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Introduction

In recent years, the use of mathematics in cancer research has caught on, with
the rapid accumulation of data and applications of mathematical methodologies
[56]. The application of mathematics in cancer research is known as mathematical
oncology. Mathematical oncology, starting from theoretical studies, tries to design
clinical experiments with mathematical models. Mathematical models represent
an useful tool for an interdisciplinary approach to cancer research. Indeed, various
points of view, coming from several scientific areas, are fundamental to face the
complexity of cancer evolution. In this setting, cancer ecology arises as promis-
ing quantitative approach. Cancer ecology looks at different groups of cells in an
organism as interacting species of an ecosystem. From this perspective, cancer
cells are a new species appearing in a stable ecosystem. Cancer cells represent a
harmful and invasive species, abling to influence and change the interaction among
the different types of healthy cells, that represent the pre-existing species. To pro-
mote their growth, cancer cells trigger a struggle for survival, which can lead to
the extinction of certain types of cells and, in the worst cases, to the collapse of
the entire ecosystem. The stochastic models (specially interacting particle sys-
tems) fit the noisy dynamics of cancer. One of the main problematic features of
cancer is therapy resistance. Among therapies, immunotherapy has some notable
characteristics [68, 67]:

- it enables the immune system to recognize and target cancer cells;

- it can train the immune system to remember cancer cells, leading to an
eventually immune response in longer-lasting remissions. That is, cancer
may be less likely to return;

- compared to other treatments, it causes fewer side effects which vary accord-
ing to each therapy and how it interacts with the body. This is because it
only targets the immune system and not all cells;

- It can help other cancer treatments work better;

- Immunotherapy may work when other treatments don’t; some cancers (like
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skin cancer) don’t respond well to radiation or chemotherapy but begin to
disappear after immunotherapy.

Thus, immunotherapy represents a potential and effective treatment for patients
with certain types of resistant cancer. Moreover a wide range of cancers are cur-
rently treated using immunotherapy; in particular melanoma has a good response
to this kind of treatment. Therefore, in this thesis, we have chosen a stochastic
model for immunotherapy of cancer. In particular the proposed model allows to
simulate different treatment protocols, highlighting some counter-intuitive results:
under some particular conditions therapy could work in favour of cancer resistance.
Accordingly, the same type of cancer acts in very different ways with respect to
the affected person and used therapy. Therefore, mathematical oncology could
play a decisive role in the future of personalized medicine. In fact, patient-specific
mathematical modelling, analysis and collection of clinical data could represent
effective tools to develop patient-specific adaptive therapies and to face therapy
resistance.

Chapter 1 introduce the biological setting necessary to have a better under-
standing of the evolutive processes and the interactions among the primary types
of molecule and cells involved in cancer genesis and evolution. Indeed, under-
standing the mechanism of cancer evolution is essential to breed ground for an
efficient mathematical model; even if any mathematical model is self-consistent
and independent from the biological features of the process which describes. The
first part of the chapter gives an idea of DNA structure, replication and mutations.
This because errors in DNA coding represent the starting point of onset of cancer.
In fact, mutations at DNA-level start in one cell and affect the whole offspring.
Furthermore, special attention is placed on the hallmarkers of cancer, a small set
of characterizing traits that are in common to almost all types of cancer. Finally,
an intuitive motivation about the necessity to introduce a stochastic framework is
given.

Chapter 2 begins by briefly presenting the main results of the theory of Markov
chains, providing a rigorous theoretical foundations to the chosen model. Starting
from definitions of discrete-time and continuous time Markov chains and Poisso-
nian representation of the infinitesimal generator, we studied the mean-field limit
of some interacting particle systems (e.g. Voter and Curie-Weiss models). Inter-
acting Particle Systems (IPS) are Markov chains valued in a space SΛ , where S
is a finite set and Λ is countable set. Thus, assuming N = |Λ| <∞, an arbitrary
state, of an IPS

(
η(t)

)
t≥0

, has the following configuration

(η1, η2, . . . , ηN) =
(
η(i)

)
i∈Λ
∈ SΛ (ηi := η(i) ∈ S)
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However, under the mean-field hypothesis, as N →∞, the dynamics of the empir-

ical means
(

i.e. η̄Ni :=
1

N

∑N
j=1 δi(ηj)

)
can be approximated by a system of ODE

(i.e. the mean-field limit). A modification of Voter model is used to study and
simulate the process defined in Chapter 3, which describes the growth of melanoma
treated with immunotherapy.

Firstly, Chapter 3 marks the fundamental role of mathematics in cancer re-
search, giving examples of models with different mathematical backgrounds (e.g.
population dynamics, game theory and stochastic models). The kernel of this chap-
ter is the analysis of the stochastic model for immunotherapy of cancer proposed
in the article [7]. This model describes melanoma evolution under treatment with
respect to an ecological perspective. Namely, an organism affected by melanoma
can be considered as a stable ecosystem, in which a new species springs up. The
new interactions between pre-existing and rising species unbalance the equilibrium
state of the ecosystem, leading to a dramatic change in the behaviour of all species.
The immunotherapy, which consist of injection of T-cells, can be represent the ap-
pearing of a further new species, which competes for survival against the species
represented by cancer. Thus, interactions among various types of cells are funda-
mental to provide a model for cancer growth under therapy which is close enough
to reality. In fact, the presented stochastic model for immunotherapy of melanoma
is an extension of Voter Model (VM), which takes into account interactions among
species. In the context of melanoma under T-cell therapy, the main types of in-
teracting particles are skin cancer cells, T-cells and cytokine (in the model others
interactions are neglected). Hence, the local state space of the process describing
the dynamics of these interacting particles is the following discrete and finite set

X := G × P ∪̇ Z ∪̇ W

where

- (g, p) ∈ G × P represents a cancer cell with genotype g and phenotype p;

- z ∈ Z denotes a T-cell of type z;

- w ∈ W expresses a cytokine of type w.

An arbitrary state of the population can be described by the random measure

νK(t) :=
1

K

∑
x∈X

νx(t)δx,

where
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- K ∈ N is a fixed parameter that allows to scale the population size and is
usually called carrying-capacity of the environment;

- νx(t) is the number of individuals of type x at time t;

- δx denotes the Dirac measure at x.

Additionally, in order to analyse the model (qualitatively), we have showed two
examples, based on the evidence of the experiments of Landsberg et al. [41], about
melanoma in mice treated with T-cells. The first example the stochastic process
depicting the evolution of a population has trait space

X = {x = (g, p); y = (g, p′)}∪̇{zx}∪̇{w}.

The dynamics of the population is described by the transitions in Figure 1

Figure 1: Representation of the transitions for a monomorphic population with two
possible types of cancer cell x = (g, p) and y = (g, p′), one type of lymphocyte zx and
one type of cytokine w [7].

The process described in this first example can be approximated by the follow-
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ing ODE system

ṅx = nx
(
b(x)− d(x)− s(x, y)− c(x, x)nx − c(x, y)ny − t(zx, x)nzx − sw(x, y)nw

)
+ nys(y, x)

ṅy = nx
(
s(x, y) + sw(x, y)nw

)
+ ny

(
b(y)− d(y)− s(y, x)− c(y, x)nx − c(y, y)ny

)
ṅzx = nzx(−d(zx) + b(zx, x)nx)

ṅw = nx
(
lkillw (zx, x)t(zx, x) + lprodw (zx, x)b(zx, x)

)
nzx − nwd(w)

where for each trait χ ∈ X , nχ = nχ(t) represents the fraction of individuals of
trait χ at time t. In particular the switching parameters (e.g. s(x, y), sw(y, x))
points out that the melanoma can switch its phenotype in order to evade an im-
mune response. This phenotypic plasticity of melanoma cells in an inflammatory
microenvironment contributes to tumour relapse after initially successful T-cell
immunotherapy. The second example describe a new protocol proposed by Lands-
berg et al. [41] in order to avoid tumour relapse. Finally, the analysis of rare
mutations in large population underline that purely stochastic events may help to
understand the resistance of tumours to therapeutic approaches [7]. Thus, this
kind of stochastic models may underline some results that are not immediately
evident by laboratory experiments. They may guide the creation of new tumour
treatment protocols, supporting the design of experimental treatments and, thus,
reducing the time of experimentation.
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Chapter 1

The Biology of Cancer

To start this thesis, it is basic introducing the biological framework where a math-
ematical model for immunotherapy of cancer (see chapter 3) is inserted. Indeed,
the following chapter argues about DNA structure, replication and mutations, that
represent the starting point to understand onset of cancer (tumorigenesis). DNA
molecule is the store of all genetic information for most cells and living organism.
Mutations at DNA-level can arise either due to errors during DNA replication or
from exposure to genotoxic agents and they could have various and serious effects
on health of the involved organism, leading to genetic diseases (like cancer) in the
worst cases [25, 50]. Moreover, cancer genetics and the main biological processes
involved in cancer evolution are briefly discussed. Cancer (or malignant tumour)
is a disease characterizing multicellular organisms. It results from somatic alter-
ations, that disturb the normal cooperative behaviour of cells. Somatic alterations
(i.e mutations at DNA-level) start in one cell and affect all the eventually future
descendant cells. The latter become invasive cells through very quick replications
and mutations, thereby producing abnormal cellular growth, which lead to an in-
creasing of the size and invasiveness of the tumour. Furthermore, cancer cells
induce many uncontrolled interactions within healthy tissues, therewith destroy-
ing the surrounding cellular environment. Summing up, cancer is a complex tissue
which evolves in mutual influence with its environment. The evolution of cancer
brings mostly irreparable damage to the cellular network, almost always carrying
dramatic consequences for the affected organism [10, 26, 41, 57].

1.1 DNA Structure and Mutations

The ability to store and transmit genetic information from one generation to the
next is a fundamental condition for life [50]. Deoxyribonucleic acid (DNA) is
the repository for the hereditary information of most living organisms and cells.
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1. THE BIOLOGY OF CANCER

Namely, DNA contains the master blueprint for the production of proteins and for
its own replication. Proteins are the fundamental bricks of life; they are building
materials for living cells, build tissue, appear in the structures inside cell and within
cell membrane, carry oxygen, copy DNA for the next generation, etc. The DNA
molecule is constituted by a double helix formed by two complementary chains
twisted around each other. Each chain is a linear oriented sequence of four-type
nucleotides. Generally, for the construction of nucleotides a set of five nitrogenous
bases is used (see Figure 1.1): Adenine (A), Guanine (G), Cytosine (C), Thymine
(T), and Uracil (U). Moreover, to make nucleotides, these bases attach to a pentose
sugar (desoxyribose for DNA), along with a phosphate group. DNA contains
no uracil because deoxyribose does not couple with it. This last nitrogen basis
is present in the single-stranded structure of RNA (ribonucleic acid) instead of
thymine (ribose, the pentose sugar of RNA, does not couple with thymine). There
are different forms of RNA; specifically, messenger RNA (mRNA) carries the DNA
information to the entire cell trough a process called transcription, responsible for
the formation of proteins, which are essential for most cellular processes.

Figure 1.1: The set of five nitrogenous bases used to construct nucleotides, which in
turn build up the nucleic acids, like DNA and RNA [49].

The nitrogen bases are crucially important because their sequencing, in nucleic
acids, is the way information is stored. The bases can be attached in any order,
giving an huge number arrangement possibilities which are achievable in the genetic
code. However, DNA sequences can not be considered as mere combinations of four
letters, randomly repeated multiple times; chemistry plays an remarkable role in
determining the structure and function of nucleic acids. Indeed, in both DNA and
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1.1. DNA Structure and Mutations

RNA, cytosine pairs with guanine by means of three hydrogen bonds (C ≡ G),
while adenine pairs with thymine (in a DNA sequence) or with uracil (in RNA
sequence), by means of two hydrogen bonds (A = T and A = U respectively ).
The double bond is weaker than the triple one; namely, it breaks more easily. The
only existence of hydrogen bonds between complementary bases makes possible
the separation of the two strands of DNA (see Figure 1.2), along from each of
which it is possible to synthesize a complementary strand, giving origin to two
copies of the original DNA.

Figure 1.2: The hydrogen bonds between nitrogen bases, since they are not strong
chemical bonds, let the separation of the two strands of DNA be possible [50].

The functional segments of DNA that code for the transfer of genetic informa-
tion are called genes. The genes are transcribed into mRNA, which subsequently
is translated into proteins [23, 49, 50].

However, the DNA in any cell can be altered by many different factors. So-
matic mutations may occur during the process of DNA replication or reparation,
or through exposure to exogenous mutagens (some chemical substances, radiation
emanating, for example, from X, Gamma and UV rays) or endogenous ones (DNA
oxidation, which generally is an intrinsic process in living molecules life), etc. Thus,
some genes could be affected by random or driven alterations, that could lead to
a change in DNA bases sequence and bases mismatching. These alterations obvi-
ously affect the genotype (the set of all genes in DNA) of the involved individual,
but may not produce discernible changes in the set of functional and observable
characteristics (phenotype). Two main classes of mutation can be distinguished:

- Germ-line cell mutations, which involve gametes (reproductive cells). These
mutations can be passed to the organism’s offspring.

- Somatic mutations, that can occur in any organism’s cell different from ger-
minal cells. Such mutations are passed to daughter cells during the cell
replication, but they are not passed to offspring conceived via sexual repro-
duction.

13



1. THE BIOLOGY OF CANCER

One can note that it is sufficient only a single base change to create a devastating
genetic disease or beneficial adaptation, or it may seemingly have no apparent effect
[16, 26]. Also, at nucleotide level, it is possible to characterize various typologies
of mutations, that are listed according to the nature of changes occurred in the
nucleic sequence ([69], see figure 1.3):

- point mutation is a change in one base in the DNA sequence;

- substitution happens when one or more bases in the sequence is replaced by
the same number of different bases;

- inversion realizes an end-to-end reversion of a DNA segment;

- insertion is the addition of a base in the sequence;

- deletion is when a base is deleted from the sequence.

Figure 1.3: Representation of different types of Nucleic sequences alterations [69].

DNA is known to be subject to continuous damage, but the living organism has
an automatic mechanism for dealing with such injuries, primarily by recognizing
and repairing mutations. Most alterations undergo such a reparation mechanism,
but others do not. Summing up, mutations or deficiencies in repair can lead to

14



1.2. The Genetics of Cancer

catastrophic consequences, causing a wide range of human diseases (like cancer).
In spite of this, mutations represents fundamental processes to life and evolution
[25].

1.2 The Genetics of Cancer

One of the most common genetic disease affecting multicellular organisms is cancer
[57]. It arises from the acquisition of somatic mutations by single cell. However,
not all the somatic mutations, that can occur, work in the cancer development.
Some of them are deleterious and lead the clone straight to extinction. Others,
called passenger mutations, are neutral, without functional consequences; i.e. they
are somatic mutations which do not confer any advantages to the mutated cell.
Contrariwise, acquisition of driver mutations provides a fitness advantage which
lead to improved replication or resistance to apoptosis (programmed cell death in
cells). Nevertheless, both drivers and passengers mutations mark the history of
the cancer cell. Then, each driver mutation allows the mutant cell to ride a wave of
clonal expansion since, being somatic mutations, they are passed to the offspring
of the mutated cell. Accordingly, the normal cooperative behaviour of cells is
disturbed [10]. Finally, cancer main feature is the lack of growth control by the cell
cycle regulatory mechanism, due to gene alterations. The consequent abnormal cell
expansion can invade beyond normal tissue boundaries and metastasize to distant
organs [39, 57]. In particular, the mutations feeding tumour primarily affect two
types of genes, proto-oncogenes and oncosuppressors ;

- proto-oncogenes normally help cell growth, but when they are affected by a
mutation (e.g. point mutation, translocation, insertion, deletion) or an alter-
ation, they became over-present or can overturn their role thus promoting an
abnormal cell proliferation. Mutated proto-oncogenes are called oncogenes ;

- oncosuppressors (or tumour suppressor genes) are genes that typically code
for proteins that promote apoptosis, repress cell cycle regulation or are in-
volved in DNA damage repair; i.e. they protect the cells. When mutations
occur, there is a loss or a reduction in their functions in favour of cancer
progression [39].

The Hallmarks of Cancer

One of the main challenge in recent cancer research is to simplifies the complexity
of cancer study. In order to reach a logic, rigorous and common framework for all
cancer types is essential making the tumour analysis understandable in terms of a
small number of underlying principles. The latter aim still is an open problem in
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1. THE BIOLOGY OF CANCER

cancer research field. Anyhow, research over the past decades has revealed (with
support of biological evidences) a small number of molecular, biochemical, and
cellular traits, which are the linkers for most, perhaps all, typologies of human
cancer [28]. These traits are functional capabilities that healthy cells acquired
during multistep process, called tumorigenesis, that leads them to become malig-
nant. In the article [28], it is suggested that these alterations in cell physiology
are essentially six (see Figure 1.4):

- Self-sufficiency in growth signals : in order to proliferate, healthy cells require
signals that stimulate replication. Oncogenes simulate the effect of growth
signals, inducing a self-sustained mechanisms, which lead to a chronic and
unregulated cancer cell proliferation.

- Insensitivity to anti-growth signals : fundamental to cellular quiescence is the
anti-growth signal, which block proliferation guaranteeing a correct tissue
homoeostasis. Cancer cells can deactivate growth-inhibitory signal; many
oncosuppressors (deputed to limit cancer cells reproduction), become deac-
tivated.

- Evading apoptosis : every cell in living organisms are subjected to apoptosis
(a self-programmed process that drives cells to death). Cancer cells get more
resistant to apoptosis, slowing down this natural death process.

- Limitless replicative potential : for all mammalian cell types there is a self-
autonomous program that induces senescence, limiting the number of succes-
sive cycles of cell growth and division, until cell division ceases. Oncogenes,
deactiving the above surveillance neoplasms mechanism, let cancer cells do
not have a limited number of successive cell growth-and-division cycles. This
trait is also termed immortalization.

- Sustained angiogenesis : oxygen and nutrients are essential for the survival of
cells. They are carried throughout the circulatory system of organisms, which
has a dense network of capillary, reaching all cells. Normally, the process of
growth of a blood vessel, termed angiogenesis, is transitory and carefully
regulated. By contrast, when cancer occurs, there is an alterated signal,
which causes new vessels to continually sprout, thus providing nutrients and
oxygen that give cancer cells advantage in growth power.

- Tissue invasion and metastasis : Sustained angiogenesis has another deter-
minant role in cancer evolution. Cancer cells use the rich network of blood
vessels to flow towards new tissues, both adjacent and distant. In these
way, the expansion of cancer is favoured through tissue invasion and birth of
secondary neoplasms, responsible for 90% of cancer deaths.
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1.2. The Genetics of Cancer

Figure 1.4: Set of novel capabilities acquired by cells during tumour development [28].

Two other traits were added to the list of main hallmarks afterwards, because to
their functional importance in cancer development [29]:

- Avoiding immune destruction: in an organisms affected by cancer the im-
mune system try to face and overcome formation and progression of incipi-
ent neoplasia, already formed tumour masses and metastasis. Unfortunately,
cancer cells are able to hide from immune system, limiting the effectiveness
of immunological killing.

- Deregulating of cellular energy : healthy cells need oxygen to make their
metabolism work. A well functioning metabolism produces the energy nec-
essary for the survival, growth and replication of cells. In tumour masses,
cells can modify their metabolism, acquiring the ability to produce energy in
an anaerobic context (without oxygen). This fact give an advantage to can-
cer domination because, in general, the absence of oxygen prevents healthy
cells from producing energy.

Furthermore, multistep cancer progression can be viewed as a sequence of clonal
expansions. Each clonal expansion is triggered by the random acquisition of an
enabling mutant genotype. Two main enabling characteristics have been high-
lighted in [29], because they are essential conditions for the acquisition of the
listed hallmarks:

17



1. THE BIOLOGY OF CANCER

- Genome instability and mutation: tumour cells express a mutator phenotype
which gives cancer cells better efficiency in acquiring mutations; i.e. the
mutation rate in the cancer cells is much greater than that in normal cells.
[43]. This feature deceive oncosuppressores, increasing the rates of mutation.
The insufficiency of the surveillance systems lead to an acceleration of the
accumulation of mutations and force genetically damaged cells into either
senescence or apoptosis, bringing serious tissue injuries and advantaging of
cancer expansion.

- Tumour-promoting inflammation: inflammation associated to cancer is the
response of immune system, that try to face cancer. Paradoxically, inflam-
mation promote tumour progression, indeed contribute to multiple hallmark
capabilities by supplying bioactive molecules to the tumour microenviron-
ment.

Figure 1.5: Emerging hallmarks and enabling characteristics [29].

One important turning point in cancer research is that the dialogue between
tumour cells and their environment is critical to understanding the complexity
of cancer evolution. Accordingly, it is crucial to recognize cancer as complex
tissue composed of multiple distinct cell types that interact with one another
[9, 29]. More precisely, “the tumour mass consists not only of a heterogeneous
population of cancer cells but also a variety of resident and infiltrating host cells,
secreted factors and extracellular matrix proteins, collectively known as the tumour
microenvironment” [48]. That is, cancer cannot be considered as an mutated
isolated mass in a organism. Consequently, cancer progression is strictly correlated
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1.3. The Role of Randomness

to interaction with its microenvironment, that ultimately determine its evolution
[29, 48].

1.3 The Role of Randomness

The role of randomness in tumorogenesis (i.e. cancer initialization) is still a reason
for disagreement in literatures [39]. Recently, a paper [62], supporting the existence
of a strong correlation between tissue-specific cancer risk and the lifetime number
of tissue-specific stem-cell divisions, is published;

Some tissue types give rise to human cancers millions of times more
often than other tissue types. Although this has been recognized for
more than a century, it has never been explained. Here, we show that
the lifetime risk of cancers of many different types is strongly correlated
(0.81) with the total number of divisions of the normal self-renewing
cells maintaining that tissue’s homeostasis. These results suggest that
only a third of the variation in cancer risk among tissues is attributable
to environmental factors or inherited predispositions. The majority is
due to “bad luck”, that is, random mutations arising during DNA
replication in normal, noncancerous stem cells. This is important not
only for understanding the disease but also for designing strategies to
limit the mortality it causes. [62]

This paper shook a lot since it contradict the well-established role of environmental
factors and lifestyle for cancer incidence [39]. As a response to article [62] a
subsequent paper [66] was published in the same year. Its authors support that
the correlation exists, it cannot properly distinguish between intrinsic and extrinsic
factors [39];

Recent research has highlighted a strong correlation between tissue-
specific cancer risk and the lifetime number of tissue-specific stem-
cell divisions. Whether such correlation implies a high unavoidable
intrinsic cancer risk has become a key public health debate with the
dissemination of the ‘bad luck’ hypothesis. Here we provide evidence
that intrinsic risk factors contribute only modestly (less than about
10−30% of lifetime risk) to cancer development. First, we demonstrate
that the correlation between stem-cell division and cancer risk does not
distinguish between the effects of intrinsic and extrinsic factors. We
then show that intrinsic risk is better estimated by the lower bound
risk controlling for total stem-cell divisions. Finally, we show that the
rates of endogenous mutation accumulation by intrinsic processes are
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1. THE BIOLOGY OF CANCER

not sufficient to account for the observed cancer risks. Collectively,
we conclude that cancer risk is heavily influenced by extrinsic factors.
These results are important for strategizing cancer prevention, research
and public health. [66]

Nevertheless, in the construction of mathematical cancer-evolution models, tuo-
morigenesis problem can be overcame, treating factors triggering the cancer initial-
ization as random influences external to the model. This argument can be justified
by following topic. Randomness play a fundamental role in modelling biological
dynamical system. Indeed, there may be parts of dynamic, which are not explic-
itly included in modelling for their arduous management (e.g. sub-dynamics that
either are not predictable or understandable). However, to be realistic, biological
dynamical system models should include the influences of these excluded parts of
the dynamics; a way of doing it is to consider the effects due to influences external
to the model as random results. Thus, biological dynamical systems evolve under
stochastic lows, where stochasticity suggests the presence of random variables and
behaviours in the model. Generally, stochastic effects may slightly or even dramat-
ically change the dynamic behaviour of the system [20]. Consequently, omitting
stochasticity makes the proposed model inefficient. Therefore, basics of stochastic
processes are introduced, in Chapter 2. Indeed, they represent the mathematical
background needed to rigorously construct a model for cancer progression (e.g.
model presented in Chapter 3).
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Chapter 2

Basics of Markov Chains

Aim of the present chapter is to review few fundamental results of Markov chain
theory. Discrete-time and continuous time Markov chains are defined and their
Possonian construction is reviewed. The latter will be useful later on to study
and simulate the process defined in Chapter 3. This model describes a melanoma
under T-cell treatment, it comes from the class of models which depict the im-
munotherapy of malignant tumours and it represents the core of this thesis. Such
a process belong to a class of processes called Interacting Particle System (IPS).
Loosely speaking IPS are system comprised of a large number of units (particles)
whose dynamics are Markovian and shaped by the interaction among the parti-
cles of the system. In this chapter we consider mean-field IPS. In mean-field IPS
each particle interacts with the others trough the empirical mean. Moreover, the
empirical mean is a sufficient statistic for the system. It is showed (see Section
2.4, Theorem 2.18) that in the thermodynamic limit (i.e. when the number of
particles grows to infinity) the empirical mean behaves deterministically and its
time evolution can be described by an Ordinary Differential Equation (ODE). The
chapter ends with two standard example: the Curie-Weiss and the Voter models.

2.1 Discrete-Time Markov Chains

Let S ⊆ Rν , with ν ∈ N := {1, 2, 3, . . . }, be a finite set (|S| <∞) and let (Ω,F , P )
be a probability space. A random variable X from (Ω,F , P ) to S is called S-valued
random variable and S is called state space.

Definition 2.1. A stochastic process is a sequence of S-valued random variables
(Xn)n∈N.

In particular, S is called state space of the process.
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2. BASICS OF MARKOV CHAINS

Definition 2.2 (Markov Chain). A stochastic process (Xn)n∈N is a Markov Chain
(MC) if

P
(
Xn+1 = j|Xn = i, . . . , X1 = i1, X0 = i0

)
= P

(
Xn+1 = j|Xn = i

)
,

∀n ≥ 1 and ∀j, i, i0, i1, . . . , in−1 ∈ S.

If ∀i, j ∈ S, P
(
Xn+1 = j|Xn = i

)
does not depend on n, we say the chain

is time-homogeneous. In this case the matrix

P := (pij)i,j∈S with pij := P
(
Xn+1 = j|Xn = i

)
is called the transition matrix (pij is called transition probability) and it has the
fallowing properties:

- pij ≥ 0, ∀i, j ∈ S;

-
∑

j∈S pij = 1.

An important fact is that the law of the process is completely determined by the
initial distribution π0(i) := P

(
X0 = i

)
, i ∈ S, and the transition matrix P :

P
(
Xn = in, Xn−1 = in−1, . . . , X1 = i1, X0 = i0

)
= π0(i0)pi0i1 . . . pxn−1in

2.2 Continuous-Time Markov Chains

Let S be a finite metrizable space, let S be the Borel−σ field on S and t ∈ [0,+∞).

Definition 2.3. An S-valued stochastic process is a collection (X(t))t≥0 of mea-
surable map from a common probabilistic space (Ω,F , P ) to (S,S).

Thus, the stochastic process (X(t))t≥0 gives an S-valued random element X(t)
on (Ω,F , P ), ∀t ≥ 0, and fixing ω ∈ Ω the maps t → X(t)(ω) on R are called
the trajectories, or sample paths. The sample paths are functions from R to S, i.e.
elements of SR. Hence, we can view (X(t))t≥0 as a random element of the function
space SR .

Definition 2.4. A collection of (Ft)t≥0 of sub-σ-algebras of F is called a filtration
if Fs ⊆ Ft, ∀ s ≤ t.
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2.2. Continuous-Time Markov Chains

Taking a stochastic process (X(t))t≥0, it is always possible define a filtration
(FXt )t≥0 defined by FXs = σ(Xs : s ≤ t). This filtration is called the filtration
generated by (X(t))t≥0 (or the natural filtration). Intuitively, the natural filtration
of a stochastic process keeps track of the “history” of the process. Moreover a
stochastic process (X(t))t≥0 is always adapted to its natural filtration, i.e. ∀t ≥ 0,
the random variable X(t) is Ft-measurable.

Definition 2.5 (Markov Chain). A stochastic process (X(t))t≥0 is a Markov chain
if ∀j ∈ S and 0 ≤ s ≤ t

P
(
X(t) = j|FXs

)
= P

(
X(t) = j|X(s)

)
.

Let (Xt)t≥0 be a time-homogeneous Markov chain (HMC),
i.e.

P
(
X(t+ s) = j|X(s) = i

)
= P

(
X(t) = j|X(0) = i

)
, ∀s, t ≥ 0,

and let (Pt)t≥0 be a family of operators acting on the functions f : S → R as
follows

Ptf(i) := E
(
f(X(t))|X(0) = i

)
=
∑
j∈S

f(j)P
(
X(t) = j|X(0) = i)

)
.

The following standard results are valid (e.g. a proof of them are in [11, 42]):

(i) Pt : R|S| → R|S| is a linear operator represented by the matrix with entries

pij(t) := P
(
X(t) = j|X(0) = i

)
i, j ∈ S (2.1)

which is a stochastic matrix, indeed (by definition (2.1)) it results that

pij(t) ≥ 0 and
∑
j∈S

pij(t) = 1 (t ≥ 0);

(ii) (Pt)t≥0 is a semigroup (by Markov’s property), that is

P0 = I (2.2)

Pt+h = PtPh, (2.3)

where I is the identity matrix;
i.e.

pij(0) =

{
1 i = j
0 i 6= j

and
pij(t+ h) =

∑
k∈S

pik(t)pkj(h)

for i, j ∈ S;
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2. BASICS OF MARKOV CHAINS

(iii) (Pt)t≥0 is a contraction semigroup,
i.e.

||f ||∞ := sup
i∈S
|f(i)| ≤ 1 =⇒ ||Ptf ||∞ := sup

i∈S
|Ptf(i)| ≤ 1;

(iv) (Pt)t≥0 is a strongly continuous semigroup,
i.e.

lim
t→0
Ptf = f

DEF⇐⇒ ||Ptf − f ||∞
t→0−−→ 0;

Note that the last point implies that Ptf converges point-wise to f :

lim
t→0
Ptf(i) = f(i) ∀i ∈ S

that is
lim
t→0
Pt = I.

(Pt)t≥0 is called continuous transition semigroup of the HMC. One can note
that, since the states space S is finite, Pt = (pij(t))i,j∈S and f = (f(i))i∈S can be
considered as a matrix and a vector respectively;

Ptf(i) =
∑
j∈S

f(j)pij(t) ∀i ∈ S, t ≥ 0.

Besides, for t ≥ 0, let

µi(t) := P
(
X(t) = i

)
, ∀i ∈ S and µ(t) = (µ1(t), µ2(t), . . . , µ|S|(t))

then

µj(t) = P
(
X(t) = j

)
=
∑
i∈S

P
(
X(0) = i

)
pij(t)

=
∑
i∈S

µi(0)pij(t)

= (µ(0)Pt)j

that is,
µ(t) = µ(0)Pt. (2.4)

This means that the process is completely determined by the initial distribution
µ and the transition semigroup matrix Pt. Furthermore, the following important
property holds for 0 =: t0 < t1 < t2 < · · · < tn

P
(
X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = in

)
= µi0(0)(i0)pi0i1(t1 − t0) . . . pin−1in(tn − tn−1), (2.5)
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2.2. Continuous-Time Markov Chains

where ∀ k ∈ {0, 1, 2, . . . n}, ik ∈ S and µi0(0) = P
(
X(0) = i0

)
. For any HMC it is

possible to define another operator: L : R|S| → R|S|;

Lf := lim
t→0

Ptf − f
t

, ∀(f : S → R) ∈ D(L) (2.6)

L is called the infinitesimal generator of the HMC and D(L) is its domain. More
precisely

D(L) :=

{
f : S → R

∣∣∣∣ ∃ lim
t→0

Ptf − f
t

}
,

therefore

f ∈ D(L) ⇐⇒
∣∣∣∣∣∣∣∣Ptf − ft

− Lf
∣∣∣∣∣∣∣∣
∞

t→0−−→ 0.

This means that if f ∈ D(L) than one has also the pointwise convergence

Lf(i) = lim
t→0

Ptf(i)− f(i)

t
∀i ∈ S. (2.7)

The infinitesimal generator L is informally the derivative at time t = 0 of the
continuous semigroup Pt, this may be heuristically understood from the following
computation;

Lf = lim
t→0

Ptf − f
t

= lim
t→0

Pt − I
t

f

since, it is valid ∀(f : S → R) ∈ D(L), from (2.2) it follows that

L = lim
t→0

Pt − I
t

= Ṗ0, in D(L).

Let (qij)i,j∈S be the matrix associated to the linear operator L, thus

qij = lim
t→0

pij(t)− δij
t

, ∀i, j ∈ S (2.8)

by definition. The entries qij are named local characteristics of the continuous
HMC and the following properties hold (see Theorem 2.1 in [11])

∃ qi := −qii = lim
t→0

pij(t)− δij
t

∈ [0,∞] ∀i ∈ S (2.9)

and

∃ qij = lim
t→0

pij(t)

t
∈ [0,∞), ∀i, j ∈ S : i 6= j (2.10)

Moreover, since |S| ≤ ∞,∑
j∈S

qij =
∑
j∈S

lim
t→0

pij(t)− δij
t

= lim
t→0

∑
j∈S

pij(t)− δij
t

= 0

25



2. BASICS OF MARKOV CHAINS

this and property (2.10) implies that

qi =
∑
j 6=i

qij <∞. (2.11)

This means, the HMC related to the local characteristics qij is stable and conser-
vative. Thus, the local characteristics determine some particular features of the
related semigroup (Pt)t≥0; more precisely:

Definition 2.6 (Stability and Conservation). If ∀ i ∈ S,

- qi <∞, (Pt)t≥0 is called stable;

- qi =
∑

i∈S qij, (Pt)t≥0 is called conservative.

Equivalently, a HMC is said stable and/or conservative, if its transition group
(Pt)t≥0 is stable and/or conservative. When a HMC is stable and conservative
(i.e. condition (2.11) holds), it is possible to infinitesimally describe the transition
probabilities (in accordance with definition (2.8)):{

pii(t) = 1− qit+ 1 + o(t)
pij(t) = qijt+ o(t)

Furthermore, from the semigroup properties (2.2) and (2.3), it follows that

Pt+h − Pt = PtPh − Pt = Pt(Ph − I),

consequently

Pt+h − Pt
h

= Pt
Ph − I
t

Pt+h − Pt
h

=
Ph − I
h

Pt.

Now, let P(t) := Pt and, since the states space S is finite (|S| < +∞), the passage
to the limit, for h→ 0, is allowed; the Kolmogorov’s equations emerge:

Ṗ(t) = P(t) L (forward)

Ṗ(t) = L P(t) (backward);

or equivalently, ∀ i, j ∈ S,

d

dt
pij(t) = −pij(t)qj +

∑
k∈S
k 6=j

pik(t)qkj (forward)

d

dt
pij(t) = −qipij(t) +

∑
k∈S
k 6=i

qikpkj(t) (backward),

26



2.2. Continuous-Time Markov Chains

writing them explicitly. Again, since |S| < +∞, considering the initial condition
P0 = I ,

Pt = etL =
+∞∑
n=0

(tL)n

n!
, t ≥ 0 (2.12)

results the unique solution for both the forward and backward equations (see The-
orem 2.1 of Appendix in [11]). In this setting, Kolmogorov’s equations highlight
how the infinitesimal generator is univocally linked to semigroup and initial dis-
tribution.

Regular Jump Homogeneous Markov Chain

Among HMC there is a very general class of stable and conservative process (gen-
erally defined on a countable state space S, which is not necessary finite), the
regular jump HMC (see Theorem 3.4. in [11]).

Definition 2.7 (Regular Jump Process). An S-valued stochastic process (X(t))t≥0

is called jump process if for almost all ω ∈ Ω and all t ≥ 0, ∃ ε(t, ω) > 0 such that

X(t+ h)(ω) = X(t)(ω) ∀h ∈
[
t, t+ ε(t, ω)

)
. (2.13)

It is called Regular Jump Process (RJP) if in addition, for almost all ω ∈ Ω, the
set A(ω) of discontinuities of the function t→ X(ω)(t) is σ-discrete, that is,∣∣A(ω) ∪ [0, c]

∣∣ <∞ (2.14)

It is interesting point out that for a general jump process (X(t))t≥0, there exist
a sequence of times (τk)k≥0 (transition times sequence) and a sequence (Xk)k≥0

(embedded process) such that

0 = τ0 < τ1 < · · · < τk < . . .

and
X(t) = Xk ∀ t ∈ [τk, τk+1), k ≥ 0.

Indeed, by definition the process is simple; namely, there are no two infinitesimally
close jumps (condition 2.13). Then

m,n ∈ S : m 6= n⇒ τm 6= τn.

Moreover, if the jump process (X(t))t>0 is also regular, then the process is not
explosive, that means there is not an infinite number of jumps in any finite time
interval (i.e. condition (2.14)). Hence,

τ∞ := lim
k→∞

τk =∞ a.s.

where τ∞ is named explosion time.
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2. BASICS OF MARKOV CHAINS

Definition 2.8. A regular jump homogeneous Markov chain is by definition
a continuous-time HMC that is also a RJP.

Consequently, the study of RJP can be focused on its local description trough
the infinitesimal generator (i.e. transitions are analysed in infinitesimal times),
since the statistical properties of any continuous-time MC are determined by its
semigroup after fixing an initial distribution. In simple words, two regular jumps
HMCs with the same infinitesimal generator have the same transition group [11].
Often, it is useful representing the infinitesimal generator as a linear operator from
R|S| to R:

Lf(i) =
∑
j∈S

qijf(j) =
∑
j 6=i

qij[f(j)− f(i)], (2.15)

where the last equality follows from (2.11). It is important to mark that “there
exist bona fide continuous-time HMCs that are not regular jump HMCs, however,
for which all the states are unstable !” [11].

2.3 Poisson Construction of Markov Chains

To lay the ground for the simulations of the model analysed in this thesis, it is
advantageous to introduce the Poisson construction of Markov process. Let S be
a metrizable space which is also σ−compact (i.e. exists a countable collection of
compact sets Si ∈ S s.t. ∪iSi = S), S the Borel-σ-field on S and (Ω,F , P ) an
underlying probability space.

Definition 2.9. A random measure on S is a function ξ : Ω× S → [0,∞] s.t.

- ∀ fixed ω ∈ Ω, the function ξ(ω, ·) is a locally finite function on (S,S),
i.e. ξ(ω,K) <∞, ∀ compact K ∈ S;

- ∀ fixed A ∈ S, the function ξ(·, A) is measurable.

As pointed out in Chapter 2 of [59], it is helpful to think of ξ as a random
variable evaluated in the space of locally finite measures on (S;S), endowed with
the σ-field generated by the maps µ 7→ µ(A), with A ∈ S and µ locally finite
measure. Consequently, for all measurable f : S → [0,∞]

- the integral
∫
fdξ defines a [0, 1]-valued random variable,

- there exists a unique measure,

Eξ : S → [0,+∞]

A 7→ E[ξ(A)]
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2.3. Poisson Construction of Markov Chains

called the intensity of ξ, such that∫
f dEξ = E

[∫
fdξ

]
.

Where

E[X] :=

∫
Ω

XdP

is the mean ( or expectation or expected value) of a random variable X.

Proposition 2.10. Let µ be a locally finite measure on (S,S). Then there ex-
ists an unique in distribution random measure ξ s.t. for any family of disjoint set
{A1, . . . , An} ⊂ Ŝ := {A ∈ S : Ā is compact}, the random variables ξ(A1), . . . , ξ(An)
are independent and ξ(Ai) is Poisson distributed with mean µ(Ai), ∀ i = 1, . . . , n.

Such random measure ξ is called Poisson point measure with intensity µ. In-
deed, it results Eξ = µ. Furthermore,

ξ(A) ∈ N ∀ A ∈ Ŝ,

such measures are called counting measures. In general, each local finite count-
ing measure ν on S has the following form [59]:

ν =
∑
x∈Z

nxδx,

where

- Z := supp(ν) = {x ∈ S : ν(x) 6= 0} ⊂ S is a locally finite set
(i.e. ∀ x ∈ Z, ∃ U ⊂ Z open with x ∈ U : |U ∩ S| <∞ );

- δx is the delta-measure at x ∈ Z;

- nx ∈ N, ∀x ∈ Z; moreover, if ∀x ∈ Z, nx = 1, ν is said simple.

Definition 2.11. An integer-valued random measure ξ on S is called point pro-
cess on S.

Consequently, a Poisson point measure ξ is a point process.

Lemma 2.12. Let ξ be a Poisson point measure with locally finite intensity µ.
Then

ξ is a.s. simple ⇐⇒ µ is atomless
(

DEF⇐⇒ µ({x}) = 0, ∀x ∈ S
)
.

29



2. BASICS OF MARKOV CHAINS

Therefore, Poisson point measure ξ with atomless intensity µ is characterized by
its support; supp(ξ) is called Poisson point set with intensity µ. Another important
feature of Poisson point measures is that the sum ξ1+ξ2 of two independent Poisson
point measures ξ1 and ξ2 with intensities µ1 and µ2 respectively, is a Poisson point
measure with intensity µ1 + µ2 (see Lemma 2.3 in [59]). Finally, the key result to
Poisson construction of Markov processes is the following lemma;

Lemma 2.13 (Poisson points on the halfline). Let (τk)k>0 be real random variables
such that τ0 = 0 and σk := τk − τk+1 > 0, k ≥ 1 . Then τ := {τk : k ≥ 1} is a
Poisson point set on [0;∞) with intensity c` (where ` is the Lebesgue measure) iff
the random variables (σk)k≥1 are i.i.d. exponentially distributed with mean c−1.

A simple Poisson point measure ξ on [0;∞) with intensity c`, where c > 0 and
` denote the Lebesgue measure, is called Homogeneous Poisson measure with rate
c. Then, Lemma 2.13 is equivalent to the following Proposition (see Chapter 10
in [31])

Proposition 2.14. Let ξ be a simple point process on R+
0 := [0,+∞) with atoms

at τ1 < τ2 < · · · < τk < . . . and put τ0 = 0. Then ξ is homogeneous Poisson with
rate c > 0 iff τk − τk−1 are i.i.d exponentially distributed with mean c−1.

Poisson Construction of Markov Processes

The first step for the Poisson construction of MC is defining a stochastic flow in
terms of a Poisson point set. Then, let the following setting be considered:

- let S be a finite set;

- let G := {m : S → S} be the set of self maps of S;

- let (rm)m∈G ∈ [0,+∞) be a sequence of non negative constant;

- considering the Borel-σ-field B(R) and the Lebesgue measure `, the following
function

ρ({m} × A) := rm`(A), ∀m ∈ G, A ∈ B(R) (2.16)

provides a measure to the space G × R.

In particular ρ is locally finite, by construction (see definition (2.16)); indeed the
Lebesgue measure ` is locally finite on (R,B(R)). Therefore, by Proposition 2.10,
it is possible to define, a Poisson point set σ with intensity ρ. Then

ν :=
∑

(m,t)∈σ

δt
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2.3. Poisson Construction of Markov Chains

is a Poisson point process on R with intensity r`, where

r :=
∑
m∈G

<∞ (2.17)

(r is a finite sum since {S finite ⇒ G finite}). Condition 2.17 implies that r`
is an atomless local finite measure on (R,B(R)) (again, ` is atomless local finite
measure), hence ν is simple and local finite. Therefore,

- ∀ t ∈ R, exists at most one m ∈ G : (m, t) ∈ σ, by simplicity of ν;

- σ = supp(ν) is a local finite set by definition.

This implies that

σs,u = {(m, t) ∈ σ : t ∈ (s, u]} (s ≤ u)

is a finite set; then it is possible to give an order to its element:

σs,u = {(m1, t1), (m2, t2), . . . , (mn, tn)} for t1 < t2 < · · · < tn, n ∈ N. (2.18)

Starting from (2.18), it is possible to define a stochastic flow (Xs,t)s≤t in terms of
the poisson point set ω: let (Xs,u)s≤u be a family of random maps such that

Xs,u := mn ◦mn−1 ◦ · · · ◦m1,

where mk ∈ G : (mk, tk) ∈ ωs,u ∀k = 1, . . . , n. Then, by definition

idS = Xs,u if σs,u = ∅,

i.e. the identity map idS corresponds to no maps composition and

Xs,t → Xs,s = 1 as t→ s; (2.19)

Xt,u ◦Xs,t = Xs,u, s ≤ t ≤ u. (2.20)

Moreover, Xs,t is right-continuous in both s and t and

Xt0,t1 , Xt1,t2 , . . . , Xtn−1,tn are independent ∀ t0 < t1 < · · · < tn,

i.e. the flow (Xs,t)s≤t has independent increments.

Proposition 2.15. Let (Xs,t)s≤t be a stochastic flow defined in terms of a Poisson
point set σ. Let X0 := X(0) be an S-valued random variable, independent of σ.
Then

X(t) := X0,t(X0), t > 0 (2.21)

defines a HMC (X(t))t≥0 characterized by the generator

Lf(i) :=
∑
m∈G

rm

(
f
(
m(i)

)
− f(i)

)
, i ∈ S (2.22)
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2. BASICS OF MARKOV CHAINS

Proof. The process (X(t))t≥0, defined in (2.21), has piecewise constant right-
continuous sample paths; indeed for any fixed ω ∈ Ω

X(t)(ω) = X0,t

(
X0(ω)

)
, t ≥ 0

represents a right continuous step function t→ X(t)(ω), by construction. Let

Pij(t) := P
(
Xs,s+t(i) = j

)
= P

(
X0,t(i) = j

)
, t ≥ 0. (2.23)

One can note that it is possible to choose s = 0 in definition (2.23) because
the point process associated to σ is invariant under time translations. Moreover,
the distributions of the process (X(t))t≥0 satisfy property (2.5), since X0 is inde-
pendent from σ and the flow (Xs,t)s≤t has independent increments. Furthermore
flow’s properties (2.19) and (2.20) imply that (Pt)t≥0 has semigroup properties;
thus the process (X(t))t≥0 is a HMC, defined by (Pt)t≥0. It remains to show that
the infinitesimal generator of (X(t))t≥0 is given by (2.22); by properties of Poisson
processes, it follows that

P
(
|σ0,t| ≥ 2

)
= o(t) as t→ 0

and

P
(
|σ0,t| = 1

)
= P

(
σ0,t = {(m, s)}; ∃ s ∈ (0, t]

)
= rmt+ o(t) as t→ 0.

This implies that ∀ f : S → R and i ∈ S

Ptf(i) = E
(
f
(
X0,t(i)

))
=
∑
m∈G

f(m(i))P
(
X0,t(i) = m(i)

)
= f(i) + t

∑
m∈G

rm

(
f
(
m(i)

)
− f(i)

)
+ o(t) as t→ 0

That is

Ptf = f + tLf + o(t) as t→ 0 ⇐⇒ Lf = lim
t→0

Ptf − f
t

The representation (2.22) of an infinitesimal generator L is called random map-
ping representation. Furthermore in a random mapping representation the collec-
tion of non negative constants rm, m ∈ G, are called rates. They point out the
probability that map m is applied. In fact, by its regular jumps structure, the
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process (X(t))t≥0 can be approximated by a discrete-time MC, where time is in-
creased in steps of size dt, then rm dt is the probability that the map m is applied
during the time interval (t, t + dt]. In particular, rates say with which Poisson
intensity the local map m should be applied to the configuration X(t) [59].

In this section, the results, that are not proven, fallow from Chapter 10 of [31]
(as briefly indicated in [59]).

2.3.1 Example of Poisson Representations

It is interesting to point out that the random mapping representation of an in-
finitesimal generator is not unique. This fact is showed by the following example:

let S := {0, 1} be the considered state space and let L be an infinitesimal generator
of an S-valued HMC, such that L is defined by the following local characteristics:

q01 = 2 and q10 = 1. (2.24)

Hence the jumps of the considered process are

0 7→ 1 with rate 2;

1 7→ 0 with rate 1.

Moreover, one can note that local characteristics (2.24) are sufficient to define the
generator L, since

q00 = −q01 and q10 = −q10

by property (2.11) of HMC, defined in a finite space. Considering (2.15), the
generator L can be write as a linear operator from R2 to R:

Lf(i) =
∑
j 6=i

qij
(
f(j)− f(i)

)
∀i ∈ S. (2.25)

In detail,

Lf(0) = 2
(
f(1)− f(0)

)
(2.26)

Lf(1) = f(0)− f(1). (2.27)

Let G := {down, up, } be a set of self maps of the state space S, defined as follow:

down(i) = 0
up(i) = 1

}
∀i ∈ S.
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Thus, the generator L has the following random mapping representation that is
equivalent to (2.25):

Lf(i) := rdown
(
f(down(i))− f(i)

)
+ rup

(
f(up(i))− f(i)

)
, ∀i ∈ S, (2.28)

where rdown = 1 and rup = 2. Generator’s representation (2.28) is equivalent to
(2.25); indeed:

i = 0 ⇒ f(down(i))− f(i) = 0

i = 1 ⇒ f(up(i))− f(i) = 0.

That is,

Lf(i)|i=0
= rup

(
f(up(i))− f(i)

)
|i=0

= 2
(
f(1)− f(0)

)
and

Lf(i)|i=1
= rdown

(
f(down(i))− f(i)

)
|i=1

= f(0)− f(1).

Furthermore, let swap : S → S such that swap(i) := 1− i, ∀i ∈ S. It is possible
give another equivalent random mapping representation of L considering the maps
set G ′ := {swap, up};

Lf(i) := r′swap
(
f(swap(i))− f(i)

)
+ r′up

(
f(up(i))− f(i)

)
, ∀i ∈ S, (2.29)

where r′swap = 1 = r′up. Indeed, from representation (2.29), one has

Lf(i)|i=0
= (r′swap + r′up)

(
f(swap(i))− f(i)

)
|i=0

= 2
(
f(1)− f(0)

)
.

Hence, the total rate of the jump 0→ 1 is r′swap + r′up = 2 = q01 . Again,

i = 1 ⇒ f(up(i))− f(i) = 0 ⇒ Lf(1) = f(0)− f(1).

The two different random mapping representations, (2.28) and (2.29), highlight
that starting from two different Poisson point sets, ω ∈ G × R and ω′ ∈ G ′ × R,
and defining the respective stochastic flows, it is possible to give two different
constructions of the same HMC (see Figure 2.1).
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Figure 2.1: Two stochastic flows representing the same homogeneous Markov process
[59].

2.4 Interacting Particle Systems

The model of cancer dynamics studied in this thesis belong to the class of mean-
field Interacting Particle System. Mean-field assumption is a simplification of the
dynamics. However the mean-field hypothesis allows for some interesting analytical
results.

Definition 2.16. Let S be a finite sent and Λ a countable set. An Interacting
Particle System (IPS) is a continuous-time Markov processes (X(t))t≥0 with a
state space of the form SΛ, where S is called local state space and Λ lattice.

From now on, let |Λ| < +∞. Thus, an interacting particle system is a MC
(X(t))t≥0 such that the state of the process, for every fixed time t ≥ 0, is of the
form

X(t) = (Xi(t))i∈Λ , where Xi(t) ∈ S, ∀i ∈ Λ.

Positions i ∈ Λ are also often named sites and Xt(i) is called local state of (X(t))t≥0

at time t and at the site i. Furthermore, interacting particle systems are defined in
terms of local maps (m : SΛ → SΛ); as usual, the dynamic of this kind of processes
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is described by the infinitesimal generator G, for which it is possible to choose a
random mapping representation (2.22) of the form

Gf(x) =
∑
m∈G

rm{f(m(x))− f(x)}, x ∈ SΛ

where G := {local maps, m : SΛ → SΛ} and (rm)m∈G ∈ [0,+∞) are the rates.
Often, the lattice Λ has the structure of an (undirected) graph (V,E). In this
case, each node in V represent a particle of the considered system and the edge
ij := (i, j) ∈ E exists if and only if between i and j there is some kind of interaction
(relevant to the study of the system). The set Ni := {j ∈ Λ : ij ∈ E} is the
neighbourhood of the site i. Two paradigmatic examples of Interacting Particle
System are the “Ising model” and “the Voter model” (the latter is useful with the
prospect of application to the model analysed in this thesis). Furthermore, to set
out a rigorous description of the models is necessary to explain the following two
theorem about functions of Markov chain [59].

Proposition 2.17. Let (X(t))t≥0 be an S-valued MC with generator G and semi-
group (P(t))t≥0. Let T be a finite set and f : S → T be a function. For each
present state X(t) = x ∈ S and ỹ ∈ T such that f(x) 6= ỹ, the total rate of the
jump f(x) 7→ ỹ defined as

H(x, ỹ) :=
∑

x̃:f(x̃)=ỹ

G(x, x̃)

is, by assumption, of the form H(x, ỹ) = H(f(x), ỹ), with H infinitesimal genera-
tor of some T-valued MC. Let Y (t) := f(X(t)) ∀t ≥ 0 , then (Y (t))t≥0 is a MC
with generator H.
Conversely, if (Y (t))t≥0 is a T-value MC with generator H, for all possible initial
low of the process (X(t))t≥0, then H(x, ỹ) = H(f(x), ỹ), x ∈ S, ỹ ∈ T .

Proof. Let H(x, ỹ) = H(f(x), ỹ) be true ∀x ∈ S and ỹ ∈ T s.t. f(x) 6= ỹ, than it
also holds for f(x) = ỹ

H(f(x), f(x)) = −
∑

ỹ:ỹ 6=f(x)

H(f(x, ỹ) = −
∑

ỹ:ỹ 6=f(x)

∑
x̃:f(x̃)=ỹ

G(x, x̃)

= −
∑

x̃:f(x̃) 6=f(x)

G(x, x̃) =
∑

x̃:f(x̃)=f(x)

G(x, x̃)

where it is used property (2.11) applied to the infinitesimal generators H and G.
Thus the initial hypothesis is equivalent to

H(x, ỹ) = H(f(x), ỹ), ∀ x ∈ S and ỹ ∈ T. (2.30)
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Let (Q(t))t≥0 be the semigroup generated by H, the claim is to show that equation
(2.30) is equivalent to

Qt(f(x), ỹ) =
∑

x̃:f(x̃)=ỹ

Pt(x, x̃) , t ≥ 0, x ∈ S, ỹ ∈ T. (2.31)

where Qt(i, j) := (Q(t))i,j and Pt(h, k) := (P(t))h,k, for t ≥ 0, i, j ∈ S, h, k ∈ T .
Indeed, let g : T → R be an arbitrary function,

G(f ◦ g)(x) =
∑
x̃∈S

G(x, x̃)g(f(x̃)) =
∑
ỹ∈T

∑
x̃:f(x̃)=ỹ

G(x, x̃)g(ỹ),

(Hg) ◦ f(x) =
∑
ỹ∈T

H(f(x), ỹ)g(ỹ).

Thus, for t ≥ 0, x ∈ S, g : T → R,

G(f ◦ g)(x) = (Hg) ◦ f(x)

m∑
ỹ∈T

∑
x̃:f(x̃)=ỹ

G(x, x̃)g(ỹ) =
∑
ỹ∈T

H(f(x), ỹ)g(ỹ)

m
H(x, ỹ) = H(f(x), ỹ) (ỹ ∈ T ).

Namely,
G(f ◦ g) = (Hg) ◦ f , g : T → R, (2.32)

is equivalent to hypothesis (2.30). Moreover,

Pt(f ◦ g) = (Qtg) ◦ f , g : T → R, t ≥ 0, (2.33)

is equivalent to assumption (2.31), fallowing the same computation, but using Pt
and Qt instead of G and H, respectively. The last step to reach the wanted claim
is to show that equations (2.32) and (2.33) are equivalent:

- by (2.32) fallows

G2(f ◦ g) = G(Hg) ◦ f) = (H2g) ◦ f

taking it by inductive hypothesis, it springs up that

Gn(f ◦ g) = (Hng) ◦ f ∀n ≥ 0

by induction on n. The latter equation implies (2.33), by using representation
(2.12) for the semigroups Pt and Qt, i.e.

Pt =
∞∑
n=0

1

n!
tnGn and Qt =

∞∑
n=0

1

n!
tnHn (2.34)
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- conversely, if equation (2.33) holds ∀t ≥ 0, then by (2.34)

∞∑
n=0

1

n!
tnGn(f ◦ g) =

(
∞∑
n=0

1

n!
tnHng

)
◦ f. (2.35)

When it is stopped to the firs order as t→ 0, equivalence (2.35) must continue
to be true, thus it fallows (2.32).

Ultimately, assumption (2.30) is equivalent to (2.31). Thus assuming by hypothesis
that (2.31) holds, then, by (2.4), the finite dimensional distributions of Y are given
by

P
(
Y (t) = ỹ

)
=

∑
x̃:f(x̃)=ỹ

P
(
X(t) = x̃

)
=

∑
x̃:f(x̃)=ỹ

(∑
x∈S

P
(
X(0) = x

)
Pt(x, x̃)

)
=

∑
x∈S

P
(
X(0) = x

) ∑
x̃:f(x̃)=ỹ

Pt(x, x̃)

=
∑
x∈S

P
(
X(0) = x

)
Qt(f(x), ỹ)

=
∑

y0∈f(S)

∑
x0:f(x0)=y0

P
(
X(0) = x0

)
Qt(y0, ỹ)

=
∑

y0∈f(S)

P
(
Y (0) = y0

)
Qt(y0, ỹ)

Again, by (2.4), since the semigroup Qt is generated by H.
Conversely, if Y is a MC with generator H for all possible initial low of the process
(X(t))t≥0, then

P
(
Y (t) = ỹ

)
=

∑
y0∈f(S)

P
(
Y (0) = y0

)
Qt(y0, ỹ)

=
∑

y0∈f(S)

∑
x0:f(x0)=y0

P
(
X(0) = x0

)
Qt(y0, ỹ)

=
∑
x∈S

P
(
X(0) = x

)
Qt(f(x), ỹ)

and

P
(
Y (t) = ỹ

)
=

∑
x̃:f(x̃)=ỹ

P
(
X(t) = x̃

)
=

∑
x̃:f(x̃)=ỹ

(∑
x∈S

P
(
X(0) = x

)
Pt(x, x̃)

)
=

∑
x∈S

P
(
X(0) = x

) ∑
x̃:f(x̃)=ỹ

Pt(x, x̃)
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In particular,∑
x∈S

P
(
X(0) = x

) ∑
x̃:f(x̃)=ỹ

Pt(x, x̃) =
∑
x∈S

P
(
X(0) = x

)
Qt(f(x), ỹ)

thus, it follows equation (2.31), that is equivalent to

H(x, ỹ) = H(f(x), ỹ), x ∈ S, ỹ ∈ T.

Put simply, given a function of a S-valued Markov Process, (f(X(t)))t≥0, if its
jump rates are function of the present state only (i.e. for t ≥ 0 fixed time and
x = X(t)), f

(
X(t)

)
jumps with rates that depend exclusively on x, and not on

the other states in S, then
(
f
(
X(t)

))
t≥0

is itself a Markov process. The other
important result explains under which hypotheses it is feasible to approximate a
IPS by solutions of a differential equation. Following the way showed in Paragraph
3.4 of [59], the chosen setting looks like as follows, ∀N > 0 :

- let (XN(t))t≥0 be a MC with finite state space SN , generator GN and
semigroup (PN(t))t≥0;

- let fN : SN → R be a function;

- let the function αN be the quadratic variation

αN(x) :=
∑
x̃∈SN

GN(x, x̃)(fN(x̃)− fN(x))2 ; (2.36)

- let the function βN be the drift

βN(x) :=
∑
x̃∈SN

GN(x, x̃)(fN(x̃)− fN(x)) . (2.37)

Following [59], if αN
N→∞−−−→ 0 and βN approximates an appropriate, Lipschitz

continuous function of Y N(t) := fN(XN(t)), then, using [18, Thm 4.1], it is possible
to show that the process (Y N(t))t≥0, should in the limit be describe by the solution
of a differential equation. To rigorously formalize this idea, it is necessary to
introduce some other assumption (as it is was done in [59]):

- ∀N > 0, fN : SN → I ⊆ R,
where I is a closed interval s.t. I− := inf I , I+ := sup I ∈ [−∞,+∞]
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- ∃b : I → R globally Lipschitz continuous function s.t. β is uniformly ap-
proximated by b ◦ fN , i.e.

sup
x∈SN

|βN(x)− b(fN(x))| N→∞−−−→ 0 (2.38)

and

I− > −∞ ⇒ b(I−) ≥ 0 and I+ < +∞ ⇒ b(I+) ≤ 0 (2.39)

Consequently, for each initial state y0 ∈ I the differential equation

ẏ(t) = b(y(t)) (t ≥ 0)

has a unique I-valued solution (y(t))t≥0.

Theorem 2.18. Let fN(XN(0)) converge in probability to y(0) and, apart
from (2.38), suppose that

sup
x∈SN

αN(x)
N→∞−−−→ 0. (2.40)

Then

P
(∣∣fN(XN(t))− y(t)

∣∣ ≤ ε ∀t ∈ [0, T ]
) N→∞−−−→ 1, ∀ T <∞ and ε > 0 .

Proof. Let t < ∞, ε > 0 and y0 ∈ I be fixed. Let L denote the Lipschitz
constant of the function b. Since fN takes value in a closed interval I ∈ R
then the more general condition

∀x ∈ SN and t ≤ t0, |fN(x)− y(t)| < ε ⇒ fN(x) ∈ I,

which is necessary to use Theorem 4.1 of [18], is directly satisfied. Set δ :=
ε
3
e−LT and let the following events be considered

Ω0 :=
{∣∣fN(X(0))− y(0)

∣∣ ≤ δ
}
,

Ω1 :=

{∫ T

0

∣∣βN(X(t))− b(fN(X(t)))
∣∣ dt ≤ δ

}
,

ΩK,2 :=

{∫ T

0

αN(X(t)) dt ≤ KT

}
, K > 0.

Then Theorem 4.1 of [18] implies that

P

(
sup
t∈[0,T ]

∣∣fN(X(t))− y(t)
∣∣ > ε

)
≤ 4KTδ−2 + P

(c
Ω0 ∪c Ω1 ∪c ΩK,2

)
(2.41)
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and assumption fN(XN(0))
N→∞−−−→ y(0) implies P

(c
Ω0

) N→∞−−−→ 0. Moreover,∫ T

0

∣∣βN(X(t))− b(fN(X(t)))
∣∣ dt ≤ sup

x∈SN

∣∣βN(x)− b(fN(x))
∣∣− T ≤ δ,

from hypothesis (2.38) fallows that P
(c

Ω1

)
= 0, for N sufficiently large.

Again, ∫ T

0

αN(X(t)) dt ≤ sup
x∈SN

αN(x) ⇒ P
(c

ΩK,2

)
= 0 ∀N > 0,

by assumption (2.40). Finally, choosing K = supx∈SN αN(x) in the inequality
(2.41), then

P

(
sup
t∈[0,T ]

∣∣fN(XN(t))− y(t)
∣∣ > ε

)
N→∞−−−→ 0.

Hence, the reached goal is that theorem (2.18) provides sufficient conditions
for the I-valued processes

(
fN
(
XN(t)

))
t≥0

to approximate a solution of the
differential equation.

2.4.1 Curie-Weiss Model

The Curie-Weiss model is the mean-field approximation of the Ising model. Sites
are interpreted as atoms in a crystal structure, which is depicted by a graph, and
the local state space is S = {−1,+1}. Traditionally, the local state xi ∈ {−1,+1}
of a site i is usually called the spin at i, because it is interpreted as the direction
of magnetic field of the atoms [59]. According to Glauber dynamics, sites update
their spin values with rate one, loosing “memory” of previous state. For each site
i ∈ Λ, the choice of new spin value depends on the spin values of neighbors, trough
a real parameter β. In order to study the mean-field limit, it is necessary to adapt
the model on the complete graph ΛN (that is the lattice) with |ΛN | = N vertices
(that correspond to the sites). Hence, each site is a neighbour of each other site
and, for simplicity, a site is considered as a neighbour of itself. Consequently, the
resulting process (X(t))t≥0 has the following structure, for an arbitrarily fixed time
t ≥ 0:

- an arbitrary state of the system x = X(t) is configured as

x = (x1, x2, . . . , xi, . . . , xN), xk ∈ {−1,+1} (k ∈ {1, . . . , N});
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- the dynamic of the process has the following infinitesimal description:

P (X(t+ dt) = xi | X(t) = x) =
e
β
N
Nx(−xi)∑

s∈S e
β
N
Nx(s)

dt+ o(dt) (2.42)

where the transition from x to xi := (x1, x2, . . . ,−xi, . . . , xN) means that the
i-th spin is flipped and

Nx(s) :=
N∑
j=1

1{xj=s}, s ∈ S.

Besides, if β > 0 the model is called ferromagnetic and sites prefer to have spin
values that agree with as many neighbours as possible, otherwise, when β < 0,
sites are inclined to have the opposite spin values with respect to the main part of
their neighbours and the model is recognized as antiferromagnetic [59]. One can
note that in a ferromagnetic setting (β > 0),

- if xi has different sign with respect to the major part of spin values, then
Nx(−xi) high and consequently so is the transition rate;

- if xi has sign equal to the ones of most sites, then the probability to change
value is low.

Now, the key point is to consider the average magnetization

mN(t) :=
1

N

N∑
j=1

Xj(t) t ≥ 0,

which is a function of the process (X(t))t≥0, taking values in the space

SN :=

{
−1,−1 +

2

N
, . . . , 1− 2

N
, 1

}
.

Let t ≥ 0 be fixed and x̄ := mN(t) a chosen state at time t. The process (mN(t))t≥0

jumps, with probability (2.42), from x̄ to x̄+ 2
N

, every time that a spin is flipped
to 1, and to x̄− 2

N
, when a spin with positive values flips its sign. That is

x̄ switch to x̄+ 2
N

with rate Nx(−1) e
β
N
Nx(1)

e
β
N
Nx(−1)+e

β
N
Nx(1)

x̄ switch to x̄− 2
N

with rate Nx(1) e
β
N
Nx(−1)

e
β
N
Nx(−1)+e

β
N
Nx(1)

.
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Furthermore, one can observe that, for a considered state x, the number of sites
with spin value 1 is

Nx(1) = #{i ∈ ΛN : xi = 1}

=
N∑
i=1

1xi=1 =
N∑
i=1

1 + xi
2

=
N

2

N∑
i=1

1 + xi
N

=
N

2
(1 +mN),

similarly, the number of sites with spin value -1 is

Nx(−1) = #{i ∈ ΛN : xi = −1}

=
N

2

N∑
i=1

1− xi
N

=
N

2
(1−mN)

As consequence, it results that the possible jumps for average magnetization pro-
cess are:

x̄ 7→ x̄+ 2
N

with rate r+(x̄) := N
2

(1−mN) eβ(1+mN )/2

eβ(1−mN )/2+eβ(1+mN )/2

x̄ 7→ x̄− 2
N

with rate r−(x̄) := N
2

(1 +mN) eβ(1−mN )/2

eβ(1−mN )/2+eβ(1+mN )/2 .

These rates depend on the present state x̄ only, therefore applying theorem (2.17)
it results that (mN(t))t≥0 is a Markov process with infinitesimal generator

GNf(mN) = r−(x̄)

(
f

(
mN −

2

N

)
− f(mN)

)
+ r+(x̄)

(
f

(
mN +

2

N

)
− f(mN)

)
=

N

2
(1 +mN)

e−βmN/2

e−βmN/2 + eβmN/2

(
f

(
mN −

2

N

)
− f(mN)

)
+

N

2
(1−mN)

eβmN/2

e−βmN/2 + eβmN/2

(
f

(
mN +

2

N

)
− f(mN)

)
.

In order to approximate (mN(t))t≥0 by a differential equation, choosing fN = id
(i.e. f(x̄) = x̄), hence, the quadratic variation and the (local) drift rate of the
process (according to definitions (2.36) and (2.37)) are respectively

αN(mN) = r−(mN)

(
− 2

N

)2

+ r+(mN)

(
2

N

)2

=
2

N

(1 +mn)e−βmN/2 + (1−mN)eβmN/2

e−βmN/2 + eβmN/2

=
2

N

(
1 +mN

e−βmN/2 − eβmN/2

e−βmN/2 + eβmN/2

)
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gβ(mN) = GNfN(mN) = GN(mN)

= r−(mN)

(
− 2

N

)
+ r+(mN)

2

N

= −(1 +mN)
e−βmN/2

e−βmN/2 + eβmN/2
+ (1−mN)

eβmN/2

e−βmN/2 + eβmN/2

=
(1−mn)eβmN/2 − (1 +mN)e−βmN/2

e−βmN/2 + eβmN/2

=
eβmN/2 − e−βmN/2

eβmN/2 + e−βmN/2
−mN = tanh

(
β

2
mN

)
−mN

Thus, it tour out that αN(x)
N→∞−−−→ 0, namely assumptions (2.40) is verified.

Moreover, gβ does not explicitly depend on N, thus selecting b := gβ, hypothesis
(2.38) is verified too; in particular, tanh is a Lipschitz continuous function. Lastly,
applying theorem (2.18) the process (mN(t))t≥0 can be approximate by a solution
of the differential equation

ṁ(t) = gβ(m(t)) (t ≥ 0) (2.43)

and the validity of (2.39) guarantees the unicity of solution for each initial state
m(0) = m0.

Analysis of the model

Studying the behaviour of a model, it is significant highlight its phase transitions,
which are an abrupt changes in behaviour of the system, due to particular values,
called critical points, assumed by a parameter governing the dynamics. Paying
attention to Curie Weiss model, the fixed points of the differential equation (2.43)
are the solution of the equation

tanh

(
β

2
m

)
= m

(
⇐⇒ ṁ = 0 = gβ(m)

)
.

Taking advantage of the following facts

| tanh(x)| < |x|, lim
x→0

tanh(x)

x
= 1, lim

x→±∞
tanh(x) = ±1, x ∈ R,

one has that,

- if β = 2 , then the differential equation (2.43) has an unique fixed point in
m0 = 0 (as in Figure 2.2(a));
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- for β < 2 and x ∈ R it holds that
∣∣ tanh

(
β
2
x
)∣∣ < ∣∣β

2
x
∣∣ < |x|. Thus, the

differential equation (2.43) still has a single fixed point at m0 = 0 (see
Figure 2.2(a));

- otherwise, β > 2, the following laying arises∣∣ tanh
(
β
2
x
)∣∣ ≥ |x| near the zero;∣∣ tanh

(
β
2
x
)∣∣ < |x| for some x > 1

2
.

Therefore, there are three fixed points of (2.43), m− < 0 < m+ (see Figure
2.2(b)).

Figure 2.2: The graphic solutions of equation tanh
(β

2m
)

= m, for β = 1.6 (a) and
β = 8 (b).
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Consequently, it emerges that

- for β ≤ 2 and for any choice of the initial state, m(0) = m0 ∈ R, the
differential equation (2.43) has an unique solution converges to the stable
equilibrium m(t) = 0, as t→∞;

- for β > 2, if m(0) < 0, then the solutions of (2.43) converge to the stable
fixed point m−, as time t increases, else if solutions start in m(0) > 0, then
they converge to the stable fixed point m+. Finally, the fixed point m0 = 0
results to be unstable.

2.4.2 Voter Model

Initially, Voter model is used to describe the evolution of opinions in a population
[59]:

- sites in a lattice Λ represent people;

- states in a finite local state space S represent political opinions and are called
types ;

- each voter is influenced only by a fixed set of neighbours;

- the rules of the dynamics is the following: with rate one, an individual
becomes unsure what political party to vote for and copies the opinion of a
randomly chosen neighbour;

- this update is repeated until the finite population of N individuals reaches
consensus.

The Voter model is often used to model biological populations, where organisms
with different genetic types occupy sites in space, with rate 1, the organism living
at a given site dies and is replaced by a descendant, chosen with equal probability
its neighbours [59]. This last application is very workable to the model studied in
this thesis, where

- sites represent cells with the same genotype,

- states identify the different phenotypes which come from the same genotype,

- with probability 1, a cell is randomly picked, forgets its phenotype and
changes it choosing, with equal probability, among the phenotypes of its
neighbours (i.e. the transition rates correspond to the mean values of cells
for each phenotype).
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To rigorously describe the model, let the local state set be S := {0, 1} and let ηi
be the type at the site i ∈ ΛN . The lattice ΛN has the structure of the complete
graph with N vertices (as in Curie-Weiss model), hence the process (η(t))t≥0 has
following structure:

- fixed a time t, an arbitrary state of the system is configured as

η = (η1, η2, . . . , ηi, . . . , ηN), ηi ∈ {0, 1};

- the dynamic of the process is infinitesimally described by

P (η(t+ dt) = ηs,i | η(t) = η) = ηs dt+ o(dt), s ∈ {0, 1}

where

ηs,i := (η1, . . . , ηi−1, s, ηi+1 . . . , ηN) and η̄s := η̄s,i =
1

N

N∑
i=1

δs(ηj), ∀i ∈ ΛN .

An example is depicted by Figure 2.3, where downward arrow indicates the
0-type and upward arrow individuates the 1-type.

Figure 2.3: The switch rates of the central site on the square lattice Λ2 [59].

It is helpful to notice that, taking in account the empirical mean

η = η̄N :=
1

N

N∑
j=1

δ1(ηj) (2.44)

then, the infinitesimal generator of (η(t))t∈R+ can be write as

LNf(η) =
N∑
j=1

(1− η)
(
f(η0,j)− f(η)

)
+ η
(
f(η1,j)− f(η)

)
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where 1 − η = η0 and η = η1. Thus, it is possible to define the infinitesimal
generator for the Markovian dynamic induced by the empirical mean η̄:

GNf(η) = Nη̄(1− η)

(
f

(
η − 1

N

)
− f(η)

)
+N(1− η)η̄

(
f

(
η +

1

N

)
− f(η)

)
,

Indeed, the process (η̄(t))t≥0 is a function (see (2.44)) of the MC (η(t))t≥0, with
jumps

η̄ → η̄ − 1
N

every time that type 0 switches to 1

η̄ → η̄ + 1
N

for each type 1 that switches to 0,

additionally, from (2.44) it results

#{i ∈ ΛN : ηi = 1} =
N∑
i=1

δ1(ηi) = Nη̄

#{i ∈ ΛN : ηi = 0} =
N∑
i=1

δ0(ηi) = N(1− η̄).

This implies that, the rates

r− := Nη̄(1− η) and r+ := N(1− η)η̄

are dependent only on the present state η̄, hence the process (η̄(t))t≥0 has the
Markov property (by theorem 2.17). Now, considering fN ≡ id it is a very simple
calculus to determine the quadratic variation α and the drift β:

αN(η̄) = r−(η̄)
1

N2
+ r+(η̄)

1

N2
=

2

N
η̄(1− η̄)

βN(η̄) = r−(η̄)
1

N
+ r+(η̄)

1

N
= 0.

Applying Theorem 2.18, as N → ∞ the process (η̄N(t))t≥0 is approximately con-
stant as a function of t, whereas

˙̄η(t) = 0 t ≥ 0. (2.45)

Moreover, it is interesting to highlight an immediate consequence of ODE (2.45):

lim
t→∞

lim
N→∞

η̄N(t) = η̄0 , ∀ initial state η̄0. (2.46)

Contrariwise, for finite fixed N > 0, the process η̄N(t), which takes values in the
state space {

0,
1

N
, . . . ,

(
1− 1

N

)
, 1

}
,
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has two adsorbing states 0 and 1. Thus, starting from an arbitrary initial state
η̄0, η̄N(t) fluctuates and falls in one of the two absorbing states, as the time t
increases, i.e., for any initial state η̄0,

lim
N→∞

lim
t→∞

η̄N(t) ∈ {0, 1}. (2.47)

Therefore, the two limit in the equation (2.46), can not be interchanged. The
reason why the double limits (2.46) and (2.47) can coexist is that the process
η̄N(t) has a substantial slowdown as N → ∞. Namely, the process reach one of
the absorbing state (i.e. it goes far from an initial mean η̄0 6∈ {0, 1}) in a very long
time.
Voter model represents the skeleton of the stochastic model for immunotherapy of
cancer discussed in Chapter 3.
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Chapter 3

A Stochastic Model for
Immunotherapy of Cancer

Firstly, the present chapter highlights the fundamental role of mathematics to
understand the complexity of cancer phenomena. In the last years, within the
framework of cancer ecology, many arising research projects focus on quantitative
stochastic models of cancer evolution and statistics of cancer. An important aim
of these researches is to give useful tools to take part to design effective therapy.
According to an ecological point of view, an organism affected by cancer can
be considered as a stable ecosystem, in which a new species springs up. The
new interactions between pre-existing and rising species (which represent healthy
and cancer cells respectively) unbalance the equilibrium state of the ecosystem,
triggering a struggle for survival, that can lead to ecosystem collapse. The kernel
of this chapter is the analysis of the stochastic model for immunotherapy of cancer
proposed in the article [7]. This model is an extension of Interacting Particle
System (IPS), in particular it is a modification of Voter Model (VM), which takes
into account interactions among species. Interactions among various types of cells
are fundamental to set up a lifelike model describing a cancer behaviour under
therapy. In fact, due to the accumulation of driver and passenger mutations,
cancer cells form an heterogeneous population [39]. Moreover, because of therapy
and immune response, behaves and interactions of lymphocytes and cytokines
must be consider, apart from that of cancer cells. Following [7], the considered
model is applied to the example of melanoma under T-cell therapy. Understanding
purely stochastic events, which cannot be obtained with deterministic models, may
help to understand the resistance of tumours to therapeutic approaches and may
have non-trivial consequences on tumour treatment protocols [7]. Additionally,
numerical simulations supports the obtained results.
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3.1 Mathematics of Cancer

One of the primary aims of mathematical modelling is to make the
system being studied more understandable. This often means defining
the system as simply as possible, and not making it more complex than
reality. [9]

In last decades, as cancer therapy has moved towards personalized treatment,
mathematical modelling approaches have acquired significant attention in can-
cer research, representing an important tool for quantitative description of phys-
iopathological phenomena (e.g. cancer evolution) [1, 2, 4, 8]. Above all, quantita-
tive models represent practical tools to clarify cancer mechanisms and to provide
quantitative predictions, that can be validated by experimental data. Further-
more, quantitative models can complement experimental and clinical studies, be-
cause they allow for a better understanding of cancer biological processes like
cancer initiation, progression and metastases as well as intra-tumour heterogene-
ity, treatment responses and resistance. Thus, quantitative models generate useful
individual clinical predictions, for instance for a cancer personalized therapeutic
management [4, 63]. In particular, cancer ecology comes up in the setting of math-
ematical cancer research, as a promising quantitative approach [4, 9, 38, 46, 52].
To understand how an ecological view of cancer may be beneficial, it is crucial to
consider the interactions among mutated cells and their microenviroment. Taking
in account that an ecosystem consists of individuals and the physical environment
they inhabit, it is possible to think of the different types of cell as species in an
ecological environment. The different types of healthy cell in an organism behave
like different interacting species in an ecosystem and cancer cells constitute an ad-
ditional species, which spreads in the environment and favours some species and/or
damages others. Namely, cancer cells evolve, adapt to and change the environment
in which they live [9]. Thus, from an ecological perspective, cancer is a dynamical
and heterogeneous disease, that continuously evolves and diversifies as an adap-
tive Darwinian system. Darwinian point of view unites genetics with population
biology and biodiversity [30]. As a consequence, cancer modelling should include
approaches from ecology, population dynamics and evolutionary game theory.

3.1.1 Population Dynamics Models

First approaches for tumour growth modelling came from population dynamics
field. In this framework, cancer dynamics is approximated by a deterministic
system, namely cancer growth curves is described by ordinary differential equations
(ODEs). The aim of ODE models is to predict the rate of change in the cancer
volume with respect to the changes in time [60, 63]. The exponential model is a
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well-known ODE model used to approximate tumours in the earlier part of their
observed growth period [55]. It is assumed that cancer growth rate (i.e. rate of
volume change) is proportional to the volume of cancer mass. That is, the model
is described by the following ODE

V̇ = aV ,

where V = V (t) is the volume of cancer cells and a is the intrinsic rate of natural
increase [65] of tumour ( a = b − d where b and d are the birth and death rates
respectively). As time increases, exponential growth is possible only when infinite
natural resources are available, thus it does not depict a real biological system
definitively. Indeed, the exponential model fails at the last stages, when tumour
colonial expansion starts to play a role and resources, provided by the host or-
ganism, become depleted. To model the reality of limited resources, the logistic
model was developed by ecologist. Therefore, using the logistic model to describe
cancer growth represents a tentative to face the limitations of exponential model to
predict the long-term growth rate of cancer cell proliferation [51, 60]. The logistic
differential equation is

V̇ = aV

(
1− V

b

)
where a is the intrinsic growth rate and b is the carrying capacity (that is the
maximum volume size that can be reached by the population in its environment).
One can note that if V is very small (i.e. V

b
→ 0), than population is not influenced

by carrying capacity and it approximately has an exponential growth. Conversely,
when V is large (i.e. it is close to b) the growth rate is close to zero, which
means that population growth is slowed greatly or even stopped. Thus, population
growth is dramatically slowed in large populations by the carrying capacity b [51].
Summing up, populations with unlimited resources exhibit exponential growth,
resulting in a J-shaped curve. When resources are limited, population expansion
decreases as resources become scarce and the growing stops when the carrying
capacity of the environment is reached. Thus populations realize logistic growth,
resulting in an S-shaped curve ([51], see figure 3.1) .

However, exponential and logistic models failed to fit the experimental data,
whereas the Gompertz model shows excellent descriptive power [63]. Gompertz
model is a generalization of logistic model and it is widely used to describe cancer
growth. Indeed, Gompertz model generates very good fits with data [60, 63]. The
mathematical equation for the model is the following ODE

V̇ = aV ln

(
b

V

)
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Figure 3.1: The logistic model depicts an S-shaped growth curve (on right side), and it
is a more realistic model of population growth than exponential growth, that is described
by a J-shaped curve (on left side) [51].

where a is the intrinsic growth rate and b is the carrying capacity. One can
note that both logistic and Gompertz models approximate an exponential growth
in the early state of the system (i.e. for small value of V). Lastly, in paper [47] are
listed, analysed and compared several commonly used ODE models, apart from
exponential, logistic and Gompertz models. The authors highlight that does not
exist a model better than another, but the crucial fact is the choices of growth
model, parameters and initial conditions with respect to the problem under con-
sideration. Furthermore, they studies lead to the following conclusion:“the model
that best fits experimental data might not be the model that best predicts future
growth.” [47]

3.1.2 Game Theory Models

Game theory is among useful mathematical tools to study evolution in ecosys-
tems. This ecological subfield in game theory is known as Evolutionary Game
Theory (EGT). A key aspect, of games studied in game theory, is that an isolated
strategy does not produce good or bed results. The outcome affecting a player,
can be defined good or bed if the strategy used is compared with the strategies em-
ployed by the other players [9]. This game set fits the evolution of tumour, where
cancer cells “play” with the surrounding healthy cells. Cells of each type, sharing
their phenotype, compete for available resources. The cell phenotype corresponds
to its growth strategy in the game model and, as time increases, it changes with
respect to microenviroment alterations. Typically, such a game is formulated as a
table that ascribes fitness values (pay-offs) to every pair of interactions between
cell phenotypes (strategies); individuals with best phenotype will spread in the
population (i.e. it wins the game). Essentially, with the support of EGT, the
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long-term proliferation of different-type cells, in an organism, can be analysed in
a game context [4, 7]. In the paper [9] it is analysed the following evolutionary
game with two strategy: let hawk and dove be considered as two different types
of individual of the same species, which have aggressive and meek strategies to re-
solve disputes over food, respectively. The following pay-off table shows the game
behaviour

hawk dove

hawk V−C
2

V

dove 0 V
2

Accordingly, three scenarios arise:

i. When two hawks dispute over food they fight and the victor takes the spoils
(V), whereas the loser is assumed to be severely harmed (-C).

ii. When two doves have to share food (which we will refer as V) they just
divide it into two halves (each getting V

2
).

iii. In the third scenario, when a hawk and a dove meet, the dove balks away
from the fight leaving all the food to the hawk.

EGT provides a few things about this population:

- a population made of dove-like individuals (meek phenotype) is susceptible
to be invaded by a few hawks (aggressive phenotype);

- in many cases a population made of hawks is unlikely to be immune to
invasion by a handful of doves (the wildness of the hawk phenotype is coun-
terproductive for the hawks themselves, in fact they fight each other for the
spoil, keeping their growth rate low and consequently favouring the growth
of doves).

Furthermore with some additional informations (e.g. the wight of average injury
and the influence of a given resource on growth rate), it is possible to establish what
the proportion of aggressive versus meek individuals would be in the long term.
Thus, hawk-dove game can be used to study, for example, a cancer cell populations
with cells that move away when confronted with scarce resources (motile) and
cells that stay to use them (proliferative) [9]. In Section 1.2 it is highlight that
tumour cells acquire a number of new phenotypical capabilities on the path towards
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malignancy. Additionally, article [7] points out that cancer cells can switch their
phenotypes (e.g. from differentiated to dedifferentiate) as strategy to avoid the
immune response. The study of different tumour phenotypes with EGT leads to
investigate the possible progressive steps that characterize cancer progression [9].
For a mathematical analysis of the evolutionary dynamics of an hawk-dove-like
game (i.e. a game with two strategies) applied to cancer, the following setting
(proposed in [61]) is consider:

- let A and B be the two different phenotypes shearing in the cell population;
for example A and B could be two different phenotypes related to the same
genotype in cancerous cell (as is in the simplification of model analysed in
Section 3.2 of this thesis) or A could represent the phenotypes of cancerous
cells and B could be the phenotypes of healthy cells;

- it is assumed that the population size is constant in time;

- let xk denote the frequency of individuals shearing phenotype (i.e. adopting
strategy) k ∈ {A,B}. Moreover,

xA + xB = 1 (3.1)

since only two strategy are allowed (by assumption);

- the payoff matrix for the game is

A B
A a b
B c d

hence, strategy A player receives payoff a when playing against another strat-
egy A player, and payoff c when playing against a strategy B player. A
strategy B player would receive payoffs b and d when playing against A and
B players, respectively;

- the fitness of A and B are defined as

fA := axA + bxB

fB := cxA + dxB

The game dynamics is described by the following non-linear differential equations,
that are called the replicator equations [3]:

ẋA = xA(fA − φ) (3.2)

ẋB = xB(fB − φ) (3.3)
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where φ := fAxA + fBxB is the average fitness of the population. The replicator
equations (3.2) and (3.3) describe a deterministic selection process, where fk − φ
is the per capita rate of growth for strategy k ∈ {A,B}. Moreover, assumption
(3.1) implies that

ẋA = xA(1− xA)(fA − fB)

and
fA − fB = (a− c)xA + (b− d)(1− xA).

That is, the game behaviour is described by the following differential equation

ẋ = x(x− 1)(αx− β) (3.4)

where x = xA and

{
α = b− d+ c− a
β = b− d .

Therefore, the equilibrium solutions of (3.4) are x = 0, x = β
α

(with 0 ≤ β
α
≤ 1) and

x = 1 and the following generic outcome arise:

i. A dominates B. If a > c and b > d, then the entire population will eventually
consist of A phenotypes. The only stable equilibrium is x = 1. A is a strict
Nash equilibrium, i.e. an Evolutionarily Stable Strategy (ESS), while B is
not.

ii. B dominates A. If a < c and b < d, then the situation is similar to case i.
with A and B exchanged.

iii. A and B coexist in stable equilibrium. If a < c and b > d, then the interior
equilibrium x = β

α
is stable. Neither A nor B is a Nash equilibrium. This is

the strategy behaviour of the aforementioned Hawk-Dove game.

iv. A and B are bi-stable. If a > c and b < d, the equilibrium point in the
interior where x = β

α
is unstable, and the two boundary points where x = 0

or x = 1 are attracting.

Moreover, if a = c and b = d, then fA = fB for all frequencies. In this singular
case, the two strategies are equivalent. The frequency distribution remains the
same for all generations.

3.1.3 Stochastic Models

ODEs models assume that the observed dynamics are driven exclu-
sively by internal, deterministic mechanisms. However, real biological

57



3. A STOCHASTIC MODEL FOR IMMUNOTHERAPY OF CANCER

systems will always be exposed to influences that are not completely
understood or not feasible to model explicitly. Ignoring these phenom-
ena in the modelling may affect the analysis of the studied biological
systems. Therefore there is an increasing need to extend the determin-
istic models to models that embrace more complex variations in the
dynamics. A way of modelling these elements is by including stochas-
tic influences or noise. [20]

In a complex ecosystem the interplay among different species (i.e. the interaction
network) is the key feature of its dynamics [58]. To model such large families
of interactive unites (cells) evolving trough noisy dynamics the well-suited choice
for the theoretical framework is the IPS setting (see Section 2.4). IPS simulate
populations, or systems of populations, as being composed of discrete individual
organisms. Each individual has a set of state variables and behaviours. State
variables can include spatial location, physiological and behavioural traits. These
attributes vary among the individuals and can change through time. Each individ-
ual is assumed to undergo behaviours with rates changing in time. Behaviours can
include growth, reproduction, habitat selection, foraging, and dispersal[19]. Some
example are branching and Moran processes.

Branching and Moran Processes

The branching processes are largely used to model the stochastic growth of cell
populations [5, 22, 27, 35]. In particular, they are powerful tools to realistically
describe cancer growth and mutation accumulation, taking into account the demo-
graphic and environmental stochasticities, typical of the evolutionary process of
cancer. Indeed, for example, the effect of environmental factors cannot be underes-
timate (it is stressed in Section 1.2 that cancer evolves by continuous interactions
with its microenvironment); thus it should be included in the dynamical descrip-
tion [27]. Therefore, within this stochastic context, the branching processes clarify
interaction mechanisms among cancer cells and healthy cells. In a mathematical
framework, branching processes are Markov chains based on the hypothesis that
cellular events (replication, mutation and death) do not influence each other [53].
Namely, each cell events occur at given rates, without depending by population
size or composition, or by point in time [4]. Accordingly, at any time, each cell is
fully described by cell-intrinsic proliferation, mutation and death rates. Let nk(t)
the number of cells harbouring k mutation, whose birth and death rates per cell are
λk and µk, for k ∈ {1, 2} and ∀ t > 0. The mutation rate from the first type (one
mutation) to the second type (two mutations) is u. By assumption, any individual
cell of the population at any time t produces a random number of offspring at a
later time t+h (where h = dt). To simplify the notation, let n(t) :=

(
n1(t), n2(t)

)
,
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then the transition probabilities of those two cell types after an infinitesimal time
interval h are:

P
(
n(t+ h) = (i− 1, j)

∣∣n(t) = (i, j)
)

= µ1ih+ o(h)

P
(
n(t+ h) = (i+ 1, j)

∣∣n(t) = (i, j)
)

= λ1(1− u)ih+ o(h)

P
(
n(t+ h) = (i, j − 1)

∣∣n(t) = (i, j)
)

= µ2jh+ o(h)

P
(
n(t+ h) = (i, j + 1)

∣∣n(t) = (i, j)
)

= (λ2 + λ1u)jh+ o(h)

Figure 3.2: Branching process: realization of three time steps [4].

The Moran process has a similar dynamics, but the average population size is
constant in time; let it be N ∈ N;

- let n ∈ N be the number of different types of individual,

- let Nk represent the number of individuals of type k ∈ {1, 2, . . . , n};

- any type k has fitness value fk, (may be true that fk = fh with k 6= h).
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During each time step an individual of type k is chosen to reproduce with a prob-
ability proportional to fk, and subsequently, a random individual is chosen to die.
As a consequence, the number of k-type individuals increases and the amount of
l-type individuals decreases according to the following probability

P
(
Nk(t+dt) = i+1, Nl(t+dt) = j−1

∣∣Nk(t) = i, Nl(t) = j
)

=
ifk

ifk + jfl

j

N
+o(dt)

This process can be theoretically enlarged to consider random mutations, nonran-
dom death proportional to weakness (inverse fitness) or time-dependent fitness as
well [4].

Figure 3.3: Moran process: realization of one time step [4].

Branching and Moran processes have been used to analyse the accumulation
of passenger mutations and driver mutations during tumour growth. The key
point for a possible quantitative interpretation is that selectively neutral passenger
mutations may also arise in healthy tissues. Thus, half or more of the somatic
mutations found in a tumour may arise before cancer initiation. Consequently, this
approach leads to the “bad luck” tumorigenesis (see Section 1.3), i.e. it suggests
that cancer initialization is predominantly the result of error accumulation during
stochastic stem cell divisions [4].
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3.2 Description of the Model

In this Section, the stochastic model for immunotherapy of cancer, proposed in
[7], is investigate. In last decades, immunotherapy emerged among therapy ap-
proaches against tumour in both medical and mathematical field. The main issue
that can arise during any kind of therapy (e.g. chemo-, radio-, immunotherapy)
is resistance; despite an initial efficacy of the therapy, very often a relapse occurs.
Heterogeneity, both in genotype and phenotype, which can increase during ther-
apy (as defensive response first and counter-attack later), is the primary feature
of tumours that enhances resistance (see [7] and references therein). The chosen
quantitative mathematical model described is inspired by experiments of Lands-
berg et al. [41], which test Adoptive Cell Transfer (ACT) therapy on genetically
engineered mice melanoma;

- melanoma is a tumour involves epidermal cells,

- ACT therapy is a type of immunotherapy that uses specially injections of
cytotoxic T-cells [41].

Cancer under therapy essentially can be viewed as a large family of different type
of interactive cells undergoing noisy dynamics, thus choosing an IPS setting gives
advantage in the construction of a model which fits to the considered phenomena.
Indeed the proposed stochastic model comes from IPS family. In particular, it is
an extension of VM (see Section 2.4), which takes into account interactions among
species; the main limit of VM (in its standard version) is that it does not allow for
interaction between different types of particles. In the context of melanoma under
T-cell treatment, the main types of interacting particles are:

- skin cancer cells,

- T-cells,

- TNF-α (Tumour Necrosis Factor), a particular type of cytokine.

Due to immune response, other lymphocytes and cytokines are also present. How-
ever, their influence can be neglected in the context of the considered phenomena;
this result is confirmed by control experiments [7]. Before starting an rigorous
mathematical description of the model under consideration, it is necessary clarify
the principal steps of biological mechanism of melanoma evolution under T-cell
therapy [41]:

- the injected T-cells, recognizing the melanocyte-specific antigens, are able to
destroy melanoma cells with differentiated phenotype;
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- due to T-cell attack against cancer cells, the involved microenvironment un-
dergoes inflammation (in response to T-cell-driven inflammatory stimuli).

- microenvironment’s inflammation favours cancer cells phenotypic switch;
their phenotypes passing from a differentiated types to dedifferentiated;

- T-cells are poorly capable to recognize dedifferentiated cancer cells, con-
sequently, melanocytic antigens are down-regulated in the dedifferentiated
type;

- cancer develop therapy resistance.

That is, T-cell therapy achieves of remissions in patients with metastatic melanomas,
but tumours frequently relapse. Relapses occurs because melanomas acquire ACT
resistance. Furthermore, a generic state of the tumour has to be considered as a
mixture of differentiated and dedifferentiated cells [7]. Moreover, it is important
to mark that

- T-cell dysfunction is improved by the presence of pro-inflammatory cytokine
(TNF)-α, that intensifies the phenotype switching;

- phenotype switching is reversible (namely cells can pass from differentiated to
dedifferentiated phenotype and vice versa), it does not require cell divisions,
and is not induced by a mutation (i.e. it is a purely phenotypic change and
does not involve genotype).

Finally, the advice that the authors of the article [41] give, to improve the ATC pro-
tocol, is to inject two types of T-cells in order to simultaneously target melanocytic
and non-melanocytic antigens to ensure broad recognition of both differentiated
and dedifferentiated melanoma cells.

3.2.1 Mathematical Description of the Model

Let the finite space X := G×P ∪̇ Z ∪̇ W be the local state space. Any local state
x ∈ X is called trait, hence X is named trait space. In detail:

- the pair

(g, p) ∈ G × P := {g1, . . . , g|G|} × {p1, . . . , p|P|}, |G|, |P| <∞,

represents a cancer cell with genotype g and phenotype p. Every cancer cell
can reproduce by cell division, with or without mutation (namely, the two
or more cells resulted by division can have or not the same genotype of the
parent cell) and it can switch its phenotype; by assumption, the switched
phenotype is inherited from any daughter cell. Eventually, a cancer cell may
die due to multiple factors: ageing, competition, therapy;
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- the trait
z ∈ Z = {z1, . . . , z|Z|}, |Z| <∞,

denotes a T-cell of type z. T-cells can reproduce (by division), die and
produce cytokines;

- the trait
w ∈ W = {w1, . . . , w|W|}, |W| <∞,

expresses a cytokine of type w. Cytokines play the role of influencing phe-
notype switching of cancer cells and they can melt.

Figure 3.4 clarifies how the three types of presented particles (cancer cells, T-cell,
cytokine) behave and interact. Particularly, it depicts the simplified dynamics of
the IPS (without mutation) modelling the experiment described in [41]: x denotes
differentiated melanoma cells, y dedifferentiated melanoma cells, zx T-cells and
w TNF−α. At each arrow the rate for occurrence of the corresponding event is
indicated (e.g. birth is illustrated with two arrowheads and death with an arrow
directed to †).

Figure 3.4: Representation of the transitions for a population with trait space
X = {x = (g, p); y = (g, p′)}∪̇{zx}∪̇{w} [7].
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To go forward in developing the model, let t > 0 be a fixed time, a population at
time t is represented by the following measure acting on the trait space X :

νK(t) :=
1

K

∑
x∈X

νx(t)δx,

where

- K ∈ N is a fixed parameter that allows to scale the population size and is
usually called carrying-capacity of the environment;

- νx(t) is the number of individuals of type x at time t;

- δx denotes the Dirac measure at x.

Hence, for each trait x̃ ∈ X ,

νKx̃ (t) :=
1

K

∑
x∈X

νx(t)δx(x̃) =
1

K
νx̃(t)

indicates the numberer of individuals of type x̃ rescaled by K. One can note that
for small trait space the entire population involved in the process at time t can be
also viewed as a vector; for example, considering the trait space X described in
figure (3.4), the process at time t > 0 can be rewrite as fallows

(νK(t)) = (νKx (t), νKy (t), νKzx(t), ν
K
w (t)).

For any arbitrarily fixed K ∈ N, the dynamics of theMK(X )−valued continuous-
time MC (νK(t))t≥0 depicts the time evolution of the population under consider-
ation, where

MK(X ) :=

{
1

K

n∑
i=1

δxi : n ∈ N, x1, x2, . . . , xn ∈ X
}
,

is the set of finite counting measures on X rescaled by K. Let νK(0) ∈ M(X )
be a fixed initial state of the process, which represents the beginning population,
then low of (νK(t))t≥0 is described by the following infinitesimal generator [7]:
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LKφ(νK) =
∑

(g,p)∈G×P

(
φ

(
νK +

δ(g,p)

K

)
− φ(νK)

)

× (1− µg)
⌊
b(p)−

∑
p̃∈P

cb(p, p̃)ν
K
p̃

⌋
+

KνK(g,p)

+
∑

(g,p)∈G×P

(
φ

(
νK −

δ(g,p)

K

)
− φ(νK)

)

×

(
d(p) +

∑
p̃∈P

c(p, p̃)νKp̃ +

⌊
b(p)−

∑
p̃∈P

cb(p, p̃)ν
K
p̃

⌋
−

)
KνK(g,p)

+
∑

(g,p)∈G×P

∑
z∈Z

(
φ

(
νK −

δ(g,p)

K
+
∑
w∈W

lkillw (z, p)
δw
K

)
− φ(νK)

)
× t(z, p)η(z)KνK(g,p)

+
∑

(g,p)∈G×P

∑
p̃∈P

(
φ

(
νK +

δ(g,p̃)

K
−
δ(g,p)

K

)
− φ(νK)

)

×
(
sg(p, p̃) +

∑
w∈W

sgw(p, p̃)νKw

)
KνK(g,p)

+
∑
z∈Z

∑
p∈P

(
φ

(
νK +

δz
K

+
∑
w∈W

lprodw (z, p)
δw
K
− φ(νK)

)
b(z, p)νKp Kν

K
z

+
∑
z∈Z

(
φ

(
νK +

δz
K

)
− φ(νK)

)
b(z)KνKz

+
∑
z∈Z

(
φ

(
νK − δz

K

)
− φ(νK)

)
d(z)KνKz

+
∑
w∈W

(
φ

(
νK − δw

K

)
− φ(νK)

)
d(w)KνKw

+
∑

(g̃,p̃)∈G×P

∑
(g,p)∈G×P

(
φ

(
νK +

δ(g̃,p̃)

K

)
− φ(νK)

)

× µgm((g, p)(g̃, p̃))

⌊
b(p)−

∑
p′∈P

cb(p, p
′)νKp′

⌋
+

KνK(g,p)

(3.5)

where b?c− and b?c+ are the negative and the positive parts and, by assumption,
the generator LK acts on real valued bounded measurable functions φ, for any
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arbitrary state νK = νK(t) of the process at time t. Moreover in (3.5) it is used
the following short hand notation:

νKp ≡
∑
g∈G

νK(g,p).

The infinitesimal generator contains all the informations about events that cancer
cells, T-cells and cytokines undergo. Accordingly, each present individual at any
time t has several exponential clocks with intensities depending on its trait x ∈ X
and on the current state of the system νK(t) [7]:

(i) Each present cancer cell of trait (g, p) ∈ G × P has

- a clonal reproduction clock with rate

(1− µg)
⌊
b(p)−

∑
p̃∈P

cb(p, p̃)ν
K
p̃ (t)

⌋
+

and a mutant reproduction clock with rate

µg

⌊
b(p)−

∑
p′∈P

cb(p, p
′)νKp′ (t)

⌋
+

,

where µg ∈ [0, 1] denotes the probability that a mutation occurs in a
birth event of a cancer cell with genotype g (thus 1−µg is the probability
that a new cancer cell born without genotypic mutation), b(p) ∈ R≥0 is
the natural birth rate and K−1cb(p, p̃) ∈ R≥0 is the birth-reducing com-
petition kernel which lowers the birth rate of a cancer cell of phenotype
p in presence of a p̃-type cancer cell. Furthermore, if the total birth
rate

∑
p∈P b(p) = 0 the birth-reducing competition K−1cb(p, p̃) as an

additional death rate of the existing p-type cancer cells;

- a natural mortality clock with rate

d(p) +
∑
p̃∈P

c(p, p̃)νKp̃ (t) +

⌊
b(p)−

∑
p̃∈P

cb(p, p̃)ν
K
p̃ (t)

⌋
−
,

where d(p) ∈ R≥0 is the natural death rate, K−1c(p, p̃) ∈ R≥0 is another
competition kernel which increases the death rate, b(p) and K−1cb(p, p̃)
as above;

- a therapy mortality clock with rate∑
z∈Z

t(z, p)νKz (t),

where K−1t(z, p) ∈ R≥0 is a therapy kernel that represent an additional
cancer death rate for p-type cell due to the presence of z-type T-cell;
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- a natural and cytokine-induced switch clock with rate∑
p̃∈P

(
sg(p, p̃) +

∑
w∈W

sgw(p, p̃)νKw (t)

)
,

where sg(p, p̃) ∈ R≥0 and sgw(p, p̃)νKw (t) ∈ R≥0 are the natural and
cytokine-induced switch kernels respectively; they both switch a cancer
cell from (g, p)-type to (g, p̃)-type.

Any times that one of these clocks rings, any cancer cell of trait (g, p) un-
dergoes corresponding event; whenever

- clonal reproduction clock rings, an additional cancer cell of the same
trait (g, p) appears;

- mutant reproduction clock rings, a cancer cell of trait (g̃, p̃) appears
according to the kernel m

(
(g, p), (g̃, p̃)

)
∈ [0, 1], which represents the

probability that, whenever a mutation event occurs in cancer cell, the
(g, p)-type cell generates a (g̃, p̃)-type cell. Moreover, m

(
(g, p), (g̃, p̃)

)
acts as a probability matrix, indeed by definition it is assumed that∑

(g̃,p̃)m
(
(g, p), (g̃, p̃)

)
= 1 and m

(
(g, p), (g, p)

)
= 0

- natural mortality clock rings, the cancer cell disappears;

- therapy mortality clock rings, the cancer cell disappears and an amount
of lkillw (z, p) ∈ N0 cytokines of type w are deterministically produced
(according to weights t(z, p)νKz (t)) at each cancer killing event;

- natural and cytokine-induced switch clock rings, this cancer cell dis-
appears and a new cancer cell of trait (g, p̃) appears according to the
weights sg(p, p̃) +

∑
w∈W s

g
w(p, p̃)νKw (t)(w).

(ii) Each present T-cell of trait z ∈ Z has

- a natural birth clock with rate b(z) ∈ R≥0

- a natural mortality clock with rate d(z) ∈ R≥0

- a reproduction clock with rate∑
p∈P

b(z, p)νKp (t)

Thus, any time that natural birth and mortality clocks ring, one T-cell of trait
z sprigs up and disappears, respectively. Whenever the reproduction clock of
a T-cell rings, due the presence of a cancer phenotype p, an additional T-cell
appears with the same trait z with rate K−1b(z, p) ∈ R≥0, and lprodw (z, p) ∈ N
cytokines of type w arise according to the weights b(z, p)νKp (t).
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(iii) Each present cytokine w ∈ W has

- a mortality clock with rate d(w).

Moreover, as highlighted in point (i), an amount of lkillw (z, p) ∈ N0 of trait w
are produced every time a T-cell of trait z kills a cancer cell of phenotype
p, and a number of lprodw (z, p) of cytokines of the same trait are generated
every time a T-cell of trait z is produced in the presence of a cancer cell of
phenotype p.

Thus, taking in account these jump rates, the evolution of population can be
approximate by the solution of the following quadratic dynamics system

ṅ(g,p) = n(g,p)

(
(1− µg)

⌊
b(p)−

∑
(g̃,p̃)∈G×P

cb(p, p̃)n(g̃,p̃)

⌋
+

−
⌊
b(p)−

∑
(g̃,p̃)∈G×P

cb(p, p̃)n(g̃, p̃)

⌋
−
− d(p)−

∑
(g̃,p̃)∈G×P

c(p, p̃)n(g̃,p̃)

−
∑
z∈Z

t(z, p)nz −
∑
p̃∈P
p̃6=p

(
sg(p, p̃) +

∑
w∈W

sgw(p, p̃)nw

))

+
∑
p̃∈P

n(g̃,p̃)

(
sg(p, p̃) +

∑
w∈W

sgw(p, p̃)nw

)

+
∑

(g̃,p̃)∈G×P

n(g̃,p̃)

(
µg̃m

(
(g, p), (g̃, p̃)

)⌊
b(p)−

∑
p′∈P

cb(p, p
′)np′

⌋
+

)

ṅz = nz

(
b(z)− d(z) +

∑
(g,p)∈G×P

b(z, p)n(g,p)

)

ṅw = −nwd(w) +
∑

(g,p)∈G×P

n(g,p)

∑
z∈Z

(
lkillw (z, p)t(z, p) + lprodw (z, p)b(z, p)

)
nz

∀ (g, p) ∈ G × P , z ∈ Z, w ∈ W . (3.6)

The idea is the same of Theorem 2.18, used to study the mean field limit of
the Voter model, but in the case a more general result is used; that is, let d =

|G||P| + |Z| + |W| and νK(0)
K→∞−−−→ n(0) (a.s.), i.e. it is supposed that the

initial conditions converge almost surely to a deterministic limit, then the sequence
of rescaled processes (νK(t))t≥0 converges almost surely as K → ∞ to the d-
dimensional deterministic process which is the unique solution n(t) to the quadratic
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ODEs system (3.6). This result comes from Theorem 2.1 in Chapter 11 of [24].
One of the most important features of these model (like VM) is its double sided
nature of stochastic and deterministic model [7]:

- The stochastic side allows the possibility of extinctions (which deterministic
side can not predict); e.g. the extinction either of a set of χ-type cells, for
a specific trait χ ∈ X , or of the whole population (i.e. irreversible organ-
ism collapse). Indeed, let K be a fixed carring capacity, due to fluctuations
essentially two facts lead to extinction; first, population sizes are typically
transient states and when the process jumps in a low minimum size, random
fluctuations can lead to extinction (that corresponds to an absorbing state)
before the population reaches its equilibrium. Second, when the process is
in a finite equilibrium, after a long enough time, the fluctuations around it
drive the process to extinction of population (see simulations in Figure 3.6).
Moreover, one can note that the extinction of a specific type of cells can
strongly influences the long-term behaviour of the entire population; e.g the
equilibria points could change, with respect to the remaining cell types. In
both cases, the value of K, determining the amplitude of fluctuations, char-
acterizes the probability of extinction. Furthermore, the relevant mutations
in the setup of cancer therapy are driver mutations, but they are invisible in

the deterministic limit, indeed the mutation probabilities µg ≡ µKg
K→∞−−−→ 0.

- The deterministic side describes the logistic part of the process, concerning
the necessary and available resources during evolution of the population.
Moreover, it highlight prey-predator dynamics, that occur between T-cells
and cancer cells, but also hawk-dove dynamics that take place among cancer
cells of different phenotype (mutation and switch parts).

To improve the analysis of the model, presented in this section, and to clarify
cancer evolution mechanisms, some simplifications are necessary; presence of a
large number of switches and mutations makes difficult the analysis of ODE system.
Thus, considering few types of cell (i.e. a small trait space X ) is a good starting
point. Consequently, fitting to this simplification, the modelling of experiment
described in the article [41] represents a good example.

3.2.2 Therapy with T-cells of One Specificity

Modelling experiment explained in paper [41] the following setting arise; let

- G = {g} : all cancer cells have the same genotype g; mutations are not
considered in the model, since the experiment does not investigate them.
Thus, the probability that during a birth event a mutation occurs is zero,
i.e. µg = 0;

69
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- P = {px, py} : each cancer cell phenotype can be either px or py; where px
and py are the differentiated and dedifferentiated phenotypes respectively.
Any cancer cell can switch its phenotype from px to py and also in the
reverse order (namely px → py and py → px). Additionally, birth-reduction
competition are not considered, that is cb(ρ, ρ̃) = 0, ∀ρ, ρ̃ ∈ P ;

- Z := {zx} : there is only one type of T-cell zx attacking exclusively cells
of phenotype px; therapy with T-cells of one specificity. Therefore, there
is not a type of T-cell attacking phenotype py, i.e. t(zx, py) = 0, and the
presence of cancer cells of phenotype py does not stimulate the production
of T-cell, b(zx, py) = 0 (due to the fact that dedifferentiated phenotype is
not recognized by T-cells of type zx). Moreover, the natural birth rate of
the considered T-cells is b(zx) = 0, because in the model are included only
injected T-cells, whose reproduction is stimulated only in presence of cancer
cells of x-type.

- W = {w} : the type w of cytokine represents the TNF−α proteins.

Therefore, the considered trait space is X = {x := (g, px), y := (g, py), zx, w}.
Since the dimension of this trait space is small, it is useful to think about the
process (ν(t))t≥0 as a vector as well as the solution of associated ODE system,
that is an arbitrary configuration of the process is

η = (ηx, ηy, ηzx , ηw),

where, for fixed time t > 0 and carrying capacity K ∈ N,

η := νK(t) and ηχ = νKχ (t), ∀ χ ∈ X

and the solution of the ODE system results

n(t) =
(
nx(t), ny(t), nzx(t), nw(t)

)
,

Additionally, since the cancer cells are characterized only by phenotype, it is pos-
sible to do a little abuse of notation substituting in equation (3.6) px and py with
x and y (respectively). Furthermore, let s := sg and sw := sgw, and consider that
bfc+ − bfc− = f, ∀ R-valued functions f ; the resulting ODE system is
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ṅx = nx
(
b(x)− d(x)− s(x, y)− c(x, x)nx − c(x, y)ny − t(zx, x)nzx − sw(x, y)nw

)
+ nys(y, x)

ṅy = nx
(
s(x, y) + sw(x, y)nw

)
+ ny

(
b(y)− d(y)− s(y, x)− c(y, x)nx − c(y, y)ny

)
ṅzx = nzx(−d(zx) + b(zx, x)nx)

ṅw = nx
(
lkillw (zx, x)t(zx, x) + lprodw (zx, x)b(zx, x)

)
nzx − nwd(w)

(3.7)

3.2.3 Therapy with T-cells of Two Specificities

The phenotypic plasticity of melanoma cells in an inflammatory microenvironment
contributes to tumour relapse after initially successful T-cell immunotherapy [41].
On the basis of their work, authors of the article [41] have proposed to improve
future ACT protocols with

- T-cell abling to target melanocytic and non-melanocytic antigens to ensure
broad recognition of both differentiated and dedifferentiated melanoma cells,

- strategies to sustain T-cell effector functions by blocking immune-inhibitory
mechanisms in the tumour microenvironment.

Thus the following example, presented in [7], represents an useful tool to analyse
the kind of new protocol proposed in [41]. Let zy represent that type of T-cell
recognizing and attacking dedifferentiated (y-type) cancer cells. The setting for
a new model including a therapy with zy T-cells is the same of model described
by ODE system (3.7), if not specified: X := {x, y, zx, zy, w} is trait space, zx and
zy are the two traits characterizing a therapy with T-cells of two specificities. As
in therapy with T-cells of one specificity, the natural birth rates of the considered
types of T-cell are b(zx) = 0 and b(zy) = 0, because in the model are included
only injected T-cell, which production are stimulated only in presence of cancer
cells. In addition, a T-cell of specific type interacts only with cancer cells of the
corresponding type, i.e.

b(zx, y) = 0 = b(zy, x)

t(zx, y) = 0 = t(zy, x).
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The ODE system describing the considered model is

ṅx = nx
(
b(x)− d(x)− s(x, y)− c(x, x)nx − c(x, y)ny − t(zx, x)nzx − sw(x, y)nw

)
+ nys(y, x)

ṅy = nx
(
s(x, y) + sw(x, y)nw

)
+ ny

(
b(y)− d(y)− s(y, x)− c(y, x)nx − c(y, y)ny − t(zy, y)nzy

)
ṅzx = nzx(−d(zx) + b(zx, x)nx)

ṅzy = nzy(−d(zy) + b(zy, y)ny)

ṅw = nx
(
lkillw (z, x)t(zx, x) + lprodw (zx, x)b(zx, x)

)
nzx

+ ny
(
lkillw (zy, x)t(zy, y) + lprodw (zy, y)b(zy, y)

)
nzy − nwd(w)

(3.8)

3.2.4 Qualitative Analysis and Simulations

To underline the qualitative features of systems (3.7) and (3.8), the choice of
parameters, carrying capacity and initial condition is crucial:

- for a qualitative study of the experiment in [41], thus for the simulation of
the ODE system (3.7), in [7] were proposed the following parameters:

b(x) = 3 b(y) = 3

d(x) = 1 d(y) = 1 d(zx) = 3 d(w) = 15

s(x, y) = 0.1 s(y, x) = 1 sw(x, y) = 4

c(x, x) = 0.3 c(y, x) = 0 b(zx, x) = 8 lprodw (zx, x) = 0

c(x, y) = 0 c(y, y) = 0.3 t(zx, x) = 28 lkillw (zx, x) = 1

(3.9)

and
K = 2 · 102

n(0) = (2, 0, 5 · 10−2, 0) (3.10)

are the fixed carrying capacity and initial conditions, respectively;
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- for the qualitative analysis of the model for therapy with T-cells of two
specificities, described by ODE system (3.8), in addition to parameters (3.9),
the following parameters were chosen:

b(zy, y) = 14 lprodw (zy, y) = 0

t(zy, y) = 28 lkillw (zy, y) = 1 d(zy) = 3

(3.11)

with carrying capacity K = 2 · 102 and initial conditions

n(0) = (2, 0, 5 · 10−2, 2 · 10−1, 0) (3.12)

Thus, parameters, initial conditions and carrying capacity were chosen in order
to highlight the influence of the randomness and the possible behaviours of the
systems [7].

Figure 3.5: (a) Sketch of the invariant subspaces, stability of the fixed points. (b)
Projection of the fixed points onto nx and ny. The black dots show the fixed points
of system (3.7) and the blue points represent the two additional fixed points of system
(3.8). The green area contains the fixed points which correspond to cure or remission
and the red area contains those describing relapse [7].

An essential step in the analysis of the deterministic systems is the determina-
tion of equilibrium points and the study of their stability (an equilibrium point is
stable if the eigenvalues of the Jacobian matrix of the system at that point have
all strictly negative real parts). The simulations of the stochastic systems depict
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several types of behaviour, that can occur with certain probabilities, as Figure 3.6
shows.

Figure 3.6: The graphs show the number of individuals divided by K = 200 (carry-
ing capacity) versus time. Two scenarios are possible for therapy with T-cells of one
specificity: (a) T-cells zx survive and the system is attracted to Pxyzxw, or (b) T-cells zx
die out and the system is attracted to Pxy00. Three additional scenarios are possible for
therapy with T-cells of two specificities: (d) T-cells zx and zy survive and the system
stays close to Pxyzxzyw, (e) T-cells zx die out and the system is attracted to Pxy0zyw, (f)
the tumour is eradicated (corresponding to P00000). (c) Transition between cases (a,d)
[7].
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Therapy with T-cells of One Specificity

The equilibrium points of ODE system (3.7) are the solutions of the following
system

0 = nx
(
b(x)− d(x)− s(x, y)− c(x, x)nx − c(x, y)ny − t(zx, x)nzx
−sw(x, y)nw

)
+ nys(y, x)

0 = nx
(
s(x, y) + sw(x, y)nw

)
+ ny

(
b(y)− d(y)− s(y, x)− c(y, x)nx

−c(y, y)ny
)

0 = nzx(−d(zx) + b(zx, x)nx)

0 = nx
(
lkillw (zx, x)t(zx, x) + lprodw (zx, x)b(zx, x)

)
nzx − nwd(w).

(3.13)

There are three acceptable solutions for the system (3.13), with parameters
(3.9) (see Figure 3.5(b)):

- P0,0,0,0: there is not type of cell;

- Px,y,0,0: T-cells and TNF-α are absent and both differentiated and dediffer-
entiate melanoma cells are present;

- Px,y,zx,w: all types of cell are present.

Among them, the only stable point is Px,y,zx,w, whereas Px,y,0,0 result stable in
absence of T-cell (i.e. in the invariant space {nzx = 0} ). Therefore, for initial
condition (3.10) the deterministic system (3.13) is attracted to Px,y,zx,w; that is,
the four types of cell coexist in a equilibrium state. In general, the deterministic
system is attracted to the stable point Px,y,zx,w for initial conditions such that:

- the number of differentiated melanoma cells is large, i.e. nx(0) is far from
zero;

- the number of injected T-cells is small, i.e. nzx(0) is close to zero;

- the numbers of dedifferentiated melanoma cells and TNF-α molecules are
small or equal to zero, i.e. ny(0) and nw(0) are close or equal to zero;

From the biological point of view, the large initial amount of x-type cancer cells
induces the T-cells of zx-type to increase, TNF-α is secreted, and the number of
differentiated melanoma cells (consequently, nx) shrinks due to killing and TNF-
α induced switching, whereas the population of dedifferentiated melanoma cells,
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ny, grows. Furthermore, one can note that the parameters were chosen in other
to respects the biological features of the system: the minimum amount of T-cells
during remission is low, and such that the equilibrium value of melanoma of type x
(differentiated cancer cell) in presence of T-cells is low, whereas equilibrium values
of both melanoma types in absence of T-cells are high [7].

For the stochastic system, two types of behaviour can occur with certain prob-
abilities:

- the trajectory stays close to that of the deterministic system and, finally, the
system reaches a neighbourhood of the fixed point Pxyzxw (see Figure 3.6(a));

- the system reaches a neighbourhood of Pxy00, due to the death of T-cell
population, νKzx (see Figure 3.6(b)).

Biologically, after the extinction of the T-cells (νKzx = 0), the number of cytokines,
νKw , gradually decreases until the extinction of the entire TNF-α population. Thus,
the population of differentiated melanoma cells, νKx , favoured by the lack of lym-
phocytic attack, increases. Moreover, without TNF-α stimulation, the switch from
x to y stops and a relapse, which mainly consists of differentiated cells, occurs.
Again, it is fundamental to remark the importance of parameters choice (in partic-
ular switching, therapy or cross-competition), which causes a variety of different
possible behaviour [7].

Therapy with T-cells of Two Specificities

By construction, the model for therapy with T-cells of two specificities, defined
by the ODE system (3.8), contains one more predator-prey term t(zy, y) between
dedifferentiated melanoma cells (of type y) and the specific T-cell zy, witch recog-
nize and attacking them. This adds two new equilibrium points (see the blue dots
on Figure 3.5(b)) beside those of ODE system (3.7):

- Pxyzxzyw: coexistence of all types population,

- Pxy0zyw: absence of the zx-type of T-cell population.

The new stable point is Pxyzxzyw and, in this setting, the invariant subspaces are
{nzx = 0}, {nzy = 0} and {nzx = 0} ∩ {nzy = 0}, in which Pxy0zyw, Pxyzx0w and
Pxy000 are stable, respectively. One can note that Pxyzx0w, Pxy000 and P00000 corre-
spond to Pxyzx0w, Pxy00 and P0000 (fixed points of ODE system (3.7)) respectively,
but Pxyzx0w loses stability in the enlarged space and also Pxy000 does not preserve
stability in the hyperplane {nzx = 0}; indeed they result stable only considering
the intersection with the hyperplane {nzy = 0}, that is, during therapy there is
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not injection of T-cell attacking dedifferentiated (y-type) melanoma cells. Indeed,
therapy with T-cells of one specificity model results a particular case of the model
for therapy with T-cells of two specificities such that the initial amount of the
specific T-cells for y-type cancer cells is zero, nzy(0) = 0, and null birth and death
rates, i.e. b(zy, y) = 0 and d(zy) = 0. Whereas, considering as initial conditions
a small amount of T-cell of types zy and zx (nzy(0) > 0 and nzx(0) > 0), a large
quantity of melanoma cells nx(0) and small or null amount of dedifferentiated
melanoma cells (ny(0)), the deterministic system is attracted to the stable equilib-
rium point Pxyzxzyw (see simulations in Figure 3.7(B)). Biologically, the presence
of target x induces the growth of T-cell population nzx , TNF-α is secreted, and
the differentiated melanoma population nx shrinks due to killing and switching,
the population of dedifferentiated melanoma ny grows. The increasing both differ-
entiated and dedifferentiated melanoma populations is regulated and kept at a low
level by the presence of the T-cells of the two specificities zx and zy [7]. In par-
ticular, the system (3.8), with parameters (3.9) and (3.11), has different solutions
with to respect the particular choice of the initial condition; for example:

a) n(0) = (2, 0, 5 · 10−2, 0, 0), the system is attracted to the equilibrium point
Pxyzx0w (see Figure 3.7(A));

b) n(0) = (2, 0, 5 · 10−2, 2 · 10−1, 0), the system is attracted to the fixed point
Pxyzx0w (see Figure 3.7(B)). This show that Pxyzx0w is not stable (i.e. with
initial condition nzy > 0, chosen in a neighbourhood of the zero, the whole
system go far from Pxyzx0w, as the time t increases);

c) n(0) = (2, 0, 0, 2 · 10−1, 0), the system is attracted to the fixed point Pxy0zyw

(see Figure 3.7(C)), which is not stable by b);

d) n(0) = (2, 0, 0, 0, 0), the system is attracted to the fixed point Pxy000 (see
Figure 3.7(D)), that is not stable too.

Moreover, graphs (A) and (B) in Figure 3.7 depict also the solution of ODE system
(3.7) with parameters (3.9) and initial conditions n(0) = (2, 0, 5 · 10−2, 0) and
n(0) = (2, 0, 0, 0), respectively.
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Figure 3.7: Solutions of the deterministic system (3.8) with numerical parameters (3.9)
and (3.11) and different choices of initial conditions [7].

Analysing the simulation of the stochastic model for protocol therapy with two
types of T-cell (see Figure 3.6), five main different scenarios arise:

- T-cells of type zy die out (a);

- the extinction of the two types (zx and zy) of T-cell population; i.e. the
melanoma can grow until exhaustion of the host body’s resources (that is
until the collapse of the organism) (b);

- all populations can survive for some time fluctuating around their joint equi-
librium (d);

- T-cells of type zx vanish (e);

- the extinction of both differentiated and dedifferentiated (types x and y)
melanoma cells, due to the simultaneous attack of the two different types of
T-cell, that corresponds to a cure, i.e. the tumour is eradicated. Moreover,
without the melanoma targets (x and y) the stimuli for reproduction of
T-cells and TNF-α stop, therefore, also the lymphocyte and the cytokine
populations vanish (f).
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Furthermore, in figure 3.6(c), a transition from case (d) to case (a) is highlight,
but others transitions between the different scenarios can be observed; for example,
system could pass from case (d) to (e) and then to (b).

In this setting (therapy protocol with two types of T-cell), authors of paper [7]
have chosen parameters such that the minima of the two types of T-cells during
remission is low, so that they have a large enough probability to die out in the
stochastic process, in line with the real biological behaviour of the system. Ad-
ditionally, some parameters were estimated from experimental data (provided by
article [41]). Generally, at the beginning of therapy there is a null or small quantity
of dedifferentiated melanoma cells, therefore the population of T-cells of type zy
starts growing only later. This is an other biological feature that could drive to
the choice of injecting a higher initial amount of these T-cells, to avoid their early
extinction. It is important to stress that, the deterministic system converges to
the stable equilibrium Pxyzxzy , when a particular set of initial conditions is fixed,
e.g. initial conditions (3.12), but the stochastic process, going under fluctuation,
can reach (before the equilibrium Pxyzxzy) an invariant hyperplane, thus it can be
absorbed to an equilibrium point different from Pxyzxzy , as Figure 3.5 shows. Thus,
stochastic analysis of the model is relevant for therapy success, indeed it shows
that a cure scenario is possible (see simulation in Figure 3.6(f)).

3.2.5 Mutations

The examples of model for immunotherapy with T-cell (see Subsection 3.2.2 and
Subsection 3.2.3) highlight the essential role of phenotypic switches, which don’t
involve mutations, in cancer defence mechanisms. Nevertheless, mutations are
fundamental to really understand the behaviour of cancer evolution, especially the
driver mutations that promote cancer development. In particular, it is interesting
to discuss briefly the appearance of rare mutations in large cell populations. In
this setting it is necessary to redefine the concept of fitness value, which is basic
in the study of the stochastic population models. With this purpose authors of [7]
have showed some examples (see simulations in Figure 3.8), placed in the context
of interaction of rare mutations and fast switches in the case of pure tumour
evolutions (that is in a setup without therapy, ignoring the T-cells and the TNF-α
proteins):

- the aim is to study the invasion of a mutant that has just appeared in a
population close to a stable fixed point;

- let X be a set of traits of a system, whose evolution can be described by
infinitesimal generator (3.5);
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- let M ⊂ X represent a population in a stable equilibrium such that, ∀y ∈M ,
the trait y characterizes one among its subpopulations;

- in the classical case the invasion fitness it is defined by

f(x,M) := b(x)− d(x)−
∑
y∈M

c(x, y)n̄y (3.14)

where biological parameters b(x), d(x) and c(x, y) have the usual meaning,
natural birth and death rates and competition kernel, respectively

- f(x,M) represents the growth rate of a population consisting of a single
individual with trait x /∈M in the presence of the equilibrium population n̄
on M . f(x,M) > 0 implies that a mutant appearing with phenotype x from
the equilibrium population on M has a positive probability (uniformly in K)
to grow to a population of size of order K, conversely f(x,M) < 0 implies
that such a mutant population will die out with probability tending to one,
as K →∞, before its size reaches K.

- in [7] it is proposed to use multi-type branching processes to describe a
mutant population of genotype g including all its associated phenotypes (i.e
all the traits are of the form (g, pi), pi ∈ P , ∀i ∈ {1, . . . , |P|}), when the
mutant arrives in a resident population at equilibrium and to redefine the
concept of fitness value (3.14). Let an initial population of genotype g be
considered, such that it is able to mutate at rate µKg to another genotype
g′, associated with different phenotypes p′j ∈ P ′, for i = 1, . . . , |P ′|. The
new definition of fitness value of mutant g′ is strictly linked to the switching
parameters of its phenotypes thought the following relative fitness values:
∀j ∈ {1, ...|P ′|},

fj := b(g′, p′j)− d(g′, p′j)−
|P|∑
h=1

c(p′j, ph)−
|P ′|∑
k=1

sg
′
(p′j, p

′
k) (3.15)

where the biological parameters are the same of the classical definition (3.14)
with the adjoint of switching parameters s′jk := sg

′
(p′j, p

′
k), related to cancer

cell switch from (g′, p′j)-type to (g′, p′k)-type;

- the simulations showed in Figure 3.8 depict a population holding just a trait
(g, p), which is able to mutate at rate µKg to another genotype g′, associated
with two different phenotypes:

(a) The parameters were chosen in order to have f2 < 0 and f1 > 0 (ac-
cording to definition (3.15)), moreover, in this case, p′2 can switch to
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p′1 (s′21 = 2), but the back-switch is very weak (s′12 = 10−1). The global
fitness of the genotype g′ (as defined in [7]) results positive and close to
f1;

(b) Both phenotypes, p′1 and p′2, have a negative initial growth rate, for
the chosen parameters, i.e. f1, f2 < 0. Instead, the global fitness of
the genotype g′ is positive, due to the cooperation (i.e. due the switch
parameters s12 = 2 = s21) of the two phenotypes. This is possible
because an outgoing switch is a loss of a particle for a phenotype, but
not for the whole genotype.

Figure 3.8: Simulations for rare mutations in combination with fast switching, where
the number of individuals divided by 200 is plotted versus time [7].

To have a detailed and rigorous explication of this topics one can see for example
[13, 14] and, especially for multi-type branching processes [6, 32, 33, 34].

Interplay of Mutation and Therapy

In the context of cancer therapy, drug resistance is a complex phenomenon and
appears as a serious problem; indeed failures in the therapy occur during cancer
invasion and metastasis related to drug resistance [45]. There are several mech-
anisms that cause the resistance to tumour therapy, the mutations are among
them. The common cancer treatments are surgery, radiation therapy, chemother-
apy, combination therapy and laser therapy and almost all of them consist of cycles
of treatment. Thus, during a therapy there are phases when populations shrink
and regrow due to treatment and relapse phenomena. This may lead to a fixation
of a “super-resistant mutant” [7, 45]. The simplest setup to study this effect in
the model for immunotherapy of cancer (3.5) has the following stucture:
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- melanoma population is monomorphic, with trait (g, p) which can mutate to
one fitter trait (g′, p′);

- switching is excluded, therefore, all parameters concern with it and cytokines
are set to zero (the presence of TNF-α only stimulates phenotype switches)

- only birth-reducing competition (BRC) is present (competition kernel in-
creasing the death rate is set to zero, by assumption);

- to include the effect of therapy in the simplest way possible, only one type
of T-cells, z, targeting cancer cells of type (g, p) but not of type (g′, p′), is
considered.

It is crucial to stress that the case under analysis concern with the case of rare
mutations in large populations (namely, mutation probability µKg → 0 as K →∞)
on a timescale such that a population reaches equilibrium before a new mutant ap-
pears. Consequently, mutation term does not appear in the limiting deterministic
system

ṅ(g,p) = n(g,p)

(
b(p)− d(p)− cb(p, p)n(g,p) − cb(p, p′)n(g′,p′) − t(z, p)nz

)
ṅ(g′,p′) = n(g′,p′)

(
b(p′)− d(p′)− cb(p′, p)n(g,p) − cb(p′, p′)n(g′,p′)

)
ṅz = nz(−d(z) + b(z, p)n(g,p)) (3.16)

which describes the interactions of the populations holding traits (g, p), (g′, p′) and
z. Furthermore, the effects of BRC on mutation birth are intrinsically stochastic
and happen on time-scales diverging with K [7]. To start a qualitative analysis
it is basic to find the equilibrium points of system (3.16) without the mutant
population ((g′, p′)-type); namely, it is necessaty to investigate the solution of the
following system 0 = n(g,p)

(
b(p)− d(p)− cb(p, p)n(g,p) − t(z, p)nz

)
0 = nz(−d(z) + b(z, p)n(g,p))

.

There are at least three equilibrium points:

- null population size (both cancer cells and T-cells are absent)

(n(g,p), nz) = (0, 0) (3.17)
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- T-cell population is absent and cancer cells reaches an equilibrium dependent
on BRC parameter

(n(g,p), nz) =

(
b(p)− d(p)

cb(p, p)
, 0

)
(3.18)

where it is supposed b(p)− d(p) 6= 0

- both cancer cell and T-cell populations are present

(n(g,p), nz) =

(
d(z)

b(z, p)
,
b(p)− d(p)− cb(p, p) d(z)

b(z,p)

t(z, p)

)
(3.19)

where d(z)
b(z,p)

6= b(p)−d(p)
cb(p,p)

.

To study the stability of these fixed point, the eigenvalues of the following Jacobian
matrix (associated to the system (3.16) without the equation describing the mutant
population) are investigated:

J =

(
b(p)− d(p)− 2cb(p, p)n(g,p) − t(z, p)nz −t(z, p)n(g,p)

b(z, p)nz b(z, p)n(g,p) − d(z)

)
Evaluating the matrix at any equilibrium point, it results:

- (0, 0) is unstable, when b(p) − d(p) > 0; because its related eigenvalues are
the real values

λ0
1 = b(p)− d(p) ∈ R and λ0

2 = −d(z);

- the equilibrium point (3.18) results stable under conditions

b(p)− d(p) > 0 and
d(z)

b(z, p)
>
b(p)− d(p)

cb(p, p)
,

since its corresponding eigenvalues are

λ1 = d(p)− b(p) and λ2 = b(z, p)
b(p)− d(p)

cb(p, p)
− d(z) (∈ R)

- the equilibrium point (3.19) is stable if

b(p)− d(p)

cb(p, p)
>

d(z)

b(z, p)

(
⇔ d(z)

b(z, p)

(
b(z, p)

(
b(p)−d(p)

)
−cb(p, p)d(z)

)
> 0

)
(3.20)
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because the corresponding eigenvalues have negative real part:

λ± = −cb(p, p)d(z)

2b(z, p)

±

√
cb(p, p)2d(z)2

4b(z, p)2
− d(z)

b(z, p)

(
b(z, p)

(
b(p)− d(p)

)
− cb(p, p)d(z)

)
Now, to study the influence of BRC on mutation events, it is necessary to consider
the behaviour of the stochastic process (νK(g,p)(t))t≥0 (which is described by the

infinitesimal generator (3.5), adapted to the case under analysis). The total mu-
tation rate of the population of type (g, p) at time t > 0 is given by the following
function of the Markov process (νK(g,p)(t))t≥0:

m(νK(g,p)(t)) := µKg
⌊
b(p)− cb(p, p)νK(g,p)(t)

⌋
+
νK(g,p)(t)K, (3.21)

since there is only a BRC (no others competition types are involved). The function

m(νK(g,p)(t)) is strictly positive ∀ νK(g,p)(t) ∈
[
0, b(p)

cb(p,p)

]
; it represents a parabola

opened downwards and attaining its maximum at b(p)
2cb(p,p)

(see Figure 3.9).

Figure 3.9: Shape of the initial total mutation rate of the population (g, p) [7].

Without or before therapy and before the first mutant appears, the melanoma
population νK(g,p)(t) can be approximated by the solution of the deterministic system

ṅ(g,p) = n(g,p)

(
b(p)− d(p)− cb(p, p)n(g,p)

)
(3.22)
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Thus, let the melanoma population be close to its equilibrium (see Figure 3.10(b)),
i.e.

νK(g,p)(t) = n̄(g,p) =
b(p)− d(p)

cb(p, p)

(which corresponds to (3.18)). Then the time until a mutation occurs is exponen-
tially distributed with approximate parameter equal to

m(n̄(g,p)) = KµKg
(
b(p)− cb(p, p)n̄(g,p)

)
n̄(g,p) = KµKg d(p)n̄(g,p).

Moreover, looking at Figure 3.9, it is immediate establish that

- the total mutation rate at the equilibrium point n̄(g,p) is not maximal, with
the following parameters choice

d(p) <
b(p)

2
⇒ n̄(g,p) >

b(p)

2cb(p, p)
;

indeed

m(n̄(g,p)) < µgK
b(p)2

4cb(p, p)
;

- population with a selected small size have an higher total mutation rate (see
Figure 3.10(a));
i.e.

νK(g,p)(t) ∈
[
d(p)

cb(p, p)
, n̄(g,p)

]
⇒ m(νK(g,p)(t)) > m(n̄(g,p)) (3.23)

Finally, to grasp the interaction between mutation and therapy, let (ñ(g,p), ñz) be
the stable equilibrium reached from population under therapy before a mutant
birth occurs (i.e. the equilibrium point (3.19) of system (3.16) without the mutant
population under stability condition (3.20)). The waiting time for a mutation,
starting from equilibrium (ñ(g,p), ñz), is exponentially distributed with approximate
parameter

m(ñ(g,p)) = KµKg
(
b(p)− cb(p, p)ñ(g,p)

)
ñ(g,p) = KµKg

(
b(p)− cb(p, p)

d(z)

b(z, p)

)
ñ(g,p).

Stability condition (3.20) points out that melanoma population at equilibrium has
smaller size during therapy, indeed

ñ(g,p) =
d(z)

b(z, p)
<
b(p)− d(p)

cb(p, p)
= n̄(g,p).

Additionally, if it is assumed that

d(p)

cb(p, p)
<

d(z)

b(z, p)
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then

ñ(g,p) =
d(z)

b(z, p)
∈
[
d(p)

cb(p, p)
, n̄(g,p)

]
⇒ m(ñ(g,p)) > m(n̄(g,p)) (by (3.23)).

That is, for a specific choice of parameters, the mutation rate of genotype (g, p) is
larger during the treatment with T-cells (see Figure 3.10(c)).

Figure 3.10: The number of individuals divided by 1000 is plotted versus time: Effect
for an initial population which is small (a), or at equilibrium (b) or under therapy (c)
[7].

Summing up, during immunotherapy, firstly the injection of T-cell works by
lowering the melanoma population, but instead to increase the remission prob-
ability, it paradoxically increases the probability for melanoma to mutate to a
potentially fitter and pathogenic genotype, which is not affected by the T-cells [7].
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Conclusions

Cancer is a term which comprises an huge number of different diseases, with various
intrinsic dynamics and microenviroments. In this thesis, we have focused on the
properties of melanoma, a specific type of skin cancer, to provide an effective ex-
ample of mathematical model describing cancer growth dynamics. Furthermore,
immunotherapy was selected to study the behaviour of melanoma under treat-
ment, instead of the common cancer therapies (such as surgery, radiation therapy,
chemotherapy, combination therapy and laser therapy). This choice was made on
the basis that immunotherapy works effectively on those tumours that are diffi-
cult to deal with traditional therapies [67]. The model proposed in this thesis is
a stochastic model for immunotherapy of cancer, that allows to simulate differ-
ent treatment scenarios. The examples and simulations presented are related to
melanoma, and they are based on the experiments presented by Landsberg J., et
al. [41] and on a model proposed by Baar M., et al. [7]. Additionally, examples
are constructed to point out the intrinsic abilities of melanoma to dedifferentiate
its phenotypes, in order to evade the immune system and to mutate, developing
resistance to therapy during treatment. In particular, the proposed simulations
about interplay of fast phenotypic switches and rare driver mutations, highlight
how treatment itself can lead to a smart resistance to immunotherapy. Indeed, the
choice of a particular dose of injected T-cell (besides others initial conditions and
parameters choices) can induce an earlier mutation in a small population at equi-
librium after a cycle of treatment. Consequently, for any cycle of treatment, the
probability that a mutation arises before a new equilibrium can be high. This im-
plies that a multiple-cycle treatment protocol could be inefficient due to an higher
probability of the cancer to acquire therapy resistance. Moreover, the comparison
to experimental data so far looks very promising [7]. The investigation of the
interplay between mutation and therapy points out the basilar role of stochastic
nature of the chosen model. Indeed, in the considered setting of rare mutation
in large population, influence of the mutation rate disappears in the deterministic
limit (µg → 0 as K → ∞). Furthermore, the stochastic analysis of the model
allows a total remission of cancer as possible scenario. Due to fluctuations, the
system can catch the point P00000 (the absence of all populations), before reach-
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ing a different equilibrium. On the contrary the success of therapy cannot be
expected from a pure deterministic analysis of the model. Starting from non-zero
initial conditions, the deterministic system goes far from the equlibrium P00000 as
time increases, since it is not stable. However, the model cannot fully describe
the complexity of the interactions among melanoma cells, immune system, mi-
croenvironment and therapy; numerical computations could be impractical and
theoretical aspects could become too complex to be well understood. Therefore,
the model presents some intrinsic limitations by construction; in particular it does
not take into account the geometry of the considered biological system (i.e. it does
not describe the three-dimensional structure of the tumour and its microenviron-
ment). In addition, examples and simulations were made on the basis of further
simplifications, e.g. just one cancer genotype with only two possible phenotypes
was considered to study melanoma behaviour without mutation, interactions be-
tween cytokines and cells were considered at an individual level, and interplay of
mutation and therapy was analysed starting from a monomorphic population with
only one possibility of trait choice for the eventually mutation. Another aspect
that cannot be overlooked is the choice of parameters; actually, the model param-
eters are not known well enough and are adjusted to reproduce the experimental
findings [7]. Recapping:

- Drug resistance represents the main issue in cancer research. Although
chemotherapy has remained the backbone of cancer treatment for many tu-
mour types, almost all failures in the chemotherapy are during the invasion
and metastasis of cancers related to drug resistance [21, 45]. A multidisci-
plinary research team, providing various points of view, is fundamental to
deal with this very complex problem.

- The mathematical approach proposed in this thesis represents a useful tool
to support the development of new treatment protocols, especially counter-
intuitive results, hardly to be evident by laboratory experimentation. In
particular, the chosen stochastic model for immunotherapy of cancer applied
to melanoma, leads to the conclusion that therapy itself can favour cancer
developing. In fact, the examples presented in Chapter 3 show that:

◦ phenotypic plasticity of melanoma cells in an inflammatory microenvi-
ronment contributes to tumour relapse, after initially successful T-cell
immunotherapy;

◦ the choice of a particular dose of injected T-cell, under some partic-
ular initial conditions, can induce an earlier mutation after any cycle
of treatment; the probability of the appearance of a new mutation in-
creases after each cycle.
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Consequently, treatment could enhance the cancer acquisition of therapy
resistance.

- The limitations of the model presented in this thesis highlight what may be
some new challenges for mathematical oncology:

◦ the construction of new models, enabling to manage more information
without loosing efficiency;

◦ the inclusion in the model of the geometry of analysed biological sys-
tems;

◦ the increase of the number of parameters that are possible to determine
experimentally (which may help to calibrate model).

Finally, in the last twenty years, oncology was revolutionized by examples of suc-
cessful personalized cancer treatments [21]. In this context, the simulations may
help in the selection of laboratory experiments [7] necessary during the phase of
creation of a personalized therapy. Hence, the time used for laboratory experimen-
tation may be reduced, leading to faster achievement of an effective personalized
treatment. Thus, mathematical oncology may play a fundamental role in design-
ing personalized treatment protocols. The hope is that mathematical models, such
as the one presented in this thesis, can be improved to become a powerful tool to
support the feasibility analysis of a treatment, which is minimally invasive and as
effective as possible.
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Glossary

The intent of this glossary is to clarifies the meaning of some terms, used in this
thesis, that are specific to the field of study (different from Mathematics) to which
they belong (Genetics, Biology, Medicine). The following definitions are not meant
to be comprehensive, but they are useful tools to understand terms that are not
so intuitive or well-known. The latter are essential to understand the genetic and
biological framework of the model discussed in this thesis.

• Apoptosis
An energy-requiring physiological process that leads to cell death without
exciting an inflammatory response, unlike necrosis. Apoptosis is distinct
from programmed cell death although the terms are often treated as inter-
changeable.

• Biodiversity
The range of genetic, taxonomic, and ecosystem differences that exist in a
given area or environment; this can, of course, extend to the whole planet.

• Bioactivation
The conversion of a xenobiotic substance to a more toxic or active derivative
within the body. The term xenobiotic defines any substance found in an
organism but that is not produced by that organism and is not a normal
constituent of its diet. More often it is used to describe substances foreign to
an entire biological system, artificial substances that did not exist in nature
before being synthesized by humans.

• Clone
A population of cells or organisms derived from a single progenitor and there-
fore genetically identical.

• Cytokine
A rather loose category of small proteins that are released by cells and that
affect the behaviour of other cells.
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• Endogenous-Exogenous
A product or an activity that arises in the body or cell, in contrast to exoge-
nous agents or stimuli that come from outside.

• Gamete
A haploid cell produced by meiosis and involved in sexual reproduction. Male
gametes (spermatozoa) are small, motile, and produced in large numbers,
whereas female gametes (oocytes) are larger and nonmotile.

• Genetic code
The relationship between the sequence of bases in nucleic acid and the se-
quence of amino acids in the polypeptide encoded by that DNA. Each amino
acid is specified by at least one triplet of bases (a codon), although there is
degeneracy in the code and some amino acids are specified by more than one
codon.

• Genetic information
the information contained in a sequence of nucleotide bases in a nucleic acid
molecule [36]. Heritable characteristics.

• Genetics
The scientific discipline dealing with

- the study of inheritance and variation of biological traits, and

- the study of genes, including their structure, function, variation, and
transmission [36].

• Genotoxic
A substance, setting, or process that is toxic or harmful to the genetic mate-
rial. An agent or process that interacts with cellular DNA, either directly or
after metabolic biotransformation, resulting in alteration of DNA structure.
DNA-adduct formation is one type of genotoxicity [54].

• Genotype
The genetic constitution of an organism, as opposed to the expressed fea-
tures, the phenotype.

• Germinal cell
cells that produce gametes by meiosis: e.g., oocytes in females and sperma-
tocytes in males [36].

• Growth Factor
A diverse group of proteins that are important in the regulation of cell prolif-
eration (growth) and differentiation. The distinction between growth factors
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and cytokines is blurred since some cytokines act as growth factors and some
cytokines, originally described as important in the haematopoietic lineages,
act on a broader range of cell types. Autonomous growth factor production
or altered responsiveness to growth factors is a common characteristic of
many neoplastic cells which thereby lose growth control. In particular, the
Trasforming Growth Factor is family of growth factors secreted by trans-
formed cells that induce the phenotypic characteristics of cell transformation,
but do not cause hereditable changes.

• Immune system
the organs (e.g., thymus, lymph nodes, spleen), tissues (e.g., hematopoietic
tissue of bone marrow, mucosal and cutaneous lymphoid tissues), cells (e.g.,
thymocytes, blood and tissue lymphocytes, macrophages), and molecules
(e.g., complement, immunoglobulins, lymphokines) responsible for immunity
(protection against foreign substances) [36].

• Homeostasis
The maintenance of constancy. Homeostatic mechanisms keep the properties
of the internal environment of organisms within fairly well-defined limits and
generally require a sensor, a control centre, and positive or negative feedback
regulation.

• Hydrogen bond
an association between an electronegative atom, e.g. fluorine, oxygen, nitro-
gen, or sulfur, and a hydrogen atom attached to another such electronegative
atom. Although hydrogen bonding is due to interaction between dipoles, the
force of attraction is large enough to permit formation of aggregates of small
molecules or to stabilize the conformation of many macromolecules. The
spatial relation of the donor and acceptor atoms is such that the hydrogen
atom lies very close to the straight line between them [12].

• Metabolism
The complete set of chemical changes that maintain life.

• Mitosis
The process of nuclear division in the somatic cells of eukaryotes in which
the genomic information, is distributed equally between two daughter cells
so that each contains a diploid set of chromosomes identical to that of the
parent cell. The adjective diploid describes a cell that has two copies of
genomic information. Diploid cells have pairs of homologous chromosomes
and are usually described as being 2n where n is the haploid chromosome
number. In mammals, only gametes are haploid.
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• Monomorphic population
A population showing only one trait (of potentially variable expression) due
to fixation of one allelic form of the gene responsible for that trait [36]. Thus,
population holding the same genotype and phenotype.

• Neoplasia
Literally, a term meaning on “new growth” but referring to abnormal new
growth that persists in the absence of the original stimulus. The term covers
both tumours, where there is an actual swelling, and other proliferative dis-
orders, such as leukaemias, all colloquially referred to as “cancer”, although
this term strictly refers to carcinoma.

• Neoplasm
any new and morbid formation of tissue; a tumour [12].

• Nucleoside
A purine base (adenine, guanine) or pyrimidine base (cytosine, thymine,
uridine) linked glycosidically to ribose or deoxyribose, but lacking the phos-
phate residues that would make it a nucleotide. The major ribonucleosides
are adenosine, guanosine, cytidine, and uridine.

• Nucleotide
A phosphate ester of a nucleoside.

• Oncogene
A normal cellular gene (a proto-oncogene) that is mutated or is overexpressed
so that normal restraints on proliferation and sometimes of positional control
are lost. The mutation may (e.g.) make the gene product constitutively
active, or insensitive to normal regulation.

• Phenotype
The observable characters, including morphology and behaviour of an organ-
ism, regardless of the actual genotype of the organism. Identical genotypes
do not necessarily produce identical phenotypes.

• Phenotypic plasticity
a phenomenon in which a given genotype may develop different states for a
character or group of characters in different environments [36].

• Physiological
normal; not pathological or pharmacological [12].

• Physiology
the study of the dynamic processes of living organisms [36].
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• Population Biology
the study of the patterns in which organisms are related in space and time.
Such disciplines as ecology, taxonomy, ethology, population genetics, and
others that deal primarily with the interactions of organisms or groups of
organisms (demes, species, etc.) are included under this term [36].

• Tumour Necrosis Factor (TNF)
A pro-inflammatory cytokine (TNF-α, cachectin, 157 aa). Although it kills
tumour cells it also has a wide range of pro-inflammatory actions. Soluble
TNF-α is released from the cell surface by the action of TACE (TNF-α
converting enzyme). TNF-α, it is secreted in a conventional manner from
activated T and B cells.

• Tumor progression
The process that is thought to occur in the course of development of a tu-
mour. Implicitly, the idea that more than one change must occur to cause full
malignancy and that initiation must be followed by other changes. In many
tumours heterogeneity develops as a result of further mutational events.

• Tumor suppressor (or Oncosuppressor)
Generally a gene (antioncogene, cancer susceptibility gene) encoding a nega-
tive regulator of the cell cycle, e.g. an inhibitor of a growth factor signalling
system, that must be mutated or otherwise inactivated for unregulated pro-
liferation (neoplasia). There are negative regulators of tumour suppressors
that, when overexpressed, increase susceptibility to tumours.

Definition are taken from dictionary [40], where is not specified.
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