zone a SE between 50 % and 90 %, green
zone a SE greater than 90 %. Data used in this figure are just for illustration purposes.
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Patients with Childhood Absence Epilepsy (CAE)

Table A.1: Performance of the seizure detection algorithm on patient n. 13.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 7 7 0 100.0 0.00 100.0 n.a.
FP1-FP2 7 7 0 85.7 0.00 85.7 n.a.
FP2-F8 7 7 0 100.0 0.00 100.0 n.a.
F7-F3 7 7 0 100.0 0.00 100.0 n.a.
F3-FZ 7 7 0 100.0 0.00 100.0 n.a.
FZ-F4 7 7 0 100.0 0.00 100.0 n.a.
F4-F8 7 7 0 100.0 0.00 100.0 n.a.
T7-C3 7 7 0 100.0 0.00 100.0 n.a.
C3-CZ 7 7 0 100.0 0.00 100.0 n.a.
CZ-C4 7 7 0 100.0 0.00 100.0 n.a.
C4-T8 7 7 0 100.0 0.00 100.0 n.a.
P7-P3 7 7 0 100.0 0.00 100.0 n.a.
P3-PZ 7 7 0 85.7 0.29 85.7 n.a.
PZ-P4 7 7 0 100.0 0.00 100.0 n.a.
P4-P8 7 7 0 100.0 0.00 100.0 n.a.
P7-O1 7 7 0 100.0 0.00 100.0 n.a.
O1-O2 7 7 0 85.7 0.00 85.7 n.a.
O2-P8 7 7 0 100.0 0.00 100.0 n.a.
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Figure A.1: Performance on patient n. 13
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Table A.2: Performance of the seizure detection algorithm on patient n. 16.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 7 7 0 100.0 0.82 100.0 n.a.
FP1-FP2 7 7 0 85.7 0.63 85.7 n.a.
FP2-F8 7 7 0 100.0 0.41 100.0 n.a.
F7-F3 7 7 0 100.0 0.21 100.0 n.a.
F3-FZ 7 7 0 100.0 0.21 100.0 n.a.
FZ-F4 7 7 0 57.1 0.62 57.1 n.a.
F4-F8 7 7 0 100.0 0.41 100.0 n.a.
T7-C3 7 7 0 85.7 0.41 85.7 n.a.
C3-CZ 7 7 0 100.0 0.41 100.0 n.a.
CZ-C4 7 7 0 85.7 0.21 85.7 n.a.
C4-T8 7 7 0 100.0 0.21 100.0 n.a.
P7-P3 7 7 0 100.0 0.82 100.0 n.a.
P3-PZ 7 7 0 0.0 1.85 0.0 n.a.
PZ-P4 7 7 0 14.2 1.85 14.2 n.a.
P4-P8 7 7 0 100.0 0.21 100.0 n.a.
P7-O1 7 7 0 71.4 1.85 71.4 n.a.
O1-O2 7 7 0 14.2 0.62 14.2 n.a.
O2-P8 7 7 0 85.7 0.62 85.7 n.a.
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Figure A.2: Performance on patient n. 16
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Table A.3: Performance of the seizure detection algorithm on patient n. 17.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 7 0 7 100.0 0.00 n.a. 100.0
FP1-FP2 7 0 7 85.7 0.00 n.a. 85.7
FP2-F8 7 0 7 100.0 0.32 n.a. 100.0
F7-F3 7 0 7 100.0 0.00 n.a. 100.0
F3-FZ 7 0 7 100.0 0.00 n.a. 100.0
FZ-F4 7 0 7 100.0 0.00 n.a. 100.0
F4-F8 7 0 7 100.0 0.32 n.a. 100.0
T7-C3 7 0 7 100.0 0.00 n.a. 100.0
C3-CZ 7 0 7 85.7 0.32 n.a. 85.7
CZ-C4 7 0 7 100.0 0.32 n.a. 100.0
C4-T8 7 0 7 100.0 0.00 n.a. 100.0
P7-P3 7 0 7 100.0 0.00 n.a. 100.0
P3-PZ 7 0 7 100.0 0.00 n.a. 100.0
PZ-P4 7 0 7 85.7 0.00 n.a. 85.7
P4-P8 7 0 7 100.0 0.00 n.a. 100.0
P7-O1 7 0 7 85.7 0.65 n.a. 85.7
O1-O2 7 0 7 42.8 4.19 n.a. 42.8
O2-P8 7 0 7 100.0 0.00 n.a. 100.0

 

 

0

0.5

1

1.5

2

 FP1  FP2

 F7 

 F3 

 Fz 

 F4 

 F8 

 T7  C3  Cz  C4  T8 

 P7 

 P3 

 Pz 

 P4 

 P8 

 O1  O2 

Figure A.3: Performance on patient n. 17
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Table A.4: Performance of the seizure detection algorithm on patient n. 18.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 6 0 6 100.0 0.00 n.a. 100.0
FP1-FP2 6 0 6 100.0 0.00 n.a. 100.0
FP2-F8 6 0 6 100.0 0.00 n.a. 100.0
F7-F3 6 0 6 100.0 0.00 n.a. 100.0
F3-FZ 6 0 6 100.0 0.00 n.a. 100.0
FZ-F4 6 0 6 100.0 0.00 n.a. 100.0
F4-F8 6 0 6 100.0 0.00 n.a. 100.0
T7-C3 6 0 6 100.0 0.00 n.a. 100.0
C3-CZ 6 0 6 100.0 0.00 n.a. 100.0
CZ-C4 6 0 6 100.0 0.00 n.a. 100.0
C4-T8 6 0 6 100.0 0.00 n.a. 100.0
P7-P3 6 0 6 100.0 0.00 n.a. 100.0
P3-PZ 6 0 6 100.0 0.00 n.a. 100.0
PZ-P4 6 0 6 100.0 0.00 n.a. 100.0
P4-P8 6 0 6 100.0 0.00 n.a. 100.0
P7-O1 6 0 6 100.0 0.00 n.a. 100.0
O1-O2 6 0 6 100.0 0.00 n.a. 100.0
O2-P8 6 0 6 100.0 0.00 n.a. 100.0
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Figure A.4: Performance on patient n. 18
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Table A.5: Performance of the seizure detection algorithm on patient n. 19.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 5 0 5 80.0 0.35 n.a. 80.0
FP1-FP2 5 0 5 100.0 1.06 n.a. 100.0
FP2-F8 5 0 5 100.0 0.35 n.a. 100.0
F7-F3 5 0 5 80.0 0.35 n.a. 80.0
F3-FZ 5 0 5 100.0 0.35 n.a. 100.0
FZ-F4 5 0 5 100.0 0.35 n.a. 100.0
F4-F8 5 0 5 100.0 0.00 n.a. 100.0
T7-C3 5 0 5 100.0 1.06 n.a. 100.0
C3-CZ 5 0 5 80.0 0.00 n.a. 80.0
CZ-C4 5 0 5 100.0 0.00 n.a. 100.0
C4-T8 5 0 5 100.0 0.35 n.a. 100.0
P7-P3 5 0 5 80.0 0.00 n.a. 80.0
P3-PZ 5 0 5 100.0 0.35 n.a. 100.0
PZ-P4 5 0 5 100.0 0.35 n.a. 100.0
P4-P8 5 0 5 100.0 0.00 n.a. 100.0
P7-O1 5 0 5 80.0 0.00 n.a. 80.0
O1-O2 5 0 5 0.0 0.00 0.0
O2-P8 5 0 5 100.0 0.00 n.a. 100.0
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Figure A.5: Performance on patient n. 19
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Table A.6: Performance of the seizure detection algorithm on patient n. 23.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 6 0 6 100.0 0.62 100.0 n.a.
FP1-FP2 6 0 6 100.0 0.62 100.0 n.a.
FP2-F8 6 0 6 100.0 0.62 100.0 n.a.
F7-F3 6 0 6 100.0 0.92 100.0 n.a.
F3-FZ 6 0 6 100.0 0.62 100.0 n.a.
FZ-F4 6 0 6 100.0 0.31 100.0 n.a.
F4-F8 6 0 6 100.0 0.31 100.0 n.a.
T7-C3 6 0 6 100.0 1.23 100.0 n.a.
C3-CZ 6 0 6 100.0 1.85 100.0 n.a.
CZ-C4 6 0 6 100.0 0.00 100.0 n.a.
C4-T8 6 0 6 100.0 1.23 100.0 n.a.
P7-P3 6 0 6 100.0 0.62 100.0 n.a.
P3-PZ 6 0 6 100.0 1.23 100.0 n.a.
PZ-P4 6 0 6 100.0 0.00 100.0 n.a.
P4-P8 6 0 6 100.0 0.92 100.0 n.a.
P7-O1 6 0 6 100.0 0.92 100.0 n.a.
O1-O2 6 0 6 66.6 0.92 66.6 n.a.
O2-P8 6 0 6 100.0 0.00 100.0 n.a.
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Figure A.6: Performance on patient n. 23



Patients with Childhood Absence Epilepsy (CAE) 73

Table A.7: Performance of the seizure detection algorithm on patient n. 25.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 8 0 8 50.0 0.00 n.a. 50.0
FP1-FP2 8 0 8 0.0 0.00 n.a. 0.0
FP2-F8 8 0 8 0.0 0.00 n.a. 0.0
F7-F3 8 0 8 100.0 0.00 n.a. 100.0
F3-FZ 8 0 8 100.0 0.00 n.a. 100.0
FZ-F4 8 0 8 100.0 0.00 n.a. 100.0
F4-F8 8 0 8 100.0 0.00 n.a. 100.0
T7-C3 8 0 8 100.0 0.10 n.a. 100.0
C3-CZ 8 0 8 100.0 0.00 n.a. 100.0
CZ-C4 8 0 8 100.0 0.00 n.a. 100.0
C4-T8 8 0 8 100.0 0.00 n.a. 100.0
P7-P3 8 0 8 100.0 0.00 n.a. 100.0
P3-PZ 8 0 8 100.0 0.00 n.a. 100.0
PZ-P4 8 0 8 100.0 0.00 n.a. 100.0
P4-P8 8 0 8 100.0 0.00 n.a. 100.0
P7-O1 8 0 8 100.0 0.00 n.a. 100.0
O1-O2 8 0 8 0.0 0.00 n.a. 0.0
O2-P8 8 0 8 100.0 0.00 n.a. 100.0
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Figure A.7: Performance on patient n. 25
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Table A.8: Performance of the seizure detection algorithm on patient n. 42.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 11 0 11 100.0 0.31 100.0 n.a.
FP1-FP2 11 0 11 90.9 1.09 90.9 n.a.
FP2-F8 11 0 11 90.9 0.47 90.9 n.a.
F7-F3 11 0 11 100.0 0.31 100.0 n.a.
F3-FZ 11 0 11 90.9 0.16 90.9 n.a.
FZ-F4 11 0 11 100.0 0.16 100.0 n.a.
F4-F8 11 0 11 90.9 0.16 90.9 n.a.
T7-C3 11 0 11 90.9 0.47 90.9 n.a.
C3-CZ 11 0 11 81.8 0.78 81.8 n.a.
CZ-C4 11 0 11 72.7 0.47 72.7 n.a.
C4-T8 11 0 11 90.9 0.47 90.9 n.a.
P7-P3 11 0 11 90.9 0.47 90.9 n.a.
P3-PZ 11 0 11 81.8 0.93 81.8 n.a.
PZ-P4 11 0 11 90.9 0.00 90.9 n.a.
P4-P8 11 0 11 81.8 0.62 81.8 n.a.
P7-O1 11 0 11 100.0 0.16 100.0 n.a.
O1-O2 11 0 11 100.0 0.47 100.0 n.a.
O2-P8 11 0 11 100.0 0.47 100.0 n.a.
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Figure A.8: Performance on patient n. 42
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Patients with Juvenile Absence Epilespy (JAE)

Table A.9: Performance of the seizure detection algorithm on patient n. 11.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 7 0 7 100.0 0.34 n.a. 100.0
FP1-FP2 7 0 7 100.0 0.34 n.a. 100.0
FP2-F8 7 0 7 100.0 0.00 n.a. 100.0
F7-F3 7 0 7 100.0 0.34 n.a. 100.0
F3-FZ 7 0 7 100.0 0.34 n.a. 100.0
FZ-F4 7 0 7 83.3 0.34 n.a. 83.3
F4-F8 7 0 7 100.0 0.34 n.a. 100.0
T7-C3 7 0 7 100.0 0.34 n.a. 100.0
C3-CZ 7 0 7 100.0 0.00 n.a. 100.0
CZ-C4 7 0 7 100.0 0.00 n.a. 100.0
C4-T8 7 0 7 100.0 0.00 n.a. 100.0
P7-P3 7 0 7 100.0 0.00 n.a. 100.0
P3-PZ 7 0 7 100.0 0.00 n.a. 100.0
PZ-P4 7 0 7 100.0 0.00 n.a. 100.0
P4-P8 7 0 7 100.0 0.00 n.a. 100.0
P7-O1 7 0 7 100.0 0.00 n.a. 100.0
O1-O2 7 0 7 100.0 0.00 n.a. 100.0
O2-P8 7 0 7 100.0 0.00 n.a. 100.0
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Figure A.9: Performance on patient n. 11



76 Algorithm Results across all the Patients

Table A.10: Performance of the seizure detection algorithm on patient n. 14.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 5 0 5 100.0 0.39 n.a. 100.0
FP1-FP2 5 0 5 100.0 1.54 n.a. 100.0
FP2-F8 5 0 5 80.0 0.77 n.a. 80.0
F7-F3 5 0 5 100.0 0.39 n.a. 100.0
F3-FZ 5 0 5 100.0 0.39 n.a. 100.0
FZ-F4 5 0 5 100.0 0.00 n.a. 100.0
F4-F8 5 0 5 80.0 0.39 n.a. 80.0
T7-C3 5 0 5 100.0 0.77 n.a. 100.0
C3-CZ 5 0 5 100.0 0.00 n.a. 100.0
CZ-C4 5 0 5 100.0 0.00 n.a. 100.0
C4-T8 5 0 5 100.0 0.00 n.a. 100.0
P7-P3 5 0 5 100.0 0.00 n.a. 100.0
P3-PZ 5 0 5 100.0 0.00 n.a. 100.0
PZ-P4 5 0 5 100.0 0.00 n.a. 100.0
P4-P8 5 0 5 80.0 0.39 n.a. 80.0
P7-O1 5 0 5 100.0 0.00 n.a. 100.0
O1-O2 5 0 5 60.0 2.31 n.a. 60.0
O2-P8 5 0 5 100.0 0.39 n.a. 100.0
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Figure A.10: Performance on patient n. 14
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Table A.11: Performance of the seizure detection algorithm on patient n. 51.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 5 0 5 100.0 0.24 n.a. 100.0
FP1-FP2 5 0 5 100.0 0.10 n.a. 100.0
FP2-F8 5 0 5 100.0 0.00 n.a. 100.0
F7-F3 5 0 5 80.0 0.14 n.a. 80.0
F3-FZ 5 0 5 80.0 0.14 n.a. 80.0
FZ-F4 5 0 5 100.0 0.10 n.a. 100.0
F4-F8 5 0 5 100.0 0.10 n.a. 100.0
T7-C3 5 0 5 80.0 0.19 n.a. 80.0
C3-CZ 5 0 5 100.0 0.19 n.a. 100.0
CZ-C4 5 0 5 80.0 0.10 n.a. 80.0
C4-T8 5 0 5 80.0 0.10 n.a. 80.0
P7-P3 5 0 5 80.0 0.24 n.a. 80.0
P3-PZ 5 0 5 80.0 0.14 n.a. 80.0
PZ-P4 5 0 5 100.0 0.24 n.a. 100.0
P4-P8 5 0 5 100.0 0.33 n.a. 100.0
P7-O1 5 0 5 80.0 0.19 n.a. 80.0
O1-O2 5 0 5 100.0 0.10 n.a. 100.0
O2-P8 5 0 5 80.0 0.14 n.a. 80.0
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Figure A.11: Performance on patient n. 51
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Patients with Juvenile Myoclonic Epilepsy (JME)

Table A.12: Performance of the seizure detection algorithm on patient n. 36.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 4 0 4 100.0 0.00 100.0 n.a.
FP1-FP2 4 0 4 100.0 0.00 100.0 n.a.
FP2-F8 4 0 4 100.0 0.49 100.0 n.a.
F7-F3 4 0 4 100.0 0.00 100.0 n.a.
F3-FZ 4 0 4 100.0 0.49 100.0 n.a.
FZ-F4 4 0 4 100.0 0.00 100.0 n.a.
F4-F8 4 0 4 100.0 0.00 100.0 n.a.
T7-C3 4 0 4 100.0 0.00 100.0 n.a.
C3-CZ 4 0 4 100.0 0.00 100.0 n.a.
CZ-C4 4 0 4 100.0 0.00 100.0 n.a.
C4-T8 4 0 4 100.0 0.49 100.0 n.a.
P7-P3 4 0 4 100.0 0.00 100.0 n.a.
P3-PZ 4 0 4 100.0 0.49 100.0 n.a.
PZ-P4 4 0 4 100.0 0.49 100.0 n.a.
P4-P8 4 0 4 100.0 0.49 100.0 n.a.
P7-O1 4 0 4 100.0 0.49 100.0 n.a.
O1-O2 4 0 4 100.0 0.98 100.0 n.a.
O2-P8 4 0 4 100.0 0.98 100.0 n.a.
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Figure A.12: Performance on patient n. 36
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Table A.13: Performance of the seizure detection algorithm on patient n. 43.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 4 0 4 100.0 0.35 n.a. 100.0
FP1-FP2 4 0 4 100.0 0.71 n.a. 100.0
FP2-F8 4 0 4 100.0 0.71 n.a. 100.0
F7-F3 4 0 4 100.0 0.35 n.a. 100.0
F3-FZ 4 0 4 100.0 0.00 n.a. 100.0
FZ-F4 4 0 4 100.0 0.35 n.a. 100.0
F4-F8 4 0 4 100.0 0.35 n.a. 100.0
T7-C3 4 0 4 100.0 0.35 n.a. 100.0
C3-CZ 4 0 4 100.0 0.35 n.a. 100.0
CZ-C4 4 0 4 100.0 0.35 n.a. 100.0
C4-T8 4 0 4 100.0 0.35 n.a. 100.0
P7-P3 4 0 4 100.0 0.35 n.a. 100.0
P3-PZ 4 0 4 100.0 1.41 n.a. 100.0
PZ-P4 4 0 4 100.0 0.35 n.a. 100.0
P4-P8 4 0 4 100.0 0.35 n.a. 100.0
P7-O1 4 0 4 100.0 1.77 n.a. 100.0
O1-O2 4 0 4 25.0 2.47 n.a. 25.0
O2-P8 4 0 4 100.0 0.71 n.a. 100.0
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Figure A.13: Performance on patient n. 43
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Table A.14: Performance of the seizure detection algorithm on patient n. 46.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 6 0 6 100.0 0.48 n.a. 100.0
FP1-FP2 6 0 6 83.3 0.96 n.a. 83.3
FP2-F8 6 0 6 83.3 0.64 n.a. 83.3
F7-F3 6 0 6 100.0 0.00 n.a. 100.0
F3-FZ 6 0 6 100.0 0.16 n.a. 100.0
FZ-F4 6 0 6 66.6 1.12 n.a. 66.6
F4-F8 6 0 6 100.0 0.00 n.a. 100.0
T7-C3 6 0 6 83.3 0.00 n.a. 83.3
C3-CZ 6 0 6 0.0 3.53 n.a. 0.0
CZ-C4 6 0 6 33.3 3.05 n.a. 33.3
C4-T8 6 0 6 83.3 0.00 n.a. 83.3
P7-P3 6 0 6 100.0 0.48 n.a. 100.0
P3-PZ 6 0 6 66.6 3.53 n.a. 66.6
PZ-P4 6 0 6 16.6 3.37 n.a. 16.6
P4-P8 6 0 6 100.0 0.16 n.a. 100.0
P7-O1 6 0 6 100.0 0.48 n.a. 100.0
O1-O2 6 0 6 66.6 0.96 n.a. 66.6
O2-P8 6 0 6 83.3 1.44 n.a. 83.3
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Figure A.14: Performance on patient n. 46



Patients with Symptomatic Epilepsy Presenting Absence Seizures 81

Patients with Symptomatic Epilepsy Presenting Absence Seizures

Table A.15: Performance of the seizure detection algorithm on patient n. 8.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 5 5 0 0.0 3.00 0.0 n.a.
FP1-FP2 5 5 0 80.0 1.31 80.0 n.a.
FP2-F8 5 5 0 0.0 2.81 0.0 n.a.
F7-F3 5 5 0 100.0 0.56 100.0 n.a.
F3-FZ 5 5 0 80.0 0.37 80.0 n.a.
FZ-F4 5 5 0 80.0 0.37 80.0 n.a.
F4-F8 5 5 0 40.0 0.75 40.0 n.a.
T7-C3 5 5 0 100.0 0.56 100.0 n.a.
C3-CZ 5 5 0 80.0 0.94 80.0 n.a.
CZ-C4 5 5 0 80.0 0.19 80.0 n.a.
C4-T8 5 5 0 60.0 0.94 60.0 n.a.
P7-P3 5 5 0 80.0 0.00 80.0 n.a.
P3-PZ 5 5 0 100.0 0.75 100.0 n.a.
PZ-P4 5 5 0 40.0 0.94 40.0 n.a.
P4-P8 5 5 0 80.0 0.00 80.0 n.a.
P7-O1 5 5 0 80.0 0.75 80.0 n.a.
O1-O2 5 5 0 40.0 0.75 40.0 n.a.
O2-P8 5 5 0 80.0 0.75 80.0 n.a.
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Figure A.15: Performance on patient n. 8
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Table A.16: Performance of the seizure detection algorithm on patient n. 9.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 6 0 6 80.0 3.00 n.a. 80.0
FP1-FP2 6 0 6 100.0 1.31 n.a. 100.0
FP2-F8 6 0 6 80.0 2.81 n.a. 80.0
F7-F3 6 0 6 80.0 0.56 n.a. 80.0
F3-FZ 6 0 6 100.0 0.37 n.a. 100.0
FZ-F4 6 0 6 80.0 0.37 n.a. 80.0
F4-F8 6 0 6 100.0 0.75 n.a. 100.0
T7-C3 6 0 6 80.0 0.56 n.a. 80.0
C3-CZ 6 0 6 100.0 0.94 n.a. 100.0
CZ-C4 6 0 6 100.0 0.19 n.a. 100.0
C4-T8 6 0 6 80.0 0.94 n.a. 80.0
P7-P3 6 0 6 80.0 0.00 n.a. 80.0
P3-PZ 6 0 6 100.0 0.75 n.a. 100.0
PZ-P4 6 0 6 100.0 0.94 n.a. 100.0
P4-P8 6 0 6 100.0 0.00 n.a. 100.0
P7-O1 6 0 6 0.0 0.75 n.a. 0.0
O1-O2 6 0 6 0.0 0.75 n.a. 0.0
O2-P8 6 0 6 0.0 0.75 n.a. 0.0
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Figure A.16: Performance on patient n. 9
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Table A.17: Performance of the seizure detection algorithm on patient n. 20.

n. Seizures Overall Performance

Channel NTOT NL<10 NL>10 SETOT(%) FPR(FP/h) SEL<10(%) SEL>10(%)
F7-FP1 6 0 6 100.0 0.67 100.0 n.a.
FP1-FP2 6 0 6 83.3 0.89 83.3 n.a.
FP2-F8 6 0 6 100.0 0.52 100.0 n.a.
F7-F3 6 0 6 83.3 0.37 83.3 n.a.
F3-FZ 6 0 6 83.3 0.45 83.3 n.a.
FZ-F4 6 0 6 100.0 0.22 100.0 n.a.
F4-F8 6 0 6 83.3 0.22 83.3 n.a.
T7-C3 6 0 6 83.3 0.3 83.3 n.a.
C3-CZ 6 0 6 83.3 0.22 83.3 n.a.
CZ-C4 6 0 6 100.0 0.37 100.0 n.a.
C4-T8 6 0 6 66.6 0.3 6.6 n.a.
P7-P3 6 0 6 83.3 0.22 83.3 n.a.
P3-PZ 6 0 6 100.0 0.3 100.0 n.a.
PZ-P4 6 0 6 83.3 0.3 83.3 n.a.
P4-P8 6 0 6 66.6 0.37 66.6 n.a.
P7-O1 6 0 6 100.0 0.45 100.0 n.a.
O1-O2 6 0 6 50.0 0.67 50.0 n.a.
O2-P8 6 0 6 83.3 0.6 83.3 n.a.
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Figure A.17: Performance on patient n. 20





Appendix B

Matlab Code

This part of the appendix includes part of the MATLAB code written by this author.
The full source code is included in the enclosed DVD

main.m

1 % MAIN t e s t s the performance o f the a lgor i thm . The output
2 % i s a s t r u c t conta in ing performance measures ( s e n s i t i v i t y , f a l s e p o s i t v e
3 % rate ) f o r each pa t i en t .
4 %
5 % Author : Andrea Mazzaretto , s081182 , Technica l Un ive r s i t y o f Denmark
6 % Date/Version : August 2010
7

8

9 close a l l
10 clear a l l
11 clc ;
12

13

14 % Sampling ra t e
15 Fs = 200 ;
16

17 % Load Se i zure Boundaries
18 getboundar i e s ( )
19

20 % Se l e c t i n g a pa t i en t
21 f i l ename = ’ pt25 ’ ;
22 ptp = pt25 ;
23 ptpend = pt25end ;
24

25 % Loading Data from the s e l e c t e d pa t i en t
26 EDF = sdfopen ( [ f i l ename ’ . r e c ’ ] , ’ r ’ ) ;
27 [ S ,EDF] = sd f r ead (EDF, Inf ) ;
28

29 % Number o f EEG channels
30 NEEG = 18 ;
31

32 % Minimum Length o f a s e i z u r e in seconds
33 MIN_LENGTH = 4 ;
34

35

36 % Window dimension

85
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37 N = 400 ;
38

39 % Overlapping
40 over lap = f loor ( 0 . 5∗N) ;
41

42 % Temporal Contraint , minimum number o f epochs with a s e i z u r e s t a t u s in
43 % order to t r i g g e r a de t e c t i on
44 Nwindow = 3 ;
45

46

47 %% Performing Se i zure Detect ion
48 t e s t r e s u l t s = s e i z u r e d e t e c t i o n (S ,NEEG, ptp , ptpend ,N, over lap , Nwindow , 1 , 2 , 0 . 5 ) ;
49

50

51 %% Vi sua l i z i n g the r e s u l t s g r a p h i c a l l y
52 v i s u a l i z a t i o n ( mt e s t r e s u l t s ) ;

calculateFD.m

1 function FD = calculateFD (waveform , method )
2 % Calcu la t e the f r a c t a l dimension o f the 1−D s i gna l waveform , with the
3 % method s p e c i f i e d in the method v a r i a b l e .
4 % Input :
5 % waveform : input 1−D s i gna l
6 % method : method to app ly to c a l c u l a t e the f r a c t a l dimension .
7 % Choose between ’Katz ’ , ’KNN’ or ’ Higuchi ’
8 % Output :
9 % FD: es t imated f r a c t a l dimension o f waveform

10 % Author : Andrea Mazzaretto , s081182 , Technica l Un ive r s i t y o f Denmark
11 % Date/Version : August 2010
12

13

14 x = waveform ( 1 , : ) ;
15 y = waveform ( 2 , : ) ;
16 N = length ( x ) ;
17

18 i f strcmp (method , ’Katz ’ ) == 1
19 %% Katz ’ s es t imate
20 n = N −1;
21

22 % Ca lcu l a t i ng the l eng t h L of the waveform
23 L = 0 ;
24 for i = 1 :N−1
25 d i s t anc e = sqrt ( ( x ( i+1)−x ( i ))^2 + (y ( i+1)−y ( i ))^2 ) ;
26 L = L + d i s t anc e ;
27 end
28

29 % Ca lcu l a t i ng the diameter d o f the waveform
30 d = 0 ;
31 for j = 2 :N
32 diameter = sqrt ( ( x ( j )−x (1))^2 + (y ( j )−y (1))^2 ) ;
33 i f diameter > d
34 d = diameter ;
35 end
36 end
37

38 D = log10 (n )/ ( log10 (n) + log10 (d/L ) ) ;
39

40 e l s e i f strcmp (method , ’KNN’ ) == 1
41 %% K−th neares t neighbour es t imat ion
42 kmin = 2 ;



87

43 kmax = 130 ;
44 % kmax shou ld be at most N−1
45 i f N<kmax
46 kmax = N−1;
47 end
48 gamma = 1 . 5 ;
49 th r e sho ld = 10e−5;
50 maxi t e ra t i ons = 4 ;
51

52 K = kmin : kmax ;
53

54 % Ca lcu l a t i ng the Eucl idean d i s t ance from each po in t to a l l the o ther s
55 r = zeros (N,N) ;
56 for i = 1 :N
57 for j = 1 :N
58 r ( i , j ) = sqrt ( ( x ( j )−x ( i ))^2 + (y ( j )−y ( i ))^2 ) ;
59 end
60 end
61

62 % Estimating f r a c t a l dimension in at most max i t e ra t ions
63 rk =sort ( r , 2 ) ;
64 rk = rk ( : , 2 :N) ;
65 xpo int s ( 1 : ( kmax−kmin+1)) = log (K/N) ;
66 i t e r a t i o n s = 0 ;
67 quant i ty = thre sho ld + 1 ;
68 while ( i t e r a t i o n s < max i t e ra t i ons ) && ( quant i ty > thre sho ld )
69 ypo int s = zeros (1 , length ( xpo int s ) ) ;
70 i t e r a t i o n s = i t e r a t i o n s + 1 ;
71 for k = K
72 r k i = mean( rk ( : , k ) , 2 ) ;
73 avgrk= mean( r k i .^gamma) ;
74 ypo int s (k− kmin +1) = log ( avgrk ) ;
75 end
76 s = polyf it ( xpoints , ypoints , 1 ) ;
77 prevgamma = gamma;
78 gamma = prevgamma/ s ( 1 ) ;
79 quant i ty = abs ( (gamma−prevgamma )/ ( 0 . 5 ∗ (gamma−prevgamma ) ) ) ;
80 end
81

82 D = gamma;
83

84 e l s e i f strcmp (method , ’ Higuchi ’ ) == 1
85 %% Higuchi e s t imat ion
86 % Set the maximum va lue o f the i n t e r v a l time k
87 Nk = 20 ;
88

89 % Creating the vec to r i n t e r v a l time vec to r
90 K = zeros (1 ,Nk ) ;
91 K(1 : 4 ) = 1 : 4 ;
92 for j = 11 :Nk+11−5
93 K( j −6) = f loor (2^(( j −1)/4)) ;
94 end
95

96 % Ca lcu l a t i ng the average l eng t h L( k )
97 xpo int s (K) = log ( 1 . /K) ;
98 for k = K
99 ypo int s = zeros (1 , k ) ;

100 L = 0 ;
101 for m = 1 : k
102 M = f loor ( (N−m)/k ) ;
103 d i s t anc e = 0 ;
104 for i = 2 :M
105 d i s t anc e = d i s t ance + abs ( y (m + i ∗k)−y (m + ( i − 1)∗k ) ) ;
106 end
107 Lm = 1/k ∗ ( (N−1)/M∗k ∗ d i s t anc e ) ;
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108 L = L + Lm;
109 end
110 ypo int s ( k ) = log (L ) ;
111 end
112

113 % Estimating the f r a c t a l dimension D of the waveform
114 s = polyf it ( xpoints , ypoints , 1 ) ;
115 D = −s ( 1 ) ;
116

117 else
118 error ( s t r c a t ( ’ Undefined method ’ ’ ’ , method , ’ ’ ’ . Choose between ’ + . . .
119 ’ Katz ’ ’ , ’ ’KNN’ ’ or ’ ’ Higuchi ’ ’ ’ ) )
120 end
121 FD = D;
122

123 end

seizuredetection.m

1 function mte s t r e s u l t s = s e i z u r e d e t e c t i o n (S ,NEEG, ptp , ptpend ,N , . . .
2 over lap , Nwindow , c1 , c2 , c3 )
3 % Perform se i z u r e de t e c t i on thorugh FD es t imat ion . For each EEG channel an
4 % output SE and FPR i s g iven
5 %
6 % Input
7 % S : EEG s i gna l to ana lyze
8 % NEEG: Number o f EEG channels
9 % ptp , ptpend : Se i zure Boundaries in S

10 % N: Si ze o f window used fo r FD es t imat ion
11 % over lap : percentage o f over l app ing o f FD es t imat ion window
12 % Nwindow : Temportal Contraint , number o f EEG epochs with s e i z u r e
13 % s ta t u s necessary to t r i g g e r a de t e c t i on
14 % c1 , c2 , c3 : Co e f f i c i e n t o f the o b j e c t i v e func t ion
15 % Output
16 % mte s t r e s u l t s
17 %
18 % Author : Andrea Mazzaretto , s081182 , Technica l Un ive r s i t y o f Denmark
19 % Date/Version : August 2010
20

21

22

23 % Remove from the Se i zure Boundaries Se i zure s sho r t e r than 4 seconds
24 pt = [ ] ;
25 ptend = [ ] ;
26 l s e i z u r e s = [ ] ;
27 for i = 1 : length ( ptp )
28 i f ( ( ptpend ( i ) − ptp ( i ) )/ Fs >=MINLENGTH && ptpend ( i )<= length (S ) )
29 pt = [ pt ptp ( i ) ] ;
30 ptend = [ ptend ptpend ( i ) ] ;
31 l s e i z u r e s = [ l s e i z u r e s ( ptpend ( i ) − ptp ( i ) )/ Fs ] ;
32 end
33 end ;
34

35

36

37 co s t = [ ] ;
38 % Weighting each s e i z u r e
39 for i = 1 : length ( l s e i z u r e s )
40 i f l s e i z u r e s <10
41 co s t ( i ) = c1 ;
42 else
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43 co s t ( i ) = c2 ;
44 end
45 end
46

47 mte s t r e s u l t s = [ ] ;
48 for n = 1 :NEEG
49

50 t r a i n r e s u l t s = [ ] ;
51 t e s t r e s u l t s = [ ] ;
52

53 % Se l e c t i n g EEG s i gn a l f o r the ana l y s i s
54 s i g n a l = S ( : , n ) ’ ;
55

56 % Notch F i l t e r i n g o f the EEG channel
57 load NotchFi l t e r . mat ;
58 order = 999 ;
59 delay = f loor ( order / 2 ) ;
60 s i g n a l = f i l t e r (Num, 1 , [ s i g n a l s i g n a l (end−delay +1:end ) ] ) ;
61 s i g n a l = s i g n a l ( de lay + 1 :end ) ;
62 L = length ( s i g n a l ) ;
63

64

65 % Estimating FD for each epoch
66 FD = zeros ( 1 , 1 ) ;
67 i = 0 ;
68 j = 0 ;
69 while i+N < L
70 j = j + 1 ;
71 FD( j ) = calculateFD ( [ i : 1/ Fs : ( i+N/Fs−1/Fs ) ; . . .
72 s i g n a l ( i +1: i+N)/ var ( s i g n a l ( i +1: i+N) ) ] , ’ Higuchi ’ ) ;
73 i = i + N − over lap ;
74 end
75

76

77

78 % Stor ing in s s t a r t v and sendv the epoch where each s e i z u r e s t a r t s and
79 % end r e s p e c t i v e l y
80 index = 1 :N−over lap : ( j )∗ (N−over lap ) ;
81 s s t a r t v = [ ] ;
82 ssendv = [ ] ;
83 s e i z u r e = zeros ( length (FD) , 1 ) ;
84 for i = 1 : length ( pt )
85 s s t a r t = find ( pt ( i ) >= index , 1 , ’ l a s t ’ )−1;
86 send = find ( ptend ( i ) >= index , 1 , ’ l a s t ’ )+1;
87 i f i == 1 | | s s t a r t ~= ssendv (end)
88 s s t a r t v = [ s s t a r t v s s t a r t ] ;
89 ssendv = [ ssendv send ] ;
90 else
91 ssendv (end) = send ;
92 end
93 i f send < length (FD)
94 s e i z u r e ( s s t a r t : send ) = 1 ;
95 else
96 s e i z u r e ( s s t a r t : end) = 1 ;
97 end
98 end
99

100

101

102

103 %% Leave One Out Cross Va l ida t ion
104

105 % Sp l i t t i n g EEG s i gn a l in as many segments as the number o f s e i z u r e s .
106 % The s p l i t t i n g po in t i s the middle po in t between two s e i z u r e s .
107 Nsp l i t s = length ( pt ) ;
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108

109 % Keeping t rack o f the t o t a l and de t e c t ed s e i z u r e s depending on t h e i r
110 % leng t h
111 nts410 = 0 ;
112 nts1020 = 0 ;
113 nds410 = 0 ;
114 nds1020 = 0 ;
115

116 % Training and Test ing the a lgor i thm fo r each s p l i t
117 for l oo = 1 : Nsp l i t s
118

119 % Defining indexes o f the t r a i n i n g and t e s t s e t
120 i f l oo == 1
121 t e s t s e t = 1 : round ( ( ssendv ( l oo ) + s s t a r t v ( l oo +1))/2) ;
122 t r a i n i n g s e t = (round ( ( ssendv ( l oo ) + . . .
123 s s t a r t v ( l oo +1))/2)+1): length (FD) ;
124 co s t index = 2 : length ( pt ) ;
125

126 e l s e i f l oo == Nsp l i t s
127 t e s t s e t = round ( ( ssendv ( loo −1) + s s t a r t v ( l oo ) ) / 2 ) : length (FD) ;
128 t r a i n i n g s e t = 1 : round ( ( ssendv ( loo −1) + s s t a r t v ( l oo ))/2) −1;
129 co s t index = 1 : length ( pt )−1;
130 else
131 t e s t s e t = round ( ( ssendv ( loo −1) + . . .
132 s s t a r t v ( l oo ) ) / 2 ) : round ( ( ssendv ( l oo ) + s s t a r t v ( l oo +1))/2) ;
133 t r a i n i n g s e t = [ 1 : round ( ( ssendv ( loo −1) + s s t a r t v ( l oo ))/2)−1 . . .
134 (round ( ( ssendv ( l oo ) + s s t a r t v ( l oo +1))/2)+1): length (FD) ] ;
135 co s t index = [ 1 : loo−1 loo +1: length ( pt ) ] ;
136

137 end
138

139 % Se l e c t i n g the b e s t t h r e s ho l d by e va l ua t i n g the o b j e c t i v e func t i on
140 % on the t r a i n i n g s e t
141

142 bthresho ld = 0 ;
143 bper f = −100000;
144 indext = linspace ( min(FD( t r a i n i n g s e t ) ) , mean(FD( t r a i n i n g s e t ) ) . . .
145 − 0 .8 ∗ std (FD( t r a i n i n g s e t ) ) , 5 0 ) ;
146 bndst = 0 ;
147 bnfpt = 0 ;
148 bnmst = 0 ;
149 for th r e sho ld = indext
150 s e i z u r e t r a i n c l a s s i f i e d = zeros ( length (FD( t r a i n i n g s e t ) ) , 1 ) ;
151 s e i z u r e t r a i n c l a s s i f i e d (FD( t r a i n i n g s e t ) < thre sho ld ) = 1 ;
152 s e i z u r e t r a i n = s e i z u r e ( t r a i n i n g s e t ) ;
153 dvect = [ ] ;
154 cvect = [ ] ;
155 ndst = 0 ;
156 nfpt = 0 ;
157 nmst = 0 ;
158 nt s t = 0 ;
159 i = 1 ;
160 while i < length (FD( t r a i n i n g s e t ) )
161 i f s e i z u r e t r a i n ( i ) == 1
162 endse i zu r e = f a l s e ;
163

164 maxa = 0 ;
165 a = 0 ;
166 while ( s e i z u r e t r a i n c l a s s i f i e d ( i ) == 1 | | . . .
167 s e i z u r e t r a i n ( i ) == 1) &&.. .
168 ( i < length (FD( t r a i n i n g s e t ) ) )
169 i f s e i z u r e t r a i n ( i ) == 0
170 endse i zu r e = true ;
171 end
172
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173

174 i f ( ( s e i z u r e t r a i n ( i ) == 1) && ( endse i zu r e == true ) )
175 break ;
176 end
177

178 i f ( ( s e i z u r e t r a i n c l a s s i f i e d ( i ) == 1))
179 a = a + 1 ;
180 else
181 i f a> maxa
182 maxa = a ;
183 end
184 a = 0 ;
185 end
186

187

188 i = i + 1 ;
189

190 end
191 i f a> maxa
192 maxa = a ;
193 end
194 nt s t = nt s t + 1 ;
195 dvect ( n t s t ) = 0 ;
196 cvect ( n t s t ) = i ;
197 i f maxa >= Nwindow
198 ndst = ndst + 1 ;
199 dvect ( n t s t ) = 1 ;
200 i = i +3;
201 else
202 nmst = nmst + 1 ;
203 i = i + 1 ;
204 end
205 e l s e i f ( s e i z u r e t r a i n c l a s s i f i e d ( i ) == 1 . . .
206 && s e i z u r e t r a i n ( i ) == 0)
207 f = 0 ;
208 while ( s e i z u r e t r a i n c l a s s i f i e d ( i ) == 1 && . . .
209 s e i z u r e t r a i n ( i ) == 0) && . . .
210 ( i < length (FD( t r a i n i n g s e t ) ) )
211 i = i +1;
212 f = f +1;
213 end
214 i f f>= Nwindow
215 nfpt = nfpt + 1 ;
216 end
217 else
218 i = i + 1 ;
219 end
220 end
221

222

223 pe r f = cos t ( co s t index ) ∗ dvect ’ − nfpt ∗ c3 ;
224 i f pe r f >= bper f
225 bthresho ld = thre sho ld ;
226 bndst = ndst ;
227 bnfpt = nfpt ;
228 bnmst = nmst ;
229 bper f = pe r f ;
230 end
231

232

233

234 end ;
235

236 % Using the b e s t t h r e s ho l d c a l c u l a t e d in the t r a i n i n g phase to
237 % eva lua t e the t e s t s e t
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238 th r e sho ld = bthresho ld ;
239 s e i z u r e t e s t c l a s s i f i e d = zeros ( length (FD( t e s t s e t ) ) , 1 ) ;
240 s e i z u r e t e s t c l a s s i f i e d (FD( t e s t s e t ) < thre sho ld ) = 1 ;
241 s e i z u r e t e s t = s e i z u r e ( t e s t s e t ) ;
242 dvec= [ ] ;
243 nds = 0 ;
244 nfp = 0 ;
245 nms = 0 ;
246 nts = 0 ;
247 i = 1 ;
248 while i < length (FD( t e s t s e t ) )
249 i f s e i z u r e t e s t ( i ) == 1
250 maxa = 0 ;
251 a = 0 ;
252 while ( s e i z u r e t e s t c l a s s i f i e d ( i ) == 1 | | . . .
253 s e i z u r e t e s t ( i ) == 1) && ( i < length (FD( t e s t s e t ) ) )
254 i f s e i z u r e t e s t c l a s s i f i e d ( i ) == 1
255 a = a + 1 ;
256 else
257 i f a> maxa
258 maxa = a ;
259 end
260 a = 0 ;
261 end
262 i = i + 1 ;
263 end
264 i f a> maxa
265 maxa = a ;
266 end
267 nts = nts + 1 ;
268 dvec ( nts ) = 0 ;
269 i f maxa >= Nwindow
270 nds = nds + 1 ;
271 dvec ( nts ) = 1 ;
272 i = i +3;
273 else
274 nms = nms + 1 ;
275 i = i + 1 ;
276 end
277 e l s e i f ( s e i z u r e t e s t c l a s s i f i e d ( i ) == 1 && s e i z u r e t e s t ( i ) == 0)
278 f = 0 ;
279 while ( s e i z u r e t e s t c l a s s i f i e d ( i ) == 1 && . . .
280 s e i z u r e t e s t ( i ) == 0) && ( i < length (FD( t e s t s e t ) ) )
281 i = i +1;
282 f = f +1;
283 end
284 i f f>= Nwindow
285 nfp = nfp + 1 ;
286 end
287 else
288 i = i + 1 ;
289 end
290 end
291

292 i f co s t ( l oo ) == c1
293 nts410 = nts410 + 1 ;
294 nds410 = nds410 + nds ;
295 e l s e i f co s t ( l oo ) == c2
296 nts1020 = nts1020 + 1 ;
297 nds1020 = nds1020 + nds ;
298 end
299

300 LengthRec = length ( s i g n a l )/ ( Fs ∗3600) ;
301

302 t r a i n r e s u l t s = [ t r a i n r e s u l t s ; n t s t bndst bnfpt ] ;
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303 t e s t r e s u l t s = [ t e s t r e s u l t s ; nds nfp/LengthRec ] ;
304 end
305 % End Leave one out cross v a l i d a t i o n
306

307

308 mtest = mean( t e s t r e s u l t s ) ;
309 mte s t r e s u l t s =[ mt e s t r e su l t s 2 ; [ mtest nds410/ nts410 nds1020/ nts1020 ] ] ;
310

311 end
312

313 end

visualization.m

1 function v i s u a l i z a t i o n ( mt e s t r e s u l t s )
2 % This func t i on v i s u a l i z e g r a p h i c a l l y the r e s u l t s contained in the matrix
3 % mte s t r e su l t s , which conta ins SE and FPR for a l l the EEG channel o f a
4 % tran s v e r s a l montage
5 % Input
6 % mte s t r e s u l t s : matrix conta in ing SE and FPR for a l l the EEG channel
7 % of a t r an s v e r s a l montage
8 % Output
9 % Vi sua l i z a t i on o f the r e s u l t s through a "head" p l o t .

10 %
11 % Author : Andrea Mazzaretto , s081182 , Technica l Un ive r s i t y o f Denmark
12 % Date/Version : August 2010
13

14 % Size in po in t s o f the b i g g e s t c i r c l e in the v i s u a l i z a t i o n
15 MAXsize = 30 ;
16

17 % Label o f the e l e c t r o d e s
18 l a b e l = [
19 ’ FP1 ’ ;
20 ’ FP2 ’ ;
21 ’ F7 ’ ;
22 ’ F3 ’ ;
23 ’ Fz ’ ;
24 ’ F4 ’ ;
25 ’ F8 ’ ;
26 ’ T7 ’ ;
27 ’ C3 ’ ;
28 ’ Cz ’ ;
29 ’ C4 ’ ;
30 ’ T8 ’ ;
31 ’ P7 ’ ;
32 ’ P3 ’ ;
33 ’ Pz ’ ;
34 ’ P4 ’ ;
35 ’ P8 ’ ;
36 ’ O1 ’ ;
37 ’ O2 ’ ;
38 ] ;
39

40 % X coord ina te s o f the e l e c t r o d e s
41 x = [
42 −0.3090;
43 0 . 3 090 ;
44 −0.8090;
45 −0.4045
46 0 . 0 000 ;
47 0 . 4 ;
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48 0 . 8 1 ;
49 −1.0000;
50 −0.5000;
51 0 . 0 000 ;
52 0 . 5 ;
53 1 . 0 000 ;
54 −0.8090;
55 −0.4;
56 0 . 0 000 ;
57 0 . 4 ;
58 0 . 8 090 ;
59 −0.3090;
60 0 . 3 090 ;
61 ] ;
62

63 % Y coord ina te s o f the e l e c t r o d e s
64 y = [
65 0 . 9 511 ;
66 0 . 9 511 ;
67 0 . 5 878 ;
68 0 . 4 939 ;
69 0 . 4 ;
70 0 . 4 939 ;
71 0 . 5 878 ;
72 0 . 0 000 ;
73 0 . 0 000 ;
74 0 . 0 000 ;
75 0 . 0 000 ;
76 0 . 0 000 ;
77 −0.5878;
78 −0.4939;
79 −0.4;
80 −0.4939;
81 −0.5878;
82 −0.9511;
83 −0.9511;
84 ] ;
85

86 % Pair o f e l e c t r o d e s c on s t i t u t i n g Transversa l montage (number r e f e r s to
87 % the l a b e l p r e v i o su l y de f ined )
88 Transver sa l = [
89 3 1 ;
90 1 2 ;
91 2 7 ;
92 3 4 ;
93 4 5 ;
94 5 6 ;
95 6 7 ;
96 8 9 ;
97 9 10 ;
98 10 11 ;
99 11 12 ;

100 13 14 ;
101 14 15 ;
102 15 16 ;
103 16 17 ;
104 13 18 ;
105 18 19 ;
106 19 17 ;
107 ] ;
108

109 %% Drawing the head
110 s c r s z = get (0 , ’ Sc r eenS i z e ’ ) ;
111 x = x/2 + 0 . 5 ;
112 y = y/2 + 0 . 5 ;
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113 h =f igure ( ’ Po s i t i on ’ , [ 1 s c r s z ( 4 ) , s c r s z ( 3 ) /1 . 65 s c r s z ( 4 ) ] ) ;
114 axis o f f ;
115 co = gray ( 2 0 0 ) ;
116 colormap gray (200)
117 colorbar ( ’ Locat ion ’ , ’ East ’ , ’ YTickLabel ’ , . . .
118 { ’ 0 ’ , ’ 0 . 5 ’ , ’ 1 ’ , ’ 1 . 5 ’ , ’ 2 ’ } , ’ Ytick ’ , 1 : 5 0 : 2 0 1 ’ ) ;
119 nElec = length ( x ) ;
120 nTran = length ( Transver sa l ) ;
121 set ( gcf , ’Name ’ , sprintf ( ’ Absences l onge r than 4 seconds ’ ) , . . .
122 ’ NumberTitle ’ , ’ o f f ’ )
123 m = 100 ;
124 t = 0 : pi /100:2∗ pi ;
125 r = 1.25∗ m/2 + 0 . 5 ;
126 nos e l = [ sin ( pi/2−pi /32)∗ r + m/2+1; cos ( pi/2−pi /32)∗ r + m/2+1] ’ − m/2 ;
127 noser = [ sin ( pi/2−pi /32)∗ r + m/2+1; cos ( pi/2−pi /32)∗ r + m/2+1] ’ − m/2 ;
128 nosec = [ sin ( pi /2)∗ r + m/2+1; cos ( pi/2−pi /32)∗ r + m/2+1+0.1∗ r ] ’ − m/2 ;
129 head = [ sin ( t )∗ r + m/2+1; cos ( t )∗ r + m/2+1] ’ − m/2 ;
130 s c r s z = get (0 , ’ Sc r e enS i z e ’ ) ;
131 d = min( s c r s z ( 3 : 4 ) ) / 2 ;
132 whitebg ( ’w ’ ) ;
133 axes ( ’ p o s i t i o n ’ , [ 0 0 1 1 ] ) ;
134 set (gca , ’ V i s i b l e ’ , ’ o f f ’ ) ;
135 axis square
136 l ine ( head ( : , 1 ) , head ( : , 2 ) , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 1 ) ;
137

138 mark = ’ . sk ’ ;
139 hold on ;
140 for e = 1 : nElec
141 plot ( x ( e )∗m − m/2 ,y ( e )∗m − m/2 , ’−. sk ’ , ’ MarkerSize ’ , 6 , . . .
142 ’ MarkerEdgeColor ’ , ’ k ’ , ’ MarkerFaceColor ’ , ’ k ’ ) ;
143 text ( x ( e )∗m − m/2 , . . .
144 y ( e )∗m − m/2 − 4∗m/100 , . . .
145 l a b e l ( e , : ) , . . .
146 ’ FontSize ’ , 9 , . . .
147 ’ Vert i ca lAl ignment ’ , ’ middle ’ , . . .
148 ’ Hor izontalAl ignment ’ , ’ c en t e r ’ ) ;
149 end
150

151

152 %% Drawing the e l e c t r o d e s and the c i r c l e s
153 for e = 1 : nTran
154 i f mte s t r e s u l t s ( e , 3 ) >= 2
155 c o l o r = co ( 2 0 0 , : ) ;
156 else
157 c o l o r = co ( ce i l ( ( mt e s t r e s u l t s ( e , 2 ) + 0 . 0000001 )∗100 ) , : ) ;
158 end
159

160 i f nts1020 ~= 0 && nts410 ~= 0
161 s i z e 420 = 1/exp(exp ( ( 1 ) ) ) ∗ (exp(exp( mt e s t r e s u l t s ( e , 1 ) ) ) ) ∗MAXsize ;
162 e l s e i f nts1020 == 0 && nts410 == 0
163 s i z e 420 = MAXsize ;
164 e l s e i f nts410 == 0
165 s i z e 420 = 1/exp(exp ( ( 1 ) ) ) ∗ (exp(exp( mt e s t r e s u l t s ( e , 4 ) ) ) ) ∗MAXsize ;
166 e l s e i f nts1020 == 0
167 s i z e 420 = MAXsize /exp(exp ( ( 1 ) ) ) ∗ (exp(exp( mt e s t r e s u l t s ( e , 3 ) ) ) ) ;
168 end
169

170 plot ( ( x ( Transver sa l ( e , 1 ) ) + x ( Transver sa l ( e , 2 ) ) ) / 2 ∗m − m/ 2 , . . .
171 ( y ( Transver sa l ( e , 1 ) ) + y( Transver sa l ( e , 2 ) ) ) / 2 ∗m − m/2 , ’ o ’ , . . .
172 ’ LineWidth ’ , 1 , ’ MarkerSize ’ , s i z e420 , ’ MarkerEdgeColor ’ , ’ k ’ , . . .
173 ’ MarkerFaceColor ’ , c o l o r ) ;
174 end
175

176 %% Plo t t i n g re f e r ence c i r c l e
177 plot (0/2∗m − m/2 ,2 .1/2∗m − m/2 , ’−−o ’ , ’ LineWidth ’ , 1 , ’ MarkerSize ’ , . . .
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178 MAXsize /exp(exp ( ( 1 ) ) ) ∗ exp(exp ( 1 ) ) , ’ MarkerEdgeColor ’ , ’ b ’ , . . .
179 ’ MarkerFaceColor ’ , ’ g ’ ) ;
180 plot (0/2∗m − m/2 ,2 .1/2∗m − m/2 , ’−−o ’ , ’ LineWidth ’ , 1 , ’ MarkerSize ’ , . . .
181 MAXsize /exp(exp ( ( 1 ) ) ) ∗ exp(exp ( 0 . 9 ) ) , ’ MarkerEdgeColor ’ , . . .
182 ’ b ’ , ’ MarkerFaceColor ’ , ’ y ’ ) ;
183 plot (0/2∗m − m/2 ,2 .1/2∗m − m/2 , ’−−o ’ , ’ LineWidth ’ , 1 , ’ MarkerSize ’ , . . .
184 MAXsize /exp(exp ( ( 1 ) ) ) ∗ exp(exp ( 0 . 5 ) ) , ’ MarkerEdgeColor ’ , . . .
185 ’ b ’ , ’ MarkerFaceColor ’ , ’ r ’ ) ;
186

187

188 plot ([−4 1 ] , [ 6 3 . 5 70 ] , ’−k ’ , ’ LineWidth ’ , 1 ) ;
189 plot ( [ 6 1 ] , [ 6 3 . 5 70 ] , ’−k ’ , ’ LineWidth ’ , 1 ) ;
190 axis o f f ;
191

192 % Saving the v i s u a l i z a t i o n in a pdf f i l e
193 saveas (h , [ f i l ename ’ Absences . pdf ’ ] )
194

195 end

getboundaries.m

1 function getboundar i e s ( )
2 % Loads in to the workspace the s e i z u r e boundaries
3 % Author : Andrea Mazzaretto , s081182 , Technica l Un ive r s i t y o f Denmark
4 % Date/Version : August 2010
5

6

7 pt08 =[ 1200 8100 33240 76400 85940 88080 93960 98420 . . .
8 115660 131280 133720 142280 147320 149640 157680 161780 . . .
9 164900 167120 170700 ] ;

10 pt08end = [ 1800 8500 33900 77100 86480 88520 95300 . . .
11 99420 116720 131760 134200 143320 148000 150000 158200 . . .
12 162680 165360 167480 170800 ] ;
13

14 pt09 = [10000 25700 27200 104740 114440 117800 143600 150320 . . .
15 190760 212280 218620 219300 230400 256380 275200 309800 . . .
16 311020 328200 328980 330640 339140 339620 349340 385860 . . .
17 403500 404880 414420 420480 421160 439520 440260 454160 . . .
18 461560 466220 472720 474360 500920 506640 540120 569740 . . .
19 570800 571640 577560 659800 662080 664240 ] ;
20 pt09end = [10520 26420 27440 105080 114560 117920 143700 . . .
21 150660 191080 212400 219080 219680 230680 257560 275380 . . .
22 310000 311280 328540 329180 330860 339280 339840 351280 . . .
23 387880 403640 405020 414540 420760 422680 439860 440480 . . .
24 454480 462000 466880 472860 474500 501140 507000 540360 . . .
25 582200 570960 571800 577840 660240 662600 664600 ] ;
26

27 pt11 = [82780 145820 286400 296400 302980 312400 ] ;
28 pt11end = [84680 149680 288840 297680 304920 314440 ] ;
29

30 pt13 = [36900 58040 87120 105540 115860 117700 133400 145160 . . .
31 274480 306660 315200 ] ;
32 pt13end = [37080 59400 87320 106720 116240 118560 134360 . . .
33 146320 275880 307620 315440 ] ;
34

35 pt16 = [14280 16300 39640 65720 71280 129480 147120 229740 . . .
36 232560 254020 ] ;
37 pt16end = [15260 17600 41220 66560 72240 130060 148060 . . .
38 230640 233300 254740 ] ;
39

40 pt17 = [83120 108340 131180 151060 171060 193780 196000 198760 . . .
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41 229620 231520 239220 308720 ] ;
42 pt17end = [88600 111020 136120 153600 174800 193920 196180 . . .
43 198940 229800 233560 239340 311500 ] ;
44

45 pt18 = [800 24000 33000 61300 89880 93980 128420 178220 ] ;
46 pt18end = [5080 24400 40960 66400 90180 99260 131740 182640 ] ;
47

48 pt19 = [154660 211340 257740 352080 365940 ] ;
49 pt19end = [156320 213060 259200 353600 366780 ] ;
50

51 pt20 = [1920 5160 7620 12960 14760 17240 17960 18940 . . .
52 22240 24940 29880 35880 38560 41720 45760 48400 . . .
53 52020 54100 55580 59580 66620 69140 75460 77000 . . .
54 83600 87180 90420 98480 100340 105100 110480 112180 . . .
55 113500 117820 124740 127680 131040 133840 141500 148160 . . .
56 155380 165400 168400 176280 179080 183100 187520 201080 . . .
57 208300 211380 215360 222760 223560 225440 229640 244100 . . .
58 253000 256660 262140 268860 279120 290480 314120 327380 . . .
59 344060 347020 ] ;
60 pt20end =[2680 5340 8000 12920 15160 17280 18080 19720 . . .
61 22620 25420 30160 36220 39060 42320 46040 48860 . . .
62 52240 54240 55960 59980 67140 71280 75660 77800 . . .
63 85600 87380 91600 98740 100700 105700 110920 112800 . . .
64 113660 118180 125340 128560 131680 134080 142000 149000 . . .
65 155920 166120 168600 176400 179320 183720 187760 201280 . . .
66 208580 211560 215520 222960 224020 225860 229800 244280 . . .
67 253100 256800 262440 269020 279300 290680 314400 316120 . . .
68 344240 347580 ] ;
69

70 pt23 = [73160 84200 91260 118940 213900 373420 ] ;
71 pt23end = [74520 85640 92520 120360 215220 374800 ] ;
72

73 pt25 = [68640 413720 673800 767860 943080 1235720 1288140 1364480 ] ;
74 pt25end =[70440 415160 675760 769180 944400 1237260 1289760 1365480 ] ;
75

76 pt36 = [21460 35320 50220 74800 91660 100740 126620 . . .
77 162140 214640 ] ;
78 pt36end = [22840 36600 50940 75560 92400 101240 127680 . . .
79 162940 215380 ] ;
80

81 pt42 = [19960 31580 41420 49520 59820 88500 92500 . . .
82 100880 109440 112880 148220 193820 194340 215240 227500 . . .
83 237200 256020 274360 275160 292460 301480 292440 301480 . . .
84 374600 ] ;
85 pt42end = [22800 34320 41580 52080 62240 88720 92720 . . .
86 101080 109640 113040 149160 193940 195400 216260 227760 . . .
87 238280 258080 274440 275920 292760 301480 292720 303080 . . .
88 378400 ] ;
89

90 pt43 = [48760 96080 127920 189100 181740 253840 271960 ] ;
91 pt43end = [49960 96540 141400 190340 182100 254460 . . .
92 273260 318840 ] ;
93

94 pt51 = [108180 156860 961340 1043320 1946780 1972460 2512720 ] ;
95 pt51end = [109160 156980 962080 1044300 1947800 1974860 2514000 ] ;
96

97

98 end
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