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Abstract

Most molecular phylogenies are based on sequence alignments. Conse-
quently, they fail to account for modes of sequence evolution that involve
frequent insertions or deletions. Here we present a method for generating ac-
curate species phylogenetic trees from whole genome sequence. Our approach
makes use of the frequency of l-mers with mismatches and calculates a dis-
tance matrix for a given dataset of s taxa, of average length n and a pattern
length l in O(s2 ·n2) (so it is independent from l). It is computed according to
the number of l-mers of each taxon occuring also in another one with at most
k mismatches. It is still not clear if, given a set of sequences of average length
n, there is a pattern length and relative number of mismatches which best fits
with this dataset and, in that case, how to derive these parameters. However,
our results demonstrate over two datasets (mitochondrial DNA and retroid
viruses) that reliable phylogenetic trees are obtained for a certain range of val-
ues of both pattern length and maximum number of mismatches rather than
for a single combination (l, k) of these parameters. As concerning the mito-
chondrial dataset, our method has been compared to the traditional (single
gene or protein based) maximum likelihood method, to the Average Common
Substring approach and to a method which uses the information theoretical
concept of Kolmogorov complexity to deduce a distance between the species.
The trees constructed from the dataset of retroid viruses has been evaluated
looking at the taxonomy descripted in the International Committee on Tax-
onomy of Viruses. In both cases our results are as good as or better than
those presented in these other works in terms of accuracy.
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Sommario

La maggior parte delle filogenesi molecolari sono basate sull’allineamen-
to di sequenze. Di conseguenza, esse non riescono a spiegare le modalità di
evoluzione di sequenze che coinvolgono frequenti inserzioni o cancellazioni di
caratteri. Qui viene presentato un metodo per generare accurati alberi fi-
logenetici delle specie a partire dall’intera sequenza dei genomi. Il nostro
approccio fa uso della frequenza di l-mers con mismatches e calcola una ma-
trice delle distanze per un dato dataset di s taxa di lunghezza media n e una
lunghezza del pattern l in O(s2 · n2) (indipendente dunque da l). Essa viene
calcolata in base al numero di l-mers di ciascun taxon che è presente anche in
un altro taxon con al più k mismatches. Non è ancora chiaro se, dato un in-
sieme di sequenze di lunghezza media n , vi sia una lunghezza di pattern e un
relativo numero massimo di mismatches che meglio si adatti a questo dataset
e, in tal caso, come calcolare tali valori. Tuttavia, i nostri risultati mostra-
no su due dataset (il primo costituito da sequenze di DNA mitocondriale, il
secondo relativo invece ai retroid virus) come si siano ottenuti alberi filogene-
tici corretti per un certo intervallo di valori sia di lunghezza del pattern che
del numero massimo di mismatch, anziché per una sola combinazione (l, k)
di questi parametri. Per quanto riguarda il dataset mitocondriale, il nostro
metodo è stato paragonato al metodo della massima verosimiglianza (basato
su singoli geni o proteine), all’approccio Average Common Substring e ad un
metodo che utilizza le informazioni relative al concetto teorico di complessità
di Kolmogorov per dedurre una misura di distanza tra le specie. Gli alberi
costruiti dal dataset dei retroid virus sono stati valutati esaminando la tas-
sonomia descritta nell’ International Committee on Taxonomy of Viruses. In
entrambi i casi i nostri risultati sono paragonabili a quelli presentati in questi
altri lavori, e talvolta anche migliori in termini di accuracy.
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1 Introduction

The fast advancement of worldwide genome sequencing has raised a fundamental and
challenging question to modern biological science: “how do we compare genomes?”
A phylogenetic tree is the only figure in On the Origin of Species, evidence of the
central importance of such trees to evolutionary biology. A phylogenetic tree is a
graphical representation of the evolutionary relationships among entities that share
a common ancestor. Those entities can be species, genes, genomes, or any other
operational taxonomic unit (OTU). More specifically, a phylogenetic tree, with its
pattern of branching, represents the descent from a common ancestor into distinct
lineages. It is critical to understand that the branching patterns and branch lengths
that make up a phylogenetic tree can rarely be observed directly, but rather they
must be inferred from other information.

Figure 1.1: “I think” tree as depicted by Charles Darwin.

Existing methods such as multiple alignment and various sequence evolutionary
models do not directly apply to complete genomes where such events as rearrange-
ments make traditional full length alignments unfeasible. Traditional methods such
as maximum parsimony or maximum likelihood are inapplicable for determinate
datasets: for example viruses can be split up into several different families which
have very few genes in common.
The desire to infer the evolutionary history of a group of species should be more
viable now that a considerable amount of multilocus molecular data is available.
However, the great majority of current molecular phylogenetic paradigm still recon-
structs gene trees to represent the species tree.
In this thesis we propose a method which uses whole genome information and the
distance between two species is calculated accordine on the mutual occurrences of
l-mers with mismatches.
The thesis is organized as follows: Chapter 2 gives an overview of the background
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of phylogeny, with the main techniques utilized to infer relationships between the
species. In particular we concentrated on alignement-free methods, also to describe
the works we referred to in order to compare our results.
Chapter 3 describes the tools and the libraries that have been used and the specifi-
cations of the development environment. Particularly there are reported the settings
for the software Phylip [44], which we utilized to calculate the RF-distance between
the species.
Chapter 4 describes the details of our approach and there we found the pseudocodes
for our algorithms and the instruction to run it and to use the graphic user interface
we provided in order to execute pairwise analysis.
In Chapter 5 we presented the achieved results and their comparison with other
methods.
Finally, in Chapter 6 we sum up our observation and give a trace for possible future
improvements of the present work.
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2 Phylogeny basics

Evolution is a topic that has been subject of many studies during the last two cen-
turies, since the great contribution of the naturalist Charles Darwin and his publi-
cation “On the Origin of Species”. The advent of molecular sequencing techniques
has marked the transition from morphological observations to a kind of research of
relationships among groups of organisms, that is based on similarities or differences
that are intrinsic to the genetic inheritance of the species.
The result of phylogenetic studies is an hypothesis about the evolutionary history of
taxonomic1 groups i.e their phylogeny. The phylogenetic process describes an alter-
ation of the species over time: indeed populations may split into separate branches,
hybridize together, or terminate by extinction and this evolutionary branching pro-
cess may be depicted as a phylogenetic tree, also called dendrogram. In such a
diagram there are two kinds of nodes: external nodes represent the taxa of the cur-
rent dataset while an internal node indicates an unknown common ancestor from
which the species of its subtree split up; the distance of one group of species from
the others indicates its degree of relationship, so closely related groups are located
on branches close to one another[45]. Different dendrograms allow different analy-
sis: for example chronograms explicitly represent evolutionary time through their
branch spans, while cladograms and phylograms describe the distance between the
taxa, with branch spans that are respectively indipendent or proportional to the
amount of character change.
Trees can also be rooted, when a common predecessor is present, or unrooted, when
they describe the evolutionary relationships between the taxonomic unities. We
used unrooted trees are used since it is not a trivial problem nor to assess or to
demonstrate that a particular taxon is the common ancenstor for a dataset, espe-
cially when big datasets are treated.

In the last decades the explosive growth of nucleotide and amino acid sequenced
data and the consequent availability of whole genome and proteome sequences of
different species has allowed Computer Science to investigate new techiques and has
lead to the creation of huge datasets capable of storing this growing amount of data.
NCBI2, founded in 1988, houses a series of databases relevant to biotechnology and
biomedicine, including GenBank for DNA sequences, an open access, annotated
collection of all publicly available nucleotide sequences and their protein transla-
tions, and PubMed, a bibliographic database for the biomedical literature. All these
databases are available online through the Entrez search engine [49].

Phylogenetic analysis are mostly based on these techniques:

• analysis of single genes or proteins;

• combination of a few gene trees to a species tree [25] in such a method single
genes are utilized to recover the genealogy of taxa, individuals of a population,
etc.;

1Taxonomy: the science of classification of organisms
2National Center for Biotechnology Information
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Figure 2.1: Example of a phylogenetic tree.

• quartet methods[29][4], which directly decompose the n datasets into subsets
of four taxa each. If every quartet tree is computed correctly from noiseless
data, then there is a single tree compatible with all

(
n
4

)
resolved quartets and

that is the true tree. In practise, of course, not all the resolved quartets are
correct and consequently there may not be a single tree that is compatible
with them [24];

• super tree methods [5]. Generally we call consensus tree the maximum likeli-
hood tree derived from input trees with identical leaf set. Super tree methods
are particular techniques that can combine information from input trees with
nonidentical leaf sets, too.

Let us quickly explain some of the principal methods that are used for deriving
a phylogenetic tree.

2.1 Phylogenetic tree reconstruction

We will now give a rapid overview of the main techniques to infer a phylogenetic
tree, with particular enphasis on the distance-based approach (see section 2.1.4)
which is the one used by the tool Phylip [44] that we have utilized in the current
work.
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2.1.1 Maximum parsimony

Maximum parsimony analysis is a character-based method that lies upon the prin-
ciple that “simpler hypotheses are preferable to more complicated ones”. Thus a
phylogenetic tree is inferred by minimizing the total number of evolutionary steps
required to explain a given set of data, or in other words by minimizing the total
tree length. The steps may be base or amino-acid substitutions for sequence data,
or gain and loss events for restriction site data.
Since the problem of identifying the most parsimonious tree is known to be NP-
hard [17], näıve approach (the enumeration of all possible trees and the following
evaluation and identification of the most “convienient”) has given way to various
heuristics. The core of such technique is the selection of the so called “informative
sites”. A position in the relevant set of sequences is said to be informative if it favors
one or more trees between all possible trees and if it contains at least two different
characters, each of which is present on at least two sequences.
The steps performed are:

1. select the informative sites;

2. calculate the minimum number of substitutions required by each of the pos-
sible unrooted trees that describe the phylogenetic relationships between the
taxonomic units concerned;

3. the tree (or trees) of maximum parsimony is the one that requires the minimum
number of substitutions among all informative sites considered.

We underline that for this analysis only the information that present in informative
sites is used.
Maximum parsimony presents some limitations due to the absence of a model of
evolution and to the fact that it does not correct for multiple mutations or parallel
substitutions. It also has to be said that these limitations particularly affect nu-
cleotide sequences so this method is generally used for the analysis of amino acid
sequences.

2.1.2 Maximum likelihood

Maximum likelihood assumes a certain model of evolution (generally a Markov model
is used) and aims at finding an answer to the question:

“What is the probability to observe certains data, given a particular model of
evolution?”

In some ways this method is not dissimilar from maximum parsimony: indeed max-
imum likelihood finds a tree based on probability calculations that best accounts for
the large amount of variations of the dataset. The idea is that the more mutations
are needed to explain a phylogeny, the less that evolution, and so that tree, will be
likely. Obviously the probability of making some observations is deeply related to the
model behind our assumptions. The critical difference between maximum likelihood
and maximum parsimony is that the latter minimizes the amount of evolutionary
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change required for data explanation, while the former attempts to estimate the
actual amount of change according to the evolutionary model in place. So, given
the original data, maximum likelihood works with a prior nucleotide substitution
model to compute a likelihood score for each tree. Before beginning the procedure
of tree derivation, either an evolutionary model must be specified that can account
for the conversion of one sequence into another or parameters must be selected that
can be estimated from the data. Then the probability that the selected evolutionary
model will have generated the observed sequences is evaluated.
The main disadvantage in using this method is given by its computational complex-
ity, which prevents to apply it to datasets with more than 20-30 sequences [38].

2.1.3 Bayesian methods

Bayesian methods are based on a probabilistic model that explains how the observed
data have been produced. Here every parameter of the model has its own probability
value and Bayesian inferece works comparing the a priori probabilitity of the model
with the a posteriori probability i.e. the probability that the value of a parameter
is equal to the observed probability.
Usually Markov chain Monte Carlo (MCMC) algorithms are used for the Bayesian
inference approach, since the great advances that have been made in this field [18].

2.1.4 Distance-based methods

Distance-based approach for phylogenetic trees reconstruction relies upon the ob-
servation that relationships among the trees can be described through a distance
matrix, which can come from a number of different sources such as morphometric
analysis, pairwise distance formulae between the input organisms relying upon mor-
phological data or, as often occurs, genetic distance. The basis of these methods is
the assumption that, according to some biological criterion, a distance d(Si, Sj) = dij
is associated with a set of sequences (S1, S2, ...SN), such that the following properties
are verified:

- Positivity: dij ≥ 0 ∀i, j

- Zero-diagonality: dij = 0⇐⇒ i = j

- Symmetry: dij = dji

- Triangle inequality: di,j + djw ≥ diw

After distance estimates have been computed, a phylogenetic tree can be re-
constructed using precisely a distance-based reconstruction method. Most of such
techniques perform a bottom up reconstruction using a greedy clustering algorithm.
Initially, each input organism is put in its own cluster which corresponds to a leaf
node in the resulting tree. Next, pairs of clusters are iteratively joined into higher
level clusters, which correspond to connecting two nodes in the tree with a new
parent node. When a single node remains, the tree is reconstructed.
In particular there are two clustering methods we need to cite, since they are the
phylogenetic trees reconstruction techinques adopted by the tool Phylip, whose
description is given in section 3.1: UPGMA and Neighbor-Joining.
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2.1.4.1 UPGMA

Unweighted Pair Group Method with Arithmetic mean (UPGMA) uses an itera-
tive clustering algorithm which proceeds through N−1 steps (where N is the size of
the dataset) by gradually associating couple of sequences, or clusters of sequences,
which are more similar.
UPGMA works under the assumption of the molecular clock, i.e. the hypothesis of
constancy in time of the number of substitutions per site.

2.1.4.2 Neighbor-Joining

Another distance-based method, which we will use to build our trees, is Neighbor-
Joining. This is a bottom-up clustering approach, created by Naruya Saitou and
Masatoshi Nei in 1987, which is particularly suited for datasets comprising lineages
with largely varying rates of evolution since it does not require the data to be ul-
trametric3. With the rapid growth of sequence databases it is still one of the few
methods that allows the rapid inclusion of all homologous sequences present in the
database in a single tree. In Figure 2.2 we report a diagram which describes how
Neighbor-Joining works. An operational taxonomic unit (OTU) is an operational
definition of a species or group of species often used when only DNA sequence data
is available[7]. Starting from a completely unresolved star-like phylogeny tree, all
the internal branches are determined through N − 3 steps, where N is the size of
the dataset, so that the overall length of all branches is the smallest possible.

Figure 2.2: Flow chart of the Neighbor-Joining method.

3Data are said to be ultrametric when all lineages have diverged by equal amounts.
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2.2 Alignment-free methods

The comparison of two or more closely related genomes at the base-by-base nu-
cleotide sequence level is accomplished by sequence alignment; molecular sequence
alignment is, in essence, a procedure by which we can recognize and describe po-
tential homology among nucleotide or amino acid positions. Literature lists several
well-known algorithms which operate optimal alignment and are the very founda-
tion of sequence alignment such as Smith-Waterman algorithm [36] and Needleman-
Wunsch algorithm [27]. Clearly it is impractical to find a perfect alignment between
several sequences so dynamic and heuristic algorithms, mostly based on the recog-
nition of alignment seeds, are used.
There are several popular tools for sequence alignment, among which BLAST4 [12][46],
one of the most widely used bioinformatics programs. BLAST’s heuristic approach
for performing pairwise alignment consists in a process called seeding : it consists in
finding similar sequences, not by comparing either sequence in its entirety, but rather
by locating short matches between the two sequences. Once these first matches has
been individuated, BLAST begins to make local alignment. This heuristic method
runs much faster than calculating an optimal alignment.
Other well-known tools are FASTA [42] and programs like ClustalW [47] which per-
form multiple alignment, i.e. the comparison of many sequences in one go.
However, since species diverge extensively over time, insertions or deletions (indels)
and genomic rearrangements make straightforward sequence alignment unreliable.
The overwhelming majority of biological sequence comparison methods rely on first
aligning reference homologous sequences and deriving a score for the alignment
of individual units, typically the logarithm of the odds ratio, which is then used
to optimize the alignement of new sequences, thus reducing sequence dissimilarity
evaluation to a comparison bewteen candidate alignments and reference alignmnent
of well-studied sequences.
Moreover, we must refer to the computational complexity of alignment-based ap-
proaches, which makes them unfeasible when dealing with large-scale sequence
data[3].

In the last two decades alignment-free methods have been studied as an al-
ternative to estimating evolutionary distance from multiple alignment, in order to
overcome the previously cited limitations.
We can differ between two principal kinds of approaches: the one based on k-mer
frequency and the one based on substrings.

2.2.1 Methods based on l-mer frequency

This first category of methods is based on the statistics of word frequency and in-
cludes procedures which are based on metrics defined in coordinate space of l -mer
count vectors, like the Euclidean distance, but also on the textitHamming distance.
From now on, when referring to a l -mer, we will mean a substring of fixed lenght l.
At a high level, the distance between two sequences is defined by first collecting
the set of l -mers (subsequences of length l) occuring in the two sequences. From
these two sets, the evolutionary distance between the two organisms is now defined

4Basic Local Alignment Search Tool
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by measuring how different the two sets are. The more the two sets look alike, the
smaller is the evolutionary distance. The main motivation for estimating evolution-
ary distance based on l -mers, is that it is computationally much faster than first
constructing a multiple alignment[6]. It is noteworthy that such methods, although
alignment-free, are still length dependent in the sense that the comparisons are made
for fixed word length. This could even be viewed as a weak departure from the orig-
inal idea of alignment since sharing l -mers is equivalent to recognizing an alignment
between identical segments. For this reason, various methods have been proposed
in order to derive combined distance metrics that contain information about all res-
olutions. Thus it is possible to achieve complete independence from the contiguity
of conserved segments [41].
All of the l -mer based distance measures completely ignores the ordering of the
l -mers inside the input sequences.

2.2.2 Methods based on substrings

In this category methods look for similarities and differences among the substrings
of the genomes or proteomes that are studied. We particularly want to the present
two approaches which we have used to compare our results.

2.2.2.1 Average Common Substring (ACS)

The Average Common Substring (ACS) method, described by Ulitsky et al. in
[40], calculates the pairwise genome sequence distances L(X, Y ) between each couple
of sequences X and Y by finding the average length of the longest substrings starting
at every sequence position that are shared between them. Clearly, the shortest the
average common substring is, the less the two sequences are similar and viceversa.
The distance between two sequences X and Y is calculated as follows:

ds(X, Y ) =

[
log|Y |
L(X, Y )

+
log|X|
L(Y,X)

−
(
log|X|
L(X,X)

+
log|Y |
L(Y, Y )

)]
/2 (1)

where the subtraction at the second member of the equation consists in a correction
factor which aims to ensure the zero-diagonality of the distance matrix. Being the
simple distance, for instance, from X to Y, defined as

d(X, Y ) =
log|X|
L(Y,X)

− log|X|
L(X,X)

(2)

we can recognize in formula (1) the correction of the non-symmetry of formula (2)
by averaging d(X, Y ) and d(Y,X):

ds(X, Y ) =
d(X, Y ) + d(Y,X)

2
(3)
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Then the construction of the generalized suffix tree is performed in O(|X| + |Y |),
by which the ACS distance can also be calculated. The overall work, for comparing
s sequences of length up to n, requires O(s2 · n) time.
Ulitsky et al., in their work, have used the “lightweight suffix array”[26] as data
structure leading to an overall time complexity of O(s2 · n · log(n)) with particular
advantage in terms of smaller space requirement and in faster search of subsequences,
with a temporal complexity of O(log(n)).
In terms of space complexity, each suffix array requires O(n) space, and an additional
O(n/

√
log n) is required in the construction stage and then reclaimed.

2.2.2.2 An information-based sequence distance

In a series of two papers, Chen et al. [14] and Li et al. [22] develop tools
that are inspired by Kolmogorov complexity to compress biosequences, and then to
compute pairwise distance based on the compression outcome. Since Kolmogorov
complexity is incomputable, what their GenCompress algorithm actually uses is
a generalizion of the Lempel-Ziv algorithm [21][43]. This compression algorithm
reportedly outperforms other DNA compression methods. It has been applied to
construct a whole mitochondrial genome phylogeny. The distance in [22] is defined
as follows:

d(X, Y ) = 1− K(X)−K(X|Y )

K(XY )

where K(X|Y ) is the conditional Kolmogorov complexity (or algorithmic entropy)
of X given Y. K(X|Y ) is defined as the length of the shortest program causing a
standard universal computer to output X on input Y, andK(X) is defined asK(x|ε),
where ε is the empty string. So we may say that it computes the randomness of X
given Y.
So the numerator indicates the amount of information Y knows about X, and we
know that

K(X)−K(X|Y ) ≈ K(Y )−K(Y |X)

[23] i.e. there is a mutual algorithmic information between X and Y. The denomi-
nator K(XY ), being the amount of information in the string X concatenated with
Y, serves as a normalization factor such that the distance d(X, Y ) ranges between
0 when Y “knows” all about X and 1 when Y “knows” nothing about X.
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3 Software and tools

In this section we will describe the tools that have been used in this work and the
machines over which our algorithms have run.

3.1 Phylip

Phylip5 is a tool, developed by Joseph Felsenstein of the Department of Genome
Science at the University of Washington, used for inferring phylogenies. It is avail-
able free over the Internet, and written to work on as many different kinds of com-
puter systems as possible. The source code is distributed (in C), and executables are
also distributed, for different operating systems: Windows (95/98/NT/2000/me/xp/Vista),
Mac OS X, and Linux systems.
It consists of 35 individual programs, broadly grouped into these categories:

- molecular sequence methods;

- distance matrix methods;

- gene frequencies and continuous characters analysis;

- tree drawing, consensuns, tree editing, tree distances.

Often the output of a program is the input for other programs within the package.
Therefore for a typical analysis the user makes choices regarding each aspect of an
analysis and chooses specific programs accordingly.
Programs are run interactively via a text-based interface that provides a list of
choices and prompts users for input.
The programs we have used in order to perform our test are:

• consense: this program has been used to build some consensus tree from our
own results, in order to compare it with our reference consensus, taken from
[50], and used as meter of comparison in [40]. It provides four ways to derive
the consensus tree:

– Strict: a set of species must appear in all input trees to be included in
the strict consensus tree.

5PHYLogeny Inference Package
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– Majority Rule extended (MRe): any set of species that appears in more
than 50% of the trees is included. The program then considers the other
sets of species in order of the frequency with which they have appeared,
adding to the consensus tree any which are compatible with it until the
tree is fully resolved. This is the default setting.

– Maximum likelihood (Ml): the user is asked for a fraction between 0.5
and 1, and the program then includes in the consensus tree any set of
species that occurs among the input trees more than that fraction of then
time. The Strict consensus and the Majority Rule consensus are extreme
cases of the Ml consensus, being for fractions of 1 and 0.5 respectively.

– Majority Rule: a set of species is included in the consensus tree if it is
present in more than half of the input trees.

We have used MRE method since it has been empirically proved that it builds
the most likely tree. In Figure 3.1 we report the settings used for this program.

Figure 3.1: Settings used for the program consense

• neighbor: this program implements the Neighbor-Joining method of Saitou
and Nei [34 and the UPGMA method of clustering (see sections 2.1.4.1 for a
better description) and the built trees do not assume an evolutionary clock,
so that the program actually performs unrooted trees.
The input of the program is the distance matrix, which must be written in a
particular form: the first row reports the number l of species of the dataset,
then the following l rows report the name of each species (it must be 10
characters long so, longer words have to be shortened, while shorter ones have
to padded with spaces up to the achievement of the ten characters) and the
distance from each of the other taxa; the output of neighbor is written in the
Newick notation[48]. Figure 3.2 describes the settings utilized.

• treedist: the input of this program is a set of trees among which we want
to compute the Robinson-Foulds (RF) distances. It provides two kinds of dis-
tance: the Branch Score Distance, defined by Kuhner and Felsenstein, and
the more widely known Symmetric Difference or Robinson-Foulds (RF) dis-
tance, which we have used since it does not use branch length information, but

18



Figure 3.2: Settings used for the program neighbor

only the tree topologies. This distance counts how many partitions there are,
among each couple, that are on one tree and not on the other and viceversa,
so it can range from 0 to twice the number of internal branches.
Since we are dealing with fully bifurcating trees, the RF-distance proceeds by
hops of two.

Figure 3.3: Settings used for the program treedist

• drawtree: this program receives in input the output of neighbor and provides
the user with a graphical rappresentation of the phylogenetic tree.
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Figure 3.4: Settings used for the program drawtree

3.2 OpenMP

OpenMP (Open Multi-Processing) is an API that supports multi-platform shared
memory multiprocessing programming in C, C++, and Fortran, on most processor
architectures and operating systems, including GNU/Linux, Mac OS X, and
Windows platforms.
We used it to parallelize our algorithms with a great advantage in time
performances.

3.3 Qt

We used Qt library to realise a graphic user interface (GUI) for our software. Qt is
a cross-platform and open source application framework developed by Nokia’s Qt
team.
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It uses the C++ programming language and allows the development of GUI
programs through the use of graphic elements (widgets). There are several
considerations which led to this implementative choice: particularly Qt-based
graphical interfaces are very intuitive, user-friendly and the library has a huge,
well-done documentation.

3.4 Development Environment

Our algorithms, which will be described in chapter 4, have run on the IBM p570
server, a multiprocessor developed by IBM6, featuring 24 POWER5 cores. Its spec-
ifications are:

- Processor: 24 IBM POWER5 @ 1.9 GHz

- RAM: 48 GB

- Hard disk: 38.7 TB

- Operating system: AIX 5L V5.3

The POWER5 is a dual-core microprocessor, with each core supporting one physical
thread and two logical threads, for a total of two physical threads and four logical
threads, so the architecture makes the chip appear as a four-way symmetric multi-
processor to the operating system. It supports the 64-bit PowerPC architecture. A
single die contains two identical processor cores, each supporting two logical threads.

We also used the server BLADE of the Department of Information Engineering
of the University of Padova. It consists in 14 DELL PowerEdge M600 computing
“blades”, each equipped with:

• 2 Processors quad core Intel Xeon E5450 (12MB Cache, 3.00 GHz)

• 16 GB RAM

• 2 72GB hard drive in RAID-1 (mirroring)

Though this processor outperforms the IBM POWER5, when using all its cores the
IBM p570 server runs faster than the server BLADE so we utilized it for performing
our tests.

The machine over which the tool Phylip has run is an HP Pavilion dv6, with
the following specifications:

- Processor: AMD Turion(tm) II P520 Dual-Core Processor @ 2.4 GHz

- RAM: 3.6 GB

- Hard disk: 500 GB

- Operating system: Ubuntu 13.10 (64-bit)

6International Business Machines Corporation

21



22



4 Methods and materials

In this chapter we will present and describe the techniques that have been studied
to infer phylogeny. Our approaches are alignment-free, and particularly they are
based on l-mers frequency.

4.1 Approach based on l-mers with mismatches analysis

The main idea of this work derives from the fact that one of the factors that most
contribute to the evolutionary process is the presence of errors, rearrengements and
mutations in the transmission of genetic inheritance. Mutations in fact determine
the so-called genetic variability, or the condition for which the organisms differ in
one or more characters. On this variability through recombination, natural selection
operates, which promotes favorable mutations at the expense of unfavorable or even
death.
A mutation modifies the genotype7 of an individual and can possibly alter the phe-
notype8 depending on its characteristics and interactions with the environment. A
DNA sequence can be altered in a number of different ways: point mutations, for
example, exchange a single nucleotide for another; also insertions or deletions can
occur, both in small and large scale.

Figure 4.1: Point mutation on a DNA sequence.

The presence of a certain percentage of substrings of a genome into another is
certainly evidence of a specific similarity between the two sequences, but the small
local mutations are likely to prevent the recognition of an adequate degree of re-
lationship. The key idea is therefore to allow that two substrings of l charachters
(l -mers) belonging to different genomes can be recognized as a mutual occurrence of
the l -mer in a genome in the other one, even though a certain number of differences
occurs, since it can be due to the evolutionary process. So we hypothesized that

7The set of all genes that make up the DNA of an organism or a population.
8The set of all observable characteristics of a living organism, so its morphology, its development,

its biochemical properties and physiological inclusive of behavior.
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approximate string matching could provide a greater amount of information.
The problem of approximate string matching is widely studied in Computer Science
and different kinds of distances are available: two of the most popular distances
are the edit distance as defined by Vladimir Levenshtein, where insertion, deletion
and mismatches are allowed and the Hamming distance, where only mismatches, or
differences, are allowed.
Dealing with k -difference problem, we used Hamming distance, which, for two se-
quences X = x0x1...xk−1 and Y = y0y1...yk−1 defined over an alphabet Σ, has the
following definition:

dHamming(X, Y ) :=
k−1∑
i=0

neq(xi, yi) (4)

and neq(a, b) is defined as:

neq(a, b) :=

{
1 if a 6= b

0 if a = b
(5)

First of all we started by considering the k -difference problem, which finds all the
occurrences (with at most k mismatches) of a given word w of length k in a text T
of length n. Well-known algorithms achieve solutions in O(n

√
k · log k) [2], O(n · k)

[20] and O(n
√
l · log k) [1].

We are interested in finding the occurrences with at most k mismatches of all the
words in a text X in another text Y so we extended the work presented by Pizzi in
[28], which efficiently calculate the occurrences of all the words of a text in the text
itself in O(n2), in order to apply it to different sequences.

Given two sequences X and Y of length nX and nY , a fixed pattern length l and
a maximum number of allowed mismatches k (k ≤ m), we aim to build a matrix
M of size (nX − l + 1) × (nY − l + 1) in which the cell Mij contains the Hamming
distance between the substring xi = X[i, i+ l − 1] and yj = Y [j, j + l − 1].
If X and Y are the same sequence, M is a symmetric matrix and we do not need to
calculate it all but only its upper triangular portion. But in our case (X 6= Y ) the
entire matrix has to be computed.
Figure 4.2 describes the procedure: red cells are those to be computed with classical
method. The first row of the matrix is built using the näıve method which checks
each position of the substrings. We then proceed by filling M row by row: the first
element of each row need to be computed naively, while element Mij (i, j > 0) is ini-
tially set to Mi−1,j−1. Then, sliding a window of size l over the row, if xi+l−1 6= yj+l−1

we acquire a difference and so Mij is incremented while if xi−1 6= yj−1 Mij is decre-
mented since an error is lost. Time complexity is O(n2) with a small constant factor.
As all of the l-mer based distance measures, also our technique completely ignores

the ordering of the l -mers inside the input sequences. Hence, if the selected l value
(the length of the substrings) is too small, very distantly related organisms may be
assigned a small evolutionary distance (in the extreme case where l is 1 , two organ-
isms will be treated as being identical if the frequency of each nucleotide/amino-acid
is the same in the two corresponding sequences). In the other extreme, the l -mers
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Figure 4.2: Graphical description of algorithm 1

should have a length that is somewhat below the average distance between mis-
matches if the input sequences were aligned. So the selected l value should not be
too large nor too small; the identification of the best patter length a priori is a
non-trivial problem.

Algorithm 1 Matrix of mismatches

1: INPUT: sequences X and Y
2: OUTPUT: matrix of Hamming distances
3: nX ←− size of X
4: nY ←− size of Y
5: compute first row vector with classic k -mismatch algorithm
6: for i←− 1 to n−l do
7: calculate first element with classic algorithm
8: for i←− 1 to n1 −m do
9: Mij ←−Mi−1,j−1

10: if xi+l−1 6= yj+l−1 then
11: Mij ←−Mij + 1
12: end if
13: if xi−1 6= yj−1 then
14: Mij ←−Mij − 1
15: end if
16: end for
17: end for

Since the final purpose is to build the phylogenetic tree we need to translate the
information given by algorithm 1 into a distance between the species. We defined
two measures.

4.1.1 Distance based on coverage

Given a set S of s sequences, a fixed pattern length l and a maximum number of al-
lowed mismatches k (k ≤ m), algorithm 2 considers each ordered couple of sequences
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X and Y of length nX and nY respectively and computes how many mismatches we
have to allow for each substring of the first sequence to be found in the second one.
So we build a vector whose i -th element is the minimum number of mismatches with
which xi = X[i, i+ l − 1] is present in Y and the output of the overall algorithm is
the set of s2 of such vectors (one for each possible pair).
For doing so, we need to build the matrix M of differences as described in algorithm
1 keeping a vector min of integers of length nX ; the first element of row i of M
is used as the initialization value for min[i]. Then we only need to compare each
element of the row with the current minimum value and replace it if it is smaller.

Algorithm 2 single occurrences

1: INPUT: set of the species
pattern size l

2: OUTPUT: set of vectors of minimum number of mismatches with which each
word of one species is present an other

3: for each couple X, Y of the dataset do
4: nX ←− size of X
5: nY ←− size of Y
6: initialize the vector min of minimum element of each row
7: compute first row vector with classic k -mismatch algorithm
8: find the minimum element min[0] of the first row vector
9: for i←− 1 to nX − l do

10: copy the first nY − l elements of the previous row in the last nY − l elements
of the current row

11: calculate first element Mi0 with näıve method
12: min[i]←−Mi0

13: for j ←− 1 to nY − l do
14: if xi+l−1 6= yj+l−1 then
15: Mij ←−Mij + 1
16: end if
17: if xi−1 6= yj−1 then
18: Mij ←−Mij − 1
19: end if
20: if Mij < min[i] then
21: min[i]←−Mij

22: end if
23: end for
24: end for
25: end for
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In order to improve the time performances we parallelized the algorithm by
dividing the set of rows of between the processors; thus, if p processors are used,
each one of them is assigned to a set of nX

p
rows. The drawback of such an escamotage

is that there will be p rows computed in the näıve way since the first row of each
section can not be derived from the previous one, but this does not affect the overall
improvements in the runtime as it can be seen in Figure 4.3 where we reported the
execution time required for determinating this measure of similarity between the 34
taxa of the dataset (see sec. 5.1.1 for details on it), for a pattern length l = 100 and
varying the number of processors involved. Let us underline that this algorithm is
independent of the number of mismatches we are willing to allow, so we only need
to run it once for each pattern length l we want to test.
Tests have been performed on the IBM p570 server which allows to use up to 24
processors.

Figure 4.3: Improvement in time due to parallelization on the IBM p570 server.
The blue bars refers to the implementation described in alg 2, while the orange
bars represent the execution times for directly calculating the distance matrix for a
specific couple of values (l, k).

Values for a small number of processors are quite elevated due to specifications of
the IBM p570 server. The cluster BLADE would take about 3 hours to execute the
program with a single core but it scales a little slower as we can see in Figure 4.4.
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Figure 4.4: Improvement in time due to parallelization on the cluster BLADE.
The blue bars refers to the implementation described in alg 2, while the orange
bars represent the execution times for directly calculating the distance matrix for a
specific couple of values (l, k).

Figure 4.5: Small time dependency on the pattern length.

The algorithm’s time complexity for each pair of genomes is quadratic in the
length of the sequences, due to the double for cycle. So, for a dataset of s strings
of length up to n and a running machine with p processor, it takes O( s

2·n2

p
).

With regard to the space required, we do not need to store all the matrix M but
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just the current and the previous rows. So space complexity is O(p · n).
As can be seen in the graphic of Figure 4.5, algorithm 2 is slightly dependent on the
length of the pattern l. The small increment is due to the calculation of the first
row of each parallel block: indeed it costs O((n− l+ 1) · l), which grows with O(nl).
We also considered the implementation by diagonals, in which instead of distributing
to each processor a set of rows of the matrix M , we assigned them α = nY −l

p

diagonals of the upper triangular matrix first and then β = nX−l
p

diagonals of the
lower triangular matrix. However this lead to two problems:

1. while rows have all the same length, diagonals do not: so work is not generally
equally distributed among the various processors.

2. suppose we are operating on the upper triangular portion of M : processor i
starts calculating M [0][α · i] so there are p simultaneous attempts to access the
location min[0] in order to find the minimum and thus it is necessary to enter
in a region of mutual exclusion, ruled by a lock. Then the same happens for
the next locations.
Consequently a lot of time is spent waiting for that locked region to be ac-
cessible and in this case, the more processors are used, the more time it takes
the algorithm to run. For l = 100 the following execution times have been
measured on the same dataset on the IBM p570 server:

• Implementation row-by-row: ∼ 55− 70 minutes

• Implementation by diagonal: ∼ 5 hours

Next step is the calculation of the matrix of distances itself, since we will use
Neighbor-Joining method for deriving the tree.
We now have s2 vector (s for each species); as described in algorithm 3, for calculat-
ing the distance between X of size nX and Y of size nY we need to load the vector
vXY which refers a sort of presence of of each l-mer of X on Y . Once a maximum
number of mismatches k has been chosen, we counted how many positions of the
vector are smaller or equal to k and thus obtain a measures, rXY , which we then
normalized on the size of X in order to get a sort of percentage of the presence of a
sequence on the other one.

covkXY :=
rXY
nX

Now we have a measure of similarity while we are interested in a distance. Since
covkXX ∈ [0, 1] we consider

dkXY = 1− covkXY
When considering the same species, each substring of X is obviously present in X
with 0 mismatches and so we will have that

rXX = nX ∀k
⇓

covkXX = 1
⇓

dkXX = 0
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This last measure dkXY is not symmetric, so we compute

distXY =
dkXY + dkY X

2

which is our final distance measure between the two sequences.

Algorithm 3 calculate distance

1: INPUT: s2 vectors
minimum number kmin of allowed mismatches
maximum number kmin of allowed mismatches
patter size l

2: OUTPUT: matrix of distances dist
3: for k ←− kmin to kmax do
4: for x←− 1 to s do
5: for y ←− i to s do
6: Load the vector vXY of size nX between species x and y
7: Load the vector vY X of size nY between species x and y
8: rXY ←− 0
9: rY X ←− 0

10: Calculate how many cells of vXY are less or equal to k and save this
number in rXY

11: Calculate how many cells of vY X are less or equal to k and save this
number in rY X

12: covkXY ←− rXY /nX
13: covkY X ←− rY X/nY
14: dkXY ←− 1− covkXY
15: dkY X ←− 1− covkY X
16: dist[x, y]←− dkXY +dkY X

2

17: dist[y, x]←− dist[x, y]
18: end for
19: end for
20: end for

The time complexity of algorithm 3 is O(s · n · (kmax − kmin + 1)) while space
complexity is O(n + s2) ∼ O(n). Algorithm 3 has been proven to be practically
independend from the pattern length and, on a standart notebook, it takes ∼ 1.8
seconds for each number of number of mismatches we are interested to test.
Since we believe it is possible that, given a certain dataset, there exists at least a set
of values of pattern length l and maximum number of mismatches k which ensure
the best reconstruction of the phylogenetic tree, we also provide an algorithm which
directly calculate the distance matrix for a pair of values (l, k) which it receives in
input. In this case two vectors Vx and Vy are initialized: one for the current X string
and the other for the current Y string. If substring X[i, i + 1...i + l − 1] matches
with Y [j, j + 1...j + l− 1], then Vx[i] and Vy[j] are set to 1. The number of 1’s of Vι
is the number of words of species ι which occur in the other species. This way we
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do not need to consider each ordered pair any more: so the procedure is executed
s2

2
times.

Instruction for running

Both algorithm 2 (single occurrences.cpp) and 3 (calculate distance.cpp) are written
in C++. Here we provide the instruction to run them.

• single occurrences.cpp

In order to compile the code on a Unix-like operating system, here is the
command:

g++ single occurrences.cpp -o <executable name> -fopenmp -O3

where the flag -fopenmp load the OpenMP library, while -O3 is the optimiza-
tion flag.
The executable must be in the same directory that contains the files of the
dataset in the format <name>.fna (the genomes or proteomes must be in the
FASTA format). Moreover we need to provide a text file infile that lists the
names of the species of the dataset, one per line and without the extension
.fna.
The command to execute the program is:

./<executable> <infile> <pattern length> <method> [<opt> kmax]

The flag <methods> can be -m if we need to build the vectors of minimum
number of mismatches according to algorithm 2 because the correct number of
mismatches is not known nor guessable; otherwise it is set to -k. In this two
more parameters are needed: the first is the flag <opt> which can be -v if we
want the program to consider the maximum number of allowed mismatches
(the next and last parameter kmax) as the number it represents, or -p if istead
we want to consider it in terms of percentage. The vectors which constitute
the output are saved in the subdirectory <pattern length>/ which has to be
created by the user.
They are named minNumberOfOccurrences SpeciesX VS SpeciesY.txt.

• calculate distance.cpp

To compile type:

g++ calculate distance.cpp -o <executable name>

Also this executable must be in the same directory of the dataset. Command
for execution is:
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> ./<executable> <infile> <pattern length> <option> kmin kmax

If flag option is -v, the program calculates the matrices of distances for all the
values k ∈ [kmin, kmax]. If instead option is -p, kmin and kmax are intepreted
as the minimum and maximum percentage of allowed mismatches.

4.1.2 Method based on multiple occurrences

We implemented another measure, which counts the number of times each substring
of X is present in Y . We provide as input the maximum number of allowed mis-
matches kmax we are interested in for a given pattern length l. Intuitively we will
create a matrix Γ of kmax + 1 rows of length nX − l + 1.Location Γ[i][j] contains
the number of occurrences of X[j, j + 1...j + l− 1] in Y with exactly k mismatches.
Since we are not interested in knowing the composition of the vector but only in the
total “presence” of X in Y , Γ is reduced to a single column whose values are the
sums of all the cells of each row.
Considering occurrences with exactly k mismatches allows to increment one single
value at a time, instead of k + 1; it is then sufficient to sum the first k + 1 values
of the column Γ in order to get the number of occurrences with at most k errors.
This algorithm has been parallelized, too, with an improvement comparable to that
shown in Figure 4.3. It is dependent on the choice of kmax, especially when it as-
sumes values higher than the 50% of the pattern length, as can be seen in Figure
4.6.

Figure 4.6: Dependence of algorithm 4 on kmax.
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For building the matrix Dk of distance the following steps are performed:

1. Let Rk
XY be the total number of occurrences of any words of X in Y with at

most k mismatches. In order to ensure that the condition Dk
XX = 0 is verified,

we calculate

distkXY := 1− Rk
XY

Rk
XX

2. Analogously calculate distkY X

3. Correct the asymmetry of this measure and so set

Dk
XY = Dk

Y X =
distkXY + distkY X

2

For a dataset of s sequences of length up to n, this algorithm takes O((s2 · n2)/p)
in time and requires O(kmax + n · p) = O(n · p) space.
This kind of measure has revealed to be inefficient since it does lead to reliable
phylogenetic trees.

Instruction for running

• multiple occurrences.cpp

Compilation is done through the command

> g++ multiple occurrences.cpp -o <executable name> -fopenmp -O3

while execution requires four parameters: a text file with a list of the species
of our dataset, the pattern length, an option (-v or -p) and the maximum
number of mismatches interpreted as absolute value or percentage according
to the option, as described in the previous section.
The command is:

> ./multiple occurrences <infile> <option> kmax

Here the output has the format multiple SpeciesX VS SpeciesY and it is
stored in the subdirectory /<pattern length>.

• calculate distance2.cpp

The specifications and parameters for this algorithm are the same of
calculate distance.cpp.
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Algorithm 4 multiple occurrences

1: INPUT: set of the species
maximum number kmax of allowed mismatches
pattern size l

2: OUTPUT: coverage between each pair of species
3: for each couple X, Y of the dataset do
4: nX ←− size of X
5: nY ←− size of Y
6: initialize the vector v of length kmax + 1
7: for i←− 0 to nY − l do
8: calculate the number of differences M0i between word X[0] and Y [i] with

the classic textitk-mismatch algorithm
9: if M0i ≤ kmax then

10: v[M0i]←− v[M0i] + 1
11: end if
12: end for
13: for i←− 1 to nX − l do
14: copy the first nY − m elements of the previous row in the last nY − m

elements of the rrent row
15: calculate first element Mi0 of the current row with näıve method
16: if Mi0 ≤ kmax then
17: v[Mi0]←− v[Mi0] + 1
18: end if
19: for j ←− 1 to nY − l do
20: if xi+l−1 6= yj+l−1 then
21: Mij ←−Mij + 1
22: end if
23: if xi−1 6= yj−1 then
24: Mij ←−Mij − 1
25: end if
26: if Mij < kmax then
27: v[Mij]←− v[Mij] + 1
28: end if
29: end for
30: end for
31: end for

4.1.3 Graphical user interface (GUI)

We provide the final user with a graphical interface (Figure 4.7) intended for the
pairwise analysis.
It is composed of three components:

• Control panel : this area is dedicated to the control of the parameters for
executing the programs and visualizing the results. In the upper part there
are two buttons, Choose sequences and Load results: the former loads a
couple of sequences (either DNA or amino-acids sequences can be treated) in
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the FASTA format (*.fna) while the latter loads the results file of a previ-
ous analysis. The user can also load a single subsequence; in this case the
analysis performed assumes the sense of an autocorrellation and can help in
understanding which are the parts that more characterize the string. An error
occurs if more than two strings are loaded.
The control panel is then constituted by two pages:

– Parameters: here we find the parameters for choosing which algorithm to
execute, the pattern length and the number of mismatches. The button
PLAY starts the execution while clicking RESET the application is set for
a new analysis.

– Visualization: here the users can choose the display settings and it is
the only used page where results are loaded.

• Visualization window : it provides a graphical description of the results,
which goes beyond the task of the phylogenetic trees reconstruction and allows
to a posteriori analysis on the composition of the sequences.

• Console : this element provides the user with information regarding the ac-
tions performed and a textual description of the graphics generated.

Figure 4.7: Graphic user interface

At the top of the GUI, on the Menu bar, the path File−→Settings open a wid-
get that allows to set the directory of the dataset and the one where to store the
results. The results’ directory must be provided with subdirectories named as the
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pattern lengths, before running the application. The button Restore set the default
directories i.e. the directory where the GUI files are stored.

Figure 4.8: Settings’ widget.

4.1.3.1 Working mode

In order to help the user using the application, warning messages are displayed
that prevent from performing wrong or non-sense actions. Moreover, according to
the kind of analysis the user has chosen to make, some buttons are enabled or dis-
abled.

Figure 4.9: Control Panel
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After choosing a couple of strings and a pattern length (expressed as a pure
number or a percentage), the analysis described by algorithm 2 can be perfomed by
clicking on the voice Number of words of X occurring in Y. Since this analysis
is independent on the number of mismatches, the part of the GUI relative to its
setting is disabled as can be seen in Figure 4.9. The output is saved in the same for-
mat of that produced by algorithm 2 and executed for example on the p570 server.
This allow the user even to load a results he/she already has without executing the
algorithm again for that particular couple of sequences.
Then, in the visualization page, a maximum number of mismatches kmax can be set,
and it is shown how many words of X are present in Y with exactly or at most k
mismatches, for each k ≤ kmax, also in terms of frequency.
Since the algorithm described in section 4.1.2 has proved to be inefficient for the pur-
pose of phylogeny derivation (as we will describe in the next chapter), it is has not
been implemented in the GUI. Instead another kind of analysis can be performed:
indeed it could be interesting, given a pattern length and a maximum number of
mismatches k, how many times each word of X occurs in Y with at most k mis-
matches. Thus algorithms 5 is executed.

Algorithm 5

1: INPUT: species X and Y
maximum number k of allowed mismatches
pattern size l

2: OUTPUT: vector of the number of occurrences of each word of X in Y
3: nX ←− size of X
4: nY ←− size of Y
5: initialize the vector v of length nX
6: for i←− 0 to nX − l do
7: for j ←− 0 to nY − l do
8: calculate the number of differences ki between X[i] and Y [j] with dynamic

programming described in algorithm 1
9: if ki ≤ k then

10: v[i]←− v[i] + 1
11: end if
12: end for
13: end for

The vector produced by the algorithm can be displayed clicking the button VISUALIZE

vector of occurrences. The button VISUALIZE number occurrences with at

most k mismatches, instead, shows how many substrings occur never, once, twice
etc.
This allows to do some considerations concerning the structure of the sequence: in
particular it is interesting to see how fast the progressive increment of k makes the
sequences closer.
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5 Experimental results

Here we present our results on two dataset, one constituted by 34 mitochondrial
DNA sequences of average length n ≈ 16000 characters and the other one, which
considers 84 retroid viruses of average length n ≈ 8000 characters. Our analysis
focused on the first dataset and we eventually performed some tests with another
dataset in order to ensure that our results are not dependent on a particular set of
data.
Method described in section 4.1.1 has been used. Table 1 shows the time required
for running algorithm 2 over different pattern lengths. Tests have been performed
on the IBM p570 server using all its 24 processors.

Pattern length Mitochondrial dataset Viruses’ dataset
l = 25 56 min. 80 min.
l = 50 56 min. 80 min.
l = 75 58 min. 81 min.
l = 100 62 min. 81 min.
l = 200 68 min. 87 min.

Table 1: Time for running algorithm 2 over different pattern lengths.

As we said in section 4.1.1, tests can also be performed for a given pattern length
l and an arbitrary maximum number of mismatches k. Table 2 shows the running
time for this implementation. Being practically independent from k, we did not
report its values in the table.

Pattern length Mitochondrial dataset Viruses’ dataset
l = 25 33 min. 50 min.
l = 50 34 min. 50 min.
l = 75 36 min. 50 min.
l = 100 35 min. 52 min.
l = 200 39 min. 56 min.

Table 2: Time for running algorithm 2’s variation for a single couple (l, k).

5.1 A Tree Based on Mitochondrial DNA

5.1.1 Description of the dataset

Tests have been performed over a dataset including the complete mitochondrial
DNA sequences of 34 mammals, whose features are reported in Table 3.

This same dataset has been used by Li et al. in [22] and Utilsky et al. in [40].
Also Cao et al. used part of this dataset (the part relative to the Eutherian order)
in [10].
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Class Super-order Short name Full name Size

EUTHERIA

Euarchontoglires

GuineaPig Cavia Porcellus 16801 ch
Rat Rattus Norvegicus 16313 ch
Housemouse Mus Musculus 16299 ch
Rabbit Oryctolagus Cuniculus 17245 ch
Squirrel Sciurus Vulgaris 16507 ch
Dormouse Myoxus Glis 16602 ch
Baboon Papio Hamadryas 16521 ch
Gibbon Hylobates lar 16472 ch
Orangutan Pongo Pygmaeus 16389 ch
Gorilla Gorilla Gorilla 16364 ch
Human Homo Sapiens 16569 ch
PygmyChimpanzee Pan Paniscus 16563 ch
Chimpanzee Pan Troglodytes 16554 ch

Laurasiatheria

Dog Canis Familiaris 16727 ch
Cat Felis Catus 17009 ch
GreySeal Halichoerus Grypus 16797 ch
HarborSeal Phoca Vitulina 16826 ch
WhiteRhino Ceratotherium Simum 16832 ch
GreatRhino Rhinoceros Unicornis 16829 ch
Donkey Equus Asinus 16670 ch
Horse Equus Caballus 16660 ch
FruitBat Artibeus Jamaicensis 16651 ch
BlueWhale Balaenoptera Musculus 16402 ch
FinbackWhale Balaenoptera Physalus 16398 ch
Hippo Hippopotamus Amphibius 16407 ch
Pig Sus Scrofa 16613 ch
Sheep Ovis Aries 16616 ch
Cow Bos Indicus 16341 ch

Afrotheria
Elephant Loxodonta Africana 16866 ch
Aardvark Orycteropus Afer 16816 ch

Xenarthra Armadillo Dasypus Novemcinctus 17056 ch

METATHERIA Ameridelphia
Wallaroo Macropus Robustus 16896 ch
Opossum Didelphis Virginiana 17084 ch

AUSTRLOSPHENIDA Monotremata Platypus Ornithorhynchus Anatinus 17019 ch

Table 3: Table of the species of the dataset

5.1.2 Results

In this subsection we demonstrate the performance of our method. Since the multi-
ple alignments for 13 mitochondrial proteins (ATP6, ATP8, COX1, COX2, COX3,
CYTB, ND1, ND2, ND3, ND4, ND4L, ND5, and ND6) of the species reported in
Table 3 are available in NCBI genomes, we can compare our trees to trees that are
build from these proteins using the maximum likelihood method.
A majority consensus tree has been derived from the 13 ML trees of the proteins
using the program CONSENSE from the PHYLIP package. The quality of the obtained
trees is judged according to RF distance with the consensus tree and to the average
distance from the 13 ML trees. Moreover a visual feedback is given by the splits of
the trees i.e. the correct clustering of the species:

• Marsupials and Monotremes: Platypus, Wallaroo and Opossum.
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• Primates: Baboon, Gibbon, Orangutan, Gorilla, Human, PygmyChimpanzee,
Chimpanzee.

• Afrotheria and Xenarthra: Elephant, Aardvark, Armadillo.

• Rodents: Guinea Pig, Rat, House Mouse, Rabbit, Squirrel, Dormouse.

• Laurasiatheria: Dog, Cat, Grey Seal, Harbor Seal, Hippo, White Rhino,
Great Rhino, Donkey, Horse, Pig, Sheep, Cow, Finback Whale, Blue Whale,
FruitBat.

We tested our algorithm over 9 different pattern length (11, 25, 35, 50, 75, 100,
200, 300 and 600) and for each of them we admitted a number of mismatches varying
from 0% to 75% of the pattern length. We used PHYLIP to calculate the RF distance,
according to the settings displayed in subsection 3.1. As concerning the Eutherian
order, it has been debated which two of the three main groups of placental mam-
mals (Primates, Laurasiatheria, and Rodents) are more closely related. Indeed by
the maximum likelihood method, some proteins support the (Laurasiatheria, (Pri-
mates, Rodents)) grouping while other proteins support the (Rodents, (Laurasiathe-
ria, Primates)) grouping.
Our work re-confirm the hypothesis of (Rodents, (Primates, Laurasiatheria)) group-
ing , as Cao et al. and Li et al. did.
Considering now the whole dataset, Figure 5.1 shows the distance of our trees from

the reference consensus. We can notice the improvement given by the introduction
of mismatches in the l -mers instead of considering exact occurrences; for pattern
length l ∈ [50, 100] and number of mismatches k ∈ [20%−25%, 35%], several of our
trees have distance 16 from the reference consensus, the same results presented in
[40]. The couple (l, k) = (75, 30) is even closer with distance 14. Good results are
obtained also for shorter pattern lengths while increasing l over 100 seems to lead
to worse results.
The graphic also shows that the longer the substrings, the more mismatches (in per-
centage) we have to allow in order to obtain good results. In some ways this aspect
seems to confirm the work presented by Cunial and Apostolico in [15], where the
quality of phylogenies reconstructed is measured by comparing suitably defined sets
of gapped motifs that occur in mitochondrial proteomes. Here it is asserted that the
average performance of suitably defined sets of gapped motifs is comparable to that
of popular string-based alignment-free methods and that extremely long and sparse
motifs produce phylogenies of the same or better quality than those produced by
short and dense motifs.
The maximum possible RF distance, for s taxa, is 2s−6 which is equal to 62 for our
dataset of 34 mammalian species. Indeed in the Figure 5.1 this is highest reached
distance and it indicates that, for those couple (l, k), none of the branches of the
majority consensus tree is found in the current tree. As we can see, all the curves
reaches a stady distance from the consensus tree, when the number of mismatches
gets too high: in this case indeed all the species have null distance from the others
and so the tree is built simply putting in output the taxa in the same order of the
input. Since the input provided is already clustered, some branches that are present
in the consensus tree may be hit also in these trees.
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Figure 5.1: Distance from the consensus tree for different pattern lengths and per-
centage of mismatches.

Figure 5.6 shows the majority consensus tree that we used as reference tree, Figure
5.7 reports the tree built by Ulitsky et al. with the Average Common Substring
method. In Figure 5.8 we can see the tree obtained by Li et al. while Figures 5.9,
5.10 and 5.11 show the tree obtained with our method respectively for l = 35, k = 7,
l = 75, k = 30 and l = 100, k = 35.
In general the group of the Laurasiatheria is derived correctly and we can easily
recognized the clusters of the different sub-orders:

- carnivora (cat, dog, grey seal, harbor seal);

- perissodactyla (white rinho, great rhino, donkey, horse)

- chitophera (fruit bat)

- cetacea (blue whale, finback whale)

- artiodactyla (hippo, pig, sheep, cow)

The pig is clustered closer to the cetartiodactyls (blue whale, finback whale, hippo,
sheep, cow) than the perisodactyls (white rinho, great rhino, donkey, horse) accord-
ing to what concluded Ulitsky in [40] and Reyes in [31] and opposed to the results
found by Li in [22].
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The separation between the Ameridelphia super-order (Wallaroo and Opossum) and
the Monotremata super-order (Platypus) are emphasized in the Newick format of the
trees: indeed Ulitsky, Li and even the consensus tree present the following grouping:

(((Wallaroo,Opossum), P latypus))(other species))

while our results support the division:

((Wallaroo,Opossum), (other species), P latypus)

Although the graphical position of this group in the trees does not differ from the
results of the other works, the presence of different branches increases the distance
between our trees and the consensus tree.
The group of Primates is generally built correctly and so it is the group of Afrotheria
and Xenarthra. Both our approach and ACS method present some differences with
respect to the majority consensus tree for these two orders:

1. the consensus tree supports the division

((elephant, armadillo), aardvark)

while ACS and our method support the

((elephant, aardvark), armadillo))

grouping, which is supposed to be more correct since elephant and aardvark
belong to the same super-order of Afrotheria.

2. the consensus tree estimates that there is a branch which divides orangutan
and gibbon from an unknown common ancestor while our method and ACS
do not. As reported in [51] and [37], gibbons differ from great apes (chim-
panzees, gorillas, orangutans, bonobos and humans) in several aspects: they
are smaller, exhibit low sexual dimorphism, do not make nests, and certain
anatomical details advice that they superficially more closely resemble mon-
keys than great apes do. As we can see in Figure 5.2, molecular evidence
indicates that the family of Hylobatidae, to whom gibbons belong, diverged
from great apes between 18 and 12 million years ago, and that of orangutans
(subfamily Ponginae) diverged from the other great apes at about 12 million
years. Consequentely it is not likely the evolution scheme proposed by the
consensus tree for these two species.

The section of the rodents is slightly more uncertain: we can clearly recognize two
groups: the one formed by rat and house mouse and that formed by squirrel, dor-
mouse, rabbit and guinea pig. For pattern lengths stricly shorter than 50 the two
subclusters are positioned close to each other in the tree (see Fig. 5.9), while for
larger pattern lengths there appears an additional branch and we find the Marsupi-
als and Monotremes group between them (Fig. 5.10 and 5.11).
In one case (l = 75, k = 30, Figure 5.10) the rabbit is misplaced since it results to
be closer to the group of Primates ; in all other cases it is well positioned.
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Figure 5.2: Evolutionary tree of the Hominoidea : after an initial separation from
the main line of Hylobatidae, to whom the lineage of gibbons belong, the line of
Pongidae broke away, leading to the current orangutan, while the Hominidae split
later in Gorillini and Hominini.

The guinea pig is closer to the leporidae group than to the muridae one while in
[40] and also in the consensus tree it is more related to rat and housemouse. In [22],
instead, the guinea pig is neither close to leporidae nor to muridae. However none
of these discrepancies are unreasonable hypotheses since the phylogenetic posistion
of guinea pig is one of the most controversial topics in systematic biology [19,16,11,
39, 32].
Figure 5.3 represents the distance matrix for the pair (l, k) = (75, 30). The matrix
has been colored accordingly to its distance values: for a given row, the cells that
refer to closer taxa are colored in red. The more distant the taxa, the more tenuous
the color gets. An opportune order of the species allows to identify the various
clusters where there are reddish regions. Figures 5.4 and 5.5 show the vector of the
distances for two taxa: human and horse. It is possible to see how distances from
species of the same sub-order are extremely lower with respect of the others. So
for example human is closely related to all the Primates, especially to the pygmy-
Chimpanzee, the chimpanzee and the gorilla. The species most distant to him are
platypus, opossum and wallaroo which, indeed, belong to a different order from that
of Eutheria.
The horse is very close to the donkey as we expected; then gradually we can recog-
nize the different orders it belongs to, as the distance grows: first the perissodactyla
(white rhino and great rhino), than the order of Lausiatheria, than the Eutherian
class.
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Figure 5.6: Majority consensus tree derived from the ML trees of the 13 mitochon-
drial proteins from NCBI.

47



Figure 5.7: Phylogenetic tree obtained with the Average Common Substring ap-
proach.
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Figure 5.8: Phylogenetic tree of Li et al.
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Figure 5.9: Phylogenetic tree of the mitochondrial dataset,for l = 35, k = 7.
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Figure 5.10: Phylogenetic tree of the mitochondrial dataset, for l = 75, k = 30.
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Figure 5.11: Phylogenetic tree of the mitochondrial dataset,for l = 100, k = 35.
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In order to quantitatively compare the trees produced using whole-genome meth-
ods to the trees obtained using maximum likelihood with single gene sequence in-
puts, we have computed the RF distances between the trees generated. The first
13 columns of Table 4 describe the distance from each of the 13 proteins previ-
ously cited. We abbreviated the protein names as follows: Ai stands for ATPi, Ci
for COXi, CB for CYTB, NL for ND4L, and Ni for NDi. Then the column named
“ACS” is the distance from the evolutionary tree proposed by Ulitsky in [40], column
“Li” is the distance from the tree proposed in [22], “Cons” refers to the majority
consensus tree of Figure 5.6 and the last column, “Avg”, is the average of the first
13 columns. The first three rows are reported as meter of comparison for our results.

A6 A8 C1 C2 C3 CB N1 N2 N3 N4 NL N5 N6 ACS Li Cons Avg

Cons 36 38 22 38 38 26 22 18 32 28 34 18 28 16 18 0 29.07

ACS 40 42 28 42 42 30 30 24 28 28 36 18 28 0 14 16 32

Li 40 42 26 40 42 24 30 24 30 24 40 18 32 14 0 18 31.69

A6 0 42 34 46 40 44 32 40 44 40 48 40 40 40 40 36 40.83

A8 42 0 42 48 38 46 42 40 46 42 50 44 40 42 42 38 43.33

C1 34 42 0 40 40 32 30 26 34 26 44 28 36 28 26 22 34.33

C2 46 48 40 0 48 42 36 40 40 40 50 38 44 42 40 38 42.66

C3 40 38 40 48 0 46 42 40 46 44 48 42 36 42 42 38 42.5

CB 44 46 32 42 46 0 38 34 32 34 44 30 38 30 24 26 38.33

N1 32 42 30 36 42 38 0 28 38 32 44 28 30 30 30 22 35

N2 40 40 26 40 40 34 28 0 38 30 40 16 32 24 24 18 33.66

N3 44 46 34 40 46 32 38 38 0 34 48 32 44 28 30 32 39.66

N4 40 42 26 40 44 34 32 30 34 0 44 28 36 28 24 28 35.83

NL 48 50 44 50 48 44 44 40 48 44 0 40 38 36 40 34 44.83

N5 40 44 28 38 42 30 28 16 32 28 40 0 32 18 18 18 33.16

N6 40 40 36 44 36 38 30 32 44 36 38 32 0 28 32 28 37.16

Result with k-mer approach

l=11, k=0 38 42 22 40 42 26 30 24 30 22 44 22 32 18 16 18 31.8

l=11, k=1 40 40 24 40 42 26 32 26 30 26 46 24 34 20 18 18 33.07

l=25, k=1 40 38 24 40 42 26 30 24 30 24 42 22 30 14 16 16 31.69

l=25, k=7 40 40 22 38 40 30 28 16 34 26 44 16 32 22 20 16 31.23

l=35, k=7 40 40 20 40 40 26 30 20 30 24 44 20 32 18 16 16 31.23

l=50, k=10 40 40 26 38 42 28 28 22 32 26 44 20 34 22 20 16 32.3

l=50, k=13 40 38 24 38 40 30 28 14 34 26 44 16 32 22 20 16 31.07

l=50, k=15 40 38 24 38 40 30 28 14 34 26 44 16 32 22 20 16 31.07

l=50, k=17 40 40 24 38 40 30 28 16 34 26 44 16 32 22 20 16 31.38

l=75, k=19 40 38 24 38 40 30 28 14 34 26 44 16 32 22 20 16 31.07

l=75, k=23 40 40 26 40 40 30 28 14 36 28 42 16 30 22 20 16 31.54

l=75, k=27 40 40 22 38 40 30 28 16 34 26 44 16 32 22 20 16 31.07

l=75, k=30 40 42 24 38 40 28 26 14 34 26 42 14 30 20 18 14 30.62

l=100, k=30 40 38 24 38 40 30 28 14 34 26 44 16 32 22 20 16 31.07

l=100, k=35 40 38 24 38 40 30 28 14 34 26 44 16 32 22 20 16 31.07

l=100, k=40 40 42 22 38 40 30 26 16 34 26 42 16 30 20 18 16 31.23

Table 4: Summary of the distances between evolutionary trees built from complete
mtDNA of 34 mammalian taxa and some of our trees.
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Our method seems to better describe the phylogenetic truth of the complete
mtDNA with respect to the ML trees derived from single proteins, Li’s approach
and ACS method. Indeed the average RF distance of almost all our trees is lower
than that of all the other trees, included Li’s and Ulitsky’s and the distances from
the consensus tree achieved the same or a lower value (in one case) than Average
common substring approach.

5.2 Retroid viruses

Viruses are partitioned into a small number of superfamilies, according to their
nucleic acid type: DNA or RNA, double strand or single strand. We considered one
of these super families: the retroid viruses.

5.2.1 Description of the dataset

The dataset, shown in Table 5 is formed by 84 retroid viruses, and we aim at
the evaluation of the consistency of its phylogenetic tree . In this case we have
no reference tree expressed in the Newick notation so that we can calculate the
distance between it and our trees. We compared our results with those exposed by
Ulitsky in [40] and with the taxonomy described in the NCBI Taxonomy and ICTV
(International Committee on Taxonomy of Viruses) [52].

5.2.2 Results

The phylogenetic tree obtained for l = 20 and k = 4 is reported in Figure 5.12.
Also with this dataset, various pairs (l, k) properly build the evolution tree. We can
see that Retroviridae Family is correctly separated according to the Orthoretroviri-
nae and Spumaretrovirinae subfamilies. The Orthorerovirinae are ulteriorly split
up into Alpharetrovirus, Betaretrovirus, Gammaretrovirus, Deltaretrovirus, and Ep-
silonretrovirus viruses. The Avian Endogenous Retrovirus (Avia.endo) is clustered
near to the Alpharetrovirus group, thus supporting the results presented in [40]
and [33]. In [40] the EpYVV is clustered with the Alpharetrovirus, in our case
it is associated with Epsilonretrovirus, while it actually belongs to the Family of
Caulimoviridae as can be seen in Table 5.
The Lentivirus genus members are clustered together, with a clear separation of
the Primate (containing the HIV1, HIV2, SIV1, SIV2, SHIV ) from the Avian and
Bovine species of the viruses (Ovi.lenti, BIV, Eq. Anemia et cetera).
The Family of Hepadnaviridae are correctly divided into its two sub-genera: Ortho-
hepadnavirus (mammalian) and Avihepadnavirus (avian).
As concerning the Caulimoviridae Family, it is divided into Badnaviruses (bacilli-
form DNA viruses) and Caulimoviruses in accordance with the taxonomy of ICTV.
ACS method puts the Petunia Vein Clearing Virus (PVCV ) inside the Caulimoviruses
while our method correcly inglobe it into the Badnaviruses sub-family.
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Short name Full header Family
SbCMV GI—11344952—REF—NC 001739.2— SOYBEAN CHLOROTIC MOTTLE VIRUS, C. G.

Caulimoviridae

PVCV GI—14575752—REF—NC 001839.2— PETUNIA VEIN CLEARING VIRUS, C. G.
SCBV GI—15029533—REF—NC 003031.1— SUGARCANE BACILLIFORM VIRUS, C. G.
BSV GI—18450258—REF—NC 003381.1— BANANA STREAK VIRUS, C. G.
Tobac.VC GI—18450263—REF—NC 003378.1— TOBACCO VEIN-CLEARING VIRUS, C. G.
Citru.mosa GI—18450268—REF—NC 003382.1— CITRUS YELLOW MOSAIC VIRUS, C. G.
CERV GI—19919889—REF—NC 003498.1— CARNATION ETCHED RING VIRUS, C. G.
FMV GI—20143424—REF—NC 003554.1— FIGWORT MOSAIC VIRUS, C. G.
BRRV GI—21263121—REF—NC 003138.2— BLUEBERRY RED RINGSPOT VIRUS, C. G.
MiMV GI—21450043—REF—NC 004036.1— MIRABILIS MOSAIC VIRUS, C. G.
TaBV GI—27228718—REF—NC 004450.1— TARO BACILLIFORM VIRUS, C. G.
EpYVV GI—27573297—REF—NC 004515.1— EUPAT. YELLOW VEIN VIRUS-ASSOC. DNA BETA, C. G.
KTSV GI—27819377—REF—NC 004540.1— KALANCHOE TOP-SPOTTING VIRUS, C. G.
CmYLCV GI—32453808—REF—NC 004324.3— CESTRUM YELLOW LEAF CURLING VIRUS, C. G.
ComYMV GI—9625564—REF—NC 001343.1— COMMELINA YELLOW MOTTLE VIRUS, C. G.
CaMV GI—9626938—REF—NC 001497.1— CAULIFLOWER MOSAIC VIRUS, C. G.
CSSV GI—9627246—REF—NC 001574.1— CACAO SWOLLEN SHOOT VIRUS, C. G.
PCSV GI—9627957—REF—NC 001634.1— PEANUT CHLOROTIC STREAK VIRUS, C. G.
CsVMV GI—9627994—REF—NC 001648.1— CASSAVA VEIN MOSAIC VIRUS, C. G.
SVBV GI—9628900—REF—NC 001725.1— STRAWBERRY VEIN BANDING VIRUS, C. G.
RTBV GI—9630630—REF—NC 001914.1— RICE TUNGRO BACILLIFORM VIRUS, C. G.
Stork.HepB GI—18071209—REF—NC 003325.1— STORK HEPATITIS B VIRUS, C. G.

Hepadnaviridae

HepB GI—21326584—REF—NC 003977.1— HEPATITIS B VIRUS, C. G.
Wood.HepB GI—22256030—REF—NC 004107.1— WOODCHUCK HEPATITIS B VIRUS, C. G.
Sheld.HepB GI—48696569—REF—NC 005890.1— SHELDGOOSE HEPATITIS B VIRUS, C. G.
Ross.HepB GI—48696604—REF—NC 005888.1— ROSS’ GOOSE HEPATITIS B VIRUS, C. G.
Snow.HepB GI—49246207—REF—NC 005950.1— SNOW GOOSE HEPATITIS B VIRUS, C. G.
Duck.HepB GI—9625568—REF—NC 001344.1— DUCK HEPATITIS B VIRUS, C. G.
Gs.HepB GI—9626714—REF—NC 001484.1— GROUND SQUIRREL HEPATITIS VIRUS, C. G.
Heron.HepB GI—9626719—REF—NC 001486.1— HERON HEPATITIS B VIRUS, C. G.
Arct.HepB GI—9628827—REF—NC 001719.1— ARCTIC GROUND SQUIRREL HEPATITIS B VIRUS, C. G.
Wool.HepB GI—9630370—REF—NC 001896.1— WOOLLY MONKEY HEPATITIS B VIRUS, C. G.
Oran.HepB GI—9634216—REF—NC 002168.1— ORANGUTAN HEPADNAVIRUS, C. G.
Porc.endo GI—15187162—REF—NC 003059.1— PORCINE ENDOGENOUS RETROVIRUS, C. G.

Retroviridae

PTLV3 GI—18071203—REF—NC 003323.1— PRIMATE T-LYMPHOTROPIC VIRUS 3, C. G.
SIV2 GI—27311166—REF—NC 004455.1— SIMIAN IMMUNODEFICIENCY VIRUS 2, C. G.
Enzo.goat GI—33354433—REF—NC 004994.2— ENZOOTIC NASAL TUMOUR VIRUS OF GOATS, C. G.
Avia.endo GI—49248517—REF—NC 005947.1— AVIAN ENDOGENOUS RETROVIRUS EAV-HP, C. G.
FrMLV GI—9626096—REF—NC 001362.1— FRIEND MURINE LEUKEMIA VIRUS, C. G.
Mur.sarv GI—9626100—REF—NC 001363.1— MURINE SARCOMA VIRUS, C. G.
SFV GI—9626103—REF—NC 001364.1— SIMIAN FOAMY VIRUS, C. G.
ACV GI—9626152—REF—NC 001402.1— AVIAN CARCINOMA VIRUS, C. G.
FuSV GI—9626154—REF—NC 001403.1— FUJINAMI SARCOMA VIRUS, C. G.
Y73SV GI—9626156—REF—NC 001404.1— Y73 SARCOMA VIRUS, C. G.
RSV GI—9626196—REF—NC 001407.1— ROUS SARCOMA VIRUS, C. G.
ALV GI—9626201—REF—NC 001408.1— AVIAN LEUKOSIS VIRUS, C. G.
BIV GI—9626219—REF—NC 001413.1— BOVINE IMMUNODEFICIENCY VIRUS, C. G.
BLV GI—9626225—REF—NC 001414.1— BOVINE LEUKEMIA VIRUS, C. G.
HTLV1 GI—9626453—REF—NC 001436.1— HUMAN T-LYMPHOTROPIC VIRUS 1, C. G.
Eq.anemia GI—9626530—REF—NC 001450.1— EQUINE INFECTIOUS ANEMIA VIRUS, C. G.
Visna GI—9626546—REF—NC 001452.1— VISNA VIRUS, C. G.
Carp.erth GI—9626651—REF—NC 001463.1— CAPRINE ARTHRITIS-ENCEPHALITIS VIRUS, C. G.
FIV GI—9626701—REF—NC 001482.1— FELINE IMMUNODEFICIENCY VIRUS, C. G.
HTLV2 GI—9626726—REF—NC 001488.1— HUMAN T-LYMPHOTROPIC VIRUS 2, C. G.
Abelson GI—9626914—REF—NC 001494.1— OVINE PULMONARY ADENOCARCINOMA VIRUS, C. G.
AbMLV GI—9626953—REF—NC 001499.1— ABELSON MURINE LEUKEMIA VIRUS, C. G.
Spleen.foc GI—9626955—REF—NC 001500.1— SPLEEN FOCUS-FORMING VIRUS, C. G.
MLV GI—9626958—REF—NC 001501.1— MURINE LEUKEMIA VIRUS, C. G.
MoMSV GI—9626962—REF—NC 001502.1— MOLONEY MURINE SARCOMA VIRUS, C. G.
MMTV GI—9626965—REF—NC 001503.1— MOUSE MAMMARY TUMOR VIRUS, C. G.
Mur.osteo GI—9626984—REF—NC 001506.1— MURINE OSTEOSARCOMA VIRUS, C. G.
Ovi.lenti GI—9627001—REF—NC 001511.1— OVINE LENTIVIRUS, C. G.
WMSV GI—9627014—REF—NC 001514.1— WOOLLY MONKEY SARCOMA VIRUS, C. G.
SIV GI—9627204—REF—NC 001549.1— SIMIAN IMMUNODEFICIENCY VIRUS, C. G.
MPMV GI—9627210—REF—NC 001550.1— MASON-PFIZER MONKEY VIRUS, C. G.
ASV GI—9627732—REF—NC 001618.1— AVIAN SARCOMA VIRUS, C. G.
Jembrana GI—9628091—REF—NC 001654.1— JEMBRANA DISEASE VIRUS, C. G.
MurC GI—9628654—REF—NC 001702.1— MURINE TYPE C RETROVIRUS, C. G.
HIV2 GI—9628880—REF—NC 001722.1— HUMAN IMMUNODEFICIENCY VIRUS 2, C. G.
SnRV GI—9628892—REF—NC 001724.1— SNAKEHEAD RETROVIRUS, C. G.
HFV GI—9629127—REF—NC 001736.1— HUMAN FOAMY VIRUS, C. G.
H.spuma GI—9629258—REF—NC 001795.1— HUMAN SPUMARETROVIRUS, C. G.
HIV1 GI—9629357—REF—NC 001802.1— HUMAN IMMUNODEFICIENCY VIRUS 1, C. G.
STLV2 GI—9629498—REF—NC 001815.1— SIMIAN T-LYMPHOTROPIC VIRUS 2, C. G.
Rauscher GI—9629514—REF—NC 001819.1— RAUSCHER MURINE LEUKEMIA VIRUS, C. G.
BFV GI—9629644—REF—NC 001831.1— BOVINE FOAMY VIRUS, C. G.
AMCV GI—9629900—REF—NC 001866.1— AVIAN MYELOCYTOMATOSIS VIRUS, C. G.
WDSV GI—9629902—REF—NC 001867.1— WALLEYE DERMAL SARCOMA VIRUS, C. G.
SHIV GI—9629914—REF—NC 001870.1— SIMIAN-HUMAN IMMUNODEFICIENCY VIRUS, C. G.
FFV GI—9629925—REF—NC 001871.1— FELINE FOAMY VIRUS, C. G.
GALV GI—9630311—REF—NC 001885.1— GIBBON APE LEUKEMIA VIRUS, C. G.
FeLV GI—9630707—REF—NC 001940.1— FELINE LEUKEMIA VIRUS, C. G.
STLV1 GI—9632565—REF—NC 000858.1— SIMIAN T-LYMPHOTROPIC VIRUS 1, C. G.
Eq.foamy GI—9634977—REF—NC 002201.1— EQUINE FOAMY VIRUS, C. G.

Table 5: Table of the retroid viruses.
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Figure 5.12: Phylogenetic tree of the retroid viruses dataset, for l = 20, k = 4.
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6 Conclusions and future perspectives

In this work we presented a novel approach for phylogenetic reconstruction based
on the occurrences of l -mers with mismatches. Several pattern lengths have been
tested and in general it seems that longer pattern lengths require a greater fraction
of mismatches to be allowed in order to build the tree correctly. For our principal
dataset, composed by mitochondrial DNA sequences of average lentgh n ≈ 16000
characters, substrings longer than 100 lead to wrong phylogenies. It is not clear
whether it is possible to infer a relationship between the average length of the se-
quences of the dataset, the length of the substrings and the optimum number or
set of number of mismatches. Analysis should be performed over several datasets of
known phylogeny in order to obtain a general rule.
However our method seems to be also robust to variations on these parameters since
a wide range of couples of values (l, k) efficiently works for deriving the phylogenetic
evolution of the taxa.
The comprehensive comparison with other whole genome methods shows that we
can reach an accuracy surely comparable and usually as good or better than that
presented in such works.
In terms of computational time efficiency, the quadratic cost of our algorithm can not
be bypassed when looking for an exact algorithm. The time onerosity for dataset
with very long genome or proteome sequences (millions of basepairs) makes our
approach unfeasible for such data. In this case we think that an approach with
an approximate matching algorithm could provide important time complexity im-
provements without too much considerable losses in terms of accuracy. The results
obtained both in the mitochondrial and the retroid viruses’ dataset demostrate the
value of our method which is not dependent on a particular set of taxa.
The correct clustering of species in orders and super-orders could provide useful
information also for classifying taxa that are currently not officially classified.
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sorridere. E anche per avermi fatto correggere i ringraziamenti all’ultimo momento.

Ringrazio i miei Amici, in modo particolare Alberto e Luca, compagni unici di
situazioni improbabili, capaci di rendere ogni momento leggendario.

Ringrazio le persone che mi hanno introdotto alla grande passione per la musica,
che mi hanno insegnato ad amarla sempre più, a conoscerla e apprezzarla nelle sue
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