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Abstract

LoRaWANTM is a new protocol designed to provide Low Power Wide Area
Network with features specifically needed to support low-cost, mobile, secure
bi-directional communication for Internet of Things (IoT). Indeed, the IoT
paradigm may present some very specific features that cannot be easily inte-
grated with the constraints of cellular or other type of existing networks but
requires dedicated hardware and networks. Our aim is both to analyze the
security threats of join procedure and to supply countermeasures. Moreover
we also examine the state of the art implementation of the protocol, focusing
the attention on the procedure for the generation of random numbers such
the DevNonce. In particular we have theoretically and experimentally verify
that, in some situations, the generation of bits (and of DevNonce) can be
non-uniform.
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Chapter 1

Introduction

Internet of Things (IoT) is going to take a major place in the telecommunica-
tions market as announced in technical and public medias [1]. The paradigm
of IoT relies on the deployment of billions of objects having the capability of
transmitting information about their context and environment and to create
a real-time, secured and efficient interaction between the real and the virtual
worlds. IoT revealed to be a key technology for solving societal issues such
as digital cities, intelligent transportation, green environment monitoring or
medical care and elderly person monitoring.

The main challenge of this new paradigm is to let a very huge number
of machine type devices (MTDs) be connected to the Internet at a low cost,
with a limited infrastructure and featuring a very long life time with very
small battery or energy needs.

In this global picture, there exist different technical issues. M2M has
been first defined to connect MTDs in their vicinity. The proposed solutions
extensively rely on research results produced over the last twenty years for
ad-hoc and wireless sensor networks. Starting twenty years ago from theo-
retical concepts, this very active research area went up to the definition of
full standards (802.15.4, 802.15.6, Zigbee, Bluetooth) which already found a
market.

More recently, the IoT paradigm has been extended to the problem of
connecting all these MTDs to the Internet, and through Internet to anyone
or anything. The massive connection of objects spread over the world is a
challenge that has some similarities with the paradigm of cellular networks
which aimed at connecting people. This similarity attracted the interest of
mobile network providers, to exploit such attractive potential market and
IoT has been identified as a target for the future 5G, while several propos-
als already exist to adapt the 4G technology to IoT. Nevertheless the IoT
paradigm may present some very specific features that cannot be easily in-
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tegrated with the constraints of cellular networks. In many applications, the
individual targeted throughput is very low and the capacity is not a relevant
criterion. On the opposite, the latency, the energy efficiency or the reliability
are more critical. Except for cars or few other mobile objects, IoT may rely
mostly on static nodes. But the dynamic of the problem comes from the fact
that these nodes may transmit a packet with a very low probability (e.g. once
a week or once a month). Keeping these nodes continuously connected would
be not efficient and an important issue is to allow a fast and reliable bursty
connection. For these reasons, recently, new network technologies have been
deployed. These networks better comply with the specific features of IoT,
through dedicated physical and MAC layers.

Figure 1.1: Comparison between different paradigms of IoT and cellular
networks.

Low Power Wide Area Networks (LPWAN) are an example of networks
recently deployed, that allow long range communications at a low bit rate
among connected objects, such as sensors operated on a battery. LPWAN
technologies include SigFox, LoRaWAN, Adaptrum, WEIGHTLESS, IEEE
802.22, Ingenu and many others.

In particular in this work we focus our attention on LoRaWANTM proto-
col. Since it is a new protocol and it is still at an early stage of development,
it presents some confusing sections that make way to different interpreta-
tions, while other aspects are left to developers. However we also analyze
the recommended procedure for the generation of DevNonce for transceiver
SX1272. Even if the procedure is not described in the protocol, at the state
of the art, every end-device connected to a LoRaWAN network is equipped
with SX1272 transceiver, and for the generation of DevNonce (a 16-bit ran-
dom numbers used in the protocol) it performs the recommended procedure.
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So we structure the thesis as described below.
In chapter 2 we briefly describe the terminology used in LoRaWAN net-

works. Then we introduce the protocol with particular attention on security
mechanisms and join procedure. Finally we present a survey about discov-
ered LoRaWAN problems.

In chapter 3 we firstly analyze the security mechanisms used on the join
procedure. Later we study what is the best implementation of the protocol
(considering what is not specify by the protocol). Finally we observe if there
are security breaches on the procedure and what can be changed.

In chapter 4 we describe a general model of a superheterodyne receiver
(such as SX1272), and then we integrate the model with the features of
SX1272 focusing the attention on the hardware that permits to write the
RSSI values on a register.

Chapter 5 is dedicated to random number generators (RNGs). In the first
part we describe what is necessary in order to have a good random number
generator. Then we analyze the procedure recommended for the random
number generation with SX1272 and, later, we introduce how, theoretically,
this procedure can be dangerous and not efficient.

In chapter 6 we analyze experimentally if the SX1272 is equipped with a
good random generator, or if, in some cases, the RNG is not efficient.

Finally in chapter 7 we sum up the work of the thesis, analyzing what is
the contribution of the thesis and future research directions.
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Chapter 2

LoRaWANTMprotocol

LoRa R© is a modulation technique that is based on spread-spectrum tech-
niques and a variation of chirp spread spectrum (CSS) with integrated for-
ward error correction (FEC). LoRa significantly improves the receiver sensi-
tivity and uses the entire channel bandwidth to broadcast a signal, making it
robust to channel noise and insensitive to frequency offset. The LoRa mod-
ulation is the physical layer which can be utilized by many different protocol
architectures, such as Mesh, Star, 6lowPAN, etc [2].

LoRaWANTM is a MAC protocol for a high capacity, long range star
network that the LoRa Alliance has standardized for Low Power Wide Area
Networks (LPWAN).The LoRaWAN protocol is optimized for low cost bat-
tery operated sensors and includes different classes of nodes to optimize the
trade-off between network latency and battery lifetime. LoRaWAN is de-
ployed for nationwide networks by major telecom operators, in order to make
sure the different nationwide networks are interoperable [2].

LoRaWAN networks typically are laid out in a star-of-stars topology in
which gateways relay messages between end-devices and a central net-
work server at the backend. Gateways are connected to the network server
via standard IP connections while end-devices use single-hop LoRaTMor FSK
communication to one or many gateways. Communication is generally bi-
directional, although uplink communication from an end-device to the net-
work server is expected to be the predominant traffic.

LoRa endpoints are the elements of the LoRa network where sensing
or control is undertaken. They are normally remotely located and battery
operated.[2].

The LoRa gateways are multi-channel, multi-modem transceivers that
can demodulate on multiple channels simultaneously and even demodulate
multiple signals on the same channel simultaneously due to the properties
of LoRa. The gateways use different radio frequencies components than the
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end-point to enable high capacity and serve as a transparent bridge relaying
messages between end-devices and a central network server in the backend.
[2]

[4] The LoRa network server manages the network. The network server
acts to eliminate duplicate packets, schedules acknowledgement, and adapts
data rates. In view of the way in which it can be deployed and connected,
makes it very easy to deploy a LoRa network. At the state of the art the
Network Server is not so well defined by the standard. However in several
systems already deployed the Network Server is an Internet facing web service
which the Gateways can connect to using for instance cellular networks [5].

A remote computer can then control the actions of the endpoints or collect
data from them (Fig. 2.1).

Figure 2.1: LoRa network architecture.

Communication between end-devices and gateways is spread out on dif-
ferent frequency channels and data rates. The selection of the data rate is a
trade-off between communication range and message duration and it ranges
from 0.3 kbps to 50 kbps. Communications with different data rates do not
interfere with each other. To maximize both battery life of the end-devices
and overall network capacity, the LoRa network infrastructure can manage
the data rate and radio frequency output for each end-device individually by
means of an adaptive data rate (ADR) scheme.

End-devices may transmit on any available channel at any time, using
any available data rate, as long as the following rules are respected:

• The end-device changes channel in a pseudo-random fashion for every
transmission. The resulting frequency diversity makes system more
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robust to interference.

• The end-device respects the maximum transmit duty cycle relative to
the sub-band used and local regulations.

• The end-device respects the maximum transmit duration (or dwell
time) relative to the sub-band used and local regulations [3, Ch.1].

LoRaWAN Classes All LoRaWAN devices implement at least the Class
A functionality. In addition they may implement options named Class B
and Class C. End-devices of Class A allow for bi-directional communications
whereby each end-device’s uplink transmission slot scheduled by the end-
device is based on its own communication needs with a small variation based
on a random time basis (ALOHA-type protocol). This Class A operation is
the lowest power end-device system for applications that only require down-
link communication from the server shortly after the end-device has sent an
uplink transmission. Downlink communications from the server at any other
time will have to wait until the next scheduled uplink.

End-devices of Class B allow for more receive slots. In addition to the
Class A random receive windows, Class B devices open extra receive windows
at scheduled times. In order for the End-device to open it receive window at
the scheduled time it receives a time synchronized Beacon from the gateway.
This allows the server to know when the end-device is listening.

End-devices of Class C have nearly continuously open receive window,
only closed when transmitting. Class C end-device will use more power to
operate than Class A but they offer lowest latency for server to end-device
communication.

2.1 End-Device cryptography and commission-

ing

LoRaWAN protocol expects that all payloads are encrypted using an AES
algorithm, described in IEEE 802.15.4/2006 Annex B [IEEE802154], using
a 128 bits secret key, that is the Application Session Key (AppSKey) if the
payload carries data information and the Network Session Key (NwkSKey) if
the payload carries MAC messages. Furthermore all frames contain a 32 bits
cryptographic MIC signature computed using the NwkSKey over the entire
frame and described in [RFC4493] (Fig. 2.2).

AppSKey must be only known by end-device and application server;
NwkSKey, instead, must be known by end-device and network server only.
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Figure 2.2: Encryption of payload and message signature.

The only components of the network involved are the end-device, the net-
work server and the application server. The gateways, instead, are totally
transparent from a security perspective.

Upon reception of a frame, the network server checks that the frame
received MIC signature matches the one computed using the end-device’s
network session key contained in its key database. If the two MICs match
then the frame is really coming from legitimate end-device and its content
hasn’t been modified in any way. The same process happens on the down-
link messages (from network server to the end-device). Because each frame
contains a frame counter, used also for the evaluation of MIC, the replay
attacks are forbidden.

2.1.1 End-device activation

[3, Ch.6] To participate in a LoRaWAN network, each end-device has to be
personalized and activated. The activation can be achieved in two ways,
either via Over-The-Air-Activation (OTAA) when an end-device is de-
ployed or reset, or via Activation By Personalization (ABP) in which
the two steps of personalization and activation are done as one step.

After activation the end-device stores the following information:
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Device address (DevAddr). It consists of 32 bits that identifies the
end-device within the network, and it has the following format

where the most significant 7 bits are used as network identifier (NwkID)
to separate addresses of territorially overlapping networks of different
network operators and to remedy roaming issues. The least signifi-
cant 25 bits, the network address (NwkAddr) of the end-device, can be
arbitrarily assigned by network manager.

Application identifier (AppEUI). It is a global ID in IEEE EUI64 ad-
dress space that uniquely identifies the application provider of the end
device. The AppEUI is stored in the end-device before the activation
procedure is executed.

Network session key (NwkSKey). It is a network session key with
length of 128 bits specific for the end-device. It is used by both the
network server and the end-device to calculate and verify the MIC
(Message Integrity Code) of all data messages to ensure data integrity.
It is further used to encrypt and decrypt the payload field of a MAC-
only messages.

Application session key (AppSKey). It is an application session key
with length of 128 bits specific for the end-device. It is used by both
the network server and the end-device to encrypt and decrypt the pay-
load field of application-specific data messages. It is also used to cal-
culate and verify an application-level MIC that may be included in
the payload of application-specific data messages (if the layers above
LoRaWAN provide pre-encrypted frame payload).

Over-the-Air Activation For over-the-air activation, end-devices must
follow a join procedure prior to participating in data exchanges with the
network server. An end-device has to go through a new join procedure every
time it has lost the session context information.

The join procedure requires the end-device to be personalized with the
following information before it starts the join procedure:

End-device identifier (DevEUI). It is a global end-device ID in IEEE
EUI64 address space that uniquely identifies the end-device.



10 CHAPTER 2. LORAWANTMPROTOCOL

Application identifier (AppEUI). It has been described above.

Application key (AppKey). It is an AES-128 application key specific
for the end-device that is assigned by the application owner to the
end-device and most likely derived from an applicaion-specific root key
exclusively known to and under the control of the application provider.
Whenever an end-device joins a network via over-the-air activation, the
AppKey is used to derive the session keys NwkSKey and AppSKey spe-
cific for that end-device to encrypt and verify network communication
and application data.

The join procedure consists of two messages exchanged between end-
device and network server, namely join request and join accept. The first
message, the join request message, is sent by the end-device to the network
server and it has the following format

It consists of the AppEUI, devEUI and a nonce of 16 bits (DevNonce).
The DevNonce is a random value. For each end-device, the network server
keeps track of a certain number of DevNonce values used by the end-device
in the past, and ignores join request with any of these DevNonce values from
that end-device. In this manner it is possible to prevents replay attacks
by sending-previously recorded join-request messages with the intention of
disconnecting the respective end-device from the network. As for all the
MAC commands sent as a separate data frame, the message is contained in
the frame payload of the LoRa message with port field set to 0. The MIC
value for a join request message is calculated as follows:

cmac = aes128 cmac(AppKey,MHDR|AppEUI|DevEUI|DevNonce)
MIC = cmac[0..3].

where the notation for the byte is little endian. Moreover the join-request
message is not encrypted.

The network server will respond to the join-request message with a join-
accept message if the end-device is permitted to join a network, instead no
response is given to the end-device if the join request is not accepted. The
message has the following format:
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The RxDelay is the delay that the end device has to wait between the trans-
mission of the packet and the start of the first receive window. The CFList
is an optional list of channel frequencies for the network the end-device is
joining. The DLsettings field contains the downlink configuration

where The RX1DRoffset field sets the offset between the uplink data rate
and the downlink data rate used to communicate with the end-device on the
first reception slot (RX1) and RX2 Data Rate is the data rate of the second
receive window.

The application nonce (AppNonce) is a 24 bits random value or some
form of unique ID provided by the network server and used by the end-device
to derive the two session keys NwkSKey and AppSKey as follows:

NwkSKey = aes128 encrypt(AppKey,0x01|AppNonce|NetID|DevNonce|pad16)

AppSKey = aes128 encrypt(AppKey,0x02|AppNonce|NetID|DevNonce|pad16)

where pad16 function appends zero octets so that the length of the data is
a multiple of 16 bytes. Instead the MIC value for a join-accept message is
calculated as follows:

cmac = aes128 cmac(AppKey,MHDR|AppNonce|NetID|DevAddr|
DLSettings|RxDelay|CFList)

MIC = cmac[0..3].

The join-accept message itself is encrypted with the AppKey as follows:

aes128 decrypt(AppKey,MHDR|AppNonce|NetID|DevAddr|DLSettings|
RxDelay|CFList|MIC).

Activation by Personalization (ABP) Activation by personalization
directly ties an end-device to a specific network by-passing the join procedure.
Activating an end-device by personalization means that the DevAddr and the
two session keys NwkSKey and AppSKey are directly stored into the end-
device instead of the DevEUI, AppEUI and the AppKey. The end-device is
equipped with the required information for participating in a specific LoRa
network when started.

Each device should have a unique set of NwkSKey and AppSKey. Com-
promising the keys of one device shouldn’t compromise the security of the
communications of other devices. The process to build those keys should
be such that the keys cannot be derived in any way from publicly available
information (like the node address for example).
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2.2 Literature about LoRaWAN problems

Since LoRaWAN is a recent protocol, many aspects are not so clearly or
well defined. Moreover some features seem to be critical from a security
perspective.

MWR Labs in [5] are pointed out some of these security problems. It
should be possible to use LoRa solutions securely to protect against man in
the middle attacks affecting the confidentiality and integrity of data. LoRa
also provides ways for developers to securely add new nodes to their LoRa
network. However other areas are left to the developers, which may lead to
security vulnerabilities being introduced into particular LoRa instances.

For nodes, they should only be storing keys that they require. It is likely
given the range of hardware attacks available that an attacker could recover
the AppKey, NwkSKey and AppSKey from a node using for example side
channel analysis. This attack uses the variations in power consumption or
EM emissions from the transceiver during AES encryption to determine the
key that must have been used. As an attacker with this key would be able to
produce correctly signed and encrypted messages, the data coming from in-
dividual nodes should therefore be assumed to be potentially untrustworthy.
Moreover, the tampering of a device, cloning its AppKey is more dangerous
because it is not possible, or very difficult, to change the AppKey of a device.

There exists another issue if the LoRa node used a transceiver (such as
the RN2483 of Microchip), which handles encoding, encrypting and trans-
mitting the LoRa data. The microcontroller does not know the encryption
keys used by the LoRa network. Instead it would send data to the LoRa
transceiver module which would encrypt, sign and transmit the data. An
attacker with physical access to one of these devices could in theory replace
the microcontroller or use the UART pins of the LoRa transceiver to start
sending their own messages on behalf of the node.

Moreover many solutions have made some components Internet facing,
e.g. they can be accessed by anyone who knows the IP address, port and pro-
tocol that they use. Some LoRa solutions have made their Network Servers
Internet facing so that they can be connected to by the Gateways. This
increases the risk of compromise, as Internet facing services are a common
target for hackers. One risk is that gateway traffic could now be forged with-
out the need of a compromised node and therefore forgo the cost, as well as
the bandwidth limitations that this vector causes. A possible attack would
be for the MIC of packets to be brute forced (which would take in average
around 2 billions attempts to succeed given the MIC’s 4 byte key space).
Although infeasible over LoRa, a web service could be sent this amount of
traffic. In order to prevent any possible attack the link between application
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and network server must be secure (SSL) and authenticated (certificate).
Another company, Gemalto, evidences a conflict of interest in the provi-

sioning of the keys[11]. Indeed in OTAA the same AppKey is used to derive
both the NwkSKey and the AppSKey, so the network operator is able to read
the application data and the application server must trust the network server
to not modify the payloads (since it can calculates the AppSKey). Instead
the application provider, knowing the NwkSKey, can clone devices. For this
reason Gemalto proposes the employment of a trusted third party for the
generation of keys.

Another critical aspect is the interference between adjacent networks. Lo-
RaWAN is a lossy protocol, due to its uncoordinated, asynchronous nature.
If multiple LoRaWAN networks are present in the area, additional interfer-
ence will increase packet-error-rate. Since all LoRaWAN channels are shared,
any LoRaWAN packet is seen and demodulated by all gateways in range, no
matter who owns them. If there is a carrier operated LoRaWAN network and
several private LoRaWAN networks operating in an area, performance of all
networks will suffer due to collisions. Also, since LoRa has a low co-channel
dynamic range, without a closed-loop power control scheme, any nodes close
to the gateway will drown out nodes far away[12][13]. These issues can be
exploited to perform a DoS attack.

To the best of my knowledge, a feature of the protocol has been inad-
equately analyzed: the join procedure and the use of DevNonce field. For
this reason in the next chapters we analyze the procedure focusing in what
aspects are dangerous, hypothesizing also an incorrect implementation of the
protocol, due to a not sufficiently clear description of the process.
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Chapter 3

Join procedure analysis

3.1 Security mechanisms of join procedure

The integrity, authenticity and non copy of join procedure messages (join
request and join accept) is guaranteed by:

• MIC field of message;

• 16 bits random number called DevNonce.

The MIC field permits to sign the message and guarantee its integrity,
because it is evaluated through the fields of the message (included the De-
vNonce) and the AppKey, known only by that end-device and by the server.
A malicious node that wants to modify the message or pretend to be the
legitimate node, is not able to calculate a valid MIC since it doesn’t know
the AppKey, and its messages is discarded by the network server.

The DevNonce, instead, has been introduced in the join procedure in
order to avoid replay attacks. Let’s consider an example of situation repre-
sented in Fig. 3.1 where they are present an end-device A that has to join
the network and a malicious node M. If the node M has registered the join
request message of A, and it sends the message after an interval T of time,
trying to disconnect node A from the network, it fails, because the network
server stores a predefined DevNonce values used in the past by node A and
rejects join request with DevEUI and AppEUI of node A with past values of
DevNonce. Without the introduction of this mechanism, the node M is able
to disconnect node A from the network. Indeed at every join request, new
session keys are generated (AppSKey and NetSKey). If the server received
a previously recorded join request message (that contains a valid MIC) but
it isn’t able to distinguish that the message is a replica, it responds with an
encrypted join accept message with the parameters used to evaluate the new
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session keys. So, after this moment, the legitimate node A sends messages
encrypted with the old session keys, while the server decrypts messages using
the new session keys, and vice versa.

Figure 3.1: Example of replay attack.

3.2 Join procedure problems

In spite of these mechanisms the join procedure presents some critical aspects.
In particular the LoRaWAN protocol:

1. doesn’t specify the numbers of DevNonce that must be registered by
the network server for each end device;

2. briefly and inadequately explains the policy of the network server in
the case of join request with previously used DevNonce;

3. doesn’t implement a mechanism that prevents replay attacks with the
join accept message.

We firstly analyze the first and second aspect that concern with join request
message and then we focus our attention on the third point that regards the
join accept message.

3.2.1 Problem with join request message

First of all we have to consider the frequency of join procedure per each end
device and how many join procedures, in average, each end device performs
in its life. We call fJ the number of valid join procedures per day per each



3.2. JOIN PROCEDURE PROBLEMS 17

end device, ND the number of previously used values of DevNonce stored by
the network server and Tr the time (in days) that a malicious node has to
wait in order to perform a replay attack, that is realized sending a previously
recorded join request message with a value of DevNonce not yet stored by
the network server. The relationship between these three quantities is

Tr[days] =
ND + 1[DevNonce]

fJ [DevNonce/days]
(3.1)

Obviously each end device owner prefers that Tr is, as possible, potentially
infinity. In order to reach this goal, assuming that fJ is an unchangeable
quantity, the bigger is the number of stored DevNonce per each end device
the larger is Tr. Since DevNonce is a 16 bits integer, the maximum value
of ND is 216 and Tr ≤ 216/fJ . However ND influences also the performance
of the join procedure. In particular, depending on the policy adopted in the
case of join request with previously used DevNonce, we have two types of
malfunctioning:

a) If the network server rejects join request messages with previously used
DevNonce, a legitimate request with already used DevNonce is dis-
carded;

b) If the network server switches off the end device that generates a request
with previously used DevNonce, that end device can’t work anymore.

Even if the LoRaWAN protocol specifies that requests with already used De-
vNonce (by the same end device) must be drop, some commercial devices,
instead of only drop invalid join request, switch off the node that has gen-
erated the invalid join request, probably hypothesizing a malfunctioning of
the device. Let’s analyze the probability of the two events.

Case a) If the network server only drops the requests with already used
DevNonce, we are interesting in the probability of generating a stored -
DevNonce given ND. Supposing to have a true random number generator
(that is the value of DevNonce has discrete uniform pmf in the alphabet
[1, . . . , N = 216]), and called S the set of stored DevNonce, with |S| = ND

the probability is

Pr[devK ∈ S] =
ND

N
(3.2)

We can observe that this probability is higher if ND is larger. So there exists
a trade-off between the probability in (3.2) and Tr.

In (3.2) we have not considered that, when an end device join a network
for the first time, |S| = NS < ND, that is the number of stored DevNonce
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is lower than ND. However in this case the equation in (3.2) still holds with
NS instead of ND.

Case b) If the network server implements the policy in which the end
device is switched off if a join request with a stored DevNonce arrived, it
is important to evaluate the probability to be turned off within a certain
amount of time. Let’s call devk the devNonce generated at the kth join
procedure, the probability of generating K different values of devNonce is

Pr[K different devNonce] = Pr[dev2 6∈ {dev1}]·
· Pr[dev3 6∈ {dev1, dev2}] · . . . · Pr[devK 6∈ {dev1, . . . , devK−1}] =

=
N − 1

N
· N − 2

N
· . . . · N −K + 1

N
=

K−1∏
i=1

N − i
N

=

=
Dn,k(N,K)

Nk
=

N !

(N −K)!NK
= D(K)

(3.3)

The probability that at the Kth join procedure we generate a DevNonce
equal to a previous value is

Pr[devK ∈ {dev1, . . . , devK−1}
⋂

dev1 6= dev2 6= . . . 6= devK−1] =

= Pr[K-1 different devNonce] · Pr[devK ∈ {dev1, . . . , devK−1}] =

= D(K − 1) · K − 1

N
= E(K)

(3.4)

The probability in (3.4) corresponds to the probability to be switched off at
Kth attempt if K ≤ ND + 1. If we consider also the case with K > ND + 1
the probability is

Pr[node is switched off at K|ND] =

= S(K) =

{
E (K) if K ≤ ND + 1

E (ND + 1)
(
1− ND

N

)(K−1−ND)
if K > ND + 1

(3.5)

Then the probability to be switched off within T attempts given ND is

Pr[node is turn off within K attempts|ND] = Poff = cdf (S(K)) (3.6)

that is the probability we were interesting in.
Let’s now consider typical values of fJ . In order to guarantee a correct

operation of the network, most societies prefers to refresh the session keys
every day, that is at least 1 valid join procedure per day is performed by each
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end device. Considering that in a Lora network an end device is designed to
work for 10 years, every end device in its life generates at least 10×365 = 3650
values of DevNonce. To be confident we multiply this value by a factor of 2
and we assume that an end device in its life generates 3650×2 = 7300 = Nmax

D

DevNonce.
Let’s firstly analyze the case a). Let’s suppose that the network server

decides to store ND < Nmax
D , so by (3.1) Tr < 10 years. Let’s also assume that

it is employing the policy of dropping the invalid requests. What happens
if a malicious node M performs a replay attack sent a previously recorded
join request after Tr days? Apparently this is not a big problem. Indeed
supposing that the legitimate end device A has generated ND + 1 DevNonce
from its origin, the first value of DevNonce generated and used by the device
is not been stored by the network server yet. Let’s consider also that M
has registered all the requests sending in these Tr days. Then M is able to
disconnect node A from the network using the first replayed message. Let’s
notice that the server, considering this request as valid, stores the value of
DevNonce. This cannot be seen as a big problem if the node A becomes aware
to be disconnected to the network and it performs a new (valid) join request.
However after this moment ND + 3 valid DevNonce has been generated from
the beginning. Supposing that the last generated DevNonce is different from
the second generated DevNonce, now M has two registered messages that can
be used to disconnect A (the second and the third). Even considering the
unlikely case that the last generated DevNonce by A is equal to the second
generated DevNonce, M has can send the third generated and registered join
request message. So potentially, after Tr, M is able to disconnect A from the
network for ever.

Obviously this analysis doesn’t consider what is the effective benefit that
M can have to wait for Tr days before disconnecting A. In practice Tr can be
of the order of years and the advantages of node M to perform this attack
can’t exist. However theoretically if Tr is lower than the life time of an end
device, that end device can’t work anymore after Tr days. So it seems to be
better to store all the previously used values of DevNonce for each end device.
But in this last case, considering ND = Nmax

D the probability of generating
a previously used DevNonce, using (3.2), is

Pr[devK ∈ S] =
Nmax
D

216
=

7300

65536
' 0.11. (3.7)

So it is relatively probable to generate an already stored used DevNonce in
the last days of life of an end device. However, dropping the requests, this
is not a big issue. Indeed the device will send a join request until a valid
DevNonce is created. So the choice of using ND ≥ Nmax

D should be the best
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solution.
More critical is the situation in case b), that is the network server switches

off the nodes that generate invalid join request. First of all we consider the
plot in Fig. 3.2 where we reported the probability in (3.6) for different values
of ND. We can notice that the larger is ND the higher is the probability to
be switched off earlier. So it seems to be better to choose a low value of
ND. However the reasoning in case a) is still valid in case b). So in order
to prevent that type of DoS attack, we must have ND ≥ Nmax

D . But, also
considering ND = N = 216, if we evaluate the average value in (3.4), we have

E [E(K)] =
N∑
k=1

kE(k) ' 319.5 (3.8)

and this means that in average after 320 join procedures is generated a pre-
viously used value of DevNonce. The value obtained differs of one order of
magnitude with respect of Nmax

D . Moreover, from Fig. 3.3, representing the
probability that a node is switched off after K generation of DevNonce, con-
sidering ND = N = 216, we can notice how rapidly the probability to be turn
off increase. For example the probability to be switched off within a year,
that is within K = 365× 2 = 730, is

Pr[node is switched off within a year] ' 0.98

Moreover another DoS attack is easy to implement if the policy of the
network server is to switch off the end devices that produce invalid join
requests. Indeed if the malicious node M registers all the join requests of end-
devices around it and sends them to the network server after a period, the
network server responds switching off all the nodes for which a replayed join
request has been sent. Considering that M can potentially registers the join
request messages of nodes located in a range of kilometers and the number
of these nodes can be elevated, this problem is potentially catastrophic for a
LoRa network.

In conclusion, at the state of the art, considering the presence of these
issues the network server must drop the invalid join requests, without switch-
ing off the node. Moreover the value of ND must be as higher as the estimate
number of generated and valid join procedure in the life of an end-device.
However in the next section, we study if considering a different implementa-
tion of the protocol, we achieve higher security.

3.2.2 Problem with join accept message

If for join request message the DevNonce has been introduced in order to pre-
vent replay attacks, for the join accept message a mechanism that prevents
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Figure 3.2: Probability to be switched off within K attempts.
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Figure 3.3: Probability to be switched off within K attempts with ND =
Nmax
D .

replay attacks seems to be lacking. Indeed the join accept message includes
the AppNonce, a 24 bits random number or unique ID that identify every
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message and that it is used to evaluate the session keys. The end-device,
however, doesn’t register the previously received value of AppNonce (as for
DevNonce) and so the AppNonce can’t be used as the DevNonce, that is
the end device doesn’t reject the messages with previously used AppNonce
and it can’t distinguish between registered messages and correct join accept
messages sent by the server. In other words, it is possible to perform a sub-
stitution attack. Let’s recall the situation described above, where there is
a node A sending a join request message and a malicious node M that is
able to register the messages sent and received by end-device. Let’s suppose
that at Day 1 A sends the join request message, called ‘jr1’, containing ‘De-
vNonce1’. Since ‘DevNonce1’ is a valid value, the network server responds
sending a join accept message, called ‘ja1’, containing ‘AppNonce1’, that is
registered by M. At day 2 A performs a new join procedure, sending ‘jr2’ that
contains the valid ‘DevNonce2’. Then the network server sends ‘ja2’ contain-
ing ‘AppNonce2’6=‘AppNonce1’ (with probability 224−1

224
). Let’s suppose that

M is able to hide ‘ja2’ to A and send the message ‘ja1’ in the expected slot
of time for the join accept messages. Then A receives the parameters con-
tained in ‘ja1’ that are ‘AppNonce1’, ‘NetID1’, ‘DevAddr1’, ‘DLSettings1’,
‘RxDelay1’ and ‘CFList1’. So A uses these parameters to evaluate the two
session keys. Instead the network server has used the values contained in
‘ja2’ and since at least ‘AppNonce2’ 6=‘AppNonce1’, network server and end
device have different session keys. Moreover the day2 ‘NetID1’ and/or ‘De-
vAddr1’ may have been assigned to another end device and the network can
have two different end device with the same NetID and/or DevAddr.

3.3 Solutions and alternative applications

We propose an easy solution to the substitution attack of join accept message
and we analyze two different applications of the DevNonce in the join request
message.

3.3.1 Join accept message

A costly solution can be that of adding the last generated DevNonce in the
join accept message. Since the network server replies with a join accept mes-
sage only if a valid DevNonce arrives, the DevNonce in join accept message is
unique, i.e. it is different from the previously used DevNonce and the attack
described beforehand is not possible. Moreover the end device records the
last used DevNonce and accepts the join accept message only if it contains
the valid DevNonce. This solution is costly because we have to add 2 octets
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to the join accept message. However an ack or another type of message that
confirms the procedure is succeeded is not necessary since the end device
sends another join request if the procedure fails.

3.3.2 Join request message

Considering the problems highlighted in the previous section we consider two
alternative applications:

1. DevNonce is a sequential number;

2. DevNonce is still random but the size is incremented to 24 or 32 bits.

The first proposal is derived analyzing the necessity (or not) for the De-
vNonce to be random. Indeed it seems to be more important that the pro-
cedure to generate the DevNonce doesn’t produce a value used in the past
rather than to guarantee the randomness of the values. The randomness of
DevNonce doesn’t seem to be relevant for the security of the standard, es-
pecially because this value is not encrypted. Indeed, even if it is used as a
“data” parameter to generate the two session keys, it is important that the
value is different for every generation of these keys but not that it is random.
So a pseudo-random number generator that doesn’t produce a previously
generated value or, easier, a sequential number could be adopted instead of
a random number. Furthermore, adopting a sequential number, it is not re-
quired to increment relevantly the end-device memory, because it is necessary
to store only the last used value.

However we have to consider that an end device can loose some network
parameters and also the last used value of DevNonce, that we call LDN (Last
DevNonce). If the server can’t communicate to the end device the LDN, the
end device is not able to join the network anymore. A solution provide that
a default value of DevNonce, for example the value 0, to send at the server
and communicate the loss of LDN. If the server received this default value,
it understands that end device has lost the LDN. Then it sends the value to
the end device, also not encrypted or encrypted with the AppKey. Since we
adopted a default value of DevNonce to communicate the loss of LDN, the
end device can send the value using the join request message.

Furthermore we have to consider that the end device can be unaware
to have lost the LDN or that, due to an internal error, the value written
in the register containing the LDN is different from the true LDN. If this
happens, sending a join request message, the end device doesn’t receive any
answer by the server, because the value of LDN is wrong. After k join request
without any answer, the end device can decide to set the value of DevNonce
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to its default value and sends a join request. However, by the serever side, it
may be better to introduce in the protocol a new type of message, different
from join accept message, used by the server only to reply to a join request
with default value. In this manner the server is not obliged to send the
other network parameters contained in the join accept message every time it
receives a request for the LDN.

It is important to stress the fact that, when this procedure is performed,
the value of DevNonce is not reset. Indeed if the value of DevNonce is reset a
malicious node M that records a join request with default value and it sends
the recorded message to the server, it is able to reset the value of DevNonce
at the server side but not at the side of the end device, because the node is
unaware of the request and, if it is implementing the class A, the network
server answer probably arrives in a time window different from the reception
slots, causing dysfunction of the network.

In spite of these considerations, using this procedure, another problem is
still present that makes the server vulnerable to a DoS attack. Indeed if a
malicious node M records the join request with default value, it forces the
server to respond at every request. If node M is able to send the request
with high frequency it can overload the server that must be answer at every
request. Furthermore the solution adopted to prevent replay attacks using
previously recorded join accept message, is useless in this case since the end-
device doesn’t know the last used DevNonce.

In conclusion, using a sequential number instead of a random number, we
prevent any possible problem related with invalid join request but we also
introduce other issues that must be solved.

Another possible solution to adopt consists on increasing the size of De-
vNonce to 24 or 32 bits (hypothesizing that the minimum increment is of
one octet). Considering the network server is implementing the policy of
dropping the invalid join request, and the size of DevNonce is 24 (32) bits
the probability in (3.2) is reduced of a factor 28 (216). In general, consider-
ing also the possibility of incrementing the DevNonce size as we require, the
probability in (3.2) is halfed at every added bit. This solution can be useful
if the estimated value of the valid join procedure performed by a node in its
life is higher than Nmax

D , so the probability in 3.7 is higher.
This solution is costly since we have to increment the size of join request

message. However observing that, at the state of the art, the size of join
request message is 18 bytes and the size of join accept message is 28 bytes,
changing the size of DevNonce from 16 to 24 bits should not be a problem.

Apart these problems, another possible DoS attack is possible if we use
the RegRssiWideband register as a random number generator, as recom-
mended in [6]. In the next chapters we firstly explain how a receiver works,
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focusing on how the RSSI (Received Signal Srength Indicator) is evaluated.
Successively we analyze the recommended procedure, for a LoRa end device,
for the generation of random numbers.
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Chapter 4

Radio receiver architecture

In the second part of this work, we analyze the recommended procedure for
the generation of a N -bit random number [6, Ch. 4], that is used to generate
for example the DevNonce. In order to clearly understand the procedure we
need to explain the architecture of the SX1272 receiver, focusing the attention
on the thermal noise introduced by the device and by the environment.

4.1 General theory

The basic function of a radio receiver is distinguish signals from noise. The
concept of noise covers both human-made and natural radio frequency sig-
nals. Human-made signals include all signals in the pass band other than
the one being sought. In communications systems, the signal is some form
of modulated (AM, FM, PM, OOK, etc.) periodic sine wave propagating as
an electromagnetic (i.e., radio) wave [14].

A basic form of noise seen in systems is thermal noise. Even if the am-
plifiers in the receiver add no additional noise (they will), thermal noise will
be found at the input due to the input resistance. If you replace the an-
tenna with a resistor matched to the system impedance and totally shielded,
noise still will be present. The noise is produced by the random motion of
electrons inside the resistor. At all temperatures above absolute zero (about
-273.16oC), the electrons in the resistor material are in random motion. At
any given instant, a huge number of electrons will be in motion in all direc-
tions. The reason why there is no discernible current flow in one direction is
that the motions cancel out each other, even over short time periods. The
noise power present in a resistor is

Pw = kTBR (4.1)
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where k = 1.38×10−23 J/K is the Boltzmann constant, T is the temperature
in Kelvin, R is the resistance in Ohm(Ω) and B is the bandwidth in Hz.

The SX1272 uses a superheterodyne receiver (Fig. 4.1). The purpose of
a this receiver is to convert the incoming RF frequency to a single frequency
where most of the signal processing takes place. The frontend section of the
receiver consists of the radio frequency amplifier and any RF tuning circuits
that may be used (A, B, and C in Fig. 4.1). In some cases, the RF tuning
is very narrow and basically tunes one frequency. In other cases, the RF
front-end tuning is broadband. In that case, bandpass filters are used. The
translator consists of a frequency mixer(D) and a local oscillator(E). This
section does the heterodyning. The output of the frequency translator is
called the intermediate frequency.

Figure 4.1: Radio receiver architecture [14].

The translator stage is followed by the intermediate frequency amplifier.
The IF amplifier (F, G, and H) is basically a radio frequency amplifier tuned
to a single frequency. The IF can be higher or lower than the RF frequency,
but it always will be a single frequency. A sample of the IF amplifier output
signal is applied to an automatic gain control (AGC) section (L and M).
The purpose of this section is to keep the signal level in the output more or
less constant. The AGC circuit consists of a rectifier and a ripple filter that
produce a DC control voltage. The DC control voltage is proportional to the
input RF signal level (N). It is applied to the IF and RF amplifiers to raise
or lower the gain according to signal level. If the signal is weak, then the
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gain is forced higher; and if the signal is strong, the gain is lowered. The
result is to smooth out variations of the output signal level. The detector
stage (I) is used to recover any modulation on the input RF signal. The type
of detector depends on the type of modulation used for the incoming signal.
Keyed CW signals will use a product detector. The output stages (J and K)
are used to amplify and deliver the recovered modulation to the user. If the
receiver is for broadcast use, then the output stages are audio amplifiers and
loudspeakers.

In a datasheet of a receiver, usually, the input signal voltage (or power)
is reported. Two forms of signal voltage are used for input voltage specifi-
cation: source voltage (VEMF) and potential difference (VPD). The source
voltage is the open terminal (with no load) voltage of the signal generator
or source, while the potential difference is the voltage appears across the re-
ceiver antenna terminals with the load connected (see Fig. 4.2). The relation
between VEMF and VPD is

VPD = VEMF
Rin

Rin +Rs

(4.2)

where Rin is the receiver antenna input resistance and Rs is the source resis-
tance. In matching condition (Rin = Rs) VPD = VEMF/2.

Figure 4.2: Receiver input voltage [14].

When the power input level is reported, instead of input signal voltage,
often it is written in dBm unit. This unit refers to decibels relative to one
milliwatt dissipated in a 50Ω resistive impedance.

Resuming the discussion about noise present in a receiver, usually it comes
in a number of different guises, but for sake of this discussion, we divide
them into two classes: sources external to the receiver and sources internal
to the receiver. One can do little about the external noise sources, for they
consist of natural and human-made electromagnetic signals that fall within
the passband of the receiver. Fig. 4.3 shows an approximation of the external
noise situation seen by receivers at different frequencies. One must select a



30 CHAPTER 4. RADIO RECEIVER ARCHITECTURE

Figure 4.3: Noise sources throughout the bands [14].

receiver that can cope with external noise sources, especially if the noise
sources are strong. Some natural external noise sources are extraterrestrial.

The receiver’s internal noise sources are determined by the design of the
receiver. Ideal receivers produce no noise of their own, so the output signal
from the ideal receiver would contain only the noise present at the input
along with the radio signal. But real receiver circuits produce a certain level
of internal noise of their own. Even a simple fixed-value resistor is noisy.
At any temperature above absolute zero (0K), electrons in any material are
in constant random motion. Because of the inherent randomness of that
motion, however, there is no detectable current in any one direction. In other
words, electron drift in any single direction is cancelled over even short time
periods by equal drift in the opposite direction. Electron motions therefore
are statistically decorrelated. However, a continuous series of random current
pulses is generated in the material, and those pulses are seen by the outside
world as noise signals. If a perfectly shielded 50 Ω resistor is connected across
the antenna input terminals of a radio receiver, the noise level at the receiver
output will increase by a predictable amount over the short-circuit noise level.
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Noise signals of this type are called by several names: thermal agitation noise,
thermal noise, or Johnson noise. This type of noise also is called white noise,
because it has a very broadband (nearly Gaussian) spectral density. The
thermal noise spectrum is dominated by mid-frequencies (104–105 Hz) and
essentially is flat. The term white noise is a metaphor developed from white
light, which is composed of all visible color frequencies. The expression for
the power pf this noise is

Pw =
V 2
w

R
= kTB (4.3)

where Pw is the noise power in watt(W).
The noise performance of a receiver or amplifier can be defined in three

different but related ways: noise factor, noise figure, and equivalent noise
temperature.

For components such as resistors, the noise factor (NF) is the ratio of
the noise produced by a real resistor to the simple thermal noise of an ideal
resistor. The noise factor of a radio receiver (or any system) is the ratio of
output noise power (Pw,out) to input noise power (Pw,in):

NF =
Pw,out
Pw,in

. (4.4)

To make comparison easier, the noise factor is usually measured at the stan-
dard temperature of 290K. The noise figure, instead, is the noise factor
converted to decibel notation

F = 10 log10(NF ) (4.5)

Finally the equivalent noise temperature is a means for specifying noise in
terms of an equivalent noise temperature; that is the noise level that would be
produced by a matching resistor (e.g. 50Ω) at that temperature (expressed
in degrees Kelvin). Note that the equivalent noise temperature, Te, is not
the physical temperature of the amplifier but rather a theoretical construct
that is an equivalent temperature producing that amount of noise power in
a resistor. The noise temperature is related to the noise factor by

Te = (NF − 1)T0. (4.6)

This analysis about noise doesn’t consider that thermal noise is a random
process where every sample is a Gaussian random variable with zero mean
and variance

σ2
w = kTRB (4.7)
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So at the receiver, at any time t, there is a noise voltage sample of value w(t)
with probability density function

pw(t)(x) =
1√

2πσ2
w

e
− x2

2σ2w . (4.8)

and with voltage noise power

Pw(t) =
w(t)2

R
. (4.9)

and in average the power of noise is given by (4.3).

4.2 SX1272 Receiver model

As we can see in the next chapter, we are interested on the mechanisms and
procedures that permit to evaluate the RSSI, because this value is exploited
for the generation of random numbers. In order to evaluate the theoretical
value written in the RSSI register, considering also the presence of noise, we
used the model of Fig. 4.4 as the receiver. In this model some assumptions
have been done:

• The antenna gain is 0dB.

• The electrical power is one fourth the electromagnetic power for the
matching condition.

• The receiver resistance is 50Ω.

• The value of maximum RF input power level reported in SX1272 datasheet
corresponds with the power of received electromagnetic wave.

• The electrical voltage assumes non negative values.

• The received signal has constant amplitude in time or it can be modeled
as a Gaussian random variable.

• The noise is due only to thermal noise.

• The noise temperature is due to temperature of environment and noise
figure of LNA.

• The gain of the receiver is due to the gain of LNA.

• The RSSI register is before the channel filters of the receiver.
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Figure 4.4: SX1272 receiver model.

• Other components of the receiver ( mixer, etc.) don’t influence the
RSSI value written in the register.

Let’s explain the model in Fig. 4.4. First of all we have to clarify that,
observing experimentally the values of RSSI written in the registers, it is
probable that the gain introduced by LNA is not considered for the evaluation
of RSSI, that is the voltage signal r(t) is not divided by

√
GLNA and P̂rfi is

almost smaller than Prfi by a factor GLNA. However, even if this observation
is false, for our purposes it is important to consider the attenuated signal
r(t) because probably and reasonably r(t) is the analog signal that is later
quantized. It is possible that also the factor due to the matching condition
and receiver resistance (2/

√
R) is not considered and the RSSI value is simply

evaluated through the square of r(t). However in our model we supposed that
the receiver consider the terms due to matching condition and resistance
impedance.

Because of the matching condition (Fig. 4.2 with Rs = Rin) the electrical
power due to received signal is

Pel(t) = Prx(t)/4. (4.10)

So the received power produces, in the device, an electrical voltage

v(t) =

√
Pel(t)

4
R (4.11)

that is then multiply by the square root of the gain of LNA. However every
electrical device generates thermal noise. For the superposition principle we
can consider the noise as an added voltage modeled as a Gaussian random
variable with zero mean and variance given by (4.7) and pdf given by (4.8).
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In this model, the highest noise contribution is given by LNA. The noise
temperature Tw of the receiver chain is

Tw = T0 + TLNA

T0 = 290K

TLNA = (FLNA − 1)T0

(4.12)

The LNA noise figure depends on the input signal power, because in order
to increment the precision, the LNA uses different gains (and so different
noise figures) based on the power input level. We report in Tab. 4.1 values
of different gains and noise figures for different levels with the default range
of input power for each level, where Ref is the reference level that can be set
as the sensitivity level S. (see also Fig. 4.5).

Figure 4.5: Different gain level of LNA [10].

Rx input Level Pin[dBm] Gain[dB] Noise Figure[dB]

Pin ≤ Ref + 14 0 7

Ref + 14 < Pin ≤ Ref + 19 −6 11

Ref + 19 < Pin ≤ Ref + 30 −12 16

Ref + 30 < Pin ≤ Ref + 43 −24 26

Ref + 43 < Pin ≤ Ref + 54 −26 34

Pin > Ref + 54 −48 44

Table 4.1: Parameters of Low Noise Amplifier for different levels[10]
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Usually the RSSI is not an instant value but it is evaluated averaging the
instant value of voltage in a time interval T , having a new value of RSSI every
T seconds. In the LoRa networks T = 1/B, where B is the bandwidth of the
transmitted or received signal. For example, choosing B = 125 kHz we have
T = 8 µs. Since the voltage signal is sampled, the RSSI is given averaging the
values of K samples. Considering the factor 4/R due to matching condition
and resistance impedance

RSSI =
1

K

K∑
n=1

4

R
(v(n) + w(n))2 =

1

K

K∑
n=1

z(n)2 (4.13)

where v(n) and w(n) are the sampled voltages due to signal and noise respec-
tively. Hypothesizing that the voltage due to the received signal is constant
in time, afterwards we will write v instead of v(n). Since z(n) is a Gaus-

sian random variable N ∼
(

2v√
R
, 4σ

2
w

R

)
, if we divide (4.13) by the variance of

z(n) and multiply by K, we obtain a noncentral chi squared random variable
NCχ2, that is

RSSI =
1

K

K∑
n=1

z(n)2 =
4σ2

w

KR

K∑
n=1

(
v + w(n)

σw

)2

=
4σ2

w

KR
NCχ2. (4.14)

In our case NCχ2 has K degrees of freedom and

λ =
K∑
n=1

E [z(n)]2 = K

(
v

σw

)2

E[NCχ2] = K + λ = K

(
1 +

(
v

σw

)2
)

var[NCχ2] = 2K

(
1 + 2

(
v

σw

)2
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where λ is called noncentrality parameter. Then the average and variance of
RSSI are
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w

KR
E[NCχ2] =

4
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(
σ2
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)
var[RSSI] =

(
4σ2

w
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)2

var[NCχ2] =
32σ2

w

KR2
(σ2

w + 2v2).

(4.16)

We can observe that the value of var[RSSI] decreases increasing K. So the
higher is the number of samples the lower is the uncertainty on the value of
RSSI. So the maximum uncertainty is obtained with K = 1.
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Furthermore the variance depends also on the square of the signal and
noise voltage, that is it depends on the power of the signal and noise; in
particular the variance is directly proportional to the power of the received
signal.

However the hypothesis that the received signal is constant can be too
tight. If the signal is not constant, it can be modeled as a Gaussian v ∼
N (mv, σ

2
v). In this case the equation of mean and variance in (4.16) are the

same with σ2
w + σ2

v instead of σ2
w and mv instead of v, i.e.
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4

R
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σ2
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v +m2
v

)
var[RSSI] =

32(σ2
w + σ2

v)

KR2
(σ2

w + σ2
v + 2m2

v).

(4.17)

Another hypothesis is that the device averages the voltage samples and
then compute the square of the mean voltage instead of averaging the square
of the voltage samples. In this case
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(4.18)

where, in general, z ∼ (mz, σ
2
z), ẑ ∼

(
mz,

1
K
σ2
z

)
and the RSSI is a noncentral

chi-squared with degree of freedom equal to 1, but with a variance that is
decreasing with the increment of K. So in all the cases, when there is a
received signal, the value of RSSI is a noncentral chi-squared.

Instead, when a received signal is not present, the value of RSSI depends
only on the noise and the RSSI isn’t a noncentral chi-squared because the
noise has zero mean and the noncentral chi-squared required λ > 0. How-
ever a noncentral chi-squared with λ = 0 corresponds with the chi-squared
distribution, i.e.

RSSI =
4

KR

K∑
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In this case mean and variance are

E[RSSI] =
4σ2

w

R

var[RSSI] =
32σ4

w

KR2
.

(4.20)
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Also in this case, if the average is evaluated on the voltage sample, instead
of squared voltage sample, K = 1.

However in the register we don’t write analog values of RSSI, but a quan-
tized version that uses a logarithmic scale (dBm) with step of 0.5 dB. Then
the probability that the value R is written in the register is

Pr [RSSI = R] =Pr[T1 < RSSI < T2] =

=
4σ2

z

KR

∫ T2

T1

pdf(NCχ2)dx
(4.21)

with T1 = 10(R−0.25−30)/10 and T2 = 10(R+0.25−30)/10 the two thresholds of the
level R of the quantization in linear scale and

pdf(NCχ2) =
1

2
e−(x+λ)/2

(x
λ

)k/4−1/2
Ik/2−1(

√
λx) (4.22)

where Iν(y) is a modified Bessel function of the first kind.
Unfortunately the SX1272 transceiver datasheet [10] doesn’t give any in-

formation about the number of samples that is averaged and so it is difficult
to predict the behavior of the transceiver theoretically. However in Figg. 4.6
and 4.7 we plot several chi-squared and noncentral chi-squared distribution.
In particular in Fig. 4.6 we plot the chi-squared distribution (hypothesizing
that the value of RSSI is given only by Gaussian noise) for different values
of K. The values set for K are multiple of 2, because in [10] for the RegRssi-
Value is reported that the number of samples for the evaluation of RSSI is
multiple of 2. Then is reasonable that also for RegRssiWideband (the reg-
ister that we are interested on for the generation of random numbers) the
number of samples is a multiple of 2. The value of RSSI in the x-axis is
given in dBm hypothesizing that the noise is thermal with T0 = 290K and
its variance is given by (4.7), and with the hypothesis that the average is due
on power sample. However if these hypotheses are wrong the distribution
doesn’t change, but it change the corresponding values of RSSI. In Fig. 4.7,
instead, we plot the noncentral chi-squared for different values of v

σ2
w

with
K = 64, hypothesizing to have a constant voltage v given by received signal
and thermal noise with variance σw. However the results are the same even in
the case the received signal can be modeled with Gaussian pdf, substituting
v with the mean of the total voltage signal and σ2

w with the total variance.
The value of K = 64 has been choice observing the similarity between the
quantized RSSI pmf with only thermal noise and the experimental pmf of
RSSI, reported in the next chapter, when the device is inside a metal box.
However using a different value of K we observed a similar behavior (see Fig.
4.8)
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Figure 4.6: Chi-squared distribution for different values of K.

However the trend of pdf of chi-squared and noncentral chi-squared can
be misleading if we compare them with the experimental pmf of RSSI values.
Indeed the value of RSSI is quantized: so we don’t have a pdf but a pmf and
the probability that the RSSI is equal to R is given in (4.21). In Figg. 4.9 and
4.10 we plot the theoretical pmf of quantized chi-squared and noncentral chi-
squared distribution with the parameters of pdf. Moreover in Fig. 4.11 we
plot the quantized noncentral chi-squared with K = 8 in order to compare the
trends with that with K = 64. We can observe that for both distributions
we have only one peak and the higher is K the more narrow is the peak.
Furthermore for the quantized noncentral chi-squared also if the ratio v

σw
is

higher, the peak is more narrow.
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Figure 4.7: Noncentral chi-squared distribution with K = 64 for different
values of v
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Figure 4.8: Noncentral chi-squared distribution with different values of K
and v

σw
= 10.

RSSI[dBm]
-120 -115 -110 -105 -100 -95

pm
f

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

K = 1
K = 2
K = 4
K = 8

RSSI[dBm]
-110 -105 -100 -95

pm
f

0

0.05

0.1

0.15

0.2

0.25

0.3

K = 16
K = 32
K = 64

Figure 4.9: Quantized chi-squared distribution for different values of K.
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Figure 4.10: Quantized noncentral chi-squared distribution with K = 64 for
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Figure 4.11: Quantized noncentral chi-squared distribution with K = 8.
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Chapter 5

Random number generation

A random-number generator (RNG) is a computational or physical device
designed to generate a sequence of numbers or symbols that cannot be rea-
sonably predicted better than by a random chance. Random number gen-
erators have applications in gambling, statistical sampling, computer simu-
lation, cryptography, completely randomized design, and other areas where
producing an unpredictable result is desirable. Generally, in applications
having unpredictability as the paramount, such as in security applications,
hardware generators are generally preferred over pseudo-random algorithms,
where feasible [17].

Another important application that requires RNG is the software cryptog-
raphy such as SSH, IPSEC, TLS, S/MIME, PGP, DNSSEC, and Kerberos.
These systems provide substantial protection against snooping and spoofing.
However at the heart of all cryptographic systems is the generation of secret,
unguessable (i.e. random) numbers. The lack of generally available facilities
for generating such random numbers (that is, the lack of general availability
of truly unpredictable sources) forms an open wound in the design of cryp-
tographic software. For the software developer who wants to build a key or
password generation procedure that runs on a wide range of hardware, this is
a very real problem. Note that the requirement is for data that an adversary
has a very low probability of guessing or determining. This can easily fail
if pseudo-random data is used that meets only traditional statistical tests
for randomness, or that is based on limited-range sources such as clocks.
Sometimes such pseudo-random quantities can be guessed by an adversary
searching through an embarrassingly small space of possibilities [16].

Concerning LoRaWAN protocol randomness or pseudo-randomness is re-
quired for:

• selection of the channel for every transmission;
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• implementation of ALOHA-type protocol;

• Slot randomization in case of Class B end-device;

• Generation of DevNonce and AppNonce.

• Generation of AppKey.

In particular only DevNonce must be a “true” random number that must be
generated from the end-device, while the other quantities are pseudorandom
and/or are generated by other entities, such as network server or applica-
tion provider. However for the generation of DevNonce, a LoRa end-device
requires a Random Number Generator.

In 2005 [RFC 4086][16] pointed out many pitfalls in using poor entropy
sources or traditional pseudo-random number generation techniques for gen-
erating such quantities. It recommends the use of truly random hardware
techniques and shows that the existing hardware on many systems can be
used for this purpose. It provides suggestions to ameliorate the problem
when a hardware solution is not available, and it gives examples of how large
such quantities need to be for some applications.

Generally speaking two different types of random quantities may be wanted.
In the case of human-usable passwords, the only important characteristic is
that they be unguessable. It is not important that they may be composed of
ASCII characters, so the top bit of every byte is zero, for example. On the
other hand, for fixed length keys and the like, one normally wants quanti-
ties that appear to be truly random, that is, quantities whose bits will pass
statistical randomness tests.

5.1 Theory

Usually an adversary can try to determine the key (the random number) by
trial and error. The probability of an adversary succeeding at this must be
made acceptably low, depending on the particular application. The size of the
space the adversary must search is related to the amount of key ”information”
present, in an information-theoretic sense. This depends on the number of
different secret values possible and the probability of each value, as follows

H(X) = E[− log2(P (X))] =
n∑
i=1

−P (xi) log2 (P (xi)) (5.1)

where H(X) is the entropy of a discrete random variable X with possible val-
ues {x1, . . . , xn} and probability mass function P(X). If there are 2n different
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values of equal probability, then n bits of information are present and an ad-
versary would have to try, on the average, half of the values, or 2n−1, before
guessing the secret quantity. If the probability of different values is unequal,
then there is less information present, and fewer guesses will, on average, be
required by an adversary. In particular, any values that an adversary can
know to be impossible or of low probability can be initially ignored by the
adversary, who will search through the more probable values first. Moreover
if for example, we consider a cryptographic system that uses 128-bits keys
derived using a fixed pseudo-random number generator that is seeded with
an 8-bits seed, then an adversary needs to search through only 256 keys (by
running the pseudo-random number generator with every possible seed), not
2128 keys as may at first appear to be the case. Only 8 bits of information
are in these 128-bits keys.

While the above analysis is correct on average, it can be misleading in
some cases for cryptographic analysis where what is really important is the
work factor for an adversary. For example, assume that there is a pseudo-
random number generator generating 128-bits keys, as in the previous para-
graph, but that it generates zero half of the time and a random selection from
the remaining 2128 − 1 values the rest of the time. The Shannon equation
above says that there are 64 bits of information in one of these key values,
but an adversary, simply by trying the value zero, can break the security of
half of the uses, albeit a random half. Thus, for cryptographic purposes, it
is also useful to look at other measures, such as min-entropy, defined as

min-entropy = − log2

(
max
i
P (xi)

)
. (5.2)

We can observe that we get 1 bit of min-entropy for our new hypothetical
distribution, as opposed to 64 bits of classical Shannon entropy.

Statistically tested randomness in the traditional sense is not the same
as the unpredictability required for security use. For example, the use of
a widely available constant sequence, such as the random table from the
CRC Standard Mathematical Tables, is very weak against an adversary. An
adversary who learns of or guesses it can easily break all security, future and
past, based on the sequence. On the other hand, taking successive rolls of
a six-sided die and encoding the resulting values in ASCII would produce
statistically poor output with a substantial unpredictable component. So
note that passing or failing statistical tests doesn’t reveal whether something
is unpredictable or predictable.

The National Institute of Standards and Technology in [15] specifies the
design principle and requirements for the entropy sources used by Random
Bit Generators (RBGs), and the tests for the validation of entropy sources.
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The development of entropy sources that provide unpredictable output is
difficult, and providing guidance for their design and validation testing is
even more so. An entropy source that conforms the Recommendation can
be used by RBGs to produce sequence of random bits or can be used by
pseudo-random bit generators as a seed value.

In order to build a cryptographic RBG we need:

• a source of random bits (the entropy source);

• an algorithm, typically a Deterministic Random Bit Generator (DRBG),
that accumulates and provides the random numbers to the application;

• a way to combine the first two components for the application.

5.2 Entropy source

Concerning the entropy source, the developer must be able to accurately es-
timate the amount of entropy that can be provided by sampling the noise
source, considering also the interaction of the entropy source with other com-
ponents, and taking care if the output from the noise source is biased.

Entropy sources tend to be very implementation dependent. Once one
has gathered sufficient entropy, it can be used as the seed to produce the
required amount of cryptographically strong pseudo-randomness, after being
de-skewed or mixed as necessary. Thermal noise (sometimes called John-
son noise in integrated circuits) or a radioactive decay source and a fast,
free-running oscillator would do the trick directly. This is a trivial amount
of hardware, and it could easily be included as a standard part of a com-
puter system’s architecture. Most audio (or video) input devices are usable.
Furthermore, any system with a spinning disk or ring oscillator and a sta-
ble (crystal) time source or the like has an adequate source of randomness.
All that’s needed is the common perception among computer vendors that
this small additional hardware and the software to access it is necessary and
useful.

In [15] it is described an entropy source model, composed by a noise
source, an optional conditioning component and a health testing component
(See Fig. 5.1).

Let’s now examine separately the three components of an entropy source
model.

Noise source The noise source is the root for the entropy source and
for the RBG. This is the component that contains the non-deterministic,
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Figure 5.1: Entropy Source Model [15].

entropy-providing activity that is ultimately responsible for the uncertainty
associated with the bitstrings output by the entropy source. The noise source
must be sampled (if it is analog) and digitized (if it isn’t produce binary data),
Moreover some post-processing operations may be fulfilled in order to reduce
statistical biases and increase the entropy rate of the resulting output, that
is called raw data. If the noise source fails to generate random outputs, no
other component in the RBG can compensate for the lack of entropy. In some
situations multiple noise sources may be combined in order to increase the
total entropy. If the noise sources are independent, their entropy assessments
can be added, however the total entropy is harder to estimate.

Conditioning component The optional conditioning component is a de-
terministic function responsible for reducing bias and/or increasing the en-
tropy rate of the resulting output bits.

Health tests Health tests are intended to ensure that the noise source and
the entire entropy source continue to operate as expected. The end goal is
to obtain assurance that failures of the entropy source are caught quickly
and with a high probability. Another aspect of health testing strategy is
determining likely failure modes for the entropy source and, in particular,
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for the noise source. Health tests are expected to include tests that can
detect these failure conditions.

5.3 Generation of random numbers with SX1272

The SX1272 transceiver features the LoRaTM long-range modem that pro-
vides ultra-long-range spread spectrum communication and high interference
immunity while minimizing current consumption. At the state of the art ev-
ery end-device joining a LoRa network uses this transceiver for the transmis-
sion and reception of the messages. A procedure to generate a random value
must be implemented by the end-device in order to create random numbers
required in the protocol, such as the DevNonce. Semtech Corporation [6,
Ch.4] for the generation of an N bits random number recommends, when the
end-device has the SX1272 transceiver, to perform N read operation of the
least significant bit of the register RegRssiWideband (address 0x2c). More-
over in order to perform the read operations the following parameters must
be set:

RSSI means Received Signal Strength Indicator and it is a measurement
of the power present in a received radio signal. In particular the value from
RegRssiWideband is derived from a wideband (4 MHz) signal strength at the
receiver input. In particular the LSB of this value constantly and randomly
changes for the presence of the noise channel.

This procedure for the generation of DevNonce is also demonstrated in
the source code of the end device implementing the LoRaWAN protocol,
that is available online from GitHub[7], in particular the function for the
generation of random value through RegRssiWideband register is present in
the file SX1272.c and the employment of that function for the generation
of DevNonce is documented in the file LoRaMAC.c. From the file we can
observe that a bit is generated every 1 ms, that is, in the hypothesis that the
entropy of the source is maximum, this procedure has a rate of 1000 bit/s.
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Modeling the procedure as in Fig. 5.1, we have that the noise source is
the RSSI of a wideband signal (4 MHz). This value contains a random com-
ponent due to radio channel behavior (reflections, fading, shadowing, inter-
ference) and noise (in particular thermal noise) introduced by the receiver’s
components. The output of the digitization process corresponds to the value
written in the RegRssiWideband register that goes from 0 to 127 dBm, with
step of 0.5 dB. Finally the operation of considering only the least significant
bit of the value written in the register corresponds with the post-processing
process or with the conditional component, that has the function to reduce
the biases of the entropy sources.

How we can immediately notice, in this procedure, health tests, ensuring
the entire entropy source continues to operate as expected, are missing. In
the following sections we analyze some conditions that can bring the entropy
source to not operate correctly.

Another critical aspect is the inadequate documentation about the pro-
cedure. In [15] the following requirements are necessary:

� Requirements on the Entropy Source

1. The entire design of the entropy source shall be documented, including
the interaction of the components[...]. The documentation shall justify
why the entropy source can be relied upon to produce bits with entropy.

2. Documentation shall describe the operation of the entropy source, in-
cluding how the entropy source works, and how to obtain data from
within the entropy source for validation testing.

3. Documentation shall describe the range of operating conditions under
which the entropy source is claimed to operate correctly (e.g., temper-
ature range, voltages, system activity, etc.). Analysis of the entropy
source’s behavior at the edges of these conditions shall be documented,
along with likely failure modes.

4. The entropy source shall have a well-defined (conceptual) security bound-
ary[...]. This security boundary shall be documented; the documentation
shall include a description of the content of the security boundary.[...]

Requirementes on the Noise Source

1. The operation of the noise source shall be documented; this documenta-
tion shall include a description of how the noise source works and ra-
tionale about why the noise source provides acceptable entropy output,
and should reference relevant, existing research and literature. Docu-
mentation shall also include why it is believed that the entropy rate does
not change significantly during normal operation.
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2. Documentation shall provide an explicit statement of the expected en-
tropy rate and provide a technical argument for why the noise source
can support that entropy rate. This can be in broad terms of where
the unpredictability comes from and a rough description of the behavior
of the noise source (to show that it is reasonable to assume that the
behavior is stable).

3. The noise source state shall be protected from adversarial knowledge
or influence to the greatest extent possible. The methods used for this
shall be documented, including a description of the (conceptual) se-
curity boundary’s role in protecting the noise source from adversarial
observation or influence.

4. Although the noise source is not required to produce unbiased and inde-
pendent outputs, it shall exhibit random behavior; i.e., the output shall
not be definable by any known algorithmic rule. Documentation shall
indicate whether the noise source produces IID data or non-IID data.
This claim will be used in determining the test path followed during
validation. If the submitter makes an IID claim, documentation shall
include rationale for the claim.

5. The noise source shall generate fixed-length bitstrings. A description of
the output space of the noise source shall be provided. Documentation
shall specify the fixed sample size (in bits) and the list (or range) of all
possible outputs from each noise source. �

None of these requirements (or at least few of them) are satisfied by the
procedure for generation of random numbers recommended by Semtech for
SX1272. In particular:

1. the design of the entropy source is not documented;

2. the range of operating conditions under which the entropy source is
claimed to operate correctly is not reported, especially the bandwidth
of the signal for which the value of RSSI is derived;

3. the security boundary are not defined;

4. documentation about entropy output and entropy rate is not reported;

5. methods for protecting the noise source from adversarial knowledge or
influence are not specified;

6. it is not specified if the procedure produces IID or non-IID data;
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7. there isn’t documentation about implemented tests;

8. there isn’t any citation to reports, articles or other literature about the
procedure;

9. a mechanism to verify continuously the correctness of the random num-
ber generation is not implemented;

10. there isn’t explanation about why the receiver must be set with the
recommended parameters;

The insufficient documentation about the procedure for the generation
of random number should bring any LoRa device’s owner, equipped with
SX1272 transceiver, to not used the recommended procedure. Anyway the
scarce documentation is not a proof that the procedure doesn’t work.

5.4 Hacking the SX1272 RNG

Theoretically speaking the randomness of the number generated through
the procedure described above could be not achieved if one of the following
situations happens:

a) The received power is so high that the receiver saturates;

b) The receiver doesn’t saturate but the value of RSSI doesn’t depend on
noise (or other random phenomena).

In case a) the RegRssiWideband register is storing the maximum value (all
ones in binary format) since the power present in the received radio signal
is higher than maximum value and its value remains constant in time. In-
deed, if saturation value is significantly exceeded, the probability that noise
brings the power below saturation is very low. In case b), since the RegRssi-
Wideband value is quantized, it is possible that in some circumstances, for
example with high and constant received power, the value written in the reg-
ister may change negligibly with high probability due to the noise, becoming
de facto constant in time (if the received power is constant).

In these two cases the LoRa end-device is susceptible to a Denial of Service
(DoS) attack. Indeed the value of DevNonce will be the same every time a
new join procedure is done by the end-device. In this case the network server
will discard the join request message because it has stored the previous values
of DevNonce used by the end device and, in order to prevent replay attacks,
it discards the request from that end device with the same DevNonce and
the end device is not able to join the network.
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5.4.1 Case a) Saturation of the receiver

We first analyze the case a). Through the Friis transmission equation the
power received is proportional to the power transmitted as

Pt[dBm] = Pr[dBm]−Gr[dB]−Gt[dB]− 20 log10

(
c

4πfd

)
(5.3)

where Gr and Gt are the receive antenna and transmit antenna gains respec-
tively, c = 3 · 108 m/s is the speed of light in free space, d is the distance
between the two antennas in meters and f is the frequency of radio trans-
mission in Hz. In the LoraWAN protocol the devices use the ISM band
(Industrial, Scientific and Medical radio band). In Europe this band has
frequency between 863 MHz and 870 MHz. So keeping the central frequency
f = 868 MHz the last term of (5.3) at a distance d = 1 m is

20 log10

(
c

4πfd

)
' −31.2 dB. (5.4)

For example, if the end device is a Waspmote of Libelium Comunicaciones
Distribuidas S.L [8][9], the receive antenna gain Gr can be of 0 dB or 4.5
dB. Considering that the dynamic range of the RSSI value is 127 dBm (as
reported in [10]), the maximum value of RSSI that can be written in the
register is

RSSImax[dBm] = S + 127 [dBm] (5.5)

where S is the sensitivity value, that is the minimum value of RSSI that can
be measured by the device. In the case of RegRssiValue for example, the
sensitivity value S is set to −139 dBm. However in the datasheet the value
of S for the RegRssiWideband is not reported, but we can imagine that its
value is similar to that of RegRssiValue. In every case, considering the gain
of antennas Gr = Gt = 0 dB, with an end-device transmitting at a distance
of 1 meter with power Pt = 14 dBm, the received is

Pr ' 14− 31.2 ' −17.2 dBm (5.6)

and it is possible to saturate the receiver if

S = −17.2− 127 = −144.2 dBm. (5.7)

This value is probable too small with respect of that set in the device. How-
ever if the transmitting device is a distance d = λ = c

f
' 34, 5 cm the

attenuation of the channel is

20 log10

(
1

4π

)
' −22 dB (5.8)
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and the received power is Pr ' −8 dBm. So in this case

S = −8− 127 = −135 dBm (5.9)

that is a possible value of S. Even if the value of S is higher, due to random
phenomena such as thermal noise, fading, etc. the receiver power sometimes
is higher than that evaluated through the Friis equation and the probability
to saturate cannot be negligible.

Unfortunately, in this analysis we don’t have consider that the SX1272
transceiver has a LNA with an AGC (Automatic Gain Control), that atten-
uates the signal with high power (see Tab. 4.1). In particular the higher
attenuation introduced is −48 dB. So considering also the contribution of
LNA the RSSImax value is difficult to achieve. However we have also to con-
sider the response time of the LNA: if a signal alternatively transmit with
high and low power, the saturation of the RSSI value is possible for few in-
stants. Furthermore it is also possible to obtain 0 values for few instant if,
after an high power signal transmission, we transmit a low power signal. We
examine in the next chapter a situation where the maximum and minimum
values of RSSI are written.

5.4.2 Case b) Constant value of RSSI

Finally we have to examine the case b), that is the receiver doesn’t saturate
but the value of RSSI doesn’t depend on noise. Since the RegRssiWideband
register writes value of RSSI is quantized with a step of 0.5 dBm, i.e. a
non-linear quantization is performed, the more is the received power the
more power is needed to go from one power level to an adjacent one. So,
theoretically, if an high power is received, the value written in the RSSI
may not depend on noise. However, through the equation of RSSI variance
in (4.16) , we can observe that the variance is directly proportional to the
power voltage, as it is for the size of levels using a logarithmic scale. Indeed
supposing to have the quantized value R (in dBm) of RSSI, the size of the
Rth level, in linear scale, is

size[Rth level] = 10(R−30+0.25)/10 − 10(R−30−0.25)/10 =

= 10R−30(100.025 − 10−0.025) = RW · L [W ]
(5.10)

where the factor −30 has been inserted in order to have the value of size
in watt, RW is the value written in the register in watt and L = 100.025 −
10−0.025 ' 0.115 is the factor of proportionality between the value of RSSI and
the size of that level. So the choice of a logarithmic scale for the quantization
of RSSI seems to be coherent with the equation of variance of RSSI in (4.16),
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that is since variance is directly proportional to the voltage power, it is
reasonable to choose a non-uniform size for the quantization levels, but a
logarithmic scale that is also proportional to the voltage power.

However, observing Figg. 4.9, 4.10 and 4.11, we can notice that some-
times there are few values of RSSI that are obtained with a non-negligible
probability and, especially, one value is obtained with an high probability
(> 1

2
). Considering the step of 0.5 dB we have

P [0] = Pr[mod(RSSI, 1) = 0]

P [1] = Pr[mod(RSSI, 1) = 0.5]
(5.11)

where mod(RSSI, 1) is the remainder after division (in this case is the frac-
tional part). This quantization of the distribution of RSSI can bring some-
times to a non-uniform probability to generate a 0 or 1 bit. Taking, for
example, the plot of pmf in Fig. 4.10 with v

σw
= 10 and K = 64 we have

P [0] ' 0.9

P [1] ' 0.1.
(5.12)

This is the worst case scenario that we have analyzed. Analyzing, instead,
the best case scenario, that is K = 1 and only nois voltage we obtained

P [0] ' 0.5

P [1] ' 0.5.
(5.13)

However, not knowing some parameters of the receiver (such as the number of
samples used for the evaluation of RSSI), we don’t know which are the theo-
retical pmf’s that is possible to achieve. Moreover in this analysis we haven’t
consider the presence of noises or signals that can’t be model as a Gaussian
random variable. In the next chapter we will analyze the experimental RSSI
pmf’s in several situations, in order to evaluate if the theoretical model is
correct and also if the probability to generate a bit is uniform. Furthermore
we will also analyze the experimental pmf of DevNonce, in order to evaluate
if the distribution is quite uniform.



Chapter 6

Experimental results

In this chapter we analyze experimentally the values of RSSI written in
the register RegRssiWideband and DevNonce generated by an end-device,
equipped with SX1272 transceiver, in a domestic environment. The device
used for the experiments is a WiMOD SK-iM880A [18]. In particular we ob-
serve if the recommended procedure for the generation of random numbers
[6] works well in these situations:

• without any device transmitting in the proximity of the WiMOD;

• putting the receiver inside a metal box;

• with another WiMOD transmitting in LoRa mode at a distance of 1 m;

• with another WiMOD transmitting in LoRa mode or OOK mode at a
distance of λ ' 35 cm.

Let’s see in the next sections, case by case, what we have obtained.

6.1 WiMOD without jammer

In this situation the RSSI value obtained should concern thermal noise or
interfering signal of the environment. We collected 891840 values. In Fig.
6.1 we reported the pmf of the values.

First of all, the values in x-axis is the integer number written in the
register, that doesn’t correspond with the value of RSSI but it is linked
through the equation

RSSI = S +
R

2
+ AAGC [dBm] (6.1)
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Figure 6.1: Pmf of the R values obtained without any device transmitting in
the proximity of the WiMOD

where RSSI is the value of RSSI that arrived at the receiver and attenuated
by the AGC, S is the sensitivity level, AAGC is the attenuation introduced
by the AGC and R is the value written in the register.

From Fig. 6.1 we can observe a trend that may be compatible with quan-
tized noncentral chi-squared random variable, even if there are secondary
lobes that may be due to interfering signal. In particular, comparing the
experimental values with theoretical pmf’s in Fig. 4.9, observing the prob-
ability of the most probable value (about 0.2), we have a similar value of
probability with K = 32 or K = 64.

For the generation of random numbers, we are interested in the probabil-
ity of generating a 0 bit and a 1 bit, and also in the probability to generate
the sequence ‘00’,‘01’,‘10’,‘11’ in order to evaluate also the correlation on the
bit generation. We reported the obtained probability in Tab. 6.1.

We can observe that the probability to generate a 1 bit and a 0 bit is
slightly unbalanced and it is more probable to generate a 1 bit instead of
a 0 one. This result is in contrast to that obtained theoretically: indeed in
case of only noise voltage, for value of K from 1 to 64 we obtain a uniform
probability on generation of single bit. So in this case the displacement can
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Parameter Value

# of collected values 891840

P [0] 0.468

P [1] 0.532

P [00] 0.219

P [01] 0.249

P [10] 0.249

P [11] 0.283

Most probable value 15

Maximum probability 0.21

Table 6.1: Probability of generating the specified sequences of bits and other
parameters without jammer.

due to secondary lobes and saturation (both under the sensitivity level and
over the maximum level). Indeed a characteristic aspect that we observed is
that, when there aren’t devices transmitting, the maximum written value is
31, as if the designers decide to use only 5 bits to register the value, when
no signals arrive. So, in this situation, the value 31 should be considered as
the saturated value.

Observing instead the other probabilities two distinct generation of a bit
seem to be independent. Indeed, if two consecutive generations of a bit are
independent

P [00] = P [0]2 = 0.4682 = 0.219

P [01] = P [0] · P [1] = 0.468 · 0.532 = 0.249

P [10] = P [1] · P [0] = 0.532 · 0.468 = 0.249

P [11] = P [1]2 = 0.5322 = 0.283

(6.2)

and these values are equal (with approximations) to that obtained experi-
mentally.

We have also observed the trend of pmf with time, in order to evaluate
if the behavior is time-varying. The procedure is to consider one thousand
consecutive samples of R and plot the pmf of the values. We have observed
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that the pmf doesn’t change behavior with time. In particular the most
probable value remains 15 (rarely is 14) and secondary lobes are always
present (see Fig. 6.2).
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Figure 6.2: Dependence of R pmf with time.

Let’s now examine how the unbalanced probabilities influence the gener-
ation of DevNonce. We collected one milion sample of DevNonce in order
to have on average 15 generated DevNonce for each value. Two important
parameters for a random number generator are entropy and min-entropy,
defined respectively in (5.1) and in (5.2). In Tab. 6.2 we sum up the most
important features. Even if the probability to generate a bit is slightly un-
balanced the procedure reaches an entropy that is close to the theoretical
bound, 15.9 bits instead of 16; so, on average, every number is repeated ev-
ery 215.9 ' 61147 times. However, for the generation of random numbers,
as seen in the previous chapter, it is more important the parameter called
min-entropy. In this realization we obtained the value 14.2 bits. Having a
min-entropy of 14.2 bits means that the most probable value appears on aver-
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age every 214.2 ' 18820 generations instead of 216 = 65536. Since the number
of generated DevNonce in the life of a LoRa end-device is similar to that esti-
mated in Chapter 3, on average the most probable value is regenerated after
2.6 lives (18820

7300
).

Finally we have also evaluated the averaged 1st regeneration of a De-
vNonce, defined as the first value that has been already generated. In order
to have an averaged value with one realization, we divide the collection in
subsets of size S = 7300. The size has been chosen considering the analysis
performed in section 3.2. In this manner the value is evaluated averaging
Nsubset regeneration values, with

Nsubset = b# of collected values

S
c. (6.3)

For example, with 106 collected values, we have Nsubset = 136. We can
observe that the averaged value in Tab. 6.2 is almost equal to that evaluated
theoretically in (3.8) with a uniform probability of bit generation.

Parameter Value

# of collected values 1000000

Entropy 15.90

Min-entropy 14.20

Most probable value 49151

Least probable value 4357

1st regeneration 320.6

Table 6.2: Characteristics of collections of DevNonce without a jammer.

The presence in the R distribution of secondary lobes that are not present
in the theoretical distributions requires to verify if there are interference in
the environment, that brings these results. For this reason, in order to isolate
the system from the environment as much as we can, in the second case we
put the device in a metal box (that is a Faraday cage).
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6.2 WiMOD in a metal box

In order to evaluate if the secondary lobes are due to interfering signal in the
environment, we put the device inside a metal box, in order to isolate the
system from electromagnetic waves as we can. Unfortunately we don’t have
possibility to put the WiMOD inside an anechoic chamber. As in the previous
case we evaluate the probability of generating 0, 1, 00, 10, 01, 11 (reported in
Tab. 6.3). Fig. 6.3 reports the pmf of R values.
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Figure 6.3: Pmf of the R values obtained putting the WiMOD inside a metal
box.

Also in this case the most probable value is 15 and secondary lobes are
present. Then we conclude that, probably, secondary lobes are not caused by
external signals. Then we suppose that secondary lobes are caused by elec-
tromagnetic waves or other non-thermal (and non-Gaussian) noise generated
by the end-device. However, another possible hypothesis is that the pmf is
influenced by AGC and its ability to attenuate the power. Indeed in (6.1)
the same value of R can be achieved with two or more different values of
RSSI if the level of attenuation AAGC is different. So, since in the theoretical
analysis we have considered the distribution of RSSI, while in the experi-
mental results we plot the pmf’s of R, it is evident that the distributions are



6.2. WIMOD IN A METAL BOX 61

different.

Moreover, in the metal box, the probabilities in Tab. 6.3 are equal to
that reported in Tab. 6.1, with unbalanced probability to generate a 1 bit.

Parameter Value

# of collected values 998453

P [0] 0.468

P [1] 0.532

P [00] 0.219

P [01] 0.249

P [10] 0.249

P [11] 0.283

Most probable value 15

Maximum probability 0.21

Table 6.3: Probability of generating the specified sequences of bits and other
parameters with WiMOD in a metal box.

Let’s now examine the generation of DevNonce through Tab. 6.4.

Parameter Value

# of collected values 1481487

Entropy 15.92

Min-entropy 14.50

Most probable value 57327

Least probable value 2325

1st regeneration 312.7

Table 6.4: Features of DevNonce’s collection with WiMOD in a metal box.
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Also for DevNonce, the results are similar to those obtained in the previ-
ous section, in particular the values of entropy and min-entropy. We can also
observe that in both situations the least probable values are values contain-
ing more 0 bits than 1 bits (2325 has 5 ones and 11 zeros, 4357 has 4 ones
and 12 zeros) and conversely the most probable values contained more 1 bits
(49151 has 15 ones and 1 zero, 57327 has 14 ones and 2 zeros), reflecting the
probabilities obtained for the generation of zeros and ones with R.

Finally, also with the WiMOD in the metal box, we obtain a value of 1st

regeneration congruent with that evaluated in (3.8).

6.3 WiMOD with jammer at a distance of

1 m

Even if also without a jammer we have seen that the probability to generate
a 1 bit is slightly higher than that of generating a 0 bit, we want to analyze
if the value of R can be made more biased, using a jammer. In this case, if
the transmitted signal is constant, we can increment the ratio v

σw
obtaining a

larger displacement on the probability to generate a bit (as seen in the previ-
ous chapter). In our case the jammer is another WiMOD SK-iM880A, that is
transmitting in LoRa mode with power of 14 dBm. We collected the values
of R in three different time instants and the values of DevNonce in other
two instants. Indeed in a domestic environment the channel is time vary-
ing. Moreover we collected the values in different rooms and in some cases
we transmit a random message, while in others we transmit a string of ones.
Then the collected data present some differences, that sometimes are difficult
to explain theoretically. Furthermore, due to the particular implementation,
we transmit finite messages and from one message to the following we have
a break of the transmission, that causes anomalies on the collected values.

Let’s firstly examine the values of R. In Tab. 6.5 we reported the proba-
bilities explained beforehand. The results can be also understood observing
Fig. 6.4. Also in this case, two consecutive generations of a bit seem to be
independent. However, with a jammer, the displacement between P [0] and
P [1] is incremented, in particular in the second experiment. The fact that
in the first and in the second experiment P [0] > P [1], while in the third one
is the opposite, is probably due both to distance imprecision and differences
on the environment, that change the most probable value of R.

Furthermore from Fig. 6.4 we can observe that in some circumstances,
more than one peak are present. The first peak around the value 15 is due
to the fact that the jammer periodically stops the transmission, so at the
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Figure 6.4: R values with a jammer at a distance of 1 meter.

WiMOD, that is measuring R, the jamming signal doesn’t arrive and the
value of R is due only to noise. An interesting aspect that we have observed
is that, after the stop of the transmission, the following value measured of R,
sometimes, is very high (see Fig. 6.5). As we will demonstrate in the next
chapter, this behavior is motivated by the presence of LNA and automatic
gain control (AGC): when there aren’t electromagnetic waves arriving at the
device, the LNA is set with maximum gain; at the beginning of transmission
the gain of LNA is still set with the maximum gain and it is not attenuating
the strong signal, since the response time is not instantaneous and the value
written in the register is near the saturation value. A first evidence of this
hypothesis is that we never measured two consecutive high values: indeed
since the saturation is due to a delayed response in the AGC, after a while
the measured values of R will be far from the saturation level because, as
we have seen theoretically in subsection 5.4.1, with another LoRa device
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Parameter 1st experiment 2nd experiment 3rdexperiment

Message of jammer not known string of 1’s string of 1’s

# of collected values 102720 999998 2000000

P [0] 0.554 0.587 0.446

P [1] 0.446 0.413 0.554

P [00] 0.309 0.346 0.203

P [01] 0.245 0.241 0.243

P [10] 0.245 0.241 0.243

P [11] 0.201 0.172 0.311

Most probable value 40 32 35

Maximum probability 0.20 0.22 0.25

Table 6.5: Probability of generating the specified sequences of bits with a
jammer at a distance of 1 meter.

(that is with transmission power of 14 dBm) is almost impossible to saturate
the receiver when the maximum level of attenuation is set. However, since
this phenomenon is due to received power difference between the periods
of transmission and the periods of silence, we will examine in depth this
behavior in the next section, where, putting the jammer closer to the receiver,
the phenomenon will be enhanced.

Regarding the probability of the most probable value, only in the third
case we have obtained a value slightly higher than that with only noise,
while in the other cases the results are similar to that of previous scenario.
These results seem to be compatible with the quantized pmf of noncentral
chi-squared distribution with a low ratio v

σw
, as if the task of the AGC is that

of maintaining small this ratio.

Another important aspect is that with a not known message we have
obtained a broader peak than those obtained with a string of ones: this is
probably due to the higher entropy of the message, that is translated with
an higher variance of the amplitude of the transmitted electromagnetic wave,
and so of the received power. Furthermore when the message has low entropy,
the AGC works better and, on average, the measured values of R is lower
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Figure 6.5: Consecutive measurements of R value. We can observe that after
a low value (14) we obtain a value closer to the saturation value (251).

(32÷ 35 against 40). Finally we have also observed that the initial measured
values of R is slightly higher than the average value, as if initially the AGC
less efficiently attenuates the high power signals.

Let’s now examine the generated values of DevNonce. As said before we
collected the values in two different moments. In the first case the jammer
has transmitted an unknown message, while in the second the message is a
string of ones. In Tab. 6.6 we sum up the most important aspects of the
collections.

Also with a jammer at a distance of 1 m the entropy and min-entropy
values are similar to that without a jammer, sometimes even better. In
particular the best values are achieved when a string of ones is transmitted,
that also corresponds with a longer observation time. So considering the
time varying channel and other random phenomena, it is probable that the
longer is the observation time, the higher is the entropy.

Concerning the last parameter in Tab. 6.6, instead, we can observe that
the slightly increment of the non-uniformity on the bit generation probability
brings a slightly decrease on the value of 1st regeneration, with respect of that
evaluated theoretically, even if the reduction is not so relevant (around 5%).

However, at a distance of 1 meter, other phenomena that are different
from thermal noise seem to be still relevant. For this reason, in the next
section, we set the jammer closer to the receiver, in order to decrease the
contribution of this phenomena.
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Parameter 1st experiment 2nd experiment

Message of jammer not known string of 1’s

# of collected values 991849 1685034

Entropy 15.87 15.95

Min-entropy 13.87 14.64

Most probable value 65535 81

Least probable value 149∗ 64828

1st regeneration 304.8 304.3

Table 6.6: Characteristics of collections of DevNonce with jammer at a dis-
tance of 1 meter.∗There are other values with the same probability.

6.4 WiMOD with jammer at a distance of λ

In order to better verify if the theoretical analysis is coherent with exper-
imental results we set the jammer at a distance of λ ' 35 cm in order to
reduce phenomena as fading, reflections, etc. In this case we collected the
values in three different moments with different settings. In the first case we
have transmitted in LoRa mode a not known message; in the second we have
transmitted in LoRa mode a string of ones; finally in the third experiment
we have transmitted in OOK mode a string of ones.

The results obtained in this case are more different from each other. For
example in the first case we obtain a quite uniform probability to generate a
0 or a 1 bit, due probably to the variance of the message.

Furthermore, as seen in previous sections, since the variance of the mes-
sage is higher, the AGC works with low efficiency and we obtain a relatively
high value of R with respect of the other two experiments (75 against 36÷40).
Moreover if the variance of the message is small the most probable value of
R is quite similar to that obtained at a distance of 1 m in the same setting.
This confirms the hypothesis that AGC try to set the receiver in the same
condition (of variance and mean), independently on the received power; but
if the variance of message is relevant the AGC has more difficult to set the
receiver in the ’standard condition’.

In the second experiment, instead, we obtained an unbalanced probability
of generation of bits, with values similar to that obtained with the jammer
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Figure 6.6: R values with a jammer at a distance of λ meter.

at a distance of 1 meter. However the most relevant result that we have
achieved is that the most probable value has a considerable increment of the
probability (0.35 against 0.25), as if in this case the ratio v

σw
is higher than

previous settings and conditions.

In order to still increment the ratio v
σw

, in the third experiment we set the
OOK modulation, transmitting a string of ones, in order to have a constant
received power as possible as we can. Unfortunately in this case we don’t
have obtained the expected results. First of all the probability of generating a
0 bit and the probability of generating a 1 bit are consistent with the results
obtained without a jammer, so we don’t increment the probability of the
most probable value (as seen theoretically incrementing the ratio v

σw
). An

hypothesis is that with a message without entropy, the AGC is able to reduce
adequately the power of the received signal, in order to have the preferable
ratio v

σw
. Moreover, since the received power is constant, the AGC doesn’t
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Parameter 1st experiment 2nd experiment 3rd experiment

# of collected values 992525 2000000 2000000

Type of modulation LoRa LoRa OOK

Type of message not known string of ones string of ones

P [0] 0.494 0.569 0.530

P [1] 0.506 0.431 0.470

P [00] 0.244 0.325 0.283

P [01] 0.25 0.245 0.248

P [10] 0.25 0.245 0.248

P [11] 0.256 0.186 0.222

Most probable value 75 36 40

Maximum probability 0.25 0.35 0.25

Table 6.7: Probability of generating the specified sequences of bits and other
parameters with a jammer at a distance of λ.

have to change level of attenuation and we can obtained conditions that are
more stable even of that without a jammer.

Another important aspect that we have already observed with the jammer
at distance of 1 m and that now is more evident, is the saturation of the R
value. As we can see from Fig. 6.8, after a low value of R (12) in the
register is written the maximum value. As outlined in the previous section,
the jammer periodically stops the transmission for a short period of time.
We have hypothesized that the stop in the transmission, that we will call
silence period, is due to the implementation of the jammer software. Indeed
the jammer periodically transmit a 10 byte message, through a while cycle
and between the nth and nth + 1 cycle there is a transmission break. In
order to verify if the hypothesis is correct we transmit 1000 messages and
we evaluate if we have 1000 silence periods. We mark as a silence period a
value of R < 32, since in section 6.1 the value of R never exceeds this bound.
Moreover, observing all the distributions of R with the jammer at distance of
1 m and at distance of λ, there is always a notable difference between P (31)
and P (32), as if there is a threshold between these values that marks the
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values due to noise from that due to received signal. However sometimes we
have observed two consecutive values under 32 (but never more than two):
in this case we evaluate these values as a single silence period. With this
procedure we have obtained exactly 1000 silence periods and our hypothesis
is verified. Moreover we always have measured a low value of R every 26 or
27 values of R, excluding, obviously, the consecutive values (see Fig. 6.7).
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Figure 6.7: Trend of R with time. We can observe the periodicity of low
values.

Then, in order to proof that the high values of R is due to a delayed
response time of the AGC we have counted how many values greater or equal
to 200 are registered after a silence period, that is after a value smaller than
32. However we have only consider the collection where we have transmitted
a string of ones in LoRa mode. Indeed, in the simulation with unknown
message, we have observed more different behaviors, due probably to the
variance of the message, while, in OOK mode, we have measured few high
values. So at distance of 1 m, summing the results of second and third
experiment, we have founded 212 values greater or equal to 200 and all these
values has been registered after a silence period. At a distance of λ we have
observed the same behavior, that is we have counted 5683 values greater or
equal to 200 and all of these values arrived after a silence period. Moreover
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33 of these values correspond with the saturation value (255).
However, even if high values of R is due to a delayed response time of

the AGC, from Fig. 6.7 we can observe that we don’t always have an high
value of R after a silence period. We have motivated this feature with the
fact that R is an averaged value. Indeed, in order to obtain an high value
of R, the majority of the averaged samples of a single measurement of R
must be high: this means that the samples of a single value of R must be
aligned with the beginning of the transmission (and simultaneously the AGC
must not have update its attenuation level). If, for example, the value of R
is evaluated averaging 32 samples and the first 20 samples are measured
during the silence period, while the remaining ones are measured when the
jammer is working, we don’t obtain an high value of R. This hypothesis is
confirmed through the trend of R with time in Fig. 6.9: we can observe
that the trend presents a periodicity in time, and also the high values are
obtained periodically. This means that, periodically, the samples of a single
measurement of R are aligned with the beginning of transmission and an
high value of R is obtained. In Fig. 6.10 we can see better the values over
250 and under 32.

Furthermore, during a silence period, we can also achieve a value of R
that is under the sensitivity level and a 0 value can be written. Indeed, a
delayed response time of the AGC can also permit to write a value under the
sensitivity level: if the AGC is strongly attenuating an high power received
signal, that later disappears, in the register will be write a 0 value with a
consistent probability, because the AGC is strongly attenuating a signal due
to noise (that is very weak). However also in this case there must be the
alignment of silence period with the samples of a single measurement of R.
Considering the experiments where we have transmitted a string of ones in
LoRa mode, we have founded 28418 zero values after a value larger than 31
out of 38859 zero values (73%) in the experiments with jammer at a distance
of 1 m, while 1475 zero values after a value > 31 out of 2482 zero values
(60%) at a distance of λ.

This behavior suggests us a possible attack that writes alternatively a
value under the sensitivity level and a saturated value. Indeed if we are
able to transmit pulses with appropriate power, duration and gap it may be
possible to periodically saturate the receiver when the pulse is transmitted,
and then to record a 0 value during the silence period. In this manner the
pulses causes a generation of a 0 bit (given by the value R = 0) followed
by a 1 bit (given by R = 255), and vice versa. In our experiments we have
counted a low number of saturated values and a low number of 0 values, but
considering that these results were unexpected, probably through a specific
procedure, may be possible to obtain more saturated and 0 values.



6.4. WIMOD WITH JAMMER AT A DISTANCE OF λ 71

Figure 6.8: Consecutive measurements of R value. We can observe that after
a low value (12) we have the saturation of the R value (255).
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Figure 6.9: Trend of R with time. We can observe the periodicity of high
values.

Let’s now analyze the DevNonce generated in the same three settings
used for the R.

In the first case, where the message sent is not known, the results are
similar to that with a jammer at a distance 1 m and that without a jammer.
Indeed we reach an entropy closer to the theoretical bound and a value of
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Figure 6.10: R values over 250 and under 32.

Parameter 1st experiment 2nd experiment 3rd experiment

# of collected values 1582641 2000000 2000000

Type of modulation LoRa LoRa OOK

Message of jammer not known string of ones string of ones

Entropy 15.94 15.84 15.97

Min-entropy 14.10 12.66 15.07

Most probable value 0 65535 352

Least probable value 44156 14789 13184

1st regeneration 293.8 271.1 321.3

Table 6.8: Characteristics of collections of DevNonce with jammer at a dis-
tance of λ meters.

min-entropy consistent with the other values of min-entropy obtained in the
previous situations. However the fact that the most probable value is 0
seems to indicate that the probability of generation of a bit is biased with
P [0] > P [1], as the least probable value contains more 1 bits than 0 bits,
while, in the same situation, in the collection of R we measured P [0] ' P [1].

In the second case, instead, the most relevant value is the min-entropy,
that is lower than in the other cases. A min-entropy of 12.66 means that the
most probable value is generated, on average, every 6451.6 procedures.



6.4. WIMOD WITH JAMMER AT A DISTANCE OF λ 73

In the third case we achieve the best conditions for the generation of
DevNonce. Indeed we obtained the highest measured values of entropy and
min-entropy, respectively 15.97 and 15.07 bits. These results are consistent
with the hypothesis that the AGC is able to set the best conditions for the
generation of random numbers (i.e. low ratio v

σw
) with the level of attenuation

that doesn’t change since the received power is constant.
However, comparing the parameters obtained in the second experiment,

we have to discard the hypothesis made in section 6.3, i.e. it is not true
that a longer exposition entails an higher entropy. Indeed the lowest value
of min-entropy has been achieved with the same exposition time of the third
experiment and second experiment of section 6.3.

Finally, with a jammer at distance λ, the reduction of the 1st regeneration
value is more relevant in the first and second experiment. The decrease is
even of 18% in the second experiment (that with low value of min-entropy).
In the third experiment, instead, the value of the last parameter in Tab. 6.8
confirms the goodness of generation in this situation, since it is almost equal
to that evaluated theoretically in (3.8).
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Chapter 7

Conclusion

We can divide the work of this thesis in two parts: the first concerns the
study of LoRaWANTM protocol and the analysis of join procedure; the second
is about the recommended method for the generation of random numbers
for SX1272, that, at the state of the art, is the only transceiver used in
LoRaWANTM protocol. The two topics are linked by the DevNonce, that is
a 16-bit random numbers used in the join request message.

In the first part, after an introduction on LoRaWAN protocol and net-
works, with particular attention on security mechanisms, we highlighted the
problems related with the join procedure, due both to non-deepened aspects
and to weaknesses on the protocol. In particular it has been analyzed what
is the best number of DevNonce’s that network server must record per each
end-device; then it has been discussed the convenience for the DevNonce
to be random; finally it has been shown a security breach in the protocol
related with the join accept message, that is not immune against replay at-
tacks. Furthermore we introduced possible solutions and/or alternatives to
the problems.

In the second part, instead, after an introduction on the random number
generation and on the architecture of the receiver, we studied theoretically
and experimentally the procedure for the generation of random numbers,
analyzing its efficiency. If, theoretically, we observed that, in particular situ-
ations, the probability of generating a 0 bit can be much different to that of
generating a 1 bit, experimentally we obtained partial results, i.e., most of
the time, the generation of bits is not-uniform, but the displacement seems
to be not so relevant for the generation of DevNonce’s. However it is difficult
to reach situations studied theoretically, in which the generation of bits is
strongly unbalanced, because the transceiver has control systems (as AGC
and LNA) that permits to set the receiver in good circumstances for the
generation of bits.



However both parts of this work can be further extend. In particular in
the first part we focused our attention only on the mechanism of join proce-
dure, but additional weaknesses may be found analyzing the other sections
of the protocol. Moreover it is possible to examine in depth the alternatives
to DevNonce, such as the employment of a sequential number instead of a
random number.

In the second part, instead, the experimental analysis should be extended.
Indeed in our analysis we evaluated only some essential parameters in the
generation of RSSI and DevNonce. However more specific tests are needed
to verify the correctness of the procedures, such described in [19]. Moreover
the analysis should be extended to other environments, such as urban envi-
ronment. Furthermore the observation that after a low value of RSSI, due to
a break transmission of jammer, an high value of RSSI is written, suggests
to saturate the receiver bypassing the AGC through pulses of established
duration, power and gap.
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