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Introduction

The study of the universe has begun ever since men looked up to the sky to recog-
nize the different stars that slowly moved around them, trying to understand what
those tiny light spots were. Many years and many men passed since those days,
while the basis of what we now call astronomy, astrophysics and cosmology were
being built over time. Today we can say that we have a fairly good understanding
of what lies outside our planet: we know what is a star, how it was born and how
it dies; we know how large is the universe, and most of the history behind it; and
we know how the universe is filled up, although not as good as we would like to
think.

The last claim, in particular, has been one of the main topics of discussion for
the last 50 years in cosmology, astrophysics and even particle physics: almost a
century ago, a Swiss astronomer called Zwicky noted a discrepancy between the
mass inferred by gravitational interactions and the visible mass in a cluster of
galaxies; he attributed this discrepancy to some undefined "Dark Matter", which
interacts gravitationally with other masses but doesn’t interact with light. Only
40 years later his idea was recovered because of the observations of galaxy rotation
curves by Vera Rubin; from then on, papers referring to the "Dark Matter problem"
began to raise exponentially.

The idea that Dark Matter is made up of a new type of particle, with unknown
but non-vanishing interactions with ordinary matter, appeared shortly after. More
recent developments in observational cosmology have almost ruled out any other
possible explanation for the origin of Dark Matter, therefore its particle nature is
widely accepted in the scientific community. However, the features of this Dark
Matter particle are still largely obscure. For this reason, a rich variety of ex-
perimental strategies has been employed to look for this elusive particle: direct
searches try to detect the interaction between dark and ordinary matter, indirect
searches look for Dark Matter annihilation products coming on the Earth, collid-
ers look for Dark Matter production in high-energy reactions. No signal has been
observed yet, but these experiments are useful to put bounds on the theoretical
models we can produce.

Among all the models in the literature, one of the most popular ones is given



Introduction

by WIMPs (Weakly Interacting Massive Particles): their popularity is mainly
due to the so-called "WIMP miracle", a surprising accordance between the typical
cross section for weak interactions and the resulting relic density via freeze-out
mechanism for a weakly interacting particle (which would match the observed
one). Moreover, the mass range of WIMPs coincides with the mass scale required
for new physics to appear to solve the gauge hierarchy problem, thus making them
alluring also from a theoretical point of view.

This thesis is structured as follows: in Chapter 1, we recall all the evidence
gathered until now for the existence of Dark Matter; we also give a quick overview
on the different particle candidates existing in the literature. In Chapter 2 we pro-
vide a detailed description of the WIMP paradigm, illustrating the close relation
between the decoupling from the primordial bath and the final relic density; more-
over, we describe the different experimental strategies employed for Dark Matter
searches and the main bounds given by the most recent experiments. In Chapter 3
we focus on a specific type of WIMP framework: we suppose that WIMPs interact
with the Standard Model particles via a neutral massive gauge boson, associated
with a new U(1) gauge symmetry; we discuss the main theoretical features of this
model, with emphasis on anomaly cancellation. In Chapter 4 there is the orig-
inal contribution of this work: we analyze the phenomenology of one particular
model, comparing it with the most recent experimental limits available. Finally, in
Chapter 5 we summarize our conclusions. The two ending appendices are a useful
syllabus for Standard Model notation and a quick re-derivation of the Boltzmann
equation.
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Chapter 1

Evidence for Dark Matter

To begin our discussion, first, let’s take a look at Fig. 1.1: it shows the cosmic
pie, the current energy content of the universe. Visible matter constitutes just 5
percent of the total energy budget. Although we claim to know well this part, there
are still many unanswered questions in this small sector. Anyway, the feature that
catches the eye when looking at the cosmic pie is that striking 95 percent dark
component: the vast majority of our universe is of completely unknown origin
and composition. That’s the reason why so much effort and paperwork have been
poured into the study of the dark side of the universe in the last 50 years.

In this work, we will focus on the Dark Matter (DM) slice of the pie [1, 2, 3, 4]:
DM represents an intensive and prolific research field, both for its astrophysical
(and cosmological) relevance and its theoretical appeal. In fact, many problems in
particle physics can find a solution if we introduce new particle species, and DM
could just be one of them, that we have not recognized yet.

However, before diving into the landscape of particle theories, we present a
summary of the evidence collected until now for the existence of DM. Its presence
has been inferred mainly through its gravitational interaction with visible matter:
stars and galaxies were not moving right, and it turns out that the missing piece
is very large.

One caveat here is necessary: although the zoology of particle models trying
to explain DM is very rich, its existence is still debated: various theories in the
literature try to explain the experimental anomalies observed since 1933 without
recurring to DM. Among them, the most successful one is the "MOdified Newtonian
Dynamics" (MOND, [5, 6]), introduced in 1983, whose basic idea is a modification
of Newton’s second law: F = ma turns into F = µ(a)ma, where µ(a) deviates from
unity only for very small accelerations. Anyway, it has been proven that MOND
is not enough at scales larger than galactic scales, and a new type of matter is
required in any case [7].

7



Chapter 1. Evidence for Dark Matter

Figure 1.1: On the left, the cosmic pie for our universe. On the right, the cosmic
pie for ordinary matter. It’s interesting to note that stars make up only a small
percentage of the whole baryonic matter.

1.1 Galaxy scale

The first robust clue of DM existence can be found at the galactic scale, in partic-
ular from galactic rotation curves, which represent the orbital speed of visible
stars as a function of their distance from the galactic center. In spiral galaxies,
most of the visible matter is gathered around the bulge and the disk. The stars
present in these structures are collisionless, so they move only according to the
gravity they feel: this feature makes them excellent DM tracers. In fact, studying
the galactic rotation curves of nearby galaxies, some anomalies were spotted since
the ’70s [8].

In fact, from a simple Newtonian analysis, a star at a distance r from the center
of the galaxy (assuming spherical symmetry) moves with a velocity:

v(r) =

√

GM(r)

r
(1.1)

Where M(r) is the total mass contained in the sphere of radius r. Most of the
visible matter of a galaxy is concentrated around the bulge: then, at large radii,
we can consider M(r) ≃ const, so we expect a behavior like v(r) ∝ r−1/2. Instead,
what we actually see is reported in Fig. 1.2: a v(r) ≃ const behavior at large radii,
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Chapter 1. Evidence for Dark Matter

that seems to be common to all spiral galaxies [9]. The conclusion we draw is that,
apart from the visible matter, galaxies have an invisible component that extends
beyond the limit of the disk, in the form of a dark halo. From the galactic rotation
curves, we can also infer its mass density distribution:

M(r) ∝ r → ρDM(r) ∼ 1

r2
(1.2)

The characteristics of the DM halos are still very unclear. For reference, an
order of magnitude estimate of the Milky Way DM halo mass and size scale can
be given by [11]:

{

Mhalo ∼ 1012M⊙
Rhalo ∼ 100 kpc

(1.3)

Both the mass and the radius of the DM halo are one order of magnitude larger
than their baryonic counterparts. However, a precise analysis of the DM halo
density profiles is not so easy, since in most galaxies it is difficult to disentangle
the dark and the visible contribution to the rotation curve. From this point of
view, a convenient analysis can be performed on Low Surface Brightness galaxies,
which are DM-dominated objects, and, for this reason, they are perfectly suited
to study the different properties of DM density profile [12].

Further help is provided by numerical simulations [13]: we simulate the struc-
ture formation from the original density fluctuation (which we talk about in Sec-
tion 1.3), including DM as a gas of collisionless particles, interacting only via the
gravitational force. The output suggests the existence of a universal DM density
profile for any mass scale [14], however there is still debate its shape; the following
distributions are the most used in the literature:

Navarro-Frank-White [15]: ρNFW (r) =
ρ0

(r/rs)(1 + r/rs)2
(1.4)

Einasto [16]: ρEin(r) = ρ0 exp

[

−2

γ

((

r

rs

)γ

− 1

)]

(1.5)

Burkert [17]: ρBur(r) =
ρ0

(1 + r/rs)(1 + (r/rs)2
(1.6)

The parameters ρ0, rs and γ depend on the galaxy under consideration (in Table 1.1
the parameters for the Milky Way are reported).

One of the major problem for these simulations is that they are not in total
agreement with observations. In particular, at the galactic scale, the problem is
related to the galactic center: while most of the simulations depict a (more or less)
cuspy density profile towards the innermost galactic regions, observations suggest
a flat inner core. This tension is mainly due to the low length resolution of the
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Chapter 1. Evidence for Dark Matter

Figure 1.2: Rotation curves of spiral galaxies for different luminosities. The dotted
line represents the contribution from the baryon disk, while the dashed line is the
contribution from the halo. From [10].
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Chapter 1. Evidence for Dark Matter

ρ0 (GeV cm−3) rs (kpc) γ

NFW 0.32 19.6
Einasto 0.11 16.07 0.22
Burkert 1.57 9.26

Table 1.1: Values of different distribution parameters for the Milky Way. The
references are [18] for NFW, [19] for Einasto and [20] for Burkert.

Figure 1.3: On the left: an amazing example of strong gravitational lensing from
the galaxy cluster MACSJ0138.0-2155 (Credit:ESA/Hubble & NASA, A. Newman,
M. Akhshik, K. Whitaker) On the right: schematic explanation of gravitational
lensing (Credit:NASA, ESA & L. Calçada)

simulations and to the difficulties associated with the galactic center, a region
that is not fully resolved even accounting only for baryons. Moreover, non-trivial
interactions between the baryonic disk and the DM halo may be crucial [21, 22].

Besides its distribution, one of the most important parameters for experiments
is the local value of the DM density: it is fundamental to know how much DM
we are surrounded by when we try to observe its scattering (direct detection,
Section 2.3.1) and, in general, it is useful to understand better the local shape of
the Milky Way’s halo. The local DM density, despite the large uncertainties it
suffers, is believed to be around [23]:

ρ
(local)
DM ≃ (0.3± 0.1)GeV cm−3 (1.7)
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Chapter 1. Evidence for Dark Matter

1.2 Cluster scale

We now turn our attention to galaxy clusters. These objects are huge structures
that contain a very large number of galaxies, bound together by gravity. Histori-
cally, they gave the first hint of DM existence: indeed, when Zwicky in 1933 [24]
was observing the Coma cluster, he noted that galaxies were moving too fast with
respect to the total mass inferred from luminous matter (the velocity dispersion
and the mass of the cluster are related by the virial theorem); the discrepancy
factor was about 400, so clearly something was missing from the picture.

Nowadays we have multiple ways to measure the total mass of a cluster in order
to find its dark matter component. For example, we can study the gases contained
in the intergalactic medium: these gases, which represent the largest fraction of
the visible mass of a cluster, can be accelerated by the strong gravitational fields,
emitting X-rays via thermal bremsstrahlung. By measuring this emission, it’s
possible to reconstruct the gas density profile, which in turn gives us information
about the total mass of the cluster. The equation for hydrostatic equilibrium for
the gas reads:

dp(r)

dr
= −GNM(r)ρ(r)

r2
, (1.8)

where p, ρ are respectively the pressure and density of the gas at radius r, GN

is Newton’s gravitational constant and M(r) is the mass of the cluster enclosed
within the radius r. Assuming the gas to be ideal, we can relate its pressure to its
temperature and density; we obtain:

M(r) = − rT

µmpGN

[

d log ρ

d log r
+
d log T

d log r

]

, (1.9)

where µ ≃ 0.6 is the average molecular weight (the gas is almost entirely made
of protons) and mp is the proton mass. Using this relation, we then find that the
temperature should obey:

T ≈ (1.3− 1.8) keV

(

M(r)

1014M⊙

)(

1Mpc

r

)

(1.10)

If we identify M(r) = Mbaryons, the prediction is in disagreement with the
observed temperature T ≈ 10 keV; in fact, galaxy clusters are dominated by their
DM component, which usually makes up 90% of their total mass.

However, the most powerful tool we have at our disposal to infer the presence
of non visible mass is provided by General Relativity: the gravitational lensing.
This effect refers to the distortion of light rays that pass near a massive object
(that we call gravitational lens); the distortion can either be a simple deformation
of the image of the source, in which case we talk about weak gravitational lensing
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Chapter 1. Evidence for Dark Matter

Figure 1.4: The Bullet Cluster. While the gas in the red region experienced a
drag force due to the collision, acquiring the characteristic bullet shape, the 2
dark matter halos have crossed each other apparently without interacting at all.
Credit:NASA/CXC/CfA/M. Markevitch et al.; NASA/STScI; Magellan/U.Ari-
zona/D. Clowe et al.; NASA/STScI; ESO WFI.

[25], or it can be so strong to produce multiple images spread on the so called
Einstein ring (Fig. 1.3); in this case, we talk about strong gravitational lensing

(see, for example, [26]).

Through the study of the distorted image of the source, it’s possible to infer the
total mass of the lens: in this way, we can weigh not only large and massive objects,
on which the strong gravitational effect takes place (mainly galaxy clusters), but
also smaller objects like galaxies.

One of the best uses of this technique, in synergy with the X-ray emission
analysis, is given by the study of the Bullet Cluster [27]: this cluster is made up
of two different clusters that have crossed each other. In Fig. 1.4 it’s possible to
appreciate the two different components: the bullet-shaped red region corresponds
to the hot interacting gas, that has been heated up by the collision; the blue regions
instead correspond to the gravitational wells inferred by gravitational lensing. It’s
clear that the largest matter component is separated from the baryonic gas, and
this provides one of the greatest evidence for DM existence. This feature can also
be taken as a disproof for theories like MOND, since the behavior of the cluster
can hardly be explained with unknown gravitational effects, without introducing
at least some DM component.
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Chapter 1. Evidence for Dark Matter

Figure 1.5: The CMB temperature fluctuations measured by Planck.

1.3 Cosmological scale

Last but not least, we discuss now the evidence we gathered at the cosmologi-
cal scale. This evidence is the result of the analysis of the Cosmic Microwave
Background (CMB, Fig. 1.5), that provides not only one of the most important
proofs for the need for non-baryonic matter, but it also gives the most precise
determination of the total amount of DM in the universe.

Before discussing in detail how the analysis of CMB anisotropies can give us
precious information about cosmological parameters, it’s instructive to think about
what happens if we remove DM from the cosmos equation: Would the universe
evolve in the same way as we know it? Luckily, the CMB gives us a very clear
picture of the universe as it was shortly after the Big Bang, so we can use it as a
starting point. The main difference we see when we look at the CMB with respect
to our current universe is its homogeneity: the CMB is the same everywhere, ex-
cept for the very small perturbations, on the scale of 10−5. Our universe, instead,
is highly inhomogeneous (for example, the density difference between our galaxy
and the surrounding intergalactic space is on the order of 105); then, the imme-
diate conclusion we draw is that the initial tiny perturbations grew up under the
influence of gravity.

We can try to give an estimate of this behavior: in the early universe we can
consider ρ = ρcrit, and the time evolution is governed by the Friedmann equation:

H2 − 8

3
πGρ = 0 (1.11)

14



Chapter 1. Evidence for Dark Matter

A slightly denser region ρ′ > ρ will evolve instead as:

H2 − 8

3
πGρ′ = − k

a2
(1.12)

Subtracting the two equations, we get:

− 8

3
πG(ρ′ − ρ) = − k

a2
(1.13)

Thus, the perturbation δ evolve like:

δ =
ρ′ − ρ

ρ
= − 3k

8πGρa2
(1.14)

At the time of CMB emission, baryons and photons were tightly bound to-
gether, so the photon perturbations we see on the CMB are the same for the
baryon fluid. At this stage, the universe is in a matter dominated regime for
which we know that ρ ∝ a−3: therefore, the evolution for the perturbations is
δ ∝ a. If we fast forward to the present, we find:

δtoday ≃ δCMB
a0

aCMB

≃ 10−5 × 103 = 10−2 (1.15)

The result is off of 7 orders of magnitude! This is a crucial evidence for the need of
non-baryonic matter: before recombination, in fact, baryon perturbations cannot
grow because of the interaction with photons. DM, instead, is only gravity-driven,
so it can pile up in order to form gravitational wells. After CMB, baryons fall
inside these already existing potential wells, allowing much faster growth of the
density perturbation.

But the CMB is much more than a simple proof of the existence of DM: it holds
a lot of information for the study of many fundamental cosmological parameters,
and for this reason, it is one of the most important constraints for any cosmological
model. This information is stored inside the CMB anisotropies: we just need to
learn how to read them.

The temperature anisotropies are usually expanded in spherical harmonics:

δT (θ, φ) =
+∞
∑

l=2

l
∑

m=−l

almYlm(θ, φ) (1.16)

Larger values of l correspond to smaller angular scales, so the largest value of l in
the sum is set by the resolution of the experiment (lmax ≃ π/θres). The first two
multipole terms are not present in the sum: the monopole l = 0 simply set the
scale of the CMB temperature, while the dipole contribution l = 1 is due to the
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Chapter 1. Evidence for Dark Matter

Figure 1.6: The CMB power spectrum. The red dots correspond to Planck data,
with their own error bars. At lower multipoles, there are less independent mea-
surements to average, so the uncertainty increases. The green curve is the best fit
for the Standard Cosmological Model.

Earth motion with respect to the CMB rest frame. If the fluctuations are assumed
to be Gaussian, a very good approximation for the CMB, then all the information
is encoded in the power spectrum:

Cl = 〈|alm|2〉 =
1

2l + 1

l
∑

m=−l

|alm|2 (1.17)

Here, we can give a qualitative explanation on how the power spectrum in
Fig. 1.6 is formed, and how we can extract information from it.

At the end of the inflationary period, the whole universe was highly homoge-
neous, except for the tiny fluctuations in density and temperature produced by the
inflation itself; these fluctuations are the original seeds for the large structures we
see nowadays (galaxies, clusters, superclusters). We can study how they evolve and
what effect they had on the different particle species that populated the universe
at that time.

We focus on the particle species that will be relevant for the CMB formation:
protons and electrons, photons and DM. DM is the easiest one: as already said,
it interacts only through gravity, so it will simply flow towards the higher density
perturbations. Protons, electrons and photons have to be treated together, since
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Chapter 1. Evidence for Dark Matter

they form a very tightly bound plasma, because of Coulomb and Thompson pro-
cesses. At first, protons and electrons follow the same behavior of DM, gathering
around the same denser spots; in these overdense regions, however, the photon
gas gets heated up, causing the radiation pressure to rise. Ordinary matter gets
pushed apart towards the underdense regions, where gravity takes the upper hand
again, and the same process repeats. The net result is an oscillatory motion, whose
speed is set by the speed of sound of the plasma (for a photon gas, cs = c/

√
3).

This oscillatory motion goes on until the photons are set free, namely when CMB
occurs: the final result of this process is caught up by the power spectrum.

The peaks correspond to the perturbation scales that were at the maximum
compression at the time of CMB. These peaks are influenced by the amount of both
baryonic matter and DM: the baryonic matter lowers the speed of the sound of
the plasma, influencing the position of the peaks. On the other hand, DM creates
deeper and deeper potential wells from which escaping is increasingly difficult:
this affects the relative strength between the different peaks. Putting all of this
together, the Planck Collaboration found [28]:

Ωm = 0.3111± 0.0056

Ωbh
2 = 0.02242± 0.00014

ΩDMh
2 = 0.11933± 0.00091

(1.18)

The results are clear: DM is 5 times more abundant than baryonic matter, and
the evidence at all scales agrees on this.

1.4 Known features

After all the collected evidence, we can now summarize all the properties that any
particle physics model of DM must satisfy. All the following properties are totally
model-independent.

Stability We know that DM existed at the time of CMB, and it exists still today,
holding galaxies and clusters together. This suggests that it is composed
of stable particles, or, at most, its lifetime is greater than the age of the
universe:

τDM ≫ tU ≃ 14Gyr (1.19)

This seems a pretty tough constraint to overcome for massive particle mod-
els, since more massive particles decay quicker. In this case, one usually
introduces a new discrete symmetry, so that only reactions with an even
number of DM particles are allowed (in this way, decays are forbidden [29]).
For example, the conservation of the R-parity in supersymmetry implies that
the lightest supersymmetric particle is stable.

17



Chapter 1. Evidence for Dark Matter

Charge neutrality DM is not observed to interact with light at any frequency
[30]: this means that it is very likely neutral, maybe with a small electric
or magnetic dipole moment [31]. For example, models of millicharged DM
exist in the literature [32], in which DM couples to the photon through an
admixture of the usual U(1)em gauge group with a new dark U ′(1) gauge
symmetry.

Mass The mass of the major component of DM has been constrained only within
80 orders of magnitude. The upper limit comes from the unsuccessful searches
for MACHOs (Massive Astrophysical Compact Halo Objects) in the dark
halo of our galaxy using gravitational microlensing. This type of gravita-
tional lensing involves much smaller objects with respect to its strong and
weak version: if a massive compact object passes near the line of sight of a
background source, the source flux gets magnified for a brief period. Among
the best candidates for MACHOs, there are primordial black holes [33]; how-
ever, these objects are increasingly less likely to be the only DM component
[34]. The limit reads:

mDM < 1048 GeV (1.20)

The lower limit, instead, is set by the smallest DM structures we can observe
(which are dwarf galaxies of size Rhalo ≃ 1 kpc): DM must be able to localize
in such small structures. For bosons, we impose this condition on the De
Broglie wavelength:

λDM =
h

p
=

2π

mDMv0
< Rhalo → m

(boson)
DM & 10−22 eV (1.21)

For fermions, instead, we must account for the Pauli exclusion principle; if
the ground state is totally filled, the energy density is:

ρDM = mDMnDM = mDM

∫

d3p

(2π)3
= g

m4
DMv

3
F

6π2
(1.22)

At this point, supposing a spherical distribution of mass (Mhalo =
4π
3
ρR3

halo),
we impose the Fermi velocity to be smaller than the escape velocity vesc:

vF =

(

9π

2g

Mhalo

mDMR3
halo

)1/3

<

(

2GMhalo

Rhalo

)1/2

= vesc (1.23)

We find what is known as the Tremaine-Gunn bound:

m
(fermion)
DM & (G3MhaloR

3
halo)

−1/8 ≃ 0.7 keV (1.24)
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Chapter 1. Evidence for Dark Matter

Self-interactions The fact that DM forms spherical halos around the galaxy,
without collapsing into a disk as baryons do, tells us that DM must be
dissipationless (although scenarios that provide the existence of a DM disk
exist in the literature [35]). Moreover, DM is also assumed to be collisionless,
and the best upper limits for its self-interactions come from the Bullet Cluster
[27]. Anyway, the limit is actually quite mild:

σself
m

≤ 1 cm2 g−1 ≃ 10−24 cm2 TeV−1 (1.25)

However, simulations performed with collisionless DM predict the formation
of several massive subhaloes in the Milky Way that are "too big to fail" to
produce stars and thus be visible [36]. Such a problem could be alleviated if
we suppose Self-Interacting DM: these models assume a velocity-dependent
scattering cross section, that is able to reduce the central densities of galaxies
thus leading to simulations compatible with observations [37].

Coldness DM is classified as hot or cold based on how fast it was when it de-
coupled from the primordial plasma: hot DM decoupled when it was still
relativistic, while cold DM decoupled in a non-relativistic regime. This is
a very important property, that determines the major features of the large
scale structures in the universe: in fact, when DM decouples, it experiences
collisionless damping, washing out perturbations on a characteristic cutoff
scale. This cutoff scale sets the smallest DM structures we can see nowadays.

From this analysis, we see that DM must be non-relativistic when the uni-
verse had a temperature T ≃ 3.6 keV [38]. Interestingly enough, this is the
reason why neutrinos, the only suitable candidate for DM within the SM, can
only constitute a small contribution for the observed abundance of DM: de-
coupling at a temperature of T ≃ 1MeV, with a mass lower than 1 eV, they
are considered hot DM; thus, they would lead to a much different evolution
of the universe, where big structures form first, while the smaller ones are
formed later through fragmentation (contrary to actual observations, that
suggest a bottom-up formation of structures, where smaller structures form
first and are later pulled together by gravity).

1.5 Overview on particle candidates

The great amount of evidence presented in the previous sections led many physi-
cists to start thinking about what DM could possibly be made of. However, very
little clue is given about the microscopic properties of DM: the limits presented
in Section 1.4 are very loose, and they do not help to narrow down the landscape
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of possible particle models. This can be considered a consequence of the univer-
sality of gravity, which doesn’t carry any information about the microphysics of a
system. Nevertheless, particle physics can give us a helping hand.

Currently, many problems still arise in the Standard Model (SM) of particle
physics. To address these problems, many theoretical frameworks require the
introduction of new particles; and many times, these particles just happen to be
excellent DM candidates.

We use to divide DM candidates based on their production mechanism:

• The thermal relics are particles produced via interactions with the thermal
bath; this means that, in the early universe, they were in equilibrium with the
thermal bath, and then decoupled. The decoupling (or freeze-out) process
is very important, because it sets the relic density that we oserve today;

• The non-thermal relics include all the other models that never got the chance
to be in thermal equilibrium with the thermal bath. The production mech-
anism for these relics include freeze-in models [39] and decay products of
primordial fields during phase transitions.

In the following, we list some of the most studied DM candidates, with partic-
ular focus on their link with particle physics.

1.5.1 WIMPs

Weakly Interacting Massive Particles (WIMPs) have been regarded as the
best candidates for DM for many years now. From the particle physics point of
view, they arise as a solution for the gauge hierarchy problem: the mass of the
Higgs boson can be written as m2

h = m2
h,0+∆m2

h, where m2
h,0 is the tree-level mass

and

∆m2
h ∼

λ2

16π2

∫ Λ d4p

p2
∼ λ2

16π2
Λ2 (1.26)

is the quantum corrections resulting from loop-level diagrams; λ is an O(1) dimen-
sionless coupling and Λ is the energy scale at which the SM in no longer valid. In
the SM Λ ∼ MPl (≈ 1019 GeV), and this causes ∆m2

h to be 36 orders of magni-
tude bigger than the mass of the Higgs boson mh (≃ 125GeV), thus requiring a
fine tuning between m2

h,0 and ∆m2
h which seems highly unnatural. This problem

may be solved introducing new physics at the TeV scale, namely WIMPs. We will
discuss deeply about this candidate in Chapter 2.

1.5.2 Axions

In the contest of QCD, the strong-CP problem is connected to the unnatural
cancellation of CP-violating terms in the QCD Lagrangian. The QCD Lagrangian

20



Chapter 1. Evidence for Dark Matter

can be written as:

LQCD = −1

4
GA,µνGA

µν + ψi /Dψ + θ
g2s

32π2
GA,µνG̃A

µν (1.27)

The last term, which involve the dual of the gluon field strength G̃µν =
1
2
ǫµνρσGρσ, is a non-perturbative term (it can be written as a divergence of a

current) which is connected to the chiral anomaly of QCD, and it is the source of
CP violation in the color sector of the SM. Such term would produce observables
like an electric dipole moment of the neutron, that however have still not been
observed (the current limit requires |θ| ≤ 10−10 [40]). The vanishing of the pa-
rameter θ is a fine-tuning problem that probably hides some new physics behind
it.

The Peccei-Quinn solution of this problem promotes θ to a dynamical field
whose vacuum energy naturally leads to θ = 0. This is accomplished by the
introduction of a U(1)PQ global symmetry spontaneously broken at some large
energy scale fa;moreover, this new symmetry suffers from a chiral anomaly which
generates an effective term in the Lagrangian:

Lφ =
1

2
∂µa∂µa+

g2s
32π2

a

fa
GA,µνG̃A

µν (1.28)

a is a new scalar field, which we call the axion. The vacuum energy of the
axion is at minimum when a = −faθ: in this way, the CP-violating terms vanish
and the strong-CP problem is solved.

As a consequence of the chiral anomaly, the axion acquires a mass of the order
ma ∼ Λ2

QCD/f , where ΛQCD ≈ 200MeV: the Supernova 1987a already pushes
the mass limit below 10meV [41], making the axion an extremely light particle.
Despite this, the axion can still be regarded as a good DM candidate, but only
if its production mechanism is non-thermal: a thermal production, in fact, would
mean that axions are hot relics (they are relativistic at decoupling), which cannot
account for the majority of the DM abundance we see in the universe.

A non-thermal production mechanism, instead, is able to produce a relic den-
sity compatible with observation; the details of this process are somewhat involved,
but a nice review can be found in [42].

1.5.3 Sterile neutrinos

The neutrino flavor oscillation is an observed phenomenon that is possible only
if neutrinos have a mass. This is a problem in the SM, where neutrinos appear
only as left-handed fields, and are thus not allowed to possess a Dirac mass term
(Appendix A). One elegant solution to this problem is given by the so-called seesaw
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mechanism: we introduce in the Lagrangian a certain number of right-handed
neutrinos NR with a Majorana mass term:

Lν = −
∑

i,j

[

y
(ν)
ij L

i

Lϕ̃N
j
R +

1

2
MijN

c,i

R N
j
R + h.c.

]

(1.29)

The first term is the Yukawa interaction between the two neutrino chiralities, while
the second term is the Majorana mass term for right-handed neutrinos (which
involves the charge conjugated field of NR). After the spontaneous symmetry
breaking of the electroweak symmetry, the Yukawa interaction brings the usual
Dirac mass term for neutrinos (m

(ν)
ij = y

(ν)
ij v/

√
2), that, together with the Majorana

one, forms the following mass matrix:

mν =

(

0 m(ν)

m(ν) M

)

(1.30)

If we suppose M ≫ v, then the eigenstates with a dominant contribution
of left-handed neutrinos (which we call active neutrinos) will be almost massless
(since their mass is inversely proportional to M). Eigenstates with a dominant
contribution of right-handed neutrinos (which we call sterile neutrinos) will,
instead, have mass almost equal to M . In this way, the seesaw mechanism is able
to explain why the left-handed neutrino mass is so small and why we have not yet
observed the right-handed neutrinos.

Sterile neutrinos could be produced by the oscillations of active neutrinos at
high temperature in the thermal plasma [43]: the predictions can then be compared
to astrophysical observations, in order to find constraints on the mass and mixing
angle. The results for the simplest model of three sterile neutrinos require the
mass of the lighter one to be mν < 3.5 keV [44] to account for all the DM density,
though this limit is in conflict with observations from cosmological structures [45].
The relic abundance, however, could be enhanced by a cosmological lepton number
asymmetry [46], so that it matches the observed DM density even for small neutrino
masses.

1.5.4 Supersymmetric candidates

The theory of supersymmetry was born to put on equal footing the two funda-
mentally different types of particles we know: bosons and fermions. In the SM,
bosons play the role of force carriers, while fermions are the constituents of matter;
supersymmetry provides a partner of the opposite class (a fermion corresponds to
a boson and vice versa) to each particle. Besides its symmetric appeal, this theory
is studied for several reasons, like the ability to solve the gauge hierarchy problem
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(which we mentioned before) and its natural connection to a Grand Unified The-
ory (GUT). Unfortunately, the main weakness of supersymmetry is that there is
still no experimental evidence for it. For a full discussion on the theory, we refer
to [47, 48].

It seems clear that, even in the contest of the Minimal Supersymmetric Stan-
dard Model (MSSM), the simplest supersymmetric theory which comprehends all
the particles we already know, a lot of new particles need to be added [1, 3]: this is
a prolific field to search for DM candidates, but we need to satisfy the constraints
listed in Section 1.4, in particular the stability requirement. We can do that by
introducing a new Z2 discrete symmetry (the R-parity) which associates a posi-
tive charge to SM particles and negative charge to their supersymmetric partners;
in this way, if R-parity is conserved, the lightest supersymmetric particle cannot
decay into light SM particles, and as a result it is stable.

Among the supersymmetric candidates for DM, it’s worth citing:

• Neutralino [3]: neutralinos are the four mass eigenstates resulting from the
mixing of four neutral Majorana fermions (2 Higgsino, zino, photino), the
superpartners of the neutral bosons of the SM (Higgs bosons, Z boson and
photon).

• Gravitino [49, 50]: spin 3/2 superpartner of the graviton.
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Chapter 2

The WIMP paradigm

The rest of this thesis is devoted to the study of WIMPs. Actually, "WIMP" is a
very broad definition, which includes various particles coming from very different
theoretical backgrounds. In this chapter we will review their common features,
why they have been considered the best DM candidates and what experimental
strategies are employed to find them.

2.1 Freeze-out

The evolution of the WIMP relic density can be studied by means of the Boltz-
mann equation. This is a fundamental tool for the physics of the early universe,
that describes the evolution of the phase space distribution f(~x, ~p, t) of a particle
species in an expanding universe (we present a detailed derivation of the Boltz-
mann equation in Appendix B). If we suppose that the DM particles χ interact
via annihilation reactions like:

χχ→ ψψ (2.1)

where ψ is a SM particle in equilibrium with the thermal bath, then the Boltzmann
equation will read:

ṅ+ 3Hn = 〈σv〉
(

n2
eq − n2

)

(2.2)

Here, n is the number density of DM, H = ȧ/a is the Hubble parameter, 〈σv〉 is
the annihilation cross section and neq is the equilibrium number density. At this
point, it’s useful to introduce a new variable, the comoving number density:

Yi =
ni
s

(2.3)

The advantage of this variable is that it scales out the effect of the expansion of the
universe. In fact, both the number density ni and the entropy density s scale like
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a−3 (the entropy S = sa3 is constant). This can be directly seen in the left-hand
side of the Boltzmann equation:

dY

dt
=

d

dt

(

n

s

)

=
d

dt

(

na3

S

)

=
1

S

d(na3)

dt
=

1

s

(

dn

dt
+ 3Hn

)

(2.4)

We can rewrite the Eq. (2.2) in terms of the variable x = m/T , in order to obtain
(remembering that Ta = cost):

dY

dx
= −〈σv〉s

Hx

(

Y 2 − Y 2
eq

)

(2.5)

We can manipulate this equation to get the form (ΓA = neq〈σv〉 is the annihilation
rate):

x

Yeq

dY

dx
= −ΓA

H

[(

Y

Yeq

)2

− 1

]

(2.6)

From this equation, we can note an interesting detail: when ΓA ≪ H, dY/dx ≃
0. This condition has a clear physical meaning: the number-changing processes
for DM are efficient at maintaining equilibrium as long as the reactions can keep
up with the expansion of the universe. Eventually, the universe will become so
large that DM particles will not find each other to annihilate, and, at this point,
the comoving number density will not change anymore. This moment in time is
called freeze-out, and it is defined by:

ΓA(TFO) = H(TFO) (2.7)

WIMPs are classified as cold relics; this means that they decouple when they
are non-relativistic:

mχ > TFO (2.8)

The freeze-out temperature is very important for the final relic density; the reason
for this can be seen in the equilibrium distribution, which, for a non-relativistic
particle, can be approximated by the Maxwell-Boltzmann one:

neq ≃ g

(

mT

2π

) 3

2

exp

(

−m− µ

T

)

(2.9)

When m > T , particles start to feel the Maxwell-Boltzmann suppression, as we
can see from Fig. 2.1; the suppression is effective until the decoupling, at which
point the comoving number density gets frozen. A later decoupling translates into
a greater suppression, so in a lower relic density today.

After freeze-out, the DM is no longer in chemical equilibrium, but it remains
in thermal equilibrium with the surrounding plasma because of elastic scattering
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Figure 2.1: The relic density evolution for cold dark matter. The different solid
lines correspond to different annihilation cross sections: for higher cross sections,
the freeze-out happens at later times, so the Maxwell-Boltzmann suppression is
more effective. The dashed lines illustrate the evolution for freeze-in models, which
are not treated in this thesis. The horizontal band gives the observed relic density
from Planck data. From [51]

(χ SM → χ SM). This process is still effective because there are a lot of targets: SM
particles are still relativistic, so their number density is not Maxwell-Boltzmann
suppressed. This scattering allows the DM fluid to share the same temperature
with the thermal bath, at least until the kinetic decoupling, which, as for the
chemical decoupling, is marked by the condition:

Γelastic(TKD) = H(TKD) (2.10)

For cold relics, the kinetic decoupling happens much later than the chemical de-
coupling: during this time, perturbations are damped by friction between the DM
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fluid and the photon bath, and this phenomenon affects the formation of the small-
est DM structures. This effect directly competes with the collisionless damping
happening after the kinetic decoupling, during the free-streaming, and they both
must be taken into account when constraining the DM mass.

2.2 The WIMP miracle

To study the evolution of the comoving number density, the use of the Boltzmann
equation is mandatory; however, the equation (2.5) can only be solved numerically.
Nevertheless, a semi-analytical solution can be found in the two limiting cases
x≪ xFO and x≫ xFO.

First of all, we need to find the value of xFO. From the condition (2.7):

exp(xFO)

x
1/2
FO

∼ gχ

g
1/2
∗

mχMPl〈σv〉 (2.11)

Given that xFO appears in the exponential, its dependence on mχ and 〈σv〉 is
actually quite weak. We can solve Eq. (2.11) by iteration, plugging in some typical
values for WIMPs:

mWIMP ≃ 100GeV

〈σv〉 ≃ 1 pb
(2.12)

finding xFO ≃ 25. This value is consistent with the assumption that we are dealing
with cold dark matter (xFO ≫ 1).

We can explicit the dependence on x of the Hubble parameter and the entropy
density (we are neglecting the temperature dependence of g∗ and g∗s):

{

H(x) = H(x = 1)x−2

s(x) = s(x = 1)x−3
(2.13)

In the non-relativistic limit, the cross section can be expanded as:

〈σv〉 = σ0x
−n (2.14)

n = 0 corresponds to the s-wave process, n = 1 to the p-wave process and so on.
Thus, we can rewrite the Boltzmann equation as (′ = d

dx
):

Y ′ = − λ

x2+n
(

Y 2 − Y 2
eq

)

, λ =
s(x = 1)σ0
H(x = 1)

(2.15)

And, defining the variable ∆ = Y − Yeq:

∆′ = −Y ′
eq −

λ

x2+n
(∆2 + 2∆Yeq) (2.16)
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When x ≪ xFO, the number density is well approximated by the equilibrium
density; we can impose d∆/dx = 0 to find:

∆ ≃ −x
2+n

λ

Y ′
eq

∆+ 2Yeq
(2.17)

For x≫ xFO, instead, the equilibrium density is heavily suppressed; this means
that we can neglect Y and Y ′, so that ∆ ≃ Y , to obtain:

∆′ ≃ − λ

x2+n
∆2 ⇒ Y (x) ≃ ∆(x) =

(∫ x

xFO

dx
λ

x2+n

)−1

(2.18)

From the above equation, we can get the current value of the comoving number
density taking the limit x→ ∞:

Y (t0) ∝
zn+1
FO

λ
(2.19)

Plugging in the parameters in (2.12) we can finally find today’s WIMP relic
density:

Ωχ =
mχs(t0)Y (t0)

ρcrit
→ Ωχh

2 ≃ 0.12

(

106.75

g∗(TFO)

)1/2(
0.7 pb

〈σv〉

)

(2.20)

In Eq. (2.20) we can appreciate the most interesting feature of WIMPs: sup-
posing a mass around the GeV-TeV scale, with the typical cross section expected
for a weak-scale interaction, we get a relic density very similar to the DM abun-
dance we observe in the universe. This remarkable conclusion is referred to as
the "WIMP miracle", and it is the reason why WIMPs are so appealing as DM
candidates.

Another feature we can note from Eq. (2.20) is that the relic density is inversely
proportional to the cross section: this means that the current upper bound on DM
density translates into a lower bound for the annihilation cross section. If DM is
made up of WIMP, then they must have some small, yet non-vanishing interactions
with SM particles, interactions that we might be able to detect.

2.3 Experiments

WIMPs have been the focus of most of the experimental effort invested for the
search of DM [52]. The experimental strategies are exemplified in Fig. 2.2:
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Figure 2.2: Schematic representation of the different types of DM searches.

Direct detection We look for elastic scattering between the WIMPs and SM
particles. Because DM interacts so weakly with SM particles, one of the
main challenges for this type of experiment is to kill all the background that
may spoil the measurements; for this reason, these experiments are usually
performed in underground facilities (where they are shielded from cosmic
rays).

Indirect detection DM annihilations are fundamental for thermal relics to get
in equilibrium with the primordial plasma in the early universe; nowadays,
these reactions may leave a distinct signature in the sky, in terms of different
stable SM particles (like photons or neutrinos). This signature is actively
searched for in indirect detection experiments.

Collider searches DM can also be produced via energetic collisions of SM par-
ticles, which happen at particle colliders.

2.3.1 Direct detection

Direct detection experiments are the simplest strategy we can think of when we
search for DM signals: we simply wait that some DM particle interacts with ordi-
nary matter and hope to record the event. Unfortunately, this is much easier said
than done. From the dark halo model of our galaxy, we expect to be surrounded
by DM particles, whose velocity distribution is given in Eq. (2.25): a Gaussian
distribution in the galactic reference frame. The Earth, however, together with
the solar system, is not at rest in this reference frame: this means that, from our
point of view, our planet is constantly hit by a wind of DM particles; for WIMPs
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of mass around 100GeV and relative velocity of 200 km s−1 we expect a flux:

ΦWIMP ≃ 9× 104 cm−2 s−1 (2.21)

This flux can be compared, for example, with the expected flux of solar neutrinos,
which have the same behavior from an experimental point of view: both WIMPs
and neutrinos have an extremely low cross section, so what we do is build large
tanks of specific material chosen to maximize the interaction probability, and we
try to detect the recoil energy ER of the scattered particle. The solar neutrinos
flux, however, is many orders of magnitude larger than the expected WIMP flux:
if neutrinos were already very hard to observe, WIMPs will be even harder.

One of the main problems when dealing with these weakly interacting particles
is given by the background. The signal expected from an interaction between a
WIMP and the detector can be originated also by many other sources, primarily
cosmic rays, and at a much higher rate: in this way, a possible signal coming from
a WIMP would be impossible to distinguish over the noise. This is the reason why
direct detection experiments are usually placed in underground facilities (like the
INFN laboratories under the Gran Sasso mountain): in this way, even the most
penetrating particles are stopped by the thick layer of rock. Additional lead shield-
ing around the detector provides protection against environmental radioactivity:
in this way, the background is almost reduced to zero.

The quantitative analysis for the expected number of events requires input
from different research fields:

• Astrophysics: the flux of DM particles must be accurately computed from
the known local density distribution and local velocity distribution. Un-
fortunately, these phenomenological parameters are still affected by large
uncertainties (cfr. Eq. (1.7));

• Particle physics: the choice of a particular DM particle model heavily in-
fluences the expected outcome of an experiment. For example, a heavier
DM particle will generate more energetic scattering, making them easier to
be seen; on the other hand, the number density will get smaller, so fewer
interactions will occur;

• Nuclear physics: the material chosen for the detector plays a very impor-
tant role. Its spin, in particular, is important to test spin-dependent cross
sections, and other properties like the mass and the density (and, of course,
the cost) must also be taken into account.

For an elastic scattering between a WIMP with mass mχ and velocity v and a
nucleus with mass mN the maximum recoil energy is (µ2

χN = mχmN

mχ+mN
is the reduced
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mass):

Emax
R =

2µ2
χNv

2

mN
≃ 50 keV

(

mχ

100GeV

)2(
100GeV

mN

)

(2.22)

We can see that the typical scattering energies (order of keV) are much lower than
the typical nuclear binding energies (order of MeV), so we can model the scattering
by treating the nucleus as a whole.

The differential reaction rate is then:

dΓ

dER
= NTnχ〈v

dσχN
dER

〉 (2.23)

where NT is the number of targets in the detector, nχ = ρχ/mχ is the WIMP
number density and σχN is the WIMP-nucleon cross section. We can rewrite this
reaction rate as:

dΓ

dER
= 2π

NTnχmN

µχN

∫ vmax

vmin

dv
f(v, t)

v

dσχN
dΩ∗

(2.24)

The integral is performed over the relative velocity v. The velocity distribution
f(v, t) is assumed to be a truncated Gaussian distribution in the galactic reference
frame [53]:

fG(v) =

{

1
Nesc

(

1
2πσ2

v

)

exp
(

− |v|2

2σ2
v

)

|v| < vesc

0 |v| > vesc
(2.25)

where σv is the velocity dispersion, v0 =
√
2σv ≈ 220 km s−1 is the value of the

asymptotically flat rotation curve, vesc ≈ 544 km s−1 is the galactic escape velocity
and Nesc is a renormalization factor. To get the velocity distribution with respect
to the Earth, we have to account for the motion of the Earth itself v⊕(t) and the
motion of the Sun v⊙ ≃ 232 km s−1 around the galaxy:

f(v, t) = fG(v + v⊙ + v⊕(t)) (2.26)

In Eq. (2.24) vmax is set by the galactic escape velocity; vmin is related to
the sensitivity of our experiment: namely, every experiment has a lower energy
threshold Eth below which no signal can be detected. Thus, vmin represents the
minimum velocity needed to produce a scattering that can be observed.

vmin =

√

mNEth
2µ2

χN

=







√

mNEth

2m2
χ

mχ ≪ mN
√

Eth

2mN
mχ ≫ mN

(2.27)

For lower masses, the required minimum velocity is very large (eventually over-
coming the escape velocity), so direct searches are not well suited for light DM
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particles. For heavier masses, instead, the minimum velocity is set by experimen-
tal parameters, but the number density is of course decreased, so we expect less
statistics.

The only quantity left to discuss, which is also the most important one, is the
cross section σχN : how does a WIMP interact with our detector? First of all, we
can make the following important distinction:

Spin-independent scattering The scattering amplitudes between the WIMP
and the nucleons in the target nucleus interfere constructively, resulting in
the magnification of the WIMP-nucleus cross section and the subsequent
increase of the reaction rate. This means that spin-independent scattering
can be tested at best by heavier nuclei targets.

Spin-dependent scattering This type of scattering results from axial-vector
coupling, leading to a dependence of the cross section on the spin of the
target nucleus.

For example, we can look at the explicit form of the spin-independent scattering
cross section:

σ
(SI)
χN =

[Zfp + (A− Z)fn]
2

16π(mχ +mN )2
F (ER)

2 = σ
(SI)
χN

∣

∣

∣

∣

ER=0

F (ER)
2 (2.28)

Here, Z and A are the atomic and mass number of the target nucleus, fp and
fn are the scattering amplitudes with a proton and a neutron and F (ER) is the
nuclear form factor (F (0) = 1).

The current limits on the WIMP-nucleon cross section are reported in Fig. 2.3
and 2.4. A review of the different techniques for direct detection experiments
can be found in [54]. No signal has been found yet, but the sensitivity of the
experiments is improving generation after generation. There is, however, a natural
endpoint to this program: the neutrino floor (yellow region in Fig. 2.3). This is
a limit below which our experiment is able to see the scattering produced by
neutrinos, which represent an unkillable background. Some future experiments
(like DARWIN [55]) are already planning to reach the neutrino floor.

The last thing worth mentioning about direct searches regards the annual mod-
ulation of the rate due to the Earth’s motion. In Eq. (2.24) the velocity distribution
is a time-dependent function: the time dependence is precisely due to the varia-
tion of the velocity of the WIMP wind as the Earth rotates around the Sun. This
means that the WIMP flux is higher at the beginning of the summer, when the
Earth is moving in the opposite direction with respect to the wind, compared to
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Figure 2.3: Summary for spin-independent WIMP-nucleon scattering cross section.
The solid lines are the limits coming from different experiments, shaded closed
contours indicate claimed DM signals, while the dotted lines are projections for
future experiments. Shaded regions point out the interesting parameter space for
different WIMP models. The yellow region is the parameter space dominated by
the neutrino background. From [56]

the winter, and this should lead to an increased number of recorded events in June.
This excess of observed events has actually been claimed by the DAMA collabo-
ration for several years now [58], however the observations pinpoint a parameter
space that is excluded by other experiments. This is the reason why a similar
experiment is currently being built in Australia, where the seasonal background is
reversed with respect to the northern hemisphere and the eventual observation of
the same annual modulation signal would leave no doubt about its astrophysical
origin.
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Figure 2.4: Spin-dependent WIMP-neutron (left) and WIMP-proton (right) cross
section limits. From [57].

2.3.2 Indirect detection

Annihilations were fundamental to keep DM particles in thermal equilibrium with
the primordial plasma; despite being immensely suppressed due to the expansion
of the universe, these annihilations may still be going on in some regions of the
universe, producing some characteristic signal: the detection of this signal is the
aim of indirect detection experiments.

The annihilation rate ΓA is proportional to the square of the DM density,
ΓA ∝ ρ2DM : therefore, we have to focus observations in regions where DM is denser
(these regions are called amplifiers). In our neighborhood, the Sun and the Earth
may be regarded as amplifiers, since WIMPs could lose energy through scattering
with SM particles inside them and be trapped in their gravitational well. On the
galactic scale, instead, we should look at the galactic nucleus, where simulations
predict a peak in the DM distribution, or dwarf galaxies, which are DM-dominated
structures. The relevance of an astrophysical amplifier can be quantified in the
J-factor:

J =
1

8π

∫

dΩ

∫

line of sight

dlρ2(r(l, ψ)) (2.29)

Of course, the J-factor suffers large uncertainties because we don’t know the exact
DM distribution. Besides DM density, when we study a particular amplifier we
also have to take into account the potential background: for example, the galactic
center is obviously the primary target for indirect searches, but we have to deal
with the huge background which is not well understood yet; on the other hand,
dwarf galaxies are much cleaner systems, although with a smaller J-factor.

But what should we observe? We don’t know the particle output of WIMP
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annihilation, but we can suppose two SM particles as final products; since WIMPs
are very massive particles, many annihilation channels are theoretically allowed:
quark-antiquark or lepton-antilepton pairs, as well as W and Z bosons or Higgs
bosons. However, only some of these particles are stable, thus being able to travel
up to the Earth to be detected: we can take a look, in particular, at what we
expect in terms of photons and neutrinos. These particles, in fact, have the great
advantage of being neutral: this means that they are not deflected by the galactic
and intergalactic magnetic fields, so they are able to deliver information about the
direction of the source.

Photons High energy photons can be detected with the use of the Imaging At-
mosphere Cherenkov Telescope (IACT). As a photon enters the upper atmosphere,
it generates an electromagnetic shower (a cascade of particles, mainly composed
of photons, electrons and positrons): the charged particles in the shower are ultra-
relativistic, so they emit Cherenkov radiation as they travel through the atmo-
sphere. IACTs detect this radiation on the ground, and they are able to build an
image of the shower, and therefore to reconstruct the properties of the primary
photon (like its energy and direction).

The expected photon flux from WIMP annihilations in the direction ψ is given
by:

dΦ

dEγ
(Eγ, ψ) =

∑

i

〈σiv〉
m2
χ

dNi

dEγ
J (2.30)

〈σiv〉 and dNi/Eγ are respectively the cross section and the number of photons
of energy Eγ produced in the ith annihilation channel.

The γ-ray spectrum produced by WIMP annihilations depends on the domi-
nant annihilation channel (Fig. 2.5). For example, the direct production of two
photons, χχ → γγ, would produce a monochromatic line at Eγ ≃ mχ (WIMPs
are non-relativistic particles, so the available energy during the reaction is mostly
given by their mass), that, if observed, would represent a smoking gun signature
of WIMPs. However, this interaction usually can happen only at 1-loop order
(otherwise WIMP would not be dark!), so it is heavily suppressed.

If, instead, WIMPs annihilate into quarks, leptons, or gauge bosons, photons
are produced from the shower of their decay products: in this case, the energy
spectrum does not have a distinctive shape, so we must search for a continuum
excess over the background. This, of course, can be done only if the background
is well understood, which is the task of many experiments making use of IACTs
(like HESS, MAGIC and VERITAS).

Neutrinos Neutrinos are exploited as astrophysical messengers only in very re-
cent times: their detection is already very challenging, so if we want to acquire
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Figure 2.5: Various γ-ray spectra expected from DM annihilations. The blue
line represents the direct annihilation into a γγ pair, the red line represents the
radiation due to virtual internal bremsstrahlung (where the photons are radiated
from charged virtual particles), while the green line is the box spectrum arising
from the intermediate neutral state (χχ → φφ) which then decay (φ → γγ). The
gray band represents the broad spectrum produced by quarks and gauge bosons
final state. Solid and dotted lines compare two different energy resolutions. From
[59].

enough statistics for a meaningful analysis of a neutrino source we need powerful
detectors. The most promising one for high-energy neutrino astronomy is certainly
IceCube, located at the South Pole, which aims to detect the Cherenkov radiation
produced by the product of a neutrino collision in the ice (the principle is similar
to the IACTs, but we need to go deep under the ice to be shielded from cosmic
rays).

However, the low rate of interaction can also be considered one of neutrinos
advantages: this means, in fact, that they are able to escape very dense regions
(like the nucleus of the Sun) without interacting with the surrounding medium,
thus delivering direct information about those regions. This is the reason why we
search for high-energy neutrinos coming from the Sun. In fact, when WIMPs pass
through the Sun, they may scatter and be slowed below the escape velocity; once
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captured, they will settle in the center of the Sun, thus increasing their number
density and therefore their annihilation rate. The only annihilation products able
to escape from the Sun are exactly neutrinos.

If C⊙ is the WIMP capture rate and A⊙ = 〈σv〉/V is the annihilation cross
section per volume, then for N WIMPs in the Sun:

Ṅ = C⊙ − A⊙N2 (2.31)

Thus, the annihilation rate is:

Γ =
1

2
A⊙N2 =

1

2
C⊙ tanh2

(√

C⊙A⊙t⊙
)

(2.32)

t⊙ is the age of the solar system. In many models, the Sun has already reached
equilibrium (

√

C⊙A⊙t⊙ ≫ 1), so Γ ≃ C⊙/2. This is not true, instead, for the
Earth, which is a far smaller target and provides a less deep gravitational well for
capture. The neutrino flux expected on Earth must also take into account how
neutrinos are produced from a single annihilation: despite this being a model-
dependent feature, in the case in which the dominant annihilation mode is given
by final states like bb̄, tt̄, τ+τ−, W+W−, the difference is not dramatic. In the
end, the neutrino flux is almost completely determined by the capture rate C⊙,
so on the WIMP-proton cross section: the limits found by IceCube [60] for the
spin-independent cross section are not competitive with the ones found from direct
detection experiments (spin-independent cross section increases with the mass of
the nucleus and the Sun is made up mostly by hydrogen), but they are important
for spin-dependent cross section (as we can see from the right panel of Fig. 2.4).

Of course, neutrinos and photons are just the most convenient candidates to
look for when we talk about indirect searches; but every other astrophysical particle
could give a hint for DM annihilations. For example, for many years now an excess
in the fraction of positrons over electrons in the 10GeV to 1TeV energy range
has been observed by the PAMELA satellite [61]. This excess can be emitted
by nearby astrophysical sources (like pulsars), but DM annihilations could also
provide a reasonable motivation; the observed flux, however, requires a WIMP
annihilation cross section far greater (a factor about 10 to 103) than the one
predicted by the thermal relic density. An elegant solution to this problem is
given by the so called Sommerfeld enhancement: supposing long-range interactions
between WIMPs, through the exchange of a light force carrier φ, the cross section
is enhanced by a factor:

S =
παX/vrel

1− e−παX/vrel
(2.33)
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Figure 2.6: Diagrams for the pair production of WIMPs, with initial state radiation
resulting in a jet (a) or monophoton final state (b).

2.3.3 Collider searches

If WIMPs have a non-vanishing annihilation cross section into SM particles, then
the opposite reaction (SMSM → χχ ) should also exist. This possibility is inves-
tigated in particle colliders: the Large Hadron Collider (LHC), in particular, can
create proton collisions with energies up to 13.6TeV in the center of mass, which,
in principle, is more than enough to produce WIMPs.

If produced, WIMPs will not interact with the detector, but we can infer their
presence from the missing energy and momentum we would observe from the final
product of the collision: in this sense, they behave exactly like neutrinos, which,
in turn, represent the main background for this type of search. The major sources
of neutrinos are given by the decays of the Z boson (Z → νν̄) and the W boson
(W± → l±ν), which are generally accounted for using Monte Carlo simulations.
The neutrino background problem is very relevant for hadron colliders, for which
the initial energy of the partonic collision cannot be fixed; as a result, an eventual
DM signal would be practically undistinguishable [62]. For lepton colliders, on the
other hand, the initial energy can be determined, and the beam can be polarized
to further reduce the expected background [63].

The purely direct production of WIMPs, which do not leave visible tracks
in the detector, would be unobservable. Fortunately, WIMP production can be
generally accompanied by one or more SM particles. Experimental searches can
be thus focused on events in which visible tracks from a SM particle recoil against
missing energy from the WIMPs. These types of event are generally called "mono-
X searches", where X is the accompanying SM particle produced in the final state
(Fig. 2.6). For example, mono-jet and mono-photon searches are performed at
LHC [64, 65].

The data analysis proceeds as follows: one takes into account only events in
which a large missing transverse momentum is observed; these data are further pu-
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rified by rejecting events with isolated energetic leptons (to reduce the background
from W and Z decays) and applying a series of quality criteria on jets [66]; the
number of events is compared with the prediction from SM interactions to search
for an excess. No excess has been found yet [64, 65].

The results from this type of search can be translated into exclusion regions on
WIMP pair production. The limits are obviously heavily model-dependent, but
it’s possible to get general conclusions using an effective field theory approach [67],
where the interaction between the SM particles and DM is modeled by:

Lint =
gqgχ
M2

Z′

[

χ̄Γχχ
][

q̄Γqq
]

(2.34)

Γi denotes the type of interaction (scalar, pseudoscalar, vector, axial vector, tensor)
while gq and gχ are the coupling constants with the massive intermediate vector
boson Z ′. This theoretical framework, however, is valid only when the mass MZ′ of
the mediator is much larger than the energy of the collision (which is a non-trivial
assumption, given the high energies reached by the LHC). The limits for vector
and axial-vector mediators found by ATLAS [64] and CMS [65] are reported in
Fig. 2.7.

Another possibility is that DM might appear as a decay product of some SM
particles. Most of the SM particle decays are well known, however some room for
new physics is still available in the branching ratios of the Z boson and the Higgs
boson [68]. The SM already predicts an invisible decay width (into neutrinos) for
the Z boson, but this complication is not present for the Higgs boson; moreover,
its decay rate to invisible particles is still weakly constrained (the branching ratio
is about 20 % [68]), therefore the Higgs can still have non-negligible couplings
to invisible new particles with mass lighter than about mh/2 ≃ 63GeV (that’s
why we talk about "Higgs-portal" models for DM). In the simple case in which
the invisible decay width of the Higgs is all given by a unique DM particle, the
constraints provided by LHC are stronger than the ones given by direct detection
experiments like XENON [69].

In any case, we must be aware of the fact that the potential discovery of a new
particle in colliders does not mean that the DM puzzle is solved: further studies
will be needed to constrain the properties of this new particle and to see if it is
indeed a good DM candidate. The relic density must be computed, and other
experimental strategies can be exploited to verify the cosmological abundance and
to test properties that cannot be seen at colliders. In this sense, direct, indirect
and collider searches are complementary to each other.
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(a)

(b)

Figure 2.7: The exclusion regions at 95% CL for vector and axial-vector interac-
tions in the mZ′ −mχ parameter plane from ATLAS [64] monojet searches (a) and
CMS [65] monophoton searches (b). The regions below the observed contours are
excluded.
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Z ′ physics

A particular set of models that are well suited for the WIMP paradigm revolves
around the extension of the SM gauge group with an additional abelian gauge
symmetry, which is broken at an energy scale higher than the electroweak one.
This new U(1)′ gauge symmetry is associated with a massive gauge boson Z ′

that, besides mediating a new type of interaction between SM particles, could also
provide a portal toward the dark sector. Additional U(1)′ gauge symmetries arise
from several motivated extensions of the SM [70, 71]: Grand Unified Theories
(GUT), for example, work with a much larger gauge symmetry group with respect
to the SM gauge group GSM ; the breaking of this symmetry group often results
in the survival of GSM × U(1)′n at the electroweak energy scale. We will limit
ourselves to the case n = 1.

The U(1)′ gauge symmetry can be of various nature; some of the most studied
models are:

• Sequential Standard Model: the new Z ′ gauge boson couples to the SM
fermions in the same way as the SM Z boson [72];

• U(1)B: the baryon number of the SM is promoted to a gauge symmetry
spontaneously broken at low scale [73];

• U(1)B−L: as for U(1)B, the difference between baryon and lepton number is
gauged [71, 74].

Together with the new gauge boson, a new scalar is generally introduced to
provide mass for the new mediator through the Higgs mechanism; in certain mod-
els, this new particle could turn out to be particularly relevant for phenomenology
[74].
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3.1 Theoretical framework

There is a great variety of models involving an additional U(1)′ gauge symmetry,
each one of them addressing different issues besides being able to include a viable
DM candidate (a useful review can be found in [71]); however, we can discuss some
common features among them.

3.1.1 Kinetic mixing

The most general kinetic term for an additional U(1)′ gauge symmetry is:

Lkin = −1

4
B̂µνB̂

µν − 1

4
Ẑ ′

µνẐ ′
µν − 1

2
sZ′B̂µνẐ ′

µν
(3.1)

where B̂µν and Ẑ ′
µν are the field strengths for the U(1)Y and U(1)′ gauge bosons B̂µ

and Ẑ ′
µ respectively. The last term in the Lagrangian shows the mixing between

B̂µ and Ẑ ′
µ, which is parametrized by sZ′ = sin θZ′ (since the U(1) gauge groups

are abelian, this term doesn’t spoil the gauge invariance). Even if θZ′ = 0, an
effective coupling between B̂µ and Ẑ ′

µ can be generated by loop effects of particles
that are simultaneously charged under both gauge groups [75]. We can diagonalize
the kinetic term via the following non-unitary transformation (cZ′ = cos θZ′ and
tZ′ = tan θZ′):

(

B̂µ

Ẑ ′
µ

)

=

(

1 −tZ′

0 1/cZ′

)(

Bµ

Z ′
µ

)

≡ G(θZ′)

(

Bµ

Z ′
µ

)

(3.2)

The advantage of the above transformation is to eliminate the dependence on
the mixing angle inside the Lagrangian and transfer its effects directly into the
coupling constants; if J ′

µ is the fermionic current coupled to the Z ′ boson, then its
coupling strength is modified by:

J ′
µ → −tZ′JYµ +

1

cZ′

J ′
µ (3.3)

where jYµ is the hypercharge current.
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3.1.2 Scalar sector

Besides the SM Higgs field, a new scalar S is usually introduced to break the
additional U(1)′ gauge symmetry:

Lscalar = (DµH)†(DµH) + (DµS)
†(DµS)− V (H,S) (3.4)

V (H,S) =λh

(

H†H − v2h
2

)2

+ λs

(

S†S − v2s
2

)2

+ λhs

(

H†H − v2h
2

)(

S†S − v2s
2

) (3.5)

Expanding the fields around their respective vevs:

H =
1√
2

(

0
vh + h

)

(3.6)

S =
vs + s√

2
(3.7)

We get the following mass matrix for the two physical Higgs bosons:

V (H,S) ⊃ 1

2

(

h s
)

(

2λhv
2
h λhsvhvs

λhsvhvs 2λsv
2
s

)(

h
s

)

≡ 1

2

(

h s
)

Mscalar

(

h
s

)

(3.8)

The mixing between H and S leads to a non-diagonal mass matrix Mscalar. This
matrix needs to be positive definite, so that the potential V (H,S) is bounded from
below; this corresponds to the requirement:

det(Mscalar) > 0 → λhs < 2
√

λhλs (3.9)

Together with the perturbativity condition, this bound constrains the scalar cou-
plings of the scalar potential (see [76] for details), and, consequentially, the mass of
the physical Higgs bosons, which can be found diagonalizing Mscalar with a unitary
rotation:

(

h
s

)

=

(

cα sα
−sα cα

)(

hmass
smass

)

, t2α = − λhsvhvs
λhv2h − λsv2s

(3.10)

The masses of the gauge bosons, instead, come from the kinetic term of the
Higgs fields. Usually, the new scalar S is assumed to be neutral under the SM
gauge group; if g′ is the coupling constant associated with the Z ′ boson and zs is
the U(1)′ charge of S, then its covariant derivative reads:

DµS = (∂µ − ig′zsZ
′
µ)S (3.11)
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A similar expression applies to the covariant derivative of the SM Higgs boson
H. In models with multiple Higgs fields, the resulting mass matrix for the neutral
gauge bosons will be of the form M = 1

2
M2

αβZα,µZ
µ
β , where:

M2
αβ = gαgβ

∑

i

zαizβiv
2
i (3.12)

where gα is the coupling constant associated with the U(1)α gauge symmetry
group, and zαi is the U(1)α charge of the i-esim Higgs field with vev vi.

The mass matrix for the neutral gauge bosons (W 3
µ , B̂µ, Ẑ ′

µ) reads:

M2
W 3,B̂,Ẑ′ =

v2h
4







g2 −gY g −2gg′zh
−gY g g2Y 2gY g

′zh
−2gg′zh 2gY g

′zh
4g′2

v2
h

(z2hv
2
h + z2sv

2
s)






(3.13)

At this point, we can apply two different rotations in order to obtain the
following change of basis:





W 3
µ

B̂µ

Ẑ ′
µ





θZ′−→





W 3
µ

Bµ

Z ′
µ





θW−→





Aµ
Zµ
Z ′
µ



 (3.14)

The first rotation is due to the kinetic mixing term, while the second one is the
usual mixing between the neutral SM gauge bosons parametrized by the Weinberg
angle θW . In this way, the first row and column of M2

W 3,B̂,Ẑ′
result vanishing, giving

the eigenvalue mγ = 0 for the photon Aµ. Therefore, we are left with the simpler
diagonalization of the 2x2 lower right block; considering zh = 0 for simplicity, we
can write it as:

M2
Z,Z′ =

v2h
4

(

g2Z tZ′gY gZ
tZ′gY gZ t2Z′g2Y + 4g′2

c2
Z′v

2

h

z2sv
2
s

)

(3.15)

where g2Z = g2 + g2Y is the coupling constant associated with the Z boson.
The mixing angle between the Z and Z ′ mass eigenstates can be expressed as:

tan 2β =
2cZ′sZ′v2hgY gZ

c2Z′g2Zv
2
h(1− s2W t

2
Z′)− 4g′2z2sv

2
s

(3.16)

Electro Weak Precision Tests [77] require this angle to be very small, β . 10−3.
Defining:

a =
4g′2

c2Z′v2h
z2sv

2
s , (3.17)
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the resulting mass eigenvalues are therefore:

m2
Z,Z′ =

v2h
8

[

g2Z + t2Z′g2Y + a±
√

(g2Z + t2Z′g2Y + a)2 − 4ag2Z

]

=















g2Zv
2
h

4

(

1− v2h
v2s

s2Z′g2Y
4g′2z2s

)

+O
(

v6h
v4s

)

g′2z2sv
2
s

c2Z′

+
v2h
4
t2Z′g2Y +O

(

v4h
v2s

)

(3.18)

The results are approximate for vs > vh, motivated by the expectation mZ′ >
mZ .

3.1.3 Dark sector

The UV-completion of additional U(1)′ gauge symmetries commonly requires at
least one new fermion χ which, if stable, could play the role of our DM candidate.
New exotic fermions are predicted in the context of anomaly cancellation: all
triangle anomalies involving the new Z ′ boson must vanish, as it already happens
for the other gauge bosons of the SM (see Appendix A). Among the many different
conditions coming from the mixing between the Z ′ boson and the SM ones, two of
them must always be satisfied:

∑

f

z3f = 0 (3.19)

∑

f

zf = 0 (3.20)

Here, the zf are the dark charges of the fermion f and we are working in a
basis in which all fermions are left-handed Weyl spinors (right-handed fermions fR
are traded with their conjugate f c, so their charges are flipped, zfc = −zfR). The
(3.19) comes from the cancellation of the triangle diagram with 3 external Z ′, while
the (3.20) comes from the mixed gauge-gravitational anomaly. An evident feature
we can appreciate from the above equations is that the addition of a vector-like
fermion pair (zf = −zfc) does not affect the anomaly conditions.

The solution to these two Diophantine equations gives the set of charges for
an arbitrary number of exotic fermions. The two equations are homogeneous and
symmetric under charge permutations, thus a solution is given, without loss of
generality, by a coprime set of charges that satisfy the following condition:

z1 ≥ |z2| ≥ · · · ≥ |zn| ≥ 1 (3.21)
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It is possible to demonstrate [78] that a general solution of the anomaly equa-
tions can be generated starting from two vector-like sets of fermions {~x} = {x1, . . . , xn}
and {~y} = {y1, . . . , yn} through the following operation:

{~x} ⊕ {~y} =

(

n
∑

i=1

xiy
2
i

)

{~x} −
(

n
∑

i=1

x2i yi

)

{~y} (3.22)

In particular, the solution for even n is generated by the sets (m = n/2− 1):

{~v+} = {l1, k1, . . . , km,−l1,−k1, . . . ,−km}
{~v−} = {0, 0, l1, . . . , lm,−l1, . . . ,−lm}

(3.23)

While for odd n we have (m = (n− 3)/2):

{~u+} = {0, k1, . . . , km+1,−k1, . . . ,−km+1}
{~u−} = {l1, . . . , lm, k1, 0,−l1 . . . ,−lm,−k1}

(3.24)

Thus, for any number n of chiral fermions, the set of dark charges can be parametrized
by n− 2 integers.

Usually, the new exotic particles are taken to be chiral under the U(1)′ gauge
symmetry, since vector current interactions are significantly constrained by direct
detection experiments; on the other hand, they need to be non-chiral under the SM
gauge group, in order to reduce the sensitivity to electroweak precision constraints.
With these assumptions, the solution to the anomaly equations requires at least
3 new exotics [79]. The stability of the lightest one is a mandatory requirement,
which is usually satisfied by some ad hoc discrete symmetry.

3.2 Models

We can describe in more detail some relevant models in the literature.

3.2.1 Sequential Dark Z ′

One of the simplest models in the context of additional U(1)′ gauge symmetries
is given by the so-called sequential dark Z ′ [72], in which the couplings of the Z ′

boson to SM fermions are the same of the SM Z boson. If we consider a Majorana
fermion χ as our DM candidate, coupled with the Z ′ boson, the relevant part of
the Lagrangian is then:

LS ⊃
[

−gχχγµγ5χ−
∑

f∈SM

fγµ(gfV + gfAγ
5)f

]

Z ′
µ (3.25)
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Qi
L uiR diR LiL eiR N j

R χ H S

U(1)B−L 1/3 1/3 1/3 −1 −1 −1 −1 0 2
Z2 + + + + + + − + +

Table 3.1: Particle content in the B-L model (i = 1, 2, 3 runs over the 3 SM
generations, while N j

R, j = 1, 2 and χ are the 3 right-handed neutrinos), with their
respective dark charges and parity assignment.

where gχ, gfV and gfA are the couplings associated respectively with the dark
fermion χ (which, being a Majorana fermion, can only have axial-vector couplings),
and the vector and axial-vector currents of each SM fermion f . The SM fermion
couplings are given by:

gfV =
e

2cW sW

(

T f3 − 2s2WQ
f
)

(3.26)

gfA =
e

2cW sW
T f3 (3.27)

In this way, the number of free parameters is reduced to only three, being the
DM and Z ′ boson masses mχ and mZ′ and the coupling gχ. This model does not
provide a UV-complete theory (the cross section of the annihilation χχ→ Z ′Z ′ is
in fact proportional to s, thus breaking perturbativity at relatively low energy),
but it is nevertheless a simple and predictable setup which can be a useful reference
when comparing constraints from different sources.

3.2.2 Majorana dark matter in B-L model

We give the general features of a DM scenario in which the SM gauge symmetry
is extended with a B −L gauge symmetry [80]; the theory is anomaly-free thanks
to the introduction of 3 right-handed Majorana neutrinos and a supplementary
Higgs field to break the U(1)B−L gauge symmetry. This theoretical setup has the
great advantage of automatically implementing the seesaw mechanism for neutrino
masses. Moreover, a Z2 discrete symmetry is introduced to ensure the stability of
one of the right-handed neutrinos, so that it is a viable DM candidate.

The Lagrangian in this model is very similar to the Lagrangian of the Sequential
Dark Z ′ in Eq. (3.25), with just one difference: the axial-vector coupling of the
SM fermions gfA is set to zero since in this case Z ′

µ is associated to baryon and
lepton numbers, which do not care about chirality.
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The right-handed neutrinos gain their mass through Yukawa couplings:

LB−L
Y uk ⊃

3
∑

i=1

2
∑

j=1

y
(ν)
ij L

i

LH̃N
j
R − 1

2

2
∑

k=1

yMk SN
kC

RN
k
R − 1

2
yMχ Sχ

Cχ+ h.c. (3.28)

where N i
R, i = 1, 2 are the 2 Z2-even neutrinos and χ is the Z2-odd neutrino (which

is also our DM candidate). y
(ν)
ij and yMi are respectively the Dirac and Majorana

Yukawa coupling constants; because of its Z2 oddity, χ cannot couple with the
other leptons (all other particles are Z2-even). After the spontaneous symmetry
breaking of U(1)B−L and the electroweak symmetry breaking, Majorana and Dirac
mass terms are generated for the neutrinos:

mD
ij =

y
(ν)
ij vh√
2

(3.29)

MM
k =

yMk vs√
2

(3.30)

Mχ =
yMχ vs√

2
(3.31)

Thus, the neutrino mass matrix (excluding χ) reads:

Mν =

(

0 mD

(mD)T MM

)

(3.32)

In this way, the seesaw mechanism comes into play for the 2 N i
R. Assuming

|mD
ij | ≪ MM

k , if we consider only one generation, we obtain one light and one
heavy mass eigenvalues:

ml ≃
(mD)2

MM

mh ≃MM

(3.33)

3.2.3 U(1)X for right-handed fermions

The introduction of a new U(1)X gauge symmetry to the SM gauge group is a
possible way to explain the discrepancies between predictions and measurements
of the muon anomalous magnetic moment [81, 82]. In this case, the Z ′ boson
carrying the new interaction has flavor non-universal couplings to the SM fermions:
in particular, we choose to charge only the second generation of right-handed
fermions to minimize the number of free parameters needed [83].

The anomaly conditions are very important to determine the possible set of
X charges: besides the (3.19) and (3.20), the anomaly equations involve also
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Qi
L LiL u2R d2R e2R χR H Φ S

U(1)X 0 0 −1 1 1 −1 0 −1 1

Table 3.2: Particle content and dark charges in the U(1)X model with charged
second generation fermions. The remaining right-handed fields are neutral are
uncharged. H and Φ have the same SM charges as the regular SM Higgs field,
while S is a SM gauge singlet.

the mixing between U(1)X and the SM gauge groups U(1)Y and SU(3); since
only right-handed fields are charged under U(1)X , the mixing with SU(2)L is
not relevant. These equations are solved per generation, delivering the following
solution:

XdR = 2XQL
−XUR

XLL
= −3XQL

(3.34)

XeR = −2XQL
−XuR XχR

= XuR − 4XQL
(3.35)

It’s immediate to check that the charges in Table 3.2 satisfy the above equations.

A fundamental consequence of the anomaly condition is that in order to build
a consistent flavor non-universal theory, we need at least two Higgs doublets: H,
which has Yukawa couplings with all fermions except for the ones charged under
U(1)X , and Φ, which is the one coupled with the second generation of right-handed
fermions. A scalar singlet S is always needed to break the U(1)X gauge symmetry.
Thus, the mass matrix (3.13) is slightly modified, but the rotation from flavor to
mass basis is carried out in the same way we described in Section 3.1.2 (see [83]
for detailed calculations).

The interaction between SM fermions and the mass eigenstate Z ′
µ can be writ-

ten as:

LX ⊃
[

gfU
∑

f

(fRγ
µfR + fLγ

µfL)

]

Z ′
µ

− cβg
′

[

∑

f=u,d,e

fRF
fγµfR

]

Z ′
µ + cβg

′χRγ
µχRZ

′
µ

(3.36)

In the above equation, we have separated the flavor universal and non-universal
contributions to the coupling between SM fermions and Z ′

µ. In fact, we have
defined:

gfU = sβgZ + cβtZ′gY Yf (3.37)
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where the angles β and θZ′ are defined in (3.16) and (3.1) and Yf is the hypercharge
of the fermion f . The second term, instead, is non-diagonal in the flavor space,
thanks to the matrix:

F
f = R

†
fX

f
Rf , X

f
ij = Xfδ2iδ2j (3.38)

The matrices Rf are the ones that rotate the SM fermions from flavor to mass basis
(in the SM, they appear mainly in the CKM matrix). The matrices Ff enclose the
amount of flavor non-universality of the model, thus being very important when
analyzing flavor violating processes.
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Phenomenology

In this chapter, we describe some particular models involving DM particle candi-
dates which interact via an additional Z ′ gauge boson.

We begin with a deeper analysis of the benchmark model presented in [79]. In
this model, the main features of the new exotic fermions are guided by anomaly
cancellation: we require, in fact, that all anomalies between the newly introduced
U(1)′ gauge group and the usual SM gauge group GSM = SU(3)c×SU(2)L×U(1)Y
vanish. These conditions lead to the following relation:

n
∑

i=1

(

zχi

)3
=

1

9

( n
∑

i=1

zχi

)3

(4.1)

This equation is valid for any number n of dark fermions (a general solution
can be found in [78]); we choose to analyze the simple case with 3 dark fermions
χi with equal charges zχi

= 1. The new U(1)′ gauge symmetry is mediated by the
gauge boson Vµ and it is spontaneously broken at high energy by the non-vanishing
vacuum expectation value of a dark Higgs field S. The exotic fermions are SM
gauge singlets, which acquire mass thanks to a Majorana mass term with the dark
Higgs field. Thus, the dark sector can be described by the following Lagrangian:

L = −g′
[ 3
∑

i=1

zχi
χiγ

µγ5χi +
∑

f∈SM

(

zfLfLγ
µfL + zfRfRγ

µfR
)

]

Vµ (4.2)

Being Majorana spinors, the χi can only have axial-vector couplings with Z ′.
The dark charges of the SM fermions are not totally free, since they also need
to satisfy the anomaly cancellation conditions and the gauge invariance of the
Yukawa sector; considering flavor universal charges, we can choose them to be:

{zQL
, zuR , zdR , zLL

, zeR} = {0,−1, 1, 0, 1} (4.3)
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Qi
L uiR diR LiL eiR χi H S

U(1)′ 0 −1 1 0 1 −1 −1 1

Table 4.1: Dark charges for the benchmark model of [79].

The dark charges of the Higgs bosons are instead:

zh = −1, zs = 1 (4.4)

The Higgs sector consists of the SM Higgs field H and of the dark Higgs S which
is also a SM gauge singlet. The Lagrangian is the same exposed in Eq. (3.4), from
which we report the most relevant part for the processes we are going to study:

LHiggs ⊃
(vh + h)2

2

(

gZ
2
Z(SM)
µ + g′Vµ

)2

(4.5)

The mass eigenstates for the neutral and the Higgs bosons are given by the fol-
lowing rotations:

(

h
s

)

→
(

cα sα
−sα cα

)(

h
s

)

(4.6)

(

Z
(SM)
µ

Vµ

)

→
(

cβ sβ
−sβ cβ

)(

Zµ
Z ′
µ

)

(4.7)

In this case, we are neglecting the kinetic mixing between the neutral gauge bosons
Vµ and Z

(SM)
µ (since it is loop suppressed); the mass mixing angles of the two

rotations are (we can notice the difference with Eq. (3.16) in which we considered
zh = 0):

tan 2α = − λhsvhvs
λhv2h − λsv2s

(4.8)

tan 2β =
4gZg

′zhv
2
h

4g′2(z2hv
2
h + z2sv

2
s)− g2Zv

2
h

(4.9)

Due to the strict experimental limits [77] on the neutral bosons mixing angle
(β . 10−3), in the following calculations we will take the limit β ≃ 0. The Higgs-
dark Higgs mixing angle α is constrained by the observed Higgs signal strength:
the mass-independent upper limit can be set to be α < 0.34 at 95% CL [84, 85].

Finally, the Yukawa sector for the χi reads:

LY uk = −1

2
yχi
SχCi χi

SSB
= −1

2
mχi

χCi χi −
yχi

2
√
2
sχCi χi (4.10)
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where the DM mass is:
mχi

=
yχi
vs√
2

(4.11)

Altogether, the Lagrangian gives rise to the following Feynman rules for the Z ′

and s bosons:

f

f

Z ′
µ =

1

2
ig′zfRγ

µPR

χi

χi

Z ′
µ = ig′zχi

γµγ5 (4.12)

Zµ

h

Z ′
µ = igZvhg

′cα

W+
µ

W−
µ

s = 2isα
m2
W

vh
(4.13)

f

f

s = isα
mf

vh

χi

χi

s = icα
mχi

vs
(4.14)

Zµ

Zµ

s = −2isα
m2
Z

vh

Z ′
µ

Zµ

s = 2isαmZg
′zh (4.15)

Z ′
µ

Zµ

s = 2isαmZg
′zh

Z ′
µ

Z ′
µ

s = 2i
(

cα(g
′zs)

2vs − sα(g
′zh)

2vh
)

(4.16)

Notice that all left-handed fields are neutral under U(1)′, thus the coupling
with the Z ′ boson only involves right-handed fermions.
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4.1 Decay rates

Before entering the calculation on the cross section, we need to calculate the decay
width of the two new mediators Z ′

µ and s.

The allowed decay channels for the Z ′
µ boson are into ff , χiχ and Zh. As an

example, we can explicitly calculate the Feynman amplitudes for the decay into a
fermion pair thanks to the Feynman rules obtained before.

M(Z ′ → ff) =
Z ′
µ(k)

f(p2)

f(p1)

=
1

2
ig′u(p1)

[

zfRγ
µPR

]

v(p2)ǫµ (4.17)

Averaging over the initial spin polarizations of the particle, we get the following
squared Feynman amplitude:

|M|2 = 2(g′zfR)
2N f

c

3

(

m2
Z′ −m2

f

)

(4.18)

where N f
c is the color multiplicity of the final fermions (which is equal to 3 for

quarks and 1 for leptons). Thus the decay rate is given by:

Γ(Z ′ → ff) =
1

16π

[

1−
4m2

f

m2
Z′

] 1

2 2(g′zfR)
2N f

c

3mZ′

(

m2
Z′ −m2

f

)

(4.19)

The decay rates for the remaining channels assume a very similar form. We show
the Z ′ branching ratios on the left panel in Fig. 4.1: we can see that the rate is
dominated by the decay into a SM fermion pair (in particular quarks, due to their
color multiplicity), even when the χχ channel is kinematically allowed.

The s boson has more decay channels due to its non-zero mixing with the h bo-
son (right panel ofFig. 4.1): however, decay rates into SM particles are suppressed
by the Higgs mixing angle α; as a result, the rate is dominated by the decay into
χχ and Z ′Z ′.

4.2 Cross section

We can define the cross section in the center of mass frame for the annihilation of
two particles in the following way:

σI =
1

16π2

|~k|√
s

∫

|M|2dΩ (4.20)
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Figure 4.1: Branching ratios for the Z ′ gauge boson (left) and the dark Higgs s
boson (right). For both calculations, we took into consideration 3 DM particles
with mass mχ = 300, 600 and 900GeV.

where I = 4g2
√

(p1 · p2)2 −m4 = 4g2|~p|√s is the covariant flux factor (g is the
number of degrees of freedom of the incoming particles with momenta p1 and p2)

and ~k is the outgoing 3-momentum; s is the Mandelstam variable (p1 + p2)
2.

It is useful to expand the expression (4.20) in the low-velocity limit, since we
need the annihilation cross section at freeze-out times, when DM particles were
already non-relativistic. σI is a function of s, which in turn can be expanded as:

s = m2
χi
(4 + v2) +O(v4) (4.21)

This means that the cross section will contain only even powers of the velocity
v; therefore, we can always expand the annihilation cross section in the following
way:

σI ≃ a+ bv2 (4.22)

a and b are respectively the s-wave and p-wave components of the annihilation
cross section.

4.2.1 Z ′ mediated processes

DM can communicate with the SM particles either through the Z ′ boson or the
s boson, but the freeze-out is mainly dominated by Z ′ mediated processes; in
this section, we discuss the most relevant annihilation channels involving this me-
diator, like the annihilation into SM fermions (which represents the dominant
contribution) and the annihilation into a Z and an h boson (which is, instead,
a sub-dominant process). Other processes are suppressed by the neutral bosons
mixing angle β.

The Feynman amplitude for the χiχi → Z ′ → ff process can be written in
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the following way:

M(χiχi → Z ′ → ff) =

q

Z ′

χi(p2)

χi(p1) f(k1)

f(k2)

=

= v(p2)(ig
′zχi

γµγ5)u(p1)

(

−ηµν +
qµqν
m2
Z′

)

i

q2 −m2
Z′ + iΓZ′mZ′

×

×u(k2)
1

2
ig′
[

zfRγ
µPR

]

v(k1)

(4.23)

The qµqν/m
2
Z′ term gives a contribution proportional to mχmf/m

2
Z′ : in the low

energy limit(q2 = s & 4m2
χ), we can neglect this contribution.

|M|2χχ→ff =
8(g′zχi

)2(g′zfR)
2N f

c

(s−m2
Z′)2 + Γ2

Z′m2
Z′

×

×
[

s2

4
+ 4

(

s

4
−m2

χi

)(

s

4
−m2

f

)

cos2 θ −m2
χi
s+ 2m2

χi
m2
f

]
(4.24)

θ is the angle between the 2 outgoing particles. The cross section can now be
easily calculated using Eq. (4.20); then, expanding in the low-velocity limit, we
obtain the following results for the a and b coefficients:







































a =
2

π
(g′zχi

)2(g′zfR)
2N f

c

√

1− φ2

(4ξ2 − 1)2 + Γ2
Z′/m2

Z′

m2
χi
m2
f

m4
Z′

b =
1

2π
(g′zχi

)2(g′zfR)
2N f

c

√

1− φ2

(4ξ2 − 1)2 + Γ2
Z′/m2

Z′

×

×
[

8m4
χi

3m4
Z′

+
m2
χi
m2
f

m4
Z′

(

−2

3
+

φ2

2(1− φ2)
− 8ξ2(4ξ2 − 1)

(4ξ2 − 1)2 + Γ2
Z′/m2

Z′

)]

(4.25)

where we have defined the quantities φ = mf/mχi
and ξ = mχi

/mZ′ .

The same procedure is applied to the annihilation into a Z and an h boson:

|M|2χχ→Zh =
4(g′zχi

)2(g′gZzhvh)
2

(s−m2
Z′)2 + Γ2

Z′m2
Z′

[

s

2
− 4m2

χi
+

+
2

m2
Z

(

s

4

(

m2
Z + |~k|2

)

−
(

s

4
−m2

χi

)

|~k|2 cos2 θ
)] (4.26)
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Here, |~k|2 is the modulus of the 3-momentum of the outgoing particles in the center
of mass frame. The final result in the low-velocity limit is:



























































a =
1

8π
(g′zχi

)2(g′gZvh)
2 1

m4
Z′

1

(4ξ2 − 1)2 + Γ2
Z′/m2

Z′

m̃3/2

8m2
Zm

2
χi

b =
1

8π
(g′zχi

)2(g′gZvh)
2 m̃1/2

m4
Z′m2

χi

[

1

(4ξ2 − 1)2 + Γ2
Z′/m2

Z′

×

×
(

m2
χi
+

m̃

48m2
Z

+
m4
χi

2m2
Z

+
m2
χi

8m2
Z

(m2
Z +m2

h)−
(m2

Z −m2
h)

2

16m2
Z

)

−

− m̃

8m2
Z

1

m4
Z′

2ξ2(4ξ2 − 1)
(

(4ξ2 − 1)2 + Γ2
Z′/m2

Z′

)2

]

(4.27)

where we have defined:

m̃ =
(

m2
Z +m2

h

)2 − 2m2
h(m

2
Z + 4m2

χ) +m4
h (4.28)

4.2.2 s mediated processes

DM annihilations into the SM sector can also be mediated by the dark Higgs boson
s. The s boson, however, does not directly couple with SM particles: interactions
with the SM particles can occur only due to the Higgs bosons mixing (Eq. (4.6)).
For this reason, the cross section for this type of processes is suppressed by the
Higgs-dark Higgs mixing angle α; in any case, these processes can become relevant
in resonant scenarios.

The Feynman amplitude for the annihilation into a pair of SM fermions is the
following:

M(χiχi → s→ ff) =

q

s

χi(p2)

χi(p1) f(k1)

f(k2)

=

= cα
mχi

vs
v(p2)u(p1)

−i
q2 −m2

s + iΓsms

sα
mf

vh
u(k2)v(k1) (4.29)

|M|2χχ→ff =
16N f

c c
2
αs

2
α

(s−m2
s)

2 + Γ2
sm

2
s

m2
χi
m2
f

v2sv
2
h

(

s

2
− 2m2

χi

)(

s

2
− 2m2

f

)

(4.30)
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In the low-velocity limit, we obtain:

σχχ→ffI =
2

π
N f
c c

2
αs

2
α

m2
χi
m2
f

v2sv
2
h

m4
χi
(1− φ2)3/2

(4m2
χi
−m2

s)
2 + Γsm2

s

v2 (4.31)

The other relevant annihilation channel mediated by the s boson is the pro-
duction of two W bosons, for which we have:

|M|2χχ→WW =
16c2αs

2
α

(s−m2
s)

2 + Γ2
sm

2
s

m2
χi
m4
W

v2sv
2
h

(

s

2
− 2m2

χi

)(

3− s

m2
W

+
s2

4m4
W

)

(4.32)

σχχ→WW I =
1

π
c2αs

2
α

m4
χi

v2sv
2
h

(1− φ2)3/2

(4m2
χi
−m2

s)
2 + Γsm2

s

(

3m4
W − 4m2

χi
m2
W + 4m4

χi

)

v2

(4.33)
Notice that s mediated annihilations are p-wave, thus they are further sup-

pressed with respect to the Z ′ mediated processes described in the previous section.
In any case, we can also notice that the cross sections 4.31 and 4.33 are enhanced in
correspondence with the resonance ms ≃ 2mχi

, therefore their contribution cannot
be neglected.

4.2.3 Searches at colliders

Signals for the existence of an additional neutral vector boson are actively searched
for at colliders (in particular at the LHC): even at the highest collision energies,
no deviation from the SM predictions has been found yet [86, 87]. In any case, the
collected data can be used to put bounds on our model.

The strongest bounds on the mass of the Z ′ boson come from the search for
dilepton resonances at the LHC [86]: the process h1h2 → Z ′ + X → l+l− + X
provides two very clean channels to look for (l = e, µ), for which the irreducible
background is dominated by the well-understood SM Drell-Yan process (Fig. 4.2).

The cross section for the qq → Z ′ → l+l− process reads [88]:

σ(qq → Z ′ → l+l−) =
g′4

(Q2 −m2
Z′)2 +m2

Z′Γ2
Z′

1

9π

Q2

16
(zqR)

2(zlR)
2 (4.34)

To obtain the cross section for the Drell-Yan process, we need to convolute the
hard quark scattering with the parton distribution functions (PDFs):

σ(h1h2 → Z ′ +X → l+l− +X) =

=
∑

q=u,d

∫ 1

0

dx1

∫ 1

0

dx2
[

fq/h1(x1)fq/h2(x2)+fq/h1(x1)fq/h2(x2)
]

σ(qq → Z ′ → l+l−)

(4.35)
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l+

l−

q

q

Z ′

h1

h2

X

X

Figure 4.2: The Drell-Yan process mediated by a Z ′ boson.

In narrow width approximation, we can write this cross section as:

σ(h1h2 → Z ′ +X → l+l− +X) =
π

6s

[

cuwu(s,m
2
Z′) + cdwd(s,m

2
Z′)
]

(4.36)

here, s = (p1 + p2)
2, where pi is the 4-momentum of hi, and the quantities cq and

wq are defined in the following way:

cq = g′2(zqR)
2 BR(Z ′ → l+l−), BR(Z ′ → l+l−) =

ΓZ′(Z ′ → l+l−)

ΓZ′

(4.37)

wq(s,m
2
Z′) =

∫ 1

0

dx1

∫ 1

0

dx2
[

fq/h1(x1)fq/h2(x2)+fq/h1(x1)fq/h2(x2)
]

δ

(

m2
Z′

s
−x1x2

)

(4.38)
In this way, we managed to separate the model-dependent part of the cross

section (encompassed in cq) from the PDFs in wq. Equation (4.36) can therefore be
used to search for resonances in the dilepton spectrum of pp collisions, thus putting
bounds on the free parameter of the theory if no excess of events is detected.

4.3 Relic density

From the low-velocity limit of the cross section, it is easy to get the following
formula for the thermally averaged cross section (see Appendix B for the details):

〈σv〉 = 1

4g2m2
χi

(

a+
3(16b− a)

8x

)

(4.39)

where g is the number of degrees of freedom of the DM particle and x = mχi
/T .

Inserting this expression in the Boltzmann equation, we can find a numerical so-
lution to be compared to the experimental limits (the plots in the following pages
are obtained employing Mathematica).

61



Chapter 4. Phenomenology

The free parameters that characterize our model are the following: the dark
coupling constant g′, the Higgs-dark Higgs mixing α and the masses of the new
particles of our model, namely mZ′ , ms and mχi

. Imposing that a given set of
parameters reproduces the observed relic abundance Ωχh

2 = 0.12, we can get a
better understanding of the relevance of the various constraints. The analysis of the
relic density of just one DM particle species can already give a lot of information:
in Fig. 4.3 we can see that the curve that reproduces the correct relic abundance
lies well within the region excluded by the ATLAS experiment (the limits were
extracted by [86]); even in correspondence of the s resonant region (ms = 2mχ),
the relic density is not able to evade the ATLAS limits. It’s interesting to note
that, on the left panel of Fig. 4.3, the variation of the Higgs-dark Higgs mixing
angle doesn’t really affect the final relic density: in fact, in this case the dominant
contribution comes from the Z ′ channel, in particular from the annihilation into
SM fermions, since the s mediated channels are suppressed by sα. This behavior
changes for heavy Z ′ masses mZ′ > 4TeV: at this point, the Z ′ mediated channels
are heavily disfavoured (since the cross section is proportional to 1/m4

Z′), thus the
s mediated ones become more relevant. A different behavior is observed on the
right panel: since, in this case, ms = 2mχ, the cross section of the s mediated
processes is greatly enhanced, thus becoming the dominant contribution to the
relic density.

The above analysis suggests that, in this model, a relic abundance compatible
with the actual experimental limits can only be achieved nearby the mediator
resonances (if we don’t consider the mZ′ > 6TeV region, for which we have no
experimental limits yet). This feature is even clearer if we look at the bottom
panel of Fig. 4.3. As a consequence, the existence of 3 different exotic fermions
represents a great tuning problem, since, for the same reason explained above,
all of their masses should be tuned to the mass of the Z ′ or the s boson. The 3
different χi, in fact, do not mix with each other, thus they are all stable and they
all contribute to the final relic density. At the top of Fig. 4.4, for example, we show
the parameter values for 3 DM particles with mass 2, 3 and 4TeV for two different
values of the s boson mass: in these cases, there is always at least one fermion
outside the resonant regions, which therefore gives the dominant contribution to
the relic density. As a result, large values of the dark coupling g′ (around the unity)
are required for any range of the Z ′ or the s boson masses. On the other hand,
we can look at the extremely degenerate case in which all the 3 exotic fermions
have the same mass mχ = 2ms (bottom panels of Fig. 4.4): in these cases, the
relic density is able to peak outside the ATLAS excluded region (for mZ′ ≃ ms).
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Figure 4.3: At the top, parameter values for which Ωχh
2 = 0.12 in the mZ′ − g′

plane.The green shaded region is excluded by ATLAS [86]. At the bottom, the
constraints are shown in the mχ − g′ plane. The black, red and purple lines
correspond to different values of the Higgs-dark Higgs mixing (α = 0.1, 0.2, 0.3
respectively).
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Figure 4.4: At the top, parameter values for which Ωχh
2 = 0.12 for 3 dark fermions

with masses mχ = 2, 3, 4TeV in the mZ′ − g′ plane, for dark Higgs masses ms =
1TeV and ms = 6TeV respectively. At the bottom, the relic density for the
degenerate cases in which all the 3 dark fermions share the same mass (mχ = 3TeV
and mχ = 4TeV respectively) and ms = 2mχ. The green shaded region is excluded
by ATLAS [86]. The black, red and purple lines correspond to different values of
the Higgs-dark Higgs mixing (α = 0.1, 0.2, 0.3 respectively).
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4.4 Conclusions

In conclusion, we can say that the predictions from this model of production of
DM by thermal freeze-out do not evade the actual experimental limits for sub-TeV
masses of the 3 exotic fermions and the two mediators; only resonant scenarios can
accommodate the relic abundance with the bounds imposed by ATLAS, although a
high degree of degeneracy is required. In any case, further investigation is needed
to test the multi-TeV spectrum of the theory, which is in the reach of future
colliders (like FCC [89] or a Muon Collider [90]).
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Chapter 5

Conclusions

In this thesis, we took a deep dive into Dark Matter physics, exploring the so-
called vector portal models in an anomaly-free theoretical framework and studying
their phenomenology in order to exploit the experimental constraints coming from
particle colliders.

In Chapter 1 we recalled the main evidence for the existence of invisible matter
in the universe, which does not interact with light and which actually represents the
major component of the matter content of the universe. Thanks to cosmological
observations, we recognized this type of matter as being of non-baryonic origin,
thus requiring beyond-the-Standard-Model physics to explain it; a list of the most
popular particle candidates is provided in Section 1.5.

Among them, we chose to focus around the leading paradigm of WIMPs, which
is one of the best known in the literature due to its simplicity and large number
of motivated candidates. In Chapter 2 we outlined both the theoretical features
that describe their phenomenology (namely the freeze-out mechanism) and the
different experimental strategies employed to find a WIMP signal.

Next, in Chapter 3 we explored in more detail the vector portal WIMP models,
a theoretical framework in which Dark Matter is connected to the Standard Model
by the means of a new vector boson Z ′, mediator of a newly introduced U(1) gauge
symmetry group; particular emphasis has been put on the anomaly cancellation, a
mandatory requirement for a self-consistent theory, that drives the set of charges
of the different particles.

Finally, in Chapter 4 is located the original part of this thesis: we studied a
rather general model which involves the introduction of 3 exotic fermions in the
dark sector, a new neutral vector boson Z ′ and a dark Higgs s; we described the
main annihilation channels of the dark fermions and how they impact the final
relic density through the Boltzmann equation; the results were then compared
to the most recent experimental bounds. We found out that the predicted relic
density lies in a region of the parameter space excluded by ATLAS measurements
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on the Drell-Yan process for sub-TeV masses of the 3 exotic fermions. Nevertheless,
the multi-TeV spectrum of the theory can still deliver signals for a new massive
particle, especially in resonant scenarios; this opens up new exciting possibilities
for future experiments, which will be able to tackle the high energies required to
explore this field in the following years.
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Standard Model

In this appendix, we present a quick review of the Standard Model (SM) of particle
physics (this chapter is based on [91], on which a much more extensive approach
can be found).

The SM is a gauge theory based on the following gauge group:

GSM = SU(3)c × SU(2)L × U(1)Y (A.1)

Thanks to the Higgs potential, the group is spontaneously broken into:

GSM → GSSB
SM = SU(3)c × U(1)em (A.2)

Each factor of GSM describes a different type of interaction, and brings a
number of gauge bosons equal to the number of generators of that symmetry
group. The resulting number of gauge bosons counts:

• 8 gluons for SU(3)c color interactions; this symmetry group is conserved
after the SSB, so gluons stay massless;

• 4 gauge bosons for the SU(2)L×U(1)Y electroweak interactions, which after
the SSB are rearranged in three massive weak bosons (W±, Z) and one
massless photon γ.

The only other boson present in the SM is the Higgs boson h, which is also the
only known scalar particle: it was the last missing piece to be added to the SM,
discovered only in 2012 [92].

Finally, the particle content of the SM is completed by fermions, which are
denoted hereafter:
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Qi
L =

{(

uL
dL

)

,

(

cL
sL

)

,

(

tL
bL

)}

uiR = {uR, cR, tR}
diR = {dR, sR, bR}

LiL =

{(

νe,L
eL

)

,

(

νµ,L
µL

)

,

(

ντ,L
τL

)}

eiR = {eR, µR, τR}

On the left, quarks are displayed: these particles are charged under the SU(3)c
gauge group, and for this reason, they also possess three further color indices
(which are not expressed to keep the notation simple). They come in three different
generations for a total of six flavors: up, down, charm, strange, top and bottom.
Left-handed quarks are also charged under SU(2)L, and that’s why they appear as
doublets. In the same way, on the right, there are six flavors of leptons: electron,
muon, tau and the corresponding neutrinos. Interestingly enough, no right-handed
neutrinos have been found yet.

Given all these particles, we can study how they interact with each other via
the SM Lagrangian:

LSM = LYM + LH + Lf + LY uk (A.3)

A.1 Yang-Mills sector

The Yang-Mills sector includes all the kinetic terms for gauge bosons, together
with their non-Abelian interactions:

LYM = −1

4
GA,µνGA

µν −
1

4
W I,µνW I

µν −
1

4
BµνBµν (A.4)

Each field strength takes the following form:

GA
µν = ∂µG

A
ν − ∂νG

A
µ + gsf

ABCGB
µG

C
ν (A.5)

W I
µν = ∂µW

I
ν − ∂νW

I
µ + gfǫIJKGJ

µG
K
ν (A.6)

Bµν = ∂µBν − ∂νBµ (A.7)

The indices A and I run over the number of generators of the respective gauge
groups (so A = 1, . . . , 8 for SU(3)c and I = 1, 2, 3 for SU(2)L), fABC and ǫIJK are
the structure constants of the associated Lie algebra and gs g are the strong and
weak coupling constant.

After the SSB, the field rotation A.16 mixes the electroweak kinetic terms,
giving birth to a pletora of new interactions between the weak and electromagnetic
gauge bosons. From these interactions, we can identify a relation between the
electric charge and the couplings g and gY :

e = gsW = gY cW =
ggY

√

g2 + g2Y
(A.8)
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A.2 Higgs sector

The Higgs sector contains the kinetics of the Higgs field H (which is a doublet in
the fundamental representation of SU(2)L) and its potential:

LH = (DµH)†(DµH)− V (H†H) (A.9)

V (H†H) = −µ2H†H + λ(H†H)2 (A.10)

DµH =
(

∂µ − ig
σI

2
W I
µ − igY YHBµ

)

H (A.11)

g and gY are the SU(2)L and U(1)Y couplings respectively, YH = 1/2 is the
hypercharge of the Higgs field and the σI are the Pauli matrices (TI = σI/2 are
the generators of SU(2)L).

The Higgs potential A.10 has an infinite number of minima that correspond to
non-vanishing vacuum expectation values (vev) for the Higgs field. We choose the
following vacuum:

〈H〉 = 1√
2

(

0
v

)

, v =
µ√
λ

(A.12)

This choice spontaneously breaks the SU(2)L × U(1)Y gauge symmetry; we
can check that the residual symmetry is U(1)em, and its generator is given by a
combination of the original gauge group generators:

Q = T3 + Y (A.13)

The Eq. (A.13) expresses the relation between electric charge, weak isospin and
hypercharge.

At this point, we can expand the Higgs field in terms of fluctuations over its
vacuum:

H = exp

(

i
πIσI

v

)

· 1√
2

(

0
v + h

)

(A.14)

The πI are the three Goldstone bosons born from the breaking of the three
generators of SU(2)L × U(1)Y (Goldstone theorem). With a particular gauge
choice (the unitary gauge) we can get rid of these unphysical degrees of freedom
(basically setting πI = 0). The real scalar field h is the only physical degree of
freedom remaining, and it is called the Higgs boson. In the unitary gauge, LH
reads:

LH =
1

2
(∂µh)(∂

µh)− 1

2
m2
hh

2 +
(v + h)2

4
g2W+

µ (W
−)µ

+
(v + h)2

2

g2 + g2Y
4

ZµZ
µ − λvh3 − λ

4
h4

(A.15)
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Where we have defined the fields:



















W±
µ =

W 1
µ ∓W 2

µ√
2

Zµ = cWW
3
µ − sWBµ

Aµ = cWBµ − sWW
3
µ















cW = cos θW =
g

√

g2 + g2Y

sW = sin θW =
gY

√

g2 + g2Y

(A.16)

In Eq. (A.16) we have performed a rotation of the fields W 3
µ and Bµ by an

angle θW (Weinberg angle): in this way, we have obtained a diagonal mass matrix
for the new fields W± and Z, which are the massive mediators of the weak force.
Their masses are given by [68]:

mW =
gv√
2
= 80.377± 0.012GeV

mZ =
v
√

g2 + g2Y√
2

= 91.1876± 0.0021GeV

This is a fundamental consequence of SSB: gauge bosons are able to acquire
mass without breaking the gauge invariance. The photon field Aµ, instead, does
not appear in LH : as expected, it stays massless after the SSB.

Besides mass terms, the kinetic term of the Higgs field gives interactions terms
between the Higgs boson and the new gauge bosons; from the potential V (H†H),
instead, we obtain cubic and quartic terms for the Higgs boson, together with its
mass [68]:

mh =
√
2λv2 = 125.25± 0.17GeV

Looking at its very large mass, we can understand why the discovery of the Higgs
boson took so long to be accomplished.

A.3 Fermion sector

The fermion sector contains the kinetic terms for quarks and leptons and their
couplings to gauge bosons:

Lf =
∑

i

[

Qi
Li /DQ

i
L + uiRi /Du

i
R + diRi /Dd

i
R + LiLi /DE

i
L + eiRi /De

i
R

]

(A.17)

The covariant derivative for fermions is:

Dµψ = (∂µ − igs
λA

2
GA
µ − ig

σI

2
W I
µ − igY YψBµ)ψ (A.18)
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λA are the Gell-Mann matrices (the generators of SU(3)c) and Yψ is the hy-
percharge of the associated fermion (to be more specific, Yψ should be multiplied
by the identity matrix 1n, where n is the dimension of the representation space
chosen for ψ).

It is useful to rewrite Lf by its current interactions:

Lf =
∑

f=u,d,c,s,t,b

[

fLi/∂fL + fRi/∂fR
]

− g√
2
(W−

µ J
µ
+ +W+

µ J
µ
−)

− g

cW
ZµJ

µ
Z − eAµJ

µ
em

(A.19)

Where (the index i runs over the three generations of quarks and leptons):

J+
µ =

∑

i

d
i

Lγµu
i
L + eiLγµν

i
e,L (A.20)

J−
µ =

∑

i

uiLγµd
i
L + νie,Lγµe

i
L (A.21)

Jemµ =
∑

f

[

fLγµfL + fRγµfR
]

Qf (A.22)

JZµ = J3L
µ − s2WJ

em
µ =

∑

f

[

fLg
f
LγµfL + fRg

f
RγµfR

]

(A.23)

Charged current interactions happen only for left-handed fields: this follows
from the fact that the W bosons are combinations of the original SU(2)L gauge
bosons only; On the other hand, neutral current and electromagnetic current in-
teractions also affect right-handed fields, since the Z boson and the photon are
combinations of W 3 and B, and the last one interacts with both chiralities. In par-
ticular, the electromagnetic interactions are symmetric in the 2 chiralities (QED
is a vector-like theory), while the Z boson couples differently to left- and right-
handed fields:

gfL = T 3
f − s2WQf (A.24)

gfR = −s2WQf (A.25)

A.4 Yukawa sector

The Yukawa sector describes the interactions between fermions and the Higgs field,
and provides mass terms for the fermion fields:

LY uk = −
∑

i,j

[

y
(u)
ij Q

i

LH̃u
j
R + y

(d)
ij Q

i

LHd
j
R + y

(e)
ij L

i

LHe
j
R

]

+ h.c. (A.26)
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Where we have defined:

H̃ = iσ2H
∗ (A.27)

We can check that LY uk is actually invariant under SU(2)L × U(1)Y . The
Yukawa matrices y(f) are general 3× 3 complex matrices, so Yukawa interactions,
at this point, are the only term that can mix different generations of fermions.
Moreover, Yukawa interactions are the only ones in the SM that can mix left and
right chiralities; this is particularly relevant for neutrinos, for which a right-handed
chirality does not exist (or, at least, it has not been discovered yet). For this
reason, neutrinos in the SM are massless. However, there is strong evidence (i.e.
the neutrino oscillation) that neutrino masses should be non-vanishing; although
this problem has not been solved yet, many solutions have been put forward (for
example, the seesaw mechanism). In any case, the neutrino mass problem remains
one of the best hints for the need for physics beyond the Standard Model (together
with dark matter of course!).

After SSB, in the unitary gauge:

LY uk = −
∑

i,j

v + h√
2

[

uiLy
(u)
ij u

j
R + d

i

Ly
(d)
ij d

j
R + eiLy

(e)
ij e

j
R

]

+ h.c. (A.28)

Thus, we get non-diagonal mass matrices of the form:

mij =
yijv√
2

(A.29)

We can diagonalize the mass matrices performing a biunitary transformation
on the left and right chiralities of the fermion fields; with an abuse of notation, we
indicate the triplet of each fermion type by its first generation particle, so:

uL =





uL
cL
tL



 dL =





dL
sL
bL



 eL =





eL
µL
τL



 νL =





νeL
νµL
ντL



 (A.30)

Thus, we can perform the following rotation:

{

uL = LuuL

uR = RuuR

{

dL = LddL

dR = RddR











eL = LeeL

eR = ReeR

νL = LννL

(A.31)
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In this way, the mass matrices become:

m(u) = L†
uy

(u)Ru =





mu 0 0
0 mc 0
0 0 mt



 (A.32)

m(d) = L†
dy

(d)Rd =





md 0 0
0 ms 0
0 0 mb



 (A.33)

m(e) = L†
ey

(e)Re =





me 0 0
0 mµ 0
0 0 mτ



 (A.34)

The value of each mass is reported in Tables A.2 and A.3: it’s interesting to
note how wide is the mass spectrum of SM fermions, which spans over nearly six
orders of magnitude.

However, switching from the flavor basis to the mass basis comes with a price
to pay: weak charged current interactions are not diagonal anymore. In fact, if
we look at the effect of the rotation A.31 on the fermion sector, we can see that
neutral and electromagnetic current interactions are not changed (they couple the
same flavor, so for each term we get extra factors like L†

fLf (R
†
fRf ) = 1); on the

other hand, the weak charged current interactions become:

Lmass basis
c.c. =− g√

2

[

uLVCKM /W
+
dL + dLV

†
CKM

/W
−
uL
]

− g√
2

[

νLUPMNS /W
+
eL + eLU

†
PMNS

/W
−
νL
]

(A.35)

VCKM = L†
uLd is the Cabibbo-Kobayashi-Maskawa matrix and UPMNS = L†

νLe
is the Pontecorvo-Maki-Nakagawa-Sakata matrix. These matrices allow physical
interactions between different generations of fermions. We can count the number
of physical parameters for VCKM (the discussion for UPMNS is the same). Being
a complex unitary matrix, VCKM has nine real degrees of freedom, that we can
organize in 3 mixing angle and 6 phases. However, we can always redefine the
quark fields in order to get rid of 5 phases (if all quarks are rotated by the same
phase, VCKM remains invariant; this invariance corresponds to the conservation
of the baryon number). Thus, we are left with three angles (θ12, θ23, θ13) and one
phase (δ):

VCKM =





1 0 0
0 c23 s23
0 −s23 c23









c13 0 s13e
iδ

0 1 0
−s13eiδ 0 c13









c12 s12 0
−s12 c12 0
0 0 1



 (A.36)
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Where cij = cos θij and sij = sin θij. The same is valid for UPMNS, which
depends on two more phases if neutrinos are Majorana particles. Values of the
CKM and PMNS parameters can be found in [68].

A.5 Gauge anomalies in the Standard Model

A symmetry of a classical theory that is broken at the quantum level is said to
be anomalous. Thanks to Noether’s theorem, we know that every symmetry is
associated with a conserved current, so, for an anomalous symmetry, this current
will not be conserved when we include quantum effects. Quantum anomalies are
physically interesting when we talk about global symmetries (for example, the
baryon number in the SM is anomalous, and its non-conservation is a necessary
condition to generate the matter-antimatter asymmetry in the early universe), but
they can be extremely dangerous when we are dealing with gauge symmetries. A
gauge symmetry, in fact, is just a redundancy in our description of the theory, and
it is fundamental to build a consistent theory, since it is used to remove negative
norm states from the spectrum: without gauge invariance, unphysical polarizations
could be produced and unitarity would be violated.

In QED case, for example, to eliminate negative norm states from the Hilbert
space we use the Gupta-Bleuler condition:

∂µA+
µ |Ψ〉 = 0 (A.37)

where A+
µ is the positive frequency part. The separation:

∂µAµ = ∂µA+
µ + ∂µA

−
µ (A.38)

is trivial in the free theory (since from the equation of motion 2Aµ = 0 we have
also 2∂µA

µ = 0), but in the interacting theory:

2∂µA
µ = ∂µj

µ
em (A.39)

If the gauge symmetry is anomalous, then the electromagnetic current jµem is not
conserved, therefore we have troubles building a physical Hilbert space for the
theory.

That’s the reason why any consistent quantum field theory should be anomaly
free (for gauge symmetries). In this section, we will simply demonstrate that the
SM is indeed an anomaly free theory. Taking the perturbation theory approach,
anomalies arise from triangle loop diagrams like in Fig. A.1, where each vertex is
attached to a particular gauge boson.

The anomaly free condition equals to verify the validity of the Ward identity
for any combination of external gauge boson. This means:

∂µ〈J iµJ jνJkρ 〉 = 0 (A.40)
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Figure A.1: Triangle diagrams giving rise to anomalies. We pictured a photon
attached to each vertex, but any combination of gauge bosons is possible.

In the above expression, i, j, k represent the different currents coupled with the
different gauge fields (for the SM, we can have JQCDµ , Jweak

µ , JYµ ). For a generic
non-Abelian gauge theory, this current can be expressed as:

Jaµ = ψT aRγµψ (A.41)

where T aR are the symmetry group generators in the representation R. This
means that the triangle diagram picks up a factor T aR at each vertex and the whole
contribution to the amplitude will be proportional to Tr[T aRT

b
RT

c
R]. Each diagram

comes with a twin in which two bosons are exchanged (Fig. A.1): this means that
the final amplitude must be proportional to the totally symmetric tensor:

Tr
[

T aR, {T bR, T cR}
]

= A(R)dabc (A.42)

A(R) is the anomaly coefficient and depends on the representation, while dabc is
defined using the fundamental representation (A(fund) = 1). Left and right-
handed fermions contribute to the anomaly with opposite signs, so the anomaly
cancellation condition can be written as:

(

∑

left

A(RL)−
∑

right

A(RR)

)

dabc = 0 (A.43)

Where RL and RR are the representations in which left and right-handed fields
transform. Now, we just need to check that any possible anomaly cancels in the
SM:

• SU(3)3: QCD is a non-chiral theory, so left and right-handed fields transform
in the same representation; moreover, since we have the same number of left
and right-handed quarks:

∑

left

A(fund)−
∑

right

A(fund) = 0 (A.44)

• SU(3)2U(1): only quarks contribute to this anomaly. In the fundamen-
tal representation, the generators of SU(3) are the Gell-Mann matrices, for
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which Tr{λa, λb} = 1
2
δab, so:

Tr
[

{λa, λb}, Y
]

=

(

∑

left
quarks

YL −
∑

right
quarks

YR

)

δab

= δab
(

6YQL
− 3YuR − 3YdR

)

(A.45)

If we plug in the values in Table A.1, the above expression vanishes.

• SU(3)U(1)2: the Gell-Mann matrices are traceless, so:

dabc ∝ Y 2Tr[λa] = 0 (A.46)

Since any generator of SU(N) is traceless, the above argument can be applied
any time we have just one factor of SU(2) or SU(3).

• SU(2)3: in the fundamental representation, the generators of SU(2) are
half the Pauli matrices, for which {σa, σb} = 2δab1; the Pauli matrices are
traceless too, so:

dabc =
1

2
δbcTr[σa] = 0 (A.47)

• SU(2)2U(1): only left-handed fermions contribute to this anomaly:

Tr
[

{σa, σb}, Y
]

= 4δab
∑

left

YL = 4δab(6YQL
+ 2YLL

) (A.48)

Also in this case, the above equation vanishes for the hypercharges in Ta-
ble A.1.

• U(1)3 : In this case we need to calculate:
∑

left

Y 3
L −

∑

right

Y 3
R = 6Y 3

QL
+ 2Y 3

LL
− 3Y 3

uR
− 3Y 3

dR
− Y 3

eR
= 0 (A.49)

At last, a particular type of anomaly we need to account for is the one related
to the graviton: in fact, if we couple the SM to gravity, it’s possible to draw a
triangular diagram with 2 graviton and one gauge boson. The cancellation of this
anomaly results in the condition:

Tr[T aR] = 0 (A.50)

This condition is trivially satisfied for SU(2) and SU(3), whose generators are
traceless. For U(1), instead, we get the condition:

∑

left

YL −
∑

right

YR = 6YQL
+ 2YLL

− 3YuR − 3YdR − YeR = 0 (A.51)

All the SM gauge anomalies vanish. We make two final notes:
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- The inclusion of a sterile right-handed neutrino doesn’t spoil any of the above
calculation, since they would be completely chargeless under any SM gauge
group;

- The cancellation of the SU(2)2U(1) anomaly requires 3YQL
+YLL

= 0 exactly:
this is the reason why the proton and the electron must have the exact same
charge.
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SU(3)c SU(2)L U(1)Y T3L Q = T3L + Y
(

uL
dL

)

3 2 +1/6

(

+1/2
−1/2

) (

+2/3
−1/3

)

uR 1 1 +2/3 0 2/3
dR 1 1 −1/3 0 −1/3
(

νL
eL

)

1 2 −1/2

(

+1/2
−1/2

) (

0
−1

)

eR 1 1 −1 0 −1

H =

(

H+

H0

)

1 2 +1/2

(

+1/2
−1/2

) (

+1
0

)

Table A.1: Charges of the SM fermion and Higgs fields. Bold numbers indicate
the dimension of the fundamental representation. Charges are the same for the
three generations of fermions.

u d c s t b

2.16MeV 4.67MeV 1.27GeV 93.4MeV 172.69GeV 4.18GeV

Table A.2: Quark mass spectrum, from [68].

e µ τ
∑

νL

511 keV 105.66MeV 1.777GeV < 1.1 eV

Table A.3: Lepton mass spectrum, from [68]. The neutrino limit is for the sum of
the masses of the three neutrinos.
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Appendix B

Boltzmann equation

The Boltzmann equation describes how the phase space distribution f(x,p, t) of a
DM particle evolves with time. The starting point of the Boltzmann equation is:

L[f ] = C[f ], (B.1)

where L[f ] is the Liouville operator, which depicts the evolution of f due to the
geometry of space-time, and C[f ] is the collision operator, which includes all the
effects due to number changing processes (like scattering and decays).

In its most general form, the Liouville operator is:

L[f ] =

[

pµ
∂

∂xµ
− Γµαβp

αpβ
∂

∂pµ

]

f (B.2)

where Γµαβ is the affine connection and pµ is the four-momentum. We can specialize
the above formula for the FRW metric:

ds2 = dt2 − a2(t)

[

dr2

1− kr2
+ r2dΩ2

]

(B.3)

Where a is the scale factor, k = −1, 0,+1 depends on the geometry of the universe
and dΩ2 = dθ2 + sin2 θ dφ2. Imposing homogeneity and isotropy, we find:

L[f ] = E
∂f

∂t
−H(E2 −m2

χ)
∂f

∂E
(B.4)

E is the energy, H is the Hubble parameter and mχ is the mass of the DM particle.
In the following, we will need to integrate both sides of the equations over the phase
space of the DM particle, in order to obtain more meaningful relations involving
the number density of DM particles, which is defined as:

nχ = gχ

∫

f(E, t)
d3p

(2π)3
(B.5)
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Appendix B. Boltzmann equation

where gχ is the number of internal degrees of freedom of χ. The integration of the
Liouville operator gives:

gχ

∫

L[f ]
d3p

E(2π)3
=
dnχ
dt

+ 3Hnχ (B.6)

In absence of collisions (C[f ] = 0), the above equation shows that the evolution
of the number density is only given by the dilution due to the expansion of the
universe (we can check that, in this case, na3 = const.).

We now turn our attention to the collision operator. If we consider scattering
processes like χb↔ cd, then it takes the form:

C[f ] = −1

2

∫

(2π)4δ4(pχ + pb − pc − pd)dΠbdΠcdΠd

[

|Mχb→cd|2fχfb(1± fc)(1± fd)− |Mcd→χb|2fcfd(1± fχ)(1± fb)

]

(B.7)

Mx→y is the matrix element for the reaction x → y, the factors of the form
(1 ± f) depend on the particle being a boson (plus sign) or a fermion (minus
sign), the delta function enforces energy and momentum conservation and the
phase-space factors are defined as:

dΠi = gi
d3pi

2Ei(2π)3
(B.8)

We now need to integrate the collision operator in the same way done for the
Liouville operator. Before proceeding, we can make some general assumptions to
simplify calculations:

• In the early universe we are away from degenerate conditions, so the Pauli
blocking and Bose enhancement factors can be ignored: 1± fi ≃ 1;

• We assume CP invariance, so that the squared matrix elements for direct
and inverse reaction are equal |Mχb→cd|2 = |Mcd→χb|2

• Kinetic equilibrium is maintained:

fi(E, t) =
ni(t)

neqi (t)
f eqi (E, t) (B.9)

In this way, we obtain:

gχ

∫

C[f ]
d3p

E(2π)3
= −

∫

(2π)4δ4(pχ + pb − pc − pd)dΠχdΠbdΠcdΠd

|Mχb→cd|2(fχfb − fcfd) = −〈σv〉(nχnb − dncnd)

(B.10)
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Where we have defined the thermally averaged cross section for the χb → cd
process to be:

〈σv〉 =
∫

d3pχd
3pb σvMølf

eq
χ f

eq
b

∫

d3pχd3pbf
eq
χ f

eq
b

(B.11)

vMøl is the Møller velocity defined by:

vMøl =

√

(pχpb)2 −m2
χm

2
b

EχEb
(B.12)

All together, the Boltzmann equation now reads:

ṅχ + 3Hnχ = −〈σv〉
(

nχnb − ncnd
)

(B.13)

If we focus only on the annihilation reactions χχ → φφ, where φ is a SM
particle in equilibrium with the thermal bath, then the Eq. (B.13) assumes the
form:

ṅχ + 3Hnχ = −〈σv〉
(

n2
χ − (neqχ )

2
)

(B.14)

B.1 Low temperature approximation

The thermally averaged cross section 〈σv〉 can be written as [93]:

〈σv〉 = x

8m5

1

K2
2(x)

∫ ∞

4m2

σann(s− 4m2)
√
sK1

(

x
√
s

m

)

ds (B.15)

where K1 and K2 are the modified Bessel function of first and second order. At
low temperature we can express the Mandelstam variable s as a function of the
velocity v in the center of mass frame:

s = m2(4 + v2) +O(v4) (B.16)

Then, we perform the following change of variable in the integral:

v =
1

m

√
s− 4m2 → ds = 2m

√
s− 4m2dv (B.17)

Therefore we obtain:

〈σv〉 = x

8m5

1

K2
2(x)

∫ ∞

0

σannI

2g2
2m3v2K1(x

√
4 + v2)dv (B.18)
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At large x and low v, the Bessel functions can be expanded as:

K1(x
√
4 + v2) ≃

x→∞
v→0

e−2xe−
xv2

4

√
π

2

1√
x

(

1− 1

16
v2
)

(B.19)

K2(x) ≃
x→∞

√

π

2x
e−x (B.20)

If we impose:
σannI ≃ a+ bv2 (B.21)

we can evaluate the integral, obtaining at the end:

〈σv〉 = 1

4g2m2

(

a+
3(16b− a)

8x

)

(B.22)
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