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Chapter 1

Introduction

This thesis focuses on Monte Carlo reweighting methods. The typical approach will be pre-
sented first, while a novel method [1] will be shown later. Both approaches will be applied to
two cases of interest related to an ongoing analysis of B0

s decay data from the LHCb detector [2,
3] at the LHC hadron collider [4] at CERN.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range
2 < ⌘ < 5, designed for the study of particles containing beauty or charm quarks.
The B0

s decay of interest is:
B0

s ! D⇤�
s ⇡+, (1.1)

the ⇡+ track from the B0
s decay is called the "bachelor" track. Monte Carlo1 samples are

available for it. The data samples used for this analysis corresponds to these decay modes:

B0
s ! D⇤�

s ⇡+ (1.2)

and:
B0

s ! D�
s ⇡

+. (1.3)

The two reweighting cases of interest are:

• Reweighting of data to background discriminating variables.

• Reweighting of tagging related variables.

Data to background discrimination is an essential procedure that allows to extract useful
information from the collected data, the signal. It can be performed by means of a Boosted
Decision Tree [5, 6]( BDT). The BDT is a machine learning software device that is trained on
a particular sample by feeding a certain number of variables to its inputs. The trained BDT
can then be used on real data to classify background and signal events. The variables chosen
as input are those that show the highest discriminating power.

In general, flavour tagging in B physics is the process by which the flavour of the beauty
meson, at production time, is determined independently of its decay time decay pattern. Hence
if a B0 to B0, or vice versa, oscillation occurs it can be recognized as such. Flavour tagging
at LHCb is performed looking to the event topology on the so called Opposite Side (OS) of
the event with respect to the direction of the B0

s meson to be tagged. In this case the decision
achieved is clearly independent of the B0

s meson decay time decay pattern.
Using appropriate variables also same side (SS) flavour tagging is possible. These variables

1From here on Monte Carlo will be substituted by MC for brevity.
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2 CHAPTER 1. INTRODUCTION

must be independent from the B0
s meson to be tagged.

Results obtained with different reweighting methods will be compared for each of the two
physics cases.
In Chapter 2, a description of the two reweighting methods is given. In Chapter 3, the two
cases of interest described above are presented. In Chapter 4, conclusions are drawn.



Chapter 2

Reweighting Methods

Reweighting is a procedure by which the distribution of a certain variable is changed in shape
by applying suitable weights. In general, the goal of this procedure is to make the MC simula-
tion to show better agreement with data. These weights can be calculated following different
approaches. In this work, MC weights will be calculated in two ways: the "bin by bin" method
and a new approach recently developed.

2.1 Typical Approach

The typical approach to reweighting requires MC and data to be binned in histograms. The MC
distribution for the variable being reweighted is called the original distribution, while the data
distribution for the same variable is named the target distribution. Once both distributions
have been binned, an histogram division is performed. This constitutes the typical approach
to reweighting, sometimes called "bin by bin" method.
If N bins are used in the histograms, this procedure will return N weights, given by the following
equation:

wi =
Ti

Oi
(2.1)

where Ti stands for Target i-th bin content and Oi stands for Original i-th bin content. The
wi are the weights, obtained for each of the N bins, related to the variable for which data and
MC distributions were divided. The ensemble of these variable-related weights will be called
weighting rule (WR) from now on. For instance the ⌘1 WR will be written as WR(⌘).

Once this procedure is completed, the calculated WR can also be used to reweight other
MC distributions.
The WR calculated using a certain variable to reweight other variables does not guarantee that
the reweighted MC distributions will show a better agreement with their corresponding data
distributions. This is due to the fact that, in general, variables are not completely independent
but there might be correlations. So reweighting with respect to a given variable could introduce
biases and distortions in other variables’ distributions that share some correlation with the WR
variable. This ultimately can increase the disagreement between MC and data.
One example of this situation could be the B0

s meson transverse momentum, Ptr, and its pseu-
dorapidity. These two variables are intimately connected so reweighting MC using only the ⌘

1Here and in the following ⌘ indicates the pseudorapidity of a particle, defined as:

⌘ = � log tan

✓
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4 CHAPTER 2. REWEIGHTING METHODS

WR, will increase the disagreement in the transverse momentum’s distribution and viceversa.
A technique to lessen this effect that still uses histogram division will be presented too.

Moreover, when the typical approach is used, the binning has to be chosen such that a
sufficiently large number of events is contained in each bin. If not, this process will introduce
large fluctuations in the reweighted distribution. Some artifacts in the reweighted distribution
might appear.

2.2 GBR Approach

The new approach to reweighting called Gradient Boosted Reweighter (GBR) uses machine
learning algorithms [1, 7]. It is implemented in Python programming language.
The GBR algorithm generates Boosted Decision Trees [5, 6], that are iteratively built during
the training stage.
The GBR is trained on a subset of both MC and data distributions. It’s also possible to
run the training on multi-dimensional distributions to handle many variables at once. This
is welcome when it’s not clear whether correlations exist between those variables. With the
typical approach instead the difficulty increases as the number of variables increases. After
the training stage, the GBR can predict weights for a MC distribution given a target data
distribution. Different weights are provided for individual events. So the problem of unstable
WR due to small number of events in a given bin is ruled out because the GBR algorithm is
unbinned.



Chapter 3

Practical Applications

3.1 Data to background discriminating variables

The first case of interest that was analyzed involves the BDT input variables used for the
analysis of the (1.1) decay mode. The full decay can be written as:

B0
s ! D⇤

s ⇡+

D⇤
s ! Ds �

Ds ! KK⇡(�⇡, K⇤K,non� resonant)
Ds ! K⇡⇡
Ds ! ⇡⇡⇡

At present time the BDT used to separate signal and background in that particular decay,
trained on the KK⇡ sample, has 14 input variables. These variables are listed below:

• Photon related:

– Ph_Ptr: the transverse momentum.

– PtrRel: the transverse momentum with respect to the Ds flight direction1.

– Ph_CL: the confidence level.

– Ph_Eta: the pseudorapidity ⌘.

– Ph_isNotE: the probability of photon not being an electron1.

– Cos_ThetaS: the cosine of the Ds polar angle in the D⇤
s rest frame.

• Transverse momentum of the final state charged particles: bachelor, Km, Kp, Pi.

• B0
s related:

– Ds_DIRAOri: the angle between the Ds momentum vector and the vector con-
necting its origin and decay vertices.

– Bs_DIRAOwn: the angle between the B0
s momentum vector and the vector con-

necting its production and decay vertices.

– Bs_IpChi2Own: the �2
IP defined as the difference in �2 of the associated primary

vertex, PV , reconstructed with and without the considered particle.

– Bs_RFD: the radial flight direction.

5
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(a) K⇡⇡ decay submode.
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(b) K⇤K decay submode.
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(c) KK⇡ non resonant decay submode.
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(d) �⇡ decay submode.
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(e) ⇡⇡⇡ decay submode.

Figure 3.1: B0
s mass fits for each of the five decay submodes.
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3.1.1 sWeight calculation

In this chapter the D⇤�
s ⇡+MC will be reweighted using D⇤�

s ⇡+data as target. However, since
data always comes with background, it is mandatory to get rid of these background contribu-
tions i.e. data have to be sWeighted [8].
The sWeight procedure assigns weights based on the data invariant mass distribution. Candi-
date events close to the invariant mass peak are getting larger weights. Conversely, where the
signal is expected to be low and background dominates, smaller weights are applied.
The sWeights are obtained from invariant mass fits to the B0

s spectra for each of the five decay
submodes shown in figure 3.1. These decays modes are defined as being mutually exclusive.
So, for each submode, a set of sWeights is available and by keeping track of which decay
submode a given data point belongs to, it is possible to assign the right sWeight to it.

3.1.2 Chosen Monte Carlo weighting rules

Several WR are calculated using the following variables: the pseudorapidity and the transverse
momentum of the B0

s and the number of tracks, nTracks. Given the fact that ⌘ and Ptr are
not independent an additional 2� dim WR in the (⌘, P tr) plane is calculated.
In order to use all informations available, a Global Weighting Rule2 is computed as the product
between the nTracks WR and the 2� dim one:

GWR(nTracks, ⌘, P tr) = WR(nTracks) ·WR(⌘, P tr) (3.1)

The nTracks and (⌘, pt) WR are calculated following the two approaches outlined in Chapter
2. The reason why the GWR is expressed as a product and not as a 3�dim WR is a reasonable
compromise: the nTracks variable is not strongly correlated to ⌘ and Ptr, so one can separate
these variables and obtain a product of two terms, each independent with respect to the other.

Moreover, a 3�dim WR would be quite difficult to calculate in practice following the typical
approach. However, it is worth noticing that such a difficulty would not arise when using the
GBR approach, given the algorithm’s native multi-dimensional handling capabilities.

Typical approach

In this case, the WR(nTracks) is calculated by simple 1�dim histogram division with variable
sized bins to improve the WR stability given the small number of events with a large number
of tracks. The WR(⌘, P tr) is calculated by binning the ⌘ variable on the abscissa and the Ptr
on the ordinate. To improve stability of the resulting WR, variable bins were used so that each
bin would not have an excessively small number of events. Bins were adjusted manually, no
automatic procedures were used.

Figure 3.2 shows D⇤�
s ⇡+data and MC respectively, binned in a 2 � dim histogram. The

region at high ⌘ and high Ptr is scarcely populated because of kinematic constraints. These
histograms are normalized, divided and the WR(⌘, P tr) is obtained.

The data to MC comparisons for the 14 reweighted BDT input variables, described in the
top part of Section 3.1, are shown in figures 3.3 and 3.4. Reweighting results will be discussed
in the next section.

1As will became clear in the following, this variable will be excluded in the next version of the BDT.
2From now on GWR.
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Figure 3.2: Binned B0
s ⌘ and Ptr distributions using variable size bins for both variables.

GBR approach

In this case while the WR(nTracks) is still calculated following the typical approach, the
(⌘, P tr) WR is predicted using the GBR algorithm. So the resulting GWR is a hybrid rule3.
This approach is chosen because of the absence of correlation between the number of tracks
and the other two B0

s kinematic variables.

The GBR algorithm is trained on a subset of the B0
s ⌘ and Ptr data and MC distributions.

The MC is treated as the original distribution while the data is the target. The reweighted MC
distributions are similar to those shown in figures 3.3 and 3.4. A comparison between these
reweighting approaches will be given in the next section.

3.1.3 Observations

Reweighting results are summarized, in figure 3.5, using the �2/NDF calculated between
D⇤�

s ⇡+MC and D⇤�
s ⇡+sWeighted data for all the 14 BDT input variables’ distributions. Here

NDF indicates the number of degrees of freedom as returned by the ROOT analysis package.
Also 5 additional distributions are added:

• the BDT output variable, BDT_V ar.

• the ⌘, Ptr and � of the B0
s , Bs_Eta, Bs_Ptr and Bs_Phi, respectively.

• the number of tracks, nTracks.

It is evident that reweighting greatly improves agreement between data and simulation, gener-
ally for all variables.
The typical approach and the hybrid one, seem to produce nearly identical results, but some
exceptions are found:

• The typical approach leads to a better agreement for:

– Bac_Ptr

– Km_Ptr

3A pure GBR approach is easily feasible by feeding (nTracks, ⌘, P tr) as input for the GBR algorithm and
thus the 3� dim GWR is obtained.
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Figure 3.3: BDT input variables (1 of 2).
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Figure 3.4: BDT input variables (2 of 2).
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Figure 3.5: �2/NDF between D⇤�
s ⇡+data and D⇤�

s ⇡+MC with the two approaches to reweight-
ing.
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Variable KS typical KS GBR
Ph_Eta 0.3816 0.1235

Cos_TheS 0.0704 0.1200
Bac_Ptr 0.8761 0.5868
Km_Ptr 0.7752 0.7174
Kp_Ptr 0.0291 0.0348

Ds_DIRAOri 1 1
Bs_DIRAOwn 0.4950 0.7990

Bs_RFD 0.4840 0.5494
BDT_V ar 0.0017 0.0010
Bs_Eta 0.7852 0.6328
Bs_Ptr 0.1017 0.1856
Bs_Phi 0.3236 0.3285
nTracks 0.1111 0.8445

Table 3.1: Kolmogorov - Smirnov tests results for all the BDT variables.

– Ds_DIRAOri

– BDT_V ar

– Bs_Phi

• The GBR approach performs better for all the other variables. Bs_Eta is the variable
that shows the greatest difference in �2 between the two reweighting styles.

Results from the Kolmogorov-Smirnov test between data and MC distributions are shown
in table 3.1. The distributions for which the KS test returned zero are not shown. These
are: Ph_Ptr, PtrRel, Ph_CL, Ph_isNotE, Pi_Ptr, Bs_IpChi2Own. The different tests
behaviour of the �2 and the KS for some variables deserves further investigations.

As an outcome of this study it results clearly that the variables PtrRel and Ph_isNotE
are not reproduced at all by the MC simulation. And furthermore a reweighting in the key
variables nTracks and B0

s ⌘ and Ptr is not significantly improving the agreement. Hence these
variables will be discarded in the next iteration of the B0

s BDT training.

3.2 Flavour tagging related variables

The second case of interest involves the following variables:

• ⌘, Ptr and � of the B0
s .

• The number of tracks nTracks.

These have a large impact on B0
s tagging performances [9]. The goal of this analysis is to check

the so called portability of the calibration of the taggers, for both the opposite side, OS, and
the same side, SS, taggers. In order to accomplish this task, D⇤�

s ⇡+MC is reweighted using
D�

s ⇡
+data as target. These are the data that were originally used to calibrate both taggers.

3.2.1 Adopted procedure

Mistag probability for the Right and Wrong tag samples

The mistag probability for the Right Tag (RT) and Wrong Tag (WT) samples are built as
histograms separately, for the OS and the SS cases, by checking the values of these variables:
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Bs_TRUEID Tagger Decision Output
+531 +1 Rightly Tagged B0

s

+531 �1 Wrongly Tagged B0
s

�531 +1 Wrongly Tagged B0
s

�531 �1 Rightly Tagged B0
s

Table 3.2: Bs_TRUEID and tagger decision combinations.

• Bs_TRUEID: this variable assumes two possible values: ±531, where +531 stands for
B0

s and �531 for B0
s .

• Bs_TAGDECISION_OS: this variable holds the OS tagger’s decision. It assumes
three values: 0 for untagged events, 1 for the B0

s and �1 for the B0
s .

• Bs_SS_nnetKaon_DEC: this variables holds the SS tagger’s decision. The values are
as for the OS tagger.

The values of these variables are checked following the scheme given in table 3.2. The mistag
probabilities are obtained from the variables:

• Bs_TAGOMEGA_OS for the OS

• Bs_SS_nnetKaon_PROB for the SS

The !(⌘) distribution

The ratio:
WT

RT +WT

as a function of the mistag probability is called the !(⌘) distribution. In the LHCb tagging
jargon, the mistag probabilities are unfortunately labelled with the symbol ⌘ that was up to
now used to identify the pseudorapidity. It can be calculated separately for each of the OS and
SS cases.

For each of the OS and SS cases, the ! distribution as a function of the mistag probability,
⌘, is computed. The !(⌘) distribution is obtained by taking the WT distribution and dividing
it by the sum of the WT and RT distributions:

!(⌘) =
WT

RT +WT
(3.2)

Following the procedure described in [9], each ! distribution is fitted with the linear function:

!(⌘) = p0 + p1 · (⌘� < ⌘ >) (3.3)

where p0 and p1 are fit parameters and < ⌘ > is the mean ⌘ of the RT +WT histogram. As
shown in [9], for a "well calibrated tagger", the following results are expected:

• p1 ⌘ 1

• p0 � p1 < ⌘ >⌘ 0

when fitting the !(⌘) histogram.
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3.2.2 Chosen weights

The GWR is the same as in the previous application, see section 3.1.2 and equation (3.1). The
WR(nTracks) is calculated with the typical approach, while the WR(⌘, P tr) is obtained both
with the typical and the hybrid methods. Unweighted MC will also be used to compare results
between the two scenarios.
In the OS case histograms have fixed size bins. In the SS case they have less bins of variable
sizes to cope with the fact that there is small statistics at low values of ⌘.

3.2.3 Calibration Fits

Usage of centroids instead of bin centers

The !(⌘) distribution is built using binned MC given the fact that both RT and WT distribu-
tions are binned too. To fit these distributions correctly, one needs to calculate the centroids
for each bin of the !(⌘) histogram. This is achieved by adding a significant number of sub-bins
in each bin. From the histogram with the sub-bins the average value of ⌘ in each bin is easily
obtained.
The centroids are generally shifted from the center of the bin towards the region of the bin with
higher statistics. They shift back to the center when the bin is small but contains a sufficiently
large number of events.
In general, the centroid is a more representative point than the center of the bin, since its
position encodes the information on the distribution of the events in the bin. This information
is lost if only the center of the bin is considered.
The centroid positions are then plotted on the x axis, that holds the mistag probability ⌘. The
y axis holds the ! distribution given by (3.2).

Fitting procedure

Fits were performed both for the OS and SS cases using the function (3.3). In the OS case the
full range 0�0.5 was used. In the SS cases two different fit ranges are used because of very low
statistics at low values of ⌘ that significantly shifted the first bin4 centroid towards the upper
bin edge.

In the following, the term intercept will refer to the quantity:

p0� p1 < ⌘ > (3.4)

where p0 is the usual fit line’s intersection with the plot’s ordinate.

Results

Results for the typical GWR are shown in figures 3.6a, 3.6b and 3.6c: empty circles indicate
the bin centers, while the green points represent the centroids. Similar results are obtained
when the MC is reweighted using the hybrid GWR. Plots are omitted. Results are summarized
in table 3.3 and discussed in the next section. A comparison with the unweighted MC will also
be given in the next section.

4First bin for SS has the range: [0, 0.25]
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Figure 3.6: The !(⌘) distributions, with calibration fits, applying the typical GWR to the
D⇤�

s ⇡+MC.
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Opposite Side - OS
GWR Slope Intercept �2/NDF

Typical 0.9863± 0.0526 0.0111± 0.0056 1.50
Hybrid 0.9742± 0.0542 0.0048± 0.0059 1.81

Same Side - SS - Fit range [0.25, 0.5]
GWR Slope Intercept �2/NDF

Typical 1.1472± 0.0709 0± 0.0045 0.82
Hybrid 1.142± 0.0736 �0.0043± 0.0048 0.59

Same Side - SS - Fit range [0.125, 0.5]
GWR Slope Intercept �2/NDF

Typical 1.2390± 0.0450 �0.0012± 0.0044 1.10
Hybrid 1.2068± 0.0488 �0.0049± 0.0048 0.71

Table 3.3: Calibration fit results with reduced �2 with reweighted MC. The "intercept" on
third column refers to the quantity defined in equation (3.4).

3.2.4 Observations

In the OS case, fit results show a higher �2 when the hybrid GWR is used to reweight the MC
(1.81) with respect to the typical approach (1.50). But in both cases the fit parameters are the
ones expected for a "well calibrated tagger". It is worth noticing that when using the hybrid
GWR in the OS case, some large spikes appeared in the WT and RT distributions. These
spikes were traced down to very large weights predicted by the GBR algorithm. These, in turn,
were the results of single "pathological" events. These very large weights, being nothing more
than artifacts, were arbitrarily set to 1.0 to stabilize the reweighted distributions.

In the SS case, fit results show that:

• For the fit range [0.25�0.5]: the goodness of fit5 is excellent both with the usage of typical
and hybrid GWR to reweight the MC. The fitted parameters are close to the expected
values i.e. 1 and 0.

• For the fit range [0.125� 0.5]: this range was chosen by splitting the interval [0, 0.25] in
two equal sized bins, the first ranging from 0 to 0.125 and the second from 0.125 to 0.25.
Because the 0� 0.125 bin is unpopulated, it was discarded and only the 0.125� 0.20 bin
was kept. Results here show a slight worsening of GOF being slightly more evident when
the typical GWR is used. The slope of the fit increases with respect to the previous fit
range while the intercept remains close to 0. This will require additional investigations.

It is interesting to investigate whether reweighting increases or decreases the GOF with respect
to the unweighted case. Results for the unweighted case are as follows:

Opposite Side
Range Slope Intercept �2/NDF
[0, 0.5] 0.9483± 0.0425 0.0076± 0.0044 1.79

Same Side
Range Slope Intercept �2/NDF

[0.25, 0.5] 1.1836± 0.0555 �0.0127± 0.0035 0.63
[0.125, 0.5] 1.2283± 0.0374 �0.0131± 0.0034 0.71

5From now on GOF.
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In the OS case the GOF is intermediate between the two reweighting methods and it’s even
better than the result obtained when the hybrid GWR is used. Reweighting leads to a better
agreement with 1 of the measured slope value. An improvement on the intercept is obtained
only with the hybrid GWR.
In the SS case the GOF is again intermediate between the two reweighting methods for each of
the two fit intervals: [0.25, 0.5] and [0.125, 0.5]. In the [0.25, 0.5] fit range the slope is greater
than the ones obtained both with the typical and hybrid GWR. In the [0.125, 0.5] fit range,
instead, the slope is intermediate between the hybrid and the typical GWR. The intercepts of
the unweighted case are less compatible with 0 than the intercepts obtained before. Also for
the slopes a smaller improvement is observed after reweighting.
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Chapter 4

Conclusions

In the analysis of the variables used in input to the D⇤�
s ⇡+BDT, it was found that two of the 14

input variables, the PtrRel and the Ph_isNotE, are quite insensitive to the MC reweighting
attempts. Both approaches (typical and hybrid GWR) fail to increase the agreement between
these two variables’ MC and their corresponding data distributions. For this reason, they will
be excluded in the next training iteration of the BDT.
It is worth noticing that the usage of the GBR algorithm, resulting in the hybrid GWR, out-
performed the typical approach to reweighting in the majority of the considered distributions.
It might be interesting to study the case in which a pure GBR weighting rule is used to further
explore the advantages or disadvantages between these to approaches.

In the flavour tagging study, in the OS tagger case the slopes with and without reweighting
are close to the expected values. The same behaviour is found also for the intercept.
In the SS case, the slope is close to the expected value of 1 and the unweighted intercept is
less compatible with the expected value of 0 than those obtained when the MC is reweighted.
Moreover, because of very low statistics at small values of the mistag probability ⌘, two fitting
attempts were conducted by varying the fit range. Results show that fitting in the ⌘ range
[0.25, 0.5] gives values closer to the expected ones than fitting in the [0.125, 0.5] range. Fitting
with a hybrid GWR reweighted MC seems to produce better results.

The GBR algorithm seems to be an interesting alternative to the typical reweighting method.
It is worth noticing that the algorithm does not seem to be protected towards single "patholog-
ical" events. These make the algorithm to predict very large weights that, in turn, will induce
large fluctuations in the reweighted samples.

19
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