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ABSTRACT

The Lunar GW Antenna (LGWA) is a proposed GW detector with an observation band spanning from about 1mHz to 1Hz. The

LGWA would be able to detect signals from double white dwarfs (DWDs) outside our galaxy. This opens the possibility for

breakthroughs in our understanding of SN Ia progenitors and improved calibration of SN Ia for measurements of the Hubble

constant. Important would be to identify the host galaxies of the detected DWDs. In this work, I will study the capabilities of

LGWA to detect and localize DWDs in terms of its sky locations and distances. The analysis will be carried out with realistic

distributions of the masses of the DWDs obtained from current galactic population models.

SOMMARIO

Il Lunar Gravitational Wave Antenna (LGWA) è una proposta per un rivelatore di onde gravitazionali che esplorerà la banda di

frequenza dal mHz a 1 Hz. LGWA sarà in grado di rivelare segnali dalle binarie di nane bianche (DWD), all’interno e all’esterno

della nostra galassia. Ciò apre la possibilità a fondamentali avanzamenti nella conoscenza dei progenitori delle SN Ia, ed a nuovi

metodi di calibrazione delle distanze delle SN Ia, usate per determinare la costante di Hubble. Sarà quindi importante identificare

le galassie ospiti delle DWD rilevate. In questa tesi, studierò le prestazioni di LGWA in relazione alla rivelazione e localizzazione

delle DWD, in particolare per quanto riguarda le distanze e la posizione in cielo delle sorgenti. L’analisi sarà effettuata usando

distribuzioni realistiche dei parametri delle DWD, ottenute usando gli attuali modelli di formazione ed evoluzione stellare e di

struttura delle galassie.
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1 LIST OF ABBREVIATIONS

CE Common Envelope

CMB Cosmic Microwave Background

DD Double Degenerate

DWD Double White Dwarfs system

FAR False Alarm Rate

HST Hubble Space Telescope

IMF Initial Mass Function

JWST James Webb Space Telescope

LISA Laser Interferometer Space Antenna

LIGS Lunar Inertial Gravitational-wave Sensor

LGWA Lunar Gravitational Wave Antenna

MW Milky Way

PE Parameter Estimation

PSD Power Spectral Density

SD Single Degenerate

SFH Star Formation History

SFR Star Formation Rate

SN Supernova

SNR Signal to Noise Ratio

WD White Dwarf

2 DWDS: STRUCTURE AND CHARACTERISTICS

The subject of study of this thesis are Double White Dwarfs sys-

tems (DWD) as seen from the Lunar Gravitational Wave Antenna

(LGWA). In this section I present a description of these objects, with

an approach finalized to the following characterization of the LGWA

response to the present DWD population.

2.1 Late stages of stellar evolution

In stable main-sequence stars, the ionized gas would tend to collapse

towards the center under the gravitational force; the pressure devel-

oped at the core allows for nuclear fusion reactions to start, leading

to a counter-pressure that expands the system. The star eventually

reaches the stable equilibrium between these two forces, and burns

the hydrogen at the core producing almost exclusively 4He nuclei.

After a certain time span, which heavily depends on the initial mass

of the star, the remaining hydrogen is not enough to sustain anymore

the energy production needed for the equilibrium to be maintained.

The gravitational force overcomes and the star enters the late stages

of the stellar evolution: the final result, after the transition phases,

can be either a light remnant (brown dwarf) with " < 0.08"» , or
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a compact remnant for superior masses. In this case, the major part

of the star’s hydrogen envelope is ejected (fig. 1) leaving behind the

non-hydrogen core; for initial masses "8 < 8"» the collapse of this

remnant can be stopped by the electron degeneracy pressure as the

mean distance between the electrons becomes comparable with their

thermal wavelength

_ =
ℎ√

2c<4:�)

where <4 is the electron mass, :� the Boltzmann constant and )

the kinetic temperature of the electron gas. Coulomb corrections are

neglected for now. At this point, the degenerate Fermi gas of electrons

provides a degeneracy pressure that stabilizes the star. The properties

of the star can be found by imposing the equilibrium between the

gravitational force and the degeneracy pressure; In the idealized case

of non-relativistic, charge-less fermions a good approximation of the

radius-mass relation is given by (Padmanabhan 2001):

'(") ≈ 0.022

`4

(

"

"�ℎ

)−1/3 [

1 −
(

"

"�ℎ

)4/3]1/2
'» (1)

with "�ℎ ≃ 1.4"» , `4 =
d

=4<?
, with =4 number density of the

electrons, namely the number of nucleons per electron; `4 is used as

an alias parameter to replace the specific volume of the degenerate

Fermi gas E = +/# with `4=?d
−1, making explicit the density d,

that is a key parameter for gravitational considerations. `4 is left

as a parameter to account for the different isotopic compositions

that can be found, but in any case `4 ≈ 2. Note that this equation

diverges for " → 0 and becomes 0 at " = "�ℎ. Both these limits

are not physical, as for the former the electron gas would not be

degenerate for ' > '» at least (in addition, Coulomb corrections are

not negligible at low densities), and for " ≈ "�ℎ the neutronisation

process begins, leading to other remnants. The radius decreases as

the mass increases: the bigger is the mass, the smaller is the compact

object. The resulting WD eventually consists in a non-degenerate gas

of ions (the nuclei produced by the fusion reactions) and a degenerate

gas of electrons. The ion gas composition depends on the WD mass,

and can be approximately subdivided in three categories:

• For " ≲ 0.5"» , the conditions are not sufficient for He to start

fusion in the transition phases; the result is a He WD

• For 0.5"» ≲ " ≲ 1.2"» , the He starts burning, and the main

products are C and O; the result is a CO WD

• For 1.2"» ≲ " ≲ "�ℎ, the C burns producing Ne; the result

is a NeO WD.

With higher masses, the neutronisation process begins, and the

final result is a neutron star with " ≈ 1.4"» supported by the

degeneracy pressure of the neutrons, arranged in a Fermi gas; at

higher masses ("remnant > 3"») the system collapses forming a

black hole, since the degeneracy pressure of the neutron gas cannot

balance the gravitational pressure, similarly to what happens for

the electronic Fermi gas in a WD when the Chandrasekhar mass is

surpassed.

2.2 Double White Dwarfs and SN Ia

Our galaxy’s initial stellar population is characterized by a starting

binary fraction of ≈ 50%; this means that after the late evolutionary

Figure 1. Planetary nebula NGC 6853, a remnant of the ejection of the outer

shell in the late evolution of the star; it is visible the WD remnant at the center.

Image taken with the Asiago Schmidt 67/92 telescope, INAF.

stages of both the stars, if the initial masses belonged to the interval

0.95"» ≲ "8 ≲ 10"» , the remnant will likely be a DWD system.

The processes that lead to the formation of a short-period DWD that

will merge in less than a Hubble time are complex and involve at least

two episodes of mass transfer, one of which is a Common Envelope

(CE) phase. During this brief period, both the stars are embedded

in a bigger gas envelope resulting from the expansion of one of the

two stars in the latter stage of evolution. The envelope exerts a drag

force on the system, that consequently shrinks; the energy lost by

drag contributes to heating the CE, which is eventually expelled,

leaving a short period DWD binary system. The resulting binary

than slowly shrinks by emission of gravitational waves and finally

merges; the merging event between two CO WDs with "C>C ≳ "�ℎ

is a possible candidate for SN Ia events (Webbink (1984), Wang &

Han (2012)). A SN Ia is a thermonuclear explosion believed to be

generated by the accretion of a CO WD from a companion above the

Chandrasekhar mass (in the following the nature of this companion

is precised). The result is a collapse due to the insufficient electron

degeneracy pressure, starting a carbon-burning phase that produces

heavier elements up to iron. This sudden energy production results

in an explosion that incinerates the star, probably leaving no further

remnants. The energy emission is so strong that the SN can become

brighter than the whole host galaxy, thus visible from very large

distances (fig. 2). It remains visible for approximately 100-200 days

or more depending on the specific object, describing a characteristic

light curve.

SN Ia have a central role in astrophysics: above all, SN Ia luminosi-

ties are used to deduce a measure of cosmological redshift (Phillips

(1993), Riess et al. (1995), and for a recent measurement with James

Webb Space Telescope (JWST) Pascale et al. (2024)), exploiting the

luminosity curves as standard candles. The value of the Hubble con-

stant obtained from this method is not compatible with the value

derived from the temperature of the Cosmic Microwave Background

(CMB): this incompatibility, known as "Hubble tension" is one of

the biggest problems of modern cosmology (Valentino et al. (2021).

Currently, the last measurement of �0 with SN Ia presented in Pas-

cale et al. (2024) confirms using JWST the measurements performed

with HST, establishing the tension and presumably excluding any
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Figure 2. SN Ia object sn2020nlb in the host galaxy M85. Image taken with

the Asiago Schmidt 67/92 telescope, INAF.

instrumental issue. In order to understand the nature of the tension, it

is prominent to fully comprehend the nature of SN Ia; this is the main

justification of the DWD study, since the exact formation channels

of SN Ia are still not known.

The scenario involving two CO WD is called double-degenerate

(DD), contrary to the single-degenerate scenario (SD) in which the

supernova results from the He and H accretion of a CO WD from

a non-degenerate companion star; eventually, the WD would reach

the Chandrasekhar mass and burst into a SN Ia. As we shall see,

these two cases are easily distinguishable by LGWA, so a correct

characterization of the DWD population and the comparison with

the observed SN Ia rate will discriminate the formation channel and

the possible progenitors. Note that both the channels are probably

present, especially taking into account the phenomenological variety

of SN Ia events. Badenes & Maoz (2012), with observations based

on the SDSS argue that the galactic DWD population is not sufficient

to fully explain the observed SN rate (A = (5.4 ± 1.2) · 10−3 yr−1,

Li et al. (2011)), but considering the sub-Chandrasekhar models in

which a SN explosion can be achieved even without reaching the

Chandrasekhar mass could help closing the gap. Both the scenarios

benefits from indirect evidences, even if the DD scenario would bet-

ter explain the lack of H and He emission in SN Ia spectra (Leonard

2007). In conclusion, there are still no strong evidences of the pro-

genitor’s nature.

LGWA offers a novel way to characterize short-period DWDs,

hence probing this set of possible SN Ia progenitors from a new per-

spective. The GW carries a very different information set compared

to the electromagnetic counterpart: other than a precise measure-

ment of the period (and its changing rate), it is possible to determine

the chirp mass M and, with less precision, the single component

masses "1 and "2 (for the definition of these parameters, see sec.

3). With only these parameters it is possible to select the possible raw

progenitor population as the subset with "1 + "2 ≳ "�ℎ; further

refinement can be done accordingly to the present SN Ia theories,

resulting in a more refined population. These observations will al-

low to evaluate the abundance of such objects in our Galaxy and to

compare the expected rate of DD merging events resulting from the

probed population with the observed SN Ia rate. As we shall see,

the expected detection horizon for LGWA for a reasonable SNR is

well beyond the borders of the Galaxy, so we expect a nearly com-

plete characterization of the short-period DWD galactic population,

which is not possible with current optical surveys (electromagnetic

in general) either for intrinsic properties, as the characteristic faint

luminosity of WDs, spanning from ! ≈ 10−1!» to ! ≲ 10−5!»
within the WD lifetime (Iben & Laughlin 1989) and the difficulties

in the discrimination between single stars or binary systems, or ex-

trinsic as the presence of the galactic centre that optically obscures

the other side of the galactic disk and part of the bulge, where most

of the oldest stars are located. As a result, even the most recent DWD

optical surveys suffer from incompleteness and biases. On the other

hand, if a sufficient precision in the localization of the DWD GW

sources is reached, this would provide guaranteed multimessenger

observations for the nearest systems, which would be observable in

the with optical detectors, already knowing the binary nature of the

systems and some of their parameters. The LGWA observations will

clarify the physical processes involved in the last years of evolution

of the DWDs, the interactions and many other aspects that are now

not accessible with current detectors.

Resolving DWDs outside our galaxy would allow to have and inde-

pendent calibration of the distances, hopefully directly shedding light

on the problem of the Hubble tension. As shown in Del Pozzo (2014),

it is indeed possible to measure the Hubble constant exploiting GW

signals originating outside our galaxy: from a correct modelling of

the GW signal and the geometry of the detector it is possible to get the

luminosity distance and the sky localization of the source. For exam-

ple, the event GW170817 as seen from LIGO/Virgo detector network

(a binary neutron star merging) was estimated to be located within a

28 deg2 sky area with a 90% confidence level, and at a luminosity

distance of 40+8
−14

Mpc (Abbott et al. 2017). The localization capa-

bilities of LGWA with respect to DWDs is thoroughly discussed in

next sections, but since the signal can be integrated over the mission

life period (10 years) for a typical DWD, the localization is expected

to be very precise. Once located the position of the source, if the

localization capabilities of the detector are sufficient it is possible to

associate the signal to a specific galaxy, hence being able to corre-

late the optical redshift measured from that galaxy to the estimated

luminosity distance, and thus providing a calibration for cosmolog-

ical measurements. This method does not need the detection of the

electromagnetic counterpart, but observing a SN Ia burst after the

coalescence of a DWD system would further improve the parameter

estimation, similarly to what has been done for the multimessenger

event GW170817 by Radice & Dai (2019), since the constraints on

some parameters coming from the counterpart observations (a better

measurement of sky localization and distance for GW170817) would

consequently lower the errors on the other parameters, like the single

masses. Obviously, a multimessenger detection of a DWD that bursts

into a SN Ia would directly prove the presence of the DD formation

channel and test our knowledge of the use of SN Ia as standard can-

dles. An estimation of the rate of these "golden events" is presented

afterward. The opposite (GW detection without EM counterpart or

EM detection without GW event) does not necessarily rule out the

possibility of a DD event, as there are some models in which the

deflagration happens a long time after the coalescence of the two

CO WD (Shen et al. 2012). Furthermore, since this method does not

require an electromagnetic detection, it would work for every source

that could be precisely located, as binaries containing neutron stars

and/or black holes, if the GW frequency lies in the LGWA range;

however in the following I will focus only on the DWD population.

In conclusion, it is clear that the theoretical models and the ex-

perimental evidences are not strong enough to impose unequivocal
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Figure 3. Mass-radius relation for a SeBa realization of a DWD population.

Black line refers to eq. 1 with `ě = 2; it holds well above 0.8"» , whereas

at low masses the complete degeneration approximation is not satisfied, in

particular near the surface.

constrains to the DWD progenitors; thus the following simulation of

LGWA capabilities regarding the DWD population is meant to be as

wide as possible, without discarding any sub-population that could

actually be detected.

2.3 Merging frequency for DWD systems

The small radius of WDs allows for a long GW-radiating phase,

before other effects such as magnetic braking, Roche overflow and

tidal disruption overcome. I now propose an quick analysis of the

maximum GW frequency reached by a DWD system as a function of

the WDs mass, considering <1 = <2 = " , eccentricity Y = 0 and

WD radius 'WD. Hydrodynamic simulations (Lorén-Aguilar et al.

2005) show that the merging occurs when the distance between the

WDs is approximately 3 ≈ 2− 3 'WD, by means of tidal disruption

of the two WDs. This limit is heavily dependent on the physics of

the merging process, and thus is not easily modelable with simple

considerations; in this paragraph I present the possible extremes of

the merging orbital separation, but in the following I will assume that

the tidal disruption happens for 3 = 2.5'WD.

The approximate maximum frequency reached by the system is

than in the newtonian limit

¬
2
= (2c 5 )2 =

2�"

33

the GW frequency of the quadrupole mode is

5�, = 2 5 =

√

2�"

c33

The mass-radius relation can be simulated by the population syn-

thesis code SeBa (Portegies Zwart & Verbunt (1996), Toonen et al.

(2012)) to better account for low-density regime effects: a DWD pop-

ulation with different masses is shown in fig. 3 with the simplistic

theoretical prevision (eq. 1) for comparison. An accurate description

of the SeBa usage is provided in sec. 5.2, but for now it is used only

to simulate the mass-radius relation.

In fig. 4 it is shown the approximate maximum frequency reached

Figure 4. Mass-maximum frequency relation for the same population. The

maximum frequency corresponds to a disruption at 3 = 2', the minimun at

3 = 3'.

before the merging. In particular, the He DWD population despite

merging in the observable frequency band is less interesting, as the

SN Ia progenitors are expected to be CO WD; in addition, the to-

tal mass does not exceed the Chandrasekhar mass (although, as I

pointed out this is not a strong constraint). The CO DWDs, principal

candidates for a SN Ia progenitor, merge at ≈ 0.1 Hz, namely the

most sensitive frequency band of LGWA, where the horizon should

be further than those of both LISA and ET. Note that this is a rough

estimate, and the real maximum frequency depends on the complex

dynamic of merging process, but it gives the order of magnitude of

the merging frequency.

It is clear that in the SD scenario with a non-degenerate companion,

the disruption of the companion star would happen for 3 > '» at

least, leading to a merging frequency below the mHz and thus not

detectable with LGWA.

3 THE BINARY SYSTEM GW EMISSION

The long observing period of LGWA mission, the natural behaviour

of the response body (the Moon) that acts as an harmonic oscilla-

tor and the low frequency band make LGWA particularly suitable

for the detection of long-lasting monochromatic sources. The main

emitters are the compact binaries, as DWDs, NS-WD, NS-NS, NS-

BH and BH-BH systems. These systems benefits from the absence

of an atmosphere that mimes the gravitational energy loss, thus for

a sufficient orbital separation the power dissipation occurs only via

gravitational wave emission. In this section I will recall the relevant

results concerning a binary system of two massive dots, which will

be adapted to the physical situation in the following sections.

The system consists in two masses <1 and <2 separated by a

distance 3 following circular orbits on the GH plane: for DWDs, a

treatment of the eccentricity Y is not necessary (see sec. 5). In the

keplerian limit, the slow inspiral of the system is describable as a
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series of stationary circular orbits with orbital period

% = 2c

√

33

�"tot

The energy radiated from the system via GW emission is (Peters &

Mathews 1963):

3�

3C
= −32

5

�4

25

<2
1
<2

2
(<1 + <2)
35

5 (Y) (2)

Where � is the gravitational constant, 2 the speed of light and

5 (Y) an eccentricity correction that reads 5 (0) = 1, so it will not be

considered in the following. The result of this restriction is that the

GW has only a quadrupolar component.

The energy of the keplerian system is � = −1

2

�<1<2

3
, thus

substituting 3 (�) in the previous equation and solving for � it is

possible to obtain � (C) and thus 3 (C). Using the period expression

one eventually finds that the GW frequency, that is the double of the

orbital frequency, is described by:

5
− 8

3

�,
(C) = 5

− 8
3

0
− 256

5

�
5
3 M 5

3 c
8
3

25
· C ≡ 5

− 8
3

0
− �(M) · C (3)

where 50 is the GW frequency at C = 0, and M is the chirp mass

M =
(<1<2)3/5

(<1 + <2)1/5
In the following the GW subscript is omitted to simplify the notation.

Equation 3 is really important for the following, since it gives the

frequency of the system after a certain time interval, or the time of the

merging event starting from a given frequency and mass combination.

The merging time C< can be obtained by posing 5 (C<) = ∞, since

the frequency diverges at the merging. The time is thus simply

C< =

5
− 8

3

0

�(M) (4)

Note that this expression is obtained in the Newtonian limit, so it is

an approximation that is valid only for 3 k 3'(2 , where the system

become unstable for relativistic effects. This regime is not reached

since the merging occurs well before, and the correction would be

very small anyway.

Other important characteristics are the following:

• The energy radiated during the process reaches the maximum

at the merging in a very short timescale. For the most of the time,

the binary system emits a small amount of energy and behave like a

nearly monochromatic source.

• The angle ] between the I-axis and the observer determines the

polarization of the GW: for ] = 0 the system is said "face-on" and

the GW is polarized circularly (both the 0+ and 0× polarizations are

present with equal intensity and a 90◦ phase shift), for ] = 90◦ the

system is "edge-on" and the GW is polarized linearly. The observation

angle heavily affects the detection of the system, and generally the

best configuration is the "face-on".

• As highlighted before, these formulas are valid only as long

as the system is describable in the classical mechanics limit: as the

frequency reaches ∞, relativistic corrections are required. However

for the study of DWDs this limit is not reached as the stars collide

before. For this reason, eq. 3 is not valid above the frequencies

calculated in sec. 2.3.

4 THE LUNAR GRAVITATIONAL WAVE ANTENNA

In this section is provided a general overview of the functioning of

LGWA. As reported in sec. 4.2, the Moon is subject to deformations

induced by the passing of a GW. These initial deformations cause the

excitation of the normal vibrational modes of the Moon, seen as an

elastic body. If the normal vibrations can be detected and correctly

associated to a passing GW, it is possible to derive the characteris-

tics of the GW that caused the particular observed excitation. The

approach of using a large elastic body that can couple with the GW

as an antenna, monitored by a readout system, was first theorized

by Weber (Weber 1962) by using large aluminum bars as resonant

bodies (Weber 1970) or the Earth itself (Weber 1967). None of these

detectors have detected GWs: the resonant bars excitations couldn’t

reach a detectable amplitude, and the normal vibrational modes of

the Earth that could be excited by GW are not usable because of the

high spectral noise due to seismic activity. The use of the Moon as a

response body is justified by the extremely low spectral noise, which

enables the GW signal to be recognizable over the background.

A brief summary of the LGWA payload is presented in sec. 4.1;

this section is not meant to be exhaustive, given the great complexity

of the mission, but it will explain the main features of the detector

necessary for the understanding of the general functioning of LGWA,

and in particular the sensing mechanism. A complete description of

the LGWA payload is contained in the LGWA White Paper (Ajith

et al. 2024). In sec. 4.2 it is described the expected response of the

Moon to a passing GW, using the normal-modes formalism, and

the correspondent signal read by the LGWA inertial sensors. The

complete response of LGWA to a GW is given by the coupling of

these two elements, the seismometers as detectors and the Moon as

an antenna.

4.1 LGWA mission payload

The core of the detector is a seismometer that consists in a suspended

mass coupled with a readout system. I will refer to the whole seis-

mometer with the acronym LIGS, for Lunar Inertial Gravitational-

wave Sensor. The idea is to use the suspended mass as an inertial

reference to measure the vibrations of the ground to which the seis-

mometer is anchored. This is achieved through a double-pendulum

configuration: the mass is suspended from one side with a pendulum

and from the opposite side with a reverse pendulum, as illustrated in

the schematics of fig. 5. In this configuration the mass acts nearly as

it was free along the direction of suspension for small displacements

around the equilibrium. In fact, for a normal pendulum the gravita-

tional potential around the rest position can be expanded at the first

non-zero term in an harmonic oscillator; considering the expansion

of the potential for the double-pendulum configuration, one finds

that the term of the second order is zero, namely the potential at the

equilibrium goes as O(�G3). Note that since at the equilibrium point

the concavity changes its sign, the equilibrium is not stable and the

dynamics around G = 0 is not oscillatory. This is not a problem since

the signal does not come from an oscillatory motion of the mass:

through the readout system a negative feedback system repositions

the pendulum at G = 0 by applying a force to the mass, preventing

it to move (with respect to the LIGS frame) by inertia. In this way,

the mass is permanently locked in a small interval G ∈ (−Y, Y), with
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Figure 5. A schematics of the suspension of the test mass. The red line is the

trajectory of the center of mass for this configuration, intentionally extended

well beyond the working interval to highlight the cubic trend. The dashed

frame is fixed to the structure of the LIGS and moves with the ground under

the station.

a small Y determined by the sensitivity of the feedback mechanism,

where the constant potential approximation is completely valid. The

signal is thus the intensity of the force exerted by the feedback loop

to maintain the mass locked in its position, and not the displacement

of the mass.

As seen above, the lunar background seismic noise (BSN) is very

weak, and this allows for the signal to stand out. In particular the fre-

quency band in which LGWA will operate is approximately between

1 mHz and 4 Hz. This frequency band, despite containing plenty of

interesting physical phenomena, would be poorly covered by the next

generation GW detectors without LGWA: the terrestrial detectors

(such as the planned Einstein Telescope, ET, and the Cosmic Explor-

ers, CE1 and CE2) are strongly limited in the band 5 ≳ 2 Hz, and

on the contrary the space-based detectors as LISA will operate with

frequencies 5 ≲ 0.1 Hz. LGWA will provide a bridge between these

two frequency regimes, filling the in-between frequency gap. The

operating band is obtained considering both the expected readout

noise and the response of the Moon; the readout and feedback loop

is planned to be realized with superconducting coils that act on the

suspended mass via Meissner effects. The proof masses will be real-

ized with Niobium or Silicon. The Silicon proof mass is expected to

provide a more sensitive response (about 1 order of magnitude over

the entire frequency band) as it is characterized by an higher mechan-

ical quality factor, and it will be the model used in the simulations

presented in sec. 6. With this assumption, the expected thermal noise

will be the dominant component under 1 Hz, while above the readout

noise is more important (Bi & Harms 2024). The LIGS should reach

the sub-fm/
√
�I strain sensitivity in the band 0.1 - 1 Hz (van Hei-

jningen et al. 2023), which means that over the radius of the Moon

(≈ 1.7 · 106 m) a relative strain sensitivity of ≈ 10−21 Hz−1/2 can be

reached, as a rough estimate. The square of this sensitivity represents

a measure of the power spectral density (PSD) of the overall noise

that limits the detection. To obtain an accurate estimation of the sen-

sitivity of the entire system (composed of the seismometers coupled

with the Moon) over the entire frequency band, the LIGS sensitivity

must be divided by the the Moon’s strain response to a GW. The

response is treated in sec. 4.2, and is characterized by a series of

Figure 6. LGWA sensitivity: the characteristic strain on the H axis is obtained

as
√

5 · PSD, where PSD is the power spectral density that limits the detec-

tor’s capabilities. The characteristic strain is adimensional since the PSD is

expressed in Hz−1.

resonances below ≈ 0.1 Hz and a progressively smoother response

above. Fig. 6 shows the sensitivity of the two options, measured by

the Characteristic Strain parameter, namely the adimensional quan-

tity (2 =

√

5 · PSD. The rough estimation presented previously is

correct, but an accurate model is crucial to exactly determine the

detection capabilities with respect to specific GW sources (see sec.

6).

To reject the seismic noise and select only the effective GW sig-

nals, it is planned the deployment of four stations, each equipped with

two LIGS for the two horizontal displacement measurement. In total

the output of the detector will consist in 8 channels. The stations will

be distributed in a star-like configuration whithin a range of some

kilometers. The site of deployment will be a permanently shadowed

region of the Moon, inside a crater at the South Pole, where the

conditions of constant temperature ) ≈ 40 K create a thermally sta-

ble environment, reducing the corrections necessary to maintain the

LIGS horizontally within a very small tolerance interval. In addition,

to reduce the thermal noise and enable the use of superconducting

elements for the feedback loop, the proof masses must be cooled to

) ≈ 4 K.

Finally, the LGWA mission presents several engineering difficul-

ties that are under investigation, some of which are presented in the

LGWA White Paper (Ajith et al. 2024), that include an effective

noise cancelling, the levelling system, the design of the components

and the electronics, the energy supply, the deployment of the array.

These aspects do not directly affect the estimations of sec. 6 and are

currently under development, so they are not treated here.
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4.2 Response of the Moon to GW

Let ®b (®A, C) be the displacement field of a response body (the Moon in

the LGWA case) from the rest position, and ®j# (®A) the adimensional

normal vibrational modes of the body, where # is a multiindex,

namely a vector of indices, to which is associated a oscillation fre-

quency l# and a quality factor &# . The normal vibrational modes

are orthonormal in the sense of the following scalar product:

ï ®j# | ®j# ′ ð = 1

"

∫

+
33Ad(®A) ®j# (®A)∗ · ®j# ′ (®A) = X#,# ′ (5)

Where the amplitude of the oscillation is weighted by the density

of the point that oscillates. Note that these modes are not explicitly

given to maintain the generality of the treatise, since it is expected

that the real Moon eigenmodes can substantially differ from those of

a uniform spherical elastic object. In the latter case, the modes are

describable by the vectorial spherical harmonics, which can be taken

as a rough approximant of the Moon modes if a more refined model

is lacking.

Any small perturbation can be than univocally written as a sum

of the normal modes, weighted by a dimensional coefficient �# (C)
which has the dimensions of a lenght:

®b (®A, C) =
∑

#

�# (C) ®j# (®A) (6)

The problem of interest is to calculate the temporal evolution of

the functions �# (C), given the ®j# (®A) set and the GW that perturbs

the system. If the coefficients �# (C) are found, the response of the

Moon surface is known and thus the displacement of the ground un-

der the LIGS. In this formalism, the normal modes are the solutions

of a diagonalized Hamiltonian of the whole system, which has been

expanded in series around the equilibrium: as a result, the Hamil-

tonian takes the form of a sum of independent harmonic oscillators

Hamiltonians, one for every eigenmode, each characterized by a res-

onant frequencyl# , a quality factor&# that accounts for the energy

dissipation and an equivalent mass for an harmonic oscillator, <̃# .

The single mode displacement �# (C) is a Lagrangian coordinate in

this perspective. Every mode is than expected to follow a motion

equation

¥�# (C) + l#
&#

¤�# (C) + l2
# �# (C) = (# (Ğ(C)gauge) (7)

Where (# is a scalar function that represents the perturbation in-

duced by the GW. (# is dependent on the the multi-index # , on the

structural characteristics of the Moon (which are implicit in the con-

struction of (# ) and has the GW tensor as the argument, along with

the choice of the gauge in which the ℎ`a tensor is expressed. Note

that ℎ`a is the small perturbation tensor to the Minkowsky metric

tensor [`a , namely the metric is given by

6`a (C) = [`a + ℎ`a (8)

Different choices of the gauge lead to different explicit writing of the

(# function, depending of the meaning that can be attributed to the

chosen gauge. Obviously, the overall expression of the perturbation

(# (Ğ(C)gauge) is independent from the gauge. In the following two

different gauges are considered: first, the most intuitive Lorentz gauge

that can be interpreted as the Newtonian action of a passing GW on

the Moon mass distribution, and than the TT gauge, in which the

polarization of the GW is clearer. The first approach focuses on the

properties of the Moon, while the second on those of the GW.

(# has the meaning of a force, divided by the equivalent mass

<̃# to give the dimensions of an acceleration, that is imparted to the

amplitude �# as an external forcing. The internal terms of dissipa-

tion and harmonic restoring force are accounted in the left member

of the equation. The (# term is thus meant to account for a mean of

all the forces applied to every point of the mass distribution, that can

contribute to a overall force applied to the amplitude of the entire

vibrational mode. The forces must be weighed with the amplitude of

the mode in the point where they are applied: for example, a force

applied to a nodal point will not excite the mode at all, and so a force

applied perpendicularly to the displacement vector of a mode. This

tells that the weighting of the force must be done via a scalar prod-

uct between the force and the displacement field of the eigenmode.

In addition, since the modes are orthonormal, the sum of all these

contributions over the multi-index # will return the entire force for

every point, correctly accounting for the total action of the GW on

the response body.

These considerations lead to the first approach, using the Lorentz

gauge:

4.2.0.1 Lorentz Frame In the following the explicit formula for (#

in the Lorentz frame is derived using a Newtonian interpretation of

the tidal force field exerted by the GW, with attention to the physical

meaning rather than the exact formalism. If the reference system is

chosen in the Moon’s center of mass, the GW field exerts a tidal force

on the mass distribution. For a system of free particles, the 3×3 matrix

ℎ8 9 (C), with 8, 9 spatial indexes, resulting from considering only the

spatial component of the tensor ℎ`a and expliciting the time C as

a parameter instead of a coordinate, determines the displacement of

the particles with respect to the chosen reference frame. In particular,

the displacement of a point mass from its rest position is given by

®Z (C) = 1

2
Ğ(C) · ®A (9)

Where the displacement is proportional to the product matrix by

vector of the GW matrix Ğ(C) and the vector distance ®A from the

origin. This is not true for an elastically bounded system, where every

point’s displacement is affected by the nearby points’ displacements.

Although, eq. 9 can be seen as the outcome of an apparent force

3� that acts on every isolated mass 3" (®A) = d(®A)33A producing

an acceleration 1
2

( ¥Ğ(C) · ®A
)

. The force is apparent as the point is

not subjected to a real acceleration in its reference frame, but from

another reference frame the behaviour of this tidal displacement is

not distinguishable from the displacement caused by applying a force

3 ®� (®A, C) = 1

2

( ¥Ğ(C) · ®A
)

d(®A)33A (10)

This approach is valid also for an elastically bounded system, as the

coupling between the GW and the mass distribution is mediated by

a force exerted on every mass 3" and not directly by a displacement

field. The function (# is thus obtained by integrating this force,

weighting it as described previously via a scalar product with the

mode amplitude. A normalization coefficient is included:

(# (C) = N
∫

+
®j# (®A)∗ · 3 ®� (®A, C) (11)
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Expliciting the local force as in eq. 10 one can obtain

(# (C) = N
∫

+
33Ad(®A) ®j# (®A)∗ ·

(

1

2
¥Ğ(C) · ®A

)

(12)

Since the sum is weighted by the density d(®A), the normalization

factor is N =
1
" . This is coherent with the physical meaning of

the evaluation of the force applied to the amplitude �# of the #-th

eigenmode, with the dimensions required for (# . This expression

can be written in a more elegant form by using the scalar product

previously defined:

(# (C) =
〈

®j# (®A)
�

�

�

1

2
¥Ğ(C) · ®A

〉

(13)

It is important to note that, solved eq. 7 with the forcing expressed

by eq. 13, the quantity ®b (C) does not give the displacement signal

measured by the inertial sensor mass, since the mass itself is subjected

to the tidal force of the GW. The real signal is obtained by subtracting

the displacement of the mass ®Z (C), found by using eq. 9, to the ground

displacement ®b (C).

4.2.0.2 TT gauge While the treatise in the Lorentz frame has a very

straightforward physical interpretation, the gauge hides some of the

GW properties as the polarization. In the TT gauge the shape of the

GW tensor is more clear, but (# changes; it can be derived that (#

is described by the following expression:

(# (C) = − 1

"

∫

+
33A ®j# (®A)∗ · Ğ)) (C) · ∇`(®A) (14)

where `(®A) is the shear modulus, a scalar field characteristic of the

material. The shear modulus can be obtained by the velocity of the

shear waves in the material E) via ` = dE2
)

. Due to the presence of

the ∇ that acts on `, wich contains the density d, this equation can

not be immediately recast with the scalar product previously seen if

the density is not constant.

Note that in TT gauge the dependence from the GW tensor follows

directly from ℎTT and not from its second derivative; In addition, the

coupling with the normal mode happens by means of the contraction

of ℎTT with the shear modulus’ gradient and not directly with a force

that acts on the whole eigenmode.

Apart from these analytical models, for an accurate analysis of the

LGWA data stream it will be necessary a more refined model that

will account for the Moon’s internal structure and the topography of

the deployment site at various scales, as these factors are expected

to heavily influence the propagation of the seismic waves that form

the detectable signal. New techniques are being proposed (Bi &

Harms 2024) to account for these effects, but the calibration problem

is still complex and needs both numerical simulation models and

seismic data from next lunar missions, including the proof-of-concept

mission Soundcheck, that will test a simplified version of the LIGSs

of LGWA.

5 GENERATION OF THE SYNTHETIC POPULATION

In order to simulate with accuracy the response of LGWA to the

DWD population, inside and outside our galaxy, it is prominent to

generate a reliable synthetic population. This is preferable as opposed

to using the existing catalogues for many reasons:

• The intrinsic difficulties in detecting, observing the DWDs and

accurately characterize the parameters of interest could introduce

systematic biases in the analysis.

• Only a section of the galaxy has been thoroughly analyzed, for

example by Gaia mission (Jackim et al. 2024); as a result, for example

the bulge DWD population is not catalogued yet.

• The known short-period DWDs are very few, and not sufficient

for a statistical analysis considering the frequency band of LGWA.

At the same time, the generation of a synthetic population presents

considerable difficulties; in this section I’ll explain the chosen pro-

cedure.

5.1 Population size estimation

In order to generate a realistic population, it is important to estimate

the number of DWD systems in our galaxy. From now on, I will

consider the DD scenario as the only formation channel for SN Ia;

a mixed scenario (DD + SD) can be obtained simply by re-scaling

the results. As previously anticipated, the the observed SN rate is

A = (5.4 ± 1.2) · 10−3 yr−1 (Li et al. 2011); I will now calculate

the DWD population, as a function of the frequency, required to

sustain this rate. I will consider A as constant: this approximation is

valid on the timescales of the detectable DWDs (those characterized

by a GW frequency above 1 mHz) because the time required to

merge starting from 58 = 1 mHz is around 1 - 3 Myr depending on

the masses, sufficiently small compared with the entire Hubble time

(13500 Myr) to consider the SN Ia rate locally constant.

This normalization of the total population considers only the

DWDs that will eventually merge after the inspiral. However, the

final phases of the spiralling are quite complex and can result in dif-

ferent outcomes: other than the merging, there is the possibility of an

outspiralling, caused by the mass exchange, that results in distancing

the WDs. This event is expected to generate a complex waveform,

for which an approximant is not available yet. Clarified this possible

bias in the construction of the population, that will possibly lead to

an underestimation of the total DWD number, the rest of the analysis

is based on the simple hypothesis that every DWD with total mass

" > "�ℎ will shrink, merge and produce a SN Ia event.

Let d( 5 ) be the DWD density in the frequency space, such that

3# = d( 5 )35 is the number of DWDs with frequency between 5 and

5 +35 . The merging of these 3# systems will occur in a time interval

3C = C< ( 5 ) − C< ( 5 + 35 ), where C< is the merging time derived in

sec. 3:

C< ( 5 ) =
5 −

8
3

256

5

�
5
3 M 5

3 c
8
3

25

=
5 −

8
3

�(M) (15)

The merging rate is than

A =
3# ( 5 )
3C ( 5 ) =

d( 5 )35
C< ( 5 ) − C< ( 5 + 35 )

It follows that

d( 5 ) = A C< ( 5 ) − C< ( 5 + 35 )
35

= −A 3C< ( 5 )
35

(16)
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5ģ 5ĉ expected

0.001 0.005 (2.0 ± 0.5) · 104

0.005 0.01 228 ± 62

0.01 0.05 42 ± 11

0.05 0.1 0.5 ± 0.1

Table 1. Expected population: the errors are calculated propagating both the

error on the A estimation and the statistical dispersion of the �(M) function,

drawn from the mass distribution of the convolved population obtained in

sec. 5.3, considering only the systems with "ĪĥĪ > "ÿℎ; As the errors

are calculated from a mixed approach, they are only meant to indicative. In

addition, for the last frequency interval non-gravitational effects overcome so

the estimation could not be reliable.

Differentiating eq. 15 and substituting into 16 one obtains

d( 5 ) = 8

3
A
5 −

11
3

�(M) (17)

which integrated in a frequency interval � 5 = ( 5<, 5" ) gives

# (� 5 ) =
A

�(M)
(

5
− 8

3
< − 5

− 8
3

"

)

(18)

The resulting expected population for various frequency intervals are

listed in tab. 1.

Note that the influence of other effects at the merging time, which

speed up the disruption process, does not affect the estimations re-

garding lower frequencies as it is simply modelable as a time shift in

eq. 15.

5.2 Primordial population and evolution

Being the DWD parameter distribution poorly known, the present

stellar population can be generated evolving a primordial population

with the code SeBa
1 introduced in sec. 2. This code allows to com-

pletely simulate the evolution of a stellar population; in particular,

for the sake of this analysis it is used to simulate a population of

binaries in the parameter ranges that allow the formation of a DWD.

The fundamental steps in the elaboration are:

• Sampling a population with given parameter distributions, im-

plemented in the software. The parameters are the two star masses

"1 and "2, the initial orbital separation, the eccentricity of the orbit,

and the metallicity of the stars n (the fraction of star matter that is

not Hydrogen). All these parameters, with the exception of n that is

fixed for the whole population, are sampled accordingly with some

distributions that can be chosen as input (initial mass function (IMF)

for the primary mass, mass ratio for the secondary mass, orbital

separation distribution and eccentricity distribution).

• Every binary system in the generated population is than evolved

independently for a chosen time interval, taking into account all the

major effects that contribute to the evolution of the single stars and

the system as a whole.

• The output consists in a file that contains, for every system,

the main evolutionary phases of the binary with all the parameters

that describe the system: the time from the beginning at which the

evolutionary step occurs, the orbital separation, the eccentricity, and

1 https://github.com/amusecode/SeBa

parameter distribution interval

Primary mass Kroupa IMF 0.95"» < " < 10"»
Secondary mass ratio Uniform 0 <

ĉ2
ĉ1

f 1

Orbital separation Log-uniform 1'» < 3 < 106'»
Eccentricity Thermal 0 < Y f 1

Metallicity 0.014

Table 2. Initial population parameters

for both stars the star type (from "planet" to "black hole", and all the

other possibilities that stay in the middle), the mass, the temperature,

the radius and the core mass.

The fiducial parameter distributions and parameter intervals are

chosen accordingly to Korol et al. (2017) and reported in tab. 2.

All the distributions are already implemented in the SeBa sampler.

Despite effectively using a thermal distribution for the eccentricity,

all the short-period DWDs have Y = 0 from the formation of the

DWD, namely the end of the CE phase. Thus from now I will not

consider the effects of eccentricity and work with circular orbits, as

in sec. 3.

The resulting population consists in a sample of 2 · 106 binary

systems, each with its evolutionary history, with a overall initial

mass of 5.8 · 106"» . A fraction of ≈ 75% of the systems becomes

DWDs at some point of the evolution (these systems are shown

in fig. 7), ≈ 5.8% of these experience a short-period phase before

present time, and only some tens fall in the LGWA frequency band

exactly at the end of the 13500 Myr period, all around the mHz and

none above 10 mHz. It is clear that this single burst cannot provide a

statistical sample of the population, since the expected DWD galactic

population in the mHz should account for ≈ 2 · 104 systems above

the Chandrasekhar mass in order to reproduce the current SN Ia rate

(see tab. 1), and the simulation can’t reproduce at all the rare but

crucial population with 5�, > 0.01 Hz in the most sensitive band

of LGWA.

The solution comes from using the generated population as a X

function and convolve it with a chosen star formation history (SFH).

For every C, 0 Myr < C < 13500 Myr, in the population a certain

number of new systems are formed (systems/year); it is thus possible

to define a formation rate 'SFH (C) ∈ [0, 1] by normalizing the SFH of

the population at the value that it reached at the peak of star formation.

For the time interval (C, C + XC) a fraction 'SFH (C) of the whole SeBa

population is sampled and the frequency is evaluated at the present

time, namely at the time C̃ = 13500 Myr −C + b · XC in the simulation.

The parameter b is drawn randomly from the interval (−0.5, 0.5)
for every system to account for a uniform distribution within the

minimum period XC, and thus smoothing the single X functions into

a continuous distribution. I will discuss later the choice of the time

resolution XC. If the algorithm finds a system that for C̃ lies in the

LGWA frequency band, the system is added to the convolved present

population. In addition, let"B be the "total simulation mass", namely

the sum of the masses of the stars at the time of formation (C̃ = 0);

this characteristic mass is used in sec. 5.3 to correctly account for the

various stellar populations within the MW. This is the most reliable

estimation of the convolved population mass, even if it does not

represent the effective mass at the end of the evolution. Obtaining

this second estimation would require the complete simulation of the
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Figure 7. X population at C = 13500 Myr. "1 refers at the most massive star

at the formation of the binary (C = 0).

entire population evolution, which is not reasonable considered the

necessary computing power.

This approach completely solves the initial problem as not only the

few short-period DWDs that remain at C = 13.5 Gyr are considered,

but all the systems that at some point of the 13.5 Gyr evolution had

become a DWD. In this way the computationally expensive SeBa

simulation is better exploited. In addition, the X-convolving approach

benefits from two main virtues:

• A SFH is naturally simulated with accuracy as the convolution

of any function (as the chosen 'SFH (C)) with a Dirac X gives the

function itself; this allows to test multiple SFH hypothesis without

running the SeBa simulation (extremely computationally expensive)

a great number of times, but only one long run to generate the X burst

(≈ 200 hours of CPU have been used). In addition, different galactic

components have different SFHs, hence this approach is ideal to

simulate a complex galactic structure.

• A large DWD population can be easily produced, even larger of

the actual population, allowing for more precise statistical consider-

ations. This could not be possible with direct evolution simulation,

given the extremely low percentage of observable systems in the total

population.

However, there are some drawbacks that must be taken into ac-

count:

• The X burst refers to fixed initial parameters that could change

over time in the real SFH. For example, the metallicity is expected to

increase as the galaxy ages or vary for the different galactic popula-

tions (bulge, thin disk, thick disk, see sec. 5.5), but this effect cannot

be taken into account since a variation in the metallicity would re-

quire to re-run the evolutionary simulation. The same is true for the

IMF.

• The same DWD system is counted more than once if XC is

small enough, resulting in a certain degree of correlation inside the

population.

For the former there is not a simple solution, and it will contribute

for some degree of systematic error. This problem however is strongly

mitigated by the choice of the SFH: in general, it is expected that 'SFH

in the early stages of galaxy evolution is far higher than in the late

stages (sec. 5.3); this results in a shorter effective formation period,

that is more acceptably modelable with fixed metallicity and IMF

function. In addition, it is worth noting that other systematic effects

could be more important, as the partial decoupling of the initial stellar

population from the position within the galaxy. This particular aspect

is discussed in sec. 5.5.

For the latter, it is important to estimate how much time a sys-

tem remains in the LGWA band. An upper limit is found using the

expression for the time to merge for a binary system, eq. 15. The

initial frequency for which the algorithm recognizes the DWD as

detectable with LGWA is 58 = 1 mHz. The resulting merging times

for the typical DWD masses is around 1 - 3 Myr. This means that the

time resolution XC should be lower than 1 Myr, otherwise some sys-

tems would be lost in the process, but not too low to cause detectable

correlation in the population. Note that lowering XC is desirable, as

doing so the resulting population would increase in number. A lower

limit for XC can be found imposing that the frequency space density

generated by the repetition of one system should be lower than the

density of different systems. This constrain prevents the formation

of isolated "clusters" or "streaks" in the frequency space due to the

multiple counting of a single system. With really rough estimations

(considering one half of the systems in the interval 1-5 mHz and

imposing there the condition, since the low-frequency band corre-

sponds to a slower evolution) it is found that this limit XCmin always

lies under 0.001 Myr. The accurate limit must be even lower, since

all the approximations are for the excess, but even this value is too

low for a reasonable elaboration time. Lastly, the bigger is the initial

SeBa sample, the higher will be the different-systems density and

thus the smaller the minimum XC, so the maximum potential size of

the convolved population grows faster than linearly with regards to

the SeBa population size.

In conclusion, for the chosen initial population size, taking

XC ∈ [0.01, 1.0] Myr is a legitimate choice that does not introduce a

significant correlation while exploiting at the best the DWD systems

that had been previously elaborated.

5.3 Star Formation Histories

Once generated the X population sample, the final population is gen-

erated via the convolution with a chosen SFH. The spatial distribution

of the DWDs (see sec. 5.5) needs to be performed considering dis-

tinct components of the total galactic population; in particular, for

the bulk of the galaxy a bulge + disks model is used. In addition,

also other stellar populations could be simulated, as the Magellanic

clouds, the globular clusters, and finally other galaxies within the

horizon of LGWA, to completely model its detection capabilities.

However, for this analysis I will develop an accurate model for the

MW and reuse the generated population to model the extragalactic

DWD population. In the following, to account for the different SFH

that generated the MW sub-populations, various 'SFH are consid-
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ered and commented. Afterwards, different hypothesis are presented

on the combination of the single populations to obtain the galactic

model.

5.3.0.1 Constant formation The most simple model consists in a

constant star formation rate (SFR) 'SFH from C = 0 to 13.5 Gyr.

As the DWD production is uniform in time, this model would auto-

matically match the calculated population density distribution as a

function of the frequency (eq. 17), since the corresponding merging

rate is also uniform. This can be a good model for the disk component

of the MW.

5.3.0.2 Exponentially declining Another SFH model, used by Ko-

rol et al. (2020), prescribe an exponentially declining SFR, with a

characteristic time of 5 Gyr. Given the long decaying timescale, this

could be a more refined model for the disk, instead of the constant

formation.

5.3.0.3 Burst The star formation occurs in a very short period (≈0.5

Gyr) of evolution. The burst is modeled as a gaussian function. This

SFH is meant to model an old population that after an initial burst

did non experienced other formation phases if the burst occurs at the

beginning (note that since the short-period DWDs are expected to

already form at relatively high frequency and evolve fast, this type of

SFH is likely to produce a thinner DWD population), or a major star

production event that happened subsequently.

5.3.0.4 Bulge model A model developed specifically for the MW

bulge by Haywood et al. (2016) is approximately describable with

a constant SFR ' from C = 0 to C = 9 Gyr, and another phase with

increased SFR '′ = 3' from C = 9 Gyr to C = 13 Gyr.

5.3.1 Milky Way components

An agreement on which SFH better represent the various MW com-

ponents is far from being reached in literature: while some prescribe

an increasing SFR in the disks (Snaith et al. 2015), others (Vergely

et al. (2002) and Cignoni et al. (2006)) hint at a decreasing SFR with

a major star production around 2 - 3 Gyr. The models commonly used

for the source abundancy estimations (Korol et al. 2020) use initial

burst, constant formation and exponentially declining SFHs. Regard-

ing the bulge, an opposite model with regards to Haywood et al.

(2016) is presented by Ferreras et al. (2003), with a star formation

concentrated in the 2 - 3 Gyr interval instead of 9-13 Gyr.

Among the recent modeling of the disks, Fantin et al. (2019)

present a SFH for the two disk components, with a constant SFR

for the thin disk from C = 0 to C = 9 Gyr and a burst formation of

the thick disk at C = 9.8 Gyr, modeled as a gaussian with f = 0.5

Gyr. This model accounts for the separate formation of the thick

disk after a merging event (Helmi et al. 2018), and being based on

WD observations it could reproduce more realistic results on the

simulated DWD population. Other evidences from Gaia (Mor et al.

2019) show an exponentially declining SFH instead of a constant

SFR in the first 9 Gyr, with a less pronounced thick disk burst. For

these reasons, he fiducial model for the thick disk is chosen to be a

gaussian burst at C = 9.8 Gyr with f = 0.5 Gyr, while for the thin

disk the constant and exponential models will be compared.

The DWD relative abundance among the components is chosen

comparing the mass of the simulations "B,bulge, "B,thin, "B,thick

with the estimated masses reported in tab. 4, therefore there is not

the problem of weighting the SFHs of the various components via

the multiplicative density coefficients.

The ratio between the population masses is obtained by prop-

erly sampling the convolved populations. Let j1 , jC , j) be the

three sampling coefficients, and #1 , #C , #) the number of super-

Chandrasekhar binaries in the convolved simulations, respectively

for the bulge, the thin disk (either constant or exponential SFH) and

the thick disk; by imposing the ratio constrains on the masses:

jC"B,thin

j)"B,thick
=
"thin

"thick

jC"B,thin

j1"B,b
=
"thin

"1

and the total number of super-Chandrasekhar DWDs:

jC#C + j)#) + j1#1 = #C>C

it follows that

jC =
#C>C

#C + #)
"B,thin"thick

"B,thick"thin
+ #1

"B,thin"b

"B,b"thin

j) = jC
"B,thin"thick

"B,thick"thin

j1 = jC
"B,thin"b

"B,b"thin

where the simulation masses and#G are listed in tab. 3. To compute

the sampling coefficients is used #C>C = 2 · 104 after the estimations

presented in sec. 5.1.

Once the two SFHs scenarios for the thin disk are simulated, one is

to be chosen for further elaboration: the main difference is not in the

composition of the population (masses distribution and frequencies)

but in the number of short-period DWD systems compared with the

total mass: for the constant SFH the DWD abundance is ≈ 20%

higher compared to the exponential SFH. This results in increased

sampling coefficients j1 and j) in the case of exponential SFH, and

a consequent redistribution of the DWDs in the MW components to

match the total number. The resulting SN Ia rate is shown in fig. 8,

and only minor differences are expected between the two scenarios

before 2.5 Myr from now. The exponential SFH seems to produce a

slightly more stable SN Ia rate in a time interval of 2 Myr; lacking

other strong motivations to chose between the SFHs, in the following

the exponential SFH is used as fiducial model, accordingly with

the estimations from Gaia data (Mor et al. 2019). In any case, the

similitude between the populations makes this choice less relevant.

The parameters distribution of the three populations are presented in

fig. 9.
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Figure 8. The overall galactic SN Ia rate from the two possible populations (constant or exponential SFH for the thin disk). Every bin corresponds to 5 · 104 yrs.

Figure 9. The three population components of the MW, with the SFHs and the relative abundances described in sec. 5.3. Up: "1 vs "2 scatter with max cutoff

frequency colorbar. Down: max cutoff frequency histograms.

Figure 10. I - ' projection of the MW components model, with the relative abundances obtained from DWD count. Only 10% of the objects are shown.
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component XC (Myr) simulation mass ("») #>Ch

Bulge 0.3 1.35 · 1011 71835

Thin disk (constant SFH) 0.2 2.62 · 1011 56144

Thin disk (exponential SFH) 0.2 1.22 · 1011 22518

Thick disk 0.1 7.31 · 1010 27049

Table 3. Convolved populations characteristics

5.4 Other parameters

The complete GW analysis, performed with the code GWFish, needs

also other parameters, either extrinsic or less important than the

parameters previously discussed:

• System inclination: the inclination \ of the system is an extrinsic

parameter that is chosen with an uniform distribution in cos \.

• Polarization angle: k is chosen uniformly in (0, 2c).
• Phase: the initial phase of the waveform is not important for

long-period observations, however it is chosen uniformly in (0, 2c).
• 01 and 02: components of the WDs spins along the orbital

angular momentum, in units of "2, where " is the WD mass, in

natural units; this parameter is chosen uniformly in (0, 0.1), and plays

a negligible role in the definition of the overall waveform.

5.5 Spatial distribution within MW

The mass distribution of the MW is still matter of debate, and grow-

ing evidences show that the structure of the galaxy is very complex

(Di Matteo 2016). The accurate sampling of a realistic structure

would however be difficult to implement, and wouldn’t lead to great

improvement in the estimations: in the modeling some rough approx-

imations have been already introduced, as the constant metallicity.

The adopted model will thus be quite simple, despite correctly con-

sidering the overall distribution of the stellar population.

I adopt a model consisting in a central bulge, a thin disk and a thick

disk. In the following I will use a cylindrical coordinate system, with

the origin in the galactic center of mass, the I-axis as the galaxy’s

rotational symmetry axis, ' =

√

G2 + H2 the radial distance from the

I-axis and \ the angular variable. The model is thoroughly described

in McMillan (2017); in addition to being accurate, it is also easily

implementable in a sampler thanks to the analytical form of the stellar

densities. The used parameters are listed in tab. 4.

The bulge is modeled through the distribution:

d1 (A) =
d0

(1 + A′/A0)U
exp

[

− (A′/Acut)2
]

(19)

with A′ =

√

'2 + (I/@)2, while the disk density is the sum of two

parts: the thin disk and the thick disk, each parametrized with:

d3 (', I) =
Σ0

2I3
exp

[

− |I |
I3

− '

'3

]

(20)

To perform the elaboration, only A′ < 3 kpc for the bulge and ' <

35 kpc for the disks are considered. Despite being distinguishable by

the chemical composition, I will use this double disk modeling only to

account for a better spatial distribution, and the chemical composition

will not affect the simulation of the convolved population, as said

before.

The central density d0 of the bulge and the surface densities Σ0 are

parameter value meaning

d0 9.93 · 1010"» kpc−3 central bulge density

A0 0.075 kpc bulge radius for algebraic decrease

Acut 2.1 kpc bulge radius for exponential cut

U 1.8 algebraic decrease exponent

@ 0.5 I semiaxis oblation of the bulge

IĚthin 300 pc scaleheight of the thin disk

IĚthick 900 pc scaleheight of the thick disk

'Ěthin 2.53 kpc scalelenght of the thin disk

'Ěthick 3.38 kpc scalelenght of the thick disk

Σ0thin 887 "» pc−2 thin disk central surface density

Σ0thick 157 "» pc−2 thick disk central surface density

"Ę 8.9 · 109"» total mass of the bulge

"thin 3.5 · 1010"» total mass of the thin disk

"thick 1.0 · 1010"» total mass of the thick disk

Table 4. MW parameters from McMillan (2017)

used to chose the ratio between the bulge and the disk populations and

not to compute the effective total mass. The total number of DWD

will be normalized to match the observed SN Ia rate, in the hypothesis

that all the SN Ia come from the DD channel. The resulting spatial

distribution, obtained using a dedicated sampling code, is represented

in fig. 10.

5.6 Extragalactic sources: spatial distribution and DWD

populations

While for the MW the populations are distributed following a com-

plex spatial model, for the extragalactic sources this becomes super-

fluous for the objectives of this analysis: as the distance of a galaxy

becomes larger than its characteristic sizes, the spatial distribution

of the population does not play anymore a significant role in deter-

mining the detectability and the parameter estimation of the single

DWD. Instead of a complex spatial distribution, these sources are

associated directly with the position of the whole stellar population

in ICRS coordinates (3 luminosity distance from Sun, U and X ra and

dec respectively).

The data describing the galaxies is drawn from the HyperLeda2

catalogue (Makarov et al. 2014). In particular, I used the following

data for all the galaxies within 35 Mpc:

• Position: A0, 342 and distance modulus <best, which is related

to the luminosity distance 3; through the relation

<best = 5 log(3;) + 25

This relation is used to compute the luminosity distance of the galaxy.

As a note, the parameter <best is obtained as a weighted average

two different measurements of the distance modulus: <I , which is

measured using the redshift and is more important at higher distances,

and <0 which is obtained with independent methods, and is more

reliable on small distances. For further details, refer to http://

leda.univ-lyon1.fr/.

• B-band magnitudes: the apparent magnitude <� in the B band

corrected for extinction, and the absolute B magnitude "�. These

parameters are used to compute the galaxy colour (along with the K

2 http://leda.univ-lyon1.fr/
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apparent magnitude) and the SN Ia rate (see below). Note that the

extinction correction is necessary since the major absorption occurs

in the bluer band of the optical spectrum.

• K-band magnitude: the apparent magnitude < is used to com-

pute the � −  colour. Since the K band refers to the near-infrared

spectrum, which is nearly not affected by the dusts, an extinction

correction is not provided.

• Morphological type of the galaxy, expressed in the Hubble mor-

phological classification. This parameter is used to obtain the SN Ia

rate in the case that the colour is not available (in particular when

the K band lacks, which occurs for a not negligible fraction of the

population).

The SN Ia rate is than obtained using the rate-size relations de-

scribed in Li et al. (2011). In particular, two parameters are necessary

to accurately describe the rate in a galaxy, one chosen between the

morphological type and the � −  colour, and the other from the

B-band luminosity, the K-band luminosity or the stellar mass. Given

the HyperLeda data, I chose to calculate the rates preferably from

the � −  colour (obtained simply by <� − < ) and the B band

luminosity, and where this was not possible for the lacking of the K

apparent magnitude I used the morphological type and the B band

luminosity. The luminosity is calculated with

!� = 10−0.4("þ−"» )!» (21)

where "� is the absolute corrected B-band magnitude, "» = 4.8

is the absolute magnitude of the Sun and !» is the luminosity of

the Sun. The B luminosity is than expressed in units of 1010!» as a

common scale unit for the luminosity of galaxies.

The galaxies that do not have neither of these two sets of data rep-

resent a very small component, which consists mainly in negligible

stellar aggregates, and is not expected to play a significant role in the

overall SN Ia rate outside the MW. Thus these systems are directly

discarded.

The rate-size relations that relate the B band luminosity and galaxy

colour or morphological type to the rate A are in the form of power

laws:

A (type, !�) = SNuB(type, !0)
(

!�

!0

)1+'((þ
(22)

A (� −  , !�) = SNuB(� −  , !0)
(

!�

!0

)1+'((þ
(23)

Where SNuB is a rate for an average size galaxy with luminosity

!0 = 1010!» and is dependent from the colour or the morphological

type, and RSS� is a power-dependent correction to the simple linear

relation between the size (expressed as a luminosity) and the rate.

The average-size SNuB coefficients and the relative RSS� for the

different colour and morphological types bins, drawn from Li et al.

(2011), are listed in tab. 5. The resulting rates are expressed in units

of one SN Ia every 100 years. A plot of the positions of the galaxies,

with the corresponding rates and distances, is shown in fig. 11.

The estimation of cumulative SN Ia rate within 10 Mpc is 15.4

SN/100 yrs, which is found to be compatible with the estimation

obtained from the volumetric local SN Ia rate of 3.01 ± 0.62 · 10−5

SN Mpc−3 yr−1 (Li et al. 2011), which implies a cumulative rate of

13 ± 3 SN/100 yrs for a 10 Mpc horizon. Note that since the MW

Figure 11. Extragalactic population: the plot shows the position of the galax-

ies from the HyperLeda catalogue; the colorbar indicates the luminosity

distance, and the size of every dot represents the rate associated with the

relative galaxy. For graphical clarity, the size B of the markers are related to

the SN Ia rate A through the relation B ∝ log(A + 1) . It is evident that along

the galactic plane there is an incompleteness of the actual galaxy population.

Hubble type SNuB(!0) RSSþ � −  SNuB(!0) RSSþ

E 0.305 -0.23 <2.3 0.158 -0.25

S0 0.282 -0.23 2.3 - 2.8 0.152 -0.25

Sab 0.271 -0.23 2.8 - 3.1 0.231 -0.25

Sb 0.217 -0.23 3.1 - 3.4 0.248 -0.25

Sbc 0.198 -0.23 3.4 - 3.7 0.260 -0.25

Sc 0.200 -0.23 3.7 - 4.0 0.250 -0.25

Scd 0.165 -0.23 >4.0 0.305 -0.25

Irr 0.000 -0.23

Table 5. SNuB coefficients for the rate calculation. The reference B-band

luminosity is 1010!» .

is located in an overdensity, the SN volumetric rate is expected to

decrease with higher volumes, which is the reason of such choice of

the verification volume.

Considered that the population that can be detected from LGWA

outside our galaxy consists only in the most massive and short-period

DWDs (see sec. 6), only super-Chandrasekhar systems with 5cutoff >

0.005 Hz are considered. For every galaxy, the associated number of

systems is determined with eq. 18 on the frequency band (0.005, 1)
Hz, similarly to what has been done for the MW population: the total

number of DWD binaries can be simply obtained by multiplying the

rate (in units of SN/100 yrs) for the constant 498 (in units of 100 yrs)

that results from the integration in the frequency space (eq. 18).

The DWD population used to build the extragalactic sources is

derived from the super-Chandrasekhar sub-population of the MW

via an amplification process: since the expected overall population

is much bigger than the synthetic MW population, to not repeat the

exact same systems multiple times over the extragalactic popula-

tion a random process is applied to 5000 copies of the initial MW

population:

• The masses are randomly changed within 0.01"»
• The system is evolved for a random time C ∈ (0, 105) years.

This does not affect the general shape of the population, since it can

sustain a constant merging rate for 2 Myrs (see fig. 8).
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• The new parameters (frequency cutoff and geocent time) are

calculated for the new system, if the DWD did not merge before.

The resulting population consists in ≈ 2 · 105 systems, that is enough

to provide the 1.5 · 105 systems required to sustain the total rate

within 30 Mpc.

The population is than completed with the remaining parameters as

described in sec. 5.4. The resulting semi-synthetic catalogue consists

in approximately 148000 objects within 30 Mpc, and 7650 within 10

Mpc.

5.6.1 Error budget on extragalactic population

It is important to note that the population that has been produced

could suffer from some errors: I will now list the most important,

with a correspondent estimation of the relative error induced on the

synthetic population.

• Statistical sampling: given the high number of sampled param-

eters and the relative small number of the systems in the overall

population, the population is subject to great variations if the sam-

pling is repeated. This behaviour is modelable with a Poisson statistic

over the bins in which the systems will be sorted at the end of the elab-

oration (such as SNR bins, sky localization bins, excetera, see sec.

6). The casual error associated with every bin containing # system

is than taken equal to
√
# , accordingly with the chosen statistic.

• Incompleteness of the HyperLeda catalogue: as shown in fig.

11, it is not possible to identify the galaxies that are behind the

galactic plane; this will cause a systematic underestimation of the

sources that will be visible to LGWA even if obscured by the MW

disk for electromagnetic observations. This systematic error does not

exceed the 25% of the total population: this percentage represents an

estimation of the Zone of Avoidance caused by the obstruction of the

MW (Kraan-Korteweg & Lahav 2000). The total systematic error

can be taken between 20% and 25%.

• Errors in the estimation of the rate: all the parameters used for

the estimation of the SN Ia rate (reported in tab. 5) are subjected to

moderate errors for SNuB, of approximately 5%, and large errors for

the corrective parameter RSS�, around 60% − 90%. This is due to

the limited amount of SN Ia that can be used to calibrate this data. A

safe estimation for the error introduced by the parameters is taken to

be about 10% of the total rate.

• Errors in the HyperLeda data: generally negligible when con-

fronted with the previous sources of error; the major error source is

the estimation of the distance and the colour, which can be distorted

by the extinction. Since a correction for the extinctions is already

given in the catalogue, this is not considered as a significant system-

atic source of error.

6 POPULATION ANALYSIS

The analysis of the population generated in the last section is per-

formed by the code GWFish (Dupletsa et al. 2023). This tool allows

for accurate simulation of the response of a GW detector to a signal

characterized by the parameters simulated in sec. 5.

Let 3\ (C) be the signal stream from the detector, that consists in a

real GW signal modelled by an approximant ℎ\ (C) that depends on

a parameter set {\8}, over a stochastic gaussian noise =(C). The GW

signal ℎ\ (C) is obtained from the tensor ℎ8 9 by contracting it with

a response tensor A8 9 that represents the sensitivity of the detector.

Note that the tensor A8 9 is a function of time, as the detector is

moving over time (with the Moon around the Earth and the Sun for

LGWA). For short-time signals this variation is negligible, but since a

DWD observation is obtained by integrating the signal over the entire

mission lifetime this effect must be considered. The calculation of the

response tensor is implemented in GWFish. The parameter estima-

tion (PE) on the data 3\ (C) is carried out by applying the maximum

likelihood method; the likelihood function can be approximated by a

multivariate gaussian distribution:

L(3\ |\) = N exp
{

− 1

2
�\8 (C−1) 9

8
�\ 9

}

(24)

where �\ = \ − \ and C is the covariance matrix; C−1 ≡ F is the

Fisher matrix, and can be obtained as:

F8 9 = (m8ℎ|m 9ℎ)
�

�

�

\=\
= 4ℜ

∫ ∞

0

1

(= ( 5 )
mℎ

m\8

mℎ∗

m\ 9

�

�

�

\=\
35 (25)

in the frequency domain, where (= ( 5 ) is the characteristic noise

spectral density of the detector, assumed to be known. The dyadic

product (0 |1) is defined as

(0 |1) ≡ 4ℜ
∫ ∞

0

0( 5 )1∗ ( 5 )
(= ( 5 )

35 (26)

This product allows to compare different frequency functions (as the

waveforms), weighting the integration with the spectral noise.

Note that this approach is valid only in the gaussian approximation

of the likelihood, and it could fail if the approximation is not satisfied:

this usually happens at very low SNR value. The Signal to Noise ratio

(SNR) is defined as

(

#
≡ (3 |ℎ)

√

(ℎ|ℎ)
=

√

4

∫ ∞

0

ℎ( 5 )ℎ∗ ( 5 )
(= ( 5 )

35 =
√

(ℎ|ℎ) (27)

in the approximation of gaussian noise with null expectancy value;

it gives a measure of the detectability of the signal: for low SNR

threshold the False Alarm Rate (FAR) increases, namely the rate at

which a false signal is detected as a real one. Thus it is necessary to

set a SNR threshold that discards the events with lower SNR. This

will obviously reject some real events with faint signal, so the trade-

off between rejecting false events and so reducing the observable

objects or accept an higher FAR to include faint sources will be a

crucial aspect of the data analysis during the observational period. A

common choice is taking the SNR threshold between 7 and 9.

The waveform ℎ that is used as a model can be chosen from a set of

analytical approximants from LALsimulation (part of LALsuite,

see LIGO Scientific Collaboration et al. (2018)), a software package

currently used by the LIGO/VIRGO/KAGRA collaboration for the

analysis of GW data. The dependencies from LALsimulation are

already implemented in GWFish.

The simulation capabilities of GWFish that are used in this anal-

ysis are:

• Parameter estimation (PE): the code can simulate the predicted

parameters and errors, given a synthetic population of GW sources

represented by suitable approximants.

• SNR for every synthetic object.
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Figure 12. Horizons for a 0.7-0.7 "» and a 1.2-1.2 "» DWD, with SNR=7

or SNR=9. Some important position are shown as comparative scale.

• Horizon computation of a certain event with a chosen SNR,

namely the maximum distance with optimal extrinsic parameters

(such as the inclination) at which the event is still detectable.

A first application for the study of DWD population is the estima-

tion of the horizon with respect to the frequency cutoff: as seen in sec.

5, at the end of LGWA observational period nearly all the observable

DWDs would not have merged, but they would have reached a maxi-

mum GW frequency. Similarly, another frequency cutoff is imposed

by the maximum merging frequency of the system, if the merging

occurs during the observational period. This effect is implemented in

GWFish by setting a max_cutoff_frequency parameter that cuts

off all the frequencies above. This is a major effect in the determi-

nation of the event’s SNR: a low cutoff implies a smaller horizon.

This is visible in fig. 12, where some observable objects’ distances

are also shown. Comparing this plot with the merging frequencies

found in sec. 2.3 (fig. 4) it is evident that since the merging frequency

lies between ≈ 0.06 Hz for a 0.7 - 0.7"» DWD and ≈ 0.2 Hz for a

1.2 - 1.2"» DWD (the objects shown in the graph as approximate

mass extremants for the formation of a SN Ia), it is conceivable that

LGWA will correctly characterize the majority of the MW super-

Chandrasekhar short-period ( 5GW f 0.01 Hz) DWD population,

which is expected to be really thin, 43 ± 11 objects following the es-

timations in sec. 5.1. The sub-Chandrasekhar population is expected

to present a even lower merging frequency, which combined with a

minor power emission results in a difficult detectability. However the

nearest population could anyway produce an observable (but faint)

signal.

Regarding the extragalactic populations, fig. 12 shows that only

very short period and very massive DWDs can be detected, up to

≈ 30 Mpc for the most massive systems of NeO-CO or NeO-NeO

DWDs, and the expected frequency is such that a merging is expected

in a short timescale.

6.0.1 Limitations of GWFish capabilities

At present, the GWFish code can provide excellent simulations of

the detector’s response only when the source is relatively close to the

merging, but cannot simulate a nearly stationary low-mass source far

from the merge. This allows to accurately simulate the detection of

high-SNR events such as BH-BH, BH-NS, NS-NS events, whereas

the nearly monochromatic DWDs (with frequency cutoff ≲ 50 mHz,

determined by the frequency reached at the end of the mission life-

time and not by the actual merging frequency) are more difficult to

simulate. This does not imply that LGWA cannot detect these sys-

tems, which can become visible after 10 years of signal integration

thanks to the fact that the GW emission is nearly monochromatic.

However, this limit pose a strong constraint on the analysis of the

synthetic population that has been generated in sec. 5: in fact, only a

few of the galactic DWDs are suitable for the GWFish analysis, and

only ≈ 1% of the extragalactic population, despite already being an

high-SNR population by construction.

For this reason, in the following is presented an analysis of the

LGWA sensitivity referred only to the merging events. As seen in

fig. 8, the generated population can sustain a constant SN Ia rate for

≈ 2 Myr; all the systems that merge within 1 Myr are selected, and for

each the maximum frequency cutoff is calculated accordingly with

the mass-radius relation presented in sec. 2.3. In particular, the cutoff

is chosen as the frequency reached by the system when the distance

between the DWDs becomes 2.5'max, with 'max corresponding to

the radius of the lighter WD in the binary system.

This analysis is to be intended as statistical: during the observa-

tional period the probability of observing a galactic SN Ia is negligi-

ble, while the expected SN Ia rate for extragalactic population is such

that some merging events are expected within the mission lifetime.

However, the super-Chandrasekhar DWDs are only a sub-population

of the entire set of (potentially) observable DWDs which can merge

during the observational period; in addition, the rate estimations

could be biased by the relatively small number of observations. This

statistical analysis is than a mean of probing the entire possible pop-

ulation that could be observed, with the relative abundaces (and

thus probabilities) in the parameters space, imposed by the physi-

cal models used to generate the simulated population. The absolute

abundance within the 10 years observational period can be derived

simply by normalizing the 1 Myr period considered in the analysis.

Two different sub-populations are analyzed separately: in sec. 6.1

the super-Chandrasekhar DWDs in the MW are treated, as possible

progenitors of SN Ia; the sub-Chandrasekhar population can not be

analyzed due to the current version of GWFish. In sec. 6.2 is provided

an estimation of the super-Chandrasekhar extragalactic population’s

detectability with distances up to 30 Mpc. Note that these analysis

on the synthetic population should be completed with a proper com-

plete analysis once the GWFish issues will be fixed: they are only a

demonstration of the whole analysis pipeline that can be applied to

the generated sample.

6.1 Super-Chandrasekhar MW population

Not all the simulated super-Chandrasekhar systems are detectable:

a consistent part (≈ 30%) is not treatable by GWFish, which in-

troduces a significant systematic error in the final estimations. The
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lacking population corresponds to the low-mass fraction of the super-

Chandrasekhar population, which has a lower maximum frequency

cutoff due to the larger radius following the mass-radius relation.

This low cutoff is not treatable by the code; for the same reason, the

entire sub-Chandrasekhar population is not yet analyzable. The rest

of the systems are analyzed without any constrain on the SNR, that

can be applied afterwards. The DWDs that can be simulated present a

SNR> 103, with a typical SNR≈ 2 ·103 and some well above 2 ·104.

In fig. 13 is shown the distribution of the SNR within the three

populations. It is evident that the majority of the population comes

from the thin disk, a consistent part from the bulge, and the thick

disk is negligible.

The first row of fig. 14 shows the relation between the relative error

of the luminosity distance and the SNR: it is clearly visible a neat

linear border of the population in the logarithmic plane. For any GW,

the expected 3! dependency will follow an inverse 3−1
!

relation, so

it is expected that m3Ĉ ℎ = − 1
3Ĉ
ℎ. It follows that

F3Ĉ3Ĉ = (m3Ĉ ℎ|m3Ĉ ℎ) =
(ℎ|ℎ)
32
!

=
SNR2

32
!

(28)

At the same time, the error on 3! isf3Ĉ =
√

C3Ĉ3Ĉ ; the covariance

matrix is obtained inverting the entire Fisher matrix F , but for the

estimation of f3Ĉ only the entries of F that in C show a covariance

with 3! are needed. In particular, the distance is strongly degenerated

with the inclination angle \, so that the covariance cov3Ĉ \ can not

be neglected. Inverting only the needed block results in the reduced

Fisher matrix:

F̃ =

[ F3Ĉ3Ĉ F3Ĉ \
F\3Ĉ F\ \

]

=

[

f2
3Ĉ

cov(\, 3!)
cov(\, 3!) f2

\

]−1

(29)

which leads to

F3Ĉ3Ĉ =
1

f2
3Ĉ

1

1 − cov(\, 3!)2
f2
3Ĉ
f2
\

=
1

f2
3Ĉ

· : (30)

where the corrective factor to the simple 1

f2
ĚĈ

relation that would

occur if all the covariances were 0 has been condensed in the factor

: = (1 − d2)−1, where d is the Pearson correlation coefficient. Note

that : g 1 since −1 < d < 1.

Matching eq. 30 and eq. 28 results in

f3Ĉ

3!
=

√
:

SNR
(31)

This means that with logarithmic axes the population will be

characterized by the strong constrain of the diagonal log(SNR) =

log(f3Ĉ /3!) corresponding to null covariance, but will extend over

the diagonal for higher values of covariance. The degeneracy between

3! and \ can be very accentuated, so the population is expected to

easily detach from the limit condition : = 0.

This is exactly what can be seen in the first row of fig. 14 with

great precision.

A similar effect occurs in the second row of fig. 14, but in this case

the correlation is between ra and dec, whose errors are used to calcu-

late the 90% sky localization area, and the effect is less pronounced.

It is worth noting that the sky localization precision that is reached

spans from ≈ 1 arcsec (as) to ≈ 5 milliarcsec (mas); for comparison,

the terrestrial optical observatories in the visible range can reach a

seeing of ≈ 0.5 as, the space telescopes (for example, JWST) ≈ 0.1

as. With interferometric techniques even higher resolutions can be

accomplished, as 2 mas for VLT or 5 mas for the ELT (under con-

struction). These orders of magnitude make the LGWA resolution

competitive in the next generation of astrophysical detectors within

the framework of high-SNR merging events.

Finally, the third row shows the relation between f3Ĉ /3! and the

90% sky area, namely the two parameters that characterize the 3-

dimensional localization capabilities of the detector. The SNR is still

present as coloration of the objects. Note that the three perspectives

presented in fig. 14 are the projections of the populations from the

f3Ĉ /3! - sky area - SNR space.

Given the errors on sky localization and luminosity distance, it is

possible to estimate the volume that contains the source as the portion

of space identified by the 1f errors on the localization parameters.

This is a fundamental parameter, since to exactly locate a source (and

possibly link the gravitational detection with optical observations)

it should be contained in a reasonably small volume. The typical

distances between stars in the MW strongly depends on the position,

but an order of magnitude of the typical distances is around 0.1 -

10 pc. This means that the volume needed to identify a single star

should be less than ≈ 10−3 pc3, although for the population near

the Solar System, more accessible to optical observations, higher

volumes can be enough. In addition, optical characterization of the

possible sources (e.g. via spectral classification) can further increase

the minimum volume if needed. In fig. 15 is presented the relation

between the distance and the volume: only a small part of the MW

population lies under the (very strong) limit of 10−3 pc3, however all

the systems are limited in a maximum volume of less than 103 pc3,

which is enough to apply other identification techniques to better

constrain the position of the source if it is visible to electromagnetic

detectors.

Note that the exact positions of the single DWDs are not of great

importance if the goal is to obtain a statistical characterization of the

MW DWD population and match it with the observed SN Ia rate,

as described in sec.2. On the contrary, it is crucial if the objective

is to study the single system’s properties to characterize a SN Ia

progenitor.

In conclusion, for what concerns the super-Chandrasekhar pop-

ulation of the MW, LGWA offers a good characterization of the

population, with errors that allow for an effective localization of the

sources. The main source of error in this analysis comes from the

simulation of the detector response by GWFish, which cannot sim-

ulate all the objects in the synthetic population, other than the errors

that affect the population itself, already described in sec. 5.6.1.

6.2 Extragalactic population

Also for the extragalactic population an high percentage of the sys-

tems that merge can’t be elaborated by the code; this fraction amounts

at ≈ 37% of the total population. Given the estimation of the SN Ia

rate obtained in sec. 6.2 associated with a local rate density of 3.67

SN Mpc−3 y−1, it is expected to observe 1 or 2 SN events in a 10

Mpc radius during the 10 years observational period. This estimation

however, despite being in accordance with the rates presented in Li
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Figure 13. histograms of the SNR within the simulated MW population. Note the different vertical scales. For the thin disk population, the tail of the distribution

continues above SNR=3 · 104, but for graphical clarity the axis has been truncated.

Figure 14. Up: MW population scatter plot with relative error on 3Ĉ (fĚĈ
/3Ĉ) vs SNR. Middle: scatter plot with relative error on 3Ĉ vs SNR. Down: scatter

plot showing the relation between the relative error on 3Ĉ and sky localization (90% sky area in deg2), with SNR colorbar.
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Figure 15. Distance - volume relation for the three super-Chandrasekhar MW populations.

et al. (2011), could be underestimated; as pointed out by Maoz &

Mannucci (2012), the rate-size relation could be biased, and the pa-

rameters that have been used present anyway considerable errors. The

observations with Zwicky Transient Facility (ZTF) hint at a much

higher rate (Ajith et al. 2024), although the correction to account

for unclassified SN introduces an large uncertainty in the total rate.

For this analysis I used the rate previously derived to better account

for the spatial distribution of the sources and for its accordance with

the estimations of Li et al. (2011), however there is the possibility

that the correct results should be obtained from a normalization of

the used rate, namely by multiplying the final results by a fixed con-

stant. In addition, note that the DWD population is obtained by the

MW parameters distribution, thus a further bias is introduced in the

extragalactic population, that could present different characteristics

compared to the MW, for example in the mass distribution, although

reproducing the same SN Ia rate. This bias is very difficult to correct,

since a different SFH and initial parameter distribution should be

considered for every galaxy, or at least for every morphological type.

The SNR distribution is presented in fig. 16. Differently from the

MW analysis, there is an accumulation of events towards SNR=0,

which corresponds to the furthest population, that is treatable by

GWFish but not detectable by LGWA due to the distance. Two pos-

sible SNR thresholds (SNR=7 and SNR=9) are shown in the graph: it

is clear that the choice of the SNR will heavily influence the number

of such systems detected outside the MW, unlike for the MW merg-

ing population, where the detection is assured if a merging occurs (at

least for a system with characteristics represented in the the analyzed

sample). From the histogram plot, the population’s SNR seems to

be be well represented with a power-law distribution; in the plot is

reported the power law

3#

3D
= =0 · D−Σ

where the variable D represents the SNR (SNR units), and the expo-

nent Σ is found to be Σ ≈ 3.4. The normalization =0 ≈ 2.3 · 105 is

reported for completeness, although it does not play a physical role.

A better representation of the detection capabilities of LGWA for

the extragalactic population is reported in fig. 17. In this plot is re-

ported the 1f volume in which the merging is identified, calculated

as described in the previous section, and the luminosity distance

of the system, namely of the host galaxy. It is very important to

estimate whether the sources can be unambiguously linked to the

host galaxies: as explained in sec. 2, if such identification is possi-

ble, an independent measurement of the luminosity distance can be

performed, an so an independent calibration of the redshift-distance

relation. To estimate a maximum volume +max that can be tolerated

(confusion limit), the HyperLeda catalogue is once again used: since

the MW is located in a mass overdensity, the confusion limit is es-

timated in three different shells: from �; = 0 Mpc to 10 Mpc, from

10 Mpc to 20 Mpc and finally from 20 Mpc to 30 Mpc. The average

confusion limit is obtained as =−1, where = = #/+ is the numerical

density of the HyperLeda galaxies in the corresponding spatial shell.

The resulting confusion limits are:

�; ∈ (0, 10) Mpc ⇒ +max = 10 Mpc3

�; ∈ (10, 20) Mpc ⇒ +max = 15.5 Mpc3

�; ∈ (20, 30) Mpc ⇒ +max = 29.8 Mpc3

These limits are reported in fig. 17. For the 10 Mpc shell, almost

all the sources are included in the safe zone under the confusion

limit. For the 20 Mpc shell, the majority of the population is below

the limit, but a considerable fraction goes beyond+max, and the over-

limit population is the majority for the 30 Mpc shell. Given the trend

in the first 30 Mpc, it is conceivable that a particularly favourable

event could be detected up to 40-45 Mpc; the rare occurrence of such

events is partially compensated by the larger volume reached. Those

events would be particularly important, not for the study of the SN

Ia rates but for the distance calibration.

From the SNR coloration it is important to note that all the pop-

ulation that lies over the confusion limit has a SNR that is too low

to allow a detection: with small variations depending on the chosen

minimum SNR, the detection threshold roughly corresponds with

the confusion limit (more likely, the SNR constraint is more se-

lective than the confusion limit). This implies that if a merging of

a super-Chandrasekhar DWD is detected, almost certainly the host

galaxy is recognizable only by means of the LGWA GW observation.

This would of course be important for an eventual SN Ia event follow-

ing the merging, which could be observed by other detectors; prior

to the merging, the LGWA detection would provide an estimation

of the sky localization and the merging time of the system, that will

allow preparing in advance the observation of the transient. After the

merging, if an electromagnetic counterpart is detected it would pro-

vide additional data to better constrain the system parameters in the
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Figure 16. Histogram of the SNR of the extragalactic population. The limits

SNR=7 and SNR=9 are shown as possible threshold for a detection. The

dashed line is the power-law distribution that empirically matches the SNR

distribution. Note that both the axes are logarithmic.

GW data analysis. If the counterpart is not detected, the localization

capabilities of LGWA are much more important as they would be the

only means of knowing the origin of the signal; this can occur if:

• The SN Ia event happens, but is obscured by the MW disk or

by the host galaxy disk: this is an experimental problem that could

eventually be resolved (for example, by means of a neutrino detection,

see Wright et al. (2016), or a radio afterglow).

• The SN Ia event do not happen immediately after the merging:

this would pose strong constraints on the current theoretical models.

In any case, the localization of the source is of primary importance;

this analysis shows that for merging DWDs the confusion limit is

not surpassed, due to the inevitable SNR threshold that limits the

detection. Thus LGWA can fulfill the requirements needed to perform

this type of research, under the more general conditions of detection.

7 CONCLUSIONS

The LGWA detector will give access to a whole new frequency band

in the gravitational wave spectrum, spanning in the interval (10−3, 4)
Hz, which is expected to contain a multitude of observable objects

and new physics (see sec. 4). In particular, this work is focused on

the study of double white dwarfs, which are expected to merge in

the LGWA band, and are possible candidates for SN Ia progenitors,

as discussed in sec. 2. A fiducial synthetic population of DWDs has

been generated, following the latest and most reliable physical models

regarding stellar structure, star formation, stellar evolution and mass

distribution within the Milky Way and for the extragalactic popula-

tion, calibrating the populations’ sizes with the expected SN Ia rates.

The construction of the synthetic population is thoroughly described

in sec. 5. Afterwards, an analysis of the detectability of such objects

is performed (sec. 6), using the Fisher-matrix technique through the

code GWFish. Due to the current version of the code, only merg-

ing systems are analyzed; the main interest is to characterize the

localization capabilities (SNR, error on the luminosity distance and

sky localization) of LGWA with respect to the DWD population.

For merging DWDs, LGWA can effectively identify the source as a

single system in the MW and as a single galaxy for the extragalactic

population. The precision that should be reached by the detector is

enough to locate the object unambiguously and link it to a potential

electromagnetic observation. The confusion limit however can be

reached by some objects, especially for the extragalactic population,

meaning that the safe margin is not wide, and the actual measure-

ments will be challenging to perform. This implies that other studies

are advisable on this topic, that should cover at least two aspects:

• A more detailed estimation of the properties of the expected

sources, in particular for what regards the exact merging frequency

of the DWDs, which introduces a frequency cutoff that is crucial to

determine the SNR and the localization precision. A small variation

of the frequency cutoff implies a considerable change in the SNR

and localization quality. This estimation, being strictly determined

by the physical interaction between the two WDs, is related to the

second aspect:

• A precise modelization of the waveform, which is heavily af-

fected by mass effects and does not follow the ideal waveform of

two massive points (see sec. 3), especially in the latter phases of

the merging. This aspect will be particularly important during the

analysis of the actual data stream, which is currently performed with

match filters but is expected to be far more difficult for the low fre-

quency detectors such as LGWA. A better analysis pipeline could

allow to lower the SNR threshold, making more sources detectable.

On the other hand, the non-idealities will provide a lot of information

regarding the physics that is involved in the merging process.

In this work, the monochromatic part of the synthetic population,

namely the DWDs that do not merge during the mission lifetime, is

not treated. The accurate analysis of spiraling DWDs will be matter

for a future study, since this population represents the majority of the

objects that could be visible in the Milky Way. The estimation of the

SNR and potential localization of these sources is not trivial, since the

power emission through GW is very weak, but the monochromatic

signal can be integrated over the entire observing period of 10 years.

Having already generated the synthetic population, this analysis will

consist only in a proper estimation of the SNR and localization of the

sources, similarly to what is shown in sec. 6 of this work. A possible

simplified analytical approach to the SNR estimation is presented in

Appendix A.
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Figure 17. Scatter plot of the extragalactic merging population over 1 Myr. It is shown the relation between the luminosity distance �Ģ and the 1f volume that

contains the object. The SNR is present as coloration. In addition, the three coloured lines mark the maximum confusion limit required to identify the host galaxy

(on average), described in sec. 6.2. The events are aligned on horizontal lines, as every line is relative to one galaxy, and the volume (and SNR) distribution

varies over the line depending on the single source.

APPENDIX A

Analytical solution for stationary-source SNR

As seen in sec. 6, the usage of GWFish for stationary sources is

not possible; in this appendix is provided a simplified estimation of

the SNR for the synthetic populations at present, namely without con-

sidering only the merging phase, using an analytical approach. This

analysis considers only some of the numerous parameters that were

considered previously, and provides only the estimation of the SNR,

and thus the detection/non-detection of the systems. In particular, the

analysis accounts for:

• Luminosity distance, as the wave amplitude diminishes as �−1
;

.

• Mission duration: the integration of the signal during the mis-

sion lifetime has a direct impact on the SNR.

• GW frequency: the frequency associated with the system is

considered as constant during the observational period, and is taken

equal to the frequency cutoff that has been assigned to every system

during the construction of the synthetic population.

• LGWA PSD: the sensitivity of the detector determines the SNR

as shown in eq. 27.

The main sources of error are:

• Constant response tensor: the sky position of the source is not

considered, so the waveform is mediated via a constant response ten-

sor R. As a result, the harmonic waveform can be directly expressed

as a sinusoidal function.

• Not considering the inclination of the system: all the systems

are considered as face-on, namely the best configuration. This will

result in higher SNR.

• Stationary system approximation: for the majority of the systems

this approximation is valid, however for the most high-frequency

binaries the signal is not monochromatic and thus the approximation

is not valid anymore. These systems are very few in the MW, while

for the extragalactic population this error could be more important.

• Other parameters: while GWFish provides an accurate simula-

tion of the waveform using all the parameters described in sec. 5,

this modelization accounts only for a first-order two-mass inspiral.

However, this effect is minor compared to the previous two.

For a stationary monochromatic source, the waveform is an har-

monic oscillation

ℎ¬ (C) = A cos(¬C) (32)

with amplitude

A = R 2(�M)5/3 (c 5 )2/3
24�;

To obtain the frequency-domain waveform, a Fourier transform

is applied:

ℎ(l) =
∫ )

0
ℎ¬ (C)4−8lC3C
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[

exp
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}
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2

}

(+ (l)
]

(33)

where the two functions (± are defined as

(± (l) =
sin

(

)
¬ ± l

2

)

)
¬ ± l

2

(34)

The SNR can be analytically obtained with eq. 27; first one can

show that the ℎ(l)ℎ∗ (l) part can be reduced to a Dirac’s delta in

the approximation of long observational period:

ℎ(l)ℎ∗ (l) =
(

)A
2

)2 [

(2
− + (2

+ + 2(−(+ cos()¬)
]

(35)

For ) >> 1 this can be approximated with

ℎ(l)ℎ∗ (l) ≈
(

)A
2

)2

(2
− ≈ 2c)A2

4
X(l) (36)

considering that

∫ ∞

−∞

sin2 (G)
G2

3G = c (37)

with the variable change G = ) ¬−l
2

. Rewriting the X with 5 =
l
2c

results in:

ℎ(l)ℎ∗ (l) ≈ )A2

4
X( 5 ) (38)

and so

SNR =

√

4

∫ ∞

0

ℎ( 5 )ℎ∗ ( 5 )
(= ( 5 )

35 =

√

)A2

(= ( 5GW) (39)

Where 5GW is the frequency of the monochromatic source,

namely the maximum frequency cutoff calculated for every object in

the synthetic population.

As the average response tensor R is not known with precision,

the expression is left as implicit, and it is not applied to the synthetic

population. In future studies, the average tensor could be calculated

(or simulated) in order to apply this formalism to stationary sources.

Note that the explicit expression of R could include not only the

frequency, but also a dependence from the sky position of the source

and polarization of the GW, partially solving the approximations

listed above.
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