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Abstract

In this thesis, we used Type 1a supernovas (SNeIa), calibrated with the local
determination of the Hubble constant H0 using the last result from the SH0ES
collaboration, to build a continuous version of the Pantheon+ using Gaussian
Process interpolation. This is done in a model-independent way. We use this
new catalogue to predict the strong lensing distances from H0LiCOW and the
Baryon Acoustic Oscillations distance ratios from DESI to test their compatibil-
ity. We found that these predictions using the Pantheon+ catalogue have a per-
fect agreement with the observational data from H0LiCOW and DESI, showing
compatibility at a 1σ C.L. We showed that the agreement between the predicted
observations using Pantheon+ and DESI BAO is highly dependent on the cali-
bration of the sound horizon rd. In particular, using the result from the Planck
collaboration, we found that the predicted data would be at 2σ C.L. tension with
the DESI BAO data. Our tests give further evidence that there are no significant
unaccounted systematic errors that could bias the result from the SH0ES col-
laboration. Thus, we provide more evidence for the hypothesis that the Hubble
constant tension problem has a physical origin.
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Introduction

During the last few years, we have been able to constrain the Cosmological pa-
rameters with unprecedented accuracy. In particular, we can now constrain the
Hubble constant H0, which is the parameter measuring the current expansion of
the Universe, with 1% accuracy. The most famous of these measurements come
from the Supernova, H0, for the Equation of State of Dark Energy (SH0ES) col-
laboration, and the Planck collaboration. The former comes from supernova,
and cepheid variables giving a model-independent determination of H0. On the
other hand, the latter comes from the Cosmic Microwave Background (CMB)
anisotropies, but it is model-dependent. The model that is used to determine
H0 using CMB anisotropies is the so-called ΛCDM model, the standard model of
Cosmology.

The last result of H0 from the SH0ES collaborations is reported in [1], we will
call this SH0ES 2022. Meanwhile, the last result from the Planck collaboration is
reported in [2] which we will call Planck 2018. Interestingly, both results differ at
the 5σ confidence level (C.L.). This means that the probability of both measure-
ments to be compatible is 1 in 3.5 million. This gives no room for the possibility
of a statistical fluctuation. This is known as the Hubble constant tension H0

problem [3, 4]. There are two possible explanations for the tension. The first
one is that there are unaccounted systematic errors in the analysis from SH0ES
[5]. The other possibility relates to the breakdown of the standard ΛCDM model
[6]. This would require the establishment of a new standard model of Cosmology
that can solve the Hubble tension. However, this is not an easy task. Solving the
Hubble constant tension is a necessary condition to be the new standard model,
but it is by no means sufficient. The new standard model also needs to provide an
accurate explanation of the phenomena that ΛCDM can describe. This includes,
but is not limited to the existence of the CMB [7], the large-scale structure of the
Universe [8], and the accelerated expansion of the Universe [9].
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The possibility that the determination of H0 is being affected by unaccounted
systematic errors makes having a variety of observables crucial. Others do not
share the systematic uncertainties of supernovas and cepheids. Thus, in this
thesis, we will consider distance measurements from strong lensing and Baryon
Acoustic Oscillations (BAO). We will start from [10]. The purpose of this paper
was to carry out a consistency check of the distance-redshift relation determined
by the supernova of the Pantheon catalogue [11] and the strong lensing mea-
surements of the H0LiCOW collaboration [12]. The consistency check consists of
starting from the Pantheon catalogue and predicting the H0LiCOW strong lens-
ing distances. Then, it is possible to make comparisons and determine whether
the results are consistent in a similar way in which we assess the compatibility of
the H0 determination between SH0ES 2022 and Planck 2018. The assumptions
to predict the distances are that the Universe is spatially flat and to calibrate
the absolute magnitude of the Pantheon supernova with the result from SH0ES
2022. This makes possible to evaluate if the analysis from the SH0ES collabora-
tion is biased by unknown systematic errors. The premise for this is that since
systematics on H0LiCOW and SH0ES act differently, then a comparison of their
results would show if there are some unaccounted systematics. If the results are
in agreement, it implies that there are no indications of unaccounted systematics.
In [10], they showed that this is the case in both Pantheon and H0LiCOW. How-
ever, there is an unlikely scenario where the systematics can act in the same way,
redshift, sign and magnitude. Thus, new analyses would make a more robust
claim to these conclusions.

We will update the results from [10]. We will replace the Pantheon catalogue
[11] with its new updated version, called Pantheon+ [13]. Furthermore, we will
consider results from BAO observations. In particular, we will take the recent
results from the DESI collaboration [14, 15]. While strong lensing observations
give distances, BAO observations give distance ratios. In particular, they measure
DM/rd and DH/rd where DM is a distance called comoving transverse distance,
DH = c/H(z) is the Hubble distance and H(z) the Hubble factor which measures
the expansion of the Universe at any point in history. Finally, rd is the sound
horizon. It is the distance that Baryon Acoustic Waves travelled from the Big
Bang to the moment of recombination. Since baryons and photons are decoupled
from recombination, this distance is fixed after the decoupling. These observables



CONTENTS 3

give different results that are affected by different systematics from the ones from
Supernovas.

The methodology to predict distances starting from the Pantheon+ cata-
logue relies upon the use of Gaussian Process (GP) interpolation. This builds a
continuous version of the Pantheon+ catalogue. Thus, it builds a continuous ver-
sion of the distance modulus that can be converted to luminosity distances and
thus to other kinds of distances. This allows us to compare the observables of
H0LiCOW and DESI with the predictions from Pantheon+. The predictions from
Pantheon+ are model-independent and thus allow us to determine whether any
dataset is being subject to unaccounted systematics. If Pantheon+ has unknown
systematics, then its predictions for strong lensing distances and BAO distance
ratios would not be compatible with H0LiCOW and DESI, respectively. How-
ever, there is still the possibility that two datasets are being subject to the same
kind of systematics, at the same redshift, sign and magnitude [16]. Although
this possibility is unlikely it cannot be discarded by comparing Pantheon+ with
H0LiCOW. However, if we compare Pantheon+ with H0LiCOW and also with
DESI BAO, and the level of agreement is good, it is an indication that there are no
signs of unaccounted systematics in the three datasets. Therefore, it implies that
the H0 determination of the SH0ES collaboration is not affected by unaccounted
systematics and thus, the origin of the Hubble constant tension is physical. The
tests presented in this thesis and [10] are complementary of other systematic tests
[17, 18, 19, 20] and to other papers assessing the sources of the systematics [21,
22, 23, 24, 25, 26, 27, 28]. Furthermore, the last result from the SH0ES collabora-
tion [1], which is the one where we reached the critical point of having a 5σ C.L.
tension, significantly reduced the systematics involved. Thus, as time goes on, it
seems that the possibility of the tension having a physical nature becomes higher.

The thesis is divided in the following way: In Chapter 1, we give an introduc-
tion to background cosmology and the required tools to use Type 1a Supernova,
Strong Lensing distances and Baryonic Acoustic Oscillations. In Chapter 2, we
develop the theory of Type 1a Supernova and Baryonic Acoustic Oscillations.
In Chapter 3, we briefly describe the strong lensing catalogues. Then, we de-
scribe the procedure to predict distances with Gaussian Processes starting from
the Pantheon+ catalogue. Finally, we present the comparison between Strong
Lensing data and Pantheon+. In Chapter 4, we describe the method to calibrate
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the sound horizon rd in a model-independent way. Then, we make the compar-
ison between the Baryonic Acoustic Oscillation distance ratios and Pantheon+.
Finally, in the conclusions, we present our final remarks.



Chapter 1

Background Cosmology

We start by giving an introduction to Background Cosmology and the required
tools to use Supernova Type 1a, Strong Lensing and Baryon Acoustic Oscillations
as cosmological probes.

1.1 The Cosmological Principle

The idea that a privileged observer does not exist is known as the Copernican
principle. When we apply this principle to Cosmology, we naturally develop the
concepts of isotropy and homogeneity. Isotropy means that the Universe has the
same properties regardless of the direction in which we look. On the other hand,
homogeneity means that the Universe has the same average density everywhere.
However, when looking at the sky, we immediately can see that the Universe
is neither isotropic nor homogeneous. There exist a large number of stars and
galaxies with a vacuum around them. With this in mind, the Universe would not
be able to hold the Copernican principle. Nevertheless, homogeneity and isotropy
hold when looking at large scales (on the order of Megaparsecs) with just tiny
variations of the order of 1 on 105. This is known as the cosmological principle,
and as we can see, it is a corollary of the Copernican principle when applying it
to Cosmology. This is a strong assumption since it also guarantees that the laws
of Physics are Universal.

Starting from the cosmological principle, we can derive the Friedmann-Lemaitre-
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6 Chapter 1. Background Cosmology

Robertson-Walker (FLRW) metric [29]

ds2 = −c2dt2 + a2(t)
(

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
)
, (1.1)

where a(t) is known as the scale factor and it depends on time. It has an im-
portant physical meaning. It quantifies how big the Universe is. At the moment
of the Big Bang, it was a(0) = 0 and nowadays it is (t0) = a0, where the subindex
zero refers to the current epoch. However, since a0 is just a normalization factor,
it is usual to set it to a0 = 1.

Before moving on to the Friedmann equations, it is useful to introduce the
concept of comoving coordinates. We were talking about the cosmological prin-
ciple in the last paragraphs, where we stated that the Universe is isotropic and
homogeneous. However, this is true in only one coordinate system, which is
known as the comoving coordinate system. We can easily see this if we consider
the Cosmic Microwave Background (CMB). This radiation satisfies the cosmo-
logical principle in the comoving system. However, if we move at a certain speed
with respect to this coordinate system, we start detecting a dipole contribution
of the CMB. This no longer respects the cosmological principle. Then, the only
coordinate system where it is valid is the comoving system. In this system, the
distance between two galaxies remains frozen in time. Thus, the comoving co-
ordinates are the ones that expand in the same way as the Universe. Inside the
FLRW metric (1.1), the comoving distance is given by r and it is the distance in
this frame reference. If we want to derive the physical actual distance from this,
we need to multiply the comoving distance with the scale factor (D(t) = a(t)r).

1.2 The Friedmann equations

After selecting the FLRW metric, which is the one that fulfils the cosmological
principle, we proceed to solve the Einstein equations

Rµν −
1
2Rgµν = 8πGTµν , (1.2)

where Rµν is the Ricci tensor, R the Ricci scalar, and Tµν the stress-energy tensor
given by

Tµν = (ρ+ p)uµuν + pgµν , (1.3)
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where ρ is the density, p the pressure and uµ the 4-velocity. Notice that we
assumed the Universe comprises only perfect fluids. By starting from the FLRW
metric (1.1) and computing the components of the Einstein equations, we derive
the Friedmann equations

H2 = 8πG
3 ρ− kc2

a2 , (1.4)

Ḣ +H2 = −4πG
3

(
ρ+ 3p

c2

)
, (1.5)

where H = ȧ/a is the Hubble factor. The first equation is known as the first
Friedmann equation or just as the Friedmann equation. In contrast, the second
one is known as the second Friedmann equation, the Raychaudhuri equation or the
acceleration equation. We should note that the density and pressure in equations
(1.4) and (1.5) refer to the total density and the total pressure.

We can derive an additional equation. Starting from the Bianchi identities
[30]

∇αR
β
γµν +∇µR

β
γνα +∇νR

β
γαµ = 0, (1.6)

where Rβ
γµν is the Riemann curvature tensor tensor. By contracting β with µ,

using the symmetries of the Riemann tensor and contracting γ and ν

∇αR− 2∇γR
γ
α = 0, (1.7)

which can be rewritten as

∇γ
(
Rγα −

1
2Rgγα

)
= 0, (1.8)

then, the Einstein equations imply that

∇γT
γα = 0. (1.9)

If the solve for the zeroth component of this equation, we get the density
evolution equation

ρ̇+ 3Hρ(1 + w) = 0, (1.10)

with w the equation of state w = p/(ρc2). If we assume that w is a constant

ρ(a) = ρ0a
−3(1+w), (1.11)



8 Chapter 1. Background Cosmology

where the zeroth sub-index refers to the current time (we are setting a0 = 1).
It is important to mention that the set of equations (1.4), (1.5) and (1.10) are
not independent. Only two of them are independent and the third one can be
derived from the other two. We can see this by taking the derivative with respect
to the time of equation (1.4). If we substitute ρ̇ using equation (1.10), we get (1.5).

It is possible to rewrite the Friedmann equations with the density parameters.
We need to define the critical density (ρc). It is given by the density the Universe
has when its spatial curvature is equal to zero (k = 0). So,

ρc = 3H2

8πG, (1.12)

and then the density parameters are defined by

Ω = ρ/ρc = 8πGρ
3H2 , (1.13)

and then the Friedmann equation (1.4) can be written as

Ω + Ωk = 1, (1.14)

where Ωk is the curvature parameter

Ωk = − kc2

a2H2 . (1.15)

1.2.1 Redshift

In this subsection, we will talk about the geodesics in the FLRW metric. We will
also introduce an important concept called redshift which will be critical in the
remainder of the thesis. We define pµ = dxµ/dλ as the 4-momentum where λ is
a parameter. Then, the geodesic equation is [30]

dpµ

dλ
+ Γµαβpαpβ = 0, (1.16)

and also
p · p = gµνp

µpν = −E
2

c2 + p2 = −m2c2. (1.17)

We will focus on the case of photons. Their mass is zero. The zeroth compo-
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nent of the geodesic equation is

dp0

dλ
+ aȧ

c
δijp

ipj = 0, (1.18)

where the Latin indexes i, j run over the spatial components. Then, since photons
are massless p0 = E/c = p

dp

dλ
+ H

c
gijp

ipj = 0, (1.19)

where we can write dp
dλ

= dp

dx0
dx0

dλ
= dp

dt
E

dp

dt
+Hp = 0, (1.20)

which has a solution
p = C

a
, (1.21)

with C a constant. For a photon, E = hc

λ
with h the Planck constant and λ the

wavelength. Thus
aemitted

aobserved
= λemitted

λobserved
:= 1

1 + z
, (1.22)

where z is known as redshift. Since we set the current scale factor to 1, we can
write

a = 1
1 + z

, (1.23)

and then we can write the scale factor in terms of a quantity that can be measured,
the redshift.

1.3 Cosmological Parameters

In this section, we will study how the first Friedmann equation (1.4) can be
written in terms of a set of parameters.

1.3.1 Density parameters

We will focus on the density parameters evaluated at present. Moreover, we will
consider a set of different species that can range from radiation to matter. We
will denote each species with a different index i. Then, the density parameter at
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the present for a given species is

Ωi0 = 8πGρia3(1+wi)

3H2
0

, (1.24)

where wi is the equation of state of the species and H0 is the Hubble factor
evaluated at constant time. If we divide the first Friedmann equation (1.4) with
H2

0 (
H

H0

)2
=
∑
i

Ω0ia
−3(1+wi) + Ω0k, (1.25)

and the sum goes over all the species considered. We are considering that each
species does not interact with the other ones. This enables us to write the density
evolution equation (1.10) for each species as

ρ̇i + 3Hρi(1 + wi) = 0. (1.26)

By evaluating equation (1.25) at the present, we get the closure equation

∑
i

Ω0i + Ω0k = 1, (1.27)

which indicates that not all the density parameters are independent. One of them
can be written in terms of the other ones. This reduces the parameter space by
one. In the remainder of this thesis, we will omit the zeroth index when talking
about density parameters since we will refer to them at present.

1.3.2 The Hubble constant

The remaining cosmological parameter relevant to background Cosmology is
known as the Hubble constant (H(a = 1) = H0). It is defined as the Hubble
parameter evaluated at present. Thus, it measures the current rate of expansion
of the Universe. It is one of the most important parameters in Cosmology and
its measurement has opened the door for a new problem in Cosmology. This is
called the Hubble constant problem. We will talk more about this problem in the
following sections and chapters. However, in this sub-section, we will outline the
problem. This problem, which has become a crisis in Cosmology started by mea-
suring the Hubble constant with two different methods. We have methods that
do not assume a specific model of Cosmology. These give a model-independent
measurement of the Hubble constant but can be subject to unknown systematic
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effects. The most important result from this method is the one given by the
SH0ES collaboration. By using Type 1a Supernova (SNeIa) and cepheid stars,
they measured a value of [1]

H0 = 73.04 ± 1.04 km/s/Mpc. (1.28)

The SH0ES collaboration has made continuous efforts to take into account
all the possible systematic errors and this result is the best current model-
independent measurement of H0. On the other hand, we can consider model-
dependent methods. The most accurate measurement of H0 with this method is
given with the Cosmic Microwave Background (CMB) Planck dataset. This is [2]

H0 = 67.4 ± 0.4 km/s/Mpc, (1.29)

which gives a sub-percent determination of H0. The Hubble constant problem
arises when we consider the posterior probabilities of H0 in both results to see
whether they are consistent with each other. It turned out that both determina-
tions are in a 5σ C.L. tension [1].

The tension between model-dependent and model-independent methods has
been growing in the last decade with increasing precision in the measurements.
However, reaching a value of 5σ becomes a critical issue for Cosmology. The
interpretation of a 5σ C.L. tension is that both measurements have a 1 in 3.5
million probability of compatibility. This can have two possible explanations

1. The SH0ES collaboration measurement of H0 is being severely affected by
unknown systematic errors.

2. The assumed cosmological model by Planck is incomplete and we need to
change the standard model of Cosmology.

The first possibility starts to get less likely with time since the SH0ES collab-
oration along with others is working to reduce as much as possible the systematic
errors and by doing so the Hubble tension remains there. This gives the possi-
bility of needing a new standard model of Cosmology. We will talk about this
model in the next section which is called the ΛCDM model.



12 Chapter 1. Background Cosmology

1.4 The Standard Model ΛCDM

ΛCDM is the name of the standard model of Cosmology. It is the one with the
highest amount of observational evidence. Thus, it is important to study and
comprehend this model. The basic idea of the ΛCDM model is that most of the
Universe energy content comes from dark energy in the form of a cosmological
constant Λ and cold dark matter (CDM). Dark energy is a hypothetical perfect
fluid with a negative equation of state equal to minus 1 (ωΛ = −1). This implies
that the pressure is negative. This fact causes the observed accelerated expansion
of the Universe. The second dominant component is cold dark matter. The term
dark matter means that it does not interact with the electromagnetic interaction.
Conversely, cold means that it is non-relativistic. Then, this matter moves much
slower than the speed of light and thus, it has the same equation of state as
Baryonic matter. Apart from this, the Universe is composed of Baryonic matter
and radiation (neutrinos, photons and other relativistic particles). The equation
of state of the 4 species is

1. Dark energy cosmological constant (Λ): w = −1

2. Cold dark matter (CDM): w = 0

3. Baryonic matter (b): w = 0

4. Radiation (r): w = 1/3

Since CDM and baryonic matter have the same w, they have the same back-
ground evolution. Assuming that the Universe is composed of these 4 compo-
nents, the Friedmann equation in terms of Cosmological parameters (1.25) is

H(z) = H0

√
Ωb(1 + z)3 + Ωcdm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩΛ, (1.30)

and since the evolution of baryonic and cold dark matter is the same, we can
define Ωm = Ωb + Ωcdm as a new matter cosmological parameter. Then

H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩΛ, (1.31)

and for the closure relation

Ωm + Ωr + Ωk + ΩΛ = 1, (1.32)
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which implies that the ΛCDM model has a total of four parameters. However,
in the present thesis, we will work at low redshift. And since Ωr ∼ 10−5 [2, 31],
we can approximate Ωr ≈ 0. Thus, we will neglect the contributions of radiation
since we will work at low redshift. In addition to this, we will set Ωk = 0. There
is observational evidence that Ωk ≈ 0 [2, 31, 32]. Also, inflation drives Ωk close to
the zero value. These facts enable us to also set Ωk = 0. Then, we can write the
Hubble factor of the ΛCDM model in terms of only two background parameters

H(z) = H0

√
Ωm(1 + z)3 + (1− Ωm), (1.33)

where we used the closure relation. The parameter vector of ΛCDM is then
Θ = {H0,Ωm}.

1.5 Distances in Cosmology

There are several ways to measure distance in Cosmology. We will introduce
some of the most important ones in this section.

1.5.1 Comoving Distance

As we mentioned, it is a distance that does not grow with time. Let us consider a
comoving distance DC to a light source. By definition, Df = aDC is the physical
distance. In a time differential dt, light moves a differential physical distance
dDf . Then, in this interval, it moves a differential moving distance

dDC = dDf

a
= cdt

a
, (1.34)

where we used the fact that light travels at the speed of light. By integrating, we
derive the comoving distance

DC(t) = c
∫ t0

t

dt′

a(t′) , (1.35)

where we are integrating from the emission time to the present. By performing
the variable change from time to redshift

DC(z) = c
∫ z

0

dz

H(z) , (1.36)
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where H(z) is the Hubble factor. Then, by knowing the expression for H(z), we
can compute the comoving distance. For example, we can use the Hubble factor
of the ΛCDM model (1.33).

1.5.2 Transverse Comoving Distance

To define this distance, we need to consider two events at the same redshift but
separated by an angle δφ. The comoving distance between these two events is
given by DMδφ, where DM is the transverse comoving distance. It is related to
the comoving distance by [33]

DM(z) =



DH√
Ωk

sinh
(√

Ωk
DC

DH

)
if Ωk > 0,

DC if Ωk = 0,
DH√
|Ωk|

sin
(√
|Ωk|

DC

DH

)
if Ωk < 0,

(1.37)

where DH = c/H0 is known as the Hubble distance. This distance is important
because the remaining ones that we are introducing in this section are given in
terms of this one.

1.5.3 Angular Diameter Distance

This distance is the ratio of an object’s transverse physical size to its angular size
in radians. It is useful to turn angular separations into proper separations. Its
expression is given by [33]

DA(z) = DM(z)
1 + z

, (1.38)

and as we can see, it does not increase indefinitely with redshift. The formula im-
plies that the most distant objects have a bigger angular size. It can be measured
by computing

DA(z) = x

δφ
, (1.39)

where x is the physical transverse size and δφ is the angular size.
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1.5.4 Luminosity Distance

This distance is computed by measuring the flux and the luminosity of an object
integrated over all frequencies

DL =
√

L

4πF , (1.40)

where L is the luminosity and F the flux. Furthermore, it is given in terms of
the transverse comoving distance with [33]

DL(z) = (1 + z)DM(z) = (1 + z)2DA(z). (1.41)

Also, the apparent magnitude m of an electromagnetic radiation source is
defined as the base 10 logarithm of the ratio between the apparent flux and the
one of the bright star Vega. On the other hand, the absolute magnitude M is
the relative magnitude given at 10 parsecs (pc) from the source. The distance
modulus µ is given by the difference between the relative and absolute magnitudes
[33]

µ(z) = m(z)−M = 5 log10

(
DL(z)
10 pc

)
. (1.42)

1.6 The Hubble Constant Tension Problem

We provided a brief introduction to the Hubble constant tension in subsection
1.3.2. In this section, we will expand the explanation of this problem. This
problem has arisen recently in Cosmology with the increasing precision to mea-
sure the cosmological parameters. A precise constrain in the Hubble constant
H0 is important since it is the inverse of the age of the Universe. Thus, an
accurate measurement of it can lead to an accurate measurement of the age of
the Universe. We will start this section by providing a brief overview of how
the model-independent and model-independent methods to determine H0 work.
The model-independent method relies upon the cosmic distance ladder while the
model-dependent one relies on constraints in the anisotropies of the CMB.

1.6.1 The Cosmic Distance Ladder

The Hubble constant can be measured with the cosmic distance ladder with the
use of three rungs. These rungs are the following [1]
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1. Geometric distance measurements to standardized Cepheid variables.

2. Standardized Cepheids and colocated SNe Ia in nearby galaxies.

3. SNe Ia in the Hubble flow.

The basic idea is to use standard candles. This kind of object has the same
intrinsic Luminosity. Thus, by measuring the Luminosity ratios of two standard
candles, we can determine the distance ratio with the squared law distance rela-
tion. By starting from the equation (1.40), if we consider the ratio of the distances
of two standard candles with a known Luminosity L

DL1

DL2
=
√
F2

F1
, (1.43)

and then by measuring the ratio of flux, we can determine the ratio of their
distances. Equivalently, we can measure the relative magnitude of two standard
candles. Since they have the same intrinsic luminosity, they have the same abso-
lute magnitude M

m1 −m2 = 5 log10

(
DL1

DL2

)
, (1.44)

and then the distance ratio is given by

DL1

DL2
= 10

m1 −m2

5 . (1.45)

Then, with the standard candle method, we can determine the distance to all
of them if we can at least measure the distance to one of the candles. This is not
an easy task since it requires the determination of the distance by other methods
like the parallax method or the measurement of the absolute magnitude. Two
types of standard candles are frequently used in Cosmology: cepheid variable
stars and supernova type 1a (SNeIa).

Cepheid variable stars are pulsating variable stars that brighten and dim at
periodic intervals. For a set of P periods and mean relative magnitudes mi, the
pulsation equation P-L is of the form [34]

mi = zpX,i + bX log P, (1.46)

where zpX,i is the intercept of the P-L relation and bX the slope of the passband
X. Thus, we can derive the relative magnitude given the pulsation periods by
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fitting the data. On the other hand, SNeIa are extremely luminous explosions.
They form when a white dwarf is accreting material from a companion star. It
explodes when it reaches the Chandrasekhar limit, causing an extremely bright
explosion that can be observed. The fact that the explosion is predictable makes
it a standard candle. They follow a particular light curve showing an increase
in the brightness until achieving the maximum. Then, the brightness exhibits
a continuous decrease with time. An example of this behaviour can be seen in
Figure 1.4 from [35]. The relative magnitude of the SNeIa is then determined
from the maximum of the light curve.

The first rung consists of calibrating Cepheid variables from Geometric dis-
tance measurements. This enables the determination of the distance to these
events and calibrates its absolute magnitude [36, 37]. For example, this method
was applied for the Cepheids hosted in the spiral galaxy NGC 4258 [38, 39].
The second rung uses standardized cepheids to calibrate the absolute luminos-
ity of SNeIa. If we consider a host of both a cepheid and a SNeIa, the relative
magnitude of the SNeIa is [1]

m0
B,i = µ0,i +M0

B, (1.47)

where m0
Bi

is the maximum apparent magnitude of the SNeIa, M0
B the absolute

magnitude for SNeIa and µ0,i the distance modulus of the standardized cepheid.
This equation enables us to determine the absolute magnitude for SNeIa (M0

B)
and to use this result for the SNeIa in the third rung. Finally, the third rung
works with SNeIa in the Hubble flow. For this rung. the following expression is
useful [1]

αB = log cz
(

1 + 1
2(1− q0)z − 1

6(1− q0 − 3q2
0 + j0)z2 +O(z3)

)
− 0.2m0

B, (1.48)

where c is the speed of light, q0 = − ä0a0

ȧ2
0

is the deceleration parameter and j0 =
...
a 0a

2
0

ȧ3
0

the jerk parameter. This expression comes from expanding the luminosity
distance in Taylor’s series. Finally, the determination of the Hubble constant is
given by [1]

logH0 = 0.2M0
B + αB + 5. (1.49)

Notice that in this method, we never need to assume a specific Cosmological
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model. Thus, the determination of H0 is a model-independent one.

1.6.2 CMB anisotropies

The method to constrain H0 using the CMB consists of three steps [6]

1. Determining the Baryon and radiation density to allow the calculation of
the sound horizon r?d at the redshift of the CMB last-scattering.

2. Determining the angular size on the last-scattering surface θ?d from the
spacing between the acoustic CMB peaks and determining the comoving
angular diameter distance at last scattering D?

A = r?d/θ
?
d

3. Adjust the remaining density-free parameter in the model to derive the
distance

D?
A =

∫ z?

0

dz

H(z) . (1.50)

This last step enables a determination of H(z) for all redshifts. So, it also
gives the Hubble constant H0 = H(z = 0).

The sound horizon at the surface of the last scattering is given by

r?d =
∫ t?

0
dt
cs(t)
a(t) =

∫ ∞
z?

dz
cs(z)
H(z) , (1.51)

where cs is the sound speed and z? and t? are the redshift and time of the last
scattering surface. They are the corresponding values when the optical depth of
Thompson scattering is equal to one. The sound horizon is given by

cs(z) = ∂P

∂ρ
= c2

3

(
1 + ∂ρb

∂ργ

)−1

, (1.52)

and then it depends on the ratio of Baryon to photon density. Notice that we
only included Baryons and photons. We did not consider dark matter or neutri-
nos. This is because the Thompson scattering is an electromagnetic interaction
and both dark matter and neutrinos do not interact electromagnetically. The
radiation density can be determined from the temperature of the CMB [40, 41].
Thus, we only need to determine the Baryon content to derive the sound horizon.

Apart from computing the sound horizon, we also need to derive the Hubble
factor H(z). In principle, we can perform a Taylor series expansion of H(z) as
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we did in equation (1.48). However, we would need to expand around the red-
shift of the last scattering z? instead of the current redshift z = 0. This would
allow us to constrain H(z?) but not the Hubble constant H0. The other option
is to expand around z = 0 but this would be impractical since we would need
to write a huge (or even infinite) amount of higher-order terms dependent on z
to have a good expansion of H(z) that works from the last scattering surface to
the Big Bang. Then, the only practical option to constrain H0 is to assume a
specific Cosmological model and thus an expression for H(z). If we consider the
standard ΛCDM model, we take (1.30). Thus, as we can see, this method will be
model-dependent in contrast to the cosmic distance ladder one.

The determination of the mean density of neutrinos can be written as a
function of the photon temperature. The other ones that we need to determine
are the mean density of matter and the Cosmological constant. However, the
Cosmological constant does not affect the sound horizon [6]. It is customary to
write the following quantities

ωm = Ωmh
2, (1.53)

ωb = Ωbh
2, (1.54)

ωcdm = Ωcdmh
2, (1.55)

where h = H0/(100km/s/Mpc) is the adimensional Hubble constant.

We can determine the cosmological parameters from the CMB power spec-
trum. By changing the value of ωm, H0 or the other parameters, the form of the
power spectrum also changes. Thus, by measuring the power spectrum, we can
directly constrain the parameters. We briefly describe how ωm, ωb and H0 can
affect the power spectrum.

The primary effect of ωm on the power spectrum comes from the Integrated
Sachs-Wolfe (ISW) effect and the gravitational lensing smoothing of the spec-
trum [42]. When Fourier modes cross the horizon, the gravitational potential
decay gives a driver of the oscillation close to resonance. The bigger the matter-
to-photon ratio at the horizon crossing, the smaller the oscillation amplitude.
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On the other hand, an increasing Baryon-to-photon ratio reduces the pressure-
to-density ratio. This changes the zero point of the acoustic oscillations [6, 42].
Modes compressing into the potential walls at decoupling compress even more
[6] and the ones rarifying do not do it much. This boosts the compression peaks
and suppresses the rarefaction ones in the CMB temperature power spectrum.
Furthermore, changing ωb also changes the density of free electrons at recombi-
nation. As we can see, the effects of ωm and ωb are not the same in the CMB
power spectrum. This contrasts the background evolution where Baryonic and
total matter had the same background evolution.

The characteristic angular size of the fluctuations in the CMB θ? = r?/D?
A

are well determined at better than 0.1% precision [43]. The sound horizon is
determined by the redshift of recombination z?, ωm and ωb. Then, the constraint
on θ? comes from a constraint to the distance of the surface of the last scattering.
This gives a determination of a 3-dimensional subspace ωm − ωb − h [42]. After
marginalizing over ωb, a strong degeneracy between ωm and h appears and can
be approximated as Ωmh

3 = constant [42].

The characteristic angular size of the fluctuations in the CMB can be derived
from the spacing of the peak spacing [6, 44]. This is given by [6]

θ?s = π

∆`, (1.56)

where ` = kD?
A and k are the Fourier modes. Then, ∆` refers to the peak spacing.

Therefore, after computing r?d and determining θ?d from the peak spacing, we
can derive the angular diameter distance to the last scattering surface

D?
A(z?) =

∫ z?

0

dz

H(z) , (1.57)

and after specifying the cosmological parameters, H(z) is specified for all redshift
and thus, it is also specified for z = 0 which implies a constraint in the Hubble
constant H0.
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1.6.3 The Evolution of the Hubble Constant Tension with
Time

As we were describing, both methods allow us to determine the value of the Hub-
ble constant. However, the cosmic distance ladder provides a model-independent
constraint while CMB anisotropies provide a ΛCDM constraint.

Figure 1.1: Mean values of the Hubble constant along with the 1σ C.L. un-
certainties as a function of publication year. We included the
results from the SH0ES collaboration using the cosmic distance
ladder and from WMAP and Planck using the CMB anisotropies
and the standard model ΛCDM. For SH0ES, we included the re-
sults from [34, 45, 46, 47, 48, 36, 1] while for WMAP and Planck
we considered [49, 50, 51, 43, 52, 2].

We present the mean values and the 1σ C.L. uncertainties for the SH0ES
collaboration that uses the cosmic distance ladder method and for the WMAP
and Planck collaborations that use the CMB anisotropies method. As we can
see, in 2009 and 2011, the results from both methods agree at 1σ C.L. How-
ever, since then, the difference between both has been growing. It grew until
it reached a critical point in 2022 with the results from [1] where the difference
between the cosmic distance ladder and CMB anisotropies reached a difference
of 0.176 ± 0.035 in units of ∆5 logH0 which implies a difference of 5.0σ [1]. This
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is interpreted as a 1 in 3.5 million probability that both results are consistent.
Thus, this hints at considering new alternatives to the standard ΛCDM model.
Furthermore, a recent result, which is currently under review provides an update
on the last SH0ES determination on H0 [1]. By using the small magellanic cloud
cepheids observed with the Hubble spatial telescope as a new anchor for the cos-
mic distance ladder, they derived a result of H0 = 73.17 ± 0.86 km/s/Mpc [53].
This gives a tension of 5.8σ with respect to the ΛCDM Planck 2018 result [2].
Thus, this gives more evidence to the possibility of physics beyond the ΛCDM
model.

As we can see, the Hubble constant tension problem is a critical issue that
challenges the standard ΛCDM model. It provides strong evidence for the need
for a new standard model of Cosmology. However, it is still the possibility that the
cosmic distance ladder results are being severely biased by unknown systematic
errors [5]. This possibility is becoming less likely with time since the SH0ES
collaboration has been working on taking into account and reducing as much as
possible the systematic errors [1]. In this thesis, we will focus on a consistency test
on the distance-redshift relation measured by Pantheon+ [13], SNeIa compilations
and a Baryon Acoustic Oscillations (BAO) compilation: BAO DESI 2024 [14, 15].
This expands the previous consistency tests performed [10] with the distance-
redshift relation measured by Pantheon [11] and time delay and lens distance
measurements from H0LiCOW [12, 54].

1.7 Bayesian Analysis in Cosmology

In this section, we will briefly summarize how to constrain the cosmological pa-
rameters of a model given some data. We start with the Bayes theorem

P (Θ|d,M) = P (Θ|M)P (d|Θ,M)
P (d|M) , (1.58)

where Θ represents the vector of Cosmological parameters, d the data vector and
M is a specific cosmological model. P (d|Θ,M) is the likelihood probability and
it quantifies the probability of the data being correct assuming a given value of
the parameter vector and that the model M is correct. P (Θ|M) is the prior
probability and represents the values that a given parameter can physically take.
To avoid introducing biases to the results, it is usual to take uniform probabili-
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ties for the parameters. For example, for the Hubble constant H0, we can take
H0 ∼ U(0, 100) km/s/Mpc. This will let the data choose the correct value of H0.
We can also reduce the interval as long as we keep considering the tails of the
parameter probability distribution function (pdf). P (d|M) is the evidence and
it does not depend on the vector parameter Θ. It is a normalization constant
that can be ignored if we are only interested in constraining the Cosmological
parameters. However, this constant is important for model selection since the
model with the highest evidence is also the preferred one by the data. For exam-
ple, if we want to compare the standard ΛCDM model with an alternative one,
we need to compute the evidence for both and the preferred one will be the one
having the highest evidence. Finally, P (Θ|d,M) is the posterior probability. It
quantifies the probability of the parameter vector given the cosmological model
and the data. This is the quantity in which we are interested when constraining
cosmological parameters. If we assume that the data is Gaussian, which is a rea-
sonable assumption due to the central limit theorem, we have, for a single event
[55]

P ({y, z}|Θ,M) = 1√
2πσ2

observational(z)
exp

(
−(yobservational(z)− ytheoretical(z,Θ))2

2σ2
observational(z)

)
,

(1.59)
where yobservational(z) is the mean observational value of a cosmological observable.
This can be the relative magnitude, a distance ratio or any quantity that can be
measured. ytheoretical(z,Θ) is the value of the same quantity but computed from
the model M. It depends on both the redshift and the parameter vector Θ.
Finally, σobservational is the standard deviation of the cosmological observable. We
can simplify the Bayes theorem if we apply the natural logarithm to both sides.
Moreover, let us consider N events and that they are independent of each other.
After this, we can write

lnP (y, z|Θ,M) =
N∑
n=1

 1√
2πσ2

n(z)

− 1
2

N∑
n=1

(
yobservational, n(z)− yn(z,Θ)

σ2
observational, n(z)

)2

,

(1.60)
the sum in the second term is known as the χ2. This expression is valid if the
measurements are not correlated with each other. In general, we have

lnP (Θ|d,M) ∝ −1
2∆yT · C−1 ·∆y, (1.61)
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where we have dropped the terms that would give a constant. Also ∆y is given
by

∆y = yobservational − ytheoretical, (1.62)

is the difference between the observational and theoretical values of the cosmo-
logical observable. Also, C is the covariance matrix that includes the variances
in the diagonal. The off-diagonal terms include the possible covariances between
all the pairs of values. We can define the χ2 function as

χ2 = 1
2∆yT · C−1 ·∆y. (1.63)

The best-fit value of the parameter vector corresponds to the maximum of
the posterior probability. Then, equation (??) implies that the best-fit value also
corresponds to the minimum of the χ2 function. To determine the mean value
and the standard deviation, assuming that the parameters are Gaussian, it is
common to use Monte Carlo Markov Chain Methods (MCMC).

In principle, we can explore the parameter space by taking hypercubes and
evaluating the posterior in the centre of each cube. If the number of hypercubes
is sufficiently big, we will successfully determine the mean value and uncertainty.
However, there are more efficient methods. One famous method is Metropolis-
Hastings [56]. The idea is to start at a random point in the parameter space,
and then move randomly to a nearby point. If the posterior probability of the
new point is bigger than the previous one, we keep it. Otherwise, we keep it
with probability P (X(t+1))/P (X(t)) where P (X(t)) is the posterior probability
in the initial point and P (X(t + 1)) is the probability in the subsequent point.
Thus, this method tends to favour points with increasing posterior probability.
This helps to explore high-probability regions efficiently. Monte Carlo comes
from the random nature and Markov chain comes from the fact that the chain
of points that we are creating depends on the immediate previous point. Since
we are exploring the parameter space at random, we can call this exploration a
random walker. By taking several to a lot of random walkers and letting them
explore the parameter space for enough time, we would approximate the posterior
probability distribution function. This will then enable us to determine the mean
values along with the uncertainties and correlation of the parameters.
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Type 1a Supernova (SNeIa) and
Baryon Acoustic Oscillations
(BAO)

In this chapter, we will discuss how SNeIa and BAO can be used as Cosmolog-
ical tools to constrain the Cosmological parameters and how to determine the
distances to these objects.

2.1 Type 1a Supernova (SNeIa)

Supernova are objects that explode under the same conditions. Their luminosity
starts to increase until they get to a maximum. This increase occurs in a matter
of weeks and it is followed by a decrease in luminosity that lasts for months. In
the 1940s, it was discovered that there were at least two kinds of supernovas.
Those with hydrogen features were denominated Type II whereas those without
were denominated Type I [57]. With an improved quality of the observations,
Type I supernovas were further divided into type Ia, Ib, and Ic. SNeIa is a super-
nova with a strong absorption feature and SNeIb and SNeIc do not have it [58].
Furthermore, SNeIa comes from thermonuclear explosions of low-mass stars [58].

In figure 2.1, we can see an example of the light curve for an SNeIa event.
Although the explosion of SNeIa events occurs at the same point (when the white
dwarf reaches the Chandrasekhar limit), the intrinsic determined absolute mag-
nitude is not the same for different events [59]. They have to go over a process
of standardisation. When measuring SNeIa, three pass-bands are used: the blue

25
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Figure 2.1: Example of a light curve for a SNeIa

passband (B), the visual passband (V) and the infrared passband (I). For SNeIa
to work as standard candles, the absolute magnitude should be equal to every
one of them. However, when computing the intrinsic absolute magnitude for each
passband and different SNeIa, it was found that they were not the same [59].

However, the absolute magnitude can be corrected if we take into consider-
ation the decline rate parameter ∆m15(B) which is defined as the decay of the
relative magnitude 15 days after the maximum in comparison to the maximum for
the B passband. It was discovered that a dimmer SNeIa falls more rapidly than
brighter ones [60]. By considering this, the dispersion of the absolute magnitude
is reduced [61]. After performing correction in the peak brightness, it is possible
to use SNeIa as standard candles [9].

We will see now how the Hubble constant H0 and the absolute magnitude
M are degenerate with SNeIa. Let us define E(z) = H(z)/H0, the adimensional
Hubble factor. If we substitute this in expression (1.42)

m(z) = M + 5 log10

(
(1 + z)

∫ z

0

dz′

E(z′)

)
+ 5 log10

(
c

H0(10 pc)

)
, (2.1)
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where we are assuming that the Universe is spatially flat. SNeIa catalogues
provide a measurement of the relative magnitude m. Thus, to study a theoretical
model or even when performing model-independent studies, we get a degeneracy
between M and H0, we can define

M = M + 5 log10

(
c

H0(10 pc)

)
, (2.2)

and then
m(z) =M+ 5 log10

(
(1 + z)

∫ z

0

dz′

E(z′)

)
, (2.3)

and then from SNeIa data only, we can just constrain M and the parameters
contained in E(z). For a given value of M, we will have a set of values of M
and H0. This is the source of the degeneracy. To break it, we need to determine
the absolute magnitude and then, we can constrain the Hubble constant. As
we were saying, it is possible to calibrate the value of M with cepheids. We
need to find SNeIa events in the same galaxies as Cepheid variables. These
Cepheids were previously calibrated using geometric methods after finding some
of them close enough to the Earth. This enables us to determine the distances
to them by calibrating the absolute magnitude of cepheids using geometric tools.
Finally, using the calibrated cepheid variables, we go up in the rung of the cosmic
distance ladder and we calibrate the absolute magnitude for SNeIa M . Thus, we
can get the values of the distance modulus µ(z) and we can finally constrain the
cosmological parameters

µ(z) = m(z)−M = 5 log10

(
(1 + z)c
H0(10 pc)

∫ z

0

dz′

E(z′)

)
, (2.4)

where we can finally use the SNeIa events as standard candles considering that the
relative magnitudes are the corrected ones. We close this section by introducing
the catalogue that we will use for this thesis (Pantheon+) and its predecessor
(Pantheon).

2.1.1 The Pantheon Catalogue

The Pantheon catalogue is a compilation of 1048 SNeIa in the redshift range
0.01 < z < 2.3 [11]. These events come from the Pan-STARRS1, CfA1-4, CSP,
PS1, SDSS, SNLS and HST SN surveys. For the curve fitting, they used the
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following formula [62]

µ = mB −M + αx1 − βc+ ∆M + ∆B, (2.5)

where µ is the distance modulus, mB is the relative magnitude in the B passband,
∆M a distance correction based on the host galaxy mass of the SN, ∆B a distance
correction based on predicted biases from simulations, α is a relation coefficient
between luminosity and stretch x1, β a relation coefficient between luminosity
colour c. Finally, M is the fiducial absolute magnitude in the B passband for
x1 = 0, c = 0. All these correction factors are required to work with SNeIa as
standard candles. We can then write

µobservational = m′B −M, (2.6)

where the corrected relative magnitude m′B is

m′B = mB + αx1 − βc+ ∆M + ∆B. (2.7)

After calibrating the value for M , we can constrain the cosmological param-
eters of a given model by minimising the χ2

χ2 = 1
2∆µT · C−1 ·∆µ, (2.8)

where ∆µ = µobservational−µtheoretical is the difference vector between the observa-
tional distance modulus and the theoretical one. Also, C is the covariance matrix
of the data that includes the statistical and systematic errors.

2.1.2 The Pantheon+ Catalogue

The Pantheon+ catalogue is an update to the previous one. It is a compilation
of 1701 SNeIa [13]. It includes events at z < 0.01, which is a range not explored
by Pantheon. The events are located in the redshift range 0.001 ≤ z ≤ 2.26 [63].
All the SNeIa come from 18 different samples with 6 new large samples added in
comparison to Pantheon [13]. These are the Foundation Supernova Survey [64],
the Swift Optical/Ultraviolet Supernova Archive1, the first and second samples
from the Lick Observatory Supernova Search [65, 66], and the Dark Energy Survey
[67]. All of these except for the Dark Energy Survey are low-redshift surveys.

1https://pbrown801.github.io/SOUSA/

https://pbrown801.github.io/SOUSA/
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Thus, they caused a large enhancement in low-redshift data on Pantheon+ in
comparison with Pantheon. In this catalogue, the light curve fitting is given by
[13]

µ = mB −M + αx1 − βc− δµ−bias, (2.9)

where δµ−bias is the bias correction derived from simulations. It is required to
account for selection effects and other problems in determining the distance. The
remaining parameters are the same as those for the Pantheon catalogue. As
before, to constrain the cosmological parameters, we need to minimize the χ2

function given by (2.8).

2.2 Baryon Acoustic Oscillations (BAO)

The existence of inhomogeneities in the Universe is crucial to allow the formation
of structure. They allow matter to group in galaxies, and clusters of galaxies.
They are caused by small perturbations. They just need to be small and appear on
small scales. This enables the Universe to still fulfil the Cosmological principle on
large scales. We can define two spacetimes. The background one and the physical
one. The background spacetime follows the Friedmann equations and the physical
spacetime describes the real Universe, with matter structure. The difference in
the metric tensor between them is defined as the perturbation. However, both
spacetimes are defined in different manifolds and their coordinate systems are
defined with different charts. Thus, to make the difference between the metric
tensor meaningful, we need to define a mapping from one spacetime to the other.
It is possible to relate a point x of the physical spacetime with a point x̄ in the
background spacetime. This is done with a mapping x = φ(x̄). By doing so, we
perform a gauge choice. This finally enables us to define perturbations as the
difference of a quantity between the physical and the background spacetime [68,
69]. We can define the temperature perturbations as

δT = T − T̄ , (2.10)

and the density perturbations

δρ = ρ− ρ̄, (2.11)
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and it is also useful to define fractional perturbations

δρ = δρ

ρ̄
, (2.12)

and
δT = δT

T̄
, (2.13)

where we are taking the ratio of the perturbation with the background value. We
can also define the metric perturbations in the Newtonian gauge [29]

gµν = a2(η)
−(1 + 2Ψ(η,x)) 0

0 (1 + 2Φ(η,x))δij

 , (2.14)

where Ψ and Φ are scalar perturbations and η is the conformal time

η(t) =
∫ t

0

dt′

a(t′) . (2.15)

The scalar perturbations satisfy the conditions |Ψ| << 1 and |Φ| << 1. In the
context of large-scale structures, these scalar perturbations play the role of per-
turbed gravitational potentials. The time when photons decouple from Baryons
occurred approximately 380,000 years after the Big Bang. At this point, pho-
tons stopped interacting with Baryons and they started travelling freely. Those
photons constitute the CMB nodaways. We can derive the density contrast differ-
ential equation by perturbing equation (1.9) and working with the 00 and spatial
components. They give us the continuity and Euler equations. By breaking the
coupling between them, taking the Fourier transform and assuming that we have
Baryonic matter, we get [70, 71]

δ′′b + R

1 +R
δ′b + k2c2

sδb = −k2Ψ− 3 R

1 +R
Φ′ − 3Φ′′, (2.16)

where k is the Fourier wave number, cs is the sound speed and R is the photon-
Baryon ratio

R = 4ρ̄b
3ρ̄γ

, (2.17)

and the prime ′ refers to derivatives with respect to the conformal time η. Equa-
tion (2.16) describes the evolution of a single Fourier mode. It is valid in tight
coupling approximation where photons and Baryons interact via Compton scat-
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tering. The sound speed can be written as [70, 71]

cs = c√
3(1 +R)

, (2.18)

with c the speed of light. Equation (2.16) is a damped forced harmonic oscillator.
The right-hand side gives the force term in terms of the scalar field perturbations
and their derivatives. Physically, we have a photon-baryon fluid. Two interactions
act on Baryons: pressure forces from the Compton scattering and gravitational
potentials. These are the two interactions that produce the Baryon Acoustic
Oscillations (BAO) and their equation is given in terms of (2.16). These waves
can propagate in the fluid. Baryonic matter propagates in oscillatory motion
given by [70, 72]

δb(η) = δb0 cos(kcsη), (2.19)

where δbi is the density contrast at an initial time ηi. This solution is valid when
R is a constant and in the absence of gravitational potentials. Equation (2.19)
has two limits. The constant regime happens for kcsη << 1. In contrast, the os-
cillatory regime occurs for kcsη >> 1. The distance travelled by the propagation
is given by the sound horizon [72]

rd ≡ a
∫ t

ti
dt′

cs
a

= a
∫ η

ηi

dη′cs. (2.20)

If we assume that the sound horizon is constant

rd ≈ acs(η − ηi), (2.21)

and then we can rewrite the constant regime case when λ >> ds where λ =
(2πa)/k is a physical wavelength. So, the oscillatory case occurs for λ << ds.
Therefore, modes start to oscillate when the physical wavelength is smaller than
the sound horizon.

The propagation ends when photons and Baryons decouple. This happens
because of the combination of the gravitational potentials and the pressure force
given by the Compton scattering. After recombination, Compton scattering stops
occurring and then gravity is the only interaction that acts upon Baryons. After
decoupling, BAOs get frozen in the CMB and they continue moving following the
Universe expansion [70]. Nowadays, we can observe spherical shells like the ones
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in2.

In the last chapter and last section, we talked about standard candles and
how they are useful for constraining cosmological parameters. We will now talk
about standard rulers and how BAOs constitute standard rulers. Standard rulers
are objects with a given intrinsic absolute size. Thus, if we derive the distance to
a given standard ruler, we can derive the corresponding one for other standard
rulers. For standard candles, we have to calibrate the absolute magnitude to
be able to measure the distances and also to constrain the Hubble constant H0.
Meanwhile, for standard rulers, we need to calibrate the intrinsic size to be able
to measure these quantities.

The comoving radius of a circular standard ruler r, the transverse comoving
distance DM and the angular scale θ are related by

tan θ = r

DM

, (2.22)

if θ << 1, then tan θ ≈ sin θ ≈ θ. Thus,

θ = r

DM

, (2.23)

also, since r is the same for all standard rulers

DM2 = DM1
θ1

θ2
, (2.24)

where the subindex 1 refers to a given standard ruler and 2 refers to another one.
Thus, if we determine the size of the ruler r, we can determine the distances to all
of them. Now, we will focus on explaining why BAOs constitute standard rulers,
or more formally statistical standard rulers [71].

Statistical standard rulers refer to objects or phenomena that have a specific
known scale. Thus, it is a distribution with a characteristic scale that can be
recovered statistically [71]. As we mentioned, the BAOs stopped the oscillation
in the surface of the last scattering and then they entered the constant regime.
Thus, in the comoving coordinates, they remained frozen after the decoupling of
photons and Baryons. This is why the sound horizon provides a standard ruler.

2https://apod.nasa.gov/apod/ap140120.html

https://apod.nasa.gov/apod/ap140120.html
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BAOs provide a preferred clustering scale given by the sound horizon.

Observer

rd

DM

∆z

θ

Figure 2.2: Representation of a BAO standard ruler. The red circle repre-
sents the circular clustering shells. Its radius is the sound horizon.

We plot the representation of a BAO as a standard ruler in figure 2.2. The
observer is located at the bottom of the figure. From there, we observe a circular
clustering shell. The distance from the observer to the centre of this circle is the
angular diameter distance. The radius is the sound horizon. By measuring the
angular scale, we determine the ratio

θ ≈ rd
DM

, (2.25)

where the approximation is very accurate for rd << DM which is the case in
cosmological distances. Furthermore, we can derive another ratio from this ob-
servation. Starting from the expression for the comoving distance (1.36), if we
consider a small redshift difference ∆z, and we assume that the Hubble factor is
constant in this redshift difference, which is a good approximation as long as ∆z
is small, then

∆DC ≈
c∆z
H(z) , (2.26)

where ∆DC is the difference in comoving distance given by the redshift difference
∆z. If this redshift difference corresponds to the blue line in figure 2.2, then the



34 Chapter 2. Type 1a Supernova (SNeIa) and Baryon Acoustic Oscillations (BAO)

corresponding comoving distance is the sound horizon, thus

∆z = rdH(z)
c

, (2.27)

and then if we measure the redshift difference of the clustering circle, we deter-
mine the product rdH(z). Therefore, we can measure two quantities from these
clustering circles: the ratio rd/DM(z) and the product rdH(z). If we could de-
termine rd, we would measure DM and H(z).

We will now explore the degeneracy between rd and H0. This is similar to
the one between M and H0 for standard candles. We take the expression (2.25)
and substitute the integral for the angular diameter distance (1.38)

θBAO = (1 + z)rdH0

c
∫ z

0

dz′

E(z′)

, (2.28)

where E(z) is the adimensional Hubble factor E(z) = H(z)/H0. Thus, as we can
see, from the measured angular scale of clustering, we cannot determine both rd
and H0 but just their product rdH0. Suppose we are interested in constraining
one of these. In that case, we can either use an independent constraint of H0 to
measure rd or to assume a cosmological model, compute the sound horizon with
equation (1.51) and then measure H0. The situation is similar for the redshift
difference measurements

∆zBAO = rdH0E(z)
c

, (2.29)

we can again only determine the product rdH0 but not them independently. We
will close this section by describing the BAO catalogues that we will use in the
analyses of this thesis.

2.2.1 DESI BAO 2024

This is a compilation with 5.7 million unique galaxies and quasars in the redshift
range 0.1 < z < 2.1 [14] and 420 000 Lyα forest spectra and their correlation with
the spatial distribution of more than 700 000 quasars [15]. These results are part
of the Dark Energy Spectroscopy Instrument (DESI)3. They provided results for
9 different distances. For all of them, they included the derived measurement

3https://www.desi.lbl.gov/

https://www.desi.lbl.gov/
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DV /rd where
DV (z) =

(
zD2

M(z)DH(z)
)1/3

, (2.30)

where DM is the comoving angular diameter distance

DM(z) = (1 + z)DA(z), (2.31)

and DH is the Hubble distance

DH(z) = c

H(z) . (2.32)

The effective redshifts are zeff = {0.30, 0.51, 0.71, 0.92, 0.93, 0.95, 1.32, 1.49, 2.33}
corresponding to the tracers: BGS, LGR1, LGR2, LGR3, LGR3+LGR1, ELG1,
ELG2, QSO [14] and Lyman-α [15].

In addition to measuring the ratios DV /rd, they also provided the ratios
DM/rd andDH/rd for the LRG1, LRG2, LRG3, LRG3+LRG1, ELG2 and Lyman-
α tracers.

Tracer zeff DM/rd DH/rd roff
LRG1 0.51 13.62 ± 0.25 20.98 ± 0.61 −0.445
LRG2 0.71 16.85 ± 0.32 20.08 ± 0.60 −0.420
LRG3 0.92 21.81 ± 0.31 17.83 ± 0.38 −0.393

LRG3+LRG1 0.93 21.71 ± 0.28 17.88 ± 0.35 −0.389
ELG2 1.32 27.79 ± 0.69 13.82 ± 0.42 −0.444

Lyman-α 2.33 39.71 ± 0.95 8.52 ± 0.17 −0.480

Table 2.1: BAO distance ratios for the DESI collaboration. We include the
tracers having a determination of DM/rd which will be used for
comparison with reconstructed BAO ratios with Pantheon+. We
also included the ratio DH/rd and the correlation between DM/rd
and DH/rd, roff.

In table 2.1, we included the results for the six BAO determinations of DESI
including a measurement of DM/rd.
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Chapter 3

Model-independent Comparison
of SNeIa and Strong Lensing

This chapter will be based in [10]. However, we will present a difference in the
analyses and results. We will calibrate the SNeIa with the most recent result of the
Hubble constant from the SH0ES collaboration of H0 = 73.04 ± 1.04 km/s/Mpc
[1] rather than the one of H0 = 74.03 ± 1.42 km/s/Mpc from [48]. This con-
stitutes an update from the most recent result of the Hubble constant for the
distance-ladder method. Furthermore, we will replace the Pantheon [11] cata-
logue with Pantheon+ [13]. Thus, starting from the codes used in [10], we will
modify them to change the Pantheon to the Pantheon+ catalogue and also change
the calibration of the SNeIa data using the last H0 value from the SH0ES collab-
oration [1].

As we were saying, one way to study whether the Hubble constant tension
has a physical or systematic nature is to do consistency model-independent tests.
One way to do it is to work in a prediction of strong lensing results starting from
SNeIa. If we do it in a model-independent way and both results are consistent,
it would mean that the systematic errors from the cosmic distance ladder are
smaller than the current discrepancy between SH0ES 2022 [1] and Planck 2018
[2]. The other possibility is that both SNeIa and strong lensing results are af-
fected by the same systematics in the same way. This possibility is unlikely but
cannot be ruled out by this consistency test [10]. As a further consistency check,
we will repeat these analyses in the next chapter but will predict Baryon Acoustic
Oscillation (BAO) results instead of strong lensing ones. This will provide further
evidence on whether the Hubble tension has a physical or systematic origin.

37
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The procedure to perform the consistency check is to start from the corrected
relative magnitudes from Pantheon+ [13]. Then, the next step is to calibrate
them with the absolute magnitude given by the H0 value of SH0ES 2022 [1].
However, we do not have measurements of the relative magnitudes for all redshifts,
particularly for the redshifts corresponding to the strong lensing measurements.
We solve this problem by performing a Gaussian process which enables us to
predict the distance modulus for any given redshift. After this, we compute the
luminosity distance and from these results, we predict the strong lensing results.
We describe the procedure that we will follow

1. We describe the Strong Lensing Time Delay data and convert it to Gaussian
by computing the logarithm.

2. We calibrate the Pantheon+ data with the last result of H0 from the SH0ES
collaboration [1]. We also generate a binned catalogue. Finally, we run an
MCMC assuming ΛCDM to verify that we are getting consistent results.

3. We read the strong lensing data and perform an MCMC test to see whether
we get the expected results.

4. We perform the Gaussian process to get a continuous version of the Pan-
theon+ catalogue. we perform an MCMC assuming ΛCDM and compare
it to the results with the full and binned Pantheon+ catalogue.

5. We use the Gaussian process predictions to derive the strong lensing dis-
tances and we make several tests comparing this data with the strong Lens-
ing data.

We will start this chapter by describing the strong lensing results.

3.1 Strong Lensing Time Delay Measurements

Strong lensing also enables us to measure the Hubble constant H0 [12]. Let us
consider a source emitting rays towards us. Let us also assume, that during the
path of the photons towards the Earth, they interact with a mass. This mass
acts as a gravitational lens. Thus, different photons emitted from the source will
take different paths and go over different gravitational potentials. Thus, if we
have several light rays emitted from the source at the same time, they arrive at
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different times at the observation point. If we consider a variable source, the
time delay between multiple images can be measured by observing the lens and
spotting the flux variations coming from the same source [12]. The time delay is
linked to the time delay distance D∆t and it depends on several factors. These
are the mass distribution of the lens, the mass distribution along the line of sight
and the cosmological parameters [73, 74, 75]. The main objects that act as lenses
are quasars because of their strong brightness and variable nature [76, 77, 78].

Let us consider a plane where the lens is located. The excess time delay of a
picture at angular position θ = (θ1, θ2) and source angular position β = (β1, β2)
is given by [12]

t(θ,β) = D∆t

c

(
(θ − β)2

2 −Ψ(θ)
)
, (3.1)

where D∆t is the time delay distance and Ψ(θ) is the lens potential. This is the
time delay with respect to the case of no lensing. Now, the time delay distance
is given by [79, 80, 81]

D∆t = (1 + zd)
DlDs

Dds

, (3.2)

where zd is the lens redshift, Ds the angular diameter distance to the source, Dl

the angular diameter distance to the lens and Dls the angular diameter distance
between the lens and the source. As we can see, the time delay distance is in-
versely proportional to the Hubble constant H0.

Let us assume that the source and the lens are closely aligned. Then, we
can get multiple pictures from the same source. Then, the light rays coming from
different pictures will reach the observer with different time delays. We can define
the time delay difference between two pictures as [12]

∆tij = D∆t

c

(
(θi − β)2

2 −Ψ(θi)−
(θj − β)2

2 + Ψ(θj)
)
, (3.3)

where θi and θj are the positions of both pictures.
We worked with the results from the H0LiCOW collaboration4 (H0 Lenses

in COSMOGRAIL’s Wellspring) [12]. We summarize the results in table 3.1.
With this strong lensing data, the H0LiCOW collaboration measured a value of
the Hubble constant of H0 = 73.3+1.7

−1.8 km/s/Mpc [12] which is consistent with
the last result from the SH0ES collaboration [1] but in 3.1σ tension with Planck

4https://shsuyu.github.io/H0LiCOW/site/

https://shsuyu.github.io/H0LiCOW/site/
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Lens name Reference zd D∆t (Mpc) Dl (Mpc)
B1608+656 [81, 82] 0.630 5156+296

−236 1228+177
−151

RXJ1131-1231 [83, 84] 0.295 2096+98
−83 804+141

−112
HE0435-1223 [84, 85] 0.454 2707+183

−168 ——
SDSS1206+4332 [86] 0.745 5769+589

−471 1805+555
−398

WFI2033-472 [87] 0.657 4784+399
−248 ——

PG1115+080 [84] 0.311 1470+137
−127 697+186

−144

Table 3.1: Measured time delay D∆t and lens distances Dl with their cor-
responding uncertainties in the 16th and 84th percentiles. These
are the results used by the H0LiCOW collaboration to measure
the Hubble constant H0.

2018 [2]. These results assume a ΛCDM model and thus are model-dependent.
Therefore, strong lensing gives more evidence of the need for an alternative stan-
dard Cosmology model. The standard model gives two inconsistent results in the
early and late Universe. However, the tension is still under 5σ but it adds more
evidence to the hypothesis that the Hubble constant tension has a physical origin.

As we can see in table 3.1, the measurements of the time delay and lens
distances are not Gaussian. We can see it since their upper and lower uncertainties
are not the same. This non-gaussianity comes from the definition of the estimated
distances. They come from ratios of well-measured quantities. However, if we
take the logarithmic distances, they will come from sums and differences between
Gaussian quantities. Thus, the distribution of the logarithm of the distances will
be close to a Gaussian [10]. To derive the standard deviation and mean value
of the logarithmic distances we start from the H0LiCOW data in table 3.1. The
uncertainties correspond to the 16% and 85% C.L. constraints. Let us assume
that we have two constraints v1 and v2 at two different confidence levels p1 and
p2. If these correspond to a random variable X, the mean value µ(log10X) and
the variance var(log10X) are given by [10]

µ(log10X) = −Erf−1(2p2 − 1)| log10 v1 − log10 v2|
|Erf−1(2p2 − 1)− Erf−1(2p1 − 1)|

, (3.4)

var(log10X) = log10 v1 − log10 v2√
2|Erf−1(2p1 − 1)− Erf−1(2p2 − 1)|

, (3.5)

where Erf−1 is the inverse error function.
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Lens name zd log10(D∆t/Mpc) log10(Dl/Mpc)
B1608+656 0.630 3.714 ± 0.022 3.090 ± 0.058

RXJ1131-1231 0.295 3.323 ± 0.019 2.908 ± 0.068
HE0435-1223 0.454 3.433 ± 0.028 ——

SDSS1206+4332 0.745 3.758 ± 0.032 3.261 ± 0.113
WFI2033+472 0.657 3.686 ± 0.029 ——
PG1115+080 0.311 3.167 ± 0.039 2.844 ± 0.102

Table 3.2: Logarithmic time delay log10(D∆t/Mpc) and lens log10(Dl/Mpc)
distances with their corresponding uncertainties at 1σ C.L. These
results were computed from expressions (3.4) and (3.5).

3.2 SNeIa data

After describing the strong lensing data, we perform some checks on the SNeIa
data from Pantheon+ [13]. The Pantheon+ collaboration provides measurements
of the corrected relative magnitude m′B. However, the covariance matrix works
for the distance modulus instead of the relative magnitude. Thus, we need to cal-
ibrate it with the absolute magnitudeM or taking a value of H0 and constraining
M . As we have mentioned, calibratingM with cepheid variable stars is the way to
measure H0 [1]. Here, we will calibrate M in a way that the corresponding mean
value of H0 will be the one of the SH0ES collaboration H0 = 73.04km/s/Mpc. We
start from a fiducial value Mfid corresponding to H0 = 70km/s/Mpc [88]. This
gives Mfid = −19.3. The difference between this fiducial value and the observed
one is [10]

M −Mfid = 5 log10

(
H0

H0 fid

)
, (3.6)

and in this case M = −19.21. Moreover, the covariance has to also take into
account the uncertainty of the determination of H0. For the result that we are
considering, σH0 = 1.04 km/s/Mpc. The new covariance is given by [10]

cov(µ)ij = cov(µfid)ij +
( 5

ln 10
σH0

H0

)2
, (3.7)

where µfid = m −Mfid and µ = m −M . The indices i, j run over all the SNeIa
catalogue.

To check that our implementation works, we performed an MCMC with the
calibrated data. We computed the theoretical distance modulus with the equation
(2.4). Moreover, the Hubble factor for ΛCDM is given by (1.33), which has two
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parameters Θ = {H0,Ωm}. To perform the MCMC, we used the PyMultiNest5

software [89]. Finally, it is important to notice that to infer distances from the
SNeIa data, we need to apply a small correction and convert between the helio-
centric and the CMB reference frames. Thus, we need to correct the heliocentric
redshift zh to the CMB redshift zCMB [10]

5 log10

(
DL(zCMB)

10 pc

)
= m−M − 5 log10

( 1 + zh
1 + zCMB

)
. (3.8)

While the Pantheon data includes a binned version, Pantheon+ does not
include it. A binned version of the data allows us to perform analyses with much
lower computational time and give very similar results. Thus, we built a binned
version of Pantheon+. We ran several analyses to determine the best number
of bins that we needed, which turned out to be 55. We divided the Pantheon
catalogue into this number of bins with the same number of events in each one.
We derived the mean value, uncertainties and covariance matrix of the binned
data. Finally, we performed the MCMC with both the full and binned Pantheon+
catalogue.

We present the marginalized posterior in figure 3.1 for the full Pantheon+
and the binned Pantheon+ catalogues. Furthermore, we include the result from
SH0ES 2022 [1] which was the value that we used for the calibration. As we
can see, the posterior is very similar to the binned Pantheon+ having a slightly
bigger uncertainty and contours. However, the confidence regions of the binned
Pantheon+ catalogue lie within the ones for the full Pantheon+. Thus, the binned
catalogue predicts the same cosmological results with slightly bigger uncertainties.
This will be important for the next analyses. In addition to this, we see that both
catalogues are consistent with the H0 result from the SH0ES collaboration [1].
This was a requirement since we calibrated the data using this result.

Catalogue H0 (km/s/Mpc) Ωm

Full Pantheon+ 73.0 ± 1.1 0.341 ± 0.028
Binned Pantheon+ 72.8 ± 1.2 0.346 ± 0.038

Table 3.3: Mean values along with the 1σ C.L. uncertainties for the full and
binned Pantheon+ catalogues. We assumed the ΛCDM model and
a calibration ofH0 using the value ofH0 = 73.04± 1.04 km/s/Mpc
from the SH0ES collaboration [1].

We included the results for the mean values and uncertainties at 1σ C.L. in
5https://github.com/JohannesBuchner/PyMultiNest

https://github.com/JohannesBuchner/PyMultiNest
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Figure 3.1: Marginilized posterior for the ΛCDM model and the full Pan-
theon+ and binned Pantheon+ catalogues. We also included the
SH0ES 2022 result of H0 to check that the calibration is accurate.
We included the 1σ and 2σ C.L. confidence contours.

table 3.3. As we can see, both results are consistent with the calibration and the
binned catalogue has a slightly bigger uncertainty for the matter content Ωm.

3.3 Strong Lensing Constraints

We have verified that the SNeIa data works as it should. We checked this by
calibrating the data and fitting it using the standard ΛCDM model. In this
section, we report the results by fitting the strong lensing data to the ΛCDM
model using the logarithmic data.

Baseline H0 (km/s/Mpc) Ωm

Time delay distance 73.0 ± 1.3 0.25+0.13
−0.16

Lens distance 81.6+8.2
−9.1 0.22+0.077

−0.22

Table 3.4: Mean values along with the 1σ C.L. uncertainties for the time delay
and lense distances. We assumed the standard ΛCDM model.

We present the confidence contours in figure 3.2. Our analyses give the same
results as in [10] and are also consistent with the results from the HoLiCOW
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Figure 3.2: Confidence contours at 1σ and 2σ C.L. for the strong lensing
data and the ΛCDM model. We included the results from the
full Pantheon+ catalogue and Planck 2018 [2] for comparison.

collaboration [12]. We also included the results from our calibration for the
full Pantheon+ catalogue and for ΛCDM Planck 2018 [2]. Also, we present the
constraints in table 3.4. As we can see, the time delay measurements provide a
very accurate determination of the Hubble constant H0 which is fully consistent
with the value from the SH0ES collaboration [1]. The constraint for the lens
distance was higher but it is still consistent with this result at 2σ C.L. We can
also note that the matter content has weak constraints. We can spot in figure 3.2
and table 3.4 that the matter content is not well constrained and can even get
higher than Ωm = 0.5 or even approach Ωm = 0. We will now focus on performing
the Gaussian processes.

3.4 Gaussian Process Regression on the SNeIa
Data

Since we want to make a consistency check by computing the time delay and
lens distances starting from the SNeIa, we need to build a continuous catalogue.
The redshifts of time delays and lenses are not equal to the redshifts from the
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Pantheon+ catalogue. Thus, if we want to predict the strong lens distances, we
need to be able to generate SNeIa data in these redshifts. The method to perform
this is to do a Gaussian Process (GP) Regression on the Pantheon+ catalogue.

The first stage is to define our timescale. When we built the Pantheon+
binned catalogue, we divided the data into 55 bins with the same amount of
SNeIa events. Also, the full Pantheon+ SNeIa events are not equally spaced in
Redshift. Then, if we want to guarantee that the GP recovers the relative weights
of the binned catalogue, we need a unique map between uniformly spaced red-
shifts and the redshifts of the Pantheon+ binned catalogue. This will ensure that
the GP does not establish artefacts that are a function of the distance difference
between the SNeIa events. Thus, we define a new time coordinate where the Pan-
theon+ events are equally spaced in redshift. We will use this time coordinate to
define the GP [10].

To be sure that the estimated strong lensing distances are accurate, we need
to ensure that the GP has sufficient liberty to represent all the variations from
the Pantheon+ catalogue. The variations in the Pantheon+ binned catalogue are
tiny in comparison to the variations in the distance-redshift relation. To predict
this relation with the GPs, we deduct from the Binned data the best fit of the
standard ΛCDM model and we add it again after the GPs. In this way, we work
with points that are dispersed around zero. The amount of flexibility of the GP
is related to the chosen kernel function. These functions describe the relative
correlation between distinct data with other time coordinates. We work with the
three kernels used in [10]. The first one is the exponential squared kernel [90]

k(xa, xb) = σ2 exp
(
−||xa − xb||

2

2`2

)
, (3.9)

where σ2 is the overall variance, σ is called the amplitude, and ` is the length
scale which gives the variance of the kernel. The second kernel that we consider
is known as the Matern kernel of order ν = 9/2. For an arbitrary ν, this kernel
is given by [90]

k(r) = 21−ν

Γ(ν)

(√
2νr
`

)ν
Kν

(√
2νr
`

)
, (3.10)

where r is the distance between the two points and can also be written as
r = ||xa − xb|| and ν and ` are parameters. Finally, we considered the ratio-
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nal quadratic kernel [90]

k(r) = σ2
(

1 + r2

2α`2

)−α
, (3.11)

where α is a positive parameter called scale-mixture and ` the length scale as
in the previous cases. As we can see, two of the kernels that we are considering
have two parameters while the rational quadratical one has three. For the three
kernels, it is required to add a constant offset similar to the one in equation (3.7).
This is to correctly replicate the correlation between the SNeIa [10].

The best parameters for the kernels are computed by minimizing the Kullback-
Leibler (KL) divergence [91]. The minimization is performed between the GP
forecast and the binned Pantheon+ catalogue. The KL divergence constitutes
the information variation between the GP and the binned Pantheon+ data. It
acts as a quantification of how much the two distributions are different. For two
Gaussian probability distribution functions, PGP and Pd, the divergence is given
by [10]

D(Pd|PGP ) ≡ 1
2 ln 2

(
(yd − yGP )TΣ−1

d (yd − yGP )− ln det ΣGP

det Σd

− d+ tr
(
ΣGPΣ−1

d

))
,

(3.12)
where yd and yGP are the distance modulus residuals from the binned Pantheon+
data and the GP predictions for a given value of the Kernel parameters. Σd is the
covariance matrix of the binned Pantheon+ catalogue and ΣGP the covariance
for the GP, which is conditioned on the full Pantheon+ catalogue and d is the
number of bins in the binned Pantheon+ catalogue.

The KL divergence allows us to determine the kernel with the best perfor-
mance. In our case, the optimal value kernel values are given by: the exponen-
tial squared kernel KL = 0.844, the Matern kernel KL = 0.828, the rational
quadratic kernel KL = 0.814. Then, the latter one has the best performance.
Thus, the main results from this chapter will be from this kernel.

We present a comparison of the distance modulus residuals from the binned
Pantheon+ catalogue and the GP with the best kernel in figure 3.3. We can
notice that the reconstructed GP distance modulus is continuous. Moreover, we
can see that all the binned points lie within 1σ C.L. from the predicted distance



48 Chapter 3. Model-independent Comparison of SNeIa and Strong Lensing

1 10 20 30 40 50

SNeIa number

1

10

20

30

40

50

S
N

eI
a

n
u

m
b

er
a) Binned Pantheon+

1 10 20 30 40 50

SNeIa number

b) GP

0.2 0.4 0.6 0.8 1.0

correlation

Figure 3.4: Correlation matrix for the Binned Pantheon+ catalogue and the
predicted GP reconstruction.

modulus residuals from the GP. Also, most of the data points are very close to
the mean values of the GP. This shows that the GP reconstruction is accurate.

We now turn our attention to see if the GP is retrieving the correlation be-
tween data close to the binned Pantheon+ catalogue. The correlation comes from
calibration between SNeIa pairs and systematic errors [1, 46]. We present a visual
figure showing the correlations between the SNeIa events of the binned Pantheon+
catalogue and the reconstructed catalogue using GP. We include these results of
the correlation matrix in figure 3.4. As we can see, the diagonal elements have
very similar results and the non-diagonal elements show a slight difference which
is not very different from Figure 8 in [10].

Before moving on to the predictions of the strong lensing results using the
GP, we will do a final consistency check. We will perform an MCMC with the
reconstructed GP data. Thus, we will suppose that the GP reconstructions are
real data and fit it to the standard ΛCDM model. We will do it in the same red-
shifts of the full Pantheon+ catalogue to see how similar the constraints are. This
will tell us whether the reconstruction is accurately reproducing the Pantheon+
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catalogue. We show these results in figure 3.5. As we can spot, the constraints
are almost identical with only slight differences. Therefore, this consistency test
proves that our GP reconstruction accurately reproduces the full Pantheon+ cat-
alogue. We can now focus on predicting the strong lensing distances using this
GP reconstruction that has passed our consistency tests.

3.5 GP Reconstruction of the Time Delay and
Lens Distances

After getting a continuous dataset from the GP that accurately describes the
Pantheon+ catalogue, we can derive the predicted strong lensing distances. To
do this, we need to predict luminosity distances from the reconstructed GP Pan-
theon+ catalogue. This can easily be done by solving DL(z) in equation (1.42)

DL(z) = 10(µ(z)+5)/5 pc, (3.13)

where µ(z) is the distance modulus. Thus, from the predicted GP distance mod-
ulus, we can derive the luminosity distance for any redshift. Starting from this
result, we can also derive the angular diameter distance with equation (1.41).
This allows the reconstruction of the angular diameter lens distances. Finally,
for the time delay distances, we use equation (3.2). Therefore, we can predict
the strong lensing distances starting from the GPs. Moreover, this determination
is model-independent. Thus, it allows us to perform a consistency check on the
SNeIa data from Pantheon+ [13] and the calibration with SH0ES 2022 [1].

We include the results of the ratio between the H0LiCOW strong lensing data
and Pantheon+ GP reconstruction in figure 3.6. We included the mean values and
1σ C.L. uncertainties. In sub-figure (a), we included the comparison for the time
delay distances and (b) for lens distances. As we can see, the error bars for the
GP lens distance reconstruction are much smaller than the ones for H0LiCOW.
The cause of this is that the reconstruction comes from a large number of SNeIa
at intermediate redshift. On the other hand, the error for the GP time delay
reconstruction is similar to H0LiCOW. This is due to how we compute the time
delay distance which comes from the product and ratio of different random vari-
ables.

Let us remember that the logarithmic H0LiCOW data is close to Gaussian
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Figure 3.6: Comparison of the H0LiCOW time delay (a) D∆t and lensing (b)
Dl distances with the calibrated Pantheon+ data reconstructed
GP values DPantheon+

∆t and DPantheon+
l . We plot the mean values

for H0LiCOW along their 1σ C.L. uncertainties. For the recon-
structed Pantheon+ GP, we plot the mean value at the zero or-
dinate coordinate and we include the 1σ C.L. confidence region
in light red.

and also the GP reconstruction is close to Gaussian. Thus, we can measure the
agreement with

χ2 = (log10 D∆t − log10 DPantheon+
∆t )TC−1

tot(log10 D∆t − log10 DPantheon+
∆t ), (3.14)

where Ctot is the sum of the covariance matrix of the H0LiCOW data and the
reconstructed data with GP. The significance test is then given by

significance = 1− CDF(χ2), (3.15)

where CDF is the cumulative distribution function. The perfect agreement would
mean a significance of 100%. The significance can be converted to confidence
levels (C.L.) in units of sigma with the formula

C.L.(σ) =
√

2Erf−1(significance), (3.16)

where Erf is the error function. The significance (and C.L.) for the time delay
distances is 68.9% (0.401σ). On the other hand, for the lens distance is 60.8%
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(0.512σ). These results are different than the correspondent ones in [10] where
they worked with the Pantheon catalogue and the calibration of H0 from [48].
They got significances of 85.7% and 63.6%. The significance for the lens distance
is similar but the one for the time delay distances is considerably higher. Even
so, by changing the SNeIa to Pantheon+ and the H0 calibration from [1], we still
get significances way lower than 1σ C.L. This means that if the reconstructed GP
were real data, they would not be in tension from the measurement of H0LiCOW.
The agreement also implies that the systematics of the determination of H0 with
Pantheon+ SNeIa should be relatively small, otherwise, they would produce big
biases when reconstructing the strong lensing distances. However, there is still
the unlikely possibility that both Pantheon+SH0ES and H0LiCOW share the
same systematics. This is one of the reasons to continue the consistency test
with BAOs in the next chapter.

We have tested the amplitude of the reconstructed strong lensing distances
from the GPs. However, we also need to ensure that the shape of the recon-
structed curve is consistent with H0LiCOW. This amplitude test studies the
possible discrepancies in the determination of H0 while the shape test assesses
whether the GP reconstruction follows the same shape without an H0 calibra-
tion [10]. To perform the amplitude test, we need to compute the mean value
of the logarithmic H0LiCOW results and the reconstructed GP ones. For the
uncertainty, we compute

σAmplitude =
∑N
i=1Cii
N2 , (3.17)

where N is the total number of measurements. The average amplitude of the
H0LiCOW time delay distances is 〈log10D∆t〉 = 3.514 ± 0.012. This result for
the reconstructed GP data from Pantheon+ is

〈
log10D

Pantheon+
∆t

〉
= 3.512± 0.013.

These results have a significance of 90.5% (0.12σ). On the other hand, for the
lens distances, we have 〈log10Dl〉 = 3.026 ± 0.044 and

〈
log10D

Pantheon+
l

〉
=

3.041 ± 0.008. They have a significance of 73% (0.346σ). Thus, this test con-
firms the agreement between the H0LiCOW date and the predictions from GP
and Pantheon+.

We now focus on testing the redshift dependence of the data. This can be
done by computing distance ratios or the difference of logarithmic distances.
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Figure 3.7: Comparison of the difference of H0LiCOW time delay (a) ∆D∆t
and lensing (b) ∆Dl distances with the calibrated Pantheon+
data reconstructed GP values ∆DPantheon+

∆t and ∆DPantheon+
l . We

plot the mean value along their 1σ C.L. uncertainties for both
measurements. The difference is computed by taking the ratio
of the distances with respect to the lowest lens redshift and then
taking the base 10 logarithm.

Thus, since the Hubble constant is inversely proportional to the distance, it can-
cels when considering the ratio. We take all the measurements and take the ratio
of them with respect to the one with the lowest lens redshift. This is an arbitrary
election but it does not lose generality. If we change the datum to which we take
the ratio, we would get a different linear combination of the data [10]. We plot
these results in figure 3.7. As we can see, the results also show good agreement.
The significance of this test for the time delay data is 57.4% (0.563σ) and for the
lens distances is 51.3% (0.655σ). These significances are lower than the ones for
the amplitude test. However, they are still way below the 1σ C.L. which implies
good agreement. We summarize the results from the predicted strong lensing
distances in table 3.5.

We now move to a different kind of test. This next step consists of creating
simulated H0LiCOW data and repeating the previous analyses. This is done by
introducing a bias on the measured distances D∆t and Dl. The mean values and
covariances need to be changed to maintain the signal-to-noise ratio constant
[10]. Then, we will examine the consistency between the new biased data with
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Lens name zd log10

(
DPantheon+

∆t /Mpc
)

log10

(
DPantheon+
l /Mpc

)
B1608+656 0.630 3.677 ± 0.036 3.118 ± 0.014

RXJ1131-1231 0.295 3.355 ± 0.025 2.938 ± 0.011
HE0435-1223 0.454 3.418 ± 0.021 ——

SDSS1206+4332 0.745 3.728 ± 0.036 3.147 ± 0.014
WFI2033-4723 0.657 3.67 ± 0.037 ——
PG1115+080 0.311 3.216 ± 0.015 2.961 ± 0.010

Table 3.5: Predicted time delay log10

(
DPantheon+

∆t /Mpc
)

and lens

log10

(
DPantheon+
l /Mpc

)
logarithmic distances from the GP

using the Pantheon+ catalogue with their corresponding uncer-
tainties at 1σ.

Pantheon+.

We start by assuming a constant +8% shift for the time delay D∆tdistances
and a +15% shift for the lensing distances Dl. We find that this changes the sig-
nificance to 34.1% (0.952σ) and 53.6% (0.619σ) respectively. As we can see, this
constant bias increases the tension between the GP reconstructed distances and
the H0LiCOW data. However, it is still consistent under 1σ C.L. We also con-
sider a redshift-dependent bias with parameter 0.5(zlens−zmean) [10] with zmean the
mean redshift of the lenses. This changes the significance to 0.935% (2.6σ) for the
time delay distances and 22% (1.23) for the lens distances. As we can see, with a
bias like this, we can achieve a tension between the data and the predicted values.

Before moving on to the comparison of SNeIa and BAO, we summarize the
analyses and results. These analyses provide a model-independent consistency
check between strong lensing data from H0LiCOW [12] and SNeIa data from the
Pantheon+ catalogue [13]. The method used the measurement of 1701 SNeIa in
a big range of redshifts. The method made use of GP to interpolate between
the measurements and build a continuous version of the Pantheon+ catalogue.
Then, we compared the residuals, the covariance matrix and the MCMC con-
straints with the ΛCDM model of the newly continuous catalogue and realized
that it accurately describes the full Pantheon+ baseline. After this, we converted
the predicted GP distance modulus to luminosity distances and then to logarith-
mic lens distances DPantheon+

l and time delay distances DPantheon+
∆t . We compared

these predicted distances with the H0LiCOW measurements and found that their
significance is way lower than 1σ C.L. We repeated the analysis by computing the
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Figure 3.8: Comparison of the biased H0LiCOW data with the GP recon-
structed Pantheon+ data. This figure is similar to 3.6 and 3.7 but
we are introducing a +8% and a 15% constant biases to the time
delay distance D∆t and lensing distance Dl respectively. Fur-
thermore, we also include the results by introducing a redshift-
dependent bias parametrized by 0.5(zlens − zmean).

difference of logarithmic distances for all points with respect to the case with the
lowest lens redshift. Once again, the significance was way lower than 1σ C.L. We
also computed the overall amplitude of the measurements and found that they
were also consistent. We then included a bias to the H0LiCOW data of 8% for
the time delay distances and 15% for the lens distances. We found that this bias
induces a disagreement between the predicted reconstructed distances and the
biased H0LiCOW data. However, the significance was still always below 2σ C.L.
This means that even if the strong lensing data is biased by around 15%, they are
still consistent with the predicted data from SNeIa. This changed for the case of
a redshift-dependent bias of the form 0.5(zlens− zmean). We got a tension over 2σ
C.L. for this bias and the time delay distances.

Therefore, since this consistency check is model-independent, there is no sign
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that there are unaccounted systematic effects on both data sets. This gives more
evidence to the hypothesis that a new standard model of Cosmology is needed
to account for the tension between SH0ES 2022 [1] and Planck 2018 [2]. The
tests performed in this chapter were both H0 calibration-dependent (ratio be-
tween strong lensing distances and predicted SNeIa distance) and H0 calibration-
independent (difference between distances and the distance at the minimum lens-
ing redshift). Both tests showed agreement between the H0LiCOW data and
the predicted data from the Pantheon+ catalogue. However, there is still the
possibility that both data sets have the same unaccounted systematic effects, of
the same sign, magnitude and redshift dependence [10]. This consistency test
is not sensible of this remote possibility. In the following chapter, we will re-
peat the reconstruction but instead of predicting strong lensing distances, we
will predict BAO distance ratios. This will shed more light on the possibility
that H0LiCOW and Pantheon+ data can be affected by the same systematics. If
the reconstructed BAO distance ratios from Pantheon+ are consistent with BAO
measurements, then this prospect would be even more unlikely and we would
get more evidence for the hypothesis that the Pantheon+ catalogue is not being
affected by unknown systematic errors.



Chapter 4

Model-independent Comparison
of SNeIa and BAO distance ratios

In the previous chapter, we predicted the strong lensing distances of the H0LiCOW
collaboration [12] from the GP reconstruction of the Pantheon+ catalogue. The
analyses pointed out that since the predicted strong lensing distances are con-
sistent with the measurements, then this shows that there is no evidence for
unaccounted systematics in both methods. Even so, this consistency test cannot
rule out the unlikely scenario where both distances have the same unknown sys-
tematics of the same magnitude and redshift. Thus, doing further consistency
tests would enable us to discard this possibility. In this chapter, we will focus
on predicting BAO distance ratios starting from the SNeIa Pantheon+ catalogue.

We have already built the reconstructed continuous version of Pantheon+,
so the task here is to use this catalogue to predict a different kind of observ-
able. We will focus on BAOs. As we mentioned, they constitute standard rulers.
Furthermore, they enable a model-independent measurement of DM(z)/rd and
(rdH(z))/c. Therefore, they measure two adimensional quantities. Let us recall
that from the GP reconstruction of the Pantheon+ catalogue, we can predict
luminosity distances. Thus, we can predict the transverse comoving distance
DM(z). However, we are not able to predict the sound horizon rd or the Hubble
factor H(z). Consequently, we need a calibration of the sound horizon to predict
BAO distance ratios. Besides, this calibration must be model-independent. We
will start this chapter on how to perform this calibration of the sound horizon rd.

57
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4.1 Model-independent Determination of the Sound
Horizon rd

The goal is to determine the sound horizon rd without invoking a cosmological
model [92]. The method starts by generating samples from the BAO data. We
take the mean values and covariance of the ratios DM(z)/rd and generate samples
using a Gaussian distribution. So that the samples follow

(DM(z)/rd)samples ∼ N (µBAO, σ2
BAO), (4.1)

where µBAO and σBAO are the mean values and standard deviations of the BAO
catalogue. After this, we generate the same number of samples from the GP
reconstruction using the Pantheon+ catalogue. These samples give us the recon-
structed luminosity distance. We can convert these results to transverse comoving
distance by dividing by (1 + z). We then take the ratio

(rd)samples = DPantheon+
M (z)

(DM(z)/rd)samples
, (4.2)

where the result depends on the redshift. This allows for the determination of the
sound horizon at a given redshift. However, the sound horizon is a constant after
recombination and it must be redshift-independent. We do this by converting
the samples to MCMC samples and then computing the mean values and the
standard deviation.

zBAO rd (Mpc)
0.51 132.09 ± 4.46
0.706 140.59 ± 5.44
0.92 133.52 ± 6.32
0.93 134.98 ± 6.24
1.317 137.48 ± 6.70
2.33 131.88 ± 6.88
All 135.09 ± 3.47

Table 4.1: Determination of the model-independent sound horizon for each
of the BAO measurements in the DESI BAO 2024 catalogue and
the global determination.

For the DESI BAO 2024, we present the results of this in table 4.1 and in
figure 4.1. The problem with this determination is that the predicted rd depends
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Figure 4.1: Model-independent constraints of the sound horizon rd using the
BAO DESI 2024 data [14, 15] and the reconstructed BAO Pan-
theon+ GP data. We present the individual constraints for each
BAO measurement and the overall constraint.

on the calibration of the GP reconstruction. Thus, it depends on the M that
we used to calibrate the data. We can also argue that we are using the BAO
data and GP Pantheon+ reconstruction to determine the sound horizon, which
we will use to predict BAO distances in a model-independent case. This might
cause a preference for the reconstructed BAO distance ratios which can result in
a high significance. This would be true if we take the predicted sound horizon for
each measurement. However, we are considering the results of all of them, which
weakens this effect. Our prediction of rd is just adding a multiplicative factor to
the predicted BAO distance ratios and not a redshift-dependent multiplicative
factor that also changes the shape of the distance ratio-redshift evolution. Even
so, we will make a test which will be independent of the value of rd. This will be
similar to the difference test that we made with the strong lensing results.

Furthermore, we can compare our determination of the sound horizon with the
one from Planck 2018 assuming ΛCDM. This result is rd = 147.09 ± 0.26 Mpc [2].
The significance between of our determination rd = 135.09 ± 3.47 Mpc and this
result of Planck is 0.056% (3.45σ). The relative difference is 8.8%. This tension
accounts for a part of the 5σ tension between the H0 result of SH0ES 2022 [1]
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Figure 4.2: Comparison of the DESI BAO 2024 distance ratios DM/rd
with the calibrated Pantheon+ reconstructed GP values
(DM/rd)Pantheon+.

and Planck 2018 [2]. Now, after predicting the value of the sound horizon, we are
ready to reconstruct BAO distance ratios.

4.2 GP Reconstruction of the BAO Distance
Ratios

Starting from the reconstructed Pantheon+ GP catalogue, we can derive the
transverse comoving distances with

DM(z) = 1
1 + z

10(µ(z)+5)/5 pc. (4.3)

The general method is to produce a large amount of samples, of the order of
105. We then compute the mean value and standard deviation. However, since
we will deal with BAO distance ratios, we first need to divide the reconstructed
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Figure 4.3: Comparison of the DESI BAO 2024 distance ratio
(DM/rd)/(DM/rd(zmin)) with the calibrated Pantheon+
reconstructed GP ratios ((DM/rd)/(DM/rd(zmin)))Pantheon+.

transverse comoving distances by the samples of the sound horizon
(
DM(z)
rd

)
samples

=
DPantheon+
M samples (z)
rd samples

, (4.4)

where we divide the samples to get the distance ratio samples. Since the num-
ber of samples is large, the result will be very close to a Gaussian one. Thus,
after taking the ratio, we can compute the mean value and uncertainty. This
will give us the GP reconstruction of the BAO distance ratio starting from the
Pantheon+ catalogue. Let us recall that for the strong lensing reconstruction, we
took the base 10 logarithms of the H0LiCOW data and the GP determination of
the lensing distances. However, for the BAO distance ratios, we do not need to
do this. This is because the measured BAO ratios are already Gaussian. Thus,
we do not need to take the logarithm to get a better approximation of a Gaussian.

We present the predicted values for the Pantheon+ GP BAO ratios in table
4.2. We also included the measured values from DESI 2024 [14, 15] for compari-
son. As we can see, all the predicted values are consistent with the measured ones.
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Tracer zeff DM/rd (DM/rd)Pantheon+
LRG1 0.51 13.62 ± 0.25 13.32 ± 0.51
LRG2 0.71 16.85 ± 0.32 17.54 ± 0.74
LRG3 0.92 21.81 ± 0.31 21.6 ± 1.1

LRG3+LRG1 0.93 21.71 ± 0.28 21.7 ± 1.1
ELG2 1.32 27.79 ± 0.69 28.3 ± 1.4

Lyman-α 2.33 39.71 ± 0.95 38.8 ± 2.1

Table 4.2: Comparison of the measured DESI BAO ratios DM/rd and the
predicted Pantheon+ BAO ratios (DM/rd)Pantheon+. We include
the uncertainties at 1σ C.L.

Furthermore, we can see that the uncertainties of the predicted BAO ratios are
considerably higher. The reason for this is that to predict them, we took the ratio
of two Gaussian quantities. We show the ratio of the measured quantities with
respect to the reconstructed ratios from Pantheon+ in figure 4.2. Here, we can
confirm that the reconstructed ratios are perfectly consistent with the measured
ones. The significance (and C.L.) for the comparison of BAO distance ratios is
95.9% (0.0515σ). Thus, we validate that the agreement is way lower than 1σ.
This means that if the reconstructed ratios were real data, they would not be in
tension from DESI 2024.

We now turn our attention to the shape of the reconstructed curve. For this,
we do the amplitude test with equation (3.17). The average amplitude of the
DESI BAO 2024 distance ratios is 〈DM/rd〉 = 23.58 ± 0.22. On the other hand,
for the reconstructed GP data from Pantheon+, we have 〈(DM/rd)Pantheon+〉 =
23.53 ± 0.64. The significance between these results is 94.3% (0.072σ). This
shows that the curve shape of the predicted distance ratios from Pantheon+ is
fully consistent with the measured ones. We were talking about how building the
rd constraints from the predicted DM Pantheon+ and the measured DM/rd could
introduce a bias to the predicted values. However, we used the overall constraint
rd which only effectively adds a multiplicative factor to the predicted values from
Pantheon+. Thus, by doing this, we are not changing the shape of the curve.
Thus, this amplitude test is independent of the value that we took for the sound
horizon rd. We will examine this by performing a sound horizon rd independent
test.

For the strong lensing case, we performed a difference test. For this, we
took the difference in the logarithm of the data with respect to the datum with
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Figure 4.4: Comparison of the biased DESI BAO data with the GP recon-
structed Pantheon+ data. This figure is similar to 4.2 and 4.3 but
we are introducing a 5% constant bias to the BAO distance ratios
DM/rd. Furthermore, we also include the results by introduc-
ing a redshift-dependent bias parametrized by 0.1(zBAO− zmean)
where zBAO is the redshift of each measurement and zmean the
mean value of the redshifts of all measurements in the DESI BAO
catalogue.

a lower redshift. We will repeat this analysis. The caveat is that we will con-
sider the ratio instead of the difference. This is because we derive the DESI
BAO 2024 measurements and not their logarithms. In this case, we are taking
the ratio of the data (both the DESI BAO 2024 measurements and the recon-
structed ones with Pantheon+) with the datum of small redshift. Thus, we are
considering (DM/rd(z))/(DM/rd(zmin)). The minimum corresponds to the BAO
measurement with the LRG1 tracer. Since the sound horizon rd is constant after
recombination, this result is independent of this calibrator. Thus, this test will
be completely independent of the value of the sound horizon. We know the mean
values and covariance matrices for the data. To derive the mean values of this
ratio with respect to minimum redshift we simply need to take the ratio of mean
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values. On the other hand, the covariance of the ratio is given by

Σi+1,j+1 ≈
Ci+1,j+1

µ2
1

+ µi+1µj+1

µ4
1

C1,1 −
µi+1

µ3
1
C1,j+1 −

µj+1

µ3
1
C1,i+1, (4.5)

where Σ is the covariance matrix of the ratio, C the covariance of the data, µ1

is the mean value of the datum with the minimum redshift and the indexes i+ 1
and j + 1 go over the data except the first element. We present the results of
this analysis in figure 4.3. As we can see all the DESI BAO 2024 measurements
are consistent with the Pantheon+ reconstruction at 1σ C.L., except the one at
zBAO = 0.706. The significance of this comparison is 81% (0.241σ), which is
way lower than 1σ C.L. This is a rd-independent test and still confirms that the
predicted reconstruction from Pantheon+ is fully consistent with the DESI data.
We now turn our attention to the study of how these results change if we bias
the DESI BAO data.

We start by introducing a +5% constant shift to the distance ratios DM/rd.
This has a big impact on the significance, which is now 51.7% (0.648σ), consid-
erably lower than the 95.9% significance for the unbiased data. The amplitude
test gives 〈DM/rd〉 = 24.76 ± 0.23, having a significance of 7.03% (1.81σ) with
the reconstructed data from Pantheon+. As we can see this bias severely impacts
the agreement of the DESI BAO data with the reconstructed Pantheon+. Even
so, the agreement is still under the 2σ C.L. It is useful to notice that causing a
constant bias to the observed data is technically equivalent to changing the cali-
bration of the sound horizon rd. Thus, this shows that the level of agreement of
the DESI BAO data and Pantheon+ is highly dependent on the calibration of the
sound horizon rd. Even so, the test where we compare the ratio of the data with
the datum with the lowest redshift (the minimum redshift distance ratio test) is
invariant under this bias. This is because the bias is redshift-independent. We
can confirm this by computing the significance, which is 81.5% (0.233σ). This
result is the same as the no-bias case (except for a sub-percent change).

Let us now study what happens when we consider a redshift-dependent bias
parametrized by 0.1(zBAO − zmean) with zBAO the redshift of each BAO measure-
ment and zmean the mean values of all the redshift measurements. This bias causes
a bigger shift in the agreement, having a significance of 9.1% (1.69σ), which is
much lower than 95.9% for the unbiased data case. For the amplitude test, we
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get 〈DM/rd〉 = 24.08 ± 0.23 having a significance of 42.2% (0.804σ). It is in-
teresting how this result is higher than the case for +5% constant bias. Finally,
the minimum redshift distance ratio test gives a significance of 2.89% (2.18σ).
This breaks the 2σ threshold causing the reconstructed Pantheon+ data to be in
tension with this redshift-dependent biased DESI data.

We plot the results of the bias tests in figure 4.4. As we can see, the constant
bias data suffers changes that make the significance of the distance ratio test
lower. However, for the minimum distance ratio test, the data is unchanged, as
expected. For the redshift-dependent case, we see that the level of disagreement
peaks for the datum with the highest redshift. This datum causes most of the
decreased significance between the biased data and the reconstructed Pantheon+
data.

We summarize the analyses and findings now. They provide another model-
independent consistency check between BAO distance ratio DM/rd data from
DESI [14, 15] and SNeIa data from the Pantheon+ catalogue [13]. We used the
GP Pantheon+ catalogue from the previous chapter to predict BAO distance ra-
tios DM/rd and to compare them with the observational data from DESI BAO
2024. We started from the predicted GP distance modulus and computed the
transverse comoving distances DM . After this, we needed to derive the sound
horizon rd. We generated 105 Gaussian samples from the DESI BAO 2024 data
DM/rs and from the GP reconstructed Pantheon+ catalogue DM . By taking the
ratio of the latter with the former, we got Gaussian samples for the sound horizon
rd. This effectively introduces a bias to our predicted BAO distance ratios. The
cause of this is that we used the real BAO data to calibrate the sound horizon
rd and we used this result to predict the BAO distance ratios. That is why we
took the rd general constraint for all the data and not for any single redshift.
Thus, by taking the ratio DPantheon+

M to rconstrainedd we are effectively dividing the
predicted data by a constant and not a factor that changes the shape of the data
and thus the predictions. This is because the sound horizon rd is constant after
recombination.

We compared the predicted distance ratios DM/rd of the DESI BAO 2024
with the GP reconstruction of Pantheon+ (distance ratio test) and found that
their consistent with more than 90% significance. After this, we performed a
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sound horizon-independent test. We divided both catalogues by the datum with
minimum redshift (minimum redshift distance ratio test). We found an excellent
agreement once again showing a significance higher than 80%. This confirms that
the predicted data is fully consistent with the actual data. We also computed the
overall amplitude and found excellent agreement as well.

We proceeded by including a bias to the DESI BAO 2024 data to see how
the agreements change with this. We considered a +5% constant bias for the
BAO distance ratios. We found that this bias causes disagreement between the
biased data and the predicted data by turning the significance just over 50% (still
under 1σ C.L.). However, the minimum redshift distance ratio showed the same
significance except for sub-percent changes. This is expected since we biased all
the BAO data by the same amount. We also considered a redshift-dependent
bias parametrized by 0.1(zBAO − zmean). This bias caused a bigger disagreement
than the constant one, having a significance under 10%. The minimum redshift
distance ratio showed even more disagreement with a significance of less than
3% which is more than 2σ C.L. Thus, the BAO DESI 2024 data would not be
consistent with the Pantheon+ GP reconstruction if it is biased. Furthermore, we
should notice that for this comparison, we took smaller biases of +5% for the con-
stant case in comparison to +8% and +15% for the strong lensing case. On the
other hand, we considered a redshift-dependent bias given by 0.1(zBAO − zmean)
in comparison to the 0.5(zH0LiCOW− zmean) for the strong lensing catalogue. This
shows how the consistency of the Pantheon+ GP reconstruction and DESI BAO
2024 are heavily dependent on biased data. If either catalogue has important
unaccounted systematics or unaccounted biases, they would be in tension. Even
so, the tension would not be close to the 5σ C.L. that SH0ES 2022 and Planck
2018 currently have. In addition to this, as we can see from the constant bias
test, a miscalibration of the sound horizon rd would produce a tension between
the predicted BAO ratios and the measured ones. However, this would not affect
the minimum redshift distance ratio test since it is fully independent of the value
of the sound horizon rd.

In this chapter, we showed that by starting from the SNeIa Pantheon+ cata-
logue [13], we can predict the distance ratios of DESI BAO 2022 [14, 15] and they
are perfectly compatible. This is the second test of this nature presented in this
thesis after the first one comparing the predicted Pantheon+ lensing distances
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to the ones from the H0LiCOW collaboration [12]. These tests are completely
model-independent and thus are not biased towards a particular Cosmological
model. However, one of the tests performed in this chapter introduced a bias
that might cause a better agreement between the predicted Pantheon+ GP dis-
tance ratios and the actual data from DESI BAO. For this, we computed the
sound horizon rd assuming the full BAO dataset and the SNeIa prediction for
the transverse comoving distance. Even so, we argue that we are considering the
overall constraints and not a redshift-dependent constraint that would change
the shape of the predicted distance ratios. This would increase the bias and the
agreement even more. Despite this, we did a second test which is independent
of the sound horizon rd calibration. This gives further support that the predic-
tions are consistent with the actual data. Since the test is model-independent,
we have further evidence that there are no unaccounted systematic effects on
both datasets (Pantheon+ and DESI BAO). This implies that we present more
evidence for the hypothesis that we require a new standard model of Cosmology
different to ΛCDM to solve the H0 between SH0ES 2022 [1] and Planck 2018 [2].

All our tests presented in this chapter showed an agreement way lower than 1σ
C.L. for both rd-dependent and rd-independent tests. As we said in the previous
chapter, there was still the possibility that both H0LiCOW and Pantheon+ are
subject to the systematics of the same sign, magnitude and redshift dependence
[10]. Thus, from the consistency tests that we performed in the last chapter,
we could not discard this possibility. Even so, this scenario is highly unlikely.
The analysis presented in this chapter reduces even more the probability of this
unlikely possibility. We saw that Pantheon+ predictions are compatible with both
strong lensing measurements and BAO distance ratios. The only assumptions
that we made to build this reconstructed data were that the value of the Hubble
constant from SH0ES 2022 [1] is accurate and that the Universe is flat. Thus,
these tests also support the premise that the cosmic distance ladder method
is not affected by unknown systematics. Even more, this test with BAO and
Pantheon+ gives less freedom for unknown systematics. As we saw, even a small
bias of around 5% to the BAO distance ratio creates a disagreement of almost
2σ C.L. with the Pantheon+ predictions. This was not seen with H0LiCOW and
Pantheon+ even by considering 10% and 15% biases. This bias can come from a
wrong determination of the sound horizon rd. For instance, the difference between
our calibration of rd and the one for Planck 2018 is 8.8%. Thus, a calibration
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of the data with the Planck sound horizon rd would cause tension between BAO
and Pantheon+ predictions. Furthermore, the tests are very sensible of redshift-
dependent biases. A 0.1(zBAO − zmean) causes a 2σ C.L. tension. All of these
facts show the importance of comparing BAO distance ratios and Pantheon+
predictions.



Conclusions

In this thesis, we performed two distance-redshift consistency tests from Type
1a Supernova (SNeIa) and two observables: strong lensing measurements and
Baryon Acoustic Oscillation (BAO) distance ratios. We uploaded the results
from [10] by using the update of the Pantheon catalogue [11], Pantheon+ [13].
Furthermore, we used the last result of H0 from the SH0ES collaboration [1] to
calibrate the SNeIa data.

Our tests started by generating a continuous version of the Pantheon+ cat-
alogue. We did it with a Gaussian process (GP) regression interpolation. We
checked that our continuous reconstruction was consistent with Pantheon+ by
performing three tests. We checked that the distance modulus residuals were
consistent with the ones from the binned Pantheon+ catalogue. We found a
good agreement with almost all measurements from the Pantheon+ catalogue
close to the mean value of the GP reconstructions. For the remaining measure-
ments, they were always consistent with the GP at the 1σ C.L. Then, we plotted
the covariance matrix of the binned Pantheon+ catalogue and the reconstruction
using the GP and found that they were very similar in the diagonal and just
showed slight differences in the non-diagonal elements. Finally, we performed a
Monte Carlo Markov Chain method to fit the GP reconstruction data as if it were
real data and compare it with the constraints of the full Pantheon+ catalogue.
For this part, we assumed the ΛCDM model but the reconstructed data is model
independent. We found that the confidence regions were almost identical with
minimal differences. Thus, these consistency tests show that our reconstructed
continuous version of the Pantheon+ is accurate.

We proceeded to predict the strong lensing distances and BAO distance ratios
from this GP reconstruction. This catalogue gives us a prediction for the distance
modulus µ(z) = m(z) −M for any redshift once we calibrate the absolute mag-

69
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nitude M . From them, we can derive the predicted luminosity distance at any
redshift. This allows us to predict the strong lensing data. We start with the
lens distance which is an angular distance. Then, we focus on the time delay dis-
tance given as products of redshift and angular diameter distances. For the BAO
distance ratios, we need to compute DM/rd which is the ratio of the transverse
moving distance to the sound horizon. After this, we compared the actual data
with the predictions from the GP reconstruction using the Pantheon+ catalogue.
This was to test the agreement and to study whether the cosmic distance ladder
determination of the Hubble constant H0 can be subject to unknown systematic
errors. We then created two sets of simulated data. We did this by introducing a
constant bias and a redshift-dependent bias to the actual data. Then, we study
how the level of agreement changed and if the biases could introduce statistical
tensions.

Since the strong Lensing data from the H0LiCOW collaboration [12] was not
Gaussian, we took the base 10 logarithm of the data which was almost perfectly
Gaussian. This was to make an accurate comparison to the Gaussian predicted
data. The first test consisted of computing the ratio of the actual data to the
predicted one from Pantheon+ and taking the base 10 logarithm. This is called
the distance ratio test. We found a perfect agreement which was way lower than
the 1σ C.L. For the second test, we performed the amplitude test, which is an
average value of the base 10 logarithm of the distances. We also found a perfect
agreement better than the previous test and also way below the 1σ C.L. For the
third test, we divided the actual data and predicted data by the datum with
the smallest lens redshift. This test is H0-independent. We call it the minimum
redshift test. We compared the results of the actual data and predicted data to
test the agreement. Once again, the results proved that the agreement is good,
way below the 1σ C.L. After this, we introduced a bias to the actual data from
H0LiCOW. We considered a constant bias with 10% for the time delay distances
D∆t and 15% for the lensing distances Dl. This introduced some disagreement
but it was always under 2σ C.L. This shows that even with considerable per-
centage constant biases, the comparison is still statistically consistent. We finally
considered a redshift-dependent bias parametrized by 0.5(zlens−mean). This bias
had a tension over 2σ C.L. between the actual and predicted values. This indi-
cates that a redshift-dependent bias could produce tension in our results. Thus,
the comparison does not allow big redshift-dependent biases.
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The BAOmeasurements from the DESI collaboration [14, 15] offer constraints
on DM/rd, the ratio of the transverse comoving distance to the sound horizon.
We derived DM from the predictions of the continuous Pantheon+ catalogue.
However, for the sound horizon, we needed to derive an additional constraint.
We took all the BAO measurements and generated Gaussian samples which we
called (DM/rd)samples. Then, we generated samples from the derived predictions
(DM)Pantheon+samples of Pantheon+. We finally got the sound horizon rd samples with
rd samples = ((DM/rd)samples)/(DM)Pantheon+samples . We considered the full BAO cata-
logue to avoid introducing severe biases to our results. We took the mean value
and variance of the samples to derive the mean and standard deviation. We gen-
erated the predicted samples by taking the ratio DPantheon+

M /rd. Notice that our
samples are dependent on a calibration of the sound horizon. However, since it
is constant after recombination, it is a multiplicative factor that does not change
the shape of the predicted data. For the BAO distance ratio test, which con-
sists of comparing the DESI BAO 2024 data [14, 15] to the predicted data from
Pantheon+, we got a perfect agreement showing more than 90% significance and
agreement way lower 1σ C.L. We also implemented a sound horizon-independent
test. We divided both catalogues by the datum with the minimum redshift. This
is called the minimum redshift ratio test. After comparing the results from both
datasets, we found an excellent agreement with significance over 80%. Once
again, this is way lower than 1σ C.L. The overall amplitude showed excellent
agreement as well. We included biases similar to the case of strong lensing. We
started with a +5% constant bias for the actual BAO distance ratios. This bias
caused a discrepancy between the observational BAO and predicted data, lower-
ing the significance by just over 50%. However, this is still under 1σ C.L. The
minimum redshift distance ratio test showed the same results as the unbiased
data except for sub-percent changes. This is expected since we are biasing the
data by the same amount and not in a redshift-dependent way. We should no-
tice that introducing a constant bias to the data is equivalent to changing the
calibration of the sound horizon rd. Thus, this shows that the level of agreement
between the actual and predicted data is highly dependent on the calibration of
rd. If we took the result from Planck 2018 [2] assuming ΛCDM, we would get a
tension between DESI BAO 2022 and the Pantheon+ predictions. However, this
would not be measured in the minimum redshift distance ratio test since it is
sound horizon-independent. This gives us an interesting idea for future research.
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We could compute the range of acceptable values that the sound horizon rd can
get for the Pantheon+ predictions to be consistent with BAO data. This can be
further extended to more BAO and SNeIa catalogues.

For the comparison between BAO and the Pantheon+ distance ratios pre-
dictions, we considered a redshift-dependent bias as well. This is parametrized
by 0.1(zBAO − zmean). This is 80% smaller than the bias for the strong lensing
case of 0.5(zH0LiCOW− zmean). This bias caused a huge disagreement between the
data and the predicted values. It had a significance of just over 9%, which is
still under 2σ C.L. for the BAO distance ratio test. However, for the minimum
redshift distance ratio test, there is a significance of just over 2%, which is in
tension with the predicted values from Pantheon+ at over 2σ C.L. This tension
shows that the BAO data cannot have big unaccounted systematic errors to allow
a good agreement. Even so, the tension is still way lower than the 5σ C.L. tension
between the H0 value of SH0ES 2022 and Planck 2018.

As we can see, in this thesis we showed that we can predict strong lens dis-
tances and BAO distance ratios starting from SNeIa data. We need to assume a
calibration of the absolute magnitude M that allows SNeIa to work as standard
candles. We took the calibration from the last result of the SH0ES collaboration
[1]. We did it to perform consistency tests and to find out if the analysis conducted
by the SH0ES collaboration in determining H0 is subject to unknown systematic
errors. Our other assumption was that the Universe is spatially flat. This is a
reasonable assumption because the CMB points to a Universe with no curvature.
Furthermore, inflation washes out any initial curvature that the Universe could
have. We predicted the observational values of strong lensing and BAO distance
ratios and found that they were perfectly compatible. These tests were done in a
model-independent way. Thus, the level of agreement suggests that there are no
unaccounted systematics on Pantheon+, DESI BAO and H0LiCOW. This also
implies that we need a new standard model of Cosmology different to the current
one, ΛCDM. This new model should solve the H0 tension between SH0ES 2022
and Planck 2018. We got even more evidence of all of this by considering biases of
the data that could be produced from unaccounted systematic errors. We found
that wrong determinations of the Hubble constant H0 or the sound horizon rd

would cause disagreements between the observational data and the predicted one
using Pantheon+. As a strong example, we can remember that we considered a
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+5% constant bias in the BAO observations. This gave a level of disagreement of
almost 2σ C.L. between Pantheon+ and DESI BAO 2024. For comparison, the
difference between our calibration of rd and the result from Planck 2018 is 8.8%.
Thus, if we calibrated our data with the sound horizon from Planck, we would get
a tension between the BAO data and our GP predictions. In addition to this, we
showed that the level of agreement is very sensible of redshift-dependent biases.
When considering them, we had tensions of more than 2σ C.L. All of these results
provide strong evidence that there are no unaccounted systematic errors in the
Hubble constant H0 measurement of the SH0ES collaboration. Thus the problem
needs to be solved by new physics beyond ΛCDM. The results obtained in this
thesis will be published in an international journal.

The analyses of this thesis can be repeated using other SNeIa catalogues
to test the level of agreement that they have with strong lensing and BAO cata-
logues. Furthermore, it is possible to extend it to other BAO samples. In addition
to this, we can revisit the Gaussian Process (GP) reconstruction to predict the
derivative of the Luminosity distance with redshift. This would enable a pre-
diction on the Hubble parameter at different redshifts. Thus, we would be able
to compare these results with the DH/rd distance ratios from the DESI BAO
data where DH = c/H(z) is the Hubble distance. Moreover, this would enable a
different way to calibrate the sound horizon similar to the method that we used
with transverse comoving distances. Finally, it would be possible to predict the
value of the ratio DM/DH which is also reported by the DESI collaboration. This
would make it possible to make further studies with sound horizon-independent
measurements. Finally, it is also possible to start from the BAO data and per-
form different calibrations on the sound horizon rd for the predicted data using
Pantheon+. We can then compute the significances using the distance ratio tests
to determine the possible values that the sound horizon can have to have a con-
sistency between the predicted Pantheon+ measurements and the actual BAO
measurements. These tests would provide stronger evidence for our conclusions.

As we saw, our results support the claim that the distance ladder determi-
nation of H0 using Cepheids and SNeIa is not under the influence of unknown
systematic errors. This in turn implies that the Cosmological crisis of the Hubble
constant tension problem H0 seems to have a physical origin. Thus, to solve this
problem, among others that Cosmology is having nowadays, we need to propose
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alternative models to ΛCDM in the form of dynamic dark energy, scalar field
dark energy, new particles in the particle standard model, modified and extended
theories of gravity or more possibilities.
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