
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea Magistrale in Ingegneria Informatica

Progettazione e sviluppo
di un sistema cromoterapico

mediante una rete di sensori wireless

RELATORE: Ch.mo Prof. Schenato Luca

LAUREANDO: Massimo Marra

Padova, 7 Dicembre 2010

UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Master’s Degree in Computer Engineering

Design and implementation of a chromotherapy
system using a wireless sensor network

Supervisor: Prof. Schenato Luca

Author: Massimo Marra

ACADEMIC YEAR 2010-2011

I dedicate this thesis to my parents Danilo and Renata,
my brother Marco, my sister Silvia,

and to my love Marta

I

Abstract

The work of this thesis consists in the development and implementation of
a chromotherapy system based on a WSN. The system is independent from
the environment in which is installed and is very flexible. The nodes of the
system interact with each other to synchronize themselves and to dissemi-
nate the color sequence to display.
Synchronization can be managed and controlled through a Java interface
that allows the parametrization of many aspects of the algorithm.
The system is able to recognize if topology changes occur and is also able to
reconfigure itself accordingly without affecting the nodes synchronization.
This important characteristic is guaranteed by the algorithms proposed in
this work. The network synchronization is based on the offset compensation
of the local clocks of the nodes and is achieved through the local informa-
tion exchange between neighboring nodes. A fast convergence to a common
value of the virtual global clock, and a high accuracy is obtained thanks to
a dynamic hierarchical overlay structure.
The color therapy sequence is generated in real-time from a Java appli-
cation. This software divides the sequence and sends the portions to a
reference node whose task is to communicate them to the rest of the net-
work. The dissemination takes place with a multi-hop flooding process of
all the sequence portions. The system must introduces a delay between the
generation instant and the displaying instant of the sequence. This time in-
terval is necessary for the multi-hop communication to take place. Also the
color therapy functionality of the system is independent from the network

III

topology. Therefore the system can be implemented even in networks that
change over time.
The synchronization algorithm and the chromotherapy system have been
implemented on a Tmote sky/TinyOS v.2 architecture. The testing process
of all the functionalities was performed on a real WSN. The excellent behav-
ior of the system and the good performances obtained show the effectiveness
of the proposed design methodologies.

IV

Sommario

Questo lavoro di tesi è consistito nello sviluppo e nella relativa implemen-
tazione di un sistema cromoterapico basato su di una rete di sensori wireless.
Il sistema è indipendente dall’ambiente nel quale viene installato risultando
perciò molto flessibile nell’utilizzo. Ogni nodo della WSN interagisce con gli
altri cercando di creare una rete sincronizzata e permettendo la diffusione
e la visualizzazione di una sequenza di colori atraverso un device RGB es-
terno.
Il sistema può inoltre riconoscere se un cambiamento topologico sta avve-
nendo nella rete ed è in grado di riconfigurarsi di conseguenza senza influire
sulla sincronizzazione dei nodi. Questa importante funzionalità è garan-
tita dall’algoritmo di sincronizzazione proposto in questa tesi. Esso si basa
sulla compensazione dell’offset dei clock locali dei singoli nodi e sullo scam-
bio locale di informazioni temporali tra nodi vicini. L’ottima precisione
dell’algoritmo ed una veloce convergenza dei nodi ad un unico clock globale
di riferimento sono ottenute attraverso una struttura di overlay gerarchica.
Anche questa struttura assicura dinamicità al sistema essendo robusta a
variazioni topologiche. Il protocollo di sincronizzazione può essere gestito
e controllato attraverso un’applicazione Java che permette la parametriz-
zazione di molti aspetti dell’algoritmo.
Anche la sequenza cromoterapica utilizzata dai nodi viene creata in real-
time da un software Java. Questa applicazione, non appena ha generato una
porzione della sequenza composta da un certo numero di colori, la inoltra
ad un determinato nodo di riferimento il qui scopo è quello di comunicarla

V

ai restanti nodi della rete che dovranno emetterla attraverso una periferica
RGB. La diffusione delle parti della sequenza è effettuata attraverso una co-
municazione di tipo flooding multi-hop. Il sistema ha la necessità di inserire
un piccolo ritardo tra l’istante della generazione di una porzione di sequenza
e l’istante corrispondente alla sua effettiva visualizzazione da parte dei nodi.
Questo lasso di tempo è necessario per permettere che avvenga la comuni-
cazione multihop. Anche la funzionalità cromoterapica è indipendente dalla
topologia della rete ed è robusta agli spostamenti spaziali dei nodi. Risulta
quindi possibile implementare questo sistema cromoterapico anche in reti
che possono cambiare la loro configurazione nel tempo.
L’algoritmo di sincronizzazione ed il sistema cromoterapico sono stati infine
implementati su di una architettura composta da mote Tmote sky e dal sis-
tema operativo TinyOS ver.2. L’intera realizzatione ottenuta è stata testata
su di una WSN reale. L’ottimo comportamento del sistema e le performance
ottenute dimostrano l’efficacia delle scelte progettuali adottate.

VI

Contents

Abstract III

Sommario V

Table of contents IX

List of Acronyms XI

List of Figures XVI

List of Tables XVIII

1 Introduction 1

Introduction 1
Contents of the chapters . 6

2 Wireless Sensor Network 7
2.1 Definition and characteristics of WSN 7
2.2 Architecture of a node . 9
2.3 Challenges for the WSN . 11
2.4 Network topologies . 12
2.5 Application fields . 14

3 Tmote Sky, TinyOS and NesC language 17
3.1 The Tmote Sky . 17

VII

3.2 TinyOS-2.x operating system 20
3.2.1 Versions . 20
3.2.2 Hardware abstraction 21
3.2.3 Component-base architecture 21
3.2.4 Traits of TinyOS . 22

3.3 Network Embedded Systems C 23
3.3.1 Definition and principal characteristics 23
3.3.2 Interfaces and components 24
3.3.3 Modules and configurations 25
3.3.4 Execution Model . 26
3.3.5 Split-phase operations 27

4 The overlay-based synchronization algorithm 29
4.1 Clocks and synchronization 29
4.2 Average TimeSync description 32

4.2.1 Relative skew estimation and compensation 33
4.2.2 Relative offset estimation and compensation 33

4.3 Offset Compensation Algorithm 34
4.3.1 Convergence problems 36

5 Color sequence dissemination 39
5.1 Sequence generation . 39
5.2 The multi-hop sequence communication 41
5.3 Communication through the UART pins 42

5.3.1 Description and configuration of the interface 42
5.3.2 The arbitration of the USART of the MSP430 43

6 The software description 49
6.1 The synchronization software 49

6.1.1 Packets format . 50
6.1.2 Code porting . 51

6.2 The color sequence control software 53

7 Testing of the developed system 55
7.1 Performed tests . 55

VIII

7.2 Packet loss . 58
7.2.1 Linear Array . 58
7.2.2 Grid network . 60
7.2.3 Rising of the packet frequency 63

7.3 Precision of the nodes . 68
7.4 Delays introduced in the flooding process from each hop . . 70
7.5 Variations of the responsiveness of the operating system . . . 73

8 Conclusions 77

Bibliography 83

A Example of sequence diffusion 89

B Behavior of the chromotherapy system 91

IX

List of Acronyms

ADC Analog-to-digital converter

AmI Ambient Intelligence

API Application Programming Interface

ATS Average TimeSync

CBSE Component-Based Software Engineering

CSV Comma-Separated Values

DAC Digital-to-analog converter

DS Distributed Systems

EEPROM Electrically Erasable Programmable Read-Only Memory

EDS Electrostatic Discharge

FIFO First-In First-Out

GUI Graphical User Interface

HAA Hardware Abstraction Architecture

HAL Hardware Abstraction Layer

HIL Hardware Independent Layer

XI

HPL Hardware Presentation Layer

IFA Inverted F Antenna

ISM Industrial Scientific Medical

LED Light Emitting Diode

lsb least significant bit

MAC Media Access Control

MCU Micro Controller Unit

MDB Memory Data Bus

MIG Message Interface Generator

ms milliseconds

NTP Network Time Protocol

O-b Overlay-based

OC Offset Compensation

OLS Ordinary Least Squares

OS Operating System

p2p Peer-to-peer

PTP Precision Time Protocol

RF Radio frequency

RGB Red Green Blue

RSSI Received Signal Strength Indicator

SFD Start Frame Delimiter

SPI Serial Peripheral Interface

XII

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous Asynchronous Receiver Transmitter

USB Universal Serial Bus

ubicomp Ubiquitous computing

WSN Wireless Sensor Network

WSAN Wireless Sensor and Actuator Networks

XIII

List of Figures

2.1 Example of a WSN system. 8
2.2 Architecture of a mote. 9
2.3 Example of possible WSN topologies. 13
2.4 WSN implemented in Nelly Bay, Magnetic Island to control

the barrier reef [37]. 15

3.1 Front and back of the Tmote Sky platform. 18
3.2 Functional Block Diagram of the Tmote Sky module, its com-

ponents, and buses. 19
3.3 Scheme of a split-phase operation. 28

4.1 Clocks dynamics as a function of absolute time t on the left,
and relative to each other on the right. 30

4.2 An example of long initial convergence. The graph show a
polling interval of about 23 minutes. 37

5.1 Example of a multihop communication. 41
5.2 Functionality of the 10-pin expansion connectors. Alternative

pin uses are shown in gray. 42
5.3 Diagram of a serial byte encoding. 43
5.4 Functional block diagram, of the MCU MSP430F161x series. 44
5.5 Schematic description of how a client obtain and release a

resource. 47

6.1 Synchronization actors. 50

XV

6.2 Architecture of the colors sequence management software. . . 54

7.1 Percentages of lost packets per hop on a linear array without
the second retransmission of the sequence portions. 59

7.2 Percentage of lost packets per hop on a grid network with and
without the second retransmission of the sequence portions. 61

7.3 Number of lost packets per hop on a grid network with re-
transmission. Comparison among tests with different initial
delay values. 62

7.4 Percentage of lost packets per hop on a grid network rising
the color rate. Comparison among tests with different packet
frequencies. 64

7.5 Percentage of lost packets per hop on a grid network reducing
the number of colors per packet. Comparison among tests
with different packet frequencies. 65

7.6 Percentage of lost packets per hop on a busy grid network.
Comparison among tests with different packet frequencies. . 67

7.7 Precision of the nodes per hop on a grid network. Comparison
among several tests. 69

7.8 Global average delay introduced from each hop in a grid net-
work. 71

7.9 Average introduced delay per number of hop nodes. 71
7.10 Regression line for the estimations of the di values. 72
7.11 Global average delay introduced from each hop in a linear

array network. 73
7.12 Global average sending delay per hop on a grid network. . . 74

XVI

List of Tables

4.1 Comparison among synchronization algorithms 35

7.1 Parameters setups of the performed test on the developed
chromotherapy system. 57

7.2 Number of nodes per hop in the grid network. 58

7.3 Lost packets on a linear array with and without the second
retransmission of the sequence parts. 59

7.4 Lost packets on a linear array with retransmission. Com-
parison of test 10 (Nc = 20, Tc = 300, dTOT = 500), 11
(Nc = 20, Tc = 300, dTOT = 1000) and 12 (Nc = 20, Tc = 300,
dTOT = 2000). 60

7.5 Lost packets on a grid network with and without the second
retransmission of the sequence parts. 61

7.6 Lost packets on a grid with retransmission. Comparison of
test 10 (Nc = 20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc =

300, dTOT = 1000) and 12 (Nc = 20, Tc = 300, dTOT = 2000). 63

7.7 Lost packets on a grid network rising the color rate. Com-
parison of test 7 and test 11. 64

7.8 Lost packets on a grid network reducing the number of colors
per packet. Comparison of test 3(Nc = 10, Tc = 200, dTOT =

1000), 6 (Nc = 15, Tc = 200, dTOT = 1500) and 9 (Nc = 20,
Tc = 200, dTOT = 2000). 65

XVII

7.9 Lost packets on a grid network reducing the number of colors
per packet. Comparison of test 1 (Nc = 10, Tc = 100, dTOT =

700) and test 4 (Nc = 15, Tc = 100, dTOT = 750). 67
7.10 Precision of the system in ticks. Comparison of test 3, 5, 6,

7, 9, 12 and test 13. 68
7.11 Precision of the system in ticks. Comparison of test 1, 2, 4

and test 10. 69
7.12 Average of the amounts of time involved in a message sending

(in milliseconds). Comparison of all the tests. 75

XVIII

Chapter 1
Introduction

The recent technological improvement in the low cost miniaturization of
electronic devices and in the wireless communication, has made possible the
opportunity to create low-power consumption sensors with a good efficiency.
The integration of computation, sensing, communication and storing activ-
ities on a single small device has opened new horizons for the Distributed
Systems (DS)[1]. These kind of appliances are the fundamental elements of
a Wireless Sensor Network (WSN).

A WSN consists of spatially distributed autonomous sensors to cooper-
atively monitor physical or environmental conditions. Every single unity of
a WSN can communicate with each other. Before the advent of this tech-
nology, the capability to cooperate among sensors was constrained by the
use of cables for the information transmission. The nodes of a WSN have
instead introduces many new fundamental characteristics, the mainly are:

• they are connected through their radio chips using free radio frequen-
cies;

• they are miniaturized;

• they are less expensive;

• they can be deployed in wide areas, and must be easy to install;

• they need less maintenance;

• the network that they form must be scalable;

• they can be easily attached even to moving parts.

1

CHAPTER 1. INTRODUCTION

So it is easy to understand why WSN are widely studied, and the reason
of their diffusion not only in R&D activities. WSN have some strengths, but
have also weaknesses. In fact they are generally powered with batteries, and
it is well known that with a limited power source, the energy consumption
becomes a great problem. Another complication is the node short radio
communication range necessary to limit power consumption. These aspects
may lead to unreliable communication network.

WSN are a limited part of a greater field: the Pervasive Computing [2]
also called Ubiquitous computing (ubicomp). This is a post-desktop model
of human-computer interaction in which information processing has been
thoroughly integrated into everyday objects and activities. In the course of
ordinary activities, someone utilizing ubiquitous computing engages many
computational devices and systems simultaneously, and may not necessar-
ily even be aware that they are doing so. This model is usually considered
a revolutionary advancement from the desktop paradigm. In fact perva-
sive computing devices are not personal computers as we tend to think of
them, but very tiny devices1 all communicating through increasingly inter-
connected networks. So networks give rise to an intelligent environment,
able to interact with the man and the objects, trying to allow a perfect ful-
fillment of human needs. This is also known as Ambient Intelligence (AmI)
which is a human-centric computer interaction design characterized by sys-
tems and technologies that must be integrated into the environment to rec-
ognize the human actions and the situational context in order to change in
response of them. This model must also be personalized and finally in some
cases should anticipate the humans desires. Even for example the concept
of smart city, like CitySense[3], belong to AmI.

A WSN is a ductile instrument that could be exploited in many different
application. It is sufficient a simple Internet search to find out that these
networks are used in a lot of industrial sectors such as the domotics2, agri-

1They can be mobile or embedded devices, even invisible, present in almost any type
of imaginable object, for example cars, tools, appliances, clothing and various consumer
goods.

2Also called home automation or home systems.

2

CHAPTER 1. INTRODUCTION

culture, livestock, logistics, environmental monitoring, construction, public
works and infrastructure management and monitoring. Finally are also used
in medicine and military applications.
A domotics use for example, that is increasingly became popular, consist in
the integration into a single system of one or more personal computers, and
in particular of typical consumer electronics such as TVs, audio and video
equipment, gaming devices, smartphones and PDAs. In addition, we can
expect that all kinds of devices such as kitchen appliances, surveillance cam-
eras, clocks, light controllers, and so on, will all be hooked up into a single
DS. Others examples are projects as SIMEA[35] or OPTICONTROL[36],
that have the aim to study, design and realize novel sensor network sys-
tems and innovative data analysis algorithms, that allow precise profiling
and evaluation of the main environment and energetic parameters in build-
ings. The goal is improving the indoor climate control and reduce energy
consumption while maintaining high user comfort and work productivity at
modest basic investment and operating costs.

The work presented in this thesis try to implement a wireless network
in which every node has the control of a small RGB Light Emitting Diode
(LED) device that is used to show a unique color sequence through the
whole extension of the network. So two aspects become fundamental for us:

1. The coordination among nodes

2. The real-time nature of the system

We use WSNs as infrastructure for our project. This choice permits to
exploit their advantages as for instance the reliability, the multi-hop com-
munication and the adaptability.
The work is made in cooperation with an Engineering office that develop,
among other things, chromotherapy devices. The aim of the project is to
create a system that is something different from the commercial products
that are available in the market today. In fact generally the devices for the
color therapy are wired and centralized. Some other systems already uses
wireless light devices but are remote controlled, and for this reason the ex-
tension of these systems is constrained by the radio range of the controller.

3

CHAPTER 1. INTRODUCTION

The possibility that a chromotherapy system can inherits all the capabilities
of a network infrastructure is the innovative aspect that has driven our work.

The major contribution of this work is the development of a real-time
chromotherapy system that lets to choose among some color effects, and to
set up parameters as for instance the rate of color changes.
Chromotherapy3 is based on the fact that certain colors could trigger moods
or alter metabolism of the human body. In this method seven fundamental
colors of the spectrum is associated with specific healing properties:

1. Violet promotes enlightenment, revelation, and spiritual awakening.
The Holistic healthcare, for instance, use violet to soothe organs, relax
muscles, and calm the nervous system.

2. Indigo is also sedative and calming. It is said to promote intuition.

3. Blue promotes communication and knowledge.

4. Green because it is located in the middle of the color spectrum, green
is associated with balance and calm.

5. Yellow is a sensory stimulant associated with wisdom and clarity.

6. Orange promotes pleasure, enthusiasm, and sexual stimulation.

7. Red promotes energy, empowerment, and stimulation.

Is possible to observe that what we implement is a very original appli-
cation from the others presented until now. A Chromotherapy system, is
something radically dissimilar from an application that for instance sense
and collect data.
The developed system is therefore able to generate a sequence of different
colors in real-time with the possibility to accept instructions from a user
through a software interface. So it is possible that the user fixes the color
of the network according to his/her wants. A further development of the
system could also create real-time colored sequences in relation to external
events as for instance sounds or music.
In order to show a unique color sequence across all the network a master
node sends broadcast messages containing portions of that sequence. The

3Sometimes called color therapy, light therapy or colorology.

4

CHAPTER 1. INTRODUCTION

wireless sensors that receive these messages repeat them with the purpose
to forward the sequence to other nodes. It is a simple mechanism used to
flood information in a multi-hop manner. We have also made a study of
the timing of the master node messages. It becomes crucial to disseminate
correctly the sequence across all the network without loose some packets
because for instance are sent too often. So we must introduce an initial
delay between the generation process and the displaying of each portion of
the sequence. And this interval depends from the topology and from the
extension of the WSN.
All the sequence parts received by a nodes are replicated trough the exter-
nal LEDs sending tern of Bytes via the Universal Asynchronous Receiver
Transmitter (UART) interface.
Every master message contains in addition to the sequence portion, a ref-
erence global time. It has the task to inform the “slaves” nodes when they
must start to show the colors contained in the packets. So the synchroniza-
tion of the network assumes a topic role for this project: RGB devices must
be controlled by the sensors with the constraint that the global shade of the
color showed in the entire network must change without differences visible
by the human eyes. So it is crucial that all the motes act together, scan-
ning the sequence with the maximum precision. Every color of the sequence
must be showed by every node always in the same instant equal for all the
sensors.
In the literature regarding synchronization algorithms for WSN there are
many possible choices that we could implement. For the chromotherapy
system was chosen to simplify the Average TimeSync (ATS)[4] algorithm.
As first step, ATS was modified removing the skew compensation and so
working only with offset compensation. This alternative has a low com-
putational complexity and at the same time grant a sufficient precision for
our purpose. In the second step, after a poor initial convergence capacity
to a common global clock was verified, was implemented an overlay logical
network that creates a hierarchical structure over the WSN. A predefined
root node became the reference node in the synchronization process. The
other nodes consume received information about the neighborhood time-

5

CHAPTER 1. INTRODUCTION

stamp according to a hierarchical model. If for instance a node A is closer
to the root than node B, for another neighborhood node C that is able to
listen messages from A and B (but not from the root), the informations
received from A are more trustworthy than the informations get from B.
This approach ensure a fast convergence of the network to a common virtual
reference clock.
The entire system was implemented and tested on a Tmote/TinyOS-2.x ar-
chitecture in order to verify if it works and what performance we are able
to reach.

Contents of the chapters

The structure of the thesis is organized in seven chapter:

• Chapter 2: presents a brief introduction to the WSN. We familiar-
ize with the application fields and the challenge that this technology
introduce.

• Chapter 3: describes the Tmote Sky platform, the Tiny Operating
System (OS) and finally the NesC program language.

• Chapter 4: presents the most used synchronization algorithms for
WSN included the ATS one. Is also described the algorithm imple-
mented in our work, the convergence problem and the approach to fix
it.

• Chapter 5: explains the performance of the implemented synchroniza-
tion algorithm.

• Chapter 6: describes the generation of the color sequence, the diffusion
of it across the network and the way of how the colors are displayed.

• Chapter 7: explains briefly the implemented NesC code and the Java
interfaces created to manage and set up the synchronization of the
network and the creation of the color sequence.

• Chapter 8: shows the tests results of our work running on a real WSN
and the limits of this architecture.

• Chapter 9: presents the conclusion of this work of thesis and the
possible further developments.

6

Chapter 2
Wireless Sensor Network

2.1 Definition and characteristics of WSN

A WSN is a network of small nodes (or motes) with wireless communication
capabilities and equipped with sensors. They can pick up data from the en-
vironment and process them through an on-board processor. These small
devices are widely produced and distributed, and have a negligible cost of
production. Each sensor has a limited and not-renewable energy reserve
and after it is placed, it must work in autonomy. To obtain as much data as
possible even thousands or tens of thousands of sensors are deployed. This
type of networks are rapidly spreading because they offer a series of unde-
niable advantages: mobility, which allows the terminal to move, flexibility
and low implementation costs.
However, wireless networks also face some problems. One of these is un-
doubtedly the characteristics of the transmission medium, which is unique
and shared by all connected nodes. The existence of a single channel nec-
essarily limits the maximum number of user that can utilize the service
simultaneously. Similarly, the presence of more users leads to a reduction in
transmission speed. In fact the capacity of the transmission channel must
be shared between everyone who are using it.

There is also to consider the problem of security in case of absence of
specific controls, it is easy for an attacker to intercept information transmit-
ted in the ether or to access services without authorization. We should also

7

CHAPTER 2. WIRELESS SENSOR NETWORK

consider that the communication quality can also be influenced by external
factors, such as electromagnetic interference and mobile obstacles. Finally,
the energy consumption of radio transmission equipment is typically higher
than wired one.
Each device has a control module, a communication module and one or
more sensors that allow to create large networks that are able to commu-
nicate with each other through communication protocols developed for this
purpose. The sensor networks can significantly improve the quality and the
fidelity of information: for example providing real time data from hostile
environments and reducing the cost to collect them. A WSN is only a part
of a more complex system, called WSN System. It is composed by the
WSN, the channel of the communication between the WSN and a database
of collected data (that can be even an Internet server), and the interface
between the database and the user. A CaRiPaRo project called WISE-WAI
[5] is a clear example of what we have just presented.
Schematically a WSN system can be represented as in Figure 2.1.

Figure 2.1: Example of a WSN system.

It is important to underline that a WSN is also able, through appropri-
ate interfaces, to interact with the user: and we can assume that it is the
only way to consider useful the sensing of the environment. By analyzing in
detail the components of a WSN, it becomes clear the differences between

8

CHAPTER 2. WIRELESS SENSOR NETWORK

network nodes responsible to manage the sensors and maintain the network
infrastructure, from those who have the task to collect and transmit to the
central server the data received from other nodes. Each of these can in-
teract, according to the communication protocol adopted, with other nodes
configured in a flat, hierarchical or mesh topology. The primary objective
of each node is still to send their data to a collection point within the WSN
called Gateway. It has the task to send all the data collected through a
wired1 or a wireless connection2 to a central system, usually a server, which
acts as a database. In the most advanced WSN the data flow and commands
may also be transmitted from node to node, or from central server (and so
the user) to nodes.

2.2 Architecture of a node

A node consists of four main modules:

Figure 2.2: Architecture of a mote.

• Sense module: this is usually composed of two subunits: sensors-
actuators and Analog-to-digital converter (ADC). A sensor is capable
to detect and measure environment variables, and then transforms
them into an electrical signal. Instead actuators are devices capable
to act on the environment in different way, for instance actuators can
be valves, speakers, as well as mechanical arms.
The number of sensors and actuators of a node determines its capa-
bilities, but also the cost, the size and the power consumption. The

1Ethernet, USB, LAN and firewire are some examples.
2For example GPRS, UMTS and HSDPA connection.

9

CHAPTER 2. WIRELESS SENSOR NETWORK

ADC is used to translate in digital form the electrical signals gener-
ated by sense device. Similarly, this unit is often connected to a DAC,
which converts digital signals generated by the microprocessor into an
electrical one in order to control actuators.

• Computation module: it is an Micro Controller Unit (MCU) that
executes procedures and tasks. Microprocessors are often excluded
from WSN due to their cost, furthermore microcontrollers consume
less power than CPU and motes usually need to execute simple pro-
cesses. In addition, microcontrollers are suited for WSN, because some
parts of them may be turned off when not needed, reducing energy
consumption and preserving battery life.
The MCU is associated with a storage unit, generally integration of
RAM and ROM, used to hold data, applications and the operating
system. The memory usage involves high energy consumption, thus
embedded memory blocks have limited capacity.

• Communication module: it connects the node to the network and
can be an optical or a Radio frequency (RF) device. Among all node
components, the radio chip is the device with the highest energy con-
sumption. To reduce the cost and power utilization well-established
and low complexity modulations are used and no high speed transmis-
sion are implemented. This module generally works on three different
frequency ranges: 400 MHz, 800-900 MHz, 2.4 GHz or Industrial Sci-
entific Medical (ISM) bands3.

• Power module: it is a very important component for a sensor node,
commonly made up by commercial batteries such a AA potentially
supported by a photo-voltaic module. This last one perform the bat-
teries recharge with the purpose to extend the mote power life.

The particular characteristics of the nodes require the development of
platform specific applications with the aims to use less storage space and
energy as possible. This implies the need to limit the usage of various
interfaces (for example radio, sensors and actuators) and the processor.
Even the operating system must have a very small storage image and must

3For these bands no government licenses are required

10

CHAPTER 2. WIRELESS SENSOR NETWORK

grant low power consumption during the execution of processes.

2.3 Challenges for the WSN

Most of the challenges are consequence of the WSN limited resource avail-
ability while others are constantly faced by the majority of the network
technologies. The following list outlines the most important challenges that
are presented today in the design and implementation of WSNs.

Battery Life

Nodes in the WSN are powered by batteries, and the lifetime of the network
depends on the usage of the available energy. In wide wireless sensor net-
works, it is important to minimize the number of batteries replacement. In
order to reach an energy autonomy one or more years long, we must ensure
a low duty-cycle operating mode for the sensors. The use of sleep mode for
the MCU and the radio becomes crucial.

Scalability

Some applications require thousands or more of wireless sensors. These
large scale WSN present challenges not seen in WSN with a few sensors.
Algorithms and protocols that work fine on small networks do not neces-
sarily work well in large ones. A typical example is the Dijkstra’s shortest
path routing algorithm that works well in small networks while is not effi-
cient in large network because of its energy consumption. For wide WSN
for instance is preferable to implement location-based routing algorithms,
in which the position of each node is known and is used to found paths to
transmit information. Similar scalability problems occur for other features
of the networks.

Connectivity among networks

WSNs need to be interconnected so that the data reaches the destination to
be stored, analyzed, and to take appropriate action. We can imagine that

11

CHAPTER 2. WIRELESS SENSOR NETWORK

the WSNs can be interconnected with many different network technologies
such as phone, Internet, ad hoc wireless networks. This network interfacing
is not trivial: new protocols and mechanisms must be designed to connect
and transfer data among the WSNs. Normally these connections are realized
through gateways, which require new capacity for understand and translate
different communication protocols.

Reliability

The wireless sensors are inexpensive devices with a fairly high failure rate.
Moreover, in many applications, these devices are launched on an area from
a plane, or similar vehicles. As a result, different nodes fail, or alter their
normal capability. The reliability of the nodes also depends on the amount
of energy available on the node.

Variety

The new WSN are composed of wireless sensors with different capabilities
and features. This differentiation requires new algorithms and protocols as
for example cluster-based architectures that use devices with more power
to aggregate and transmit data on behalf of nodes with limited resources.
This strategy, however, include the need of clustering and data aggregation
algorithms that are not trivial to design.

Privacy and Security

The privacy and security concerns are topic aspects in the network research
field. However, the security mechanisms typically require a lot of resources,
which are instead limited in wireless sensors. So there is the need for new
security algorithms that require little computational power and energy.

2.4 Network topologies

As explained previously a network of sensors can be reflected in a flat, tree
or mesh topology (see Figure 2.3).

12

CHAPTER 2. WIRELESS SENSOR NETWORK

The simplest is the flat one, which provides that all but one nodes are

Figure 2.3: Example of possible WSN topologies.

equal, and there is a master node that acts as coordinator. It can coor-
dinate the transmissions of the others motes, and has the assignment to
transfer data from the WSN to the server. A very common configuration of
this type is called star network, because all the nodes communicate directly
with the master. We can observe that is impossible to create large size net-
works because they are constrained by the radio coverage range. Moreover
networks are not very reliable because the coordinator is a single point of
failure.
We can describe a mesh or Peer-to-peer (p2p) networks as structures in
which each node can potentially communicate with every other node within
its radio coverage area4. This topology increase network reliability due to
the redundant paths available for the transmission of a message. It is pos-
sible, by using routing mechanisms, to determine what is the most energy
efficient route, which is the shortest and so on, in order to raise up the
network performance. The reliability and robustness provided by multiple
paths among nodes requires however the implementation of more complex
algorithms.
In the tree topology, as the name suggests, the nodes form a logical tree
structure. The messages usually leave a node and climb the tree and reach

4If they are all interconnected among themselves the network is a full mesh.

13

CHAPTER 2. WIRELESS SENSOR NETWORK

the root5, which is the data collector and coordinator of the network. For
this reason, the nodes have a workload that increases with the decrease of
their depth. Compared to the mesh, the advantage of this topology is the
reduction of possible communication paths, enabling the development of less
complex management systems.

2.5 Application fields

The great versatility of wireless sensor involves a large number of possible
applications for WSN in many different scientific disciplines. Some of these
applications can be grouped into the following categories:

Health Care Applications The use of sensor networks in this field
are aimed to provide an interface for people with disabilities, monitoring
physiological data, or for instance to help hospital administration. A well
known example is the CodeBlue project of the Harvard University [44]. It
is also possible to use sensors to identify allergies.

Military Surveillance Sensor networks were born in military research
laboratories. The simple and fast deployment, the self-organization and
fault tolerance capabilities made WSNs a promising technique for mili-
tary applications. Possible applications range from monitoring of the allied
forces, to the surveillance of the battlefield. Is possible to use a network of
sensors in hostile places to recognize and to control the enemy movements,
or recognize the type of suffered attacks thanks for instance to chemical,
biological, and explosive vapor detection [21].

Environment control In this area, sensor networks could be used for
some applications involving monitoring the movement of birds, small an-
imals, insects and study their particular habitat. It can also possible for
instance to monitor a forest fire or detect movement in the glaciers. Belong
to this sector also the study of natural disaster events such as the volcanic
eruptions. In agriculture one of the objectives can be for example to mon-
itor the level of pesticides in the water or the air pollution. An example is

5The root is also called sink.

14

CHAPTER 2. WIRELESS SENSOR NETWORK

shown in Figure 2.4.

Figure 2.4: WSN implemented in Nelly Bay, Magnetic Island to control the bar-
rier reef [37].

Indoor localization and tracking In particular, location-based ap-
plications are among the first and most popular applications of WSNs since
they can be employed for tracking enemies in battlefield, locating moving
objects in buildings (e.g. warehouses, hospitals), and tracking people inside
buildings. An example of implemented systems can be found in [11].

Monitoring of industrial equipment The wireless sensors can be
applied to industrial tools and machinery to analyze the behavior of com-
ponents subjected to mechanical stress, improve performance and prevent
breakdowns and failures [20].

Commercial Application All the applications with commercial aim
belong to this group.

However we emphasize that the quality and potentiality of transmis-

15

CHAPTER 2. WIRELESS SENSOR NETWORK

sion among the sensors of a wireless network are strongly constrained by
the environment conditions in which they are deployed. In particular, the
factors that affect significantly the quality of the implementations may be
the distance between nodes and the obstacles between them, the power
transmission, the electromagnetic interference and finally the power supply
problems.

16

Chapter 3
Tmote Sky, TinyOS and NesC
language

3.1 The Tmote Sky

The mote platform Tmote Sky[26] (Figure 3.1) was designed by the develop-
ers of TinyOS of the University of California in Berkeley, and produced by
MoteIV Corporation. Previous versions are the platform Telos, Telos Revi-
sion A and Revision B. Since 2007, MoteIV changed its name to Sentilla[38]
and has stopped production and support for these wireless sensors in favor
of a new hardware platform designed for Java applications. However, the
new platform is backward compatible with Tmote Sky, and also we can still
buy mote TelosB, that has the same functionality of the Tmote Sky, from
Crossbow[39].

The module incorporates the 16-bit RISC MCU MSP430F1611 from
Texas Instruments, which works at a frequency of 8MHz. This microcon-
troller has 48 KBytes of FLASH memory, 10 KBytes RAM, and 12-bit
ADC/DAC.

The low-power, low voltage and low-cost radio chip used by the Tmote
Sky for wireless communications is the CC2420 produced from Chipcom.
The C2420 is compliant with the IEEE 802.15.4 physical layer and provid-

17

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

Figure 3.1: Front and back of the Tmote Sky platform.

ing the Media Access Control (MAC) layer dictated by the IEEE standard.
The transmission is on the 2.4GHz band of IEEE 802.15.4 standard which
allow to use channels from 11 to 26. The actual data rate is limited to 250
kbps. Not all features of IEEE 802.15.4 are implemented, and to achieve
full compliance, the remaining functions must be implemented by software.
The CC2420 provides extensive hardware support for packets handling, data

18

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

buffering, burst transmissions1, data encryption and authentication, clear
channel assessment, link quality and packet time information.

Figure 3.2: Functional Block Diagram of the Tmote Sky module, its components,
and buses.

As shown in Figure 3.2 the chip is controlled by the MSP430 through
the Serial Peripheral Interface (SPI) port, and a series of I/O lines and
interrupt. Through the configuration registers can be programmed the re-
ception and transmission approach (for example if Acknowledges are needed
or not), the channel, the communication power, and other parameters. The
default configuration provides compliance with IEEE 802.15.4. The capa-
bility to set the transmission power is a very desirable feature because, as
just said, the consumption of the radio chip dominates the total consump-
tion of the mote. It is also possible to know the Received Signal Strength
Indicator (RSSI) of every received message; this feature is very useful for
some kind of application as for instance localization.
The Tmote Sky can be powered by two AA batteries. The power should be

1They are characterized by short transmissions and long inactivity periods.

19

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

between 1.8 V and 3.6 V, but must be at least 2.7 V to program the flash
memory of the microcontroller or the external flash. When the module is
connected to a USB port of a PC can receive power from this interface,
in this case the operating voltage is 3 V. Power can also be supplied via
pins number 1 and 9 of the expansion connector, or through the terminals
dedicated to the battery.
The antenna is an Inverted F Antenna (IFA) and although it has not a
perfect omnidirectional pattern, may attain 50-meter range indoors and up
to 125-meter range outdoors.
The EEPROM used in Tmote Sky is the M25P80 STMicroelettronics. It is
a flash memory that can store 1024 KBytes of data, and is composed of 16
segments, each of 64 kBytes. The flash shares SPI communication lines with
the CC2420 transceiver. So care must be taken when we want to read or
write on the flash. Typically is implemented a software arbitration protocol
for the SPI bus of the microcontroller. To get the energy savings should be
limited as much as possible the memory usage.
Tmote Sky module can be equipped with a humidity and temperature sen-
sors produced by Sensirion AG. They may be directly mounted on the Tmote
module. The models used are SHT11 SHT15 different in the accuracy of
the measurements. Even a light sensor can be mounted directly on the card
and provides connections for two photodiodes.

3.2 TinyOS-2.x operating system

3.2.1 Versions

TinyOS-2.x is the natural evolution of TinyOS-1.x, the most popular OS
for wireless sensor networks and embedded systems. The name comes from
the abbreviation of Tiny Operating System, it is open source and it was de-
veloped, in cooperation with Intel Research, by the University of California
in Berkeley. At the moment the latest version of the operating system is
2.1.1 that is not backward compatible with version 1.x. This is due to the
fact that was made a complete rewrite of the operating system to improve

20

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

organization and to optimize the use of the resources.

3.2.2 Hardware abstraction

The hardware abstraction of TinyOS 2 generally follow a three-level abstrac-
tion hierarchy[27, 34], called the Hardware Abstraction Architecture (HAA):

• Hardware Presentation Layer (HPL) is an abstraction layer placed
immediately above the hardware platform that allows us to have the
complete control on the underlying hardware such as I/O pins or sys-
tem registers. This level is hardware-dependent and does not abstract
any of the features of the platform, but only masks the control code.

• The Hardware Abstraction Layer (HAL) is placed above HPL and
provides higher-level abstractions that are easier to use than the HPL
but still provide the full functionality of the underlying hardware.
HAL is still hardware-dependent.

• Hardware Independent Layer (HIL) is placed on top of HAL and pro-
vides abstractions that are hardware independent. This generalization
means that the HIL usually does not provide all of the functionality
that the HAL can. HIL components have no HW naming prefix, as
they represent abstractions that applications can use and safely com-
pile on multiple platforms. At this level, code optimization is not
possible.

3.2.3 Component-base architecture

TinyOS architecture is based on entities called components, in fact it is com-
posed of a lot of small components that application developers could reuse
every time they desire. Component-Based Software Engineering (CBSE) is
focused on the design and implementation of software systems using compo-
nents already ready to use. These elements are standardized, independent,
reusable, able to adapt to any architecture chosen for the application devel-
opment.
The component-based systems are easy to assemble, change and enlarge,

21

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

and so have lower production costs. The component architecture of TinyOS
allows the minimization of the necessary code as required by the small mem-
ory of the wireless sensors. In fact, when an application is installed on a
sensor even an image of TinyOS is compiled together, but it includes only
those components of the OS that are strictly necessary for the application
execution. For this reason, the software installed on a sensor take up only
few Bytes of memory. In addition TinyOS is specifically designed to consider
all the constraints concerning the resources of the wireless sensors, first of
all the low power energy availability. The libraries of components included
in this OS range over network protocols, distributed services, sensor drivers,
and data acquisition tools. Obviously all the components can be modified to
get customized implementations that are able to solve better specific tasks.

3.2.4 Traits of TinyOS

The main features of TinyOS-2.x are:

Scheduler

The scheduler implements a FIFO policy without preemption. Each task
has its own reserved space in the queue and can not be queued more than
once if it is already present in the FIFO structure. So to enqueue many
instances of the same task, the code that implements this task must call the
enqueue command during the execution of itself.
It is possible to develop another kind of scheduler and replace the FIFO one
because in TinyOS it is a component and so we can modify it.

Virtualization of resources

In TinyOS for many components was introduced the concept of resource
virtualization. This creates an instance of an object that provides the re-
quired interface every time it is necessary.
With this approach Virtual abstractions even hide multiple clients from each
other through software virtualization. Every client of a virtualized resource

22

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

interacts with it as a dedicated resource. All the virtualized instances are
then multiplexed on top of a single underlying resource. Because the vir-
tualization is realized through software, there is no upper bound2 on the
number of clients using the abstraction.
This approach simplifies the resource management but it has some negative
aspects. For example, a virtualized timer resource introduces CPU overhead
from dispatching and maintaining each individual virtual timer, as well as
introducing jitter whenever two timers are fired at the same time.

Power Management

All resources of the node, including the microcontroller and the radio chip,
provide interfaces to manage their status. In particular TinyOS distin-
guishes microcontrollers power-management between the peripherals one.
The microcontrollers in fact have different states of energy consumption,
while the devices have only two states: on and off.

3.3 Network Embedded Systems C

3.3.1 Definition and principal characteristics

NesC is an extension to C language designed to embody the structuring con-
cepts and execution model of TinyOS and optimized for the small amount
of resources available in a wireless sensor.
When an application is compiled, the components of TinyOS are included
with it and the result forms the entire software of the sensor. Furthermore
it is not possible to install multiple independent applications in the same
sensor3. In NESc there is neither dynamic memory allocation nor pointers
to functions. This approach, is not very flexible, but allows a significant
energy and memory saving and software robustness. Moreover, all the re-

2Except for the memory and the efficiency constraints.
3We must underline that in order to overcome this constraint, researchers of the

University of Padua have designed a special protocol called SYNAPSE that is able to
reprogram a WSN using Fountain Codes [22].

23

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

sources requests and the call graph are already known at compilation time.
Finally, it is thus guaranteed a better generation and analysis of the code.
The principles of nesC and TinyOS are similar, so the next paragraphs are
concepts that are valid for both.

3.3.2 Interfaces and components

In CBSE each component is an independent part of the application software.
Each component is defined by two parts: the first specifies the interfaces
provided and used by the component while the second represents the internal
implementation.
Interfaces are bidirectional structures used by components to communicate
with each other. A single component may use or provide multiple interfaces
or multiple instances of the same interface. The interfaces of a component
are its access points.
Each interface specifies two type of functions supported by the component:

1. Commands are functions that must be implemented by the compo-
nent that provides that interface.

2. Events are functions that must be implemented by the component
that want to use the interface.

So a component that implements an interface must provide a set of imple-
mented functions (commands) and requires that the component uses this
interface implements another type of functions (events) that are invoked
upon the occurrence of certain events.
In fact, the component that supplies an interface must only notify events,
but what is necessary to do after the event must be implemented by which
are using the interface.
The command Signal is used to notify an event.

Typically, the commands are called from “up to down” or to be more pre-
cise from an application component to a component closer to the hardware,
while the events are reported upwards.

24

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

This structure is fixed for each component and highlights the relationship
with the features of the physical components of the sensor node, so each
component has some functionality and can generate events that must be
managed.

3.3.3 Modules and configurations

The programs consist of components that are assembled together4 to make
up the whole application. So it can be represented as a graph of components.
Each component consists of two elements, a module and a configuration.

The purpose of a module is to define the logic of a component, perform
operations, implement interfaces, and use other components. Whereas the
configuration aim is to assemble a component with other components it uses
(wiring).
A NesC application is made up of two files, one for the module and one for
the configuration. Each module or configuration file, has two different sec-
tions: one for the component specification and one for the implementation.
The first of them5 contains a list of elements, which can be an interface the
component provides, or an instance of another used component. To utilize
an element is used the keyword uses, while to provide an element is used
the keyword provides.
The implementation section6 of the module contain the real implementation
of the component functionalities, while for the configuration it contains the
wiring directives.
Every NesC application is always characterized by having a configuration
component that serves as the root node of the program structure.

4The connections among elements of different components are also called wiring.
5The section for component specification is created with the construct module

[nome_mod] {...} for modules, and configuration [nome_conf] {...} for configurations.
6It is created with the construct implementation {...} for both the module and the

configuration.

25

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

3.3.4 Execution Model

The NesC code can be divided in two classes[28]:

• Synchronous Code, code (functions, commands, events, tasks) that
is only reachable from tasks;

• Asynchronous code, code that is reachable from at least one inter-
rupt handler.

A scheduler for NesC can execute tasks in any order, but must obey to the
run-to-completion rule7.
Instead, if a FIFO scheduler is executing any code, when the system signals
an interrupt, the interrupt handler code is executed immediately suspending
any synchronous code that was previously running.
To avoid that the execution of code is suspended, we must use the atomic
statement. In fact this approach ensured the execution of all the operations
contained in the atomic block.

The synchronous code can be the body of a command/synchronous event
or code executed in tasks. Asynchronous code is instead the interrupt rou-
tines.
A task is an independent locus of control defined by a function of storage
class task returning void and with no arguments [28]. It is posted (with the
post statement) for a later execution of a portion of code. The post com-
mand programs task execution by inserting it into a FIFO queue8 and then
returns immediately. The Scheduler execute tasks in a particular order; the
executing task can not be suspended by any other task. So tasks have all
the same priority, and among them are non-preemptive. Because tasks are
not-preempted and run to completion, they are atomic among themselves,
but are not atomic if an interrupt occurs. A task is implemented when a
component has to perform a job which does not have to be done at the
moment of its invocation.

7The standard TinyOS scheduler follows a FIFO policy.
8If for example we are using the default scheduler.

26

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

The function is another NesC statement whose code is synchronous. It
is defined within a module and can only be used by this module to perform
internal operations. The difference between a function and a task is that
when a function is invoked, its instructions are immediately executed with-
out delay. The function is therefore a method to perform a short internal
routine.

Although non-preemption eliminates data races among tasks, there are still
potential race condition9 and data race10 between synchronous and asyn-
chronous code. These problems are detected and reported when the soft-
ware is compiled. The compiler also reports a compilation error for any
synchronous call command, or synchronous event notification, within asyn-
chronous code. This happens because any code that start from asynchronous
code is also asynchronous.

3.3.5 Split-phase operations

All operations that has long latency are optimized with the split-phase tech-
nique. It is based on the separation between command that request some-
thing, and event that signal the satisfaction of a previously request (see
Figure 3.3). Generally interface commands are requests to perform a task;
if the commands is split-phase, the control returns immediately to the
caller program. An event is raised (and signaled to the caller) only when
the completion of this command is done. The split-phase code is often
more verbose and complex than sequential one, however, has some advan-
tages. For example this method reduce the use of the execution stack, and
make the system more responsive.

9A race condition occur when the system’s work depends on the order in which code
sections are executed. A not valid execution order can involve a not consistent system.

10Is is a particular case of race condition that occur when data are read and written
from two different entity without access control.

27

CHAPTER 3. TMOTE SKY, TINYOS AND NESC LANGUAGE

Figure 3.3: Scheme of a split-phase operation.

28

Chapter 4
The overlay-based synchronization
algorithm

4.1 Clocks and synchronization

The synchronization is an important aspect of a DS like WSN. For example
collect environmental data from a wireless sensor network without any time
references typically does not carry real information. The clock of comput-
ers and other devices is based on a hardware oscillator. This autonomous
component can generate a periodic pulse, with no input signal applied. Gen-
erally it uses crystal oscillators because they are stable and their costs are
low.

Clock Model

A clock essentially measure time intervals. It consists of an ideal counter τ
which is periodically incremented. Generally with τ(t) we intend a reading
of this local clock made at the instant t. The counter is subject to an
unpredictable deviation of the refresh rate. These variations may depend
by many factors as for instance temperature, power supply, magnetic fields,
voltage, aging, wear. However, alterations remain within certain small limits
and can therefore be neglected.

29

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

So we can approximate the clock of the node i as:

τi(t) = αit+ βi (4.1)

where αi is the skew of the clock of the node i, and βi is the offset. The
Skew denotes the clock frequency, instead the offset is the distance from a
referenced instant t.
Anyway nodes can’t calculate the αi and βi values because they have not
access to a reference timer. However, it is still possible to obtain indirect
information about them by comparing the local clock of one node i with
respect to another clock j. In fact, if we solve Equation 4.1 for t, in example
t = τi−βi

αi
and we substitute it into the same equation for node j we get:

τj =
αj

αi

τi + (βj −
αj

αi

βi) = αijτi + βij (4.2)

which is still linear (right side of Figure 4.1) and where αij and βij are
respectively the relative skew and the relative offset between node i and j.

Figure 4.1: Clocks dynamics as a function of absolute time t on the left, and
relative to each other on the right.

The synchronization of a network with n nodes can be global, but can also
be local. In this second case only clocks of a subset of nodes1 must match.
There is another type of clock that is important to define: the software clock.
A synchronization algorithm can adjust directly the local clock. However is
possible to construct and modify a software clock τ̂ based on the local clock.
The software clock is a monotonic increasing function that transforms the
local clock τ(t) into τ̂(t) = aτ(t) + b, with a and b generic parameters.

1Generally neighborhood nodes.

30

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Existing algorithm

There is many algorithms in the literature that regard the synchronization
aspects. It is due to the fact that time is a crucial subject for the net-
working sector, and even more for the WSN. We can mention the well
known Network Time Protocol (NTP)[29, 9, 10] or the Precision Time
Protocol (PTP)[40] algorithm designed for wired networks. But these algo-
rithms are not suitable for wireless network because of their stiffness and
even because they are designed with no power saving aims.
In the last years much R&D effort has been spent to develop algorithms for
the WSNs. The most important are:

1. Reference Broadcast Synchronization (RBS) [9]

2. Tiny-Sync and Mini-Sync (TS/MS) [13]

3. Time-Sync Protocol for Sensor Network (TPSN) [14]

4. Lightweight Time Synchronization for Sensor Network (LTS) [15]

5. Flooding Time Syncronization Protocol (FTSP) [33]

6. Reachback Firefly Algorithm (RFA) [17]

7. Solis, Borkar, Kumar protocol [19]

Another algorithm that was designed and implemented in the University
of Padua is the Average TimeSync [4, 30] one. It is fully distributed and
asynchronous, and even has very poor memory and CPU requirements. Its
strengths are the adaptability, reliability but over all the great precision
that is able to reach. We underline the fact that the possibility to respond
to network topology changes is very useful in the WSN world.
It is a consensus2 algorithm and its principle is to converge to an average
time among all the node of the network.
All nodes operate in the same way according to a peer-to-peer architecture,
and every node is able to initiate a synchronization session. A node com-
municates to its neighborhood the local time-stamp with a message that is
sent at a fixed rate (called timesync period). The smaller is the interval
between synchronization messages, the better is the precision. For example

2Consensus is a problem in distributed computing that encapsulates the task of group
agreement in the presence of faults [45].

31

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

ATS with timesync equal to 30 seconds is more precise than an ATS imple-
mentation with timesync equal to 90 seconds.
The ATS does not flood time information from a root node to the leaves.
Information is contained in all the network nodes which exchange packets
among neighborhoods3. Each node changes its software clock to the estab-
lished consensus value. The main idea of the algorithm is to level all values
of the different software clocks to their average.
The diffusion method can reach the global synchronization through the in-
terconnection of synchronized parts of the network. After a few cycles of
diffusion, all the node clocks have the same value.

4.2 Average TimeSync description

This algorithm wants to synchronize all the nodes of a network with respect
to a virtual reference clock that we can represent as:

τi(t) = αt+ β (4.3)

Every node estimate the virtual clock using a linear function of its own local
clock:

τ̂i(t) = α̂iτi(t) + ôi (4.4)

The goal of ATS is to find the couple α̂i and ôi for all the node.

In necessary to underline that to implement ATS on a network, the wireless
sensor device must support the MAC-layer time-stamping. In fact when
a packet P is sent from i to j, it is assumed that the reading of the local
clock τi(t1) (when P is sent), the packet transmission and the reading of the
local clock τj(t2) (then P is received) are instantaneous. In other words that
t1 = t2.

3Is important to notice that the synchronization is done locally under the node point
of view.

32

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

4.2.1 Relative skew estimation and compensation

Every node i tries to estimate the relative skews αij with respect to its neigh-
bor nodes j. This is accomplished by storing the current local time τj(t1)

of node j into a broadcast packet, then the node i that receives this packet
immediately record its own local time τi(t1). Therefore, node i records in
its memory the pair τi(t1), τj(t1). When a new packet from node j arrives
to node i, the same procedure is applied to get the new pair τi(t2), τj(t2).
The estimate of the relative drift ηij is:

η+ij = ρnηij + (1− ρn)
τj(t2)− τj(t1)

τi(t2)− τi(t1)
(4.5)

where the symbol η+ij indicates the new value assumed by the variable ηij,
and ρn ∈ (0, 1) is a tuning parameter. The algorithm to compensate the
skew is very simple, in fact every node stores its own virtual clock skew
estimate α̂i, defined in Equation 4.4. As soon as it receives a packet from
node j, it updates α̂i as follows:

α̂+
i = ρvα̂i + (1− ρv)ηijα̂j (4.6)

where α̂j is the virtual clock skew estimate of the neighbor node j. The
initial condition for the virtual clock skews of all nodes are set to α̂i(0) = 1.

4.2.2 Relative offset estimation and compensation

According to the previous analysis, after the skew compensation algorithm is
applied, the virtual clock estimators have all the same skew, and so they run
at the same speed. At this point it is only necessary to compensate possible
offset errors. Once again, we adopt a consensus algorithm to update the
virtual clock offset, previously defined in Equation 4.4, as follows:

ô+i = ôi + (1− ρo)(τ̂j − τ̂i) = ôi + (1− ρo)(α̂jτj + ôj − α̂iτi − ôi) (4.7)

33

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

where τj and τi are computed in the same instant.

4.3 Offset Compensation Algorithm

The first step of this work concerns the implementation of a synchronization
algorithm. This aspect is fundamental for the color therapy network that
we want to realize. In fact in order to ensure that all the nodes show always
the same color, the developed application makes the next mainly steps:

1. A software creates in real-time a sequence;

2. The sequence is sectioned, and these parts are sent over messages.
Every message incorporates even the initial global time at which start
to show the portion contained;

3. When a node receive this kind of message, it processes it, waits the
initial global time inserted and then starts to show the sequence of
colors through its RGB device.

We can understand that all the principal operation done with the purpose to
produce the chromotherapy effect are very closely dependent on a common
global time. For this reason a method to calculate a virtual reference clock
is necessary.
In the selection of the algorithm to implement, the work made by F.Fiorentin
[8] was used as foundation. In his thesis was presented all the weaknesses,
the strengths, and the performance of the most important algorithms for
WSN synchronization. Furthermore, in the analysis of the complexity and
performance of the different synchronization methods, was proved that one
of the most light is ATS.
Table 4.1 show a comparison between them. The Skew column indicates if
the algorithm compensate the skew and the complexity column indicates the
number of elaboration made in a network of n nodes by an algorithm that
executes m synchronization cycles4. Instead the channel column displays

4For ATS k is the maximum number of neighborhood of a node. This must be con-
sidered because for every neighborhood j ATS needs to store an historical global time
pair (τj(told), τi(told)) for the computation of the skew estimation.

34

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

Skew Complexity Channel Memory Scalability Topology
RSB yes (mn2) (m+mn) O(n) low yes
TPSN no (4m(n− 1)) (m+mn) O(1) sufficient yes
TS/MS yes (4m(n− 1)) (m+mn) O(1) sufficient yes
LTS yes (4m(n− 1)) (m+mn) O(1) sufficient yes
FTSP yes (2mn) (mn) O(1) high yes
RFA no (2mn) (m+mn) O(n) high no
Solis et al yes (2mn) (mn(n− 1)) O(n) high no
ATS yes (m(n+ k)) (mn) O(k) high no

Table 4.1: Comparison among synchronization algorithms.

the amount of messages that pass through the channel while the mem-
ory column shows the memory usage. Finally the remaining two columns
indicate if the method has a good scalability and if it is topology dependent.

We have to analyze these results and understand that algorithms with skew
compensation are too precise and too complex for our purpose. On the other
hand, algorithms that compensate only the offset are generally topology de-
pendent. For these reasons we have decided to simplify the ATS method,
that grants low memory and CPU usage, is not dependent by the network
topology and is fully distributed.
Our goal is to be able to change the network color, and all the nodes must
act together. The application must mask the fact that every node work
individually.
Furthermore an individual that are seeing the network color sequence, should
not see differences between the turning on of the same tint in two different
RGB devices.
This important aspect was considered when we choose the way to synchro-
nize the network. In fact if we suppose that the human eyes can see with a
frequency of at about 40 Hz (25 ms), is sufficient, under the synchronization
point of view, that our application has a millisecond precision.
The local clock of Tmote Sky is provided by the 32 KHz external crystal
oscillator, which has a granularity of about 30µs per tic. As obtained in [4],
ATS with a synchronization interval of 30 seconds can reach a precision of

35

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

±10 ticks which are 600µs.
Our specification let us to be less precise. So we modify ATS trying to
reduce the complexity even further.
When the nodes are showing the sequence, they should be as coordinate
as possible among themselves, but it is difficult because they are load with
work if the color rate is high. So the synchronization process should be as
light as possible in order to obtain a fast system.

Starting from an implementation of ATS made in [8], we remove the skew
estimation and compensation (expression 4.5 and 4.6) and we kept only the
offset ones (expression 4.7). The precision of what we obtain is worse than
the original method but is enough for our aims. Instead is fundamental
that we have less operations to do when a node receive a synchronization
message because now the skew computation is miss out. We have reduced
the size of the synchronization message of 4 Bytes too, from 23 bytes, now
it is made up by 19 Bytes: 17% less5. Finally Offset Compensation (OC)
doesn’t need historical information regarding neighborhood, so the memory
usage is reduced from O(k) to O(1).
In summary, the only offset compensation involves a continuous resynchro-
nization of the network nodes with a period proportional to the required ac-
curacy. Unlike many other techniques that tend to the maximum precision,
in OC the communication and computation needs for the synchronization
of the single node were significantly reduced by taking advantage of the
relaxation of the constraint of accuracy.

4.3.1 Convergence problems

In both the ATS and OC implementation, we have discover that in some
particular cases, after the synchronization was started, the convergence of
all the nodes to a virtual reference clock asks a very long time period which
we can consider unacceptable.
In Figure 4.2 we show a test in which after at about 23 minutes of execu-

5In Subsection 6.1.2 we show that our implementation has removed another Byte from
the synchronization message.

36

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

tion, OC algorithm has still a maximum pairwise synchronization difference
among nodes of about 10.000 ticks.

Figure 4.2: An example of long initial convergence. The graph show a polling
interval of about 23 minutes.

As we can see, it seems that two portions of the network were synchronized
locally at two different sub-global reference clocks. One of these network
portion is visible on the topside of the graphic, while the other is on the
downside. The nodes between them, that “jump” continuously from side to
side, were not able to reduce the time gap. The situation presented can take
even some hours to converge, and this is too much time. We cannot wait
hundreds of minutes before start the chromotherapy effect because of the
synchronization. Even more in an application that has commercial purposes
it should be avoided.
We have just said that every node of the network sends a synchroniza-
tion message every some seconds6. When a node is powered on, it be-
gins to transmit this message starting from a randomly chosen instant
tstarti . For an entire WSN of N nodes we can define the sequence Tstart =

[tstart1 , tstart2 , tstart3 , ..., tstartN] as the set of all the tstarti for i = 1, ..., N . A par-

6This interval can be defined by the user through a Java interface, and is called
timesync.

37

CHAPTER 4. THE OVERLAY-BASED SYNCHRONIZATION ALGORITHM

ticular case of Tstart can produce the situation in example. The algorithms
OC and ATS as designed cannot prevent this scenario a priori.
So is not possible to forecast in which order the nodes will synchronize them-
selves, and is not hence possible to avoid that, in particular cases, some part
of the network is going to synchronize locally without great influence7 of
other nodes.

7The low influence is caused by an unlucky sequence of starting times chosen by the
different motes composing the WSN.

38

Chapter 5
Color sequence dissemination

The second part of the thesis concerns the design of a mechanism to permit
the dissemination of a particular color sequence on the entire wireless sen-
sor network. The fundamental peculiarity of this sequence is that it is not
known a priori, but is generated contextually to its diffusion.
As next step we develop a method to manage the information regarding
the colors to show, and the UART communication with the external RGB
device.
All the mechanisms described are designed to run on an already synchro-
nized WSN.

5.1 Sequence generation

The sequence that we want to compose is just a succession of colors that
should create a particular visual effect. The various color shades change at
a fixed rate that we call rc. So, assuming a finite sequence, we can formalize
it as

S = {Ct1
1 , Ct2

2 , Ct3
3 , ..., Ctn

n } with n finite number (5.1)

where Ci is the i -th color tone of S that must be shown at the instant ti.
The rate is therefore rc =

1
ti+1−ti

for i=1,...,n-1.
If we suppose that S is known a priori, is clear that is very trivial to create
the color therapy system. In fact is only necessary to create S off-line and put

39

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

it in the software code before the compilation and the motes programming
phases.
In our case, the list of colors is created run-time just as it must be shown.
For this reason is possible to try to communicate every single color Ci to
all the nodes of the network, but it is an inadequate method for our project
aims. As a matter of fact, if rc is high, the network traffic increases too much
and the collisions can prevent the communication. Now, if we suppose for
example that we entirely create S, and then we communicate it to all the
nodes of the WSN, we obtain also a bad solution.
So the communication process necessarily introduce a time leg between the
sequence generation and the instant in which S is displayed.
In order to limit this delay, the only reasonable possible way consists in the
fragmentation of the sequence. As soon as a portion is created, it must be
sent to all the nodes of the network. Finally they show the colors contained.
So if the sequence is divided into f parts, Equation 5.1 becomes

S = {S t̂1
1 , S

t̂2
2 , S

t̂2
3 , ..., S

t̂f
f } (5.2)

where S t̂i
i is the i -th fragment of S whose first color must be shown at the

instant t̂i.
Because all the S t̂i

i contain a fixed number m of colors, then:

S t̂i
i = {Ctl+1

l+1 , C
tl+2

l+2 , C
tl+3

l+3 , ..., C
tl+m

l+m } (5.3)

where l = [(i − 1)m]. We observe that thanks to this method, when we
communicate a sequence portions, we only need to know all the colors of
S t̂i
i , the value of t̂i, and the rate rc. In fact the instant tl+1 = t̂i and all the

others tl+2, ..., tl+m can be calculated in this way:

tl+j = t̂i +
1

rc
(j − 1) with j = 2, ...,m (5.4)

The next section wants to present how we can inform all the nodes of the
WSN about the entire color sequence1.

1a scheme of the behavior of the chromotherapy system is presented in Appendix B

40

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

5.2 The multi-hop sequence communication

Supposing to have a node M that knows all the S t̂i
i . If M sends all the S

portions into different packets through its radio interface, only its neighbors
can receive these information. In particular only the nodes that are located
the radio range of mote M. For these reasons, if the network is large, and
the M radio is not able to cover all the distances among nodes, we must use
a multi-hop communication approach to flood the network with S.
Thanks to this method, communication between M and another node is
carried out through a number of intermediate nodes whose function is to
relay information from one point to another.

Figure 5.1: Example of a multihop communication.

In fact as shown in Figure 5.1 the source node cannot send directly a
message to the destination, but the delivery is only possible passing through
a path along some repeater nodes (Ri).
So if M wants that S arrives to all the motes of the network, every node
that receive the packets must repeat it to its neighborhoods in order to for-
ward the information. With this multi-hop methods we can distribute the
sequence in all the WSN.
The flooding of the information must be done paying attention to one com-
mon threat: the network collapse. As a matter of fact, even if a node A
receives the same message T more than once, T must be forwarded from A
only ones. If this control is not implemented, the network communication
inexorably crashes.

41

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

5.3 Communication through the UART pins

5.3.1 Description and configuration of the interface

At a rc rate, all the colors of every S t̂i
i are sent to an external device. This

task are performed via UART interface. The Tmote Sky has two expansion
connectors and a pair of on-board jumpers that may configured so that ad-
ditional devices (analog sensors, LCD displays, and digital peripherals) may
be controlled by the Tmote Sky module [26]. In Figure 5.2, we presented
the expansion connector we used.

Figure 5.2: Functionality of the 10-pin expansion connectors. Alternative pin
uses are shown in gray.

Through the PIN number 4 (and the ground of PIN 9) we send out
the colors of the sequence S. In fact every colors of Equation 5.1 can be
represented by

Cti
i = {Ri, Gi, Bi} (5.5)

where Ri, Gi and Bi are respectively the value of the red, green and blue
components of Ci. One byte is used for each one of these components.
To send the three byte via UART we only transmit each individual bits in
a sequential fashion. At the destination, the RGB device re-assembles the
bits into complete bytes. Each byte can be sent as a start bit, an amount
of 8 data bits, an optional parity bit, and one or more stop bits. The start
bit (a 0 bit) signals the receiver that a new character is coming. The next
eight bit, represent the byte we want to send. Following the data bits may
be a parity bit that we don’t have used. The next one or two bits (in our

42

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

case two) are always in the mark (logic high, i.e., ‘1’) condition and called
the stop bit(s). They signal the receiver that the byte is completed. (Figure
5.3)

Figure 5.3: Diagram of a serial byte encoding.

The motes send the data bits starting from the least significant bit (lsb).
The transmission of the data was realized using the Msp430Uart0C() com-
ponents. We have choose to use a baud rate set to 19200 bps, no parity bit,
and 2 stop bits.

5.3.2 The arbitration of the USART of the MSP430

Why arbitration?

The arbitration is a method that permits the multiple usage of a resource to
different clients. In TinyOS there are three mechanisms (called abstractions)
for managing shared resources [31]:

• An abstraction is dedicated if it is a resource which a subsystem needs
exclusive access to at all times. In this class of resources, no sharing
policy is needed since only a single component ever requires use of the
resource. Examples of dedicated abstractions include interrupts.

• Virtual abstractions hide multiple clients from each other through
software virtualization. Every client of a virtualized resource inter-
acts with it as if it were a dedicated resource, with all virtualized
instances being multiplexed on top of a single underlying resource.
An example is the Timer resource. Because the virtualization is done
in software, there is no upper bound on the number of clients using the
abstraction, barring memory or efficiency constraints. Virtualization
generally provides a very simple interface to its clients. This simplicity

43

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

comes at the cost of reduced efficiency and an inability to precisely
control the underlying resource.

• A sheared resource is necessary when many clients need precise con-
trol of a resource. Clearly, they can not all have such control at the
same time: some degree of multiplexing is needed. A motivating ex-
ample of a shared resource is a bus.

In our chromotherapy project we need to access to both the radio (SPI
mode) and the UART (UART mode) interface switching between them at
a very fast frequency. This frequency depends from the rc value. But as we
can see in Figure 5.4 the two interfaces share the USART resources of the
MCU.

Figure 5.4: Functional block diagram, of the MCU MSP430F161x series.

More in detail, the MSP430F1611 microcontroller has two different US-
ART: USART0 and USART1. Both of them are sheared abstraction re-
source. The USART1 is used by the USB interface that is very useful in
debugging, so we choose to use USART0 to control the radio and the exter-
nal device.

44

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

Implementation aspects

As consequence of what we have presented until now, we understand that
when we use the UART, we can not access to the radio and vice-versa. But
in order to be able to receive all the parts of the color sequence S, a node
should listen the radio channel as much as possible. On the other hand,
a node that must show S at a color frequency for instance equal to 5Hz
(period 200ms), must access to the UART interface 5 times per second.
We have only a chance to implement:

• Request the USART0 only when we need to send a RGB color to the
external device, and then release it as soon as possible

• The radio must obtain the USART0 resource as much as possible when
is not used to send RGB colors.

But who does control and manage the resource access? This work is
made in TinyOS by a resource arbiter that is responsible for multiplexing
between the different clients of a shared resource, in this case the USART
of the MSP430. It determines which client has access to the resource at
which time. While a client holds a resource, it has complete and unfettered
control. Arbiters assume that clients are cooperative, only acquiring the re-
source when needed and holding on to it no longer than necessary. Clients
explicitly release resources: there is no way for an arbiter to forcibly reclaim
it. So it is very important that every time a client need to send a color via
UART, it must request the USART and immediately release it.
Furthermore, TinyOS offers even a helpful feature, that consist on the pos-
sibility to define a resource default owner. It is a specific client that needs to
be given control of the resource whenever no one else is using it. By default
the Radio is the default owner of the USART0 module.
In Figure 5.5 we have an example of how the USART0 resource is accessed
by the clients. The steps are now explained a little bit in detail:

1. The resource is normally owned by the default owner (gray stripes)

2. When the client C needs the resource USART0, asks it with the call
Resource.request() to the arbiter

45

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

3. When the resource is available for the client, the arbiter signals the
happening with an event and reserves the USART0 to C (red stripe).

4. The client can now use the resource, for instance to send a byte
through the UART interface

5. After the sending C must release the resource with the call Resource.re-
lease()

6. The USART0 is now used by the default owner

During the implementation, we had a lot of problems with the arbitration
that is not a trivial procedure to realize. Anyway we have always find out
solutions. For example, in order to communicate the Cti

i = {Ri, Gi, Bi} to
the external device, we must realize a “logic high” for the UART interface.
But every time we release the USART0 resource, the UART interface was
“turned off”, and so its logic became low. This situation was misunderstood
from the RGB device convinced in the receiving of a start bit of a new byte.
The mistake was resolved with two directives inserted in the initialization
of the components composing our code:

TOSH_MAKE_UTXD0_OUTPUT();

TOSH_SET_UTXD0_PIN();

Another problem happened when we sent the terns of bytes through the
UART pins. In fact, after each sending, TinyOS rises the event async event
void UartStream.sendDone(uint8_t buf, uint16_t len, error_t error){. .
.} in which we release the USART resource to the arbiter. But a mistake
occurs, in fact we have understood, using an oscilloscope connected to the
UART pins, that the third byte was not sent entirely2. To solve this prob-
lem we force a microsecond wait interval between the rising of the async
UartStream.sendDone event and the release of the USART. In this way all
the three bytes are sent entirely via the UART interface.

2It was reported to the tinyos-help community too, but there is not still solution.

46

CHAPTER 5. COLOR SEQUENCE DISSEMINATION

Figure 5.5: Schematic description of how a client obtain and release a resource.

47

Chapter 6
The software description

The system software consists in four NESc components which form the core
of the project, however was necessary to build an entire suite of other Java
applications to realize the synchronization of the nodes, the management
of the overlay logical network and the realization of the chromotherapy
effect. In fact the final implementation consist on a set of interdependent
programs. Furthermore the software package allow also the collection of
information necessary for monitoring and checking the correctness of the
network behavior.
All the code was written for mote Tmote Sky, but with some changes can
run even in other devices.
Thanks to the CBSE nature of NESc/TinyOS, we can present first the
synchronization software, and then the chromotherapy components. This
choice involve a clearer explanation of the code.

6.1 The synchronization software

The architecture (Figure 6.1) of the synchronization code are made up by
three different actors:

• A node called poller, or base station, generates periodic radio requests
to control the different parameters of the synchronization protocol.
It must also receive the answers provided by each client. All these

49

CHAPTER 6. THE SOFTWARE DESCRIPTION

Figure 6.1: Synchronization actors.

information are sent via USB to a server. The poller has also to
receive the overlay structure configuration parameters from the server
and send this message to all the other nodes.

• An amount of nodes called Clients perform the synchronization pro-
tocol. The protocol was developed as an independent component that
provides synchronization services through an appropriate interface. In
each client run a software that allow:

– to receive the requests generated by the Poller

– to obtain the synchronization information by using the synchro-
nization component

– to transmit to the Poller the information collected

– to receive the overlay structure parameters and modify itself as
consequence.

• A PC running a Java application that has to retrieve, save and process
all the information received from the poller. It let to the user to change
the parameters modifying the overlay structure configuration.

6.1.1 Packets format

All the elements of the architecture described above communicate with each
other exchanging packets. Each NesC component has to define the structure
of the packets that want to handle. It is necessary to be able to identify the
correct incoming packets and to be able to access to their fields (listed in
the structure).
The written code uses a lot of different packets. So multiple services use
the same radio to communicate. TinyOS provides the Active Message (AM)
layer to multiplex access to the radio. The term “AM type” refers to the
field used for multiplexing. AM types are similar in function to the Ethernet

50

CHAPTER 6. THE SOFTWARE DESCRIPTION

frame type field, IP protocol field, and the UDP port in that all of them are
used to multiplex access to a communication service [43].
To define a packet we can use parametrized interface where the parameter
is the value of the field “AM Type” of the packet. An example is reported:

implementation {

...

components new AMSenderC(AM_BLINKTORADIO);

...

}

This permit to write comprehensible code mode easily. In fact we avoid to
use a single component for all the received and sent messages. In TinyOS
2.x, was introduced the standard message buffer message_t. The message_t
structure is defined in tostypesmessage.h as:

typedef nx_struct message_t {

nx_uint8_t header[sizeof(message_header_t)];

nx_uint8_t data[TOSH_DATA_LENGTH];

nx_uint8_t footer[sizeof(message_footer_t)];

nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

The headers, footers and metadata fields cannot be accessed directly but
through the appropriate interfaces. The data field of message_t stores the
packet payload. It is TOSH_DATA_LENGTH bytes long. The default size
is 28 bytes. A TinyOS application can redefine TOSH_DATA_LENGTH
at compile time with a command-line option to ncc:

-DTOSH_DATA_LENGTH=x

6.1.2 Code porting

The implementation of ATS from which we start to develop our system, was
written in TinyOS version 2.0.2. In this moment the last tinyOS version
is 2.1.1. A first problem found in our work was to be able to compile the
ATS code written from Fiorentin’s thesis [8]. In fact some very important

51

CHAPTER 6. THE SOFTWARE DESCRIPTION

functionality offered by the old version are now deprecated.
Version 2.0.2 provided particular procedures to use MAC-layer time-stamp
when messages are received and sent. The system had a mechanism that
was able to report the event Start Frame Delimiter (SFD) and record the
relative local time. This event corresponds to the transmission/reception
of the first bit of an input/output packet. So for each message M received
from a node, was possible to detect the local time when the first bit of the
message was received. This value of time, called time-stamp, was stored au-
tomatically in a 16-bit field of the arrived message. Instead when a message
was sent, tinyOS 2.0.2 offered the opportunity to perform a piece of code
when the SFD event occurred. In this situation Fiorentin’s code changed
a field of the message to send, and in particular it included in the trans-
mitted message the time value correspondent to the generation of the SFD
event. This method was adopt to obtain the MAC time-stamp of inbound
and outbound messages.
The developers of TinyOS understand that the SFD interrupt handler was
exposed by the radio stack as an asynchronous event. This solution was
problematic, because higher-level application components that wired the
interface containing this event could break the timing of radio stack due to
excessive computation in interrupt context. So with version 2.1.1 was intro-
duced a new message component: the CC2420TimeSyncMessageC. This last
one, through the interface TimeSyncPacket, provides two new command:

• eventTime: This command should be called by the receiver of a mes-
sage. The time of the synchronization event1 is returned as expressed
in the local clock of the caller. This command must be called only on
the receiver side and only for messages transmitted via the TimeSync-
Send2 interface. It is recommended that this command be called from
the receive event handler. In other words this command permits to
obtain the values of the local clocks of the sender and receiver referred
to a particular event.

• isValid: It returns a boolean to be aware if the value returned from
1It is a parameter of the packet which holds the time of some event as expressed in

the local clock of the sender.
2Even this interface is provided by the CC2420TimeSyncMessageC component.

52

CHAPTER 6. THE SOFTWARE DESCRIPTION

the eventTime command is trusted. Under certain circumstances the
received message cannot be properly time stamped, so the sender-
receiver synchronization cannot be finished on the receiver side. In
this case, this command returns FALSE. This command must be called
only on the receiver side and only for messages transmitted via the
TimeSyncSend interface. It is recommended that this command be
called from the receive event handler.

With these commands we can benefit of the MAC time-stamp without
the control of the SFD event as was in the previous version of the operating
system. TinyOS 2.1.1 became even more stable and reliable under this point
of view.
Furthermore, thanks to the new component CC2420TimeSyncMessageC, in
our implementation of OC we removed from the synchronization message
structure also a superfluous Byte used to menage the time-stamp informa-
tion.
After some tests made when the entire chromotherapy project was imple-
mented, we found that occasionally the isValid command does not work
properly. So even if it return the TRUE value, saying that the received
packet is ok, it was not so. The packet was probably malformed and the
value returned from the eventTime command was abnormal. In this situa-
tion, the node which is processing the packet, is not synchronized any more.
In order to solve this problem3 a simple control is made even if the isValid
command return positive: the value returned by the eventTime command
can’t differ too much from the local clock value, else the packet is ignored.
This check drops the abnormal values returned from the eventTime com-
mand.

6.2 The color sequence control software

The architecture of this part of the software (Figure 6.2) is similar to the
synchronization one. Anyway we must underline that the master node is
totally independent from the root one. So they could be two different nodes

3It was reported to the tinyos-help community too, but there is not still solution.

53

CHAPTER 6. THE SOFTWARE DESCRIPTION

connected to two different stations. This choice was done to improve the
modularity and the flexibility of the entire system.
The component that realize the chromotherapy effect must be used only on
a synchronized network.
In Appendix A is shown an example of how the color sequence is diffused
in the entire WSN.

Figure 6.2: Architecture of the colors sequence management software.

54

Chapter 7
Testing of the developed system

The second experimental part of our work was made with the aim to observe
the different comportments of the system under various workloads. All tests
were performed on nodes Tmote Sky of Moteiv.

7.1 Performed tests

In order to understand the behavior of the system, every time the master
sends a new RtLightMsg message containing a color sequence part, we
gathered from each slave-repeater mote these information:

• The number of the received sequence portion. It is used to understand
how many packets are lost from each mote.

• The local time instant of the message reception, called r instant.

• The global time estimation of r, called n instant.

• The global time instant at which the motes must start to show the
portion contained, called t instant.

• The difference t− n, called d.

• The number of millisecond that a node wait before the message repeti-
tion, called w value. Its aim is to reduce the collision of the messages.
This value is retrieved to understand more precisely the delay intro-
duced from each hop in the flooding process.

• The local time instant referred to the call TimeSyncAMSend.send()

55

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

of the repetition of the RtLightMsg, called s instant.

• The local time instant of the TimeSyncAMSend.sendDone event re-
ferred to the repetition, called sd instant. The difference sd−s is used
to evaluate the responsiveness of the mote.

• The local clock value referred to the processing instant of the first
color of the sequence part, called d1. The difference d1 − (r + d) is
used to evaluate the precision of the mote.

We collect the data thanks to the TinyOS printf library. It provides a
terminal printing functionality to TinyOS applications through motes con-
nected to a PC via their serial interface. Messages are printed by calling
printf commands using a familiar syntax borrowed from the C programming
language. An example of the obtained files follows:

5 r 54964499 t 55157523 n 55098447 d 59076 w 23 s 54965896 sd 54966714 d1 55023557

6 r 55099191 t 55291013 n 55233138 d 57875 w 20 s 55100454 sd 55101037 d1 55157030

7 r 55231549 t 55424050 n 55365496 d 58554 w 23 s 55232867 sd 55233580 d1 55290053

8 r 55363152 t 55556850 n 55497099 d 59751 w 7 s 55364212 sd 55365054 d1 55422886

9 r 55496163 t 55689849 n 55630110 d 59739 w 25 s 55497604 sd 55498605 d1 55555877

10 r 55630173 t 55822848 n 55764120 d 58728 w 26 s 55631641 sd 55632642 d1 55688870

11 r 55762786 t 55955584 n 55896732 d 58852 w 2 s 55763686 sd 55764528 d1 55821637

12 r 55898345 t 56089839 n 56032291 d 57548 w 16 s 55899515 sd 55900112 d1 55955878

13 r 56030225 t 56222632 n 56164171 d 58461 w 4 s 56031135 sd 56032182 d1 56088645

14 r 56162492 t 56355412 n 56296437 d 58975 w 21 s 56163707 sd 56164521 d1 56221414

The files was then processed with a Java parser that creates the relative
Comma-Separated Values (CSV)-like files. This step was necessary in or-
der to import easily the files in MATLAB. An example of the file obtained is:

5;54964499;55157523;55098447;59076;23;54965896;54966714;55023557

6;55099191;55291013;55233138;57875;20;55100454;55101037;55157030

7;55231549;55424050;55365496;58554;23;55232867;55233580;55290053

8;55363152;55556850;55497099;59751;7;55364212;55365054;55422886

9;55496163;55689849;55630110;59739;25;55497604;55498605;55555877

10;55630173;55822848;55764120;58728;26;55631641;55632642;55688870

11;55762786;55955584;55896732;58852;2;55763686;55764528;55821637

12;55898345;56089839;56032291;57548;16;55899515;55900112;55955878

13;56030225;56222632;56164171;58461;4;56031135;56032182;56088645

14;56162492;56355412;56296437;58975;21;56163707;56164521;56221414

56

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

The performed tests are several. For each experiment the parameters of
the sequence management packet are set as summarized in Table 7.1.

Colors per Color period Initial Delay
packet (Nc) (Tc) [ms] (dTOT) [ms]

test 1 10 100 700
test 2 10 150 750
test 3 10 200 1000
test 4 15 100 750
test 5 15 150 1100
test 6 15 200 1500
test 7 20 100 1000
test 8 20 150 1500
test 9 20 200 2000
test 10 20 300 500
test 11 20 300 1000
test 12 20 300 2000
test 13 20 400 2000

Table 7.1: Parameters setups of the test performed on the developed chromother-
apy system.

All the 13 tests was done on 4 different chromotherapy system network
configurations:

1. Linear array network without (W/O) the second retransmission of the
sequence portion messages

2. Linear array network with (W) the second retransmission of the se-
quence portion messages

3. Grid network without the second retransmission of the sequence por-
tion messages

4. Grid network with the second retransmission of the sequence portion
messages.

The Linear array network is composed by only 11 motes (master plus one
node per hop). The master node is placed in the head of the array. Instead
the grid network of 35 motes is deployed as a mesh. The number of nodes

57

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

per hops is:

Hop 1 2 3 4 5 6 7 8 9 10
Number of nodes 2 3 4 5 5 5 4 3 2 1

Table 7.2: Number of nodes per hop in the grid network.

We collect the data from only one node belonging to each hop. The node
is randomly chosen because we suppose that the nodes at the same number
of hops far from the master have similar behaviors.

7.2 Packet loss

7.2.1 Linear Array

We have investigated if the second retransmission of the sequence portion
message brings benefits to our system or not. We analyze test 91 (Nc = 20,
Tc = 200, dTOT = 2000) on a linear array network without retransmission.
We have seen that some packets were lost starting from the second hop
(Figure 7.1). This poor performance is compared to the result obtained in
the same linear array with the second retransmission of the sequence part
messages. As shown in Table 7.3, the second experiment has no packet loss.

It is important to notice that even in the linear array without retrans-
mission, some hops do not loose any packet. For example the 8-th and 9-th
hops doesn’t process 19 packets as the 7-th hop. But the loss is introduced
by the 7-th one.

1This choice was made because our experiments have confirmed that test 9 parameters
configuration is generally not problematic for the chromotherapy system.

58

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Figure 7.1: Percentages of lost packets per hop on a linear array without the
second retransmission of the sequence portions.

L.A. W/O retransm. L.A. with retransm.
hop 1 0 (0%) 0 (0%)
hop 2 1 (0.22%) 0 (0%)
hop 3 8 (1.74%) 0 (0%)
hop 4 17 (3.70%) 0 (0%)
hop 5 18 (3.92%) 0 (0%)
hop 6 18 (3.92%) 0 (0%)
hop 7 19 (4.14%) 0 (0%)
hop 8 19 (4.14%) 0 (0%)
hop 9 19 (4.14%) 0 (0%)
hop 10 23 (5.01%) 0 (0%)

Table 7.3: Lost packets on a linear array with and without the second retrans-
mission of the sequence parts.

59

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Afterwards we studied the number of lost packets of test 10 (Nc = 20,
Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300, dTOT = 1000) and 12
(Nc = 20, Tc = 300, dTOT = 2000) on a linear array with retransmission.
These three setups have all 20 colors per packet, a color period of 300 ms,
but different initial delays introduced from the master. Test 10 has only
500 ms of delay, while test 11 has 1 second and test 12 has 2 seconds. The
obtained results are presented in Table 7.4.

test 10 test 11 test 12
hop 1 0 (0%) 0 (0%) 0 (0%)
hop 2 0 (0%) 0 (0%) 0 (0%)
hop 3 0 (0%) 0 (0%) 0 (0%)
hop 4 0 (0%) 0 (0%) 0 (0%)
hop 5 0 (0%) 0 (0%) 0 (0%)
hop 6 0 (0%) 0 (0%) 0 (0%)
hop 7 0 (0%) 0 (0%) 0 (0%)
hop 8 44 (9.22%) 0 (0%) 0 (0%)
hop 9 396 (83.02%) 0 (0%) 0 (0%)
hop 10 477 (100.00%) 0 (0%) 0 (0%)

Table 7.4: Lost packets on a linear array with retransmission. Comparison of
test 10 (Nc = 20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300,
dTOT = 1000) and 12 (Nc = 20, Tc = 300, dTOT = 2000).

The experiments demonstrate that in a reliable network configuration
where no collision can occur, the length of the initial delay is fundamental
to grant the sequence flooding in all the extension of the network. If this
value is too small, the sequence messages can not reach in time the further
hops. In fact for test 10 the mote at the 10-th hop does not receive any
RtLightMsg packet.

7.2.2 Grid network

Then we studied the packet loss in the grid network of 35 motes too. In
this topology we have more than one node per hop, so collisions can take
place. This situation generally involve a greater packet loss in respect to a
network where no collision can occur.

60

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

First of all we compare the test 9 (Nc = 20, Tc = 200, dTOT = 2000) results
obtained first in a grid without the retransmission of the sequence portions,
and second in a grid network that implements this feature. The result are
summarize in Table 7.5.

Grid W/O retransm. Grid with retransm.
hop 1 0 (0%) 0 (0%)
hop 2 8 (1.75%) 0 (0%)
hop 3 9 (1.97%) 0 (0%)
hop 4 10 (2.19%) 0 (0%)
hop 5 10 (2.19%) 2 (0.43%)
hop 6 11 (2.40%) 3 (0.64%)
hop 7 12 (2.63%) 4 (0.86%)
hop 8 20 (4.38%) 6 (1.29%)
hop 9 24 (5.25%) 13 (2.80%)
hop 10 30 (6.56%) 16 (3.44%)

Table 7.5: Lost packets on a grid network with and without the second retrans-
mission of the sequence parts.

Figure 7.2: Percentage of lost packets per hop on a grid network with and without
the second retransmission of the sequence portions.

In Figure 7.2 were displayed the behaviors of the two experiments and
demonstrates that the retransmission involve a more reliable sequence flood-
ing process. So hereafter we abandon the implementations without the re-

61

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

transmission of the sequence messages.

We can also observe that our system is able to perform a complete se-
quence displaying at 4 hops further from the root. As reported in the Tmote
Sky datasheet [26], the antenna of this kind of devices may attain at about
50-meter range indoors. So if we are able to reach the 4-th hop without
sequence packet loss, we can potentially realize a system with a 200-meter
range extension. Moreover this result was obtained with a test configura-
tion which realizes a fast color change, in fact the color frequency is 5Hz. 5
colors per second is more than enough for a chromotherapy system.

As for the linear array we try the sequence packet configurations of test
10 (Nc = 20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300, dTOT = 1000)
and 12 (Nc = 20, Tc = 300, dTOT = 2000) even in the grid network (Figure
7.3).

Figure 7.3: Number of lost packets per hop on a grid network with retransmis-
sion. Comparison among tests with different initial delay values.

Because of the collisions, in these cases more packets were lost if com-
pared to the linear array. Furthermore when the delay is only 500 ms, no
one sequence message is able to reach the 9-th hop (one less than the array),
and only the 33% of them were received from nodes at the 8-th hop. The
collected data are presented in Table 7.6.

62

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

test 10 test 11 test 12
hop 1 0 (0%) 0 (0%) 0 (0%)
hop 2 0 (0%) 0 (0%) 0 (0%)
hop 3 0 (0%) 1 (0.29%) 0 (0%)
hop 4 0 (0%) 0 (0%) 1 (0.32%)
hop 5 11 (3.05%) 1 (0.29%) 1 (0.32%)
hop 6 21 (5.82%) 1 (0.29%) 2 (0.64%)
hop 7 45 (12.47%) 2 (0.59%) 3 (0.96%)
hop 8 280 (77.56%) 4 (1.17%) 5 (1.61%)
hop 9 361 (100.00%) 5 (1.47%) 8 (2.35%)
hop 10 361 (100.00%) 8 (2.35%) 13 (4.18%)

Table 7.6: Lost packets on a grid with retransm. Comparison of test 10 (Nc =
20, Tc = 300, dTOT = 500), 11 (Nc = 20, Tc = 300, dTOT = 1000)
and 12 (Nc = 20, Tc = 300, dTOT = 2000).

We notice that in a grid network there can be more than one path from
the master to a node. So is possible for instance that a node A at 4 hops can
lose less packets than a node B at 3 hops far from the master. This is due
to the fact that A receives the messages that B has lost from another neigh-
borhood different from B. An example of this situation happened between
hop 3 and 4 of test 11.

7.2.3 Rising of the packet frequency

There are two possibility to increase the packet frequency:

1. Reducing the value of the color frequency

2. Reducing the number of colors of each sequence portion

The experimental results of the two different approach are now presented.

Rising the color rate

In Figure 7.4 and Table 7.7 are compared test 11 (Nc = 20, Tc = 300,
dTOT = 1000) and test 7 (Nc = 20, Tc = 100, dTOT = 1000) performed on
the grid. These configurations have both the number of colors per packet
set to 20, and the delay equal to 1 second. The difference is that test 11 has

63

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

a color period set to 300 ms while for test 7 is 100 ms. The packet period
from Tp = 6s becomes Tp = 2s.
Even if the frequency is tripled, test 7 looses in average only the 0.7824% of
the packets more than test 11. So even if a lower rate is better, the system
has a good response when the colors rate increases.

Figure 7.4: Percentage of lost packets per hop on a grid network rising the color
rate. Comparison among tests with different packet frequencies.

test 7 test 11
hop 1 0 (0%) 0 (0%)
hop 2 0 (0%) 0 (0%)
hop 3 0 (0%) 1 (0.2933%)
hop 4 3 (0.3145%) 0 (0%)
hop 5 6 (0.6289%) 1 (0.2933%)
hop 6 7 (0.7338%) 1 (0.2933%)
hop 7 10 (1.0482%) 2 (0.5865%)
hop 8 22 (2.3061%) 4 (1.173%)
hop 9 29 (3.0398%) 5 (1.4663%)
hop 10 34 (3.5639%) 8 (2.346%)

Table 7.7: Lost packets on a grid network rising the color rate. Comparison of
test 7 (Nc = 20, Tc = 100, dTOT = 1000) and test 11 (Nc = 20,
Tc = 300, dTOT = 2000).

64

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Reducing the number of colors per packet

In this case we want to understand if the number of colors contained in the
packets affects the behavior of the chromotherapy system. So we compare
test 3 (Nc = 10, Tc = 200, dTOT = 1000), 6 (Nc = 15, Tc = 200, dTOT =

1500) and 9 (Nc = 20, Tc = 200, dTOT = 2000). The results are shown in
Figure 7.5 and Table 7.8.

Figure 7.5: Percentage of lost packets per hop on a grid network reducing the
number of colors per packet. Comparison among tests with different
packet frequencies.

test 3 test 6 test 9
hop 1 0 (0,00%) 0 (0,00%) 0 (0,00%)
hop 2 0 (0,00%) 0 (0,00%) 0 (0,00%)
hop 3 0 (0,00%) 2 (0,31%) 0 (0,00%)
hop 4 1 (0,10%) 3 (0,47%) 0 (0,00%)
hop 5 3 (0,29%) 4 (0,63%) 2 (0,43%)
hop 6 4 (0,39%) 6 (0,94%) 3 (0,65%)
hop 7 20 (1,96%) 11 (1,73%) 4 (0,86%)
hop 8 30 (2,93%) 14 (2,20%) 6 (1,29%)
hop 9 43 (4,20%) 17 (2,67%) 13 (2,80%)
hop 10 51 (4,99%) 20 (3,14%) 16 (3,44%)

Table 7.8: Lost packets on a grid network reducing the number of colors per
packet. Comparison of test 3, 6 and 9.

65

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

These tests have the same rc value but the number of colors contained
into a RtLightMsg is 10, 15 and 20 respectively2. For this reason Tp is 2
seconds in test 3, 3 seconds in test 6 and 4 seconds in test 9.

All the tests have a packet loss percentage under the 1% until the 7-th
hop. After this bound the test number 3, that has the higher number of
packets per seconds, is a little bit less reliable than test 6 and 9. But it
looses always less than the 5% of the total number of the sequence packets.
We suppose that when the packets rate increases, a node must access to the
UART interface most frequently. For this reason the USART is arbitrated
a greater number of times per seconds and the radio resource can therefore
listen the channel for less time. That is why the amount of lost packets
increase with the increasing of the frequency of the RtLightMsg packets.

If we want to observe the behavior of the system under a higher work-
load, we can compare test 1 (Nc = 10, Tc = 100, dTOT = 700) and test 4
(Nc = 15, Tc = 100, dTOT = 750). The RtLightMsg packets for test 1 are
sent every second, while for test 4 are sent every 1.5 seconds. The trends
are shown in Figure 7.6.

Even in these experiments the system has the same behavior until the
7-th hop. After this limit what happens is not a significant fact because of
the small initial delay values of test 1 and 4.
So we can underline that, even if the loss is greater than what we have
obtained in the previous experiment of Table 7.8, for little variations of fp
the system remain stable. Although if the workload is high.

The data of this experiment is presented in Table 7.9:

2The value of the delay in this situation is negligible because even if it changes from
one test to another, it is always greater than a second. So the flooding process is able to
cover all the grid.

66

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Figure 7.6: Percentage of lost packets per hop on a busy grid network. Compar-
ison among tests with different packet frequencies.

test 1 test 4
hop 1 0 (0,00%) 0 (0,00%)
hop 2 0 (0,00%) 1 (0,03%)
hop 3 1 (0,05%) 2 (0,07%)
hop 4 6 (0,32%) 6 (0,20%)
hop 5 9 (0,49%) 14 (0,46%)
hop 6 23 (1,24%) 38 (1,26%)
hop 7 67 (3,62%) 112 (3,72%)
hop 8 120 (6,48%) 155 (5,14%)
hop 9 181 (9,77%) 177 (5,87%)
hop 10 1155 (62,37%) 1075 (35,67%)

Table 7.9: Lost packets on a grid network reducing the number of colors per
packet. Comparison of test 1 (Nc = 10, Tc = 100, dTOT = 700) and
test 4 (Nc = 15, Tc = 100, dTOT = 750).

67

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

7.3 Precision of the nodes

In this section we want to understand the precision of the system in the dif-
ferent situations. We say that a node is precise if it processes the first color
of the sequence portion in the exact global clock instant chosen from the
master node and inserted into the field turnOnTime of the RtLightMsg

packets.
To calculate the deviation between when the sequence parts should be
shown, and when the node really display them, we consider the d1− (r+ d)

values (Section 7.1).
During our analysis we notice that in the majority of the test the nodes are
very precise at each hop. As presented in Table 7.10, the average deviation
of each node is about 25 ticks (0.78 ms). We report the results of test 3
(Nc = 10, Tc = 200, dTOT = 1000), 5 (Nc = 15, Tc = 150, dTOT = 1100), 6
(Nc = 15, Tc = 200, dTOT = 1500), 7 (Nc = 20, Tc = 100, dTOT = 1000), 9
(Nc = 20, Tc = 200, dTOT = 2000), 12 (Nc = 20, Tc = 300, dTOT = 2000)
and 13 (Nc = 20, Tc = 400, dTOT = 2000).

test 3 test 5 test 6 test 7 test 9 test 12 test 13
hop 1 25.56 24.85 25.30 26.73 23.47 25.83 24.35
hop 2 26.21 24.24 23.86 25.98 23.72 23.51 24.92
hop 3 25.24 24.76 24.59 25.75 24.98 23.28 24.21
hop 4 24.95 24.29 24.76 25.60 24.62 23.49 25.38
hop 5 25.17 24.94 25.77 26.11 25.38 24.70 24.86
hop 6 26.68 25.19 25.25 26.46 24.93 26.31 24.93
hop 7 26.10 24.76 26.27 26.75 25.15 24.79 25.45
hop 8 25.57 24.40 24.48 26.53 23.74 24.25 25.14
hop 9 26.46 24.25 24.01 26.42 24.73 25.80 23.78
hop 10 28.05 24.09 24.65 25.54 25.63 24.38 24.56

Table 7.10: Precision of the system. Comparison of test 3, 5, 6, 7, 9, 12 and
test 13.

The global average per hop of these test are showed in Figure 7.7.
Instead we realize that in some other cases, like test 1 (Nc = 10, Tc =

100, dTOT = 700), 2 (Nc = 10, Tc = 150, dTOT = 750), 4 (Nc = 15, Tc = 100,
dTOT = 750) and 10 (Nc = 20, Tc = 300, dTOT = 500) the behavior of the

68

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Figure 7.7: Precision of the nodes per hop on a grid network. Comparison
among several tests.

chromotherapy system is different. During these tests all the nodes (even
the motes closer to the master) have less precision in respect to the tests of
Table 7.10. We notice that the configuration 1,2,4 and 10 have one common
characteristic: the value of the initial delay (dTOT) parameter lower than
750 ms. For this reason we find a motivation to their poor accuracy (see
the experimental results in Table 7.11).

test 1 test 2 test 4 test 10
hop 1 42,50 40,21 38,81 42,77
hop 2 41,50 39,82 38,62 41,57
hop 3 43,22 40,15 39,23 43,70
hop 4 42,08 40,14 39,37 42,69
hop 5 42,13 40,32 39,15 48,33
hop 6 44,85 39,84 41,06 117,99
hop 7 50,34 91,27 44,99 254,28
hop 8 102,74 52,03 62,99 -
hop 9 228,34 118,48 160,71 -
hop 10 349,43 228,05 283,93 -

Table 7.11: Precision of the system in ticks. Comparison of test 1, 2, 4 and test
10.

69

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Because in our testbed the flooding process generally takes about 700
ms to cover all the grid network, every node is still busy from this activity
when it should start the displaying of the first color of the message. So the
less precision is due to the great number of messages that every node must
menage during the flooding of the sequence. We can conclude that if the
initial delay value is greater than the amount of time necessary to perform
the flooding, the precision of the system increases.
In addition is possible to understand that if a node receives a RtLightMsg

in the instant t very closer to the turnOnTime instant contained in the
packet, the precision degrades more rapidly.

7.4 Delays introduced in the flooding process

from each hop

This testing phase wants to observe which is the delay di introduced in the
flooding process from each hop, and what aspects of the network influence
these values.
In order to find out the delay introduced from the hop i, we calculate (using
the nomenclature of Section 7.1) the value di+1 − di and we subtract also
the random wait interval w in order to be more precise.
As we can see in Figure 7.8, the average of the delays introduced from each
hop is not constant, but it depends from the number of nodes belonging to
the hop (Table 7.2). So, if we have a small number of nodes at a certain hop,
the introduced delay is low. On the other hand, a greater delay is involved
from a hop which is populated with a lot of nodes.
In Figure 7.9 we present the trend of the introduced delay referred to the
number of hop nodes. So, accordingly to Table 7.2 we have that:

• a single node in present only in the 10-th hop;

• the first and 9-th hop have 2 nodes each one;

• 3 nodes populate the second and also the 8-th hop;

• 4 nodes are in the third and in the 7-th hop;

• 5 nodes are in each the 4-th, 5-th and 6-th hop.

70

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Figure 7.8: Global average delay introduced from each hop in a grid network.

Figure 7.9: Average introduced delay per number of hop nodes.

71

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Now we want to find out the relationship among the delay and the
number of nodes of the hop. For this reason we found the equation of the
regression line using the Ordinary Least Squares (OLS) method (Figure
7.10). The regression line of the introduced delays is:

y = 7.4761x+ 30.2825

Figure 7.10: Regression line for the estimations of the di values.

Thanks to this equation we can estimate the delays di introduced from
each hop in order to figure out the total delay dTOT necessary for the com-
munication.

Clearly, if we want to implement a chromotherapy system over a dy-
namic WSN in which the motes are not static, this process is not possible.
The di values are not constant and so the dTOT value changes every time a
topology change occurs.

We have deduced that hop delays are strictly dependent from the num-
ber of nodes per hop and hence the collisions occurred. In our tests all the
nodes are into the radio range of each others, but we suppose that in a WSN
which have sparse nodes, the delay should remain constant.
To confirm our conclusion, we show in Figure 7.11 the delay introduced from
the nodes in a linear array. This network topology in fact has only one node
per hop. So each jump introduce in the flooding process the same delay of

72

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

about 47 milliseconds. Only the first hop is faster than the others, but it is
due to the master implementation.

Figure 7.11: Global average delay introduced from each hop in a linear array
network.

7.5 Variations of the responsiveness of the op-

erating system

To understand if TinyOS is influenced from the chromotherapy system im-
plementation we studied the variation of the amount of time that the OS
needs to complete a message sending process. So the data processed were
(using the nomenclature of Section 7.1) the values sd− s.
Our test has demonstrate that the operating system seems to be not affected
from our application. All the sending activities were completed in average in
25.56 ms from when the application requests the forwarding (Figure 7.12).

In Table 7.12 are summarized the averages of the amounts of time em-
ployed in the sending processes and the standard deviation from the average.
We observe that there is never great deviation from the average.

73

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

Figure 7.12: Global average sending delay per hop on a grid network.

74

CHAPTER 7. TESTING OF THE DEVELOPED SYSTEM

ho
p

1
ho

p
2

ho
p

3
ho

p
4

ho
p

5
ho

p
6

ho
p

7
ho

p
8

ho
p

9
ho

p
10

te
st

1
23

,0
8

26
,7

2
26

,2
7

27
,4

7
26

,9
8

26
,8

9
26

,7
6

25
,1

6
26

,7
0

25
,5

1
te

st
2

22
,4

2
26

,0
3

25
,9

0
27

,1
9

26
,9

1
25

,9
6

26
,2

6
24

,5
0

25
,4

4
25

,2
8

te
st

3
22

,7
8

27
,1

4
25

,9
3

28
,3

0
26

,6
4

26
,9

9
26

,8
7

25
,2

0
24

,1
7

22
,5

0
te

st
4

23
,4

8
26

,5
3

26
,6

5
28

,0
8

27
,4

2
27

,2
1

27
,0

4
25

,5
3

26
,2

3
26

,9
3

te
st

5
22

,1
9

26
,8

2
25

,6
7

27
,7

7
26

,7
8

26
,4

7
26

,6
0

25
,4

1
24

,6
4

22
,4

9
te

st
6

22
,0

1
25

,8
6

26
,7

3
27

,2
8

26
,8

2
26

,3
9

26
,1

9
25

,2
7

24
,3

2
22

,5
9

te
st

7
22

,6
1

26
,1

0
26

,6
2

27
,7

8
26

,9
6

26
,6

4
26

,5
7

25
,6

6
24

,6
6

23
,0

0
te

st
8

22
,8

9
25

,8
3

26
,4

6
27

,2
5

26
,7

9
26

,6
5

26
,3

8
25

,3
3

24
,1

9
22

,8
6

te
st

9
22

,8
3

25
,8

0
25

,4
0

27
,1

8
26

,4
5

26
,3

5
25

,8
6

25
,0

3
24

,0
2

22
,4

5
te

st
10

22
,9

3
25

,1
7

25
,9

1
26

,7
6

26
,1

8
27

,1
0

28
,4

2
-

-
-

te
st

11
22

,3
7

25
,8

6
26

,0
9

27
,0

7
26

,8
8

26
,5

7
26

,1
9

24
,9

3
23

,8
2

22
,0

4
te

st
12

22
,7

9
25

,4
3

26
,5

4
27

,8
8

26
,3

9
26

,8
3

26
,2

4
25

,3
1

23
,7

2
21

,6
5

te
st

13
22

,2
0

26
,2

8
26

,2
4

27
,2

2
26

,6
1

26
,4

8
26

,7
1

25
,1

9
24

,0
9

22
,1

7
AV

E
R

A
G

E
22

,6
6

26
,1

2
26

,1
8

27
,4

8
26

,7
5

26
,6

6
26

,6
2

25
,2

1
24

,6
7

23
,2

9
ST

D
D

E
V

0,
41

0,
56

0,
41

0,
45

0,
31

0,
35

0,
63

0,
30

0,
96

1,
66

T
ab

le
7.

12
:

A
ve

ra
ge

of
th

e
am

ou
nt

s
of

ti
m

e
in

vo
lv

ed
in

a
m

es
sa

ge
se

nd
in

g
(i

n
m

ill
is

ec
on

ds
).

C
om

pa
ri

so
n

of
al

lt
he

te
st

s.

75

Chapter 8
Conclusions

The objective of this thesis was to develop a chromotherapy system using
WSN as infrastructure. It must perform the visualization, via external RGB
devices, of a color sequence. An innovative aspect of the project is the pos-
sibility that our application inherits all the characteristics of a WSN as for
instance the flexibility, the mobility and the multi-hop communication. The
work also included the study of the architecture composed by Tmote Sky
motes and the TinyOS operating system. We also made a great effort in the
implementation of the entire project in Java and in the NesC programming
language.
A key aspect of a chromotherapy system is the coordination that must exist
among all the nodes. This specification can be satisfied on a synchronized
network. So all the nodes must agree to a common reference global clock.
Therefore in the first phase of this work we have developed the network syn-
chronization. After we studied all the algorithms in the literature for the
WSN synchronization, it was decided to adopt the ATS algorithm [4, 30].
It is a very precise synchronization method. It is also independent from the
network topology and fully distributed.
The characteristics of our application allow to relax the constraints of the
algorithm accuracy. So it was carried out a simplification of ATS remov-
ing the skew compensation in the global clock estimation of the nodes,
while maintaining the offset compensation. In this way, the lightness and
dynamism of the original algorithm were maintained. Furthermore it was

77

CHAPTER 8. CONCLUSIONS

possible to save computational resources which can be used in the manage-
ment of the chromotherapy sequence. However, if compared to an algorithm
that also compensates the drift of the clock, the only compensation of the
offset requires more frequent synchronization messages in order to be pre-
cise. In our case was experimentally verified that with a synchronization
message interval of 30 seconds we are able to obtain a millisecond accuracy.
The project requires that there must not be chromatic differences between
nodes while they are showing the color sequence through the RGB device.
The millisecond accuracy ensures that this situation does not occur. In fact
the human eyes are less precise than a system with a so great precision.
During the first testing phase of the algorithm, was verified that in some
cases the convergence to a common reference clock took too long. To resolve
this problem has been conceived and then implemented an overlay logical
network. This last one builds a hierarchical structure over the WSN. A
root node (chosen from the user) becomes the reference point for all the
other nodes. Now the temporal information received from a node can have
different importance. In fact each mote considers only information from
neighborhoods that are closer to the root than itself. The overlay structure
is also able to adapt itself if topology changes occur, or if the root falls.
Our implemented system is able to decide what is the weight of the overlay
structure in the synchronization algorithm. We have experimentally demon-
strated that a particular configuration of this hybrid algorithm maximizes
the performance.
The second testing phase of the Overlay-based synchronization algorithm
has demonstrates also the robustness, the adaptability and the high speed
of convergence. In addition a higher accuracy was noticed if compared to
the previous offset compensation algorithm without overlay structure.

The second part of the thesis concerns the design of the method to cre-
ate, manage and display the color therapy sequence. For this purpose, the
succession of colors was divided into sections in order to make the process
generation-reproduction of the sequence as real-time as possible. Each sec-
tion consists of a fixed number of colors. A master node communicates each

78

CHAPTER 8. CONCLUSIONS

portion to its neighborhood motes of the WSN. Afterwards the information
are sent to all the others nodes thanks to a multi-hop flooding process.
The sequence communication requires a certain amount of time to cover
the entire network. This time interval should be smaller than the delay
generation-reproduction of the sequence (called initial delay) which is fixed
from the user. If this constraint is not respected, the sequence is not able
to reach the nodes further from the master.
The display phase of the sequence is made through an RGB device that is
still under construction. The device must receive messages via the UART
interface. In the Tmote sky the USART of the MCU is shared from the
UART pins and the radio. Therefore it was necessary to implement the
arbitration of this resource permitting to work to both the interfaces.
Another specification of the project was the possibility that the nodes could
be grouped into independent systems. These systems must coexist in the
same environment without interfering with each other. This feature has
been realized thanks to a simple and effective idea. Every message contains
a field called groupMask which permit to each node to diversify the group
membership of the packet.
The final phase of the work tested the system when it is subjected to dif-
ferent workloads. We realize that any sequence portion message must be
forwarded twice by each node. This is necessary to grant that the system
reproduces the complete color sequence with high fidelity. Moreover, we
found that even if the workload changes, the fidelity of the system remains
satisfactory. We have also demonstrate that the more a node is far from the
master and the more its sequence reproduction fidelity degrades.
Finally, we have understood that the parameter that defines the initial delay
is very important. Obviously is better to have a short delay. But it is not
possible to reduce too much this delay for several reasons. First because it is
strongly dependent from the number of hops of the network (and hence its
extension) and from the number of nodes at each hop. The second because
if the delay is too short, the sequence is also not able to reach all the nodes
of the WSN and the precision and the fidelity of the system decrease.

Further developments of this work of thesis are possible. It is possible

79

CHAPTER 8. CONCLUSIONS

for example to implement a root election system for the overlay structure. A
mechanism that elects the node with the lowest ID (as presented in FTSP
[33]) makes the network more independent from the user. On the other
hand a greater computation and memory usage are required to the nodes.
It is also possible to design a cluster-based chromotherapy system for wide
networks in which the nodes are very concentrate. In this situation the
communication becomes difficult because of the collisions of the messages1.
For this reason with a cluster-based network approach, in which only some
nodes perform the flooding of the color sequence and all the others only
receive and display the sequence parts, we can reduce the collisions and re-
alize a high fidelity chromotherapy system in high density networks.
In addition, the actual developed system can be used for many others ac-
tivities which require remote coordination of light sources or in applications
which create colored sequences in relation to external events as for instance
movements or sounds.
Modifying the RtLightControlC component is also possible to create
light effects based on environmental changes, as for example the ambient
brightness.
One limit of our current project implementation is the energy consumption.
In fact this aspect is not handled in any way. It is mainly because for a
compute-intensive application the realization of this feature became impos-
sible.
Supposing that we are able to know some information of how the generator
creates the colors sequence. So for instance we are able to know that among
color cx and cy there are always the intermediate colors cx+1, cx+2, ..., cy−2,

cy−1. If this happens, we can implement a compression of the sequence. The
master could send only a packet containing the two colors cx and cy, then the
slaves-repeaters nodes that receive this couple of colors already know that
the sequence they must show is composed by all the colors cx, cx+1, cx+2, ...,

cy−2, cy−1, cy. Another possible improvement is to remove the constraint
that imposes the synchronization of the master node. In this case the ref-
erence time in the field turnOnTime of the RtLightMsg package could

1In our work we have also understood that collisions are the greatest weak point of
the project.

80

CHAPTER 8. CONCLUSIONS

be calculated and filled from one of the first nodes that receive the message
from the master. Because this last one can have more than one neighbor-
hood, some control mechanisms must be implemented to avoid the multiple
calculation of the turnOnTime value.
Finally some code changes can easily adapt our work to all the applications
that need to realize a coordinated succession of actions (through external
devices or not) at a specific frequency over the entire extension of a wireless
network.

81

Bibliography

[1] A.S.Tanenbaum, M.V.Steen. “Distributed Systems: Principles and
Paradigms”. PEARSON Prentice Hall, 2007. pages 1-30.

[2] U.Hansmann, L.Merk, M.S.Nicklous, T. Stober. “Pervasive Computing:
The Mobile World”. Springer, 2003. pages 15-21.

[3] R.N.Murty, G.Mainland, I.Rose, A.R.Chowdhury, A.Gosain, J.Bers,
M.Welsh. “CitySense: An UrbanScale Wireless Sensor Network and
Testbed”. 2008. School of Engineering and Applied Sciences, Harvard
University BBN Technologies, Inc. 2008 IEEE International Conference
on Technologies for Homeland Security.
Web site: http://www.citysense.net/

[4] L.Schenato, F.Fiorentin. “Average TimeSynch: a consensus-based pro-
tocol for time synchronization in wireless sensor networks”. 2009. Pro-
ceedings of 1st IFAC Workshop on Estimation and Control of Net-
worked Systems (NecSys’09).

[5] P.Casari, A.P.Castellani, A.Cenedese, C.Lora, M.Rossi, L.Schenato,
M.Zorzi. “The Wireless Sensor Networks for City-Wide Ambient Intel-
ligence (WISE-WAI) Project”. 2009. SENSORS volume 9-2009 pages
4056-4082.
Web site CaRiPaRo project: http://cariparo.dei.unipd.it/

[6] D.Gay, P.Levis. “TinyOS Programming”. 2009 Cambridge University
Press.

83

BIBLIOGRAPHY

[7] B.W.Kernighan, D.M.Ritchie. “The ANSI C Programming Language -
2nd edition”. 1988 Prentice Hall.

[8] F.Fiorentin. “Implementazione di sincronizzazione temporale distribuita
in reti di sensori wireless”. 2007-2008

[9] D.L.Mills. “Improved algorithms for synchronizing computer network
clocks”. 1994. Proceedings of ACM Conference on Communication Ar-
chitectures (ACM SIGCOMM 1994). London, UK.

[10] D.L.Mills. “Network Time Protocol Version 4 Reference and Implemen-
tation Guide”. 2006.
Web site: http://www.eecis.udel.edu/%7emills/database/
/reports/ntp4/ntp4.pdf

[11] M.Bertinato, G.Ortolan, F.Maran, R.Marcon, A.Marcassa, F.Zanella,
P.Zambotto, L.Schenato, A.Cenedese. “RF Localization and tracking of
mobile nodes in Wireless Sensors Networks: Architectures, Algorithms
and Experiments”. 2007. Proceedings of the 5th European Conference
on Wireless Sensor Networks (EWSN’08), 2008.

[12] J. Elson, L. Girod, D. Estrin. “Fine-grained network time synchroniza-
tion using reference broadcasts”. 2002. Proceedings of the 5th sym-
posium on Operating systems design and implementation (OSDI’02),
pages 147-163.

[13] S.Yoon, C.Veerarittiphan, M.L.Sichitiu. “Tiny-sync: Tight time syn-
chronization for wireless sensor networks”. 2007. ACM Journal of Sen-
sor Networks, 3(2), 2007.

[14] S.Ganeriwal, R.Kumar, M.B.Srivastava. “Timing-sync protocol for sen-
sor networks”. 2003. Proceedings of the first international conference
on Embedded networked sensor systems (SenSys’03), pages 138-149,
2003.

[15] J.v.Greunen, J.Rabaey. “Lightweight time synchronization for sensor
networks”. 2nd ACM International Workshop on Wireless Sensor Net-
works and Applications, pages 11-19, September 2003.

84

BIBLIOGRAPHY

[16] Q.Li, D.Rus 2006. “Global Clock Synchronization in Sensor Networks”.
IEEE Transactions on computer, vol. 55, no.2, February 2006.

[17] G.Werner-Allen, G.Tewari, A.Patel, M.Welsh, R.Nagpal. “Firefly-
inspired sensor network synchronicity with realistic radio effects”. ACM
Conference on Embedded Networked Sensor Systems (SenSys’05),
November 2005.

[18] O.Simeone, U.Spagnolini. “Distributed time synchronization in wire-
less sensor networks with coupled discrete-time oscillators”. EURASIP
Journal on Wireless Communications and Networking, 2007: Article
ID 57054, 13 pages, 2007. doi:10.1155/2007/57054.

[19] R.Solis, V.Borkar, P.R.Kumar. “A new distributed time synchroniza-
tion protocol for multihop wireless networks”. 45th IEEE Conference
on Decision and Control (CDC’06), December 2006.

[20] K.S.Low, W.N.N.Win, M.J.Er. “Wireless Sensor Networks for Indus-
trial Environments”. 2005. Proceedings of the 2005 International Con-
ference on Computational Intelligence for Modelling, Control and Au-
tomation, and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC’05).

[21] Md.A.Hussain, P.khan, K.K.Sup. “Md.Asdaque Hussain, Pervez khan,
Kwak kyung Sup”. 2009. Proceedings of the 11th international confer-
ence on Advanced Communication Technology (ICACT’09). 2009.

[22] M.Rossi, G.Zanca, L.Stabellini, R.Crepaldi, A.F.Harris III, M.Zorzi.
“SYNAPSE: A Network Reprogramming Protocol for Wireless Sensor
Networks using Fountain Codes”. 2008. 5th Annual IEEE Communica-
tions Society Conference on Sensor, Mesh, and Ad Hoc Communica-
tions and Networks (SECON), 2008.

[23] H.Garcia-Molina. “Elections in a Distributed Computing System”. 1982.
IEEE Transactions on Computers, vol. 31, no. 1, pages 48-59, Jan. 1982,
doi:10.1109/TC.1982.1675885.

85

BIBLIOGRAPHY

[24] E.Chang, R.Roberts. “An improved algorithm for decentralized extrema-
finding in circular configurations of processes”. 1979. Communications
of the ACM (ACM) 22 (5): pages 281283, doi:10.1145/359104.359108.

[25] S.Vasudevan, J.Kurose, D.Towsley. “Design and Analysis of a Leader
Election Algorithm for Mobile Ad Hoc Networks”. 2004. Proceedings
of the 12th IEEE International Conference on Network Protocols
(ICNP’04), pages 350-360, doi:10.1109/ICNP.2004.1348124.

[26] From Moteiv Corporation: “Tmote Sky: Datasheet”. 2004-2006 Moteiv
Corporation.
Web site: http://sentilla.com/files/pdf/
/eol/tmote-sky-datasheet.pdf

[27] P. Levis. “TinyOS 2.0 Overview”.
Web site:http://www.tinyos.net/tinyos-2.x/doc/
/html/overview.html

[28] E.Brewer, D.Culler, D.Gay, P.Levis. “nesC 1.2 Language Reference
Manual”. 2005.
Web site: http://www.tinyos.net/dist-2.0.0/
/tinyos-2.0.0beta1/doc/nesc/ref.pdf

[29] D.L.Mills. “Internet time synchronization: the network time protocol”.
1991 IEEE Trans. Communications 39, 10 (Oct.), 1482-1493.
Web site: http://www.eecis.udel.edu/ mills/ntp.html

[30] L.Schenato, G.Gamba. “A distributed consensus protocol for clock syn-
chronization in wireless sensor network”. 2007. 46th IEEE Conference
on Decision and Control.

[31] K.Klues, P.Levis, D.Gay, D.Culler, V,Handziski. “TEP 108 (TinyOS
Enhancement Proposals) - Resource Arbitration”. 2009.
Web site: http://www.tinyos.net/tinyos-2.x/doc/
/html/tep108.html

[32] Texas Instruments Incorporated. “MSP430F15x, MSP430F16x,
MSP430F161x Mixed Signal Microcontroller manual (Rev. F)”. 2009.

86

BIBLIOGRAPHY

Web site: http://www.cs.jhu.edu/ cliang4/public/

/datasheets/msp430f1611.pdf

[33] M.Maroti, B.Kusy, G.Simon, A.Ledeczi. “The flooding time synchro-
nization protocol”. 2004. Proceedings of the 2nd international confer-
ence on Embedded networked sensor systems (SenSys 2004). 2004 -
ACM Press, pages 39-49.

[34] D.Culler, D.Gay, V.Handziski, J.H.Hauer, J.Polastre, C.Sharp,
A.Wolisz. “TEP 2: Hardware Abstraction Architecture”. 2007.
Web site: http://www.tinyos.net/dist-2.0.0/tinyos-2.x/doc/
/html/tep2.html

[35] Web site SIMEA: http://automatica.dei.unipd.it/people/
/cenedese/research/simea.html

[36] Web site OPTICONTROL: http://www.opticontrol.ethz.ch/in-

dex.html

[37] Web site Nelly Bay-Magnetic Island WSN:
http://www.science.org.au/nova/110/110key.htm

[38] Web site SENTILLA: http://www.sentilla.com/

[39] Web site CROSSBOW : http://www.xbow.com/

[40] Web site: National Institute of Standards and Technology, IEEE 1588:
http://ieee1588.nist.gov/

[41] Web site dedicated to various overlay technologies:
http://www.overlay-networks.info/

[42] Wikipedia definition:
http://en.wikipedia.org/wiki/Best_effort_delivery

[43] TinyOS tutorial web page:
http://docs.tinyos.net/index.php/

/Mote-mote_radio_communication

87

BIBLIOGRAPHY

[44] CodeBlue: Wireless Sensors for Medical Care web site:
http://fiji.eecs.harvard.edu/CodeBlue

[45] Wikipedia definition:
http://en.wikipedia.org/wiki/Consensus_%28computer_science%29

88

Appendix A
Example of sequence diffusion

89

Appendix B
Behavior of the chromotherapy system

91

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

92

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

93

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

94

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

95

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

96

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

97

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

98

APPENDIX B. BEHAVIOR OF THE CHROMOTHERAPY SYSTEM

99

Acknowledgements

First of all I would like to express my sincere gratitude to my supervisor,
Prof. Luca Schenato. He provided me with many helpful suggestions and
constant encouragement during the course of this work.
My special appreciation goes to my parents, Danilo and Renata, for the sup-
port they provided me through my entire life. Particular thanks to my sister
Silvia, my brother Marco, Tania and my little nephews Matteo and Edoardo.
My family has always supported and encouraged me to do my best in all mat-
ters of life.
I want to express my gratitude to my uncle Daniele Burattin for his precious
help and sustain. A thanks also to those who have believed in me.
I would like to thank my fellow students and friends Vincenzo Maria Cap-
pelleri, Carlo Alberto Cazzuffi and Riccardo Levorato for putting up with me
all these years. Thanks also to my friend Francesco Roveron for all the days
spent together in navlab, his companionship revitalizes me.
I wish to thank even my friend for life Michele Costola. I hope that our
friendship will continue forever.
Lastly, and most importantly, I wish to thank my love Marta for the very
special person she is. Without her love, her help and her incredible amount
of patience, my studies would not have been completed. A special thanks also
to her lovely family.

	Abstract
	Sommario
	Table of contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Introduction
	Contents of the chapters

	Wireless Sensor Network
	Definition and characteristics of WSN
	Architecture of a node
	Challenges for the WSN
	Network topologies
	Application fields

	Tmote Sky, TinyOS and NesC language
	The Tmote Sky
	TinyOS-2.x operating system
	Versions
	Hardware abstraction
	Component-base architecture
	Traits of TinyOS

	Network Embedded Systems C
	Definition and principal characteristics
	Interfaces and components
	Modules and configurations
	Execution Model
	Split-phase operations

	The overlay-based synchronization algorithm
	Clocks and synchronization
	Average TimeSync description
	Relative skew estimation and compensation
	Relative offset estimation and compensation

	Offset Compensation Algorithm
	Convergence problems

	Color sequence dissemination
	Sequence generation
	The multi-hop sequence communication
	Communication through the UART pins
	Description and configuration of the interface
	The arbitration of the USART of the MSP430

	The software description
	The synchronization software
	Packets format
	Code porting

	The color sequence control software

	Testing of the developed system
	Performed tests
	Packet loss
	Linear Array
	Grid network
	Rising of the packet frequency

	Precision of the nodes
	Delays introduced in the flooding process from each hop
	Variations of the responsiveness of the operating system

	Conclusions
	Bibliography
	Example of sequence diffusion
	Behavior of the chromotherapy system

