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Abstract

With the pervasive advancement of mobile information and communication
technologies, wearable devices are perceived as realms of increasing interest
for researchers and application developers. Nevertheless, the limited size and
batteries capacities of these devices can pose critical problems, thus minimizing
a massive amount of information while maintaining the information losses neg-
ligible becomes an interesting option to reduce the power consumption and to
extend the operational lifetime of these devices. As far as this scenario is con-
cerned, it is suitable to deal with compressed biometric time series processing
techniques. Data compression is achieved taking advantage of vector quantiza-
tion, pattern matching, and codebook-based approaches, in the sense that the
most recurrent data patterns can be identified within a biomedical signal and
exploited as the input for the encoder at the transmitting side to generate, at
runtime, a codebook based on the most representative among them. In parti-
colar, the codebook indexes are associated to the code-vectors and transmitted
to the decoder at the receiving side in place of the corresponding code-vectors,
which are more resource demanding. Our model formulation focuses on the
transmission of both the new code-vectors and the codebook indexes over a
wireless unreliable channel described in terms of a non-negligible packet er-
ror probability, thus designing the optimal strategies for the scheduling of a
Single-Server Multiple-Buffer queueing system, where a central controller is re-
sponsible for serving customers arriving in multiple buffers. In particular, the
optimal strategies will be compared to the suboptimal strategies (also referred
to as heuristic policies), which do not require full state information and turn
out to be computationally light.
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Chapter 1

Introduction

Figure 1.1: Bluetooth heart rate application for the ECG.

Wearable video cameras, smart glasses, smart watches, running GPS track-
ing devices, healthcare devices, gesture controllers are estimated to grow from
29 millions in 2014 to 172 millions in 2018, according to CCS Insight Pre-
dictions [1]. These devices can be exploited for entertainment and fitness
applications, promoting and improving users learning and experience. These
devices can also be exploited for medical purposes, allowing users to real-time
monitor their health status in the comfort of their home and to transmit the
medical results to a remote hospital structure.
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With the pervasive advancement of mobile information and communication
technologies, wearable devices are perceived as realms of increasing interest for
researchers and application developers, promising to make gathering a mas-
sive amount of information more accessible. Nevertheless, the limited size and
batteries capacities of these devices can pose critical problems, thus minimiz-
ing a massive amount of information while maintaining the information losses
negligible becomes an interesting option to reduce the power consumption and
to extend the operational lifetime of these devices.

As far as this scenario is concerned, it is suitable to deal with compressed
biometric time series processing techniques, along with energy management
and transfer paradigms in Wireless Sensor Networks (WSNs) and Energy Har-
vesting Wireless Sensor Networks (EHWSNs). A general overview on WSNs
can be found in [2] [3] [4], where the nodes of these networks are provided
with small sensor devices capable of interacting with the surrounding envi-
ronment. A general overview on EHWSNs can be found in [5] [6] [7], where
the nodes of these networks are equipped with onboard rechargeable batteries
capable of scavenging power from the surrounding environment, thus leading
to power-constrained issues.

A great deal of codebook-based approaches for the compression of biomet-
ric time series have been investigated throughout the last decades, with more
attention to electrocardiogram (ECG) signals [8] [9] [10]. Less attention has
been paid to electroencephalogram (EEG) signals, to phonocardiogram (PCG)
signals, to photoplethysmogram (PPG) signals, and to other one dimensional
physiological signals which exhibit recurrent data patterns [11] [12] [13]. The
ECG is an important diagnostic test that checks the heart electrical and mus-
cular functions, translating the heartbeat into a quasi periodic curve trac-
ing and reporting heart conditions and disorders such as shortness of breath
and palpitations. The processing and compression techniques for the ECG
signals can be classified into three groups of techniques: the direct meth-
ods, the undirect methods, and the parametric methods. The direct meth-
ods process the biometric signals in the time domain, exploiting tools such
as AZTEC, CORTES, and LTC. A comprehensive framework for these tech-
niques can be found in [14] [15] [16]. The undirect methods process the bio-
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metric signals in some transformed domains, exploiting tools such as FFT,
DCT, and DWT. A comprehensive framework for these techniques can be
found in [17] [18] [19]. The parametric methods process the biometric signals
to extract some features and to predict the future behavior of the biometric
signals themselves, taking advantage of vector quantization, pattern match-
ing, and codebook-based approaches. The parametric methods also comprise
Neural Networks [20] [21] [22].

This thesis relies on the basic idea that the most recurrent data patterns can
be identified within a biomedical signal and exploited to generate, at runtime,
a codebook based on the most representative among them. Also, codebook-
based approaches enable relevant processing functions such as classification
and learning [23] [24] [25], in the sense that the most recurrent data patterns
can be exploited to assess the statistical properties of the biomedical signals
and to adapt, at runtime, a codebook according to the statistical changes
of the biomedical signals themselves. A general overview on codebook-based
approaches is introduced next.

1.1 Codebook-based approaches

When the source output samples are correlated, sequences or blocks of source
output samples tend to fall into output clusters. Encoding individual values
provides a less efficient code than encoding sequences or blocks of values, thus
a quantization method that works with individual source output samples (thus
called scalar quantization) provides a less efficient code than a quantization
method that works with sequences or blocks of source output samples (thus
called vector quantization). In a codebook-based scenario, both the encoder
and the decoder of a L-level vector quantizer share a common codebook of
L `-dimensional code-vectors, where the L `-dimensional code-vectors are the
quantized version of the `-dimensional sequences or blocks of source output
samples. Furthermore, the L `-dimensional code-vectors have to be represen-
tative of the `-dimensional sequences or blocks of source output samples, i.e.,
selecting the L-level vector quantizer output points to fall into output clus-
ters gives a more accurate description of source output samples. In general, a
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large set of `-dimensional source output vectors is referred to as the training
vectors set.

The code-vectors are associated to the codebook indexes. The current input
vectors at the transmitting side are compared to the code-vectors. The best
matched code-vectors are selected according to some error tolerance and the
corresponding codebook indexes are transmitted to the decoder at the receiving
side in place of the current input vectors, which are more resource demanding.
Note that the codebook at the encoder must be synchronized with that at the
decoder, i.e., the codebook at the transmitting side must be synchronized with
that at the receiving side, otherwise the best matched code-vectors cannot be
retrieved from the codebook indexes. If no code-vector that fullfills the con-
straints on the error tolerance is found, then a new code-vector must be added
to both the codebook at the encoder and the codebook at the decoder, other-
wise the transmitter and the receiver are said to be Out Of Synchronization
(OOS), waiting for the new code-vector synchronization.

Note that the decoding process consists of a simple table lookup, thus taking
advantage of vector quantization, pattern matching, and codebook-based ap-
proaches becomes an interesting option when the resources available for the
decoding process are limited [26] [27] [28].

As far as the performance of the `-level vector quantizer is concerned, it is
common to deal with codebook design, codebook initialization, and fast code-
book search algorithms [29] [30] [31]. The clustering approach is applied in the
Lloyd Algorithm (LA) and in the Generalized Lloyd Algorithm (GLA), thus
finding the optimum vector quantizer assuming that the statistical description
of the source is known (in the LA) or unknown (in the GLA). The clustering
approach works as follows: given the training set and the initial set of ` re-
production alphabet values, each element of the training set is assigned to the
corresponding closest reproduction alphabet value, which is updated after com-
puting the centroids of the elements of the training set assigned to it. At the
end of the clustering approach there are ` quantizer partitions of sequences or
blocks of source output samples clustered around the final set of ` reproduction
alphabet values. In particular, the squared Euclidian distance measure is used
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in the computation of the quantizer partitions in the LA, the mean-squared
error distance measure is used in the computation of the quantizer partitions in
the GLA, which is also referred to as the Linde-Buzo-Gray (LBG) algorithm.
Note that there is no guarantee that the final solution of the LBG algorithm
is the optimal solution. Furthermore, there is a relevant dependence of the
final solution of the LBG algorithm on the codebook initialization. The Pair-
wise Nearest Neighbor (PNN) algorithm and the fast PNN algorithm promise
to reduce computation and time requirements without sacrificing performance.
The PNN algorithm works as follows: given the initial `-dimensional codebook,
the closest pair of elements of the `-dimensional codebook are merged and re-
placed with their mean value, thus converting the `-dimensional codebook into
the optimal (`− 1)-dimensional codebook. The basic idea is to combine those
clusters that would introduce the smallest increase in distortion when com-
bined. Experimental results indicate that the fast PNN algorithm requires less
than 5 percent of the amount of time needed for the LBG algorithm. The
fast PNN algorithm allows for the suboptimal log(`) nearest neighbor search
algorithm in place of the optimal O(`) full search algorithm. Some other fast
codebook search algorithms are the Triangular Inequality Elimination (TIE)
method, the Mean-distance-ordered Partial codebook Search (MPS) method,
and the Double Test Algorithm (DTA) method [32] [33] [34].

1.2 Thesis outline

This thesis is organized as follows. Chapter 2 discusses our model formulation
dealing with the application of the Dynamic Programming (DP) and Optimal
Control theory, along with the setting of a Markov Decision Chain (also known
as a discrete-time Markov Decision Process). Chapter 3 discusses the perfor-
mance evaluation of the scheduling of a Single-Server Multiple-Buffer queueing
system. In particular, Chapter 3 introduces the Value Iteration Algorithm.
Chapter 4 concludes this work presenting possible future developments.
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Chapter 2

Model formulation

Figure 2.1: Single-Server Multiple-Buffer queueing system.

We consider a transmitter and a receiver communicating over a wireless unre-
liable channel described in terms of a non-negligible packet error probability.
In particular, our scenario takes into account a wireless multipath Rayleigh
fading channel, which will be well-characterized in terms of the received Signal
to Noise Ratio (SNR) space according to the Markov Chain theoretical frame-
work. Furthermore, our scenario takes into account the unidirectional commu-
nication from the transmitting side to the receiving side of compressed biomet-
ric time series coming from the application. Data compression is achieved tak-
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ing advantage of vector quantization, pattern matching, and codebook-based
approaches, in the sense that the most recurrent data patterns can be identified
within a biomedical signal and exploited as the input for the encoder at the
transmitting side to generate, at runtime, a codebook based on the most rep-
resentative among them. In particolar, the codebook indexes are associated
to the code-vectors and transmitted to the decoder at the receiving side in
place of the corresponding code-vectors, which are more resource demanding.
Furthermore, the encoder and the decoder need to share the same codebook,
otherwise the transmitter and the receiver are said to be Out of Synchroniza-
tion (OOS), waiting for the new code-vector synchronization. In this case,
communication can damage the application, since the codebook indexes at the
transmitting side and at the receiving side are associated to different pieces
of information within a biomedical signal. As a consequence, the encoder and
the decoder need to keep the codebook updated.

Our model formulation focuses on the transmission of both the new code-
vectors and the codebook indexes over a wireless unreliable channel described
in terms of a non-negligible packet error probability, thus designing the opti-
mal strategies for the scheduling of a Single-Server Multiple-Buffer queueing
system, where a central controller is responsible for serving customers arriving
in multiple buffers. In particular, the optimal strategies will be compared to
the suboptimal strategies (also referred to as heuristic policies), which do not
require full state information and turn out to be computationally light.

According to the codebook-based approaches, we assume that the length of the
new code-vectors is n times greater than the length of the codebook indexes,
thus the transmission of the new code-vectors is more resource demanding
than the transmission of the codebook indexes, as expected. If n = 1, then we
suppose that the length of the new code-vectors is equal to the length of the
codebook indexes. Furthermore, we assume that n time units are required for
the transmission of the new code-vectors, otherwise just 1 time unit is required
for the transmission of the codebook indexes.

Note that the scheduling of a Single-Server Multiple-Buffer queueing system
turns out to be the scheduling of a Single-Server Multiple-Class queueing sys-
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tem, where a central controller is responsible for serving customers arriving
in the same buffer but belonging to multiple classes. The decision of which
buffer to serve at each decision epoch in a Single-Server Multiple-Buffer queue-
ing system becomes then the decision of which class to serve at each decision
epoch in a Single-Server Multiple-Class queueing system.

The parallel queueing system takes into account two classes: the High Piority
Queue (HPQ) and the Low Priority Queue (LPQ). HPQ provides the new
code-vectors that must be added to both the codebook at the encoder and
the codebook at the decoder, thus keeping it updated. LPQ provides the
current codebook indexes that are transmitted to the decoder in place of the
current input vectors, thus being responsible for throughput. Note that LPQ
also contains the OOS codebook indexes that are transmitted to the decoder
whenever the transmitter and the receiver are said to be OOS, waiting for the
new code-vector synchronization. Thus, in the considered parallel queueing
system we prefer to split LPQ into two further classes, referred to as LPQa

and LPQb, to respectively distinguish between the current codebook indexes
(good codebook indexes) and the OOS codebook indexes (bad codebook indexes).
In particular, the OOS codebook indexes can damage the application, since the
original pieces of information within a biomedical signal cannot be retrieved
from the OOS codebook indexes.

The problem of designing the optimal strategies for the scheduling of a Single-
Server Multiple-Buffer queueing system results in the application of the Dy-
namic Programming (DP) and Optimal Control theory, along with the setting
of a Markov Decision Chain (also known as a discrete-time Markov Decision
Process).

2.1 The DP and Optimal Control theory

The basic idea of the DP and Optimal Control theory [35] [36] [37] is to mini-
mize the mathematical function that describes the undesirable outcome as the
system evolves along the stochastic trajectory. From now on, this mathemati-
cal function is referred to as the cost function.
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Our scenario takes into account a slotted time system where k = 0, 1, 2, . . . is
the discrete-time index of the k-th decision epoch. The basic model formulation
of the finite-state discrete-time DP problem captures the system evolution
along the stochastic trajectory. The optimization is taken over the control or
decision variable to be selected at index k according to the knowledge of both
the state at index k and the past history of the whole process. In particular,
the control or decision variable to be selected at index k is constrained to take
values in a given non-empty subset that depends on both the state at index k
and the past history of the whole process.

According to the theoretical framework considered in [35], the basic model
formulation of the finite-state discrete-time DP problem is defined as

xk+1 = f(xk, uk, wk) k = 0, 1, 2, . . . , N − 1, (2.1)

where xk ∈ X is the state at index k, uk ∈ U(xk) ⊂ U is the control or decision
variable to be selected at index k, wk ∈ W is the random parameter at index k
(also called disturbance or noise depending on the context of the problem), f is
the function that captures the system evolution along the stochastic trajectory,
and N is the time horizon.

The cost function is accumulated over time from index k = 0 to index k = N−1

and depends on the random parameter at index k (also called disturbance or
noise depending on the context of the problem), thus the basic model formu-
lation of the finite-state discrete-time DP problem results in the minimization
of the expected total cost, where the expectation is taken with respect to the
joint distribution of the random variables involved.

An admissible policy π = {µ0, µ1, . . . , µN−1} ∈ Π is a sequence of functions µk
that map each state xk ∈ X into the control or decision variable uk ∈ U(xk) ⊂
U , such that uk = µk(xk) ∀xk ∈ X and ∀k.

Given the initial state x0 ∈ X and the admissible policy π = {µ0, µ1, . . . , µN−1} ∈
Π, the expected total cost of the finite time horizon problem is defined as

Jπ,N(x0) = E

{
g(xN) +

N−1∑
k=0

g(xk, uk, wk)|x0

}
, (2.2)
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where g(xk, uk, wk) is the cost per time unit at state xk ∈ X when the control
or decision variable uk ∈ U(xk) ⊂ U is applied. Furthermore, g(xN) is the
terminal cost. The DP and Optimal Control theory aims at minimizing the
expected total cost of equation (2.2), thus finding the optimal expected total
cost J∗π,N(x0) and the optimal policy π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} ∈ Π of the finite
time horizon problem, i.e.,

J∗π,N(x0) = min
π∈Π

Jπ,N(x0) and π∗ = arg min
π∈Π

Jπ,N(x0). (2.3)

Note that, in general, the optimal expected total cost J∗π,N(x0) and the optimal
policy π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} ∈ Π of the finite time horizon problem are
associated to the initial state x0 ∈ X .

The DP Algorithm and the Principle of Optimality due to Bellman are here
introduced to characterize the considered scenario from a theoretical perspec-
tive.

DP Algorithm. Given the initial state x0 ∈ X and the admissible policy
π = {µ0, µ1, . . . , µN−1} ∈ Π, the optimal expected total cost for the basic
model formulation of the finite-state discrete-time DP problem is equal to the
cost-to-go JN(x0) computed at the last step of the DP Algorithm, which starts
from J0(xN) = g(xN) and proceeds backward in time from index k = 0 to
index k = N − 1, i.e.,

Jk+1(xN−(k+1)) = min
uN−(k+1)

∈U(xN−(k+1))⊂U

E

{
g(xN−(k+1), uN−(k+1), wN−(k+1))+Jk(xN−k)

}
.

(2.4)

Furthermore, if the admissible policy π = {µ0, µ1, . . . , µN−1} ∈ Π attains the
minimum in the right-hand side of equation (2.4), then the admissible policy
π = {µ0, µ1, . . . , µN−1} ∈ Π is the optimal policy.

The juxtification of the DP Algorithm is based on the Principle of Optimality.

Principle of Optimality. Let π∗ = {µ∗0, µ∗1, . . . , µ∗N−1} ∈ Π be the optimal
policy for the basic model formulation of the finite-state discrete-time DP
problem. Let π∗(i) = {µ∗i , µ∗i+1, . . . , µ

∗
N−1} be the truncated version of the

21



optimal policy for the tail subproblem formulation of the finite-state discrete-
time DP problem. Assume that the process is in state xi ∈ X at index k = i

and aims at minimizing the cost-to-go from index k = i to index k = N , i.e.,

Jπ,N(xi) = E

{
g(xN) +

N−1∑
k=i

g(xk, uk, wk)|xi
}
. (2.5)

Then the truncated version of the optimal policy π∗(i) = {µ∗i , µ∗i+1, . . . , µ
∗
N−1}

is the optimal policy for the tail subproblem formulation of the finite-state
discrete-time DP problem.

The justification of the Principle of Optimality is quite intuitive. If π∗(i) =

{µ∗i , µ∗i+1, . . . , µ
∗
N−1} were not the optimal policy for the tail subproblem formu-

lation, we would be able to switch to the optimal policy for the tail subproblem
formulation once the process is in state xi ∈ X at index k = i, thus minimizing
the cost-to-go from index k = i to index k = N . The Principle of Optimality
suggests that the optimal policy for the basic model formulation of the finite-
state discrete-time DP problem is constructed backward in time, first defining
the optimal policy for the tail subproblem formulation involving the last stage,
then defining the optimal policy for the tail subproblem formulation involving
the last two stages, then defining the optimal policy for the tail subproblem
formulation involving the last three stages, etc.

2.1.1 The infinite time horizon problem

In this subsection, we investigate the finite-state discrete-time DP problem
with infinite time horizon.

Given the initial state x0 ∈ X and the admissible policy π = {µ0, µ1, . . . } ∈ Π,
the expected total cost of the infinite time horizon problem is defined as

Jπ,∞(x0) = lim
N→∞

E

{N−1∑
k=0

g(xk, uk, wk)|x0

}
, (2.6)

where g(xk, uk, wk) is the cost per time unit at state xk ∈ X when the con-
trol or decision variable uk ∈ U(xk) ⊂ U is applied. The DP and Optimal
Control theory aims at minimizing the expected total cost of equation (2.6),
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thus finding the optimal expected total cost J∗π,∞(x0) and the optimal policy
π∗ = {µ∗0, µ∗1 . . . } of the infinite time horizon problem, i.e.,

J∗π,∞(x0) = min
π∈Π

Jπ,∞(x0) and π∗ = arg min
π∈Π

Jπ,∞(x0). (2.7)

Note that, in general, the optimal expected total cost J∗π,∞(x0) and the optimal
policy π∗ = {µ∗0, µ∗1, . . . } of the infinite time horizon problem are associated to
the initial state x0 ∈ X .

The assumption of an infinite number of stages is never satisfied in practice,
but can be considered a reasonable approximation when dealing with problems
involving a finite but large number of stages, a random number of stages, an
unknown number of stages, a final instant which is distant in the future or
subject to the control or decision variable to be selected at a final instant
which is distant in the future. In particular, the difference in performance
between the infinite time horizon problem and the corresponding finite time
horizon problem becomes negligible as N tends to infinity.

There are several theoretical and computational issues regarding the relation-
ship between the optimal expected total cost J∗π,∞(x0) of the infinite time hori-
zon problem and the optimal expected total cost J∗π,N(x0) of the corresponding
finite time horizon problem. As far as the theoretical issues are concerned, the
direct generalization of the limiting form of the DP Algorithm of equation (2.4)
is known as the Bellman’s equation, which is here introduced. As far as the
computational issues are concerned, the direct generalization of the limiting
form of the DP Algorithm of equation (2.4) is known as the Value Iteration
Algorithm, which will be well-characterized in Chapter 3.

Bellman’s equation. The optimal cost-to-go satisfies the functional equation

J∗(x) = min
u∈U(x)⊂U

E

{
g(x, u, w) + J∗(f(x, u, w))

}
∀x ∈ X . (2.8)

Furthermore, if the admissible policy π = {µ, µ, . . . } ∈ Π attains the min-
imum in the right-hand side of equation (2.8), then the admissible policy
π = {µ, µ, . . . } ∈ Π is the optimal policy.

The expected total cost of equation (2.6) is the limit of the expected total cost
of the corresponding finite time horizon problem, thus the optimal expected to-
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tal cost of the infinite time horizon problem is the limit of the optimal expected
total cost of the corresponding finite time horizon problem, i.e.,

J∗π,∞(x0) = lim
N→∞

J∗π,N(x0) ∀x0 ∈ X . (2.9)

Note that there are some unusual exceptions when dealing with the convergence
of equation (2.9) with unbounded g(xk, uk, wk), thus the infinite time horizon
problem must be approached with some attention.

2.1.2 The average cost problem

The expected total cost of equation (2.6) can be unbounded as N tends to
infinity, thus it is convenient to introduce the average cost problem.

Given the initial state x0 ∈ X and the admissible policy π = {µ0, µ1, . . . } ∈ Π,
the average cost of the infinite time horizon problem is defined as

Jπ(x0) = lim
N→∞

1

E{tN}
E

{ N∑
k=0

g(xk, uk, wk)|x0

}
, (2.10)

where g(xk, uk, wk) is the cost per time unit at state xk ∈ X when the control
or decision variable uk ∈ U(xk) ⊂ U is applied. Furthermore, E{tN} is the ex-
pected completion time of the N -th decision epoch. The DP and Optimal Con-
trol theory aims at minimizing the average cost of equation (2.10), thus finding
the optimal average cost J∗π(x0) and the optimal policy π∗ = {µ∗0, µ∗1, . . . } of
the infinite time horizon problem, i.e.,

J∗π(x0) = min
π∈Π

Jπ(x0) and π∗ = arg min
π∈Π

Jπ(x0). (2.11)

Note that, in general, the optimal average cost J∗π(x0) and the optimal policy
π∗ = {µ∗0, µ∗1, . . . } of the infinite time horizon problem are associated to the
initial state x0 ∈ X .

2.1.3 The semi-Markov problem

We have considered so far situations where g(xk, uk, wk) is the cost per time
unit at state xk ∈ X when the control or decision variable uk ∈ U(xk) ⊂ U is
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applied. In particular, we have considered so far situations where g(xk, uk, wk)

does not depend on the time occurrence of the k-th decision epoch and on the
transition time of the k-th decision epoch. In this subsection, we investigate
the finite-state discrete-time DP problem where the time occurrence of the
k-th decision epoch and the transition time of the k-th decision epoch depend
on the state at index k and on the control or decision variable to be selected
at index k. In other words, we take into account the semi-Markov problem
in the discrete-time domain, where we include the information of time elapsed
since the time occurrence of the k-th decision epoch as part of the evolution
of the whole process. Furthermore, we juxtapose the definition of stage to the
definition of time unit, thus the definition of expected cost per stage to the
definition of expected cost per time unit.

Let τ be the transition time in the discrete-time domain. In particular, τ
describes the time elapsed since the time occurrence of the k-th decision epoch.

Let tk be the time occurrence of the k-th decision epoch in the discrete-time
domain. In particular, t describes the continuous-time counterpart of tk.

xk ∈ X is the state at index k in the discrete-time domain. In particular, xk =

x(tk), i.e., x(t) = xk for tk ≤ t < tk+1, where x(t) describes the continuous-time
counterpart of xk.

uk ∈ U(xk) ⊂ U is the control or decision variable to be selected at index
k in the discrete-time domain. In particular, uk = u(tk), i.e., u(t) = uk for
tk ≤ t < tk+1, where u(t) describes the continuous-time counterpart of uk.

pij(u) is the transition probability from state xk = i ∈ X to state xk+1 = j ∈ X
when the control or decision variable uk = u ∈ U(i) ⊂ U is applied, i.e.,

pij(u) = P{xk+1 = j|xk = i, uk = u}. (2.12)

qij(τ, u) is the Probability Mass Function (PMF) of the transition time τ from
state xk = i ∈ X to state xk+1 = j ∈ X when the control or decision variable
uk = u ∈ U(i) ⊂ U is applied, i.e.,

qij(τ, u) = P{tk+1 − tk = τ, xk+1 = j|xk = i, uk = u}. (2.13)
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In particular, qij(τ, u) can be viewed as a scaled PMF, in the sense that the
transition probability pij(u) multiplies the PMF of the transition time τ , as-
suming that pij > 0, i.e.,

qij(τ, u)

pij(u)
= P{tk+1 − tk = τ |xk+1 = j, xk = i, uk = u}, (2.14)

pij(u) =
∞∑
τ=0

qij(τ, u). (2.15)

Since the transition time τ is a discrete random variable, then the scaled PMF
qij(τ, u) is a discontinuous and impulse-shaped function.

Qij(τ, u) is the Cumulative Distribution Function (CDF) of the transition time
τ from state xk = i ∈ X to state xk+1 = j ∈ X when the control or decision
variable uk = u ∈ U(i) ⊂ U is applied, i.e.,

Qij(τ, u) = P{tk+1 − tk ≤ τ, xk+1 = j|xk = i, uk = u}. (2.16)

In particular, Qij(τ, u) can be viewed as a scaled CDF, in the sense that
the transition probability pij(u) multiplies the CDF of the transition time τ ,
assuming that pij > 0, i.e.,

Qij(τ, u)

pij(u)
= P{tk+1 − tk ≤ τ |xk+1 = j, xk = i, uk = u}, (2.17)

pij(u) = lim
τ→∞

Qij(τ, u). (2.18)

Since the transition time τ is a discrete random variable, then the scaled CDF
Qij(τ, u) is a discontinuous and staircase-shaped function.

Note that, in our model formulation, the scaled PDF qij(τ, u) and the scaled
CDF Qij(τ, u) replace the transition probability pij(u).

τ̄i(u) is the expected transition time per stage at state xk = i ∈ X when the
control or decision variable uk = u ∈ U(i) ⊂ U is applied, i.e.,

τ̄i(u) =
∑
j∈X

pij(u)E{τ |i, u, j}, (2.19)

where E{τ |i, u, j} is the conditional expected value of the transition time τ ,
i.e.,

E{τ |i, u, j} =
∞∑
τ=0

τ
qij(τ, u)

pij(u)
. (2.20)
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G(i, u) is the expected cost per stage at state xk = i ∈ X when the control or
decision variable uk = u ∈ U(i) ⊂ U is applied, i.e.,

G(i, u) =
∑
j∈X

pij(u)G(i, u, j), (2.21)

where G(i, u, j) is the cost per stage at state xk = i ∈ X when the control or
decision variable uk = u ∈ U(i) ⊂ U is applied.

g(i, u) is the expected cost per time unit at state xk = i ∈ X when the control
or decision variable uk = u ∈ U(i) ⊂ U is applied, i.e.,

g(i, u) =
∑
j∈X

pij(u)g(i, u, j), (2.22)

where g(i, u, j) is the cost per time unit at state xk = i ∈ X when the control
or decision variable uk = u ∈ U(i) ⊂ U is applied.

In particular,

G(i, u, j) = g(i, u, j)τ̄i(u). (2.23)

2.2 The Markov Decision Chain

The problem of designing the optimal strategies for the scheduling of a Single-
Server Multiple-Buffer queueing system is based on the setting of a Markov
Decision Chain, where X is the set of states and U is the set of control or
decision variables.

Let xk ∈ X be the state at index k. In particular, xk = (d(k), a(k), b(k), c(k)),
where the variable d(k) ∈ D = {0, . . . , D} tracks the number of stages during
which update(k) is buffered in HPQ, the variable update(k) ∈ {0, 1} tracks
the number of new code-vectors buffered in HPQ, the variable a(k) ∈ A =

{0, . . . , A} tracks the number of current codebook indexes buffered in LPQa,
the variable b(k) ∈ B = {0, . . . , B} tracks the number of OOS codebook
indexes buffered in LPQb, and the variable c(k) ∈ C = {0, . . . , C} captures
the evolution of the multipath Rayleigh fading channel throught a (C + 1)-
state Markov Chain. Note that if update(k) = 0, then d(k) = 0, whereas if
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update(k) = 1, then d(k) > 0. Furthermore, note that update(k) ∈ {0, 1},
whereas a(k) ∈ A = {0, . . . , A} with A > 1 and b(k) ∈ B = {0, . . . , B} with
B > 1. In other words, we assume that the new code-vectors arrival rate is
smaller than the codebook indexes arrival rate, thus the size of HPQ is smaller
than the size of LPQ.

Let uk ∈ U(xk) ⊂ U be the control or decision variable to be selected at
index k. In particular, U = {HP,LP, IDLE}, where the control or decision
variable uk = HP ∈ U(xk) ⊂ U stands for a new code-vector transmission
from HPQ, the control or decision variable uk = LP ∈ U(xk) ⊂ U stands for
a codebook index transmission from LPQ, and the control or decision variable
uk = IDLE ∈ U(xk) ⊂ U means that no packet is transmitted at index k.
Furthermore, uk = HP can be chosen ∀xk ∈ X and ∀k, such that update(k) =

1 (i.e., uk = HP can be chosen if there is at least one new code-vector in HPQ),
uk = LP can be chosen ∀xk ∈ X and ∀k, such that a(k) 6= 0 or a(k) = 0 but
b(k) 6= 0 (i.e., uk = LP can be chosen if there is at least one codebook index
in LPQ), and uk = IDLE can be chosen ∀xk ∈ X and ∀k (i.e., uk = IDLE

is a possible choice ∀k). Nevertheless, if a(k) 6= 0, then uk = LP stands for
a current codebook index transmission from LPQa, whereas if a(k) = 0 but
b(k) 6= 0, then uk = LP stands for a OOS codebook index transmission from
LPQb. In other words, we assume that the transmission of the good codebook
indexes is preferred over the transmission of the bad codebook indexes.

According to the codebook-based approaches, we assume that n time units
are required for the transmission of the new code-vectors, otherwise just 1
time unit is required for the transmission of the codebook indexes. In other
words, the parameter n recalls that the transmission of the new code-vectors
is more resource demanding than the transmission of the codebook indexes.
Furthermore, the parameter n quantifies the ratio between the lengths of the
two data packets.

We define the PMF qij(τ, u) of the transition time τ as

qij(τ, u) = δ(τ − n) · 1(u = HP ) (2.24)

qij(τ, u) = δ(τ − 1) · 1(u 6= HP ) (2.25)

28



We define the CDF Qij(τ, u) of the transition time τ as

Qij(τ, u) = H(τ − n) · 1(u = HP ) (2.26)

Qij(τ, u) = H(τ − 1) · 1(u 6= HP ) (2.27)

In particular, δ(·) is the Dirac delta function and H(·) is the Heaviside step
function (or the unit step function), such that H(y) =

∫ x
−∞ δ(x)dx. Further-

more, 1(·) is the indicator function, i.e.,

1(u = HP ) = 1 if u = HP (2.28)

1(u 6= HP ) = 1 if u 6= HP (2.29)

Note that the PMF qij(τ, u) of the transition time τ and the CDF Qij(τ, u) of
the transition time τ do not depend on the state xk+1 = j ∈ X , thus we do
not take into account the transition probability pij(u) as a scaling factor.

Let τ̄i(u) be the expected transition time per stage at state xk = i ∈ X when
the control or decision variable uk = u ∈ U(i) ⊂ U is applied. In particu-
lar, once the PMF qij(τ, u) of the transition time τ is known, the expected
transition time τ̄i(u) is computed as

τ̄i(u) = n · 1(u = HP ) (2.30)

τ̄i(u) = 1(u 6= HP ) (2.31)

Let G(i, u, j) be the cost per stage at state xk = i ∈ X when the control or de-
cision variable uk = u ∈ U(i) ⊂ U is applied. In particular, once the expected
transition time τ̄i(u) is known, the cost per stage G(i, u, j) is computed as

G(i, u, j) = g(i, u, j)n · 1(u = HP ) (2.32)

G(i, u, j) = g(i, u, j) · 1(u 6= HP ) (2.33)

where g(i, u, j) is the cost per time unit at state xk = i ∈ X when the control
or decision variable uk = u ∈ U(i) ⊂ U is applied.

The problem of designing the optimal strategies follows from the problem of
setting the cost model, the channel model, and the transition model, which
are introduced next.
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Figure 2.2: Holding cost per time unit C1(i, u, j) for A = 9.

2.2.1 The cost model

According to the theoretical framework considered in [36], the cost per time
unit g(i, u, j) is defined as the linear sum of three nonnegative terms, i.e.,

g(i, u, j) = α1C1(i, u, j) + α2C2(i, u, j) + α3C3(i, u, j), (2.34)

where C1(i, u, j) is the holding cost per time unit, C2(i, u, j) is the transmission
cost per time unit, C3(i, u, j) is the OOS transmission cost per time unit, and
α1, α2, and α3 are weighting coefficients, such that α1 + α2 + α3 = 1. In
particular, we assume that α1 = 0.25, α2 = 0.25, α3 = 0.5.

The holding cost per time unit C1(i, u, j) depends on the number of current
codebook indexes buffered in LPQa whenever there is no need for the coode-
book synchronization, i.e., whenever update(k) = 0. In particular, we assume
that

C1(i, u, j) = (1/A2)a(k)2 a(k) ∈ A = {0, . . . , A}. (2.35)

In Figure 2.2, we represent the holding cost per time unit C1(i, u, j) for A = 9.

Note that the quadratic function that characterizes the holding cost per time
unit C1(i, u, j) of equation (2.35) tends to introduce a large penalty for large
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deviations and a small penalty for small deviations from state xk = i ∈ X to
state xk+1 = j ∈ X as the system evolves along the stochastic trajectory, where
the penalty can be regarded as the price paid to postpone the transmission of
the good codebook indexes.

The transmission cost per time unit C2(i, u, j) is an additive term that depends
on the evolution of the multipath Rayleigh fading channel throught a (C + 1)-
state Markov Chain. In particular, we assume that C2(i, u, j) = 0 if either the
trasmission of the codebook index or the trasmission of the new code-vector
is successful, whereas C2(i, u, j) = 1 if either the trasmission of the codebook
index or the trasmission of the new code-vector is unsuccessful.

The OOS transmission cost per time unit C3(i, u, j) is an additive term that
is taken into account to avoid the transmission of the bad codebook indexes
whenever update(k) = 1 and uk = LP , but a(k) = 0. In particular, we assume
that C3(i, u, j) = 1.

2.2.2 The channel model

In this subsection, we characterize the received Signal to Noise Ratio (SNR)
space according to the received SNR thresholds 0 = Γ0 < Γ1 < · · · < ΓC <

Γ(C+1) = ∞, where Γ is the received SNR random variable. The proposed
SNR partition method turns out to be a good estimation of the evolution of
the multipath Rayleigh fading channel throught a (C+1)-state Markov Chain.

The stationary state probability θc(k) when the multipath Rayleigh fading chan-
nel is in state c(k) ∈ C = {0, . . . , C} for 1 time unit, i.e., when the received
SNR Γ is in the interval [Γc(k),Γc(k)+1) ∀c(k) ∈ C = {0, . . . , C} for 1 time unit,
is computed as

θc(k) =

∫ Γc(k)+1

Γc(k)

pΓ(γ)dγ =

∫ Γc(k)+1

Γc(k)

(1/γ0)e−γ/γ0dγ, (2.36)

where pΓ(γ) is the exponential PDF of the received SNR Γ and γ0 is the
expected value of the received SNR Γ. In particular, γ0 = Prx/(N0B), where
Prx is the average power at the receiving side and NoB is the noise power at
the receiving side. Furthermore, according to the Simplified Path Loss Model,
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Prx = PtxK(d0/d)ν , where K is a constant that depends on the antenna at the
transmitting side and on the antenna at the receiving side, d is the distance
between the transmitter and the receiver, ν is the Path Loss exponent, and
Ptx is the transmission power of the transmitting biomedical device.

The proposed SNR partition method aims at characterizing the received SNR
Γ in the worst performing state c(k) = 0, i.e., when the received SNR Γ is
in the interval [Γ0,Γ1), and in the best performing state c(k) = C, i.e., when
the received SNR Γ is in the interval [ΓC ,Γ(C+1)). For this reason, we first
introduce two further thresholds, i.e., pthr,1 close to 1 and pthr,C close to 0,
such that Γ1 = F−1

P (pthr,1) and ΓC = F−1
P (pthr,C). Then, we compute θ0 and

θC , given that Γ0 and Γ(C+1) are known. At this point, the criterion to define
the channel model when the received SNR Γ is in the interval [Γc(k),Γc(k)+1)

∀c(k) ∈ {1, . . . , C− 1} consists in setting θc(k) = (1− θ0− θC)/(C− 1) ∀c(k) ∈
{1, . . . , C−1} and evaluating the received SNR thresholds from equation (2.36)
in a recursive fashion, given that Γ1 and ΓC are known.

The codebook index error probability P (1)
KO,c(k) when the multipath Rayleigh

fading channel is in state c(k) ∈ C = {0, . . . , C} for 1 time unit, i.e., when the
received SNR Γ is in the interval [Γc(k),Γc(k)+1) ∀c(k) ∈ C = {0, . . . , C} for 1
time unit, is computed as

P
(1)
KO,c(k) =

∫ Γc(k)+1

Γc(k)
FP (γ)pΓ(γ)dγ

θc(k)

=

∫ Γc(k)+1

Γc(k)
FP (γ)(1/γ0)e−γ/γ0dγ

θc(k)

, (2.37)

where FP (γ) = 1− (1−FB(γ))L is the Packet Error Rate (PER), FB(γ) is the
Bit Error Rate (BER), and L is the codebook index length. In particular, we
assume that the channel model deals with a π/4-DQPSK modulation scheme,
thus FB(γ) can be approximated as (4/3)erfc(√γ) [38] [39] [40].

The codebook index success probability P (1)
OK,c(k) when the multipath Rayleigh

fading channel is in state c(k) ∈ C = {0, . . . , C} for 1 time unit, i.e., when the
received SNR Γ is in the interval [Γc(k),Γc(k)+1) ∀c(k) ∈ C = {0, . . . , C} for 1
time unit, is computed as

P
(1)
OK,c(k) = 1− P (1)

KO,c(k). (2.38)

The channel transition probability t(1)
c(k)c(k+1) from state c(k) ∈ C = {0, . . . , C}
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to state c(k + 1) ∈ C = {0, . . . , C} in 1 time unit is computed as

t
(1)
c(k)c(k+1) =

∫ ζc(k+1)+1

ζc(k+1)

∫ ζc(k)+1

ζc(k)
fR1R2(r1, r2, r)dr1dr2

θc(k)

, (2.39)

where ζc(k) =
√

Γc(k)/γ0 and ρ = J0(2πfdTp). Furthermore, fd is the Doppler
frequency, Tp is the codebook index transmission duration, J0(·) is the Bessel
function of the first kind and order zero, I0(·) is the modified Bessel function
of the first kind and order zero, and fR1R2(r1, r2) is the bivariate Rayleigh joint
pdf, i.e.,

fR1R2(r1, r2) =
4r1r2

1− ρ2
e−(r21+r22)/(1−ρ2)I0(2r1r2ρ/(1− ρ2)). (2.40)

Let t(n)
c(k)c(k+1) denote the channel transition probability from state xk = i ∈

X to state xk+1 = j ∈ X when the control or decision variable uk = u ∈
U(i) ⊂ U is applied for the expected transition time τ̄i(u) = n time units. In
particular, the channel transition probability t(n)

c(k)c(k+1) ∀c(k) ∈ C = {0, . . . , C}
and ∀c(k+1) ∈ C = {0, . . . , C} takes into account all possibile paths in the form
[t

(1)
c(k)l(1)t

(1)
l(1)l(2) . . . t

(1)
l(n−1)c(k+1)], where l(m) ∈ C = {0, . . . , C} ∀m ∈ {1, . . . , n −

1}. For the sake of simplicity, we denote t(1)
c(k)c(k+1) = t

(1)
ij and t(n)

c(k)c(k+1) = t
(n)
ij ,

where i = (d(k), a(k), b(k), c(k)) and j = (d(k+ 1), a(k+ 1), b(k+ 1), c(k+ 1)).

Let P (n)
OK,c(k) = 1 − P

(n)
KO,c(k) denote the new code-vector success probability

of the channel model from state xk = i ∈ X to state xk+1 = j ∈ X when
the control or decision variable uk = u ∈ U(i) ⊂ U is applied for the ex-
pected transition time τ̄i(u) = n time units. In particular, the new code-
vector success probability P

(n)
OK,c(k) takes into account all possible paths in

the form [P
(1)
OK,c(k)P

(1)
OK,l(1) . . . P

(1)
OK,l(n−1)] · [t

(1)
c(k)l(1)t

(1)
l(1)l(2) . . . t

(1)
l(n−2)l(n−1)], where

l(m) ∈ C = {0, . . . , C} ∀m ∈ {1, . . . , n− 1}. For the sake of simplicity, we de-
note P (1)

OK,c(k) = P
(1)
OK,ij and P

(n)
OK,c(k) = P

(n)
OK,ij, where i = (d(k), a(k), b(k), c(k))

and j = (d(k + 1), a(k + 1), b(k + 1), c(k + 1)), although P (1)
OK,c(k) and P

(n)
OK,c(k)

do not depend on c(k + 1).

Note that (C + 1)(n−1) is the number of possible paths from state xk = i ∈ X
to state xk+1 = j ∈ X for the expected transition time τ̄i(u) = n time units.
As the value of n increases, then the number of all possible paths increases as
well, thus leading to a smaller P (n)

OK,c(k).
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2.2.3 The transition model

We assume that the new code-vectors arrival process and the codebook indexes
arrival process are Bernoulli distributed. Let λH and λL respectively denote
the new code-vectors arrival rate in HPQ and the codebook indexes arrival
rate in LPQ. Let τ̄ denote the length of a time unit. It follows that

pH = P{1 new code-vector arrival in 1 time unit} = λH τ̄ (2.41)

pL = P{1 codebook index arrival in 1 time unit} = λLτ̄ (2.42)

In general, ∀m ∈ {0, . . . , n}

pH(m,n) = P{m new code-vectors arrivals in n time units} (2.43)

=

(
n

m

)
(1− pH)(n−m)pmH

pL(m,n) = P{m codebook indexes arrivals in n time units} (2.44)

=

(
n

m

)
(1− pL)(n−m)pmL

thus

pH(1, 1) = pH and pH(0, 1) = (1− pH) (2.45)

pL(1, 1) = pL and pL(0, 1) = (1− pL) (2.46)

To be clear about the transition model, some assumptions are introduced next.

In general, we assume that the transition model accounts for 0 packet ar-
rivals in 1 time unit w.p. pH(0, 1)pL(0, 1), 1 packet arrival in 1 time unit
w.p. pH(1, 1)pL(0, 1) or w.p. pH(0, 1)pL(1, 1), or 2 packet arrivals in 1 time
unit w.p. pH(1, 1)pL(1, 1). In the case of 2 packet arrivals in 1 time unit w.p.
pH(1, 1)pL(1, 1), we assume that the new code-vector arrival preceeds the code-
book index arrival, thus the codebook index that has arrived w.p. pL(1, 1) is
considered OOS and buffered in LPQb.

a(k + 1) = [x]+ and b(k + 1) = [x]+ stand for a(k + 1) = max(x, 0) and
b(k + 1) = max(x, 0), whereas a(k + 1) = [x]− and b(k + 1) = [x]− stand for
a(k + 1) = min(x,A) and b(k + 1) = min(x,B). Also, d(k + 1) = [x]− stands
for d(k + 1) = min(x,D).
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If update(k) = 0, then b(k) = 0. In other words, we assume that, if there is
no new code-vector waiting for transmission, then there are no OOS codebook
indexes waiting for transmission as well. Let X0 and X1 be the defined as the
subsets of X such that xk ∈ X0 ⊂ X whenever update(k) = 0, whereas xk ∈
X1 ⊂ X whenever update(k) = 1. It follows that xk = (d(k) = 0, a(k), b(k) =

0, c(k)) ∈ X0 ⊂ X and xk = (d(k) > 0, a(k), b(k), c(k)) ∈ X1 ⊂ X , thus
|X0| = (A+1)(C+1) and |X1| = D(A+1)(B+1)(C+1). Furthermore, |X | =
|X0|+ |X1|, i.e., the cardinality of X is equal to the sum of the cardinalities of
X0 and X1.

Given update(k) = 0 and xk = (d(k) = 0, a(k), b(k) = 0, c(k)), the transition
model is defined as follows.

If uk = LP , then xk+1 =

(0, [a(k)− 1]+, 0, c(k + 1)) w.p. pH(0, 1)pL(0, 1)t
(1)
ij P

(1)
OK,ij

(0, a(k), 0, c(k + 1)) w.p. pH(0, 1)pL(0, 1)t
(1)
ij P

(1)
KO,ij

(1, [a(k)− 1]+, 0, c(k + 1)) w.p. pH(1, 1)pL(0, 1)t
(1)
ij P

(1)
OK,ij

(1, a(k), 0, c(k + 1)) w.p. pH(1, 1)pL(0, 1)t
(1)
ij P

(1)
KO,ij

(0, [a(k)− 1]+ + 1, 0, c(k + 1)) w.p. pH(0, 1)pL(1, 1)t
(1)
ij P

(1)
OK,ij

(0, [a(k) + 1]−, 0, c(k + 1)) w.p. pH(0, 1)pL(1, 1)t
(1)
ij P

(1)
KO,ij

(1, [a(k)− 1]+, 1, c(k + 1)) w.p. pH(1, 1)pL(1, 1)t
(1)
ij P

(1)
OK,ij

(1, a(k), 1, c(k + 1)) w.p. pH(1, 1)pL(1, 1)t
(1)
ij P

(1)
KO,ij

If uk = IDLE, then xk+1 =

(0, a(k), 0, c(k + 1)) w.p. pH(0, 1)pL(0, 1)t
(1)
ij

(1, a(k), 0, c(k + 1)) w.p. pH(1, 1)pL(0, 1)t
(1)
ij

(0, [a(k) + 1]−, 0, c(k + 1)) w.p. pH(0, 1)pL(1, 1)t
(1)
ij

(1, a(k), 1, c(k + 1)) w.p. pH(1, 1)pL(1, 1)t
(1)
ij

If update(k) = 1, then the transmitter and the receiver are said to be OOS,
waiting for the new code-vector synchronization. If update(k) = 1 and uk 6=
HP is chosen, then the transmitter and the receiver are again OOS after just 1
time unit and d(k+ 1) = [d(k) + 1]− w.p. 1, thus the codebook index that has
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arrived w.p. pL(1, 1) is cosidered OOS and buffered in LPQb. If update(k) = 1

and uk = HP , then the transmitter and the receiver are again OOS after n
time units and d(k+ 1) = [d(k) + 1]− w.p. P (n)

KO,ij, thus the m ∈ {1, . . . , n− 1}
codebook indexes that have arrived in these n time units w.p. pL(m,n) are
cosidered OOS and buffered in LPQb. If update(k) = 1 and uk = HP , the
transmitter and the receiver are not OOS after n time units and d(k + 1) = 0

w.p. P (n)
OK,ij, thus the m ∈ {1, . . . , n − 1} codebook indexes that have arrived

in these n time units w.p. pL(m,n) are considered not OOS and buffered in
LPQa, along with both a(k) and b(k), such that a(k+ 1) = [a(k) + b(k) +m]−.

If update(k) = 1, then the new code-vectors arrival process is turned off until
the new code-vector transmission in completed. If update(k) = 1 and uk 6= HP

is chosen, then update(k + 1) = 1 and d(k + 1) = [d(k) + 1]− w.p. 1. If
update(k) = 1 and uk = HP , then update(k+1) = 1 and d(k+1) = [d(k)+1]−

w.p. P (n)
KO,ij or update(k + 1) = 0 and d(k + 1) = 0 w.p. P (n)

OK,ij. This is not
the case for the codebook indexes arrival process.

Given update(k) = 1 and xk = (0 < d(k) < D, a(k), b(k), c(k)), the transition
model is defined as follows.

If uk = HP , then xk+1 =

(0, [a(k) + b(k) +m]−, 0, c(k + 1)) w.p. pL(m,n)t
(n)
ij P

(n)
OK,ij

([d(k) + 1]−, a(k), [b(k) +m]−, c(k + 1)) w.p. pL(m,n)t
(n)
ij P

(n)
KO,ij

If uk = LP and a = 0, then xk+1 =

([d(k) + 1]−, 0, [b(k)− 1]+, c(k + 1)) w.p. pL(0, 1)t
(1)
ij P

(1)
OK,ij

([d(k) + 1]−, 0, b(k), c(k + 1)) w.p. pL(0, 1)t
(1)
ij P

(1)
KO,ij

([d(k) + 1]−, 0, [b(k)− 1]+ + 1, c(k + 1)) w.p. pL(1, 1)t
(1)
ij P

(1)
OK,ij

([d(k) + 1]−, 0, [b(k) + 1]−, c(k + 1)) w.p. pL(1, 1)t
(1)
ij P

(1)
KO,ij

If uk = LP and a 6= 0, then xk+1 =

([d(k) + 1]−, [a(k)]+, b(k), c(k + 1)) w.p. pL(0, 1)t
(1)
ij P

(1)
OK,ij

([d(k) + 1]−, a(k), b(k), c(k + 1)) w.p. pL(0, 1)t
(1)
ij P

(1)
KO,ij

([d(k) + 1]−, [a(k)− 1]+, [b(k) + 1]−, c(k + 1)) w.p. pL(1, 1)t
(1)
ij P

(1)
OK,ij

([d(k) + 1]−, a(k), [b(k) + 1]−, c(k + 1)) w.p. pL(1, 1)t
(1)
cijP

(1)
KO,ij
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If uk = IDLE, then xk+1 =

([d(k) + 1]−, a(k), b(k), c(k + 1)) w.p. pL(0, 1)t
(1)
ij

([d(k) + 1]−, a(k), [b(k) + 1]−, c(k + 1)) w.p. pL(1, 1)t
(1)
ij

In general, if d(k) = 0, then we assume that there are 2 available control or
decision variables, i.e., uk = LP or uk = IDLE (except for the case xk =

(d(k) = 0, 0, 0, c(k)), where the control or decision variable uk = LP cannot be
chosen), whereas if 0 < d(k) < D, then we assume that there are 3 available
control or decision variables, i.e., uk = HP , uk = LP or uk = IDLE (except
for the case xk = (0 < d(k) < D, 0, 0, c(k)), where the control or decision
variable uk = LP cannot be chosen).

If d(k) = D, then we assume that there is just 1 possible control or decision
variable, i.e., uk = HP . In other words, if d(k) = D, then our model for-
mulation forces the new code-vector synchronization without looking at the
evolution of the multipath Rayleigh fading channel throught a (C + 1)-state
Markov Chain.
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Chapter 3

Performance evaluation

The DP and Optimal Control theory aims at minimizing the average cost of
equation (2.10) taking advantage of the Value Iteration Algorithm, thus finding
the optimal average cost and the optimal policy of the infinite time horizon,
average cost, semi-Markov problem, with three further important considera-
tions. First, this mathematical tools allow us to determine how the optimal
average cost and the optimal policy depend on the system parameters and on
the evolution of the multipath Rayleigh fading channel. Second, this mathe-
matical tools allow us to evaluate the system performance under the optimal
policy, according to which the central controller has full knowledge of the sys-
tem parameters and of the evolution of the multipath Rayleigh fading channel.
Third, we can compare the system performance under the optimal policy with
the system performance under two suboptimal policies (also referred to as
heuristic policies H1 and H2), which do not require full state information and
turn out to be computationally light.

3.1 The Value Iteration Algorithm

We compare the original version of the Value Iteration Algorithm (Algorithm
1) with the modified version of the Value Iteration Algorithm (Algorithm 2).
Furthermore, the modified version of the Value Iteration Algorithm (Algorithm
2) is presented to suit our model formulation, i.e., to suit the infinite time
horizon, average cost, semi-Markov problem.
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Set k = 0, ε > 0, N > 0. Initialize J0(i) ∀i ∈ X .
while k < N do

for i ∈ X do
for j ∈ X do

Jk+1(i) = minu∈U(i)⊂U pij(u)(g(i, u, j) + Jk(j))

πk+1(i) = arg minu∈U(i) pij(u)(g(i, u, j) + Jk(j))

end

end
if sp(Jk, Jk+1) < ε then

Condition verified
end
k = k + 1

end
Algorithm 1: The Value Iteration Algorithm (original version)

Set k = 0, ε > 0, N > 0. Initialize J0(i) ∀i ∈ X . Initialize t0(i) ∀i ∈ X .
while k < N do

for i ∈ X do
for j ∈ X do

Jk+1(i) = minu∈U(i)⊂U
pij(u)(G(i,u,j)+Jk(j)tk(j))

pij(u)tk(j)+n·1(u=HP )+1(u6=HP )

πk+1(i) = arg minu∈U(i)
pij(u)(G(i,u,j)+Jk(j)tk(j))

pij(u)tk(j)+n·1(u=HP )+1(u6=HP )

end

end
tk+1(i) = pij(u)tk(j) + n · 1(u = HP ) + 1(u 6= HP )

if sp(Jk, Jk+1) < ε then
Condition verified

end
k = k + 1

end
Algorithm 2: The Value Iteration Algorithm (modified version)

The original version of the Value Iteration Algorithm (Algorithm 1) aims at
minimizing the expected total cost Jk+1(i) ∀i ∈ X , computed adding g(i, u, j)

to Jk(j) ∀j ∈ X , such that pij(u) 6= 0, where g(i, u, j) is the cost per time unit
at state xk = i ∈ X when the control or decision variable uk = u ∈ U(i) ⊂ U
is applied. In particular, we assume that J0(i) = 0 ∀i ∈ X .
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The modified version of the Value Iteration Algorithm (Algorithm 2) aims at
minimizing the expected total cost Jk+1(i)tk+1(i) ∀i ∈ X , computed adding
G(i, u, j) to Jk(j)tk(j) ∀j ∈ X , such that pij(u) 6= 0, G(i, u, j) is the cost per
stage at state xk = i ∈ X when the control or decision variable uk = u ∈ U(i) ⊂
U is applied. In particular, we assume that J0(i) = 0 ∀i ∈ X . Furthermore,
tk(j) ∀j ∈ X is the expected completion time of the k-th decision epoch.

Let J∗k+1(i) ∀i ∈ X denote the optimal average cost resulting at the end of
the Value Iteration Algorithm. In particular, the optimal average cost J∗k+1(i)

∀i ∈ X depends on the precision parameter ε > 0. Nevertheless, the difference
in performance between Jk+1(i) ∀i ∈ X and Jk(i) ∀i ∈ X becomes negligible
as ε tends to zero, according to the span seminorm operator defined as

sp(Jk, Jk+1) = max
i∈X

(Jk+1(i)− Jk(i))−min
i∈X

(Jk+1(i)− Jk(i)) (3.1)

Let π∗k+1(i) ∀i ∈ X denote the optimal policy resulting at the end of the
Value Iteration Algorithm. Note that, once the optimal policy π∗k+1(i) ∀i ∈ X
is known, then the Markov Decision Chain (also known as a discrete-time
Markov Decision Process) turns out to be a Markov Chain. As a consequence,
the stationary state probability ρi ∀i ∈ X of the model transition matrix
induced by the optimal policy π∗k+1(i) ∀i ∈ X is computed as∑
j∈X

ρj ·mij = ρi ∀i ∈ X and
∑
i∈X

ρi = 1 (3.2)

where mij is the element on the i-th row and on the j-th column of the model
transition matrix induced by the optimal policy π∗k+1(i) ∀i ∈ X .

The heuristic policies H1 and H2 are defined as follows.

The heuristic policy H1 applies the control or decision variable uk = HP when-
ever possible (i.e., whenever update(k) > 0) without looking at the evolution
of the multipath Rayleigh fading channel throught a (C + 1)-state Markov
Chain, thus taking into account some forced transmission cost. Otherwise, it
applies the control or decision variable uk = IDLE. According to our model
formulation, if d(k) = D, then assume that there is just 1 possible control or
decision variable, i.e., uk = HP .
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The heuristic policy H2 applies the control or decision variable uk = LP when-
ever possible (i.e., whenever a(k) > 0 or b(k) > 0) without looking at the
evolution of the multipath Rayleigh fading channel throught a (C + 1)-state
Markov Chain, thus taking into account some forced transmission cost. Oth-
erwise, it applies the control or decision variable uk = IDLE. According to
our model formulation, if d(k) = D, then assume that there is just 1 possible
control or decision variable, i.e., uk = HP .

We proceed with the computation and the discussion of the following metrics
of interest due to the optimal policy π∗k+1(i) ∀i ∈ X : the average long term
cost Cπ, the percentage of discarded codebook indexes (both potential good
codebook indexes and potential bad codebook indexes), the energy efficiency of
uk = HP or uk = LP , which will be defined as the percentage of successful
channel uses due to the control or decision variable uk = HP or uk = LP ,
respectively, and the average new code-vector delay. The metrics due to the
heuristic policies H1 and H2 are obtained using the same reasoning.

3.2 Numerical results

We investigate the numerical results for different values of the transmission
power of the transmitting biomedical device and for different values of the new
code-vectors arrival rate. In particular, we assume that Ptx ∈ {100, 500} mW
and λH ∈ [0.005, 0.5] new code-vectors arrivals/s. Furthermore, we consider
D = 3, A = 9, B = 9, C = 3, n ∈ {1, 5, 10} time units, τ̄ = 1 s, λL = 0.5

codebook indexes arrivals/s, thus pL = 0.5 codebook indexes. In the following
plots, the optimal policy π∗k+1(i) ∀i ∈ X is referred to as OPT .

In Figure 3.1 and Figure 3.2, we represent the PER in semi-logarithmic scale
and the received SNR thresholds 0 = Γ0 < Γ1 < · · · < ΓC < Γ(C+1) = ∞
(where Γ(C+1) =∞ is not plotted) for C = 3. In particular, Figure 3.1 reports
the received SNR thresholds when Ptx = 100 mW, whereas Figure 3.2 reports
the received SNR thresholds when Ptx = 500 mW. Furthermore, we assume
that pthr,1 = 10−1 and pthr,C = 10−10.
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Figure 3.1: PER in semi-logarithmic scale for Ptx = 100 mW.
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Figure 3.2: PER in semi-logarithmic scale for Ptx = 500 mW.
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According to the different values of the transmission power of the transmitting
biomedical device, Figure 3.1 and Figure 3.2 present different computations of
the received SNR thresholds, thus leading to different settings of the channel
model. Note that, if these settings of the channel model are good enough, i.e., if
the higher codebook index error probabilitity P (1)

KO,c(k) ∀c(k) ∈ C = {0, . . . , C}
is associated to the smaller stationary state probability θc(k) when the multi-
path Rayleigh fading channel is in state c(k) ∈ C = {0, . . . , C} for 1 time unit,
then it might happen that the heuristic policies H1 and H2 outperform the
optimal policy π∗k+1(i) ∀i ∈ X , or at least approach it, as we will see.

In Figure 3.3 and Figure 3.4, we represent the behavior of the optimal pol-
icy π∗k+1(i) ∀i ∈ X as a function of a(k) ∈ A = {0, . . . , A} and b(k) ∈ B =

{0, . . . , B} when the multipath Rayleigh fading channel is in the best per-
forming state c(k) = C. In these plots, the red squared markers stand for
the control or decision variable uk = HP , the blue circular markers stand
for the control or decision variable uk = LP , and the green upward-pointing
triangular markers stand for the control or decision variable uk = IDLE. In
particular, Figure 3.3 reports the behavior of the optimal policy π∗k+1(i) ∀i ∈ X
when n = 1 time unit, whereas Figure 3.4 reports the behavior of the optimal
policy π∗k+1(i) ∀i ∈ X when n = 10 time units. Furthermore, we consider
Ptx = 500 mW and λH = 0.005 new code-vectors arrivals/s.

Since update(k) = 1, the transmitter and the receiver are waiting for the new
code-vector synchronization. In particular, if the control or decision variable
uk = HP is chosen, then the transmitter and the receiver are not OOS after n
time units and d(k + 1) = 0 w.p. P (n)

OK,ij, according to the multipath Rayleigh
fading channel. In this case, it might happen that a(k+1) = [a(k)+b(k)+m]−,
where the m ∈ {1, . . . , n − 1} codebook indexes that have arrived in these n
time units w.p. pL(m,n) are considered not OOS and buffered in LPQa, along
with both a(k) and b(k). Nevertheless, note that a(k+ 1) = [a(k) + b(k) +m]−

is bounded between 0 and A.

The behavior of the optimal policy π∗k+1(i) ∀i ∈ X results in the attempted
anticipation of the new code-vector synchronization whenever the multipath
Rayleigh fading channel is in the best performing state c(k) = C, or at least
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Figure 3.3: Optimal policy representation for n = 1.
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Figure 3.4: Optimal policy representation for n = 10.
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in a good enough performing state. According to the holding cost per time
unit C1(i, u, j) of equation (2.35), the optimal policy π∗k+1(i) ∀i ∈ X suggests
the central controller to choose uk = LP as long as the holding cost per time
unit C1(i, u, j) at index k + 1 is smaller than or equal to the holding cost
per time unit C1(i, u, j) at index k, i.e., as long as a(k + 1) is smaller than
or equal to a(k). Otherwise, the optimal policy π∗k+1(i) ∀i ∈ X suggests the
central controller to choose uk = IDLE, since a(k + 1) = [a(k) + b(k) + m]−

is greater than A, thus the codebook indexes are dropped from LPQ because
of the finite capacities of the buffers. Also, the OOS transmission cost per
time unit C3(i, u, j) is taken into account to avoid the OOS codebook indexes
transmission. These considerations hold even more as the value of n increases
from n = 1 time unit to n = 10 time units. In Figure 3.4, it is evident that
there is no more dependence of the optimal policy π∗k+1(i) ∀i ∈ X on the value
of a(k) ∈ A = {0, . . . , A} and b(k) ∈ B = {0, . . . , B}.

3.2.1 The average long term cost Cπ

The average long term cost Cπ due to the optimal policy π∗k+1(i) ∀i ∈ X is
computed as

Cπ =
∑
i∈X

ρi · J∗k+1(i) (3.3)

where the stationary state probability ρi ∀i ∈ X of the model transition matrix
induced by the optimal policy π∗k+1(i) ∀i ∈ X follows from equation (3.2).

In Figure 3.5 and Figure 3.6, we represent the average long term cost due to the
optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic policies H1 and H2 as
a function of λH ∈ [0.005, 0.5] new code-vectors arrivals/s. In these plots, the
red squared markers stand for the optiml policy π∗k+1(i) ∀i ∈ X , the blue circu-
lar markers stand for the heuristic policy H1, and the green upward-pointing
triangular markers stand the heuristic policy H2. In particular, Figure 3.5
reports the average long term cost due to the optimal policy π∗k+1(i) ∀i ∈ X
and due to the heuristic policies H1 and H2 when n = 1 time unit, whereas
Figure 3.6 reports the average long term cost due to the optimal policy π∗k+1(i)

∀i ∈ X and due to the heuristic policies H1 and H2 when n = 10 time units.
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Figure 3.5: Average long term cost for n = 1.
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Figure 3.6: Average long term cost for n = 10.
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Furthermore, we compare the quantitative results for Ptx = 100 mW (plotted
in dashed line) and Ptx = 500 mW (plotted in solid line).

The optimal policy π∗k+1(i) ∀i ∈ X outperforms the heuristic policiesH1 andH2

in terms of average long term cost ∀Ptx ∈ {100, 500}mW and ∀λH ∈ [0.005, 0.5]

new code-vectors arrivals/s, as expected. Also, the optimal policy π∗k+1(i)

∀i ∈ X for Ptx = 500 mW outperforms the optimal policy π∗k+1(i) ∀i ∈ X
for Ptx = 100 mW in terms of average long term cost ∀λH ∈ [0.005, 0.5]

new code-vectors arrivals/s, as expected. Nevertheless, this result could not
hold for the suboptimal policies, according to the basic fact that the heuristic
policies H1 and H2 transmit without looking at the evolution of the multipath
Rayleigh fading channel throught a (C + 1)-state Markov Chain, i.e., without
discriminating between the different settings of the channel model, with two
further important considerations. First, note that the heuristic policy H2

provides a good approximation to the optimal policy π∗k+1(i) ∀i ∈ X in terms
of average long term cost ∀Ptx ∈ {100, 500} mW and ∀λH ∈ [0.005, 0.5] new
code-vectors arrivals/s. In particular, the smaller the value of λH ∈ [0.005, 0.5]

new code-vectors arrivals/s, the closer the approximation of the heuristic policy
H2 to the optimal policy π∗k+1(i) ∀i ∈ X in terms of average long term cost,
with a minimum gap in λH = 0.005 new code-vectors arrivals/s of 0.0113 for
Ptx = 500 mW and n = 1 time unit. Second, note that the heuristic policy
H1 tends to provide the best approximation to the optimal policy π∗k+1(i)

∀i ∈ X in terms of average long term cost as the value of n increases from
n = 1 time unit to n = 10 time units. In particular, the larger the value of
λH ∈ [0.005, 0.5] new code-vectors arrivals/s, the closer the approximation of
the heuristic policy H1 to the optimal policy π∗k+1(i) ∀i ∈ X in terms of average
long term cost, with a minimum gap in λH = 0.5 new code-vectors arrivals/s
of 0.0134 for Ptx = 100 mW and n = 10 time units.

The numerical results highlight that both the heuristic policies H1 and H2

can be exploited to replace the optimal policy π∗k+1(i) ∀i ∈ X and to suit our
model formulation in some appropriate situations, i.e., when the the scheduling
of a Single-Server Multiple-Buffer queueing system satisfies the application
requirements and permits a good (even if suboptimal) application performance
in terms of throughput and data validity, reliability, and accuracy.
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3.2.2 The percentage of discarded codebook indexes

If update(k) = 1, then the new code-vectors arrival process is turned off until
the new code-vector transmission in completed. If update(k) = 1 and uk 6= HP

is chosen, then update(k + 1) = 1 and d(k + 1) = [d(k) + 1]− w.p. 1. If
update(k) = 1 and uk = HP , then update(k+1) = 1 and d(k+1) = [d(k)+1]−

w.p. P (n)
KO,ij or update(k + 1) = 0 and d(k + 1) = 0 w.p. P (n)

OK,ij. This is not
the case for the codebook indexes arrival process.

The percentage of discarded codebook indexes (both potential future good
codebook indexes and potential future bad codebook indexes) due to the optimal
policy π∗k+1(i) ∀i ∈ X is computed via simulation from index k = 0 to index
k = 106 as the ratio between the overall number of codebook indexes that are
dropped from LPQ because of the finite capacities of the buffers of the parallel
queueing system and the overall number of codebook indexes arrivals.

In Figure 3.7 and Figure 3.8, we represent the percentage of discarded code-
book indexes due to the optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic
policies H1 and H2 as a function of λH ∈ [0.005, 0.5] new code-vectors ar-
rivals/s. Again, the red squared markers stand for the optiml policy π∗k+1(i)

∀i ∈ X , the blue circular markers stand for the heuristic policy H1, and the
green upward-pointing triangular markers stand the heuristic policy H2. In
particular, Figure 3.7 reports the percentage of discarded codebook indexes
due to the optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic policies H1

and H2 when n = 1 time unit, whereas Figure 3.8 reports the percentage of
discarded codebook indexes due to the optimal policy π∗k+1(i) ∀i ∈ X and due
to the heuristic policies H1 and H2 when n = 10 time units. Furthermore, we
compare the quantitative results for Ptx = 100 mW (plotted in dashed line)
and Ptx = 500 mW (plotted in solid line).

The percentage of discarded codebook indexes due to the heuristic policy H1

is almost equal to 1 ∀Ptx ∈ {100, 500} mW and ∀λH ∈ [0.005, 0.5] new code-
vectors arrivals/s, as expected. This is due to the basic fact that the heuristic
policy H1 is interested in the new code-vector synchronization, without tak-
ing into account the state of LPQ. It is quite interesting to note that, besides
providing a good approximating to the optimal policy π∗k+1(i) ∀i ∈ X in terms
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Figure 3.7: Percentage of discarded codebook indexes for n = 1.
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Figure 3.8: Percentage of discarded codebook indexes for n = 10.
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of average long term cost ∀Ptx ∈ {100, 500} mW and ∀λH ∈ [0.005, 0.5] new
code-vectors arrivals/s, the heuristic policy H2 outperforms the optimal policy
π∗k+1(i) ∀i ∈ X in terms of percentage of discarded indexes. These considera-
tions hold even more as the value of n increases from n = 1 time unit to n = 10

time units, with a maximum gap in λH = 0.335 new code-vectors arrivals/s of
0.3983 for Ptx = 500 mW and n = 10 time units. This is due to the basic fact
that the heuristic policy H2 is not interested in the new code-vector synchro-
nization but in throughput, without taking into account the state of HPQ. As
a consequence, the heuristic policy H2 aims at emptying LPQ, thus keeping
the parallel queueing system stable.

3.2.3 The energy efficiency of uk = HP and uk = LP

The energy efficiency of the control or decision variable uk = HP due to the
optimal policy π∗k+1(i) ∀i ∈ X is computed via simulation from index k = 0

to index k = 106 as the ratio between the overall number of times in which
the trasmission of the new code-vectors is successful and the overall number
of times in which the control or decision variable uk = HP is chosen.

The energy efficiency of the control or decision variable uk = LP due to the
optimal policy π∗k+1(i) ∀i ∈ X is computed via simulation from index k = 0

to index k = 106 as the ratio between the overall number of times in which
the trasmission of the codebook indexes (both good codebook indexes and bad
codebook indexes) is successful and the overall number of times in which the
control or decision variable uk = LP is chosen.

In Figure 3.9 and Figure 3.10, we represent the energy efficiency due to the
optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic policies H1 and H2

as a function of λH ∈ [0.005, 0.5] new code-vectors arrivals/s. Again, the red
squared markers stand for the optiml policy π∗k+1(i) ∀i ∈ X , the blue circu-
lar markers stand for the heuristic policy H1, and the green upward-pointing
triangular markers stand the heuristic policy H2. In particular, Figure 3.9
reports the energy efficiency of the control or decision variable uk = HP due
to the optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic policy H1 when
n = 10 time units, whereas Figure 3.10 reports the energy efficiency of the
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Figure 3.9: Energy efficiency of the control or decision variable uk = HP .
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Figure 3.10: Energy efficiency of the control or decision variable uk = LP .
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control or decision variable uk = LP due to the optimal policy π∗k+1(i) ∀i ∈ X
and due to the heuristic policy H2 when n = 10 time units. Furthermore, we
compare the quantitative results for Ptx = 100 mW (plotted in dashed line)
and Ptx = 500 mW (plotted in solid line).

In Figure 3.9, it is quite interesting to note that the heuristic policy H1 per-
forms better than the optimal policy π∗k+1(i) ∀i ∈ X in terms of energy effi-
ciency of the control or decision variable uk = HP as the value of λH tends
to λH = 0.5 new code-vectors arrivals/s. Furthermore, note that there is a
strong dependence of the energy efficiency of the control or decision variable
uk = HP on the transmission power of the transmitting biomedical device,
with an average gap of 0.4916 between Ptx = 100 mW and Ptx = 500 mW
for the optimal policy π∗k+1(i) ∀i ∈ X , with an average gap of 0.4878 between
Ptx = 100 mW and Ptx = 500 mW for the heuristic policy H1. In Figure 3.10,
the optimal policy π∗k+1(i) ∀i ∈ X performs better than the heuristic policy
H2 in terms of energy efficiency of the control or decision variable uk = LP

∀λH ∈ [0.005, 0.5] new code-vectors arrivals/s. In particular, the energy effi-
ciency of the control or decision variable uk = LP due to the optimal policy
π∗k+1(i) ∀i ∈ X is close to 1 ∀Ptx ∈ {100, 500} mW and ∀λH ∈ [0.005, 0.5] new
code-vectors arrivals/s, with an average gap of 0.1895 between the optimal
policy π∗k+1(i) ∀i ∈ X and the heuristic policy H2 for Ptx = 100 mW, with
an average gap of 0.0583 between the optimal policy π∗k+1(i) ∀i ∈ X and the
heuristic policy H2 for Ptx = 500 mW.

Note that the performance evaluation of the energy efficiency of uk = HP

and uk = LP of the Single-Server Multiple-Buffer queueing system aims at
capturing the fundamental need to avoid energy misuse. Depending on the
application requiremenets, an average gap of 0.0583 between the optimal policy
π∗k+1(i) ∀i ∈ X and the heuristic policy H2 for Ptx = 500 mW can be regarded
as negligible.

3.2.4 The average new code-vector delay

The average new code-vector delay due to the optimal policy π∗k+1(i) ∀i ∈ X
is computed via simulation from index k = 0 to index k = 106 as the ratio
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Figure 3.11: Average new code-vector delay for n = 1.
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Figure 3.12: Average new code-vector delay for n = 10.
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between the overall number of time units during which the new code-vectors are
buffered in HPQ and the overall number of new code-vectors arrivals in HPQ.

In Figure 3.11 and Figure 3.12, we represent the average new code-vector
delay due to the optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic poli-
cies H1 and H2 as a function of λH ∈ [0.005, 0.5] new code-vectors arrivals/s.
Again, the red squared markers stand for the optiml policy π∗k+1(i) ∀i ∈ X ,
the blue circular markers stand for the heuristic policy H1, and the green
upward-pointing triangular markers stand the heuristic policy H2. In particu-
lar, Figure 3.11 reports the average new code-vector delay due to the optimal
policy π∗k+1(i) ∀i ∈ X and due to the heuristic policies H1 and H2 when n = 1

time unit, whereas Figure 3.12 reports the average new code-vector delay due
to the optimal policy π∗k+1(i) ∀i ∈ X and due to the heuristic policies H1 and
H2 when n = 10 time units. Furthermore, we consider Ptx = 500 mW.

The heuristic policy H2 provides the worst performance in terms of average
new code-vector delay, as expected. This is due to the basic fact that the
heuristic policy H2 is not interested in the new code-vector synchronization
but in throughput, without taking into account the state of HPQ, as discussed
above. As the value of n tends to n = 1 time unit, we observe that the
average new code-vector delay due to the optimal policy π∗k+1(i) ∀i ∈ X is
higher than the one due to the heuristic policy H1 ∀Ptx ∈ {100, 500} mW
and ∀λH ∈ [0.005, 0.5] new code-vectors arrivals/s. As the value of n tends
to n = 10 time units, we observe that the average new code-vector delay due
to the heuristic policy H1 is higher than the one due to the optimal policy
π∗k+1(i) ∀i ∈ X ∀Ptx ∈ {100, 500} mW and ∀λH ∈ [0.005, 0.5] new code-
vectors arrivals/s. It is quite interesting to note that the heuristic policy H1

outperforms the heuristic policy H2 of about 2 time units ∀n ∈ {1, 5, 10} time
units. This result could be better exploited in possible future developments,
in order to set some lower or upper bounds to the the average new code-vector
delay due to the optimal policy π∗k+1(i) ∀i ∈ X .
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Chapter 4

Conclusions

This thesis applies the DP and Optimal Control theory, along as the Markov
Chain and Markov Decision Chain theoretical framework, to the problem of
designing optimal strategies for the transmission of compressed biometric time
series over wireless channels. In particular, this work focuses on the critical
aspects concerning both the codebook-based approaches and the evolution of
the multipath Rayleigh fading channel throught a (C+1)-state Markov Chain,
thus exploring the issues associated with both compression and transmission.
Our novel approach is in the performance evaluation of the scheduling of a
Single-Server Multiple-Buffer queueing system, thus taking into account the
transmission of both new code-vectors and codebook indexes. In particular, we
consider different values of the transmission power of the transmitting biomed-
ical device and different values of the new code-vectors arrival rate. Further-
more, we compare the system performance under the optimal policy, which
require that the central controller has full knowledge of the system parameters
and of the evolution of the multipath Rayleigh fading channel, with the system
performance under two suboptimal policies (also referred to as heuristic poli-
cies H1 and H2), which do not require full state information and turn out to be
computationally light. The numerical results highlight that both the heuris-
tic policies H1 and H2 can be exploited to replace the optimal policy π∗k+1(i)

∀i ∈ X and to suit our model formulation in some appropriate situations,
i.e., when the scheduling of a Single-Server Multiple-Buffer queueing system
satisfies the application requirements and permits a good (even if suboptimal)
application performance in terms of throughput and data validity, reliability,
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and accuracy. In particular, note that there is a strong dependence of the per-
centage of discarded codebook indexes (both potential future good codebook
indexes and potential future bad codebook indexes) on the allowed maximum
number of current codebook indexes buffered in LPQa and on the allowed max-
imum number of OOS codebook indexes buffered in LPQb. Also, note there
is a strong dependence of the average new code-vector delay on the allowed
maximum number of stages during which update(k) is buffered in HPQ. As a
consequence, possible future developments could take into account the setting
of a Single-Server Multiple-Buffer queueing system with larger values of A, B,
and D, thus leading to more complex models, capable to determine how the
system parameters A and B affect the metrics of interest and the behavior of
the optimal policy π∗k+1(i) ∀i ∈ X as a function of D. A lot of work remains to
be done to couple our model formulation to the novel studies on vector quan-
tization, pattern matching, and codebook-based approaches, with particular
attention for Neural Networks. An interesting proposal for a possible future
extension of this work could take into account a self-adapting codebook, thus
a corresponding self-adapting Single-Server Multiple-Buffer queueing system,
capable to switch between optimal and suboptimal policies, at runtime, ac-
cording to the available resourses at the transmitting side and to the statistical
description of the source.
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