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ABSTRACT 

 

Stroke is one of the principal causes of death and disability in the world. Understanding how 

the human brain is altered by its occurrence is fundamental for the creation of effective 

rehabilitation programs to help patients in the recovery of the lost functions. 

The aim of this thesis is to create a model for the prediction of numerical and financial deficits 

of post-stroke patients, using new promising connectivity-based approach and data reduction 

algorithms, thereby linking symptoms to brain networks. In this view, the structural MRI and 

rs-fMRI imaging data of 31 stroke patients were collected in order to extract their anatomical 

disconnections and functional connectivity that are processed through 2 different data reduction 

techniques (Principal Component Analysis and Uniform Manifold Approximation and 

Projection). The resulting scores and some confounding variables (age, schooling, lesion 

volume and parcel loads) are used as input in the Canonical Component Analysis, where they 

are correlated with the scores coming from specific tests ideated to infer numerical and 

financial abilities. The evaluation of the Canonical Correlation Analysis outputs through a 

hierarchical clustering highlights that a better performance is related with right stroke patients 

with small lesions, which show an important inter-hemispherical segregation, while inter-

hemispheric integration seems to play a relevant role in patients with wider damage. 

This work wants to be a helpful tool in the understanding of brain behaviour after stroke, 

highlighting the synergistic and additive nature of different types of network modalities, and 

their corresponding influence on behavioural performance after brain injury in order to create 

effectiveness rehabilitation programs or new prediction models for the evaluation of stroke 

patients abilities. 

 
 
 
 
(IT) L’ictus è una delle principali cause di morte e disabilità nel mondo. Comprendere come il 

cervello umano viene alterato dalla sua comparsa è fondamentale per la creazione di programmi 

riabilitativi efficaci per aiutare i pazienti nel recupero delle funzionalità perdute. 

Lo scopo di questa tesi è creare un modello per la previsione dei deficit numerici e finanziari 

dei pazienti post-ictus, utilizzando un nuovo e promettente approccio basato sulla connettività 

cerebrale e algoritmi di riduzione dei dati, al fine di collegare i sintomi alle reti cerebrali. In 

quest'ottica, sono stati raccolti i dati di imaging MRI strutturale e rs-fMRI di 31 pazienti con 
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ictus, al fine di estrarre le loro disconnessioni anatomiche e connettività funzionali che vengono 

elaborate attraverso 2 diverse tecniche di riduzione dei dati (Principal Component Analysis and 

Uniform Manifold Approximation and Projection). Le nuove dimensioni risultanti e alcune 

variabili additive (età, scolarizzazione, volume delle lesioni e carico dei pacchi) vengono 

utilizzate come input per la Canonical Component Analysis, dove sono correlate con i punteggi 

provenienti da test specifici ideati per dedurre abilità numeriche e finanziarie. La valutazione 

dei risultati derivanti dalla Canonical Component Analysis attraverso un clustering gerarchico 

evidenzia che una prestazione migliore è correlata ai pazienti con ictus destro e domesioni 

ridotte della lesione, i quali mostrano un’importante segregazione inter-emisferica, mentre 

l’integrazione inter-emisferica sembra giocare un ruolo rilevante nei pazienti con danno più 

ampio. 

Questo lavoro vuole essere uno strumento utile nella comprensione del comportamento 

cerebrale dopo un ictus, evidenziando la natura sinergica e additiva di diverse reti neurali e la 

loro corrispondente influenza sulle prestazioni comportamentali dopo una lesione cerebrale, al 

fine di creare programmi di riabilitazione efficaci o nuovi modelli predittivi per la valutazione 

delle capacità dei pazienti con ictus. 
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1 INTRODUCTION 

 

 

1.1 The brain after stroke: a clinical overview  

  

3 According to the Ministry of Health in Italy it represents the second cause of death (about 

10% of total deaths) and the first cause of disability, only 25% of patients who survive manage 

to recover completely [1].   

About 70% of strokes are caused by the occlusion of one of the major cerebral arteries, usually 

the middle cerebral artery, due to embolism or thrombosis, but also smaller vessels occlusion 

can lead to limited lesions, typically in the subcortical white matter or basal ganglia. In all these 

cases the events are called ischemic strokes.   

Less common is the haemorrhagic stroke caused by the breaking of a vessel that can be 

intraparenchymal or it can also take place in the subarachnoid space. Even if it is less frequent 

than the ischemic one, its mortality rates reach almost 80% in low and middle-income countries 

[2].  

  

Studying strokes, it is important to remember that they are events that change in time, in 

particular ischemic strokes are categorised into hyperacute (0-6 h), acute (6-24 h), subacute 

(24h to roughly 2 weeks) and chronic (more than 2 weeks) stages, after the onset of the illness 

[3], and the speed of progression of the death of neurons change for each person and depend 

on the location of the stroke in the brain, for example, cortical regions are more susceptible to 

ischemia than the caudal region.  

After an insult a spontaneous recovery takes place in the brain to try to substitute the missing 

functions of the damaged area, altering its normal behaviour.   

During the acute phase it can be interesting to study stroke patients because it gives the chance 

to analyse the normal activity of the brain before the reorganisation and to also detect 
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the effect of small lesions. Instead, usually after six months, in the chronic phase, the 

reorganisation of the brain is generally complete and this can lead to the opportunity to 

understand what function can’t be substituted after the loss of some part of the brain. Moreover, 

chronic stroke patients are more stable and can undergo longer assessment sessions, so it is 

important to understand what patients include in a study depending on the research questions, 

methods and the availability of an adequate number of patients [4].  

 

Assessing stroke with Magnetic Resonance Imaging (MRI) has a great advantage over other 

imaging techniques thanks to its non-invasive characteristic, good anatomical resolution and 

contrast.  

The typical parameters needed to discriminate between different tissues are the spin-lattice 

relaxation time (T1) and the spin-spin relaxation time (T2). In addition to the standard 

techniques, MRI allows to compute more advanced imaging sequences like diffusion-weighted 

MRI (DWI), that is particularly appropriate to assess strokes [5].  

For example, in acute phase the infarct is not visible for many hours after the onset, but it can 

be noticed using DWI, that scan the motion of water molecules in tissues, in which images a 

brighter (hyperintense) area means acute lesion and darker (hypointense) area indicates chronic 

one, so helping also to know the age of the lesion.  

Fluid-attenuated inversion recovery (FLAIR) is another MRI technique, based on T2-weighted 

sequence, that can be useful for ischemic strokes identification and to recognize hypoperfusion 

area around the lesion in chronic stage. In fact, it is important to understand what happens near 

the damaged areas, where there could be edema that is the cause of a second type of injury on 

the tissue, due to inflammation, mechanical pressure, thrombin production or other. This could 

also alter the normal behaviour of the tissue increasing the functional deficit.   

Focusing on chronic strokes, MRI techniques are preferred to computed tomography (CT) scan 

thanks to its non-invasive nature, the employment of radio frequency waves, the enhanced 

contrast and better signal-to-noise (SNR) ratio. FLAIR and T2 sequences are good to recognize 

changes in the white matter that have a relevant role on the identification of the symptom in 

patients [4].  

 

All these techniques are valid solutions for the anatomical investigation of brain injury, but 

there are also solutions to infer the functional activation of the neurons’ populations, not only 

as a reaction to a stimulus. Even in resting state, indeed, the human brain consumes a lot of 

energy, around 20% of the total amount of energy is used for communication between neurons 
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and to keep them and their supporting cells alive, whereas the increment in neuron metabolism 

due to task-related events is less than 5% [6]. So it seems reasonable to study spontaneous 

activity related to activation of patterns referred to as resting-state networks. These networks 

can be divided into several categories, they can be distinguished in 7 major patterns: visual, 

somatomotor, dorsal attention, ventral attention, limbic, frontoparietal and default, but they can 

be divided by other ways obtaining for example 17 different networks [7].  

To assess them, resting state fMRI (rs-fMRI) is a functional imaging technique that measures 

the fluctuation of blood oxygenation level-dependent (BOLD) signals related to activation of 

populations of neurons in resting state brain. For its nature it is a low frequency signal (less 

than 0.1 Hz) because it manages to acquire indirectly the activity of brain regions, which has a 

dependency with the change of the concentrations of haemoglobin in the tissue. In rs-fMRI the 

acquisition is made in absence of a task so it can evaluate the functional connectivity related to 

activation of  resting-state networks [8]. In fact, the disruption of parts of the brain can lead to 

the loss of specific functions and changes in the functional architecture of the brain due to 

damage such as stroke and its analysis can reveal important clues about brain functioning and 

its ability to recover [9]. 

Moreover, the increasing number of people suffering from stroke and the associated risk factors 

have led to the creation of new effective rehabilitation programs and to the need to know the 

processes that regulate the behaviour of the brain. In order to understand it, researchers 

cooperate with psychologists that are in charge to define the degree of impairment caused by 

the lesions using cognitive tests specifically created, which scores are then associated with 

information coming from neuroimaging techniques like structural and functional MRI. 

Regarding the aim of this thesis, for example, a group of stroke patients are examined through 

NADL Short and NADL-F Short tests, purposely ideated to investigate numerical and financial 

skills which will be discussed in the following chapter.   
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1.2 Post-Stroke Cognitive Impairments in Numerical and Financial 

Abilities  

  

An important ability nowadays is to process numeric information. In fact, these skills are 

fundamental in everyday life, where each person is constantly required to know how to do 

calculations, understand fractions, proportions, remember codes, telephone numbers or 

addresses.   

Arithmetic abilities are processed in our brain by activation of a distributed network that 

engages percentual, motor, spatial, and mnemonic functions and the most important region 

corresponds to the parietal lobes. Indeed, it has been demonstrated by neuroimaging methods 

that the intraparietal sulcus (IPS) is the core locus for numerical processing and it is activated 

just only on the left or right hemisphere or bilaterally depending on the task. However, as many 

other abilities, numerical skills can rely on the activation of a wide network that has interesting 

relations to many other areas, like language or memory. For example, solving a new numerical 

problem activates the IPS bilaterally, but when the same task is done a second time the angular 

gyrus of the left parietal lobes, related to memory, is involved [10].  

In support of this, many researches have demonstrated that brain lesions can create deficits 

which can be very specific: some generic examples could be the selective impossibility to 

transcode from oral to writing number or vice versa, the difficulty to apply some specific simple 

operation but not others, like addition but not subtraction, or the impairment to understand 

particular signs or rules [11].   

In fact, after a brain injury like stroke, patients can also experience some form of acalculia, an 

acquired disability that causes difficulties in the capability to understand numerical information 

or calculation. Since acalculia is not usually screened in patients, there is poor information 

about its nature and impact on the subjects [12] and it may also affect not only their numeric 

abilities but also financial ones.  

As for the numerical skills, indeed, also the financial abilities are important in everyday life, 

since it directly affects the independence of people and so their quality of life. Usually this 

topic interests patients with Alzhaimer or mild cognitive impairment, that show difficulties 

managing financial conceptual knowledge [13], but since the dealing with money can be easily 

linked to the numerical skills some studies have been done on the topic. 

In fact, some relations between financial and numerical abilities have been found in patients 

with different pathological conditions, showing that the two abilities are positively correlated, 
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but more detailed research shows that numerical abilities are more involved with basic financial 

tasks, rather than advanced ones that are more associated with abstract reasoning.   

It can be concluded that even if the two abilities are related, there is not necessarily a 

dependency between them [14].  

  

Due to this complexity, interesting hints can be derived from the analysis of brain lesioned 

patients to try to infer how numerical and financial abilities are processed and impaired by the 

lesion. On one hand, the location of the lesion can give some important information, in 

particular observing the side (left or right) and the site (parietal or non-parietal) of the damage, 

for instance parietal lesions tend to give more difficulties in oral and digital codes; oral codes 

would be more compromised with left parietal lesion that the right one; make use of 

alphanumeric codes involves the left hemisphere without dependency on parietal area due to 

its relation with language; the magnitude comparison ability is less impaired with non-parietal 

damage then parietal one, left subcortical lesions affect the knowledge of arithmetical facts; 

etc... [15]  

On the other hand, connectivity analysis can provide fundamental insights into the altered 

mechanisms induced by the brain lesion, in fact for instance, analysis of anatomical and 

functional connectivities among different regions in the brain indicates that numerical 

cognition is supported by a widely distributed network involving the (intra)parietal and 

(pre)frontal cortices, as well as the hippocampus [16].  

 

In the next section it will be provided a brief description of the most common methods used to 

analyse the link between lesion and behavioural and cognitive deficit. 
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1.3 Lesion to symptom mapping: voxel-based versus connectivity-based 

approaches  

  

As mentioned in the previous section, the study of brain lesions is important for neuroscientists 

to understand the brain behaviour and connectivity as well as the recovery mechanisms after 

an injury. In fact, compromised brain areas can give important hints on the role and function 

they have, just looking at the cognitive loss that the patients experience. To infer the link that 

connects the behavioural change and cerebral damage the main tool used by researchers is 

lesion-symptom mapping (LSM) [17]. Initially the studies were made just comparing patients 

with analogous deficit overlapping their lesions and then also applying statistical measures on 

the single voxel of the brain imaging data. Indeed, traditionally all the analysis regarding the 

finding of a relation between lesion and symptom have been made just focusing on the damaged 

part of the grey matter. This method is called Voxel-based Lesion Symptom Mapping (VLSM) 

or “massively univariate approach” because a detailed topological map of the lesioned voxel is 

created. Based on this information, for each voxel of the brain, the patients can be divided in 

who have and who haven’t lesions on that specific voxel and so it is possible to compare 

behavioural scores of the two groups with a statistical test [18].   

In this way it can be related the presence or not of a damage in a specific region of the brain 

with its role in the patients behaviours. 

 

However this method doesn’t take into account that the lesion map is merged with the 

connectome and in fact many researches have found out relations between the interruption of 

white matter structure and cognitive and behavioural deficits, like language [19], visuo-spatial 

attention [20], motor function [21] and general cognition [22].   

This leads to one of the limitations of the classic VLSM that is the fact that lesions with 

different degrees of damage or locations can affect the same anatomical structure [23].  

Traditional VLSM studies also make the assumption that the strength of the relation between 

structural damage and behaviour is the same regardless of different behavioural domains 

measured, even if it is possible that the results of function at higher level like attention, active 

thinking or memory rather than sensory-motor function, are based on the contribution of 

different and distributed networks [24].  

Moreover, there are also some statistical issues to overcome, like the necessity to introduce 

correction for the increase of false positives due to the many thousands of tests performed. 



11 

Another problem is the correlation between close voxels and their link to the nature of the 

lesions, that are tightly connected with the underlying vascular structure. Indeed, VLSM makes 

the assumption that the state of each voxel is independent of the damage of others, that it can’t 

be true in the human brain. This can lead to grouping irrelevant voxels with relevant areas even 

if they are not related with the function of interest [17] [25].  

In [17] authors pointed out the importance of considering the raise of a deficit as the result of 

a group of lesioned neurons or areas evaluated as a whole instead of associating a functional 

role to single voxels. Explaining this concept using their example, the difference of the two 

methods can be associated with the will to identify the presence of a city in a country measuring 

the numbers of cars every 100 yards, which is less precise than considering the cars in their 

context (in a city the cars are closer to each other).   

Multivariate methods should be more able to determine functionally related areas, made up of 

various voxels that are important to define a neurological deficit, even if the selected voxels 

are in two distant parts of the brain and following this idea it can be considered not only that a 

specific function is processed by many areas, but also that their activation is governed by 

different combination rules.  

In the same study the researchers demonstrate that a multivariate approach based on sparse 

canonical correlation analysis can overcome the results of VLSM regulated with different 

methods to achieve multiple comparison correction, even for different sample sizes (number 

of subjects varying from 20 to 131). Analogous results are reached when the model is used to 

study real scores of aphasia.  

 

Supporting this idea, many other studies tried to create models to predict specific scores, 

integrating or comparing information about focal damage with connectivity, for example in 

[24] a ridge regression model was implemented to predict scores about attention, visual 

memory, verbal memory, language, motor, and visual domains and comparing VLSM and 

connectivity inputs. It was found that visual memory and verbal memory are better predicted 

by connectivity measures, for attention and language both have the same effect and motor and 

visual impairment are more explained by lesion topography.  

In [26] the outcome of a connectivity-based LSM has demonstrated the connection between 

regions that are engaged in specific language functions, that are not found applying VLSM. 

Also in [27] a complex multivariate model based on measures of graph theory of structural and 

functional connectivity and lesions information is implemented using a random forest analysis 

to evaluate four aphasia scores. The results, that are compared with VLSM show that the 
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traditional method and its limitations can be substituted by this new, more complete approach. 

In fact, the disconnections caused by the lesions can lead to dysfunctions that are related to 

regions placed far from the damage that can be seen on structural imaging and causing 

diaschisis, the dysfunction that belong to apparently intact cortices, induced by remote but 

connected neuronal populations [32]. For example, in patients with post-stroke aphasia it is not 

rare that the impairment mismatch the location of the classic clinical-topographic correlations 

[28] and this lack of matching can be explained by focusing on the connectivity data.  

Anyway, it is important to remember that the computation of this kind of inferences on the 

disconnection it is often possible thanks to the creation of atlases that define the parcels of the 

grey matter and map the tracts of the connectome that link all the different parts of the brain, 

merging the imaging data of a large population of subjects [29] [30]. In this way researchers 

can work on reliable anatomical templates that then can be integrated with the information 

about the lesions, according to the same brain coordinate space as the atlases, to measure the 

impact of the related focal damages and disconnections [23].  

 

Lesions like strokes can interrupt the structural anatomical pathway of white matter fibres that 

connect different region and this can also induce to complex processes of modification of the 

functional reorganisation [31], so now that it is clear the relevance of the disconnection 

inference over the voxel-based method, the next chapter will focus on the most important types 

of connectivity and how they are related to the lesions. 
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1.4 The connectivity of the brain: insights into structural and functional 

relationships 

 

As previously mentioned, the brain organisation based on networks of connections distributed 

spatially in a variable complex way is not only visible from an anatomical point of view, but 

also reflects the functional organisation of the brain [32]. 

In order to understand how the brain works, it is possible to separate the study of connectivity 

into two main categories: structural and functional. Distinguishing the two connectivity is 

possible to assess the brain behaviour from two different points of view, understanding the 

affinity and differences among them and their informative contribution.  

  

Structural connectivity (SC), or also called anatomical connectivity, is made up of the physical 

connections formed by synapses between various neuron pools. It defines bundles and tracts of 

nerve fibres that constitute the connectome and form the white matter of the brain. These 

connections are spatially distributed, linking also distant regions and are typically stable in a 

short time scale (seconds or minutes) [33].   

There are many methods to evaluate SC: using some metrics from diffusion weighted imaging 

(DWI) like fractional anisotropy or apparent diffusion coefficient, using the microstructural 

profile covariance from histological studies, inspecting covariance among metrics derived from 

anatomy (for example grey matter volume or cortical thickness from T1 sequences of MRI) or 

considering the concentration of neuronal tracers in the axons by retrograde or anterograde 

neuronal tracing studies [32]. 

Typically DWI is used to infer in vivo white matter's architecture. This information is derived 

from the diffusion of water molecules in the brain tissues and it is used to detect the white 

matter tracts. An important limitation is that this technique can't differentiate between axons of 

different directions or roles (excitatory or inhibitory), despite some other invasive methods.  

Anyway, many tools have been developed to estimate the connection between regions using 

DWI data, creating tractography that reconstruct structural networks and calculating measures 

that are used to quantify the anatomical connectivity, like the probability of connection, fibres' 

numerosity or fibres' length, even if there is still no consensus on measures of connectivity [34].  

  

Functional connectivity (FC) is based on the time-dependent activation of different patterns of 

neurons in various areas of the brain and for this reason it is derived from the BOLD signal of 
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resting-state or task-based functional MRI or from the direct signal of neural activation coming 

from EEG data, electrocorticography or MEG records [32]. Starting from these time series, FC 

can be derived by inspecting the statistical dependence of the activation of different parts of the 

brain. This dependence is calculated using simple statistical measures such as correlation, 

variance, phase locking or spectral coherence and is highly time-dependent, so it varies based 

on the time scales adopted [33].  

Pearson correlation among the signals originate from the brain regions is one of the most 

popular methods used and so the result is a symmetric matrix constituted by values of the 

statistical result of the measure adopted for every possible region combination and “1” all along 

the diagonal because each region is fully correlated with itself (Fig. 1).  

One limitation in FC analysis is that the brain can be represented by different parcellation 

atlases that are used to define the regions' boundaries which differentiate in numerosity of 

regions, locations and shapes [34]. Moreover, also the methods used to define the parcellation 

can be based more on functional or anatomical information [35] and all these differences can 

hinder the comparison of results.  

  

The study of functional and structural connectivity can provide complementary insights into 

brain organisation. Studying structural and functional network, it is possible to understand 

different organisation of the brain, for example looking at the SC it can be seen an assortative 

behaviour, so regions with similar properties are more prone to be connected, instead of the 

FC, more disassortative so with better affinity among regions with dissimilar attributes [36].  

Another point of discordance between SC and FC concerns the detection of indirect connection 

between regions, since it can be found a strong functional relation between two regions that 

don’t share direct anatomical connection [37].  

However in the same paper it has been shown also that the existence of direct or indirect 

anatomical connection generally implies the presence of strong FC (Fig. 2) and in fact many 

researches in literature have found that the anatomy of the brain determines, at least partially, 

its function, for example demonstrating that the same functional areas are subserved by similar 

structural connectivity patterns, or finding strong functional connectivity in regions with 

anatomical connection and there are also other studies that manage to obtain SC from the 

corresponding FC [38], demonstrating that SC and FC can be two complementary sources of 

information, and confirming a strong association between functional and structural levels.   
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Not only spatial dependence, but also temporal scale is important to remember describing SC-

FC relationships. In fact, differently from the SC that is stable in the short period of time, FC 

can be very different forming various functional patterns that can be explored during 

spontaneous neural activity. The relationship results stronger in particular with low frequency 

sampling periods, in the order of minutes. At higher frequency FC becomes more unstable, 

reflecting the rich underlying dynamic [39].  

For this reason, typically the time of acquisition for rs-fMRI is about 5-7 minutes, even if it has 

been shown also that the time range can go up to 13 minutes to increase reliability [40].  

 

As described in the previous chapters, many research prove that their informative contribution 

can be so important to overcome some of the traditional methods of analysis of the relation 

among brain lesions and symptoms, for example in [41] it has been found out that FC 

modification in the brain network caused by stroke can be better explained by the structural 

disconnection rather than just focal damage measures.  

Discovering the relationships that link these types of connectivity is one of the challenges of 

neuroscience, in particular following a brain injury, it is not only possible to understand how 

these are related, but also how the brain is able to recover from lost or reduced functionality.  
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Fig. 1 – Two examples of SC (right) and FC (left) from [32], derived from DWI and fMRI. Rows and 

columns represent brain regions and cell’s entries in the SC are the normalised number of white matter 
tracts, while entries in the FC’s cells are values from a statistical correlation.    

 

 

 

 

 

 

 

Fig. 2 - Scatter plot (single acquisition of 20 min) of resting state FC against SC at high resolution for 
participant B in [37], showing the correlation between the two connectivity.  
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1.5 Aim of the thesis 

 

The aim of this study is to build a model based on T1-weighted structural MRI and rs-fMRI 

for the prediction of cognitive scores related to numerical and financial abilities, in first chronic 

stroke patients.  

As it will be seen in the methods description, two different algorithms of data reduction are 

used: PCA that is a very common linear method and UMAP that is a relatively new method, 

non linear and less used. With this work it will be possible to compare the two algorithms and 

evaluate if UMAP can be a valid method in this topic of research. 

Moreover, the results could show the importance of the connectivity based approach against 

the classic univariate voxel based one and help to shed light on the process that rules the loss 

of cognitive abilities that are still less often studied than motor impairment caused by stroke, 

in particular for financial abilities that are tightly related to the numerical domain, but less 

analysed and which researches are more focused on healthy subjects or neurodegenerative 

patients. These skills are fundamental nowadays and the loss of these abilities compromise the 

independence of the patients so the implementation of a model that could objectively predict 

financial and numerical skills could be an interesting tool to evaluate people’s quality of life, 

guide treatments to enhance these specific capacities or to help in juridical scope. 
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2 MATERIALS   

  

  

2.1 Patients 

  

This thesis is made in cooperation with a project of the IRCCS San Camillo Hospital of Venice, 

where patients with different pathologies have been recruited. At the beginning 51 chronic 

stroke subjects were selected, with age between 18 and 85 years old, without other previous 

stroke events. Then 17 participants have been excluded because of the presence of bilateral 

lesions or in the cerebellum, due to the impossibility to evaluate the lesion or to assess the 

imaging data.   

During the analysis, three of the remaining 34 patients have been removed because their lesions 

have invalidated the BOLD signal of too many regions (see also Preliminary inspection section 

of the results).  

 

The main demographic information regarding the final selected cohort of 31 patients are 

reported in Tab. 1.  

 

 Right Left Total 

Numerosity 15 16 31 

% Male 60 50 55 

% Female 40 50 45 

Mean Male Age 67.33 ± 9.50 65.38 ± 16.50 66.41 ± 16.50 

Mean Female Age 70.5 ± 11.00 71.13 ± 15.00 70.86 ± 16.00 

 

Tab.1 - Demographic patients’ cohort information, divided in left and right lesioned subjects. 
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2.2 Cognitive tests  

  

The analysis carried out in this thesis supports a project of the IRCCS San Camillo of Venice, 

in which new methodologies are studied for the rehabilitation of patients afflicted by different 

brain disorders. Part of the project regards the analysis of numerical and financial abilities of 

stroke patients and for this reason NADL Short and NADL-F Short tests are carried out and 

then evaluated to monitor patients’ progress.  

  

NADL Short  

The Numerical Activities of Daily Living (NADL) has been created to inspect the degree of 

awareness of the numerical abilities of the patients.   

Some specific deficits can impact in different ways patients’ life, so NADL has been created 

with the purpose to be the basis for such an investigation.  

The test is composed of two sections, the first part called “informal” is carried out to evaluate 

the numerical knowledge necessary in everyday life about various topics like Time, Measure, 

Transportation, Communication, Money and General Knowledge in which patients are asked 

to solve real world problems. The second part called “formal” is the one in which more 

theoretical and specific mathematical skills are considered. This section is composed of other 

four subtests: number comprehension, reading and writing arabic numerals, mental calculation 

and written calculation, where it is necessary to know the fundamental arithmetic rules and 

operation [11].  

Because of the length of all the process (45 min), a shorter version was used in this study called 

NALD Short, reducing the formal part of the test to assess numerical abilities in about 15 

minutes [42].   

  

NADL-F Short  

Similar to the previous test, NADL-Financial (NADL-F) investigates the ability to manage 

private finances according to self-interest in simulating real life situations.   

It is easy to think that financial abilities impairment can lead to serious problems in persons’ 

individual independence. Indeed, legally a person who can’t manage his/her own finances is 

flanked by a financial guardian. Nevertheless the creation of a valuation method is very difficult 

because of the complexity of this topic. For instance some tests are based on the traditional 

neurophysiological principle, others want to highlight the importance of the evaluation of real-
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life situations, others again focus on the subjects’ decision-making abilities or are motivated 

by juridical purposes and so on.  

The NADL-F test wants to be a clinical tool to assess a wide range of topics fundamental to 

the subject to be financially independent in his socio-cultural context, in particular simulating 

real life situations that can occur in a European environment.  

Like the NADL test, also NADL-F requires a lot of time to be completed and for this reason 

has been used a shorter version that lasts about 15 minutes, but that retains the most important 

features of the original test. It will be called NADL-F Short [43].  

It is composed of seven subsets: Counting currencies, Reading abilities, Item purchase, 

Percentage, Financial concepts, Bill payments, Financial judgements, with increasing difficulty 

[44]. In fact, the first four are then gathered into a single score called “Basic” and the remaining 

three represent the “Advanced” abilities.  

  

To sum up, at the end of the cognitive assessment four scores are produced: Formal and 

Informal from the NADL Short test and Basic and Advanced from NADL-F Short. All of them 

are then normalised dividing by the maximum value that can be obtained from each of the four 

tests to have values in the range from zero to one.  

 

 

 Mean - Right Std Dev - Right Mean - Left Std Dev - Left 

Basic 0.687 0.211 0.654 0.246 

Advanced 0.620 0.278 0.500 0.197 

Formal 0.753 0.148 0.685 0.230 

Informal 0.707 0.111 0.707 0.144 

 

Tab.2 - Mean and Standard Deviation of the four scores of the 31 patients considered in the analyses, 

grouped in left and right stroke lesioned subjects. 
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3 METHODS 
 
 
 

3.1 Data acquisition  

 

Structural and functional MRI data were collected before and after the rehabilitation at IRCCS 

San Camillo Hospital in Venice using a 3 T Achieva Philips scanner (Philips Medical Systems, 

Best, The Netherlands) with an 8-channel head coil. Participants’ heads were immobilised 

accurately with head cushions.  

The anatomical scan consisted of a 3-dimensional Magnetization Prepared T1 weighted (T1w) 

Rapid Acquisition Gradient Echo (MPRAGE) sequence acquired at 0.8 mm isotropic 

resolution (flip angle = 8°, repetition time (TR) = 9.8 ms, echo time (TE) = 4.5 ms, inversion 

time (TI) = 950 ms, field of view (FOV) = 250x250x200 mm3, SENSE acceleration 2 and 2.6 

along primary (Anterior-Posterior (AP)) and secondary (Right/ Left (RL)) phase encoding 

directions). Resting-state functional MRI scans with PA phase encoding direction were 

acquired using a single-shot Echoplanar Imaging (EPI) sequence (TR = 2.1 s, TE = 30 ms, flip 

angle = 90°, multiband factor = 3, SENSE factor = 1.2, and spatial resolution = 2.2x2.2x2.4 

mm3).  
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3.2 Structural analysis 

 

3.2.1 Preprocessing and lesion tracing 

 

Before processing MRI data, a preliminary step requires defining the lesion mask for each 

single patient.   

The first segmentation of the lesions has been done exploiting LINDA (Lesion Identification 

with Neighborhood Data Analysis) [45], an automated brain lesion segmentation software that 

proceeds to the estimation of the lesion in T1w sequences using a hierarchical approach from 

low to high resolution, taking into account information of each voxel and the signal of 

neighbouring ones. 

In fact, the training of the algorithm started from the low resolution images of 48 subjects in 

which some random forest (RF) models, taking into account the value of each voxel and its 

neighbours, compared them with the binarized lesion masks. After the training with a specific 

resolution, the model is applied to the same subjects to obtain some features that are passed to 

the next step where all the process is repeated with higher resolution of the images but including 

also the information about the features calculated on the lower resolution step. After all the 

training process is repeated at every resolution, the algorithm is ready to process a new subject, 

using the same hierarchical procedures of the training but with the already trained RF models. 

At the end, in the highest resolution step the features computed are converted in a discrete 

segmentation map (Fig. 4) [45]. 

 

One of the limitations of LINDA is that it manages to identify just lesions in the left 

hemisphere, so the right lesioned T1 images have been flipped before the segmentation. 

In addition, since some consistent errors are made by LINDA during the segmentation process 

(for example some clusters of healthy tissue are identified as part of the lesion), small, 

noncontiguous clusters are removed, as suggested in [46]. Additionally, because one of the 

exclusion criteria for patients is the presence of lesions in the cerebellum, this region is 

subtracted to prevent the software from misclassifying voxels in that area.  

The resulting lesion masks are then visually inspected by three researchers independently, and 

corrected manually using MRIcron software where needed, to ensure a better reliability of the 

segmentation process.  
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A second refinement step is then carried out, consisting in: the removal of small isolated 

clusters of voxels (< 1000 clusters), the filling of holes to ensure continuity of the lesion, 

smoothing of the lesion’s edges, erosion of the boundaries and the application of the brain mask 

to avoid that the lesion exceed the cerebral margins.  

The structural preprocessing pipeline then included bias field correction      

(N4BiasFieldCorrection [68]), skull-stripping [69] and nonlinear diffeomorphic registration 

[70] to the standard symmetric MNI space [71] through cost-function masking implemented in 

the Lesymap software. The Computed Anatomy Toolbox 12 (CAT 12) was used for brain tissue 

segmentation into white matter, grey matter and cerebrospinal fluid after removing the portion 

of lesioned tissue (stroke lesion correction option).  

 

 

 

 

 

             

Fig. 3 - Axial and coronal sections of the lesions’ frequency map of the cohort of patients. As 
indicated by the colorbar, brighter voxels are the most frequently affected (max 29.03%) and mostly 

on the right side where lesions are typically wider.  
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Fig. 4 - LINDA workflow. In the lower part is shown the multi-resolution Random Forest algorithm 

[45]. 
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3.2.2 Analysis of the structural alteration: Structura Disconnectivity definition 

 

To achieve information about the structural disconnection caused by the lesions, for each 

patient two matrices have been computed to inspect direct and indirect disconnection.  

This was done using the Lesion Quantification Toolkit (LQT) [35], a MATLAB software 

package specifically designed to infer the impact of a lesion on grey and white matter.  

The measures produced by the toolkit are based on a population-scale atlases of white matter 

tractography used to map the major tracts that constitute the connectome and so to estimate the 

disconnections. LQT uses the HCP-842 tractography atlas implemented in [49] with diffusion 

MRI data of 842 healthy subjects, managing to define 70 macroscale white matter tracts that 

are then also reconstructed in the MNI space.  

Common tools used in neuroimaging research are the parcellations atlases that divide the grey 

matter in functionally or anatomically defined regions. Depending on the atlas used the 

numerosity and shape of the parcellation can be very different.   

The toolkit needs the binary lesion segmentation as input, registered to the MNI coordinate 

space and the parcellation atlas desired, also registered to the MNI brain template and with the 

same image dimension of the lesion mask.  

For this study, the lesion masks were registered to MNI152 space (dimensions 182x218x182; 

1mm3 voxels) and the parcellation template chosen in the one developed by Schaefer and 

colleagues [47] using high quality rs-fMRI of 1489 healthy subjects, with 100 cortical parcels 

from 7 networks in Fig. 5, to which 12 subcortical regions from the third version of Automated 

Anatomical Labelling (AAL3) atlas [48] are then added. They are Thalamus, Caudate, 

Putamen, Pallidum, Hippocampus and Cerebellum for each of the two hemispheres. 

 

Once that inputs are defined, LQT output different single-subject results:  

● The “region-based damage”, which quantifies the percent of voxels in each grey matter 

parcel, overlapping the atlas with the segmented mask. Thanks to the fact that the 

chosen parcellation is based on the functional properties of the regions, the entity of the 

damage can be easily contextualised in the following analysis in terms of resting state 

networks. The output is a single vector of 112 values corresponding to the related 

patient, so then a matrix with all the subjects as rows can be easily created (Fig. 7). 

 

● The “tract-based disconnection”, which is calculated by embedding the lesion in the 

tractography and measuring the number of streamlines that are intersected for each 
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tract. These numerosities are then converted in percentages of the total number of 

streamlines for each tract. This measure wants to be a better estimation of degree of 

damage of disconnection, than the classic “tract lesion load” or using probability 

concepts, which may underestimate the effect of the lesion as explained in [35]. Again 

the result is a vector of 70 percentage values, one for each tract. 

 

● The “parcel-wise disconnection severities” measure offers another important tool that 

will be used in this thesis. The information obtained from this section is organised into 

matrices in which each cell contains the severity of disconnections between pairs of 

grey matter parcels. More specifically, a SC matrix is created based on the HCP-482 

tractography and the chosen parcellation, in which just the number of streamlines that 

bilaterally terminate within both parcels are considered, selecting the specific command 

end. Then the lesion mask is embedded and filtering the relative streamlines, a “raw 

parcel-wise disconnection matrix” is created, where each entry is the number of 

disconnected streamlines among parcel pairs and it can also be converted into a 

percentage of the total streamlines connecting that parcels creating an analogous 

percent matrix, so that the matrix’s cells correspond to a degree of direct disconnection 

severity. Differently from the “tract-based disconnection” that gives a hint on the 

disconnection estimating the white matter’s tracts damaged, this measure focuses on 

the parcel disconnection, estimating the number of streamlines in each tract that are 

compromised (Fig. 6). 

 

● In order to also consider the indirect connectivity between parcels the toolkit gives the 

opportunity to measure the “shortest structural path lengths” (SSPL) that is the 

minimum number of direct connections that are necessary to link a pair of grey matter 

parcels. This matrix has entry’s values equal to “1” for regions with direct connection 

and values equal to the number of the required links to complete the indirect connection.   

To compute the matrix a binarized SC matrix is created, to define the presence or 

absence of connection among parcel pairs and also the percent spared connection matrix 

for each patient by subtracting the raw disconnection matrix previously created. Then 

a threshold has to be set to binarize it considering the minimum percentage of 

streamlines that have to be spared to consider a connection between two parcels already 

functionally viable. This threshold has been set to the default 50% value, which means 
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that at least half of the streamlines connecting a parcel pair have to be spared in order 

to consider it in the SSPL computation.  

Then, a SSPL increase matrix is created by subtracting the atlas SSPL matrix in order 

to consider the presence of the lesion that leads to the interruption of some direct 

connections and so to the increase of the SSPL values. Finally, an indirect-only SSPL 

increase matrix is computed simply setting every direct connection to 0 [35] (Fig. 6).  

 

 

In summary, using LQT, the information about the structural disconnectivity (SDC) were 

extracted from the patient’s imaging data, in particular the percentage of parcel damage, the 

disconnection matrices and the indirect SSPL matrices were considered in the following 

analysis.  

These last two matrices (direct disconnection and indirect SSPL) are vectorized in order to 

create a single matrix containing all the patients, without considering the diagonal and the lower 

triangular portion of the matrices thanks to their symmetric property. The resulting matrix has 

rows that correspond to patients and columns that coincide with all the regions and it is checked 

to ensure the absence of Nan and Inf values or identical rows.  

The information of the percentage matrix of parcel damage is used as additional input to the 

canonical analysis that will be better explained further in this chapter.  

 

 

 

Fig. 5 - The 7 major networks from Schaefer atlas [4]. 
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Fig. 6 - Percentual parcel-wise direct disconnection (left image) and indirect disconnection (right 

image) of the patient 126. The black lines indicate the division between left (0-50), right (51-100) and 
subcortical (101-112) parcels. 

 

 

 

 

Fig. 7 - Percentual region-based damage matrix for 34 patients. The lesions of three patients have 
been evaluated too wide (red lines), compromising the BOLD time series, so they will be removed 

from the analysis (see also Preliminary inspections in the results section). 
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3.3 Functional analysis 

 

3.3.1 Preprocessing 

 

Concerning functional preprocessing, fMRI volumes were first corrected for slice timing 

disparities using the method described by Smith et al. [51]. Realignment to the median volume 

was then performed with FSL’s MCFLIRT tool [52], followed by correction for magnetic field 

distortions using FSL’s TOPUP [53]. To further reduce confounding influences, nuisance 

regression was applied using the CONN toolbox [54]. This included the removal of the 

following regressors: five principal components extracted from white matter and cerebrospinal 

fluid [55] after linear registration to the EPI space, subject motion parameters (three translation 

and three rotation parameters along with their first-order derivatives), and a variable number 

of additional noise components corresponding to outlier scans identified with ART tool 

included in the toolbox. In these steps, the lesion’s mask was excluded during time series 

extraction to ensure that only BOLD signal coming from healthy voxels was analysed.  High-

pass filtering was subsequently applied through CONN, post-regression, to avoid frequency 

mismatches in the nuisance regression process [56].   

Finally, low-pass filtering (cut-off = 0.1 Hz) was applied to the time series to focus on slow-

frequency fluctuations while minimising the influence of residual physiological noise, head 

motion, and other artefacts. Volume censoring was performed to discard volumes affected by 

significant head motion (framewise displacement greater than 0.4 mm). After performing 

nonlinear normalisation to EPI space, the time series were projected onto the cortical surface 

using Schaefer’s atlas [47]. Time series were extracted for each of the 112 brain regions in the 

parcellation by averaging the preprocessed fMRI BOLD signals within each node at each time 

point, excluding lesioned and non-gray matter voxels, as well as those affected by BOLD signal 

dropout.   
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3.3.2 Functional Connectivity definition 

 

As described in the introduction, there are many methods to define the FC of a patient. In this 

work a similar approach to the seed-based method is used, but in a different way. As it has been 

explained in [6], a seed-based FC is created defining the lesion as seed, and correlating it with 

all the other regions of the brain.  

A limitation of this method can be seen considering that lesions can affect both white and grey 

matter, leading to a mixed signal from tissues with different properties and characteristics. This 

blending of signals can complicate interpretation, as the method does not distinguish between 

the different types of tissue involved. Additionally, it is important to differentiate between 

lesion types, as they can consist of necrotic tissue (as in ischemic strokes), blood (as in 

haemorrhagic strokes) or edema. Each of these introduces distinct properties to the acquired 

signal, further complicating the accuracy and clarity of the results.  

For these reasons, as it has been made in [58][59], the FCs are made by computing the 

correlation between every parcel pair and excluding the lesion from the analysis, so after 

removing the noisy volumes, the BOLD signals of all the parcels are used to create the FC 

matrix of each patient, with MATLAB corr function. Using the default setting of the function, 

Pearson correlation is obtained among every pair of parcels, as shown in Fig. 8.  

As for SDC matrices, a matrix with the vectorised FCs of all the patients is created, considering 

only the upper triangular portion and removing the diagonal.  

 

Fig. 8 – FC matrix of Pearson correlation between 112 brain regions. The major diagonal is made up 
of all “1” representing the correlation among a region and itself. Two secondary diagonals are created 
by the strong relation between homotopic regions that share the same function in the two hemispheres 

(e.g. left motor area and right motor area).    
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3.4 Data analysis 

 

In this section it will be presented the method used to create the prediction model. In broad 

terms, the procedure is composed of a part of data reduction, using two different methods: 

Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection 

(UMAP), that will be then explained. This part is fundamental because from the analysis of the 

images many outcomes can be provided, as it has been seen in the LQT paragraph and each of 

these outcomes is composed of hundreds of elements. When all the needed information is 

collected, a unique matrix made of 31 rows, corresponding to patients and more than 18.000 

columns of imaging data is made, so it is necessary a data reduction process, but in order to use 

the two algorithms some parameters have to be setted like the number of PCs and UMAP’s 

neighbours and output dimensions. 

To find the best values for these parameters and reduce the computational cost of the model, a 

simple classification algorithm is used to try to categorise the patients with good performance 

on each cognitive score from the bad ones. The accuracy of the classification is evaluated for 

every parameter, so that the parameters that lead to bad accuracy can be then removed. Then 

the Canonical Correlation Analysis (CCA), implemented with embedded permutations tests 

from the CCA/PLS Toolkit [61], is used to find the relationships between imaging data and 

cognitive score from NADL Short and NADL-F Short tests, reducing again the computational 

costs and selecting the best models. In the next section the two data reduction techniques used 

in this thesis will be presented in more detail. 

All the following analysis has been done with MATLAB software (R2023b Update 5). 
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3.4.1 Data dimensionality reduction techniques 

 

Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is one of the most common methods used for 

dimensionality reduction and features extraction, where data points are projected in a new set 

of dimensions called principal components (PCs) maximising their variance. 

Letting xn be the starting dataset of n variables or observations, it can be projected into a scalar 

yn thank to the vector u as 

��  =  ���� . 

 

The variance of the new data can be calculated as 
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� 	
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����� − �� �� = �� ⋅ � ⋅ � 

 

that can be maximised considering to set the constraint ��� = 1 whose solution can be 

achieved with the Lagrange multiplier method. It can be found out that the variance of the new 

projected data is maximised when u is the eigenvector that maximise the related eigenvalue in 

the relation:  

� ⋅ � = � � . 

 

The starting data xn can be now generally represented as  

 

� = � ∗ �� + � 

 

where U are the eigenvectors or components or scores, L are the loading (the coefficients of 

the linear combination that define the components) and � is the mean values matrix. 

Principal components are uncorrelated (orthogonal) to each other and capture the variance in 

the data, with the first component accounting for the maximum possible variance. Each 

subsequent component explains the largest portion of the remaining variance, with each one 

being orthogonal to all previous components. 
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Uniform Manifold Approximation and Projection (UMAP) 

UMAP (Uniform Manifold Approximation and Projection) [50] is a novel manifold learning 

algorithm for dimension reduction. It competes with t-SNE algorithm, overcoming it for 

visualisation quality, the preservation of the global structure of data, reduced time consumption 

performance and the possibility to manage data with wide dimensionality. Thanks to its great 

scalability, it is usually applied for bioinformatic, material science and general machine 

learning fields, but as explained in [66] it can be applied also in the study of brain connectivity 

with the aim to find intrinsic low dimensional and non-linear surfaces (manifolds) where the 

data lies, preserving important geometric relationships among data points. 

While UMAP is grounded in a rigorous mathematical and theoretical framework, for the 

purposes of this thesis, we will focus on a more general and practical explanation. 

 

UMAP is based on the assumption that the data lie on a locally connected manifold where they 

are uniformly distributed and that the manifold's topological structure should be preserved. 

Even if it is based on topological data analysis and simplicial complexes, UMAP is considered 

an algorithm of the same class of k-neighbour graph learning type because it can be described 

in two phases: in the first one a weighted k-neighbour graph is computed and then a low 

dimensional layout of the created graph is calculated [50][63].  

 

Phase I: Graph Construction 

Initially the weighted graph has to be defined and it is done basing it on the topological analysis 

and the concept of “simplices”, which are simple ways to build a k dimensional object 

depending on a selected number k of vertices (see Fig. 9). Each data point given to the algorithm 

becomes a vertex of the simplices built on them. The ensemble of all the simplices creates a 

“simplicial complex” that can be used as a graph made up of data points as the vertices of the 

complex. One first problem to face is the choice of the right number of vertex/data points 

needed to create the single simplices. In fact, varying the number of vertices, the complexity 

of the simplex changes, with the risk of the creation of high dimensional simplices and graphs. 

This problem wouldn’t exist if the data were uniformly distributed in the manifold, because a 

fixed distance could be set from each data point and would be considered just the neighbour 

points not beyond this threshold distance, limiting the number of vertices and edges of the 

simplices. Since the density varies, to overcome this issue the definition of distance is changed 

and it is defined based on the k-nearest neighbour settled by the user. In this way a local distance 

function is achieved for each data point, maintaining the concept of uniformity of the manifold. 
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Moreover the k value assumes an important meaning, easy to interpret: small k means focusing 

on the finer details of the structure of the data, whereas a large k means capturing the global 

structure of the dataset, but losing the details. 

In more mathematical terms, assuming X = {x1, ... xn} as the input dataset, a dissimilarity 

matrix is created, with the user-selected distance function d, which is then transformed into a 

binary adjacency matrix A by the k-nearest neighbour algorithm, choosing the appropriate 

value of k. A defines a directional graph Ḡ = (V, E, w) where V are the vertices or data sample, 

E are the edges connecting each vertex and w are the weights associated to the edges. In fact, 

now it is also possible to associate a weight on the edge of the graph, based on how far the data 

points are.  

Again, in a more mathematical form, the weights are given by: 

 

�(�� , ��)  = ��� �− !�"0, $"�� , ��%  −  &�%'�
( 

 

where  xj refers to the j-th nearest neighbour, with j = {1..k}, of the data point xi , d(xi , xj) is 

the dissimilarity value with distance function d and ρi and σi  are normalisation values related 

to the specific xi calculated as  

 

&� =  )*�$"�� , ��%  ∣  1 ≤  . ≤  /, $"�� , ��%  > 0� 
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The original dissimilarity values among the neighbours are now normalised by exponential 

curves in the range [0,1].  

But since the distance function d changes locally for each data point, two different weights are 

calculated, indeed it can be thought that two vertices are now connected by two edges with 

different direction and weights. To solve this problem, is computed a symmetrized version of 

the weighted adjacency matrix A as follow: 

 

7 =  8 + 8� − 8 ∘ 8� 

 

where  ͦ  represent the pointwise product.  
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If Aij represents the probability of existence of the edge directed from xi to xj, Bij will represent 

the probability of existence of at least one of the double directional edges built from xi to xj or 

from xj to xi. In this way a new symmetric graph G can be considered, with non-directional 

weighted edges defined by the adjacency matrix B and this will be the basis of the UMAP 

method [50][63][66] (Fig. 10) . 

 

Phase II: Graph Layout 

Now it has to be find a good low dimensional representation of the dataset. To do it, UMAP 

creates a set of attractive and repulsive forces, based on the edges’ weights, that are used to 

locate the data in the new space with the user-selected number of final dimensions. 

To optimise the representation of the dataset, the algorithm considers the value of cross entropy, 

calculated considering the edges of the graph G and the ones of an equivalent weighted graph 

H that belongs to the low dimensional space to reach. In a more mathematical statement, it can 

be written wh(e) as the weight associated to the edge e of a high dimensional representation and 

wl(e) as the weight associated to the edge e in a low dimensional case. The cross entropy can 

be measured as:  

 

	
:

 = �ℎ(�) 345 ;�ℎ(�)
�<(�)= + (1 − �ℎ(�)) 345 ;1 − �ℎ(�)

1 − �<(�)=  
 

Where the first addend can be seen as an attractive force on the data points that will be 

minimised when wh(e) is high (so when the distance among the points is small) and the second 

addend is a repulsive force that will be stronger as wh(e) is high (so when wh(e) is small and the 

distances among data point is high, it will be minimised). 

Optimising the total cross entropy calculated on all the edges of the lower and higher 

dimensional graph, the optimal representation of the dataset is reached [50][63][66]. 
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Fig. 9 - Examples of low dimensional simplices [63]. More are the vertices considered and more they 

become complex. 

 

 

 

 

 

 

 

Fig. 10 - Example image from [66] that represents how UMAP reduces the data of time-varying FC 
(tvFC) (A). The dissimilarity matrix (B) is created with Euclidean distance and it is binarized in the 

adjacency matrix with number of neighbours k = 90 (C) in order to create the directional graph in (D). 

The exponential transformation of the weights is performed (E) and from the resulting graph (F) is 
calculated the related unidirectional graph (G) that is the input of the optimization phase. 
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3.4.2 K-Nearest Neighbours classifier 

 

A first evaluation of the effectiveness of the PCA and UMAP algorithms is made by inserting 

their output scores in a nearest neighbours (KNN) classification model and checking the 

efficiency of the methods. In fact their output can vary based on the choice of some parameters. 

While the parameter to choose for the PCA methods is just the number of PCs, for UMAP there 

are many input options to consider. First of all, UMAP doesn’t have restrictions on the number 

of output dimensions, starting from 2, for the visualisation purpose of the algorithm. Then, as 

it has been explained in the previous section, UMAP required the setting of a k number of 

neighbours that has an notable impact on the final output because large value of k means getting 

the global structure of the dataset, while for small k UMAP will focus on the detailed part of 

the dataset. Other important parameters for UMAP are the min_dist value that controls how 

tightly the algorithm is allowed to group the points together. In this study, this parameter is 

setted to 0.1, following the work of other researchers [57] and confirmed by other evaluations 

made during the continuation of the analysis. Other parameters have been kept on their default 

values. 

The purpose of the KNN implementation is to get a better understanding of the algorithms and 

the impact of their parameters, limiting their range of values and reducing the computational 

costs of the final models of the next canonical analysis.  

 

To proceed to the classification, the cognitive scores are binarized choosing the median of each 

of the four scores as threshold: the KNN classifier has to identify if a subject has good or bad 

performance for each score, starting from the input PCA or UMAP information scores.  

The matrix made concatenating the SDC and FC is z-scored and given to PCA and UMAP 

algorithms to compute the data reduction, using the pca and run_umap MATLAB functions.  

The classification is made on a 4-fold partition of the full dataset (cvpartition function is used, 

with stratify option setted as true), employing one fold as the test set and the remaining 

ones as training set. 

The inspection of the PCs is made on all the possible components (30 PCs, since the subjects 

are 31) and for consistency the same number of output scores is chosen also for UMAP. The 

number of neighbours inspected span from the minimum possible (3 neighbours) till 31 (the 

total number of patients) and all the analyses were iterated 30 times (with the seed of the 

random folding that changes through the iterations using threefry method). The KNN model is 
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processed by fitcknn function, with the training folds as inputs and number of neighbours setted 

as 4. This value was chosen as the square root of the numerosity of the training set, as explained 

in [73]. The balanced accuracy of the classification results with PCA and UMAP is calculated 

as: 

 

8 =  0.5 ⋅ ; ?@
?@ + A� + ?�

?� + A@= 

 

where TR are the true positive values, TN the true negative values, FP the false positive values 

and FN the false negative values. 

Since the UMAP results are repeated 30 times, to assess the variability of the results depending 

on the random seed initialization, the accuracy values for the four cognitive scores are obtained 

averaging on the iterations.  

For a more complete inspection, the overall numerical and financial accuracies have been 

obtained averaging the Formal and Informal scores of the NADL Short test and Basic and 

Advanced scores from NADL-F Short test, for both PCA and UMAP methods. 

 

When the cognitive scores are binarized a frequent problem is that the majority of them become 

either 0 or 1, meaning that almost every patient has a bad or good performance on the test made 

for a specific score calculation and this can affect the efficiency of the classification. The 

balanced formula used and the stratification option of the cvpartition function are chosen to 

manage this problem. 
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3.4.3 Canonical Correlation Analysis (CCA) 

 

The Canonical Correlation Analysis (CCA) [60] is a widely used method to compare cognitive 

behaviour and informative variables derived from the brain.  

Considering X and Y two multivariate modalities, having observation per row and normalised 

features/variables per column, each modality can be represented as a linear combination of its 

own variable in two latent variables, also called “canonical variables” U and V, so that U = X 

wx and V = Y wy .  

CCA aims to find the pair of canonical weights or coefficients wx and wy that maximises the 

correlation between U and V as:   

 

 !�BC ,BD  E4FF"� �G , H �I% 

 

This method is commonly used in literature thanks to its ability to find linear association 

between multiple measures, in particular in the field of neuroimaging [62].  

It can be easily noticed that the value of each canonical coefficient gives some information 

about the importance of a specific variable in X or Y, indeed it can be thought that the canonical 

variables U and V quantify the association across the two modalities, also referred to as 

associative effect. Solving the CCA iteratively, once the two weights wx and wy are obtained 

(representing the first associative effect), another pair of weights that represent a second layer 

of associative effect can be calculated, removing the information about the first effect through 

a process called deflation [64]. The new weights will represent the new associations among the 

variables. 

In the present thesis, it is implemented CCA through the CCA/PLS Toolkit [61], which 

incorporates multiple multivariate latent variable models and it allows to perform a 

permutations test on the input data, which is also used to inspect various layers of associative 

effects.   

By randomly shuffling j = {1..J} times the row of X or Y, a new set of canonical correlations 

rj between canonical variable and new statistics �j are computed. The p-value is calculated as: 

� = 
1

J ∑J��1 L [�1 ≥ �j] , 

where I is the Kronecker function, �1 is the statistic of the original unpermuted data and the 

null hypothesis N�0  of the permutation test is that the two populations come from the same 

distribution and so it should be rejected. 
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Regarding this thesis, it can be considered X as the multivariate matrix constituted by the output 

scores coming from the data reduction step, that contain the SDC and FC information, 

concatenated with some additional variables which can confound the prediction that are the 

patients’ age, years of schooling and lesion volume and the information coming from the 

region-based damage. Instead, in Y there are the cognitive scores, so Formal and Informal 

scores taken together to inspect the numerical abilities from NADL Short test or Basic and 

Advanced scores from the NADL-F Short test, to evaluate the financial skills. 

 

The region-based damage is a vector output from LQT and quantifies the damage of each of 

the 112 parcels of the brain of the specific patient analysed, so a cumulative matrix for all the 

patients has to be done. The resulting matrix has 31 rows and 112 columns, so a dimensionality 

reduction is needed again in order to try to keep the number of variables in input in the CCA 

less than the number of observations. To do this the first idea was to summarise the parcel 

region-based damage in a network-based damage matrix made of 8 columns averaging the 

parcel loads of each of the 7 cortical networks, considering the 6 subcortical regions as a whole 

network and removing the controlesional networks of each patient. In this way a good reduction 

of the original matrix was performed, but this was not enough to be considered as good input 

in the CCA. In fact, the canonical analysis is sensible to the multicollinearity problem: the 

canonical weights wx and wy become unstable when the input variables are correlated [64]. 

Since the network-based matrix showed high Pearson correlation values (Fig. 11), it is chosen 

to apply the PCA on the original region-based matrix, because the algorithm ensures the PCs 

to be uncorrelated. At the end 8 PCs are taken, managing to explain the 84% of the variance, 

creating a final new [31x8] matrix that is chosen as input for the CCA.  

 

Since the ranges of parameters (PCs for PCA and output dimensions and neighbours for 

UMAP) still are too wide after the KNN process, the CCA model has been implemented in two 

phases: a first descriptive step, where the statistical power of CCA for all the possible 

parameters is inspected and a second predictive step where it is checked if the canonical 

variables associated to the selected parameters chosen during the first step are able to generalise 

the models in a cross-validation framework. 

More in detail, in the descriptive phase the canonical variables are computed using all the 31 

patients, setting the simple cca as chosen model of analysis implemented by the CCA/PLS 

Toolkit, with permutation framework option and 100 as number of permutations. No 
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normalisation is required because the Toolkit applies a z-score by default on the X and Y 

entries.  

During this descriptive phase also the associative effects are inspected: setting the alpha 

threshold of the associative effect as 1 all the possible layers of associative effect are calculated, 

in this specific case there are two layers. So, for every parameter, the CCA is applied two times, 

calculating two pairs of canonical weights and two associated p-values, one for the first layer 

of associative effect and the other one for the second layer calculated after the deflation. The 

second layer always has higher p-values than the first one, so just the p-values related to the 

first associative effect have been considered in the following analysis. Using all the patients 

and inspecting all the parameters’ ranges, the descriptive models become a sort of “best-case 

models” with which compare the results of the corresponding models coming from the 

predictive step. In this second step, instead, without changing the setting of the Toolkit, the 

generalizability of the models is assessed with a Leave One Out (LOO) method: one subject is 

removed from the dataset and the 30 remaining patients become the training set of the model. 

Once the canonical weights are computed on the training set, they are applied on the test set 

made of the removed subject calculating the corresponding canonical variables, then the 

process is repeated removing each time a different patient. At the end the two canonical 

variables of the descriptive step are compared with the corresponding two canonical variables 

coming from the predictive step: ideally it would be expected that they align along the identity 

line [65].  

In this case the mean and standard deviation values of the training set is saved before the Toolkit 

application, in order to normalise the test set with the training statistical descriptive indices. 

 

Different models have been inspected during the descriptive analysis, changing the 

dimensionality reduction method (PCA or UMAP), the score assessment (NADL or NADL-F) 

and inspecting the effect of the additional variables in the CCA (age, schooling, lesions’ volume 

and parcel damage) removing them one at a time and using the parameters’ ranges selected in 

the KNN analysis for the the descriptive step and the optimal ranges selected in the descriptive 

step for the sequent predictive step. 

The parameters selection in the descriptive phase is done controlling the p-values coming from 

the permutation test. In fact the CCA is computed for each parameter and so the permutation 

test, too. The p-value of a certain permutation test describes how strong the null hypothesis is 

rejected and so a p-value close to 0 from a permutation test indicates that the original dataset 

significantly differs from the permuted ones, suggesting that under those specific conditions, 
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the model is more likely to effectively capture and utilise the input information. This means 

that when it becomes too high (alpha threshold setted at 0.1) the parameter associated with the 

computation of that specific p-value can be excluded. 

With the same procedure can be also compared the p-values from different models, in particular 

removing one at a time the additional variables, it can be easily seen which one of them acts as 

a confounding variable raising the p-values. 

Regarding the UMAP-based models, to reduce the random effects of the algorithm introduced 

by the seed initialization and considering the computational effort, the analysis has been 

repeated 5 times. 

 

 

Fig. 11 - Pearson correlation on the columns of the first [31x8] damage matrix calculated averaging 
the parcels of each network (the subcortical regions are averaged together, called “Sub”). Some of the 

networks look highly correlated leading to multicollinearity problems. 
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3.4.4 Hierarchical clustering 

 

Once that the optimal models have been selected, an interpretation of their explanatory power 

can be done through a clustering procedure: the canonical variables U and V of both the models 

(i.e., 4 input features in total) were used as input for a hierarchical clustering made by the 

linkage MATLAB function, with average and cosine as method and distance metric, 

respectively. In this procedure, the canonical variables of the third iteration have been chosen 

for the UMAP model because they showed the highest correlation with respect to the other 4 

iterations.  

The clusterization has been done changing the number of clusters between 2 and 10 clusters 

(cluster function with MaxClust approach) and the best clustering solution has been selected 

evaluating them with three different methods offered by the evalcluster function: Silhouette (to 

maximise), Calinski-Harabasz (to maximise) and Davies-Bouldin (to minimise) criteria. When 

the best number of clusters is chosen, CCA model interpretation can be carried out by observing 

the average pattern of features of the subjects within each cluster.  
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4 RESULTS 
 

 

 
4.1 Preliminary inspections 

 

 
Right and left lesioned subjects’ performances  

At the beginning of the analysis some speculations have been made in order to organise and 

evaluate the feasibility of the works. One important issue to solve was to define the presence 

of relation between the side of the lesion (right or left) with the cognitive impairment studied 

to decide if the patients’ cohort has to be divided in two groups during the analysis. 

A preliminary observation of the scores’ distribution has been made by simply their histograms 

inspection that reveals that they don’t have a normal shape (Fig. 12). 

This could be caused by the intrinsic nature of the impairments studied, but it is also a common 

behaviour that recur in many studies where the number of patients is limited. 

Following the work of another similar research [67], it has been decided to compute the 

Kruskal-Wallis Test, a non parametric test used to evaluate the distribution of two populations 

basing on their medians, instead of the ANOVA test that requires the normal distribution of the 

variables. The test is computed by kruskalwallis MATLAB function for every single score, 

previously z-scored, defining the right and left groups and testing the null hypothesis of similar 

distribution of the two groups. 

Setting the threshold for p-value to 5%, the results show no significant difference between the 

left and right lesioned patients in three scores except for the Informal one (Formal: 0.488; 

Informal: 0.0236; Basic: 0.606; Advanced: 0.150), but after the correction for multiple 

comparisons made with Bonferroni-Holm's method all the scores accepted the null hypothesis 

with these corrected p-values: 0.975 (Basic), 0.451(Advanced), 0.975 (Formal), 0.095 

(Informal). Considering these results and that the number of patients is very poor, the analyses 

that follow are computed joining left and right patients in a unique group. 

 

Lesions evaluation and further patients exclusion 

Another important evaluation has been made, that consists in the inspection of the number of 

lesioned voxels for each region. As shown in Fig. 7 and from the frequency map of all the 

lesions in Fig. 3, the right lesioned patients look more compromised than the left ones. 
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This raises the problem that if the majority of a parcel is overlapped to the lesion the signal that 

comes from the fMRI of that parcel has to be considered altered by the lesion too. For this 

reason, three right lesioned patients too widely damaged are excluded from every analysis 

while three regions (Left Default Parietal Network 1, Right Visual Network 8, Right Default 

Temporal Network 3) with a high percentage (all more than 92%) of lesioned voxels have been 

removed before the vectorisation of the FCs. 

 

K-means inspection of the variability of UMAP scores 

UMAP has been chosen for this research thanks to its non-linear nature and strong scalability, 

but it is also a new algorithm and some preliminary attempts have been necessary to understand 

how it works. The initialization of the algorithm can be random, but in practice a spectral layout 

algorithm is implemented to stabilise it, increasing the convergence to the results [7]. However, 

it has been noticed that its output can be very different among trials and it is important to set 

its parameters properly to obtain good results. 

Since UMAP is comparable to a k-nearest neighbour algorithm, the main parameter is the 

number of k neighbours to consider. It is fundamentals because it changes the balance between 

local and global structure: if k is too small UMAP will concentrate on the local properties, 

potentially missing the big picture, while large k will push UMAP to focus on the relation 

between a huge number of data points, losing the fine details of the structure [63]. 

In order to understand how their variability can affect the UMAP’s output, some preliminary 

tests are performed: the matrices of structural direct and indirect disconnections were z-scored 

and given as input of the algorithm, while iteratively changing the number of neighbours in the 

range between 3 (minimum value for k) and the number of patients analysed. 

The resultant first two output scores are then clusterize with a k-means model (kmeans function, 

with a range of [2-10] possible number of clusters, whose optimum is chosen maximising the 

silhouette value). The k-means inspection is repeated multiple times observing how the 

outcomes can change on various trials, as it can be seen in Fig. 13. 

From the same figure it is possible to understand that a good clustering is reached for the lower 

values of k, in particular 4 neighbours are considered to be a good compromise from the visual 

inspection of the results, confirmed by the choice made in [17], where about 11% of the input 

data is used as value for k. Given the demonstrated dependence of the embedding output 

depending on the number of neighbours, a further assessment is necessary to better understand 

the optimum number of neighbours, so the KNN classifier was lately chosen as a more robust 

method of analysis. 
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Another important parameter in UMAP is min_dist that is setted to 0.1, following the work of 

other researchers [17] and confirmed by other evaluations made during the continuation of the 

analysis (see K-Nearest Neighbors results). 

 

 

 

 

 

 

Fig. 12 - Histogram showing the distributions of the values of the 4 scores, after z-scoring. 
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Fig. 13 - The two scores of UMAP’s output are plotted during the “preliminary inspection”, called 
respectively 1st Dimension and 2nd Dimension in the figures, with the colours that indicate the cluster 

in which every subject is located by the k-means model. In each row of the figure there are some 
examples of all the k neighbours checked, in three different trials: incrementing k the distribution of 

the data points is more sparse. The optimum number of clusters is chosen in the range [2-10] 
maximising their Silhouette values.  
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4.2 K-Nearest Neighbour results 

 

The KNN analysis has been done to try to reduce the parameters’ ranges of the two data 

reduction algorithms: PCA and UMAP. 

The method is used to inspect the accuracy related to each parameter and this is done for each 

one of the four scores. The overall numerical and financial abilities are evaluated averaging the 

accuracy of the respective scores (so averaging the Formal and Informal scores’ accuracies in 

a unique variable called NADL and averaging the Basic and Advanced scores’ accuracies in a 

unique variable called NADL-F), in order to find a first selection of the optimal parameter 

ranges reducing the computational cost of the following analyses. 

 

Concerning the PCA method the results are shown in Fig. 14: the maximum accuracy is reached 

with 8 PCs for NADL and 10 PCs for NADL-F. After these values the classifier seems to 

slowly decrease the performance till about 25 PCs, while looking at the single scores the slopes 

are very different from each other. For example just the NADL Formal score present high 

performance since the very beginning (the first PC show barely the same accuracy of the 

highest one calculated with 8 PCs), just the NADL-F Basic score has an evident single peak 

with very high accuracy and then proceeds with a flat trend, while all the other seems to have 

a local minimum peak around 25 PCs and then gain more accuracy in the latest PCs. 

It is also hard to see similarity among scores that originate from the same test (Advanced and 

Basic from NADL Short or Formal and Informal from the NADL-F Short), probably due to the 

intrinsic differences of the assessments of the two types of numerical and financial abilities, as 

explained in the “Cognitive Tests” chapter. 

 

Considering the exploratory aim of the KNN evaluation, which algorithm won't be actually 

included in the prediction model, wide ranges have been considered as valid, that are from 5 to 

25 PCs, for the PCA-based models. 

 

Regarding the UMAP data reduction inspection, there are two parameters that have to be 

considered: the number of output scores (also called dimensions) and the number of 

neighbours. The first ones have been evaluated in the range [2-30] for consistency with the 

number of PCs considered in the PCA model and also the second ones have been widely 

inspected, from 3 to 31, in order to inspect all the possible cases. 
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Looking at Fig. 15 can be seen that NADL and NADL-F are quite different in accuracy: NADL-

F has roughly half of the accuracy of NADL. The number of neighbours lead to variable 

accuracy around the first half of the range, while increasing its values the efficiency of the 

KNN is more stable. Instead, the number of output scores (or dimensions in the figures) always 

show the same trend: really flat in all the range, except considering 2 or 3 scores where there 

are the highest accuracy values, probably due to the fact that UMAP has been created with the 

purpose of visualisation of big datasets. Only the NADL Informal case shows the higher 

maximum value with 8 dimensions, although the trend is really flat along the dimensions (the 

peaks of accuracy always reach similar values), while it is more influenced by the number of 

neighbours. 

 

Due to the high temporal and computational cost of this inspection no other values has been 

checked, except the min_dist parameter in the UMAP setting where a value of 0.01 has been 

setted, but the related results show very similar accuracy values and trends for every scores, 

confirming the effectiveness of the choice of the default value (0.1). 

 

At the end of all the evaluation, the UMAP’s range of the number of the output scores is reduced 

to the first 2 and 3 dimensions, while the range of neighbours values has been taken from 6 to 

30, due to the more accentuated variability of the accuracy results. 
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Fig. 14 - Balanced accuracy values from KNN classifier with PCA, calculated for the four separated 
scores: Formal (A), Informal (B), Base (C), Advanced (D). The overall financial abilities accuracy is 

calculated averaging Advanced and Basic scores (E) and the numerical one averaging on the Formal 
and Informal scores (F). 
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Fig. 15 - Balanced accuracy values from KNN classifier with UMAP, calculated for the four separated 
scores: Formal (A), Informal (B), Basic (C), Advanced (D). All the assessment has been repeated 30 

times and then averaged on the iteration to have reliable results, for all the four single scores. Then the 

overall numerical and financial scores have been obtained averaging the Formal and Informal scores 
of the NADL Short test (E) and Basic and Advanced scores from NADL-F Short test (F). 
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4.3 Canonical Correlation Analysis results 

 

In the first phase, a descriptive analysis of the full dataset is computed. From the inspection of 

the p-values calculated iteratively for each parameter, it is possible to select the models that 

best describe the associative effects between input and output variables. 

Two separate CCAs were conducted: the numeric abilities are inspected using as input the 

Formal and Informal scores (again this analysis will be called NADL), while the financial 

abilities are evaluated using Basic and Advanced scores as input (the results will be referred as 

NADL-F). 

For each of the two abilities, the impact of each additional variable (age, schooling, lesion 

volumes and parcel damage) has been evaluated removing them one at a time from the CCA 

input. The results showed that only the parcel damage has a significant effect on the analysis, 

so for each ability, a model with all the additional variables (called “All”) and a model without 

the parcel damage information (indicated as “-Loads”) were computed, in the ranges of 

parameter identified in the previous KNN classification analysis. The Fig. 16 shows two 

summary schemes of all the models that were assessed in this descriptive step. 

From the inspection of the p-values related to the associative effects in the descriptive phase, 

it has been noticed that they are usually quite high, as a result, given the limited sample size, 

the 0.1 threshold was selected for almost every inspection. 

 

Starting from the PCA-based models, the ones without the parcel damage information have 

clearly better performance, showing lower p-values for more PCs than the models with all the 

variables (see Fig. 17). For better clarity, Tab. 3 reports the selected models (i.e., the 

corresponding number of PCs) that remain under the 0.1 threshold. 

               Ranges: 

 
 
 

PCA 

 
NADL 

All 5, 6, 12, 14, 16 

-Loads 5-11, 14-18, 21 

 
NADL-F 

All 11, 16 

-Loads 5-13, 17, 18 

 
Tab. 3 - All PCA-based models are evaluated in the predictive step with the ranges of PCs listed in the 

last column. 
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Regarding the UMAP-based models, the averaged p-value on the 5 iterations of all the NADL 

models (“All” and “-Loads”) and NADL-F “All” models exceeded the 0.1 threshold for all the 

number of neighbours and both dimensions, so they are excluded from the predictive step 

analysis. 

Just the NADL-F “-Loads” model performs well, but all the neighbours remain almost always 

under the threshold both for 2 and 3 dimensions (Fig. 18). 

In order to select the best parameters, it was considered the frequency of time that the p-value 

for a specific number of neighbours remains under the 0.05 threshold in all the 5 iterations. 

When the threshold is not exceeded in all the iterations, then the corresponding number of 

neighbours is selected (Fig. 19). Even in this case, no differences could be observed for the 

“2D” and “3D” models because they have a similar number of recurrences, so both were 

analysed in the predictive step. 

Again, the selected neighbours for the two models are listed in Tab. 4. 

 

                  Ranges: 

 
UMAP 

 
NADL-F 

 
-Loads 

2D 12, 19, 21, 29 

3D 12, 13, 27, 29 

 
Tab. 4 - Just two UMAP-based models are evaluated in the predictive step with the ranges of 

neighbours listed in the last column. Both ranges are very similar. 
 
 
Now that the computational costs have been reduced in the descriptive step, the 6 models 

selected were evaluated in the predictive phase.  

Fig. 20 shows the correlation between the canonical variables (U and V) calculated in the test 

set extracted from the predictive step. Ideally their correlation should reach the values of 

correlation calculated among the same canonical variables of the descriptive step. The 

threshold of 0.5 is settled, meaning that the models should be good enough to have at least 

roughly half of the predictive power of the models of the descriptive step, which correlations 

are close to the value of 1. This threshold is chosen after observing similar results in paper [27].  

Regarding the prediction of the numerical abilities, just the NADL “-Loads” model based on 

PCA data reduction has good performance, while the NADL “All” never reaches the threshold. 

Concerning the financial abilities just the two UMAP-based models get closer to the threshold 
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value, but if the mean values on the 5 iteration are considered just the “2D” overcome the 0.5 

value. Moreover the standard deviation of the “2D” model is always less than the “3D” one, so 

the former case was chosen as the best model for the prediction of the financial skills.  

 

Finally, the parameters corresponding to the maximum value of the two selected models were 

chosen: 6 PCs for the PCA-based prediction model for numerical skills and 12 neighbours and 

2 dimensions for the UMAP-based prediction model for financial abilities. 

 

            
 
 

Fig. 16 - Schemes of the models analysed in the descriptive CCA, for UMAP and PCA methods of 
data reduction. NADL and NADL-F are models that want to assess numerical and financial skills, 

respectively. “All” and “-Loads” refer to the type of input in the CCA: with all the additional 
variables or removing the parcel damage information. In the UMAP-based models are evaluated the 

number of neighbours in the range [6-30], with 2 or 3 number of output scores (“2D” or “3D”), while 
in the PCA-based model are evaluated the number of PCs in the range [5-25]. 

 
 
 

       
 
 
Fig. 17 - Plot of the p-values of each principal component considered in the descriptive CCA based on 
PCA data reduction, for NADL (left) and NADL-F (right). The blue line indicates the model with all 
the confounders variables, while the red line represents the p-values of the model without the parcel 

damage data.  
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Fig. 18 - Plot of the p-values of each neighbour considered in the descriptive CCA based on UMAP 
data reduction. The number of UMAP’s output scores (blue lines for 2 dimensions and red lines for 3 
dimensions) wasn’t significant, while the removal of the parcel damage information was fundamental 

in the NADL-F “-Loads” models. 
 

 

 
Fig. 19 - Frequency of recurrences of the p-values remaining under the 0.05 threshold on the 5 

iterations, for the NADL-F “-Loads” models. No significant differences on the “2D” model (red) and 
“3D” model (blue) can be seen, so both models were analysed in the predictive step, for the number of 

neighbours that always remain under the threshold. 



56 

 

   

 

                 

 

 

Fig. 20 - Figures of the correlation between canonical variables of each model selected for the 

predictive CCA. The points of the UMAP models represent the average values on the 5 iterations and 
the tails show the respective standard deviations. On the left there are the correlations of the variables 

calculated in the descriptive step (using the full dataset) and on the right there are the correlations 
among the variables calculated with the LOO method (using the test set). Just the PCA-based NADL 

“-Loads” and UMAP-based “-Loads” (2D and 3D) pass the 0.5 threshold. 

 
 
 
 
 



57 

4.4 Models’ interpretation by hierarchical clustering 

 

Thanks to the clusterization procedure it is possible to to give an interpretation of the models. 

First of all the optimal number of clusters has to be chosen: two over three of the methods used 

showed 3 as the best hierarchical clustering solution (Silhouette and Calinski-Harabasz), while 

the Davies-Bouldin method suggests 9 as a good choice, but considering that in this latter case 

there is a local minimum near the value 3 of number of clusters, 3 was chosen as the optimal 

choice (Fig. 21). 

Moreover, the selection of fewer clusters can be helpful to simplify the interpretation of the 

models. A more accurate investigation can be done on further improvement of the models’ 

effectiveness. 

Fig. 22 represents the canonical variables of the two models, in which each subject included in 

the three clusters is marked with different colours. In addition, in the same figure the right 

lesioned patients are separated from the left lesioned ones, so that can be noticed that the cluster 

1 has almost only right subjects (85.7%), while the other two clusters are more heterogenoeus 

in terms of lesion location (63.6% and 61.5% of left lesioned subjects in cluster 2 and cluster 

3).  

In order to investigate the characteristics of the 3 groups of patients, the average of the input 

variables used in the CCA has been computed: Fig. 23 show the mean values calculated over 

the subjects included in each cluster of all the variables used in the CCA for the two models 

(i.e. the 6 PCs for the NADL PCA-based prediction model, the 2 dimensions for NADL-F 

UMAP-based prediction model, the 3 confounding variables common to both models and the 

4 cognitive scores). 

All the variables were z-scored before the calculation of the mean values. 

 

Starting from the inspection of the images from 24 to 30, some consideration on the 3 groups 

of patients can be done.  

Regarding the PCA-based NADL “-Loads” model:  

● The first group (cluster 1, green) has the best numerical performance (Fig. 23 D), in 

particular in the Formal score. In fact, also looking at the weights calculated by the 

CCA (Fig. 24 B), the Formal score seems to have more explanatory power than the 

Informal one.  
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This positive behaviour can be also mathematically confirmed looking at the (almost 

all) negative values of the canonical weights that have to be multiplied by the PCA 

scores, which mean values are alway negative again, in order to get positive values of 

the canonical variables U and V visible in Fig. 22 (the green patients are always in the 

positive first quadrant of the correlation plane). 

In this group the schooling value of the subjects is really high (Fig. 23 C), more than in 

the other 2 groups and the lesions are the smallest in size, confirmed by the lesion 

frequency map in Fig. 28. 

● The second group (cluster 2, blue) shows opposite characteristics of the first one since 

it includes the patients with the worst numerical abilities. Again the NADL Formal 

score seems to be more involved in the correlation than the Informal one (Fig. 23 D), 

confirmed by the related CCA weight (Fig. 24 B). 

Looking at Fig. 23 (C) these bad performances can be associated with the volume of 

the regions, in fact the second group has the highest mean lesion volume, even if this 

seems not to have a strong impact on the prediction because the related canonical weight 

is quite low (Fig. 24 A). The same consideration can be done for the age: here the 

patients have the highest age, but in this case the associated canonical weight (the one 

with the highest absolute value in the confounding variables group) probably leads to a 

stronger association between the bad performance and the age, rather than the lesion 

volume. 

● The third group (cluster 3, red) seems to have mixed features: the numerical skills of 

the subjects are just a little above the average values (Fig. 23 D), probably due to the 

fact that they are the youngest group but with the lowest number of years of schooling 

(Fig. 23 C). The value of the fourth PC in Fig. 23 (A), the one with the highest canonical 

weight, is around the average value, while the other two groups seem to be characterised 

by patients that show high absolute values of that PC. Instead, the second PC looks 

more important in the identification of the characteristics that define this cluster.  

 

Regarding the UMAP-based NADL-F “-Loads” model, similar considerations to the previous 

model can be done, but it has to be noticed that the canonical weights (Fig. 24) are very different 

from the ones of the PCA-based model: in this case the confounding variables have more 

predictive power, with an opposite trend to the previous model. In fact, considering just the 

three confounding variables, in the linear based model the age has a stronger impact than 

volume, while in the non-linear one the volume weight overcomes the one of the age. Moreover 
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it is easy to note that in the PCA-based model the confounding variables have less considerable 

weights respect to the fourth PC, while in the UMAP based one they have the strongest impact, 

with values similar or more high than the two UMAP scores. So, in this case, the UMAP-based 

model seems to focus more on the additional variable rather than the connectivity information, 

with particular attention on the volume of the lesion. 

Repeating the inspection of the characteristics that distinguish the 3 groups, it can be observed 

that: 

● The first group of patients (cluster 1, green) has good performance in the financial test, 

(Fig. 23 D) in particular in the Advanced NADL-F score. The confounding variables 

are the same as the PCA-based model and analogous observations can be done also in 

this case. So, in this group there are the subjects that show positive values on the two 

UMAP output scores (Fig. 23 B), with high schooling and small lesions (Fig. 23 C).  

● The second group (cluster 2, blue) has bad performance in the Basic NADL-F score, 

while the Advanced one has values that are similar to the average (Fig. 23 D). The 

subjects are characterised by wider lesions and high age values (Fig. 23 C), with UMAP 

scores really close to the mean values (Fig. 23 B). 

● The third group (cluster 3, red) has good performance in the Basic NADL-F test, similar 

to the one of the first group, but low scores in the Advanced test (Fig. 23 D). The 

patients have generally negative UMAP scores (Fig. 23 B) and are characterised by 

very poor schooling values and younger age (Fig. 23 C). 

 

Looking at the connectivity related to the 3 clusters, it can be noticed that the mean direct SDC 

matrix (Fig. 25) and indirect SDC (Fig. 26) of the first group show clear high values of damage 

in the right hemisphere (indeed 85.7% of patients are right lesioned in this group, see fig. 28 

A) and inter-hemispheric disconnections. This leads to the intra-hemispheric segregation that 

is visible in the mean FC (Fig. 27). The most disconnected networks are the Somatomotor, 

Dorsal Attention and Ventral Attention. 

In the second group the mean direct SDC matrix shows disconnection in particular among 

regions of the same hemisphere that cause a high amount of indirect disconnection visible in 

Fig. 26, involving many networks. The mean FC matrix (Fig. 27) has instead very low activity, 

coherent with the poor performance of the numerical and financial tests. 

The last group has direct SDC that doesn’t show evident spatial patterns, while comparing the 

indirect SDC with the one of the second group can be noticed that there a complementary 

configuration emerges where less disconnections characterise the Left Sensorimotor, Left 



60 

Dorsal Attention and Right Visual Networks (Fig. 26), that are instead highly disconnected in 

the second group. Moreover the mean FC has higher values coming from the inter-hemispheric 

networks, especially highlighting links between sensory and cognitive areas (Fig. 27). 

 

Fig. 21 - Plot of the values coming from the three methods used to find the best clusterization: two 
over three methods show that 3 is the optimal number of clusters. Also in the Davies-Bouldin method 

that has the best value with 9 clusters, seems to show a local minimum near 3. 

 

 

   

Fig. 22 - Figure of the canonical variables for the two models. The colours identify the patients of 

each of the 3 clusters, while the points indicate the right lesioned patients and the diamonds the left 
lesioned ones. 
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A        B 

   

 

C        D 

   

 

 

Fig. 23 - Mean values of the variables used in CCA, calculated for each cluster. Figures A, B, C 
represent the X input (6 PCs for the NADL “-Loads” model in A, 2 dimensions for the NADL-F “-

Loads” model in B and the three confounding variables that are used in both models in C) and figure 
D shows the four cognitive score (Basic and Advanced for NADL-F “-Loads” model and Formal and 
Informal for NADL “-Loads” model). The legend also shows the percentage of right lesioned patients 

in the first cluster and the left lesioned patients in the latter two. 
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A       B 

   

 

 

Fig. 24 - Figure of the canonical weights wx (A) and wy (B) for the two selected models: NADL PCA-

based “-Loads” with 6 PCs and the third iteration of NADL-F UMAP-based “-Loads” with 12 
neighbours. 
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Fig. 25 - Average of the z-scored direct SDC matrices of the patients of each cluster.  
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Fig. 26 -  Average of the z-scored indirect SDC matrices of the patients of each cluster.  
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Fig. 27 - Average of the z-scored FCs of the patients of each cluster.  
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  B 

   

 
  C 

   

 
 

Fig. 28 - Frequency maps of the patients’ lesions divided in the 3 groups (cluster 1 in A, cluster 2 in B 
and cluster 3 in C). The colorbar indicates the frequency of lesioned voxel, with maximum values of 

71.43% in cluster 1, 45.45% in cluster 2 and 30.77% in cluster 3. 
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5 DISCUSSION  

 

The purpose of this work was to create a model for the prediction of numerical and financial 

abilities, embedding and comparing the effectiveness of the linear PCA and the non-linear 

UMAP data reduction algorithms, so as to highlight features helpful in the understanding of 

the brain behaviour dealing with numerical and financial tasks. Considering the results of the 

work that has been done, many interesting aspects can be noticed. First of all, while the 

numerical abilities can be predicted using a model based on the linear PCA data reduction, the 

financial skills can be assessed using a model based on UMAP data reduction, that is a non-

linear method. This means that probably non-linear approaches are able to identify peculiar 

characteristics in the connectivity that linear methods can’t find. 

To better understand the impact of the two data reduction methods a more detailed inspection 

could be done to interpret the PCs by checking their loads and the UMAP dimensions observing 

the graph created by the algorithm. In fact, interesting conclusions could be deduced by its 

structure like has been done in [74], where it has been found out that UMAP distributes the 

disconnectome profiles of the patients based on the lesion location and the commonly 

disconnected white matter tracts. 

Considering the confounding variables, both models show that the information about the parcel 

damage can hinder the good results of the analysis, but since the two abilities are made up of 

two very different scores (Basic and Advanced for financial skills and Formal and Informal for 

numerical skills evaluate abilities that differ in complexity) more detailed inspection should be 

made on each of the four scores. Regarding the other variables (age, schooling and lesion 

volumes) the canonical weights show very different behaviours in the two models, indeed they 

have a notable impact in the UMAP-based model for the prediction of the financial abilities, 

while they are less considered in the PCA-based model for the assessment of numerical skills. 

The optimal number of neighbours in the UMAP-based model is 12 that is quite high 

considering the number of patients, but confirmed from the works in other research topics 

where taking less than 10 neighbours has been seen to produce too much focus on the structural 

details of the dataset [72] and near to the algorithm’s default value of 15. 

The strong scalability of UMAP is confirmed considering that just 2 dimensions are needed to 

create the related models against the 6 PCs used in the selected PCA-based model for the 

numerical skills prediction.  
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From the inspection of the p-values related to the associative effects in the descriptive CCA 

step, it has been noticed that they are usually quite high, so the 0.1 threshold is selected for 

almost every inspection. It can be noticed also that the p-value of the final selected UMAP-

based model for financial skills prediction has lower p-value (0.0119) than the PCA-based 

model for numerical skills (0.0297) indicating the superiority in statistical effectiveness of the 

non-linear method also for few observations. Probably adding more patients in the analyses 

will increase significance allowing the inspection of parameters with more statistical relevance. 

 

From the inspection of the clustering analysis results it seems clear that, despite the statistical 

inference made in Preliminary inspection, there is a link between the side of the lesion and the 

patients’ performance in the tests. In fact the first cluster, the one that shows the best 

performance, is composed of almost only right lesioned subjects, characterised by smaller 

lesions, high schooling values and greater functional activity on the left hemisphere. In fact, 

intra-hemispheric segregation that is visible in the mean FC is a common event in stroke 

patients [24] [77], in this case in particular in the left hemisphere, that compensate for the lost 

functionalities in the right part. Some studies also demonstrated that the preservation of the 

functionality in the left  hemisphere is essential for numerical abilities, correlating the deficit 

in numerical processing with the presence of lesions in the left insular cortex [75] and left 

angular gyrus [10] [75]. Moreover as it has been told in the introduction, solving numerical 

tasks involves many other areas of the brain, linked with parietal and frontal networks, or 

related to long-term or working memory [10], so smaller lesions not affecting frontal regions 

may have a lower impact on numerical deficits. Similar consideration can be done also for the 

financial abilities, since these patients have good performance also in the NADL-F Short test 

and from literature can be noticed that financial skills have been associated again with regions 

located in the angular gyri [76].  

On the other hand, the second cluster is composed of patients with the worst performance, 

larger lesions and older subjects and it is confirmed by the FC matrix where a very low 

activation is visible at a whole-brain level. Looking at the frequency map (Fig. 28 B), the 

lesions seem to be very close to the Corpus Callosum, essential in the connection among the 

two hemispheres [75]. This group also has a wider amount of direct disconnection within the 

left hemisphere, that lead to indirect disconnections, in particular in the Sensorimotor and 

Dorsal Attention Networks, the latter one associated with the IPS, core locus of numerical 

processing [10]. The low degree of indirect disconnections within sensorimotor, Dorsal 

Attention and Ventral Attention seems to be fundamental in the third group, whose FC seems 
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to be focused on inter-hemispheric integration. This phenomenon probably enhances the 

performance in numerical skills and Basic financial abilities with respect to cluster 2 (as can 

be suggested in [78] for motor impairment and in [75] where it is noticed that connection 

between left and right hemispheres is crucial in calculation tasks), although in this group are 

gathered patients that have very bad Advanced NADL-F scores. 

 

  

 

 

 

 

6 LIMITATIONS 

 

Despite such preliminary interesting findings, several limitations need to be pointed out. The 

implementation of the models still is not concluded: an accurate evaluation of the cognitive 

score effectively predicted is needed through a validation step by increasing the sample size. 

In fact, the most important limitation regards the number of patients, which is too limited to 

create a good, reliable model, leading to overfitting issues. Moreover, the aim of this thesis is 

to create a prediction model for numerical and financial skills that, as explained in the 

introduction, rely on widely spread networks over the cortex. As a result, cognitive deficits 

caused by the stroke can be very different from patient to patient. Creating a model with such 

a heterogeneous sample can lead to difficulties that are increased by the small number of 

available patients.  An L1 or L2 regularisation of the models can be done in order to damp these 

problems, but the inclusion of new patients is essential for the enhancement of the results. 

Indeed, despite their promising results, non-linear methods have to be well understood in order 

to be properly applied. A lot of time has to be spent in the inspection of the best parameters in 

order to understand their impact on the analysis. Moreover, additional computational cost and 

time is needed to have stable results, iterating various times to avoid fluctuation on the outputs. 

All these issues can hinder the reproducibility of the analyses, so it is important to have a clear 

understanding of the chosen algorithm. 
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7 CONCLUSIONS 

 

From these first analyses it can be asserted that nonlinear dimensionality reduction methods 

can represent a good solution to reach a further assessment in the investigation of brain 

functional behaviour, especially when complex cognitive scores like the financial one, have to 

be inspected, showing superior results to the common and well consolidated PCA. Moreover, 

the great scalability property of algorithms like UMAP can be fundamental to reduce the 

dimensionality of the dataset (for instance the selected UMAP-based model use just 2 

dimensions instead of the PCA-based one that need 6 PCs), even if its non-linear nature lead 

to interpretation difficulties of the outputs. On the other hand, linear methods like PCA are 

simpler to use and their outcomes are more stable and easier to understand. 

Considering the results of the two models, it seems clear that right stroke patients have more 

probability to preserve numerical and financial abilities which appear to be tightly connected. 

Further investigation could be interesting in order to better distinguish the differences among 

patients of the second and third clusters, since the assessment done for these two groups of 

patients seems to highlight important differences in the SDCs and FCs, with an interesting 

involvement of indirect interactions within and between Left Sensorimotor, Left Dorsal 

Attention Networks and Right Visual Network and inter-hemispheric functional and structural 

connectivity that also seems to play an important role. 
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