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1
Introduction

How the Galaxy formed and evolved has always been an intriguing topic in astronomy. It
leads us to understand not only how the universe was formed and evolved on a large scale but
is also connected with the formation and evolution of sub-systems such as open/globular
clusters and debris of dwarf galaxies at small scale. Through studying kinematic, photomet-
ric and spectroscopic properties of these small stellar components, it is possible to under-
stand not only their own evolution history but also how the evolution of the Milky Way
influenced them.
Clusters are groups of stars formed together from the same giant molecular clouds and

are bound to each other due to strong gravitational attraction. They are categorized into
open clusters (OCs) and globular clusters (GCs). Open clusters are young systems consisting
of gas, dust and about 102 − 104 stars with age mostly below 1 Gyr. Mainly located on
the galactic disk, OCs rotate around the Milky Way in nearly circular orbits, and new OCs
are still continuously forming from the giant molecular clouds in the disk. On the other
hand,GCs are very old (usuallymore than 10Gyr) andmassive systems, consistingof roughly
104−106 stars, and with no presence of gas, dust or young stars. They distribute in the halo
and the bulge.
Nowadays, theMilkyWay contains about 105 OCs and 150 GCs. They can be studied as

either individual systems within which thousands of stars evolve differently or Galactic sub-
systems with different populations. Through probing the spatial distribution, kinematic
properties, and chemical composition of these systems, the evolution of their surrounding
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Galactic environments may become clear. In this thesis, GCs are the main group to be stud-
ied. Being one of the oldest systems in the galaxies, GCs witness formation of ancient Galac-
tic halo, bulge and disk/bar, playing an important role in building the Galactic archaeology.
The thesis is organized as follows. Ch.2 is a brief summary of the most important charac-

teristics of theGalactic GCs. Themain subject of this thesis, FSR 1758, is focused inCh.2.7,
on the basis of the previous research in which its photometry and spectroscopy were stud-
ied carefully. In Ch.3, general procedures of deriving orbits of clusters are introduced and
are applied to FSR1758. Results of the orbital calculation are presented in Ch.4 and finally
conclusions are made in Ch.5.
The purpose of this thesis is to cast light on the origin of FSR1758 by studying its orbit,

and connect it to the characteristics of its photometry and spectroscopy, in order to thor-
oughly explore its history.
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”I look up at the night sky, and I know that, yes, we are part
of this Universe, we are in this Universe, but perhaps more
important than both of those facts is that the Universe is in
us. When I reflect on that fact, I look up—many people feel
small, because they’re small and the Universe is big, but I
feel big, because my atoms came from those stars.”

Neil de Grasse Tyson 2
Globular Clusters

The first pioneering step of GCs dates back to 100 years ago, when Shapley (1918)
worked on 69 Milky Way GCS and made the first reliable estimate of our distance to the
Galactic center dismounting the concept that the Sun is at the center. Though the result
was about two times from the present value, later estimates with better data using the same
technique led to better estimation of about 8 kpc. From then on, the number of GCs in-
creased over 100 in the mid 20 century and reached 143 in 90s (Djorgovski, 1993). So far,
157 GCs are listed in the catalog by Harris (2010), which is a revision of Harris (1996), but
there may be more hidden behind the Galactic bulge. Throughout the century, GCs have
been proven to be irreplaceable objects when studying the evolution of stars and clusters as
well as galaxy formation/evolution.

In the first part of this chapter (Sects. 2.1-2.6), the up-to-day general knowledge GCs is
summarized, including their spatial distribution, appearance, chemical abundance and kine-
matics. Then in Sect. 2.6, three populations of GCs are briefly introduced by connecting
properties in previous subsections, which is crucial when exploring the origin of GCs. Fi-
nally, the last part of the chapter Sect.2.7 described the basic characteristics of main subject
in the thesis, the GC FSR 1758.
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Figure 2.1:Leftpanel:SpatialdistributionofglobularclustersintheinnerpartoftheMilkyWay,projectedontotheY-Z
plane.HeretheSunandGalacticcenterareat(0,0)andwearelookingalongx-axistowardthecenter.Rightpanel:Spa-
tialdistributionofclustersintheY-ZplaneoftheouterregionoftheMilkyWay.ThedataisextractedfromBaumgardt
etal.(2019).

2.1 Spatial distribution of GCs

Shapley (1918) first found the Galactic system of clusters distributed spherically towards the
center of theGalaxy by utilizing 69GCs. It is found afterwards thatGCs can be divided into
different populations based on different spatial distribution (Kinman 1959, Morgan 1959,
and Harris 1976). Here, we re-plotted the spatial distribution of 154 GCs with Galactic po-
sitions taken from Baumgardt et al. (2019), the most complete collection of proper motions
and line-of-sight velocities of GCs to date owing to the latest Gaia data release 2 (Gaia DR2)
astrometry (Gaia Collaboration et al., 2018). It’s shown in Fig.2.1.

As a result, in respect of distances the distribution of GCs can be divided into two groups.
For those within Rgc ≈ 40 kpc, they show a roughly spherical spatial distribution while at
distances beyond 40 kpc, the remaining outermost-halo clusters delineate an extended and
asymmetric planar distribution that was speculated to have an origin and history outside the
Milky Way (e.g., Harris 1976; Zinn 1985). Later on, the spatial distributions of different
populations in relationship with kinematics and chemical abundance will be introduced.
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2.2 Appearance of GCs

Globular clusters are highly concentrated systems, with 104 − 106 stars centered in a few
parsec region. The typical stellar density in the center ofGCs is104M⊙pc−3, while the one in
the solar neighborhood is 0.1M⊙pc−3 (Gregersen, 2010). In order to quantitatively describe
this spherical and dense structure, King (1962) provided amodel in which the appearance of
GCs are described by the core radius and tidal radius.
A core radius describes the central concentration of GCs by measuring the half surface

brightnesswith respect to the center part; at tidal radius, the surface density ofGCs drops to
zero, at which clusters’ stellar densities are indistinguishable from the Galactic background.
For a relatively isolated galaxy, its surface brightness profile extends and gradually mixes with
the background sky. On the contrary, as a cluster orbits the Galactic center, it experiences
tidal forces and gradually get stretched out by these tidal forces. Beyond tidal radius, stars
will escape from the cluster potential. In addition, stars evaporate from clusters when they
gain enough kinetic energy and get ejected from the cluster entirely. Both situations make
the boundary of clusters sharp. With the core radius and tidal radius, it’s easier to compare
the degree of concentration for different GCs with their concentration which is defined as:

c ≡ log10(rt/rc). (2.1)

For GCs, the typical value of core radius is rc = 1 pc, tidal radius rt = 35 pc, and c ranging
from0.75 to 1.75. Themost giant andmassive globular cluster in theMilkyWay,ωCen, has
rc = 4 pc and rt = 70 pc (Sparke and Gallagher, 2007).

2.3 ColorMagnitude Diagram of Globular Clusters

It was believed that stars inside clusters formed from the same giant molecular cloud, thus
they possess the same age, similar chemical element abundance, and common kinematics.
As a consequence, they constitute Simple Stellar Population. Because of this feature, GCs
have been a good laboratory for testing stellar evolution models. A useful tool to study GCs
is the Color-Magnitude Diagram (CMD). It was originated from Hertzsprung-Russell (or
H-R) diagram which shows the distribution of stars in terms of luminosity and tempera-
ture. CMDs are plotted using observation data in the relationship of magnitude against
color. They provide information of ages, chemical abundance, distances, and evolution of
clusters as well as stellar evolution of individual stars. Given the color and magnitudes of
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members of a GC, its CMD reveals the snapshot of the evolutionary phases of stars with dif-
ferent masses at the same age and composition. Through isochrone fitting of the observed
CMD of a GC, its distance, age, and chemical abundance are able to be determined.

Since the ages of GCs are typically tens of billions years, their CMDs have following sig-
nificant features. First is the Zero-Age Main Sequence (ZAMS). These stars are composed
of low-mass stars which are undergoing hydrogen burning in residing cores. On top of the
MS stars is the turn-off point (MSTO). At this stage, stars have used up hydrogen fuel in the
core and will start to move to the right of the CMD. The age of clusters can be estimated at
the turnoff point. After this point, stars move rapidly right across the Sub-Giant Branch
(SGB) until theRed-Giant Branch (RGB)where stars start burning hydrogen in a shell.

As the hydrogen-burning shell gradually moves outward and the inert helium core gradu-
ally increases, the red-giant branch (RGB) moves steadily upward. An important feature at
this stage for typical GCs isRGB bump (RGBb), where evolution is paused temporarily as
H-burning shell crossed the H-abundance discontinuity left by the inner penetration of the
outer convection zone.

At the top of RGB locate the brightest stars of GCs, whose helium in the cores are ignited
and readjust themselves to a new equilibrium on theHorizontal Branch (HB), where stars
have near constant luminosity in different temperatures. If a cluster has highermetallicity or
lower age, its HB stars will have larger hydrogen envelopes and lower surface temperatures
and will thus be on the red side of the horizontal branch (RHB). But if a cluster is very old,
or has low metallicity, or its stars have suffered variable mass loss from their surfaces along
the RGB ascent, then the residual hydrogen envelopes will be small, the stars will have high
surface temperatures, and the horizontal branch will extend to the blue (BHB) side of the
CMD. In the middle of HB lies a nearly empty strip where stars are called *variable stars.
During this phase stars are not stable and evolve so fast that the probability to find them is
small. However, RR Lyrae variables are often found in this strip of GCs.

The last major phase of nuclear burning for GC stars is the Asymptotic Giant Branch
(AGB) in which two fusion shells– hydrogen to helium and helium to carbon– are burning
on top of an inert core. During this phase, stars experience strong stellar winds blowing off
their outer layers, leaving centralWhite Dwarfs (WDs) in the middle of planetary nebulae.
Eventually,WDsbecome faint and cools down, ending their evolution along theWDcooling
line, a sequence almost parallel but about 4 mag fainter than the MS.
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2.4 Metallicity of GCs

As mentioned in the last part, stars in the same cluster were thought to form from the same
molecular clouds and therefore their chemical abundance, or metallicity, is the same. While
stars possess the same characteristics, different clusters have different ages and chemical abun-
dance. This is because when clusters born in the earlier period of the universe, only elements
such as hydrogen, helium, or lithium existed from Big Bang nucleosynthesis and therefore
the clusters don’t have heavy elements which are calledmetals in astronomy. As stars in these
clusters evolved to the late stages of stellar evolution, massive stars suffered great stellar winds
and turned into supernovae that blew out their outer layers with metal, enriching the inter-
stellar medium and providing recycling materials for the birth of new stars which constitute
clusters with younger ages and higher metallicity. Consequently, from the chemical abun-
dance of clusters, the ages of clusters can be observed.
Quantitatively, the metallicity of a star is defined as the logarithm ratio of the total Iron

content of the star with respect to the one of our Sun:

[Fe/H] = log10(Fe/H)star − log10(Fe/H)Sun (2.2)

The ratio can be obtained from the analysis of spectroscopy inwhich different elements have
specific wavelengths of absorption lines. As the development of telescopes advances, it is
possible to spatially resolve stars in the clusters and therefore to obtain spectra of individual
cluster members. Under this definition, stars with negative metallicity are those with less
metal abundance than the Sun, and those with higher metal abundance than the Sun have
positivemetallicity values. Withmetallicity values of clustermembers, the one for the cluster
can therefore be decided by averaging values from its members.
Nevertheless, it is until recent two decades that almost all ancient and massive GCs show

Multiple Stellar Population (Gratton et al., 2012), which suggests that stars in one cluster
in fact formed in different periods of time. With chemical abundances from high resolution
spectroscopy, stars show distinctive anomalies in in light elements such as He, C, N, and O
as well as Na, Al and in some cases Mg (Gratton et al. (2004) and references therein). The
most significant variations are N-C and Na-O anti-correlations. This chemical abundance
variation is revealed in theCMDs of clusters, splitting or broadening theMS, SGB andRGB
sequences.
While the possible cause of multiple population is still in debate, the most accepted sce-

nario is that when massive stars in the first generation evolved into supernovae, they first re-
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moved some of the remaining gas in the cluster. Later on as some stars subsequently evolved
intoAGB, they blew out stellar winds that were not fast enough to escape the cluster, enrich-
ing their host cluster with gas that formed the ingredients of next generations. Therefore,
the second generation stars which formed from material polluted by the ejecta of the first
generation population show different chemical composition.

2.5 Kinematics of GCs

With strong gravity bound in between each other, members of a cluster share common kine-
matics, moving together around the galactic center while inside the cluster, stars are free to
move about randomly and interact with one another. Observational measurements related
to kinematics include proper motions in right ascension µα and in declination µδ, as well
as radial velocities vr and the line-of-sight velocity dispersion σLOS .
Proper motions are velocities projected on the celestial sphere and can be obtained from

multiple observations. Radial velocities are velocities of stars or clusters toward or away
from us. From spectroscopy analysis, radial velocities could be derived from the redshift
of blueshift, z, of spectral lines:

z =
λ− λ0
λ0

≡ δλ

λ0
=
(1 + vr

c

1− vr
c

)1/2
− 1 ≈ vr

c
(2.3)

The approximation in the last steps holds for vr << c, which is well satisfied for all GCs.
Because a cluster as a whole moves in the same relative velocity toward or away from us, its
radial velocity is derived by averaging the radial velocities of its members. And the rotational
velocity of the cluster can be derived from its radial velocity using the following relation (Ar-
mandroff, 1989):

vr = vrot cosψ, (2.4)

where vr is the radial velocity with respect to the observer at the Sun and ψ is the angle be-
tween vr, the rotational-velocity vector of the cluster, and the line of sight. σLOS is the dis-
persion of radial velocities of each star from the mean radial velocity of the cluster system.
Usually, for stars residing in the galactic disk, they show more rotation then randommo-

tion, while stars in the halo move much more randomly with less rotation signatures. This
characteristic allows the classification of galactic systems. For instance, Zinn (1985) divided
GCs into halo population and bulge/disk population from radial velocities and line of sight
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velocity dispersion. Most importantly, because of this property, that different systems ex-
hibit different kinematics behavior, we are able to unveil themystery of the origin and history
of the MilkyWay GCs.

2.6 Populations of Galactic Globular Clusters

Studies on different populations of GCs could be traced back to the 1950s, when Kinman
(1959) andMorgan (1959) put forward thatmetal-richGCs in theGalaxy occupy a relatively
small volume of space near the Galactic center, whereas themetal-poor ones spread through-
out a much larger volume of the Galactic halo.
This concept got more acceptance and attention when Zinn (1985) linked kinematics of

GCs to their metallicity and spatial distribution. He proposed that metal-poor GCs with
[Fe/H]< -0.8 are found to be distributed spherically throughout the whole volume of the
galactic halo and bulge. They possess small rotational velocities (vrot = 50± 23 km/s)and
large velocity dispersion (σLOS = 114 km/s). On the other hand, themetal-rich GCs with
[Fe/H]> -0.8 have a flatteneddistributionwithhigh rotation velocity (vrot =152±29km/s)
and low velocity dispersion (σLOS = 71 km/s).
While it is clear in sorting metal-poor GCs into a halo or a bulge one, there were different

opinions about the metal-rich GCs located near the center. Some studies related metal-rich
GCs to the bulge/bar system (Frenk and White, 1982) or thick-disk system(Zinn 1985 and
Armandroff 1989). To solve it, Minniti (1996) investigated on the kinematics and metallic-
ity of GCs and field stars at a distance of 1.4-1.8 kpc from the Galactic center, providing
evidence that if bulge formed through dissipative collapse, metal-rich GCs are related with
the bulge rather than thick disk. Côté (1999) further strengthened points of view ofMinniti
(1996) through providing measured radial velocities of GCs that are lacking in the previous
literature.
On the other hand, Zinn (1993) further classified haloGCs into old halo and young halo

systems, based on the cluster kinematics and metallicity. He found that the old halo clus-
ters are predominantly in the inner halo while the young halo ones extend to greater radii.
In kinematics, the mean rotational velocity of all halo GCs are vrot = 44 ± 25 km/s with
dispersion σLOS = 113± 12 km/s, in agreement with the general feature of halo stars.
However, if haloGCs are divided into old and young groups, old haloGCshave rotational

velocity vrot = 70± 22 km/s with velocity dispersion σLOS = 0.79± 0.26 km/s and young
halo GCs have rotational velocity vrot = -64± 74 km/s with velocity dispersion σLOS = 149
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± 24 km/s. Compared with old halo GCs which have prograde rotation and small disper-
sion, young haloGCs have retrograde rotation and significantly higher dispersion. From the
perspective of kinematics, the distribution of old halo GCs should distribute more flattened
than the young halo GCs, which was also proved to be the case forRGC < 15 kpc.
What’s more, in aspect of metallicity, young halo GCs doesn’t show the tendency of in-

creasingmetallicity towards galactic center which is a fossil signature of ancient halo collapse
shown in the old halo population. The metallicity gradient of old halo clusters are: RGC <

6, 6 < RGC < 15 and 15 < RGC < 40 kpc with <[Fe/H]> = -1.44 ± 0.06, -1.8 ± 0.07,
and -1.93± 0.1, respectively.
It is now accepted that theGCs in theMilkyWay are divided into three populationswhich

formed from different mechanisms. The three populations are bulge/bar system, old halo
and young halo systems. In the following, their formation process and resulting properties
are summarized.

2.6.1 Bulge/Bar andOld halo System

In general, metal-rich globular clusters are confined to a region near the nucleus while metal
poor clusters are distributed throughout the whole volume of the galactic halo and become
more concentrated towards the bulge with increasing metallicity. This trend came to the as-
sumption that GCs in the bulge/disk and old halo systems formed within theMilkyWay. It
was proposed that a rapid collapse of the halo occurred in the early history of theMilkyWay
before the galaxy flattened into a spiral disc. During the collapse, clusters formed isotropic
and stars in clusters in the halo evolved and enriched the early Milky Way with heavier ele-
ments as they turned supernovae. As time passed by, heavy elements became more towards
the center. Therefore when subsequent globular clusters formed close to the galactic center,
they are more metal-enriched and thus showing an increased metallicity gradient towards
galactic center.
It’s worth noting that inside galactic bulge, the old halo, disk and bulge populations mix

together spatially. Bica et al. (2016) investigated the origins of GCs in the bulge using dis-
tances andmetallicity and categorized them into a few groups: true bulge GCs inside (d< 3
kpc) and in the outer shell of the bulge (3< d< 4.5 kpc), probable halo intruders ([Fe/H]
< -1.5), disk intruders([Fe/H]> 1.0). In addition, by using numerical integration, Ortolani
et al. (2019) studied on the orbits of Terzan 10 and Djorgovski 1 which are GCs located in
the bulge and first identified them as halo intruders in the bulge, with metallicity [Fe/H]≈
-1 (Ortolani et al., 2019), in accordance with the categorization of Bica et al. (2016).
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2.6.2 YoungHalo System

The other scenario of the origin of our Galaxy halo is through the accretion of satellite sys-
tems like dwarf galaxies, proposed by Zinn (1993). Dwarf galaxies could be captured by the
MilkyWay and then disrupted, leaving streams and self-gravitating GCs in the outer Galaxy
halo. The most dramatic evidence for the accretion event in the Galactic halo is the dis-
rupting Sagittarius (Sgr) dwarf galaxy , provided by Ibata et al. (1994) who discovered the
co-moving stars in the direction of the Galactic Center with notable different radial veloc-
ities from those of bulge stars. The stars present an elongated structure towards the plane
of the Milky Way, implying that it is undergoing tidal disruption before being absorbed by
the Milky Way. The structure is now called Sagittarius Stream. In addition, four globular
clusters were found in the vicinity of the stream with similar radial velocities and they are
M54 (NGC 6715), Arp 2, Terzan 7 and Terzan 8.

Recently, Forbes and Bridges (2010) inspected on 93Milky Way GCs and showed a clear
track in the age-metallicity relation towards young ages for accretedGCs of Sgr dwarf galaxy,
distinct from the in-situ formed GCs which have constant old ages. The tendency towards
young ages is in agreement with Zinn (1993) where two populations were classified using
kinematics and metallicity. In addition, they increased the number of candidate GCs associ-
ated with the Sgr galaxy and they are Terzan 7, Terzan 8, Arp 2, Pal 12, NGC 4147 , NGC
6715, Whiting 1, AM4, ad NGC 5634.

Bypast accretion events have been discovered as well. Belokurov et al. (2018) observed an
elongated structure of the inner metal-rich stellar halo in velocity space, therefore named as
Gaia Sausage. Later onMyeong et al. (2018) analyzed this structure of 91MilkyWayGCs in
action space which should be a constant when clusters experience little change in potential.
Myeong et al. (2018) identified 8 probable and 2 possible Sausage GCswhich areNGC 1851,
NGC 1904, NGC 2298, NGC 2808, NGC 5286, NGC 6864, NGC 6779, NGC 7089
plus NGC 362 and NGC 1261. According to Myeong et al. (2019), the remnants of this
merger exhibit little or no net angular momentum, correspondent with the assumption of
an head-on collision. Other ancient events including Gaia-Enceladus (Helmi et al., 2018),
Canis Major andKraken (Kruijssen et al., 2019), and Sequoia (Myeong et al., 2019). They
are also associated with several GCs and all of them are still investigated substantially.
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2.7 Properties of the Globular Cluster FSR 1758

Centered at equatorial coordinates α = 17 : 31 : 12, δ = -39 : 48 : 30 (J2000) and Galactic
coordinates l = 349.217o, b =−3.292o, [FSR2007] 1758 (in short FSR 1758) lies behind the
galactic bulge and was confirmed to be a globular cluster only recently. It was believed to be
an open cluster by Froebrich et al. (2007) who first found the cluster using star densitymaps
obtained from Two-Micron All-Sky Survey (2MASS).
In 2018, Gaia mission (Gaia Collaboration et al., 2018) revolutionized the observation in

theMilkyWaywith the release of precisionmeasurements in astrometry, including positions
and proper motions at the sub-milliarcsecond level. Later on, Cantat-Gaudin et al. (2018)
confirmed FSR 1758 to be a GC by using Gaia data from the significant difference of proper
motions of the cluster from field stars as well as common features of GCs for FSR1758 from
Gaia optical CMD. They estimated the Galactocentric distance of the cluster to be 1.6 kpc
and the height -0.47 kpc, indicating a position inside the bulge. Hidden in a region of high
extinction and reddening, FSR1758 has became one of GCs that arise interests of astrophysi-
cists since then.
Barba et al. (2019) first studied the FSR 1758 carefully by using the combination of op-

tical data from GDR2 and the DECam Plane Survey (DECaPS) (Schlafly et al., 2018), and
near-Infrared (near-IR) data from the VISTA Variables in the Vía Láctea Extended Survey
(VVVX) (Minniti et al., 2018) which maps the Galactic Bulge and southern disk that are
hard to observe due to severe optical extinction. The combination resulted in amore uncon-
taminated sample of cluster members.
Extracted from Barba et al. (2019), Fig.2.2 shows proper motions, optical CMDs and

spatial distribution of cluster members from Gaia Data. Proper motions of cluster mem-
bers which are centered at (µα, µδ) = (−2.85, 2.55) mas/yr, are notable from the field stars.
Optical CMDs of selected members show clear RGB, RGBp and extended BHB sequences,
which also appear in the near-IR CMDs from VVVX survey. In addition, there is no sign
of HB clump which shows in metal-rich clusters. This is in agreement with the presence of
BHB sequence whichmostly emerges in metal-poor clusters. The spatial distribution of the
cluster spans 0.3 degree in bothα and δ. However, the fitting of the stellar radial density pro-
file from DECaPS data to King’s model (King, 1962) obtained a core radius Rc= 0.050 ±
0.004o (about 10± 1 pc) and a tidal radiusRt = 0.78± 0.22o (about 150± 45 pc), showing
the prominent size of the cluster, probably even larger than ω Cen.
What’s more, they estimated the distance of the cluster to be 11.5 ± 1.0 kpc based on:
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Figure 2.2:Leftpanel:Gaiapropermotionsneartheclusterregion,withtheselectedmemberscenteredat(µα,µδ)=
(−2.85,2.55)mas/yrmarkedinblue.Centerpanel:GaiaCMDofselectedstars(inbluedots)comparedwithfieldstarsin
theregion(graydots).Rightpanel:Spatialdistributionofselectedmembersmarkedinblue.TheRRLyraevariablestars
arealsoshowninredcirclesforRRab,andcyanforRRc.Largesymbolsareprobablemembersofthecluster,whilesmall
symbolsarefieldstarsthatbelongtotheBulge.

first, the approximated extinction value, and secondly the period-luminosity relation of RR
Lyrae variables selected based on the sky positions, PMs, mean magnitudes and positions
in the CMDs from OGLE catalog (Soszyński et al., 2014). The estimation of metallicity is
derived by comparing its optical and near-IR CMDs to CMDs of two well-knownGCsM3
andM13: [Fe/H] = -1.5± 0.3 dex.
In lack of spectra information, radial velocities as well as chemical abundance of stars were

missing. However, they were supplemented by the following literatures. In Simpson (2019),
five stars have radial velocities measured by the Gaia Radial Velocity Spectrograph (RVS):
three of the five stars have 226.5 < vr < 227.8 km/s, while the other two stars have vr = −30
km/s and 20 km/s. The three stars with higher vr are located at the tip of the giant branch of
FSR 1758 and are considered to bemembers of the cluster because of smaller parallaxes than
other the two. The averaged radial velocity of the cluster was concluded to be vr = 227± 1
km/s.
It is only recently that Villanova et al. (2019) obtained high dispersion spectra for 9 stars

that are confirmedmembers of the cluster and verifiedbothmetallicity of the cluster: [Fe/H]
= -1.58± 0.03 dex and the radial velocity vr = 226.8± 1.6 km/s, in accord with values from
previous literature. They also foundNa-O anti-correlations which are a typical signature of
GCs.
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”Social relationships among stars are nearly as common
as among men and the lower animals. Sidereal bodies
completely independent if all star societies are difficult of
conception; for the heritage of early and ancestral associa-
tions, as well as the immediate environment, influences the
present behavior and the density of stars.”

Harlow Shapley 3
Orbital Calculation

With the advent of telescopes and satellites, precise positions and velocities of
stellar systems become not difficult to acquire and studies on orbits of them enable astro-
physicists to understand their history. For GCs, it’s difficult to differentiate different popu-
lations in the same region. For example, GCs in the bulge can be from the disk or the halo
system, and it often takes time to assign them into the right population if using spectroscopy
to analyze their chemical abundance. However, if we can derive orbits of interested systems
with initial conditions in hand, the assignment work would be faster and the development
of constructing the formation history of the Galaxy may become faster.
In this chapter, the general processes to calculate orbits of GCs are present in detail here,

including coordinates transformation for the initial conditions (Sec.3.1), the algorithm to
solve the equations of motions for clusters (Sec.3.2) and most importantly gravitational po-
tential models utilized in calculating gravitational forces (Sec.3.3).

3.1 Coordinate Transformation

Usually, positions and velocities of stellar objects are expressed in the Equatorial Coordi-
nate, which are defined on a sphere centered at the Earth. The sphere is called Celestial
Sphere and all the stellar objects are projected onto the sphere. The North and South Ce-
lestial Poles (NCP and SCP) are the intersection of celestial sphere with the rotational axis

15



of Earth. Similar to the longitude and latitude expression used on the surface of Earth, the
position of stars projected onto the celestial sphere is expressed by right ascension α (RA)
and declination δ (DEC). While DEC has a unit in degree ranging from−90o ∼ 90o, RA
has a unit in time: hours, minutes and seconds, with a range of 24 hours. The zero-point for
RA is called the Vernal Equinox, the location of the sunrise on the first day of spring. The
position atα = 0 : 0 : 0 and δ = 0o is one the intersections of celestial and ecliptic equator.
The other one is autumn equinox with α = 12:0:0 and δ = 0o.

With equatorial coordinates, the velocity of a stellar object is obtained by measuring the
projection of orbital motion on the celestial sphere within a time duration. The projected
motion is split into parallel and perpendicular to the celestial equator, i.e. in the direction of
RA and DEC. They are called proper motions, expressed as µα and µδ respectively, and the
commonly used units are mega-arc-second per year (mas/yr).

Although observational data is usually expressed in equatorial coordinate, for the purpose
of galactic research, one needs a coordinate that centers at theGalaxy center, theGalactocen-
tric Coordinate. Nonetheless, to obtain the position and velocity in the rest frame of our
galaxy, one requires to transform coordinate centered on the Earth to the one centered on
the Sun, then from which to the one centered at the center of the Galaxy. The coordinate
centered at the Sun is called Galactic Coordinate. To do it, we need to rotate the equato-
rial coordinate to the Galactic coordinate first and then translate the Galactic coordinate to
Galactocentric coordinate.

In Galactic Coordinate, the equivalent longitude and latitude are expressed as l and b re-
spectively. The galactic longitude l starts from the line connecting the Sun and the Galac-
tic center, rotating right-handed and ranging from 0o ∼ 360o. And galactic latitude (b)
measures the angle of the object above the galactic plane, ranging from −90o ∼ 90o. The
NorthGalactic Pole (NGP)points to the north of theGalaxy, with (α, δ) = (12h:51m:26.275s,
+27o:07’:41.70”).

In Galactic Coordinate, positions of a stellar objects in Cartesian coordinate are usually
presented as X, Y, Z. The X-axis points form the Sun towards the Galactic Center, Y-axis
points in the direction of Galactic rotation of the Sun and Z-axis directs to the Galactic
North Pole. Sometimes people use an opposite direction in X. However, in order to stick
to right-handed system with Z pointing upward toward the NGP, we choose the former
one.
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The coordinates (X, Y, Z) are defined as:

X = R cos b cos l, Y = R cos b sin l, Z = sin b, (3.1)

where (l, b) are the Galactic longitude and latitude, and R is the distance of the object from
the Sun. In this coordinate system the Sun is at (0, 0, 0) kpc and theGalactic center is at about
(8.2, 0, 0) kpc. The number varies depending on differentmeasuringmethods. The velocity
components along the X, Y, Z direction are U, V,W respectively. As seen from theNGP, the
MilkyWay rotates clockwise, in opposite rotational direction from the right-handed system.

The rotational matrix T from equatorial coordinate to the Galactic coordinate can be
derived easily by pointing the Vernal Equinox to theGalactic center andNCP toNGPusing
Eq.3.2. Bovy (2011) derived thematrix thoroughly using spherical trigonometry. It is shown
in Eq.3.3: XY

Z

 = R

cos b cos l

cos b sin l

sin b

 = T ·

cos δ cosα

cos δ sinα

sin δ

 , where (3.2)

T =

cos θ0 sin θ0 0

sin θ0 − cos θ0 0

0 0 1


− sin δNGP 0 + cos δNGP

0 −1 0

+ cos δNGP 0 + sin δNGP


cosαNGP sinαNGP 0

sinαNGP − cosαNGP 0

0 0 1


(3.3)

Since the velocity U, V, W is the derivative of position X, Y, Z, Bovy (2011) derived the
transformmatrix by differentiating Eq.3.2:

U

V

W

 = T · d
dt

cos δ cosαcos δ sinα

sin δ


= T ·

cos δ cosαḋ− dδ̇ sin δ cosα− dα̇ cos δ sinα

cos δ sinαḋ− dδ̇ sin δ sinα− dα̇ cos δ cosα

ḋ sin δ + dδ̇ cos δ


= T · A ·

 ḋ

dα̇ cos δ

dδ̇

 , where (3.4)
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A ≡

cosα sinα 0

sinα − cosα 0

0 0 −1


 cos δ 0 − sin δ

0 −1 0

− sin δ 0 − cos δ

 , (3.5)

and ḋ = vr, µα = α cos δ and δ̇ = µδ. Therefore,UV
W

 = T · A ·

vrµα

µδ

 (3.6)

In Eq.3.6, the units of velocities of V andW are in mas/yr while the unit of radial velocity
is in km/s. Therefore, it’s convenient to convert all units into the same one and usually km/s
is themost common expression for velocity. To do it, the relation 1 arcsec = 1AU/1pc is used
and a constant k=4.74047 is multiplied to change units from AU/yr to km/s, with tropical
year=365.242198days and 1AU=1.49×108 km. Finally,weobtainU,V,W inkm/s through:UV

W

 = T · A ·

 ρ

kµα/π

kµδ/π

 (3.7)

Further processes of deriving σU , σV , and σW in Galactic Coordinate are presented in
Johnson and Soderblom (1987) by utilizing uncertainty relation:

σ2
F (x,y,z) =

(
∂F

∂x

)2

σ2
x +

(
∂F

∂y

)2

σ2
y +

(
∂F

∂z

)2

σ2
z (3.8)

Therefore, the errors in U, V, W can be obtained with the relation:

σ2
U

σ2
V

σ2
W

 = C

 σ2
ρ

(k/π)2[σµα + (µασpi/π)
2]

(k/π)2[σµδ
+ (µδσpi/π)

2]

+ 2µαµδk
2σ2

π/π
4

b12 · b13b22 · b23
b32 · b33

 (3.9)

Notice that when there is only distance error in-hand, the error of the parallax required in
Eq.3.9 is transferred from:

δd = δ
1

p
=

∣∣∣∣ ∂∂p 1p
∣∣∣∣δp = δp

p2
(3.10)
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Finally, to transform Galactic coordinate into Galactocentric coordinate, one only needs
to translate the center of coordinate from the Sun to the Galactic center. Recently, Bland-
Hawthorn andGerhard (2016) investigatedmeasurements of the Sun’s position and velocity
relative to the Galactic center from different tracers, and they concluded a best estimate for
the distance of the Sun to the Galactic Center: R⊙ = 8.2± 0.1 kpc, solar offset from local
disk: z⊙ = 25± 5 pc, and Sun’s tangential velocity relative to Sgr A*: Vg,⊙ = 248± 3 km/s.

(X,Y, Z)Galactocentric = (X,Y, Z)Galactic + (X,Y, Z)⊙, (3.11)

(U, V,W )Galactocentric = (U, V,W )Galactic + (U, V,W )⊙ (3.12)

3.2 Orbital Integrator

Given a cluster with initial position x and velocity v at time t moving in the Galaxy, if the
gravitational forces acting on the cluster are known, we can use an algorithm to generate a
new position and velocity for the next time step, and the algorithm is called an orbital inte-
grator. Literally, an integrator derives new position and velocity by integrating the equations
of motions (EoMs) composed of differential equations in velocity and position. By integrat-
ing galactic force for a the time step∆t, the velocity difference∆v which the velocity of the
system has increased/decreased during the time step is derived; similarly by integrating the
velocity for a time step ∆t, the disposition ∆x which the system has moved during ∆t is
obtained. So the final position and velocity at next time step, x(t0 + ∆t) and v(t0 + ∆t)

are derived by adding the∆x and∆v to the initial values. This procedure can be seen from
Taylor series in which EoMs of the cluster at the next time step, x(t0 +∆t) and v(t0 +∆t),
is an expansion of different order derivative:

x(t0 +∆t) =
∞∑
n=0

x(n)(t0)

n!
(∆t)n = x(t0) + ẋ∆t+

ẍ

2!
(∆t)2 +

...
x

3!
(∆t)3 +O(∆t) ,

(3.13)

v(t0 +∆t) =
∞∑
n=0

v(n)(t0)

n!
(∆t)n = v(t0) + v̇∆t+

v̈

2!
(∆t)2 +

...
v

3!
(∆t)3 +O(∆t) .

(3.14)
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In Eq.(3.13), two boxes represent ∆x and ∆v respectively. Since ẍ = a and ẋ = v, if
considering only the first order in∆t term, Eq.(3.13) can be written as:

v =
x(t0 +∆t)− x(t)

∆t0
+O(∆t),

a =
v(t0 +∆t)− v(t)

∆t0
+O(∆t),

(3.15)

whereO(∆t) includes all the higher order terms of∆x and∆v. Therefore, the position and
velocity at t+∆t turn out to be:

v(t0 +∆t) = v(t0) + a(t)∆t

x(t0 +∆t) = x(t0) + v(t0)∆t
(3.16)

Eq.(3.16) is commonlyusedwhenwewant to derive the position and the velocity of an object
in a short period of time, so short that the velocitywon’t change significantly. The error after
a single step is in order of (∆t)2. This integrator is called first order Euler integrator.

Another integrator used for short period but with higher precision is the second-order
Leapfrog integrator. It’s called leapfrog because position and velocity leap over each other

during integration. The position at time step t is decided by the velocity at time (t− 1

2
∆t),

and the velocity at time (t+
1

2
∆t) is decided by the acceleration at positionx(t), fromwhich

the position at the next time step t+∆t is derived.

v(t0 +
1

2
∆t) = v(t0 −

1

2
∆t) + a∆t; (3.17)

x(t0 +∆t) = x(t0) + v(t0 +
1

2
∆t)∆t. (3.18)

However, when calculating orbits of GCs, the integrating time duration is usually longer
than millions of years. In this case, if Euler or Leapfrog integrator is used, the small ∆t
needed for precision requires large amount of computational time. Therefore, to make cal-
culation of differential equations more precise and efficient, many algorithms have been
invented. Among them, Gauss-Radau spacings improve integration accuracy greatly by
considering forces at specific spacings within the entire time step rather than just at the be-
ginning or in the middle as in Euler or Leapfrog does. This method enables larger time steps
and therefore reduce large amount of calculation time. In the thesis, Gauss-Radau spacings
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of 15th order with errors (∆t)16 (GR15, Everhart 1985) is employed. And in the next chap-
ter (Ch.4.1), the efficiency of three different algorithms (Euler, Leapfrog and Gauss-Radau
spacings) will be compared.

3.3 PotentialModels

Once initial conditions and the integrator are specified, the orbit of the cluster can be de-
rived once we know the gravitational forces acting on the cluster. Galactic forces are induced
by the gravity between the mass of the cluster itself and the mass density distribution of
the Milky Way. Therefore, the cluster feels gravitational potential when sliding inside the
Galaxy. Galactic potential can be derived from the mass-density of the Milky Way using
Poisson equation:

∇2Φ = 4πGρ, (3.19)

and the forces can then be derived from the gradient of galactic potential:

−→
F = −∇Φ (3.20)

However, under the limitation of observation techniques and data, integral mass distribu-
tion of the Milky Way is not achievable. Apart from this, in consideration of the computa-
tional speed, simple and analytic forms of galactic density distribution and potential models
are therefore used for numerical orbital calculation. Most importantly, they must be easy
to compute and be constraint by observational data. In the thesis, three models composed
of three time-independent, axisymmetric components are used: a central bulge, a plane disk
and the spherical halo. In addition,the time-dependent non-axisymmetric bar potential is
also considered to investigate its influence on the orbit.

Φ(r, z) = Φb(R(r, z)) + Φd(r, z) + Φh(R(r, z)) + Φbar(x, y, z, t), (3.21)

whereR =
√
r2 + z2.
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The total mass of each galactic component can be derived from the density distribution:

Mb =

∫
4πR2Φb(R)dR, (3.22)

Md =

∫
dz

∫
2πrΦd(r, z)dr, (3.23)

Mh =

∫
4πR2Φh(R)dR. (3.24)

For these models, they must be constrained by some observational data in order to make
sure that the analytic Galactic potential resemble the real galaxy. These constraints are galac-
tic rotational curve, local density and local surface density and they can be derived using the
following equations:

vc =

√
r′
dΦ(r, 0)

dr′

∣∣∣∣
r′=r

(3.25)

ρ⊙ = ρb(r⊙) + ρd(r⊙) + ρh(r⊙) (3.26)

∑
1.1

=

∫ 1.1kpc

−1.1kpc

[
ρb(r⊙, z) + ρd(r⊙, z) + ρh(r⊙, z)

]
dz (3.27)

Derived by Holmberg and Flynn (2000) and Holmberg and Flynn (2004), the local den-
sity of disk has a value ρ⊙ = 0.102 ± 0.010M⊙pc−3 using Hipparcos data on a volume-
complete sample of A and F stars, and the surface density

∑
1.1 = 74 ± 6M⊙pc−2 from

K-giant stars at the SGP.
The best-fitted parameters of models are found by searching for the minimum weighted

chi-square, which is calculated by dividing the chi square value over the number of data
points in each constraint and adding up the results:

χ2
w =

3∑
i=1

(
1

Ni

Ni∑
j=1

χ2
ij

)
, with χ2

ij =
(modeled− expected)2

expected
(3.28)

Model I.

The first model is a revision of the well-known potential from Allen and Santillan (1991),
which is composed of a bulge, a disk and a halo. The potential forms Φb(R) and Φd(r, z)

of the bulge and the disk are those proposed by Miyamoto and Nagai (1975), and the halo
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inside a sphere of radiusR0 is given by Allen andMartos (1986) :

Φb(R) = − Mb√
R2 + b2b

, (3.29)

Φd(r, z) = − Md√
r2 + (ad +

√
z2 + b2d)

2

, (3.30)

Φh(R) =



Mh

ah

(
1

(γ − 1)
ln

(1 + (
R

ah
)γ−1

1 + (
Λ

ah
)γ−1

)
−

(
Λ

ah
)γ−1

1 + (
Λ

ah
)γ−1

)
, ifR < Λ.

Mh

R

(
Λ

ah
)γ

1 + (
Λ

ah
)γ−1

, ifR > Λ.

(3.31)

Mb,Md andMh represent the total mass of the bulge, disk and the halo. The λ symbol is a
cut-off radius to avoid an infinite halo mass.

The corresponding density distribution of each component is:

ρb(R) = − Mb√
R2 + b2b

, (3.32)

ρd(r, z) = − Md√
r2 + (ad +

√
z2 + b2d)

2

, (3.33)

ρh(R) =


Mh

4πah

(R
ah

)γ−1
((R

ah

)γ−1
+ γ

)
R2

(
1 +

(R
ah

)γ−1
)2 , ifR < Λ,

0 , otherwise.

(3.34)

In this model, the parameters bb, ad and ah control the scales of bulge, disk and halo com-
ponent. If the scale of each component is increased, the range or boundary of correspondent
component will become larger. The value of bd adjusts the scale height of disk. The scale of
height of the Milky Way thin disk is about 300 pc, based on the density of stars at Sun’s ra-
dius as a function of z from the plane (Gilmore and Reid, 1983). The value of bd should be
near the observation value.

The values of these parameters are listed in the second column, upper panel of Table 3.1.
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Figure 3.1:BulgepotentialwithparametersinMoldelIshowninX-Y,X-Z,Y-Zplane.Thecolorbarisinunitof
1010M⊙kpc/Myr.Thesizeofthebulgeisconfinedindistancesmallerthan2kpcfromtheGalacticcenter.

Figure 3.2:DiskpotentialwithparametersinMoldelIshowninX-Y,X-Z,Y-Zplane.Thecolorbarisinunitof
1010M⊙kpc/Myr.

Parameters Value∗ Best fit Derived
Mb(10

10M⊙) 0.950925 1.098 1.098
Md(10

10M⊙) 6.6402 8.9 6.497
Mh(10

10M⊙) 2.36685 2.6657 2.15
bb(kpc) 0.23 0.27
ad(kpc) 4.22 6.22
bd(kpc) 0.292 0.33
ah(kpc) 2.562 2.39
χ2 1.03

Constraints Observed Best Fit
Vr see Bhattacharjee et al. (2014) see Fig.3.8
ρ⊙ 0.102±0.01 0.128∑
1.1 74±6 74.5

Table 3.1:ParametersofModelI.∗ ThevaluesareextractedfromTable1ofIrrgangetal.(2013).Thebestfitvaluesof
parametersareobtainedbycalculatingtheminimumχ2 ofconstraints.
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The constraints: rotational velocities, local density and the surface density, are subsequently
derivedusingEq.3.25, Eq.3.26 andEq.3.27 tofit the observationone listed in the lowerpanel
of Tab.3.1. Then search for the minimum chi square value using 3.28 to find the best fitted
parameters of models.

Model II

Though the first model was used onmany stellar objects successfully, Irrgang et al. (2013)
pointed out that because the halo mass of Allen and Martos (1986) is not well constrained
by observation, different potential shapes of the halo can yield almost equal matches to the
data but differ significantly in other properties. The team used two other halo models form
Wilkinson and Evans (1999) and Navarro et al. (1997) to investigate the behavior.
The values of these parameters are listed in the second column, upper panel of Table 3.2.

The same procedures to find the best fitted parameters of Model II are used as in Model I.
The halo potential component of Model II. is the one inWilkinson and Evans (1999):

Φh(R) = −Mh

ah
ln

(√
R2 + a2h
R

)
(3.35)

The corresponding density distribution is:

ρh(R) =
Mh

4π

a2h
R2(R2 + a2h)

3/2
(3.36)

Model III

The halo potential component of Model III. is the one in Navarro et al. (1997):

Φh(R) = −Mh

R
ln

(
1 +

R

ah

)
(3.37)

The corresponding density distribution is:

ρh(R) = −Mh

R
ln

(
1 +

R

ah

)
(3.38)

The values of these parameters are listed in the second column, upper panel of Table 3.3.
The same procedures to find the best fitted parameters of Model III. are used as in Model I.
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Parameters Value∗ Best fit Derived
Mb(10

10M⊙) 0.406875 0.3 0.39
Md(10

10M⊙) 6.577425 8.16 7.945
Mh(10

10M⊙) 162.110625 160.14 71.865
bb(kpc) 0.184 0.238
ad(kpc) 4.85 5.183
bd(kpc) 0.305 0.296
ah(kpc) 200 199.14
χ2 5.69 1.03

Constraints Observed Best Fit
Vr see Bhattacharjee et al. (2014) see Fig.3.8
ρ⊙ 0.102±0.01 0.129∑
1.1 74±6 69.0

Table 3.2:ParametersofModelII.∗ ThevaluesareextractedfromTable2ofIrrgangetal.(2013).Thebestfitvaluesof
parametersareobtainedbycalculatingtheminimumχ2 ofconstraints.

Parameters Value∗ Best fit Derived
Mb(10

10M⊙) 1.020675 0.93 0.93
Md(10

10M⊙) 7.1982 8.88 8.714
Mh(10

10M⊙) 330.615 161.2 97.789
bb(kpc) 0.236 0.238
ad(kpc) 3.262 3.712
bd(kpc) 0.289 0.241
ah(kpc) 45.02 35.164
χ2 2440.73 1.03

Constraints Observed Best Fit
Vr see Bhattacharjee et al. (2014) see Fig.3.8
ρ⊙ 0.102±0.01 0.15∑
1.1 74±6 68.28

Table 3.3:ParametersofModelIII.∗ ThevaluesareextractedfromTable3ofIrrgangetal.(2013).Thebestfitvaluesof
parametersareobtainedbycalculatingtheminimumχ2 ofconstraints.

26



Figure 3.3:HalopotentialofModelI.showninx-y,x-zandy-zplane.Thecolorbarisinunitof1010M⊙kpc/Myr.

Figure 3.4:HalopotentialofModelIIshowninx-y,x-zandy-zplane.Thecolorbarisinunitof1010M⊙kpc/Myr.

Figure 3.5:HalopotentialofModelIIIshowninx-y,x-zandy-zplane.Thecolorbarisinunitof1010M⊙kpc/Myr.
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Bar model

To explore the orbits of GCs in the bulge, it is necessary to take into account the potential
of the bar component. Ferrer’s ellipsoid bar potential model is often used (e.g. Pfenniger
(1984), Pichardo et al. (2004), Jílková et al. (2012), Pérez-Villegas et al. (2018)) and therefore
is adopted here.

Different from thepotential of bulge, disk andhalo component, the bar potential depends
on the time. Although we know that the bar rotates clockwise about the Galactic center, its
angular velocity remains uncertain since different observationmethods andmodels revealed
different values, ranging from 40 < Ω < 70 km s−1 kpc−1. If Ω = 40 km s−1 kpc−1, it
takes about 150 Myr for the bar to complete one rotation period. In addition, unlike the
bulge, disk, and halo components which are axisymmetric, the bar is triaxial, dependent on
the angle θ.

When calculating clusters’ orbits, the bar potential is combined to the total galactic po-
tential model, in assumption that all of the bulge mass is transferred directly to the bar com-
ponent instantly.

A triaxial Ferrers bar , the density ρ(x, y, z) of which is given by

ρ(x, y, z) =

ρc(1−m2)2 , if m < 1,

0 , if m > 1,
(3.39)

where ρc =
105

32π

GMbar

abc
,Mbar is the total mass of the bar transferred from the mass of the

bulge, andm =
x2

a2
+
y2

b2
+
z2

c2
. Inmodels of astrophysics interests, the parameters a, b, c are

the semi-axes of the ellipsoidal bar with a > b > c > 0. According to Pichardo et al. (2004),
the major axis half-length a = 3.14 kpc, and the axial ratio a : b : c = 10 : 3.75 : 2.56.
The present position angle of the longest axis of the bar with respect to the line of sight is
25o based on the recent results of Bovy et al. (2019).

According to Chandrasekar (1969, p.53), the potential of bar in the form of Eq.3.39 is
expressed as:

Φ = −πGabc ρc
n+ 1

∫ ∞

λ

du

∆(u)
(1−m2(u))3, where (3.40)
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Figure 3.6:Barpotentialwithmassequalto1.2×1010M⊙,showninx-y,x-zandy-zplanerespectively.

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
, and (3.41)

∆2(u) = (a2 + u)(b2 + u)(c2 + u). (3.42)

λ is the positive solution of m2(λ) = 1 such that outside the bar Φ = 0. Inside the bar
λ = 0.

3.4 Orbital Parameters

For convenience, someparameters are commonlyused todescribe characteristics of theGalac-
tic orbit including its range, shape and the rotational direction. To describe the range, three
parameters are usually used. For a cluster orbiting the Galaxy, the closest distance to the
Galactic center is calledperigalactic distanceRperi, and the farthest distance from theGalac-
tic center is called apogalactic distance Rapo. Here, the distance to the Galactic center is
defined as:

R =
√
X2 + Y 2 + Z2 (3.43)

, which is different from the distance in X-Y plane labelled as r:

r =
√
X2 + Y 2 (3.44)

The third parameter describes the maximum distance of the cluster away from the Galactic
plane and is expressed as Zmax. Three parameters are in units of kpc. With them, we can
see whether or not the cluster has entered the Galactic bulge or disk which may impact the
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Figure 3.7:Potentialcomponentsofbulge,disk,andhaloinx-yplaneforeachmodelinthefirstthreerowsrespectively
andthebarpotentialinx-yplaneinthelastrow.Thecolorbarnexttoeachgraphshowsthedeepnessofeachpotential
component.

Figure 3.8:Galacticrotationalcurve.Thecolorred,green,bluerepresentrespectivelypotentialofModelI,ModelIIand
ModelIII.Foreachmodel,thecontributionofgalacticcomponents:bulgecontributesthemostwithin2kpc,thedisk
reachedapeakataround10kpc,andtheextendedrotationalcurveisduetohalocomponent.Observationaldatafrom
Bhattacharjeeetal.(2014)within10kpcisplottedinblackwiththeerrorlines.
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evolution of the cluster.

For the shape of an orbit, it is described by eccentricity which measures how much an
orbit deviates from a perfect circle of the orbit, labelled as e. For a circular orbit, eccentricity
is equal to zero. Elliptic orbits have 0 < e < 1, and e = 1 is a parabolic orbit, and greater
than one is a hyperbola. For clusters, most of them have elliptic orbits, and the eccentricity
can be calculated from perigalactic and apogalactic distances using the following equation:

e =
Rapo −Rperi

Rapo +Rperi

(3.45)

The rotational direction of cluster’s orbit is an important feature since it gives hints of
the formation of the cluster which is influenced by the surrounding environment. In two
dimension (2D) space, it is easy to observe the direction from the cluster’s tangential veloc-
ity. However, it becomes difficult to picture in 3D space and therefore angular momentum
projected on the rotational axis (z-axis) is usually utilized, with positive values mean counter-
clockwisewhen viewed from the top of the z-axis. Angularmomentum is defined as the cross
product of the relative position vector r⃗ and the relative velocity vector v (Eq.3.47) in three
dimension space:

L⃗ = mR⃗× v = m

∣∣∣∣∣
x̂ ŷ ẑ

X Y Z

U V W

∣∣∣∣∣, (3.46)

thus, Lz = m(X × V − Y × U) (3.47)

In addition, angular momentum is also significant parameters when discussing orbits. If
the cluster is orbiting in a galaxy with an axisymmetric potential about an axis, the angular
momentum projected on that axis will be conserved. To bemore specific, the galactic poten-
tial applied here (Model I to III introduced in Sec. 3.3) are composed of three axisymmetric
potentials including bulge, disk and halo. An axisymmetric potential doesn’t have depen-
dence on the angle θ. Therefore, when the cluster orbits in the galaxy, it won’t experience
the force in the direction of θ, as expressed in Eq.3.48. Consequently, there won’t be any
torque in the direction of z since τz is equal to radial distance multiply the force in θ. In
addition, τz is equal to the time rate of change of angular momentum in the direction of
z. Hence, if there is no torque in z, the angular momentum in the same direction remains

31



constant, as formulated in Eq.3.49.

∂Φ

∂ϕ
= 0 = Fθ (3.48)

τz = rFθ =
dLz

dt
= 0, where (3.49)

On the other hand, the time-dependent and triaxial bar potential depends on the angle θ.
Therefore when considering the bar potential, the orbital integration results won’t feature
conservation of Lz .
Last but not the least, when a cluster orbits in an assumed isolated galaxy, the total energy

of the cluster is conserved, which is the sum of kinetic energy and total potential:

E =
1

2
mv2 + Φ (3.50)

In order to easily identify conservation laws of energy and angular momentum in z-axis,
here we define∆E and∆Lz:

∆E(t) =
E(t)− E(t0)

E(t0)
, (3.51)

∆Lz(t) =
Lz(t)− Lz(t0)

Lz(t0)
(3.52)

Here E(t) and Lz(t) are energy and angular momentum at specific time t, and t0 represents
the time in the beginning. If∆E(t) and∆Lz(t) is equal to 0, then energy and Lz are con-
served; if they are negative or positive, the values show how much they change with respect
to initial values.
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”Science is a way of thinkingmuchmore than it is a body of
knowledge.”

Carl Sagan

4
The orbit and origin of FSR1758

4.1 Tests of orbital integrators

The first and foremost step on doing orbital calculation is to confirm whether the orbital
integrator applied is precise enough as integrating the orbit for a period of time. Herewe take
advantage of conservation laws of energy and angularmomentumalong z-axis to examine the
precision. In the following, I compare orbits of FSR 1758 calculated from Euler, Leapfrog
and GR15 to see the influence on precision of integration.
The initial conditions of the GC FSR 1758 are provided by Villanova et al. (2019) where

high dispersion spectra are utilized to derivemore accurate radial velocity:(α, δ, d,µα,µδ, vr)
= (262.81o, -39.82o, 11.5± 1.0 kpc, -2.79± 0.0097mas/yr, 2.6± 0.009 mas/yr, 226.8± 1.6
km/s). In the present stage the purpose is to observe influences of different integrator, thus
it’s not necessary to consider errors. The input initial conditions are derivedusing coordinate
transformation introduced in Sect.3.1, which are (X, Y, Z, U, V, W) = (3.08 kpc, -2.14 kpc,
-0.65 kpc, 251.71 km/s, 250.77 km/s, 198.86 km/s).

The first applied algorithm is the Euler integrator by integrating orbits backward 1.25
Gyr with 5000, 104 and 105 time steps separately. The corresponding results are shown in
Fig.4.1, Fig.4.2 and Fig.4.5. To compare with the precision of different order of integration
methodology, the leapfrog integratorwith time steps 5000 and 104 (Fig.4.3, and Fig.4.4)and
GR15with time steps 1000 (Fig.4.6) are employed. Table.4.1 summarizes orbital parameters
for three integrators with different time steps.

33



Integrator Time steps Rperi (kpc) Rapo (kpc) Zmax (kpc) e ∆E ∆Lz t
Euler 5× 103 3.78 15.88 6.66 0.62 ∼ 0.08 ∼ -0.3 679 ms
Euler 104 3.78 13.91 5.95 0.57 ∼0.05 ∼-0.15 1.24 s
Euler 105 3.73 12.19 5.28 0.53 ∼0.006 ∼-0.015 12s

Leapfrog 5× 103 3.78 13.93 5.96 0.57 ∼0.05 ∼-0.15 1.12s
Leapfrog 104 3.78 12.99 5.6 0.55 ∼0.03 ∼-0.08 2.1s
GR15 1× 103 3.73 14.1 6.27 0.58 0 0 16.9 s

Table 4.1:Comparisonsoforbitalparametersfordifferentintegrators,includingEuler,LeapfrogandGR15,anddifferent
timesteps.From∆Eand∆Lz theprecisionoftheintegratorcanbequantified.Tisthecomputationaltimeneededto
completethecalculationoforbits.

First, the comparison between three Euler orbits reveals that ∆E and ∆Lz decrease in
the same extent as the number of time steps increases. This shows that as the number of
time steps increases, the precision of orbital calculation becomes better. Also the larger the
number of time steps is, the longer the computational time takes. Secondly, when comparing
Euler with Leapfrog in the same number of time steps, Leapfrog obviously has twice better
precision than Euler, but about twice calculation time is needed. Last, the result obtained
from GR15 has∆E and∆Lz equal to 0, suggesting that GR15 is precise enough to derive
orbit of the cluster with 1000 time steps. If the number is increased, the precision won’t
grow; instead, it leads to longer computational time.

4.2 Orbits of FSR 1758

With an integrator confirmed to be precise, the orbit of FSR 1758 can now be studied. The
initial conditions applied here are the same as in the last section but errors are considered
here and they are derived by using two methods:

1. Eq.3.9, which only produces errors in space velocities, and

2. Monte Carlo Simulation: by taking 10000 samples of the error distributions of initial
conditions in equatorial coordinates and finding the standard deviation of the given
results.

The results are shown in the inputs in upper and lower panel of Table 4.2 respectively.
Then we performed orbital calculations by considering 100 samples taken randomly from
normal distributionsof these inputs, and threedifferentpotentialmodels. Fig.4.7 andFig.4.8
show the orbits obtained from input conditions of two different methods respectively, and
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Figure 4.1:ThetestofEulermethodwith5000timesteps:theorbitsofFSR1758inx-y,x-z,r-zplanesanditsenergyand
Lz asafunctionoftime,derivedbyintegratingEoMsbackward1.25Gyr.

Figure 4.2:ThetestofEulermethodwith104 timesteps:theorbitsofFSR1758inx-y,x-z,r-zplanesanditsenergyand
Lz asafunctionoftime,derivedbyintegratingEoMsbackward1.25Gyr.
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Figure 4.3:ThetestofLeapfrogmethodwith5000timesteps:theorbitsofFSR1758inx-y,x-z,r-zplanesanditsenergy
andLz asafunctionoftime,derivedbyintegratingEoMsbackward1.25Gyr.

Figure 4.4:ThetestofLeapfrogmethodwith104 timesteps:theorbitsofFSR1758inx-y,x-z,r-zplanesanditsenergy
andLz asafunctionoftime,derivedbyintegratingEoMsbackward1.25Gyr.
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Figure 4.5:ThetestofEulermethodwith105 timesteps:theorbitsofFSR1758inx-y,x-z,r-zplanesanditsenergyand
Lz asafunctionoftime,derivedbyintegratingEoMsbackward1.25Gyr.

Figure 4.6:ThetestofGR15with1000timesteps:theorbitsofFSR1758inx-y,x-z,r-zplanesanditsenergyandLz as
afunctionoftime,derivedbyintegratingEoMsbackward1.25Gyr.
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Inputs X (kpc) Y (kpc) Z (kpc) U (km/s) V (km/s) W (km/s)
1. 3.08 -2.14 -0.65 251.71±2.24 250.77±2.9 198.86±17.8

Outputs Rperi(kpc) Rapo(kpc) Zmax(kpc) e E (kpc/Myr)2 Lz(kpc2/Myr)
Model I 3.77±0.02 15.25±1.3 6.47±1.02 0.6±0.02 -0.16±0.004 -1.34±0.01
Model II 3.75±0.02 14.03±1.14 5.83±0.74 0.57±0.02 -0.14±0.004 -1.34±0.01
Model III 3.77±0.02 16.81±1.3 6.77±0.94 0.63±0.02 -0.19±0.004 -1.34±0.01
Inputs X (kpc) Y (kpc) Z (kpc) U (km/s) V (km/s) W (km/s)
2. 2.87±0.97 -2.14±0.18 -0.66±0.06 252.67±2.24 245.55±2.88 198.63±17.68

Outputs Rperi(kpc) Rapo(kpc) Zmax(kpc) e E (kpc/Myr)2 Lz(kpc2/Myr)
Model I 3.76±0.02 15.21±1.3 6.47±1.06 0.6±0.03 -0.16±0.004 -1.34±0.009
Model II 3.58±0.86 13.84±4.9 5.95±2.56 0.58±0.04 -0.14±0.02 -1.27±0.3
Model III 3.74±0.84 17.19±5.8 7.26±3.27 0.63±0.03 -0.19±0.02 -1.32±0.3

Table 4.2:FirsttworowsofupperandlowerhalftableshowsinputsofinitialconditionsbyusingEq.3.1andMonte
Carlosimulations,whicharelabelledas1and2respectively.Thelastfourrowsinupperandlowerpanelsshowthe
correspondingcalculatedorbitalparametersinthreedifferentpotentialmodels.

each of them contains orbits calculated from three potential models. Orbital parameters for
three models derived from the two methods are listed in the outputs of Table 4.2.

The orbits obtained from theMonteCarlo Simulation have larger distributions in orbital
parameters than the one calculated frommatrices, which is reasonable because the latter one
doesn’t possess errors in X, Y, Z. Yet in general the results are similar, with mean Rperi falls
outside bulge, Rapo far away from the center and Zmax goes beyond the height of Galac-
tic thick disk. In addition, eccentricity is high about 0.6 and the cluster shows retrograde
motions.

In fact, the orbit of FSR 1758 was recently studied by Simpson (2019). With averaged
Vr from three stars together with proper motions from Gaia, Simpson modeled the pre-
vious 1.25 Gyr of the orbit of FSR 1578 using GALA (version 0.3; Price-Whelan 2017;
Price-Whelan et al. 2018), a Python package for galactic dynamics, with the default poten-
tial ”MilkyWayPotential”. The potential is composed of a spherical nucleus and bulge, a
Miyamoto-Nagai disk (Miyamoto and Nagai, 1975) and a spherical NFW dark matter halo
(Navarro et al., 1997), similar to theModel III. The input initial conditions are (α, δ, d⊙, µα,
µδ, vr) = (262.806o, -39.822o, 11.5± 1.0 kpc, -2.85± 0.1 mas/yr, 2.55± 0.1 mas/yr, 227± 1
km/s). FSR 1758 is then found to have a retrograde orbit, withRperi = 3.8±0.9 kpcRapo =

16+8
−5 kpc, and e=0.62

+0.05
−0.04, within the range of our orbits.

Next, we calculated the orbit in consideration of bar potential which may have a large
influence on the orbits of clusters near the Galactic center. Since orbits distribution calcu-
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Figure 4.7:OrbitsofFSR1758witherrordistributionsobtainedfromEq.3.1.Fromtoptobottomareorbitscalculated
fromModelItoModelIII.Theredlinesaretheorbitfromthenominalvaluesofthephasespacecoordinates.Thegrey
linesshow100orbitsrandomlysamplingtheerrordistributionsoftheinputconditions.
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Figure 4.8:OrbitsofFSR1758witherrordistributionsobtainedfromMonteCarloSimulations.Fromtoptobottomare
orbitscalculatedfromModelItoModelIII.Theredlinesareorbitsfromthenormalvaluesofthephasespacecoordi-
nates.Thegreylinesshow100orbitsrandomlysamplingtheerrordistributionsoftheinputconditions.
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Figure 4.9:TheorbitsfromSimpson(2019):Theprevious1.25GyroftheorbitofFSR1758projectedintoCartesian
spacecentredontheGalacticcenter.Theredlineistheorbitfromthenominalvaluesofthephasespacecoordinates,
andthebluelinesshow100orbitsrandomlysamplingtheerrordistributionsoftheinputparameters.Theblackdot
showsthepresentpositionofFSR1758.

lated fromModel I are more concentrated than the other two, Model II andModel III were
not considered here. Besides, when comparing two methods, Model I provides the closest
results. Furthermore, take notice that when adding the bar component into any model, the
mass of bar is assumed to transfer from the mass of bulge all at once for simplicity, and the
pattern speeds of the bar applied here are Ω = 41, 50, 60 kpc−1 km/s. Then we integrated
EoMs backward for 1.25Gyrwith 1000 time steps usingGR15. Here we choseMonteCarlo
simulations to consider errors.
The resulting orbital parameters are listed in Table 4.3. As we can see, different speed

patterns result in similar orbital parameters. Compared with potential models without bar
component, values ofRperi,Rapo and Zmax are similar, indicating that the time dependent
bar potential doesn’t influence the orbits of FSR 1758 a lot. Orbits with Ωbar = 41 kpc−1

km/s are shown in Fig.4.10, in both Galactic frame and bar-axis frame from which we can
see that FSR 1758 didn’t enter the bulge. In addition, after including the bar, its orbits
becomes more dispersed in x-y plane, which may be influenced by the rotation of the bar
potential in the outer region.

4.3 The Origin of FSR1758

Whether orbits from Simpson (2019) or from the threemodels in this thesis, they reveal that
FSR 1758 is an intruder from the Galactic halo, withRapo far away from the Galactic center
andZmax going beyond the height of Galactic thick disk.
The origin of FSR 1758 has been studied throughout the year. It was first questioned by
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Figure 4.10:TheupperpanelshowsOrbitsofFSR1758inGalacticspacewhilethelowerpanelshowsorbitsinbar-
referencedspace.Theseorbitswerecalculatedfromthepotentialmodelsconsistingofadisk,ahalo,bothofwhichhave
parametersfromModelI,andarotatingbar.Thebulgemassistransferredimmediatelytothebarwhenconsideringthe
barpotential,sothemassofthebaristhesameasthemassofbulgeinModelI.Thereddashellipseinthelowerpanel
showstheshapeofthebar.TheblackdotisthepresentlocationofFSR1758.

Outputs Rperi(kpc) Rapo(kpc) Zmax(kpc) e E (kpc/Myr)2 Lz(kpc2/Myr)
Ω=41 kpc−1 km/s 3.59±0.78 14.91±3.42 6.2±2.06 0.6±0.02 -0.14±0.01 -1.27±0.28
Ω=50 kpc−1 km/s 3.63±0.83 15.14±3.61 6.36±2.15 0.61±0.01 -0.14±0.01 -1.24±0.29
Ω=60 kpc−1 km/s 3.5±0.8 14.5±3.37 6±1.99 0.61±0.02 -0.14±0.01 -1.29±0.3

Table 4.3:Orbitalparametersderivedwiththreepatternspeedsofbarpotential.Differentpatternspeedsleadtosimilar
orbitalparameters,suggestingthattheinfluenceofbarpotentialisweak,inagreementwiththefactthatFSR1758
didn’tenterthebarregion.
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Barba et al. (2019) that whether it is a typicalmetal-poorGC residing in theMilkyway or the
central part of a dwarf galaxy. The latter assumption was supported by the common proper
motions in the surrounding halo stars which could be the tidal debris of the dwarf galaxy.
Soon after, Simpson (2019) argued that the halo stars are in fact not associated with the clus-
ter because of the distinct distributions in proper motion, colour and parallax between the
clustermembers and the halo stars, and therefore he concluded that FSR 1758 is aGC.How-
ever, he also added that since there were no sufficient data for radial velocity and metallicity,
the possibility that it is a dwarf galaxy remnant couldn’t be excluded.
It is worth noting that when speaking of stars or clusters with retrograde motions or high

eccentricity, they are usually linked to accretion origins. Hence, in order to investigate this
relationship, we constructed plots composed of Lz in semi-logarithm scale as y-axis and ec-
centricity as x-axis derived by taking advantage of orbital parameters fromWu et al. (2009)
for 488 OCs and Baumgardt et al. (2019) for GCs ( with two exceptions Ter 10 and Djor 1
fromOrtolani et al. 2019). GCs are grouped into:

1. possible accreted GCs which include events from:

(a) Gaia Sausage (Myeong et al. 2018 andMyeong et al. 2019),
(b) Sagittarius GCs (Forbes and Bridges, 2010),
(c) Sequoia (Myeong et al., 2019),
(d) Kraken (Kruijssen et al., 2019),
(e) Canis Major (Forbes and Bridges, 2010), and
(f) Gaia Enceladus (Helmi et al., 2018).

2. in-situ GCs:

(a) bulge GCs listed in the Table 1. of Bica et al. 2016,
(b) probable intruders listed in the Table 2. of Bica et al. 2016, and
(c) lastly, GCs not belong to any of them are grouped into halo GCs.

The plots are shown in Fig.4.11 and GCs applied to each group are listed in Table 4.5.
It’s interesting to find that the plots show some differentiation of these GC groups. First,

the top panel compares OCs with in-situ GCs. Becausemost OCs were born in the disk and
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In-situ Prograde Retrograde
< Lz > σLz <Lz> σLz

OCs 1721.84 311.32 – –
Halo 1673.87 2169.60 -1675.05 2447.72
Bulge 205.52 172.15 -54.12 13.56

Intruders 538.29 441.77 -165.84 90.65

Table 4.4:Themeanangularmomentumalongz-axisandstandarddeviationoffourgroupsofGCsformedin-situ.Units
ofLz andσLz

areinkpckm/s.

rotate the Galaxy in a nearly circular clockwise orbits, they concentrate at high Lz (≥ 103)
and low eccentricity. However, unlike OCs, GCs in general are more dispersed in Lz and
e and occupy both prograde and retrograde orbits. Bulge GCs have Lz < 103. On the
other hand, halo GCs have higher Lz in average yet with wider distribution. Lower Lz of
bulgeGCs than the haloGCs agreeswith the bulge formation scenario of dissipative collapse,
during which low angular momentum gas collapsed towards the central parts of the Galaxy.
Possible intruder GCs seem to connect previous two groups. Values of the mean Lz and
standard deviation for the three groups are provided in Table 4.4.
In themiddle andbottomof Fig.4.11 showdifferent grouping ofGCs fromdifferent accre-

tion events proposed by several authors. Most of the accreted GCs have eccentricity higher
than 0.5. Particularly, Gaia Sausage, Sequoia and Sagittarius GCs in the middle panel show
clearer grouping feature in eccentricity, e = 0.4-0.6 for the first two and 0.8-1.0 for the last
one. In addition, apart fromGaia Sausage groupwhich has a ratio of prograde/retrograde or-
bits 13/8, Sagittarius and Sequoia groups hold 100% prograde and 100% retrograde motion
respectively. However, in Kraken, Canis Major and Gaia Enceladus groups, GCs in each
of them don’t seem to relate to each other that much, with prograde and retrograde orbits
mix together in a wide range of eccentricity. Some GCs even overlap between the groups.
Especially, most Gaia Enceladus GCs exhibit similar distribution as Gaia Sausage GCs, in
agreement with Piatti (2019) who probed accretion events using the inclination and the ec-
centricity of GCs.
As a consequence, it should be noted that GCs with retrograde or high eccentricity orbits

are not special cases at all. For a system with high random motions, the mixing of prograde
and retrograde orbits and the presence of high eccentricity orbits is reasonable. What’s more
important issues here are that, first these accreted GCs should possess similar kinemat-
ics behaviors since they were from the same original host which gravitationally bound
them together, and therefore when the merging happened their collective behaviors
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would be preserved due to the sparse density in the outer halo region; and second,
whether these collective behaviors are distinct enough from the Milky Way to be in-
dications of relics of accretion events.
Back to our main target, from the first and second plots of Fig.4.11, FSR 1758 locates in

the range of Sequoia group as well as in-situ halo GCs. Myeong et al. (2019) has suggested
FSR 1758 to be one of members of Sequoia based on the distribution in action spaces. Here,
though there are only five GCs in the Sequoia event, the probability that the clustering is a
signature of accretion events couldn’t be ruled out. Hence FSR 1758 could be one ofGCs in
Sequoia dwarf galaxy accreted to the Milky Way. Similarly, because there are only five GCs,
this evidence is not strong enough to support the clustering behavior. An in-situ origin for
the cluster is also possible.
In kinematics, the origin of FSR 1758 could be a halo intruder or accreted from Sequoia

event. However, just recently Villanova et al. (2019) further analyzed chemical components
of FSR 1758 in detail by using high dispersion spectra for 9 stars and discovered the Na-O
anti-correlation of metal-poor GCs which is found for all metal-poor GCs . According to
them, the two components fit the mean Na and O abundance of other halo GCs very well
when the second generation stars in them are excluded. When considering all stars, depletion
in O and enhancement in Na came out. Apart from this, its α elements display the same
trend with Galactic GCs as well as halo and thick disk stars and the trend is not commonly
seen in extra-galactic objects. As a consequence, FSR 1758 ismore similar to in-situ haloGCs
in aspect of chemical abundance.
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Accretion Events Candidate GCs Sources

Gaia Sausage

NGC 18511, NGC 19041, NGC 22981, NGC 28081,
NGC 52861, NGC 67791, NGC 68641, NGC 70891,
NGC 3621 , NGC 12611, NGC 41472, NGC 48332,
NGC 56942, NGC 65442, NGC 65842, NGC 67122,
NGC 69342, NGC 69812, NGC 70062, Pal 142,
Pal 152.

1Myeong et al. (2018) ,
2Myeong et al. (2019)

Sequoia FSR 1758, NGC 3201, NGC 5139, NGC 6101,
NGC 5635, NGC 6388 Myeong et al. (2019)

Sagittarius Ter 7, Arp 2, Ter 8, NGC 6715, NGC 4147,
NGC 5634, Pal 12, AM 4, Whiting 1. Forbes and Bridges (2010)

Kraken

NGC 362, NGC 1261, NGC 3201, NGC 5139,
NGC 5272, NGC 5897, NGC 5904, NGC 5946,
NGC 6121, NGC 6284, NGC 6544, NGC 6584,
NGC 6752, NGC 6864, NGC 6934.

Kruijssen et al. (2019)

Canis Major
NGC 1851, NGC 1904, NGC 2808, NGC 4590,
NGC 6341, IC 4499, NGC 6205, NGC 5286,
NGC 6779, NGC 7078.

Forbes and Bridges (2010)

Gaia Enceladus
NGC 288, NGC 362, NGC 1851, NGC 1904,
NGC 2298, NGC 4833, NGC 5139, NGC 6205,
NGC 6341, NGC 6779, NGC 7089, NGC 7099.

Helmi et al. (2018)

In- Situ Candidate GCs Sources

Bulge

Ter 3, ESO 452-SC11, NGC 6256, NGC 6266,
NGC 6304, NGC 6316, NGC 6325, NGC 6342,
NGC 6355, Ter 2, Ter 4, HP 1, Lil 1, Ter 1,
Ton 2, NGC 6401, Pal 6, Ter 5, NGC 6440,
Ter 6, UKS 1, Ter 9, Djor 2, NGC 6522,
NGC 6528, NGC 6539, NGC 6540, NGC 6553,
NGC 6558, NGC 6569, BH 261, Mercer 5,
NGC 6624, NGC 6626, NGC 6638, NGC 6637,
NGC 6642, NGC 6652, NGC 6717, NGC 6723

Table 1 of Bica et al. (2016).

Intruders

Lynga 7, NGC 6144, NGC 6171, NGC 6235,
NGC6273,NGC 6287, NGC 6293, NGC 6352,
NGC 6380, NGC 6388, NGC 6402, NGC 6441,
NGC 6496, NGC 6517, NGC 6544, 2MS 2,
IC 1276, Ter 12, NGC 6712.

Table 2 of Bica et al. (2016)

Halo

NGC 104, AM 1, Eridanus, Pal 2, NGC 2419,
Pyxis, E 3, Pal 3, Pal 4, Crater, NGC 4372,
NGC 5024, NGC 5053, NGC 5466, NGC 5824,
Pal 5, NGC 5927, NGC 5986, FSR 1716,
NGC 6093, NGC 6139, NGC 6229, NGC 6218,
FSR 1735, NGC 6254, NGC 6333, NGC 6356,
IC 1257, NGC 6366, NGC 6362, NGC 6397,
NGC 6426, Djor 1∗, Ter 10∗, NGC 6535,
NGC6541, ESO 280, Pal 8, NGC 6656,
NGC 6681, NGC 6749, NGC 6760, Pal 10,
NGC 6809, Pal 11, NGC 6836, Pal 13, NGC 7492.

GCs in Baumgardt et al.
(2019) not listed in any of
previous group. ∗ Orbital
paremeters of Djor 1 and
Ter 10 are taken from Or-
tolani et al. (2019) since it
has more reliable distance
measurements thanBaum-
gardt et al. (2019) inwhich
Ter 10 was revealed to be
a bulge cluster. However,
according toOrtolani et al.
(2019) it’s a halo intruder.

Table 4.5:Listsofaccretedandin-situGCscategorizedintodifferentgroups.46



Figure 4.11:RelationshipsbetweentheangularmomentumalongzdirectionLz versuseccentricityefortheGCgroups.
Toppanel:In-situGCsassociatedwiththeGalactichalo,bulgeorintrudersintothebulgeincomparisonwithOCs.Mid-
dlepanel:GCsfromthreeaccretionevents,GaiaSausage,SequoiaandSagittarius,comparedwithin-situGCsandOCs.
Bottompanel:GCsfromthreeaccretionevents,Kraken,CanisMajorandGaiaEnceladus,comparedwithin-situGCsand
OCs.
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The end of one journey is the beginning of the another.

JosephM.Marshall III

5
Conclusions

As a giant cluster hidden behind the high extinction Galactic bulge with a distance 11.5±1.0
kpc (Barba et al., 2019) from us, FSR 1758 has been paid much attention recently. It was
discovered due to its prominent proper motions from the field stars, and the presence of
RGB, RGBb and BHB in optical and near-IR CMDs (Cantat-Gaudin et al. 2018, Barba
et al. 2019 and Simpson 2019) lead to the consensus of FSR 1758 as a metal-poor GC. Its
metalliity was confirmed by Villanova et al. (2019) with a value [Fe/H]= -1.58 ± 0.03 dex
by using high resolution spectra. This latest observation of FSR1758 gives (α, δ, d⊙, µα, µδ,
vr) = (262.81o, -39.82o, 11.5± 1.0 kpc, -2.79± 0.0097 mas/yr, 2.6± 0.009 mas/yr , 226.8
± 1.6 km/s. From these parameters we derived the position and velocity in Galactocentric
Cartesian coordinate through Monte Carlo Simulation: (X, Y, Z, U, V, X) = (2.87 ± 0.97
kpc, -2.14± 0.18 kpc, -0.66± 0.06 kpc, 252.67± 2.24 km/s, 245.55± 2.88 km/s, 198.63
± 17.68 km/s).
In the thesis, the orbits of FSR 1758were derived in three different galactic potential mod-

els through integrating EoMs backward for 1.25 Gyr with an efficient and precise algorithm:
Gauss-Radau spacings of 15th order. The resulting orbits are in agreement with the one in
Simpson (2019), having orbital parameters 3 kpc < Rperi < 4 kpc, 14 kpc < Rapo < 16
kpc, Zmax ∼ 6 kpc and e ∼ 0.6. Furthermore, a potential with bar component was then
added to observe its influence on the cluster orbit. It is assumed that the mass of the bar is
transferred from the mass of the bulge instantly. When being viewed in the bar-axis refer-
ence, the cluster didn’t enter the inner region of the bar, matching the fact that there are no
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significant changes in orbital parameters.
Because its apogalactic distance is far away from the Galactic center and the maximum

height of its orbit exceeds the height of Galactic thick disk, FSR 1758 is believed to be an
intruder from the Galactic halo. However, whether it is an in-situ GC that formed inside
the Galactic halo or belongs to one of accreted GCs left over after the merger of satellite
dwarf galaxies into the Milky Way was unclear. FSR 1758 possess both retrograde and high
eccentricity properties that are thought to be signatures of accretion events.
To probe the relationship between them, we grouped 154 GCs into accreted and not ac-

creted then plotted Lz-e space. Accreted GCs were then categorized into 6 well-known ac-
cretion events based on literature. They are Gaia Sausage, Sequoia, Sagittarius , CanisMajor,
Kraken andGaia Enceladus. Not accretedGCswere separated into bulgeGCs (withRapo <

3kpc), intruders based onmetallicity and distance (Bica et al., 2016) and haloGCs that don’t
belong to bulge, intruders or any accreted event.
The results (Fig.4.11) show that in the cases of Sagittarius, Gaia Sausage and Sequoia, they

share the feature of concentrated, high eccentricity. However, retrograde orbit is not a pecu-
liar feature for accretion events anymore. All GCs in Sagittarius have prograde orbits while
all GCs in Sequoia have retrorgrade orbits. What’smore surprising is thatGaia Sausage owns
both prograde and retrograde orbits of very high eccentricity, in line with the statement that
it is a head-on collision event.
In the cases of Canis Major, Kraken and Gaia Enceladus, they exhibit more spread ec-

centricity but mostly higher than 0.5. Prograde and retrograde orbits are mixed together.
Though having less grouping characteristics, they show overlapping with other events, espe-
cially Gaia Sausage mostly. This probably suggests that different accretion groups may be in
fact come from the same merging event.
For FSR 1758, it falls in the region of Sequoia event. Although Sequoia GCs seem to be

confined in a small region, there are only four candidatesGCs in this event. As a consequence,
we can’t be sure if FSR 1758 is really from Sequoia or it is just a coincidence for four in-
situ halo GCs. Nevertheless, with the help of detailed chemical abundance analysis done
by Villanova et al. (2019), FSR 1758 was found to contain similar trend in α elements and
Na-O anti-correlation for metal-poor halo GCs. Therefore, the origin of FSR 1758 is most
probably a halo GC formed inside the MilkyWay .
In summary, thanks to previous studies of FSR 1758 from many aspects, FSR 1758 is

concluded to be a genuine halo GCs.
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